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Preface

This book contains the notes of a short course given by the two authors at the
14th School of Differential Geometry, held at the Universidade Federal da Bahia,
Salvador, Brazil, in July 2006. Our goal is to provide the reader/student with the
necessary tools for the understanding of an immersion theorem that holds in the
very general context of affine geometry. As most of our colleagues know, there is
no better way for learning a topic than teaching a course about it and, even better,
writing a book about it. This was precisely our original motivation for undertaking
this task, that lead us way beyond our most optimistic previsions of writing a short
and concise introduction to the machinery of fiber bundles and connections, and a
self-contained compact proof of a general immersion theorem.

The original idea was to find a unifying language for several isometric immer-
sion theorems that appear in the classical literature [S] (immersions into Riemann-
1an manifolds with constant sectional curvature, immersions into Kdhler manifolds
of constant holomorphic curvature), and also some recent results (see for instance
[6,7]]) concerning the existence of isometric immersions in more general Riemann-
ian manifolds. The celebrated equations of Gauss, Codazzi and Ricci are well
known necessary conditions for the existence of isometric immersions. Additional
assumptions are needed in specific situations; the starting point of our theory was
precisely the interpretation of such additional assumptions in terms of “structure
preserving” maps, that eventually lead to the notion of G-structure. Giving a G-
structure on an n-dimensional manifold M, where G is a Lie subgroup of GL(RR™),
means that it is chosen a set of “preferred frames” of the tangent bundle of M on
which G acts freely and transitively. For instance, giving an O(R"™) structure is the
same as giving a Riemannian metric on M by specifying which are the orthonormal
frames of the metric.

The central result of the book is an immersion theorem into (infinitesimally)
homogeneous affine manifolds endowed with a G-structure. The covariant deriv-
ative of the G-structure with respect to the given connection gives a tensor field
on M, called the inner torsion of the G-structure, that plays a central role in our
theory. Infinitesimally homogeneous means that the curvature and the torsion of the
connection, as well as the inner torsion of the G-structure, are constant in frames of
the G-structure. For instance, consider the case that M is a Riemannian manifold
endowed with the Levi-Civita connection of its metric tensor, GG is the orthogo-
nal group and the G-structure is given by the set of orthonormal frames. Since
parallel transport takes orthonormal frames to orthonormal frames, the inner tor-
sion of this G-structure is zero. The condition that the curvature tensor should be
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constant in orthonormal frames is equivalent to the condition that M has constant
sectional curvature, and we recover in this case the classical “fundamental theo-
rem of isometric immersions in spaces of constant curvature”. Similarly, if M is a
Riemannian manifold endowed with an orthogonal almost complex structure, then
one has a G-structure on M, where G is the unitary group, by considering the set
of orthonormal complex frames of T'M. In this case, the inner torsion of the G-
structure relatively to the Levi-Civita connection of the Riemannian metric is the
covariant derivative of the almost complex structure, which vanishes if and only if
M is Kéhler. Requiring that the curvature tensor be constant in orthonormal com-
plex frames means that M has constant holomorphic curvature; in this context, our
immersion theorem reproduces the classical result of isometric immersions into
Kihler manifolds of constant holomorphic curvature. Another interesting example
of G-structure that will be considered in detail in these notes is the case of Rie-
mannian manifolds endowed with a distinguished unit vector field &; in this case,
we obtain an immersion theorem into Riemannian manifolds with the property that
both the curvature tensor and the covariant derivative of the vector field are con-
stant in orthonormal frames whose first vector is £. This is the case in a number of
important examples, like for instance all manifolds that are Riemannian products
of a space form with a copy of the real line, as well as all homogeneous, simply-
connected 3-dimensional manifolds whose isometry group has dimension 4. These
examples were first considered in [6]. Two more examples will be studied in some
detail. First, we will consider isometric immersions into Lie groups endowed with
a left invariant semi-Riemannian metric tensor. These manifolds have an obvious
1-structure, given by the choice of a distinguished orthonormal left invariant frame;
clearly, the curvature tensor is constant in this frame. Moreover, the inner torsion of
the structure is simply the Christoffel tensor associated to this frame, which is also
constant. The second example that will be treated in some detail is the case of iso-
metric immersions into products of manifolds with constant sectional curvature;
in this situation, the G-structure considered is the one consisting of orthonormal
frames adapted to a smooth distribution.

The book was written under severe time restrictions. Needless saying that,
in its present form, these notes carry a substantial number of lacks, imprecisions,
omissions, repetitions, etc. One evident weak point of the book is the total ab-
sence of reference to the already existing literature on the topic. Most the material
discussed in this book, as well as much of the notations employed, was simply
created on the blackboard of our offices, and not much attention has been given
to the possibility that different conventions might have been established by previ-
ous authors. Also, very little emphasis was given to the applications of the affine
immersion theorem, that are presently confined to the very last section of Chap-
ter [3) where a few isometric immersion theorems are discussed in the context of
semi-Riemannian geometry. Applications to general affine geometry are not even
mentioned in this book. Moreover, the reference list cited in the text is extremely
reduced, and it does not reflect the intense activity of research produced in the last
decades about affine geometry, submanifold theory, etc. In our apology, we must
emphasize that the entire material exposed in these three long Chapters and two
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Appendices started from zero and was produced in a period of seven months since
the beginning of our project.

On the other hand, we are particularly proud of having been able to write a text
which is basically self-contained, and in which very little prerequisite is assumed
on the reader’s side. Many preliminary topics discussed in these notes, that form
the core of the book, have been treated in much detail, with the hope that the text
might serve as a reference also for other purposes, beyond the problem of affine
immersions. Particular care has been given to the theory of principal fiber bundles
and principal connections, which are the basic tools for the study of many topics in
differential geometry. The theory of vector bundles is deduced from the theory of
principal fiber bundles via the principal bundle of frames. We feel we have done a
good job in relating the notions of principal connections and of linear connections
on vector bundles, via the notions of associated bundle and contraction map. A cer-
tain effort has been made to clarify some points that are sometimes treated without
many details in other texts, like for instance the question of inducing connections
on vector bundles constructed from a given one by functorial constructions. The
question is treated formally in this text with the introduction of the notion of smooth
natural transformation between functors, and with the proof of several results that
allow one to give a formal justification for many types of computations using con-
nections that are very useful in many applications. Also, we have tried to make the
exposition of the material in such a way that generalizations to the infinite dimen-
sional case should be easy to obtain. The global immersion results in this book
have been proven using a general “globalization technique” that is explained in
Appendix [B]in the language of pre-sheafs. An intensive effort has been made in
order to maintain the (sometimes heavy) notations and terminology self-consistent
throughout the text. The book has been written having in mind an hypothetical
reader that would read it sequentially from the beginning to the end. In spite of
this, lots of cross references have been added, and complete (and sometimes repet-
itive) statements have been chosen for each proposition proved.

Thanks are due to the Scientific Committee of the 14th School of Differential
Geometry for giving the authors the opportunity to teach this course. We also want
to thank the staff at IMPA for taking care of the publishing of the book, which was
done in a very short time. The authors gratefully acknowledge the sponsorship by
CNPq and Fapesp.

The two authors wish to dedicate this book to their colleague and friend Francesco
Mercuri, in occasion of his 60th birthday. Franco has been to the two authors an
example of careful dedication to research, teaching, and supervision of graduate
students.






CHAPTER 1

Principal and associated fiber bundles

1.1. G-structures on sets

A field of mathematics is sometimes characterized by the category it works
with. Of central importance among categories are the ones whose objects are sets
endowed with some sort of structure and whose morphisms are maps that preserve
the given structure. A structure on a set X is often described by a certain number
of operations, relations or some distinguished collection of subsets of the set X.
Following the ideas of the Klein program for geometry, a structure on a set X can
also be described along the following lines: one fixes a model space X, which
is supposed to be endowed with a canonical version of the structure that is being
defined. Then, a collection P of bijective maps p : Xg — X is given in such
away thatif p : Xg — X, ¢ : Xo — X belong to P then the transition map
p~togq: Xog— Xo belongs to the group G of all automorphisms of the structure
of the model space Xg. The set X thus inherits the structure from the model space
Xy via the given collection of bijective maps P. The maps p € P can be thought
of as parameterizations of X.

To illustrate the ideas described above in a more concrete way, we consider
the following example. We wish to endow a set V' with the structure of an n-
dimensional real vector space, where n is some fixed natural number. This is
usually done by defining on V' a pair of operations and by verifying that such
operations satisfy a list of properties. Following the ideas explained in the para-
graph above, we would instead proceed as follows: let P be a set of bijective maps
p: R™ — V such that:

(a) forp,q € P,the map p~" o q : R® — R" is a linear isomorphism;
(b) forevery p € P and every linear isomorphism g : R™ — R", the bijective
mappog:R" — Visin P.

1

The set P can be thought of as being an n-dimensional real vector space structure
on the set V. Namely, using P and the canonical vector space operations of R"”,
one can define vector space operations on the set V' by setting:

(1.1.1) v+w=p(p ') +p  (w), tv=p(tr ' (v)),

for all v,w € V and all t € R, where p € P is fixed. Clearly condition (a)
above implies that the operations on V' defined by do not depend on the
choice of the bijection p € P. Moreover, the fact that the vector space operations
of R" satisfy the standard vector space axioms implies that the operations defined
on V also satisfy the standard vector space axioms. If V' is endowed with the

1
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operations defined by then the bijective maps p : R™ — V belonging to P
are linear isomorphisms; condition (b) above implies that P is actually the set of all
linear isomorphisms from R™ to V. Thus every set of bijective maps P satisfying
conditions (a) and (b) defines an n-dimensional real vector space structure on V.
Conversely, every n-dimensional real vector space structure on V' defines a set of
bijections P satisfying conditions (a) and (b); just take P to be the set of all linear
isomorphisms from R"™ to V. Using the standard terminology from the theory of
group actions, conditions (a) and (b) above say that P is an orbit of the right action
of the general linear group GL(IR™) on the set of all bijective maps p : R" — V.
The set P will be thus called a GL(R"™)-structure on the set V.

Let us now present more explicitly the notions that were informally explained
in the discussion above. To this aim, we quickly recall the basic terminology of the
theory of group actions. Let G be a group with operation

GxG3(g1,92) — 192 € G

and unit element 1 € G. Given an element g € G, we denote by L, : G — G and
R, : G — G respectively the left translation map and the right translation map
defined by:

(1.1.2) Ly(z) =gz, Ry(x)=xg,

forall x € G; we also denote by Z,, : G — G the inner automorphism of G defined
by:

(1.1.3) Ig=LgoR,' =R, oL,

Given a set A then a left action of G on A is a map:

GxA>(g,a)—g-acA

satisfying the conditions 1 - a = a and (g192) - a = g1 - (92 - a), for all g1, g2 € G,
and all @ € A; similarly, a right action of G on A is a map:

AxG>(a,9)—a-ge A

satisfying the conditions a- 1 = aand a - (g192) = (a-g1) - g2, forall g1, g2 € G,
and all @ € A. Given a left action (resp., right action) of G on A then for every
a € A we denote by 8, : G — A the map given by action on the element a, i.e.,
we set:

(1.1.4) Balg) =9 a,
(resp., Ba(g) = a- g), forall g € G. The set:
Ga = Ba_l(a)

is a subgroup of GG and is called the isotropy group of the element a € A. The
G-orbit (or, more simply, the orbit) of the element a € A is the set Ga (resp.,
a() given by the image of G under the map [3,; a subset of A is called a G-orbit
(or, more simply, an orbit) if it is equal to the G-orbit of some element of A. The
set of all orbits constitute a partition of the set A. The map (3, induces a bijection
from the set G/G, of left (resp., right) cosets of the isotropy subgroup G, onto
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the G-orbit of a. In particular, when the isotropy group G, is trivial (i.e., when
G, = {1}) then the map [, is a bijection from G onto the G-orbit of a. The action
is said to be transitive if there is only one G-orbit, i.e., if the map [, is surjective
for some (and hence for any) a € A. The action is said to be free if the isotropy
group G|, is trivial for every a € A. For each g € GG we denote by v, : A — A the
bijection of A corresponding to the action of the element g, i.e., we set:

(1.1.5) Ye(a) =g - a,

(resp., vg(a) = a - g), for all a € A. If Bij(A) denotes the group of all bijective
maps of A endowed with the operation of composition then the map:

(1.1.6) G > g — 7, € Bij(A)

is a homomorphism (resp., a anti—homomorphisrrﬂ). Conversely, every homomor-
phism (resp., every anti-homomorphism) defines a left action (resp., a right
action) of G on A by setting g - a = v4(a) (resp., a - g = y4(a)), forall g € G
and all @ € A. The action of G on A is said to be effective if the map is
injective, i.e., if (),c 4 Ga = {1}; more generally, given a subset A’ of A, we say
that the action of G is effective on A’ if (,c 4 Go = {1}. The image of the map
(I.1.6) is a subgroup of G and it will be denoted by Ges. Notice that if the action
is effective then G is isomorphic to G¢; in the general case, G¢ is isomorphic to
the quotient of G by the normal subgroup (), 4 Ga-

We now proceed to the statement of the main definitions of the section. Given
sets X and X, we denote by Bij(Xy, X) the set of all bijections p : Xo — X.
The group Bij(X() of all bijections of X acts on the right on the set Bij( Xy, X)
by composition of maps. The action of Bij(Xy) on Bij(Xy, X) is clearly free and
transitive.

DEFINITION 1.1.1. Let X be a set and G a subgroup of Bij(Xy). A G-
structure on a set X is a subset P of Bij(X(, X) which is a G-orbit. We say that
the G-structure P is modeled upon the set Xj.

More explicitly, a G-structure on a set X is a nonempty subset P of Bij( Xy, X)
satisfying the following conditions:
(@ ptogq:Xg— XpisinG, forall p,q € P;
(b) pog: Xg — Xisin P,forallp € Pandall g € G.
EXAMPLE 1.1.2. Given a natural number n, denote by I, the set:
I, ={0,1,...,n—1}.
Let X be a set having n elements. By an ordering of the set X we mean a bijective
map p : I, — X; notice that an ordering p : I, — X of X can be identified
with the n-tuple (p(0),p(1),...,p(n — 1)) € X™. Denote by S, = Bij(Iy)
the symmetric group on n elements. The group .S,, acts on the right on the set

Bij(I,, X) of all orderings of X. If G is a subgroup of S,, then a G-structure
on X is a choice of a set of orderings P C Bij(/,, X) which is an orbit of the

1Given groups G, H, then a anti-homomorphism ¢ : G — H is a map satisfying the condition
¢(9192) = d(g92)¢(g1). forall g1, g2 € G.
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action of G on Bij(1,,, X). For example, if G = {1} is the trivial group then a
G-structure on X is the same as the choice of one particular ordering p : I, — X
of X. If G = S, then there is only one G-structure on X, which is the entire set
Bij(l,,X). If n > 2 and G = A,, C S, is the group of even permutations then
there are exactly two possible G-structures on X; if n = 3 and X = {a,b,c},
these G-structures are:

P= {(a, b,c), (c,a,b), (b, c, a)},

and:
P'={(a,c,b),(c,b,a),(b,a,c)}.

If G is an arbitrary subgroup of .9,, then the number of possible G-structures on X
is equal to the index of G on S, (see Exercise . If X is the set of vertices of an
(n—1)-dimensional affine simplex and G = A,, then the two possible G-structures
of X are usually known as the two orientations of the given affine simplex.

If Xo and X are arbitrary sets having the same cardinality, then bijective maps
p: X9 — X will also be called X-orderings of the set X. We remark that, when
this terminology is used, it is not assumed that the set X is endowed with some
order relation.

EXAMPLE 1.1.3. Let V be an n-dimensional real vector space. A frame of
V' is a linear isomorphism p : R™ — V. Notice that p can be identified with the
basis of V' obtained as image under p of the canonical basis of R"; given a vector
v € V, the n-tuple p~!(v) € R™ contains the coordinates of v with respect to
the frame p. Let FR(V') denote the set of all frames of V' and let GL(RR™) denote
the general linear group of R", i.e., the group of all linear isomorphisms of R".
Then GL(R") is a subgroup of Bij(R™) and FR(V) is a GL(RR")-structure on V'
modeled upon R™. Notice that given a set V' and a GL(RR")-structure P on V'
then there exists a unique n-dimensional real vector space structure on V' such that
P = FR(V). A GL(R")-structure on a set can thus be thought of as being the
same as an n-dimensional real vector space structure on that set.

Let Vy and V' be arbitrary vector spaces having the same dimension and the
same field of scalars; a linear isomorphism p : Vj — V will be called a Vy-frame
of V. Let GL(Vp) denote the general linear group of Vj, i.e., the group of all linear
isomorphisms of V. Then GL(Vp) is a subgroup of Bij(Vp) and the set FRy;, (V)
of all Vj-frames of V' is a GL(V})-structure on the set 1 modeled upon V;. Given a
set V and a GL(V{))-structure on V' then there exists a unique vector space structure
on V such that P = FRy, (V).

EXAMPLE 1.1.4. Let My and M be diffeomorphic differentiable manifolds
and denote by Diff (M) C Bij(M)) the group of all diffeomorphisms of M. The
set Diff (Mg, M) of all diffeomorphisms p : My — M is a Diff (M)-structure on
M modeled upon Mj. Conversely, given a Diff (Mj)-structure P on a set M then
there exists a unique differentiable manifold structure on M such that P equals
Diff (Mg, M).



1.1. G-STRUCTURES ON SETS 5

In Exercise the reader is asked to explore more examples like and
1.1.4

EXAMPLE 1.1.5. If X is a set and G is a subgroup of Bij(Xy) then the set G
itself is a G-structure on Xo; namely, G is the G-orbit of the identity map of Xj.
The set G is called the canonical G-structure of the model space Xy. Notice that
the canonical GL(R™)-structure of R"™ is identified with the canonical real vector
space structure of R".

Let X be a set, G be a subgroup of Bij(X() and H be a subgroup of G. If P is
a G-structure on a set X then P is a union of /-orbits; any one of this /-orbits is
an H-structure on X . On the other hand, if G is a subgroup of Bij(X() containing
G then there exists exactly one G-orbit containing P (see Exercise [I.2); it’s the
only G-structure on X containing P. We state the following:

DEFINITION 1.1.6. If P is a G-structure on a set X and H is a subgroup of
G then an H-structure ) on X contained in P is said to be a strengtheningof the
G-structure P. We also say that P is a weakeningof the H-structure Q).

Thus if H is a proper subgroup of GG there are several ways of strengthening a
G-structure P into an H-structure (it follows from the result of Exercise [I.3] that
the number of such strengthenings is precisely the index of H in G); on the other
hand, there is only one way of weakening an H-structure into a G-structure. In
order to strengthen a structure one has to introduce new information; in order to
weaken a structure, one has just to “forget” about something. In this sense, G-
structures are stronger when the group G is smaller. The largest possible group G,
which is Bij(Xy), gives no structure at all; namely, if X has the same cardinality
as X then there exists exactly one Bij(Xy)-structure on X, which is the entire
set Bij(Xo, X). On the other extreme, if G = {1} is the trivial group containing
only the identity map of Xy then a G-structure on X is the same as a bijection
p: Xo — X; it allows one to identify the set X with the model set X.

The following particularization of Definition [1.1.1]is the one that we will be
more interested in.

DEFINITION 1.1.7. Let V), V be vector spaces having the same dimension and
the same field of scalars. Given a subgroup G of GL(V}) then by a G-structure on
the vector space V we mean a G-structure P on the set V' that strengthens the
GL(Vp)-structure FRy; (V') of V.

In other words, if G is a subgroup of GL(V})), a G-structure on a vector space
V is a G-structure P on the set V' such that every p € P is a linear isomorphism
from Vto V.

EXAMPLE 1.1.8. Let V' be an n-dimensional real vector space endowed with
an inner product (-, -)y, i.e., a positive definite symmetric bilinear form. A frame
p: R™ — V is called orthonormal if it is a linear isometry, i.e., if:

(p(z),p(y)v = (z,9),

forall z, y € R™, where (-, -) denotes the canonical (positive definite) inner product
(-,-) of R™. Equivalently, p is orthonormal if it carries the canonical basis of R" to
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an orthonormal basis of V. Let O(R™) denote the orthogonal group of R™, i.e., the
subgroup of GL(RR™) consisting of all linear isometries of R"™. The set FR°(V") of
all orthonormal frames of V' is an O(IR")-structure on the vector space V' modeled
upon R™. Conversely, given an n-dimensional real vector space V' and an O(R")-
structure P on V' then there exists a unique inner product (-, )y on V such that
P =FR°(V).

Let Vp and V' be finite-dimensional real vector spaces having the same di-
mension, endowed with inner products (-, -)y; and (-, -)y, respectively; a Vp-frame
p: Vo — V of V is called orthonormal if p is a linear isometry. Let O(VG, (-, -)v; )
denote the orthogonal group of Vj, i.e., the subgroup of GL(V})) consisting of
all linear isometries. The set FRY, (V') of all orthonormal Vp-frames of V' is an
O(Wo, (-, -)v, )-structure on V' modeled upon V. Conversely, given a real vector
space V and an O(Vj, (-, -)y; )-structure P on V' then there exists a unique inner
product (-, -)y on V' such that P = FRy, (V).

EXAMPLE 1.1.9. Let V be a real vector space. A bilinear form:
VxVs((vw)— (vyw)y e R

on V is said to be nondegenerate if (v,w)y = 0 for all w € V implies v = 0. The
index of a symmetric bilinear form (-, -)y- on V' is defined by:

n_((-,-)v) = sup {dim(W) : W is a subspace of V and
(,-)v is negative definite on W }.

An indefinite inner product (-, -)y on V is a nondegenerate symmetric bilinear form
on V. For instance, the Minkowski bilinear form of index r in R", defined by:

n—r n
(wy) =D zyi— Y T,
i=1 i=n—r+1
for all z,y € R™, is an indefinite inner product of index r in R™. If (-,-)y is
an indefinite inner product on V' then we denote by O(V/, (-, -)y) the subgroup of
GL(V) consisting of all linear isometries 7' : V' — V, i.e.:

O(V7 <'7 >V) = {T € GL(V) : <T(U),T(w)>v = <U7w>V9
forall v,w € V'}.

We call O(V, (-, -}y ) the orthogonal group of V; when the indefinite inner product
(-, -)v is given by the context, we will write simply O(V). If (-, -) is the Minkowski
bilinear form of index r in R™ then the orthogonal group O(R™, (-, -)) will also be
denoted by O, (R™).

Let Vp and V' be finite-dimensional real vector spaces having the same di-
mension, endowed with indefinite inner products (-, -)y; and (-, -)v, respectively;
assume that (-, )y, and (-,-)y have the same index. A Vp-framep : V) — V
of V' is called orthonormal if p is a linear isometry. The set FR{, (V') of all or-
thonormal Vj-frames of V' is an O(Vj, (-, -)y; )-structure on V' modeled upon Vj.
Conversely, given a real vector space V' and an O(Vp, (-, )y, )-structure P on V'
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then there exists a unique indefinite inner product (-, )y on V, having the same
index as (-, -)v,, such that P = FR{, (V). If (-,-)y has index 7, Vo = R" and
(-, -)v; is the Minkowski bilinear form of index r then we write FR°(V') instead of
FRY, (V).

EXAMPLE 1.1.10. Let Vj, V be finite dimensional vector spaces having the
same dimension and the same field of scalars; let Wy be a subspace of Vj and
W be a subspace of V such that W has the same dimension as W. A V-
frame p € FRy, (V) of V is said to be adapted to (Wy, W) if p(Wy) = W.
The set FRy;, (V; Wy, W) of all V-frames of V' that are adapted to (Wp, W) is a
GL(Vp; Wy)-structure on the vector space V' modeled upon Vj, where GL(Vy; Wp)
denotes the subgroup of the general linear group GL(V})) consisting of all linear
isomorphisms 7' : Vy — Vj such that T'(W,) = Wy. If Vj and V' are endowed
with positive definite or indefinite inner products, we set:

FRS, (V; Wo, W) = FRy, (V; Wo, W) N FRY, (V),
O(Vo; Wo) = GL(Vo; Wo) N O(Vo).

If the set FRY, (V;; Wo, W) is nonempty then it is an O(Vp; Wp)-structure on the
vector space V' modeled upon Vj.

EXAMPLE 1.1.11. Let Vj, V be vector spaces having the same dimension and
the same field of scalars. Let vg € V), v € V be fixed nonzero vectors. A V-
frame p € FRy, (V') of V is said to be adapted to (vg,v) if p(vg) = v. The set
FRy, (V;vg,v) of all Vy-frames of V' that are adapted to (vg,v) is a GL(Vy; vo)-
structure on the vector space V' modeled upon Vj, where GL(Vj; v9) denotes the
subgroup of GL(V}) consisting of all linear isomorphisms 7" : Vj — V} such that
T(vg) = vo. If Vy and V' are real vector spaces endowed with positive definite or
indefinite inner products, we set:

FRY, (V;v0,v) = FRy, (V;v0,v) NFRY, (V),
O(Vo; vo) = GL(Vo; v0) N O(Vo).
If the set FRY, (V5 vo, v) is nonempty then it is an O(Vp; vg)-structure on the vector
space V' modeled upon Vj.

EXAMPLE 1.1.12. Let V be a real vector space endowed with a complex struc-
ture J,i.e., J is a linear endomorphism of V' such that J? equals minus the identity
map of V. The canonical complex structure Jy of R?" is defined by:

JQ({L‘,y) = (—y,x),

forall x,y € R". If Vy, V are real vector spaces with the same dimension endowed
with complex structures Jy and J, respectively then the set:

FRY, (V) = {p € FRy, (V) : po Jo = Jop}

is a GL(Vj, Jy)-structure on the vector space V' modeled upon Vjy, where GL(Vp, Jo)
denotes the subgroup of GL(Vp) consisting of all linear isomorphisms of V[ that
commute with Jy. Conversely, if P is a GL(Vj, Jy)-structure on the vector space
V then there exists a unique complex structure J on V' such that P = FR{, (V).
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An element p of FRY{, (V) is called a complex frame of V. When Vj is equal to
R?" endowed with its canonical complex structure, we write FR°(V') instead of
FRy, (V).

Let (-, )y be a positive definite or indefinite inner product on V. Assume that
J is anti-symmetric with respect to (-, -)y, i.e.:

(J(v), w)v + (v, J(w))y =0,
for all v,w € V. The unitary group of V with respect to .J and (-, -}y is defined
by:
UV, J, (- )v) = OV, (-, )v) NGL(V, J).
We write also U(V') when J and (-, -)y- are fixed by the context. If R?" is endowed
with the canonical complex structure .Jy and the indefinite inner product:

n—r
i=1
n
- Z (l’lﬂfé +y1y;)7 l‘,?/,l’/,yl S Rnu
i=n—r—+1

of index 27 then the unitary group U(IR?", Jp, (-, -)) will be denoted by U,.(R?").
Given finite dimensional real vector spaces Vj, V' having the same dimension, and
endowed respectively with indefinite inner products (-, -)y;, (-, -)v having the same
index and complex structures Jy : Vo — Vp, J : V — V anti-symmetric with
respect to (-, -)v;. (-, -)v respectively then we set:

FRY, (V) ={p € FRY, (V) :poJy=Jop}.

The set FRy, (V) is a U(Vp, Jo, (-, -)1; )-structure on the vector space V. Con-
versely, if P is a U(Vp, Jo, (-, -)v;, )-structure on the vector space V' then there ex-
ists a unique indefinite inner product (-, )y on V" and a unique complex structure
J : V — V anti-symmetric with respect to (-, -)y such that P = FRy, (V). When
Vp is R?"™ endowed with its canonical complex structure and the indefinite inner
product we write FR" (V) instead of FRy, (V).

Let us now define the natural morphisms of the category of sets endowed with
G-structure.

DEFINITION 1.1.13. Let X be a set, G be a subgroup of Bij(X() and let X,
Y be sets endowed with G-structures P and () respectively. Amap f: X — Y is
said to be G-structure preserving if f opisin @, forall p € P.

REMARK 1.1.14. Notice that if f o p is in @) for some p € P then the map
f + X — Y is G-structure preserving; namely, every other element of P is of the
formpogwithg € Gand fo (pog) = (fop)ogisalsoin Q.

The composite of G-structure preserving maps is again a G-structure pre-
serving map; moreover, every GG-structure preserving map is bijective and its in-
verse is also a G-structure preserving map (see Exercise [I.5). We denote by
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Isog(X,Y”) the set of all G-structure preserving maps from X to Y and we set
Isog(X) = Isog(X, X).

EXAMPLE 1.1.15. Let V, V, W be vector spaces having the same dimension
and the same field of scalars. If V and W are regarded respectively as sets endowed
with the GL(Vj)-structures FRy; (V) and FRy, (W) thenamap f : V — W is
GL(Vp)-structure preserving if and only if f is a linear isomorphism. Assume
that Vp, V and W are finite-dimensional real vector spaces endowed with inner
products. If V' and W are regarded as sets endowed with the O(V})-structures
FRY, (V) and FRY, (W) respectively then a map f : V' — W is O(Vp)-structure
preserving if and only if f is a linear isometry.

Notice that if Vj, V, W are vector spaces, G is a subgroup of GL(Vp) and if
P C FRy, (V) and Q@ C FRy, (W) are G-structures on V' and W respectively
then every G-structure preserving map f : V — W is automatically a linear
isomorphism.

EXAMPLE 1.1.16. Let My, M, N be differentiable manifolds with M and N
both smoothly diffeomorphic to M. If the sets M and N are endowed respectively
with the Diff (Mj)-structures Diff (M, M) and Diff (Mo, N) thenamap f : M —
N is Diff (My)-structure preserving if and only if it is a smooth diffeomorphism.

See Exercise[1.6 for more examples like[T.1.15]and [T.1.16]

EXAMPLE 1.1.17. Let X, X be sets, G be a subgroup of GL(Xy) and P be a
G-structure on the set X. If the model space X is endowed with its canonical G-
structure (recall Example[I.1.5]) then the G-structure preserving maps f : Xo — X
are precisely the elements of the G-structure P, i.e.:

(1.1.8) Tsog(Xo, X) = P.

EXAMPLE 1.1.18. Let X be a set, G, G’ be subgroups of Bij(Xj) such that
G C @, P, Q be G-structures on sets X, Y respectively and P/, Q' be G'-
structures that weaken respectively P and ). If amap f : X — Y is G-structure
preserving then it is also G’-structure preserving, i.e., Isog(X,Y") C Isog/ (X, Y).

1.2. Principal spaces and fiber products

Principal spaces are the algebraic structures that will play the role of the fibers
of the principal bundles, to be introduced later on Section [I.3] Principal spaces
bare the same relation to groups as affine spaces bare to vector spaces. Recall that
an affine space is a nonempty set A endowed with a free and transitive action of the
additive abelian group of a vector space V. The affine space A can be identified
with the vector space V' once a point of A (a origin) is chosen. In a similar way,
a principal space is, roughly speaking, an object that becomes a group once the
position of the unit element is chosen.

The name “principal space” comes from the idea that any set with G-structure
can be obtained from a principal space through a natural construction that we call
the fiber product. Fiber products will be studied in Subsection|1.2.1
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DEFINITION 1.2.1. A principal space consists of a nonempty set P and a
group (G acting freely and transitively on P on the right. We call G the structural
group of the principal space P.

Observe that the condition that the action of G on P be free and transitive
means that for every p, p’ € P there exists a unique element g € G with p’ = p - g;
we say that g carries p to p’. The unique element g of G that carries p to p’ is
denoted by p~'p’. The operation:

PxP>(pp)—plpecad

is analogous to the operation of difference of points in the theory of affine spaces.
Notice that it’s the whole expression p~1p’ that has a meaning; for a general princi-
pal space, we cannot write just p~ !, although in most concrete examples the object
p~!is indeed defined (but it’s not an element of the principal space P).

EXAMPLE 1.2.2. Any group G is a principal space with structural group G, if
we let G act on itself by right translations.

EXAMPLE 1.2.3. Let GG be a group and H be a subgroup of G. For any g € G,
the left coset gH is a principal space with structural group H.

EXAMPLE 1.2.4. Given a natural number n and a set X with n elements then
the set Bij([,,, X) of all orderings of X (recall Example is a principal space
with structural group .S,,. More generally, if Xy and X are sets having the same
cardinality then the set Bij(X(, X) of all Xy-orderings of X is a principal space
with structural group Bij(Xj).

EXAMPLE 1.2.5. Let V be an n-dimensional real vector space. The set FR (V')
of all frames of V' (recall Example[I.1.3) is a principal space with structural group
GL(R™). More generally, if Vj and V' are arbitrary vector spaces having the same
dimension and the same field of scalars then the set FRy; (V') of all Vj-frames of
V is a principal space with structural group GL(1)).

In Exercise [1.8]the reader is asked to generalize Examples and

EXAMPLE 1.2.6. Let X be a set, G be a subgroup of Bij(X() and P be a G-
structure on a set X. Then P is a principal space with structural group GG. Notice
that, since P = Isog(Xo, X) (see Example [I.1.17), we are again dealing with a
particular case of the situation described in Exercise [I.8]

EXAMPLE 1.2.7. Let P and ) be principal spaces with structural groups G
and H respectively. The cartesian product P x () can be naturally regarded as a
principal space with structural group G' X H; the right action of G x H on P x Q)
is defined by:

(p.q) - (g:h) =(p-g,q-h),
forall (p,q) € P x Qandall (9,h) € G x H.
DEFINITION 1.2.8. Let P be a principal space with structural group G and let

H be a subgroup of G. If Q C P is an H-orbit then @) is itself a principal space
with structural group H; we call Q) a principal subspace of P.
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The result of Exercise|l.3|implies that the number of principal subspaces of P
with structural group H is equal to the index of H in G.

EXAMPLE 1.2.9. Let X and X be sets having the same cardinality and let G
be a subgroup of Bij(Xy). The set Bij(X¢, X) is a principal space with structural
group Bij(X(); the principal subspaces of Bij( X, X) with structural group G are
precisely the G-structures of X. If P is a G-structure on X and H is a subgroup
of G then the H-structures on X that strengthen P are precisely the principal sub-
spaces of P with structural group H.

DEFINITION 1.2.10. Let P, () be principal spaces with the same structural
group G. Amapt: P — @ is called a left translation if

tp-g) =tp) -9,
forall p € P and all ¢ € G. The set of all left translations t : P — () will be
denoted by Left(P, Q).

If we think of the structural group G as being the group of right translations of
a principal space, then left translations are precisely the maps that commute with
right translations.

Notice that the composite of left translations is again a left translation; more-
over, a left translations is always bijective and its inverse is also a left translation
(see Exercise[I.9). If ¢t : P — P is a left translation from a principal space P to
itself, we say simply that ¢ is a left translation of P. The set Left(P, P) of all left
translations of P is a group under composition and it will be denoted simply by
Left(P).

EXAMPLE 1.2.11. If P is a principal space with structural group G then for
all p € P the map (3, : G — P of action on the element p (recall (I.1.4)) is a left
translation that carries the unit element 1 € Gtop € P.

We think informally of (3, as being the identification between the principal
space P and the structural group G that arises by declaring p € P to be the unit
element; this is analogous to the identification between an affine space and the
corresponding vector space that arises by declaring a point of the affine space to be
the origin.

Let us compare the identifications 3, and 3,; of G with P that arise from
different choices of points p,p’ € P. If g = p~'p’ is the element of G that carries
p to p’ then we have the following commutative diagram:

G

%

(1.2.1) L, P

Diagram [1.2.1] says that two different identifications of a principal space P

with its structural group G differ by a left translation of GG. This is the same that
happens in the theory of affine spaces: two different choices of origin for an affine
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space A give identifications with the corresponding vector space V' that differ by a
translation of V. Obviously, since the additive group of a vector space is abelian,
there is no distinction between right and left translations in the theory of affine
spaces and vector spaces.

A left translation is uniquely determined by its value at a point of its domain.
More explicitly, we have the following:

LEMMA 1.2.12. Let P, QQ be principal spaces with the same structural group
G. Givenp € P, q € Q then there exists a unique left translation t € Left(P, Q)
with t(p) = q.

PROOF. Clearly t = (3, o 3, is a left translation from P to @ such that

t(p) = ¢ (see Example [[.2.11). To prove uniqueness, let ¢1,ty € Left(P, Q) be
given with ¢;(p) = ta(p); then:

ti(p-g) =ti(p) - g =ta2(p) - g =ta(p - 9),
for all g € G, so that t; = to. O

Lemmal(l.2.12implies that the canonical left action of the group of left trans-
lations Left(P) on P is free and transitive. Given p,p’ € P then the unique left
translation ¢ € Left(P) with t(p) = p’ is denoted by p'p~L.

EXAMPLE 1.2.13. If G is a group then the left translations of the principal
space G (recall Example[1.2.2) are just the left translations of the group G, i.e., the
maps L, : G — G with g € G. Namely, the associativity of the multiplication of G
implies that the maps L, are left translations of the principal space G'; conversely,
if t : G — G is a left translation of the principal space G then Lemma [1.2.12]
implies that ¢t = L, with g = ¢(1). Thus:

Left(G) = {Ly : g € G}.

Obviously the map g — L, gives an isomorphism from the group G onto the group
Left(G) of left translations of G.

EXAMPLE 1.2.14. We have seen in Example that if P is a principal
space with structural group G' then the maps 3, : G — P, p € P are left transla-
tions. It follows from Lemma [[.2.12] that these are in fact the only left translations
from G to P, i.e.:

Left(G, P) = {8, : p € P}.

EXAMPLE 1.2.15. Let P, ) be principal spaces with the same structural group
Gandletp € P,q € @ be fixed. If t : P — (@ is a left translation then the
composition 5; 1 ot o Bp : G — G is also a left translation and therefore, by
Example|1.2.13} there exists a unique g € G with 3, ot o3, = L. This situation
is illustrated by the following commutative diagram:

t

P Q
(1.2.2) BPT: :Tﬁq
G G

g9



1.2. PRINCIPAL SPACES AND FIBER PRODUCTS 13

We see that a choice of elements p € P, ¢ € @ induces a bijection between the
set Left(P, @) and the group G such bijection associates to each ¢t € Left(P, Q)
the element g € G that makes diagram commutative. When P = (), the
bijection just described between Left(P) and G is an isomorphism of groups and
we will denote it by Z,,. More explicitly, for each p € P we define the map 7, by:

(1.2.3) I,:G> g BpoLgofB," € Left(P).

We see that the group of left translations Left(P) is isomorphic to the structural
group G (the group of right translations of P), but the isomorphism is in general
not canonical: it depends on the choice of an element p € P. For p,p’ € P, the
group isomorphisms Z,, and 7, differ by an inner automorphism of GG; namely, the
following diagram commutes:

G _ 1,
\
(1.2.4) Ty Left(P)

7

G
where g = p~1p’ is the element of G that carries p to p'.
REMARK 1.2.16. Let P be a principal space with structural group G and let
g € G be fixed. If P is identified with G' by means of the map 3, : G — P for
some choice of p € P, then the map v, : P — P given by the action of g (recall

(L.1.5)) is identified with the map R, : G — G of right translation by g; more
explicitly, we have a commutative diagram:

Yg

P P
BPT: :Tﬂp
G G

g

We could also identify the domain of v, with G via 3, and the counter-domain
of v, with G via f3,.4; this yields an identification of 7, with the inner automor-
phism Z -1 of G, which is illustrated by the commutative diagram:

p—"—>p
(1.2.5) ﬁPTN NTﬂM
G G

EXAMPLE 1.2.17. Let V, V, W be vector spaces having the same dimension
and the same field of scalars. Given a linear isomorphism 7" : V' — W then the
map

T, : FRy, (V) — FRy, (W)
given by composition with 7" on the left is a left translation. Moreover, every
left translation ¢t : FRy, (V) — FRy, (W) is equal to T, for a unique linear
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isomorphism 7" : V' — W. To prove this, choose any p € FRy, (V) and let
T : V — W be the unique linear isomorphism such that 7" o p = t(p); it follows
from Lemma that ¢ = T.. We conclude that the rule 7' — T, defines a
bijection from the set of linear isomorphisms 7' : V' — W onto the set of left
translations ¢ : FRy, (V') — FRy, (W). If V.= W, we obtain a bijection:

(1.2.6) GL(V) 2 T+ T, € Left(FRy, (V));

such bijection is in fact a group isomorphism. We will therefore, from now on, al-
ways identify the groups GL(V') and Left (FRVO (V)) via the isomorphism (1.2.6)).
Notice that, under such identification, for any given p € FRy, (1), the isomor-
phism Z,, : GL(Vp) — Left(FRy, (V) = GL(V) is given by:

(1.2.7) Z,(9) =pogop ' € GL(V), g€ GL(Vp).
It may be instructive to solve Exercise [[.15]now.

EXAMPLE 1.2.18. Let X be a set, G be a subgroup of Bij(Xy) and P, Q be
respectively a G-structure on a set X and a G-structure on a set Y. Then P and
Q) are principal spaces with structural group G. If f : X — Y is a G-structure
preserving map then the map f, : P — @ given by composition with f on the left
is a left translation. Arguing as in Example[I.2.17] we see that every left translation
from P to @ is of the form f, for a unique G-structure preservingmap f : X — Y/;
in other words, the map:

Isog(X,Y) > f — fi« € Left(P, Q)
is a bijection. Moreover, for X =Y, P = (@), the map:
(1.2.8) Isog(X) > f —— fi € Left(P)

is a group isomorphism. We will from now on always identify the groups Isog(X)
and Left(P) via the isomorphism (1.2.8).

In Exercises [[.1T]and [T.12] the reader is asked to generalize the idea of Exam-
ples[1.2.17/and [T.2.18]to a more abstract context.

If P and Q are G-structures on sets X and Y respectively, H is a subgroup
of G and P’, )/ are H-structures that strengthen respectively P and () then the
set Left(P, Q) is identified with the set Isog(X,Y) and the set Left(P’, Q') is
identified with the set Isoy (X,Y"). Since Isoy(X,Y) is a subset of Isog(X,Y),
we should have an identification of Left(P’, Q") with a subset of Left(P, Q). This
is the objective of our next lemma.

LEMMA 1.2.19. Let P, Q be principal spaces with structural group G and let
P Cc P, Q' C Q be principal subspaces with structural group H C G. Then
every left translation t : P! — Q' extends uniquely to a left translationt : P — Q).
The map:

(1.2.9) Left(P',Q") >t — t € Left(P, Q)
is injective and its image is the set:
(1.2.10) {s € Left(P,Q) : s(P') C Q'}.
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Moreover, if P = Q and P' = Q' then the map (1.2.9) is an injective group
homomorphism and therefore its image (1.2.10) is a subgroup of Left(P).

PROOF. Let ¢t € Left(P’,Q’) be given and choose any p € P’; then, by
Lemma [1.2.12] there exists a unique left translation ¢ : P — Q with ¢(p) = ¢(p).
Forany g € H we have t(p - g) = t(p) - g = t(p) - g = t(p - g), which proves
that £ is an extension of ¢; clearly, ¢ is the unique left translation that extends t. We
have thus established that the map (1.2.9) is well-defined; obviously, such map is
injective and its image is contained in (I.2.10). Given any s € Left(P, Q) with
s(P") C Q' then the map ¢t : P’ — Q' obtained by restricting s is a left translation
and thus s = ¢. This proves that the image of (I.2.9) is equal to (T.2.10). Finally, if
P=Q, P =@ and ty,ty € Left(P’) then t; o ts is a left translation that extends
t1 o to; hence t1 o to = t1 o t5 and (1.2.9) is a group homomorphism. O

Under the conditions of the statement of Lemma [1.2.19] we will from now on
always identify the set Left(P’, Q") with the subset (1.2.10) of Left(P, Q) via the
map (1.2.9). In particular, the group Left(P’) is identified with a subgroup of
Left(P). Under such identification, the canonical left action of Left(P’) on P’ is
identified with the restriction of the canonical left action of Left(P) on P. Observe
also that the identification we have made here is consistent with the identifications
made in Example More explicitly, if P and @) are G-structures on sets
X and Y respectively, H is a subgroup of G and P’, Q' are H-structures that
strengthen respectively P and () then the following diagram commutes:

Tsoq(X,V) —=5 o Left(P, Q)
(1.2.11) inclusionT T@D
Isop(X,Y) =~ > Left(P', Q')

fr=ts
In Exercise [I.24] the reader is asked to generalize Lemma[1.2.19]

REMARK 1.2.20. Let P be a principal space with structural group G; for each
p € P, we have an isomorphism Z,, : G — Left(P) (recall (I.2.3)). For the sake
of this discussion, let us write If instead of just Z,,. If () is a principal subspace of
P with structural group H C G then for each p € () we also have an isomorphism
I,? : H — Left(Q). For a fixed p € @, we have the following commutative
diagram:

Left(Q) — =~ Left(P)
(1.2.12) 1§T~ ~TI{?
H G

inclusion

This means that, identifying Left(Q) with a subgroup of Left(P) then the isomor-

phism I;;g is just a restriction of the isomorphism If .
In Exercise the reader is asked to generalize this.
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DEFINITION 1.2.21. Let GG, H be groups, P be a G-principal space and () be
an H-principal space. A map ¢ : P — (@ is said to be a morphism of principal
spaces if there exists a group homomorphism ¢g : G — H such that:

(1.2.13) d(p-g) = dp) - do(g),

forall p € P and all g € G. We call ¢ the group homomorphism subjacent to the
morphism ¢.

The fact that the action of H on @ is free implies that map ¢y : G — H such
that equality (I.2.13) holds for all p € P, g € G is unique.

The composition 1o of morphisms of principal spaces ¢ and 1 with subjacent
group homomorphisms ¢g and g is a morphism of principal spaces with subjacent
group homomorphism g o ¢ (see Exercise[[.16). A morphism of principal spaces
¢ is bijective if and only if its subjacent group homomorphism ¢ is bijective (see
Exercise[I.17). A bijective morphism of principal spaces is called an isomorphism
of principal spaces. 1If ¢ is an isomorphism of principal spaces with subjacent
group homomorphism ¢ then ¢~ is also an isomorphism of principal spaces with
subjacent group homomorphism ¢, ! (see Exercise|l.18).

EXAMPLE 1.2.22. If P is a principal space with structural group G and ) C P
is a principal subspace with structural group H C G then the inclusion map from
@ to P is a morphism of principal spaces whose subjacent group homomorphism
is the inclusion map from H to G.

There is a natural notion of quotient of a principal space and the quotient map
is another example of a morphism of principal spaces. See Exercise [I.21] for the
details.

EXAMPLE 1.2.23. If P, () are principal spaces with the same structural group
G then the left translations ¢t : P — () are precisely the morphisms of principal
spaces whose subjacent group homomorphism is the identity map of G.

1.2.1. Fiber products. If X is a set endowed with a G-structure then the set of
all G-structure preserving maps from the model space X to X is a principal space
with structural group G (recall Example [1.2.6). Thus, to each set X endowed
with a G-structure there corresponds a principal space with structural group G.
The notion of fiber product that we study in this subsection provides us with a
construction that goes in the opposite direction.

Before we give the definition of fiber product, we need the following:

DEFINITION 1.2.24. Let GG be a group. By a G-space we mean a set N en-
dowed with a left action of G. The subgroup Gs of Bij(/N) given by the image of
the homomorphism G' 3 g — 7, € Bij(V) corresponding to the action of G on N
is called the effective group of the G-space V.

Let GG be a group, P be a principal space with structural group G and N be a
G-space. We have a left-action of G on the cartesian product P x N defined by:

(1.2.14) g-(pn)=(-g ' g n),
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forallg € G,p € P and all n € N. Denote by [p, n] the G-orbit of an element
(p,n) of P x N and by P x¢ N the set of all G-orbits. We call P x N the fiber
product of the principal space P with the G-space N. Notice that for all p € P,
g € G, n € N we have the equality:

(1.2.15) [p-g,n] =[p,g-nl.
We will use also the following alternative notation for the fiber product P x5 N:

PxN®¥PpPxgN,

where there is no interest in emphasizing the group GG. Notice that the abbreviated
notation P x NN should cause no confusion, since the structural group G is encoded
in the principal space P.

Let us now show that the fiber product P X NN is naturally endowed with a
G-structure modeled upon N. We need the following:

LEMMA 1.2.25. If P is a principal space with structural group G and N is a
G-space then for each p € P the map:

(1.2.16) p:N>n+——[p,n€PxgN
is bijective.

PROOF. Given n,n’ € N with [p,n] = [p,n’] then there exists g € G with
g- (p,n) = (p,n’). This means that p = p- g~ ! and n’ = g - n. Since the action of
G on P is free, the equality p = p - g~ ! implies ¢ = 1 and therefore n = n’. Let

us now show that p is surjective. An arbitrary element of P X N is of the form
[q,n], with ¢ € P, n € N. Since the action of G on P is transitive, there exists

g € Gwithqg=p-g. Hence p(g-n) = [p,g-n| =[p-g,n| = [g,n]. O

Given p € P, g € (G and setting ¢ = p - g then equality (1.2.15])) means that the
following diagram commutes:

(1.2.17) Vg PxgN

It follows that the map:

(1.2.18) H:P35pr—peBij(N,P xg N)

is a morphism of principal spaces whose subjacent group homomorphism is the
map G 3 g — 7, € Bij(V). The image of (I.2.18) is the set:

(1.2.19) P={p:pe P} CBij(N,P xgN).

By the result of Exercise , Pisa principal subspace of Bij(N, P xg N) with
structural group Gee. Thus, P is a Geg-structure on the fiber product P xg N

modeled upon N (recall Example [.2.9). From now on, we will always consider
the fiber product P X ¢ N to be endowed with the G¢-structure P.
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Observe that the map (1.2.18)) is injective if and only if the action of G on
N is effective (see Exercise ; in this case, the map P 2 p — p € Pis an
isomorphism of principal spaces. In the general case, P is isomorphic to a quotient

of the principal space P (see Exercises and [[.23).

EXAMPLE 1.2.26. Let G be a group and V be a vector space. A represen-
tation of G in Vj is a group homomorphism p : G — GL(V;). Notice that a
representation of (G in Vj is the same as a left action of G on the set V{ such that
for every g € G the action of g on 1} is a linear map. In particular, a representation
p of G in Vjy makes V} into a G-space with effective group Ges = p(G). Let P be
a principal space with structural group G. The fiber product P x g Vj is endowed
with the G¢-structure P; since Gt is a subgroup of GL(V}), the Geg-structure
P can be weakened to a GL(V;)-structure on P x¢ Vp. Such GL(Vp)-structure
makes the fiber product P x g Vj into a vector space isomorphic to Vj (recall Ex-
ample . The GL(Vjy)-structure of P X Vj then becomes the set of V{)-frames
FRy, (P xg W) of P x¢g Vj and therefore P is contained in FRy, (P xg W); in
other words, for every p € P the map p : Vj — P X g Vj is a linear isomorphism.

EXAMPLE 1.2.27. Let G be a group, P be a principal space with structural
group GG and N be a differentiable manifold. Assume that we are given a left action
of G on N by diffeomorphisms, i.e., the subgroup G of Bij(/N) is contained in
the group Diff (V) of all diffeomorphisms of N (this is the case, for instance, if G
is a Lie group and the action G x N — N is smooth). Thus N is a G-space and the
fiber product P x g N is endowed with the G¢-structure ]3, which can be weakened
to a Diff (V)-structure. Such Diff (V)-structure makes P x ¢ N into a differentiable
manifold (recall Example and P is contained in Diff (N, P xg N)j; in other
words, for every p € Pthemapp : N — P X N is a diffeomorphism.

We will show now that any set with G-structure is naturally isomorphic to a
suitable fiber product. Let us start with a concrete example.

EXAMPLE 1.2.28. Let 1}, V be vector spaces having the same dimension and
the same field of scalars; consider the principal space FRy; (V') with structural
group GL(V}). The vector space Vj is a GL(V})-space in a obvious way and the
fiber product FRy; (V) x V is endowed with a GL(Vjp)-structure that makes it into
a vector space isomorphic to V4. Such fiber product is in fact naturally isomorphic
to V'; more explicitly, the contraction map CV defined by:

CV :FRy, (V) x Vo 3 [p,v] — p(v) € V
is a (well-defined) linear isomorphism.
The idea behind Example|1.2.28|is generalized by the following:

LEMMA 1.2.29. Let X be a set, G be a subgroup of Bij(Xy) and P be a G-
structure on a set X. The inclusion map of G in Bij(Xo) determines a left action
of G on Xy, so that Xy is a G-space with effective group G = G. Then, the
contraction map CX defined by:

C¥ : TIsoq(Xo, X) xa Xo = P xg X0 3 [p,z] — p(z) € X
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is a (well-defined) G-structure preserving map (recall (1.1.8)).

PROOF. If [p,2] = [¢,y] then ¢ = po g~! and y = g(x), for some g € G;

thus p(z) = q(y) and the contraction map C*X is well-defined. To prove that it is
G-structure preserving, choose any p € P and observe that the diagram:

PXGXO

A

Xo

commutes. Hence CX is a composition of G-structure preserving maps and it is
therefore itself GG-structure preserving. U

In Exercise the reader is asked to generalize Lemma to a more
abstract context.

We finish the section by defining some natural notions of induced maps on
fiber products.

Let P, () be principal spaces with structural groups G and H respectively; let
¢ : P — (@) be a morphism of principal spaces with subjacent group homomor-
phism ¢g : G — H. If N is an H-space then we can also regard N as a G-space
by considering the action of G on N defined by:

(1.2.20) g-n=dolg)-n,
for all g € G and all n € N. We define a map:
d:PxgN—QxyN
induced by ¢ by setting:
$([p,n]) = [#(p), n],

forall p € P and all n € N. The map (;AS is well-defined; namely, given g € G
then:

[6(p-g"),9-n] = [6(p) - dolg)” ", g n]

(1.2.20)

== [(p) - o(9) ™", do(9) - n] = [¢(p), nl,
forall p € P and all n € N. Notice that the following diagram:

Id
Px N

QXN
(1.2.21) quotient map i l quotient map
PxgN - Qxg N
@

commutes.
We can also define an induced map on fiber products in a more general setting.
We need the following:
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DEFINITION 1.2.30. Let G, H be groups, N be a G-space and N’ be an H-
space. Given a group homomorphism ¢( : G — H thenamap x : N — N’ is said
to be ¢0—equivarian if:

k(g - n) = do(g) - K(n),
foralln € Nandall g € G.

Let P, ) be principal spaces with structural groups GG and H respectively and

let ¢ : P — () be a morphism of principal spaces with subjacent group homomor-

phism ¢ : G — H. Let N be a G-space and N’ be an H-space and assume that
we are given a ¢g-equivariant map s : N — N’. We define a map:

OxK:PxgN—QxgN'
induced by ¢ and & by setting:
(@ % 5)([p,n]) = [¢(p), 5(n)];

forallp € P and all n € N. The map ¢ x & is well-defined; namely, given g € G
then:

[6(p- g7 1), k(g - )] = [8(p) - P0(9) ™", do(9) - £(n)] = [p(p), w(n)],

forall p € P and all n € N. Notice that the following diagram commutes:

PxN—2% L oxN
quotient mapl lquotient map
/
P xg N S Qxg N

Observe that if N = N’ and if the action of G on N is defined by then the
identity map of NV is ¢g-equivariant and the induced map ¢ x Id is just qg

The induced map ¢ X k retains many properties of the map «, as is shown by
the following:

LEMMA 1.2.31. Let P, Q be principal spaces with structural groups G and H
respectively and let ¢ : P — @ be a morphism of principal spaces with subjacent
group homomorphism ¢g : G — H. Let N be a G-space and N' be an H-space
and assume that we are given a ¢g-equivariant map  : N — N'. Then, for all
p € P, the following diagram commutes:

Sk

PxagN Q xg N’
(12.22) ﬁT Té
N N’

K

2f N’ is regarded as a GG-space with action defined as in (1.2.20) then the condition of &
being ¢o-equivariant is equivalent to the condition of x being G-equivariant in the sense defined in
Exercise
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where ¢ = ¢(p). In particular, the map & is injective (resp., surjective) if and only
if the induced map ¢ X k is injective (resp., surjective).

PROOEFE. Given n € N then:

(¢ %K) (B(n)) = (¢ x K)([Ip,n]) = [g, K(n)] = 4(x(n)),

so that diagram (1.2.22)) commutes. The claim relating the injectivity and the sur-
jectivity of the maps x and ¢ x « follows by observing that the maps p and § are
bijective. U

COROLLARY 1.2.32. Let P, Q) be principal spaces with structural groups G
and H respectively; let ¢ : P — @ be a morphism of principal spaces with
subjacent group homomorphism ¢g : G — H. Let N be an H-space and let
us regard N also as a G-space by considering the action of G on N defined by
(T220). Then the induced map ¢ : P xg N — Q xg N is bijective and for all
p € P, the following diagram commutes:

P xg N ¢ Qxg N

(1.2.23)
p q
N

where ¢ = ¢(p).
PROOF. Apply Lemmal(l.2.31|with « the identity map of V. (|

In Exercise we ask the reader to prove that the induced map ¢ is structure
preserving, in a suitable sense.

EXAMPLE 1.2.33. Let Vy, V, Wy, W be vector spaces having the same field
of scalars; assume that Vj (resp., that Wy) has the same dimension as V' (resp., as
W). Let P, @ be principal spaces with structural groups G and H, respectively
and let p : G — GL(Vp), p/ : H — GL(W)) be representations. Assume that
we are given a morphism of principal spaces ¢ : P — () with subjacent group
homomorphism ¢g : G — H and a linear map Ty : Vy — Wy. Clearly, Tj is
¢o-equivariant if and only if:

Ty o p(g) = ¢'(do(g)) o To,
for all g € G. If Tj is ¢p-equivariant, we obtain an induced map:
¢xTy: PxgVo—QxgWo.

We have seen in Example that the fiber products P xg Vp and Q xg Wy
are vector spaces. We claim that the induced map ¢ x Tj is linear. Namely, choose
any p € P and set ¢ = ¢(p); the analogue of commutative diagram (1.2.22) in this
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context is:
¢xTo
PxagVy Q xXa Wy
ﬁT Td
Vo Wo

0
The linearity of ¢ x Tj follows from the fact that the maps p and ¢ are linear
isomorphisms. Observe that, if Vj = Wy, T is the identity map of Vj and p = p’ o
¢g then the induced map ¢ x T is equal to g%; thus, the map qg :PxaVo — QxgVy
is a linear isomorphism.

1.3. Principal fiber bundles

Let M be a differentiable manifold, G be a Lie group, P be a set and let
IT: P — M be a map; for each x € M we denote by P, the subset II-!(x) of P
and we call it the fiber of P over x. Assume that for each x € M we are given a
right action of GG on the fiber P, that makes it into a principal space with structural
group G equivalently, assume that the map II is surjective and that we are given a
right action

(1.3.1) PxG>(p,g)—p-geP

of G on P such that II(p - g) = II(p) for all p € P, g € G and such that for all
p,q € P with TI(p) = II(p) there exists a unique g € G withp - g = q.

By a local section of II we mean a map s : U — P defined on an open subset
U of M such that II o s is the inclusion map of U in M this means that s(x)
is a point of the fiber P,, for all z € U. A local section s of 1I whose domain
is the entire manifold M will be called a section (or global section) of II. Given
local sections s; : Uy — P, s9 : Us — P of Il then there exists a unique map
g : Uy NUz — G such that sy(z) = s1(x) - g(z), for all x € U; N Us. The map g
is called the transition map from s to sa. The local sections s; and sg are called
compatible if the map g is smooth (this is the case, for instance, if U; N Uy = ().
An atlas of local sections of 11 is a set A of local sections of II such that:

e the union of the domains of the local sections belonging to A is the whole
manifold M;
e any two local sections belonging to A are compatible.

It is easy to see that any atlas A of local sections of II is contained in a unique
maximal atlas Ay, of local sections of II (see Exercise [1.41).

DEFINITION 1.3.1. A principal fiber bundle (or, more simply, a principal bun-
dle) consists of:

a set P, called the rotal space;

a differentiable manifold M, called the base space;

amap Il : P — M, called the projection;

a Lie group G, called the structural group;

a right action of G on P that makes the fiber P, = IT"!(z) into a
principal space with structural group G, for all x € M;



1.3. PRINCIPAL FIBER BUNDLES 23

e a maximal atlas A,,.x of local sections of II. The elements of A, are
called the admissible local sections of the principal bundle.

When working with principal fiber bundles we will usually refer to the projec-
tion IT : P — M or to the total space P as if it were the collection of all the objects
listed in Definition We will also say that P is a principal bundle over M or
that P (or Il : P — M) is a G-principal bundle.

Let P be a G-principal bundle over M. For every admissible local section
s : U — P the map:

(1.3.2) Bs:UxG>(2,9) — s(x)-gcT 1 (U)CP

is a bijection. It follows from the result of Exercise [A.T] that there exists a unique
differential structure on the set P such that for every admissible local section
s : U — P the set II71(U) is open in P and the map J3; is a smooth diffeo-
morphism. We will always regard the total space P of a principal bundle to be
endowed with such differential structure. The fact that the topologies of M and G
are Hausdorff and second countable implies that the topology of P is also Haus-
dorff and second countable, so that P is a differentiable manifold. One can easily
check the following facts:

the right action (1.3.1)) of G on P is a smooth map;

the projection II : P — M is a smooth submersion;

for every x € M the fiber P, is a smooth submanifold of P;

for every z € M and every p € P, the map 3, : G — P, (recall (I.1.4))
is a smooth diffeomorphism;

e every admissible local section s : U — P is a smooth map;

e if a local section s : U — P is a smooth map then it is compatible with
every admissible local section and therefore (by the maximality of A, ax)
it is itself an admissible local section.

Thus, the admissible local sections of P are precisely the same as the smooth local
sections of P. Observe also that if s : U — P is a smooth local section of P and
if g : U — G is a smooth map then, since the action is smooth, it follows
that:

U3z s(x)-g(x)eP
is also a smooth local section of P.

EXAMPLE 1.3.2 (trivial principal bundle). Let M be a differentiable manifold
and let Py be a principal space whose structural group G is a Lie group (for in-
stance, we can take Py = (). Set P = M x Py. LetIl : P — M denote the
projection onto the first coordinate and define a right action of G on P by setting
(z,p)-g = (z,p-g), forallz € M,p € Pyandall g € G. Forevery p € Py
the map s? : M > z — (z,p) € P is a (globally defined) local section of II and
the set {sp 1p € Po} is an atlas of local sections of II. Thus P is a G-principal
bundle over M which we call the trivial principal bundle over M with typical fiber
Ppy.indexprincipal bundle!trivial Let Py be endowed with the differential structure
that makes the map 3, : G — Py a smooth diffeomorphism, for every p € P (the
existence of such differential structure follows from commutative diagram (1.2.1))).
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Clearly the differential structure of P = M X Py coincides with the standard dif-
ferential structure defined on a cartesian product of differentiable manifolds.

ExXAMPLE 1.3.3. Let II : P — M be a G-principal bundle. If U is an open

subset of M, we set:
Ply=1T"YU) cP.

The right action of G on P restricts to a right action of G on P|;; and the projection
IT restricts to a map (also denoted by IT) from P| to U. The set P|y is then a G-
principal bundle over the manifold U endowed with the maximal atlas of local
sections consisting of all the smooth local sections of P with domain contained
in U. We call P|y the restriction of the principal bundle P to the open set U.
Obviously, P|y is an open subset of P; moreover, the differential structure of Py
coincides with the differential structure it inherits from P as an open subset.

EXAMPLE 1.3.4. Let G be a Lie group and H a closed subgroup of G. Con-
sider the quotient map II : G — G/H and the action of H on G by right trans-
lations. For each z € G/H, the fiber II"!(z) is a left coset of H in G and it
is therefore a principal space with structural group H (see Example [I.2.3)). Since
G is a manifold, we can talk about smooth local sections of II. If s1 : U — G,
sz : V. — G are smooth local sections of II then the transitionmap h : UNV — H
is given by:

h(z) = s1(z) sa(2),
for all z € U NV, and therefore it is smooth. Hence the set of all smooth local
sections of I1 is an atlas of local sections of [Tand IT : G — G/ H is an H-principal
bundle endowed with atlas of all smooth local sections of II. It is easily seen that
the differential structure on GG induced by such atlas coincides with the original
differential structure of G.

DEFINITION 1.3.5. Given x € M and p € P,, then the tangent space T), P, is
a subspace of T,, P and it is called the vertical space of P at p; we write:

Ver,(P) =T, P,.
Clearly, Ver,(P) is equal to the kernel of dII(p), i.e.:
Ver,,(P) = Ker(dII(p)).

Since the map (3, is a smooth diffeomorphism from G’ onto the fiber containing p,
its differential at the unit element 1 € G is an isomorphism

(13.3) dB,(1) : g —> Ver,(P)

from the Lie algebra g of the structural group G onto the vertical space Ver,(P).
We call the canonical isomorphism from g to Ver,(P).

By differentiating the right action of G on P with respect to the first
variable we obtain a right action TP x G — T'P of GG on the tangent bundle 7'P;
more explicitly, for every g € G and every ( € T'P we set:
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where v, : P — P is the diffeomorphism given by the action of g on P. Since
the diffeomorphism +, takes fibers to fibers, the action of G on T'P takes vertical
spaces to vertical spaces, i.e.:

(1.3.4) dryg (Very(P)) = Verp.4(P),
forall p € P and all g € G. Let us look at the action of GG on vertical spaces by
identifying them with the Lie algebra g via the canonical isomorphisms; for every

p € P, g € G, we have the following commutative diagram:

action of g

Ver,(P) Ver,,.4(P)

(1.3.5) dpp(1) | = =1 dBp.g(1)

g Ad g
g

where Ad denotes the adjoint representation of G on g defined by (recall (I.1.3)):
Adg=dZy(1) : g — g,

for all g € G. The commutativity of diagram (1.3.5)) follows from the commuta-
tivity of diagram (I.2.3)) by differentiation.

DEFINITION 1.3.6. Let P be a G-principal bundle over M and let H be a Lie
subgroup of G. A principal subbundle of P with structural group H is a subset ()
of P satisfying the following conditions:

e forallx € M, Q, = P, NQ is a principal subspace of P,, with structural
group H, i.e., O, is an H-orbit;

e for all x € M, there exists a smooth local section s : U — P such that
x € Uands(U) C Q.

We consider the restriction of the right action of G on P to a right action of H
on () and we consider the restriction of the projection IT : P — M to Q. Then
@ is an H-principal bundle over M endowed with the maximal atlas consisting of
all local sections s : U — @Q of Q) for whichios : U — Pis smootlﬂ where
i : Q — P denotes the inclusion map.

Being the total space of a principal bundle, the set () is endowed with a differ-
ential structure. Let us take a look at the relation between the differential structure
of Q and of P. If s : U — ( is a smooth local section of () thenios: U — P is

3o prove the compatibility between the local sections of ) the reader should recall the follow-
ing important result from the theory of Lie groups: if G is a Lie group and H is a Lie subgroup of G
then a smooth map having G as its counter-domain and having its image contained in H remains a
smooth map if we replace its counter-domain by H.
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a smooth local section of P and we have a commutative diagram:

ﬁios
UxG = P |U
inclusion T T inclusion
UxH— Qlu

Bs

in which the horizontal arrows are smooth diffeomorphisms. It follows that the
inclusion map ¢ : Q — P is a smooth immersion. Unfortunately, it is not in
general an embedding; in fact, the inclusion map ¢ : () — P is an embedding if
and only if H is an embedded Lie subgroup of G (recall that a subgroup H of G
is an embedded Lie subgroup of G if and only if H is closed in GG). Although @
is in general just an immersed submanifold of P, it has the following reduction of
counter-domain property: if X is a locally connected topological space (resp., a
differentiable manifold) and if ¢ : X — @ isamapsuchthatio¢p : X — P
is continuous (resp., smooth) then the map ¢ : X — () is also continuous (resp.,
smooth). In fact, the principal subbundle @ is an almost embedded submanifold of
P.

Let us now define the natural morphisms of the category of principal bundles
with base space M.

DEFINITION 1.3.7. Let P, ) be principal bundles over the same differentiable
manifold M, with structural groups G and H respectively. A map ¢ : P — @ is
called fiber preserving if ¢(P,) C Q, for all z € M. A morphism of principal
bundles from P to () is a smooth fiber preserving map ¢ : P — (@ for which there
exists a group homomorphism ¢g : G — H such that for all x € M, the map
¢r = ¢|p, : Py — @ is a morphism of principal spaces with subjacent group
homomorphism ¢g.

The group homomorphism ¢ : G — H is uniquely determined from the mor-
phism of principal bundles ¢ : P — @; the commutativity of diagram (I.2)) (with
P and @ replaced by fibers P, and @, respectively) shows that the smoothness
of ¢ implies the smoothness of the group homomorphism ¢g. Thus, ¢q is indeed
a Lie group homomorphism. We call it the Lie group homomorphism subjacent to
the morphism of principal bundles ¢.

The composition 1 o ¢ of morphisms of principal bundles ¢ and v with sub-
jacent Lie group homomorphisms ¢ and g is a morphism of principal bundles
with subjacent Lie group homomorphism 1) o ¢ (see Exercise[I.43)). A morphism
of principal bundles ¢ is bijective if and only if its subjacent Lie group homo-
morphism ¢ is bijective. A bijective morphism of principal bundles is called an
isomorphism of principal bundles. 1f ¢ is an isomorphism of principal bundles
with subjacent Lie group homomorphism ¢q then ¢ is a smooth diffeomorphism
and ¢! is also an isomorphism of principal bundles with subjacent Lie group ho-
momorphism ¢, ! (see Exercise|1.46).

EXAMPLE 1.3.8. If P is a G-principal bundle, H is a Lie subgroup of G and
@ is an H-principal subbundle of P then the inclusion map from ) to P is a
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morphism of principal bundles whose subjacent Lie group homomorphism is the
inclusion map from H to G (compare with Example[1.2.22).

EXAMPLE 1.3.9. Let M be a differentiable manifold and Py, ()¢ be principal
spaces whose structural groups are Lie groups GG, H, respectively; consider the
trivial principal bundles M x Py and M X Qq. Let ¢ : Py — Qo be a morphism
of principal spaces whose subjacent group homomorphism ¢ : G — H is a Lie
group homomorphism. Then Id x ¢ : M x Py — M x g is a morphism of
principal bundles whose subjacent Lie group homomorphism is ¢.

EXAMPLE 1.3.10. Let P be a G-principal bundle over a differentiable man-
ifold M and let s : U — P be a smooth local section of P. The map ; is an
isomorphism of principal bundles from the trivial G-principal bundle U x G onto
P|y. The Lie group homomorphism subjacent to (3, is the identity map of G.

A fiber preserving map ¢ : P — () that is a morphism of principal spaces on
each fiber can be used to push-forward the principal bundle structure of the domain
P to the counter-domain (); more precisely, we have the following:

LEMMA 1.3.11. LetI1 : P — M be a G-principal bundle over a differentiable
manifold M. Let Q be a set, II' : Q — M be a map, H be a Lie group and
assume that it is given right action of H on Q that makes the fiber Q. into a
principal space with structural group H, for all x € M. Let ¢9 : G — H be
a Lie group homomorphism and let ¢ : P — @ be a fiber preserving map such
that ¢|p, : P, — Qg is a morphism of principal spaces with subjacent group
homomorphism ¢q, for all x € M. Then there exists a unique maximal atlas of
local sections of 11 that makes ¢ : P — Q) a morphism of principal bundles.

PROOF. Consider the following set of local sections of I1':
(1.3.6) {(;5 o s : s is a smooth local section of P}.

Let us show that is an atlas of local sections of IT". Obviously, the domains
of the local sections belonging to (|1.3.6) constitute a covering of M. Moreover, if
s1: Uy — P, sy : Upg — P are smooth local sections of P with transition map
g : UiNUy — G then the transition map from ¢os; to ¢osa is ¢pgog : U1NUs — H;
thus ¢ o s1 and ¢ o sy are compatible and (1.3.6)) is an atlas of local sections of II'.
To conclude the proof, observe that a maximal atlas A,,,, of local sections of IT’
makes ¢ : P — @Q a morphism of principal bundles if and only if A, is the
maximal atlas of local sections of II' containing (T.3.6) (see Exercise [1.43). (]

COROLLARY 1.3.12. Let P, P’, Q be principal bundles over a differentiable
manifold M with structural groups G, G' and H respectively. Let ¢ : P — Q,
W : P — P’ be morphisms of principal bundles with subjacent Lie group ho-
momorphisms ¢o : G — H and 1y : G — G'. Let ¢, : G' — H be a Lie
group homomorphism and let ¢' : P — (@ be a fiber preserving map such that
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dlp - P! — Qg is a morphism of principal spaces with subjacent group homo-
morphism ¢, for all x € M. Assume that the diagram:

N

P’?Q

commutes. Then ¢’ is a morphism of principal bundles with subjacent Lie group
homomorphism ¢j,.

PROOF. Let A, ax be the maximal atlas of local sections of the principal bun-
dle @ and let A/ .. be the unique maximal atlas of local sections of ) that makes

max
¢’ a morphism of principal bundles. Both A, and A, .. make ¢ = ¢ o) a
morphism of principal bundles; by the uniqueness part of Lemma|l.3.11] we have
Amax = AL .« This concludes the proof. O

1.3.1. Pull-back of principal bundles. A G-principal bundle over a differen-
tiable manifold M can be though of as a “smoothly varying” family (P,),ecas of
principal spaces P, with structural group G parameterized by the points of M. If
M’ is another differentiable manifold and f : M’ — M is a smooth map then it is
natural to consider a reparametrization (P (y))y e of the family (Py)zens by the
map f. This idea motivates the definition of the pull-back of a principal bundle.
Let us now give the precise definitions.

Let IT : P — M be a G-principal bundle and let f : M’ — M be a smooth
map defined on a differentiable manifold M’. The pull-back of P by f is the set
f* P defined by:

= ({w}x Pry)-
yeM’
Thus, the set f*P is a subset of the cartesian product M’ x P. The restriction
to f*P of the projection onto the first coordinate is a map II; : f*P — M’
and the restriction to f*P of the projection onto the second coordinate is a map

f: f*P — P; the following diagram commutes:
f*P f4> P
(1.3.7) Hll J{H

M’ ? M
We call f : f*P — P the canonical map associated to the pull-back f*P; when it
is necessary to make the principal bundle P explicit, we will also write % instead
of just f.

Notice that the pull-back f*P is precisely the subset of M’ x P where the
maps IT o f and f o II; coincide; moreover, the map (I, f) : f*P — M’ x P
is just the inclusion map. From this two simple observations, we get the following
set-theoretical lemma:
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LEMMA 1.3.13. Let I1 : P — M be a G-principal bundle, M’ be a differ-
entiable manifold and f : M' — M be a smooth map. Given a set X and maps
T1:X > M, 175: X — Pwithll oy, = f o1y then there exists a unique map
7:X — f*PsuchthatTlyor =1 and foT = To.

PROOF. The condition Il o 75 = f o 71 means that the image of the map

(11, 72) : X — M’ x P is contained in f*P; since (IIy, f) is the inclusion map of
f*Pinto M’ x P, there exists a unique map 7 : X — f*P such that:

(1.3.8) (g, f) o7 = (71, 72).

But this last equality is equivalent to II; o 7 = 7 and f o 7 = 75. O

The situation in Lemma [1.3.13| is illustrated by the following commutative
diagram:

X .

=N

I f l

M’ 5 M

(1.3.9)

In Exercise [I.53] we define the general notion of pull-back in arbitrary categories
and in Exercise [I.54 we ask the reader to generalize Lemma [I.3.13] by presenting
the notion of pull-back in the category of sets and maps.

Our goal now is to make ITy : f*P — M’ into a G-principal bundle over M.
For each y € M, the fiber (f*P), is equal to {y} x Py(,); we will identify the fiber
(f*P)y of f*P with the fiber Py, of P. Under such identification, every fiber of
f*P is a fiber of P and thus each fiber of f*P is endowed with a right action of
G that makes it into a principal space with structural group G. Our next step is to
define an atlas of local sections of II;.

DEFINITION 1.3.14. By a local section of the principal bundle P along f we
mean a map o : U’ — P defined on an open subset U’ of M’ satisfying the
condition ITo o = f|y.

EXAMPLE 1.3.15. If s : U — P is a local section of P then the composition
sof: f~Y(U) — Pisalocal section of P along f.

Clearly, if we compose a local section of IT; : f*P — M’ on the left with
f , we obtain a local section of P along f; moreover, if o : U’ — P is a local
section of P along f then there exists a unique local section & : U’ — f*P
of II; : f*P — M’ such that f o @ = o. Namely, taking X = U’, 71 to
be the inclusion map of U’ in M’ and 7 = o then & is the map 7 given by
the thesis of Lemma The following commutative diagram illustrates the
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. —
relation between ¢ and o:

f*Pf*>P

A L

U —— M
flor
We have thus established that composition on the left with f induces a bijection
between the set of local sections of IT; : f*P — M’ and the set of local sections
of P along f.

Let sy : Uy — P, sy : Uy — P be smooth local sections of P with transition
mapg : Uy NUs — G. Seto; = s; 0 f,i = 1,2, and consider the local section
i« f7YU;) — f*PofIly : f*P — M’ suchthat foo; = 04,1 = 1,2.
Evidently, the transition map from &1 to &g is gof:f *1(U1 N Us) — G and
therefore the local sections &7 and &5 are compatible. This observation implies
that the set:

(1.3.10) {? :0 = so f and s is a smooth local section of P}

is an atlas of local sections of ITy : f*P — M’. If we endow f*P with the
unique maximal atlas of local sections containing then f*P becomes a
G-principal bundle over M'. We will always consider the pull-back f*P to be
endowed with such maximal atlas of local sections.

The following lemma allows us to understand better the manifold structure of
the total space f*P.

LEMMA 1.3.16. LetI1 : P — M be a G-principal bundle, M' be a differen-
tiable manifold and f : M' — M be a smooth map. Let 11, : f*P — M’ denote

the pull-back of P by f. Then the map (111, f) : f*P — M’ x P is a smooth

embedding; in particular, the canonical map f : f*P — P is smooth.

PROOF. By the result of Exercise in order to prove that (IIy, f) is a
smooth embedding, it suffices to show that for every smooth local section s : U —
P of P the restriction of the map (I, f) to the open set (I, /)~ (f~H(U)x P) =
(f*P)|-1(v) is a smooth embedding. Set o = s o f and consider the local section
@ of f*P such that f o '@ = 0. We have a commutative diagram:

(T4, f)

(Pl @) f7HU) x Ply
B?Te ETIdxﬁs

U)x G YU UxG

SO > O arwg | )X (UxE)
in which the vertical arrows are smooth diffeomorphisms. The proof is concluded
by observing that the bottom arrow of the diagram is a smooth embedding. ([

Lemma says that the pull-back of principal bundles is a particular case
of the notion of pull-back in the category of differentiable manifolds and smooth
maps (see Exercise[1.55).
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ExXAMPLE 1.3.17. Let Il : P — M be a G-principal bundle. If U is an
open subset of M and ¢ : U — M denotes the inclusion map then the canonical
map 7 : i*P — P is injective and its image is equal to P|y. Moreover, the
map 7 : *P — P|y is an isomorphism of principal bundles whose subjacent Lie
group homomorphism is the identity map of G (the fact that 7 is smooth follows
from Lemma [1.3.16). We will use the map 7 to identify the pull-back i* P with the
restricted principal bundle P|y;.

Using Lemma [1.3.16] we can prove the following important property of pull-
backs.

PROPOSITION 1.3.18 (universal property of the pull-back). Under the condi-
tions of Lemma [[.3.13) if X is a differentiable manifold then the map T is smooth
if and only if both 11 and 19 are smooth.

PROOF. Follows directly from the equality (1.3.8) and from the fact that the
map (II;, f) is a smooth embedding (Lemma|l.3.16). O

COROLLARY 1.3.19. LetI1 : P — M be a principal bundle, M’ be a differ-
entiable manifold and f : M' — M be a smooth map. A local section o : U’ — P
of P along f is smooth if and only if the local section ‘'c : U' — f*P of f*P is
smooth.

PROOF. If we take X = U’, 71 to be the inclusion map of U’ in M’ and 75 = o
then ‘o is the map 7 given by the thesis of Lemma[1.3.13| The conclusion follows
from Proposition[I.3.1§] O

Corollary/[1.3.19|implies that composition on the left with f induces a bijection
between the set of smooth local sections of f* P and the set of smooth local sections
of P along f.

DEFINITION 1.3.20. LetIT : P — M, II' : P’ — M’ be principal bundles
with structural groups G and G, respectively and let f : M’ — M be a smooth
map. A map ¢ : P’ — P is said to be fiber preserving along f if p(P)) C Py,
for all y € M’'. By a morphism of principal bundles along f from P’ to P we
mean a smooth map ¢ : P’ — P such that:

e (¢ is fiber preserving along f;

e there exists a group homomorphism ¢g : G — G such that for all y in
M’ the map ¢, = ¢| Py P, — Py, is a morphism of principal spaces
with subjacent group homomorphism ¢gq.

As we have previously observed for morphisms of principal bundles (recall
Definition [1.3.7), if ¢ is a morphism of principal bundles along f then the group
homomorphism ¢ is uniquely determined by ¢ and the smoothness of ¢ implies
the smoothness of ¢g. We call g the Lie group homomorphism subjacent to .
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Clearly a map ¢ : P’ — P is fiber preserving along f : M’ — M if and only
if the diagram:

p—==p
(13.11) H’l in

M/4>f M

commutes.

EXAMPLE 1.3.21. If Il : P — M is a principal bundle with structural group
G and if f : M’ — M is a smooth map defined in a differentiable manifold M’
then the canonical map f : f*P — P is fiber preserving along f (compare
with (T.3.11)); moreover, f is a morphism of principal bundles along f whose
subjacent Lie group homomorphism is the identity map of G. If IT' : P" — M’
is a G’-principal bundle over M’ then the composition of f with a fiber preserving
map from P’ to f*P is a fiber preserving map along f from P’ to P. Conversely,
ifamap ¢ : P’ — f*P is fiber preserving along f then there exists a unique fiber
preserving map % : P’ — f*P suchthat f o o = f; namely, the map © is the
map 7 given by the thesis of Lemma if we take X = P/, 7y = I’ and
T3 = . The relation between ¢ and % is illustrated by the following commutative
diagram:

N

g f l

!
M — M
We can now state another corollary of Proposition|1.3.18

COROLLARY 1.3.22. LetII : P — M, II' : P’ — M’ be principal bundles
with structural groups G and G', respectively, f : M' — M be a smooth map
and ¢ : P' — P be a fiber preserving map along f. Then ¢ is smooth if and
only if the fiber preserving map o : P’ — f*P is smooth. Moreover, ¢ is a
morphism of principal bundles along f with subjacent Lie group homomorphism
©o : G' — G if and only if ‘¢ is a morphism of principal bundles with subjacent
Lie group homomorphism .

PROOF. The fact that ¢ is smooth if and only if % is smooth follows from
Proposition [1.3.18| and Example [1.3.21] The rest of the thesis follows from the
observation that for all y € M’ the maps:

‘py‘Pz;—>Pf(y)v <Gy‘Pz;—>(f*P)y:I')f(y)

are the same. O
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EXAMPLE 1.3.23. LetII : P — M, II' : Q — M be principal bundles
with structural groups G and H, respectively; let M’ be a differentiable manifold
and let f : M’ — M be a smooth map. Given a morphism of principal bundles
¢ : P — () with subjacent Lie group homomorphism ¢q : G — H then:

¢pof:f*P—Q

is a morphism of principal bundles along f with subjacent Lie group homomor-
phism ¢g; we set:

7P
[fo=¢of,
sothat f*¢ : f*P — f*(Q is the unique fiber preserving map such that the diagram:
pP—"-qQ
(1.3.12) fPT TfQ
*P *
[P Q

commutes. By Corollary the map f*¢ is a morphism of principal bundles
with subjacent Lie group homomorphism ¢g. We call f*¢ the pull-back of the
morphism ¢ by f. As a particular case of this construction, notice that if P is a
principal subbundle of @) and 7 : P — () denotes the inclusion map then f*P is a
principal subbundle of f*@Q and f*i : f*P — f*Q is the inclusion map.

EXAMPLE 1.3.24. Let M, M’, M" be differentiable manifolds, P be a G-
principal bundle over M and let f : M' — M, g : M" — M’ be smooth maps.
The composition f o g of the canonical maps:

fiffP—P g:g"f'P— [P
is a morphism of principal spaces along f o g whose subjacent Lie group homo-
morphism is the identity map of GG. Thus, by Corollary[1.3.22] the map:

«—

(1.3.13) fog :9"f*"P— (fog)P
characterized by the equality:

- = -

fogo fog =fog
is an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity map of G. We use the map (1.3.13)) to identify the principal bundles
g*f*P and (f o g)*P. Under such identification, we have:

fog=1Ffog.

1.3.2. The fiberwise product of principal bundles. Let IT : P — M and
IT" : Q@ — M be principal fiber bundles with structural groups G and H, respec-
tively. The fiberwise product of P with @ is the set P x () defined by:

PxQ= | (P x Q).

zeM
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Thus the fiberwise product P x @ is the subset of the cartesian product P x ()
consisting of all the pairs (p, ¢) such that II(p) = IT'(¢). Consider the map IT » IT'
defined by:
IxI1'": PxQ 3 (p,q) — I(p) =1T'(q) € M.

The fiber (P x @), of the fiberwise product over a point x € M is the cartesian
product P, x (05, which is a principal space with structural group G x H (recall
Example . Ifs: U — P,s : U — (@ are local sections of P and Q
respectively then the map:

(5,8): U2z (s(z),s(z) € PxQ
is a local section of P % Q. The set:

(13.14) {(s, s’) . s, s are smooth local sections of P, Q, respectively
o and the domain of s equals the domain of s'}

is an atlas of local sections of Il x I : P« () — M. Thus, the fiberwise product
P xQis a (G x H)-principal bundle over M endowed with the unique maximal
atlas of local sections containing (I.3.14). We will always consider the fiberwise
product P % @) to be endowed with such maximal atlas of local sections.

LEMMA 1.325. Let Il : P — M, II' : Q — M be principal fiber bundles
with structural groups G and H, respectively. The inclusion map of P * Q) into the
cartesian product P x Q) is a smooth embedding.

PROOF. By the result of Exercise in order to prove that the inclusion map
Px@Q — P x( is a smooth embedding it suffices to show that given smooth local
sections s : U — P, s’ : U — @ of P and () respectively then the inclusion map
from the open subset (P x Q) N (Ply x Qly) = (P*xQ)|y of PxQto P x Q is
a smooth embedding. We have a commutative diagram:

(P+Q)ly e (Plo) * (Qlu)
6<SYS,)T: :TBSXBSI
Ux(GxH) (UxG)x (UxH)

(2,9,h)—(x,9,2,h)

in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is a smooth embedding and the conclusion follows. (]

Letpry : PxQ — P, pry : Px(@Q — ( denote the restrictions to P x ()
of the projections of the cartesian product P x Q. It follows from Lemma
that pr; and pr, are smooth; moreover, pr; and pr, are clearly morphisms of prin-
cipal bundles whose subjacent Lie group homomorphisms are the correspondent
projections of the cartesian product G x H.

COROLLARY 1.3.26. Under the conditions of Lemmal[l.3.25] if $1 : X — P,
¢2 : X — @ are smooth maps defined in a differentiable manifold X such that
IT1 o ¢1 = II' o ¢9 then there exists a unique map ¢ : X — P x Q such that
pry o ¢ = ¢1 and pry o ¢ = pa. The map ¢ is smooth.
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PROOF. The hypothesis IT o ¢; = II' o ¢)o means that the image of the map
(¢1,02) : X — P x @ is contained in P * (). The map ¢ must therefore be the
map obtained from (¢1, ¢2) by replacing the counter-domain P x Q by PxQ. O

COROLLARY 1.3.27 (universal property of the fiberwise product). Under the
conditions of Lemma let K be a Lie group R be a K -principal bundle over
M. Given morphisms of principal bundles ¢1 : R — P, ¢2 : R — (@ then
there exists a unique morphism of principal bundles ¢ : R — P % Q such that
pri© ¢ = ¢1 and pry o ¢ = ¢s.

PROOF. Apply Corollary[[.3.26|with X = R. If ¢! : K — G, ¢3 : K — H
are the subjacent Lie group homomorphisms to ¢; and ¢, respectively then it is
immediate that the smooth map ¢ : R — P x @ given by the thesis of Corol-

lary [I.3.26]is a morphism of principal bundles with subjacent Lie group homomor-
phism (¢{,¢9) : K — G x H. O

The commutative diagram below illustrates the statement of Corollary

If the reader feels that there is some relation between the notions of pull-back
and of fiberwise product then he or she is right. See Exercise [I.57|for details.

EXAMPLE 1.3.28. Let P, P, Q, Q' be principal bundles over a differentiable
manifold M andlet ¢ : P — P’, 1 : Q — Q' be morphisms of principal bundles.
Denote by:

pri: PxQ — P, pry: PxQ — Q,
prl : PxQ — P, pth:PxQ — Q)

the projections. By Corollary |1.3.27] there exists a unique morphism of principal
bundles:

OdxY: PxQ — P'xQ'
such that pr o (¢ x ¢)) = ¢ o pr; and pr} o (¢ x 1)) = 1) o pry.
LEMMA 1.3.29. Let 11 : P — M and 1I' : Q — M be principal fiber bundles

and let f : M' — M be a smooth map defined in a differentiable manifold M’'.
The map:

(1.3.15) F*(PxQ)> (y,(p,q0) — ((,p), (y,9) € (f*P)* (f*Q)

is an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity.
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PROOF. The fact that (I.3.13)) is a morphism of principal bundles follows by
applying Corollary [1.3.27|with (recall Example|1.3.23):

g1 = [fpry: ff(P*Q) — [*P, ¢o= fTpry: [1(P*Q) — Q.
The fact that (1.3.13) is an isomorphism of principal bundles then follows from the
result of Exercise O

1.4. Associated bundles

Associated bundles are constructed from principal bundles by a fiberwise ap-
plication of the notion of fiber product discussed in Subsection[I.2.1] We begin by
stating a smooth version of Definition [1.2.24]

DEFINITION 1.4.1. By adifferentiable G-space we mean a differentiable man-
ifold N endowed with a smooth left action G x N — N of a Lie group G.

Notice that the effective group G¢r of a differentiable G-space is a subgroup
of the group Diff(NN) of all smooth diffeomorphisms of N. The kernel of the
homomorphism G 3 g — 7, € Diff (V) corresponding to the left action of G on
N is a closed normal subgroup of GG and G is isomorphic to the quotient of G by
such kernel; we can therefore endow Gep with the structure of a Lie group.

LetIl : P — M be a G-principal bundle and let [V be a differentiable G-space.
For each x € M we consider the fiber product P, X N of the principal space P,
by the G-space N and we set:

PxgN= (P xaN);
zeM
we have a projection map:
T PxgN—M
that sends P, xg N to the point x € M and a quotient map q defined by:
q: Px N> (p,n)+— [p,n] € PxgN.
The following commutative diagram illustrates the relation between the maps 11, m
and q:
PxN

first projection

(1.4.1) P PxgN
Hi/
M

Wecallm: P xg N — M (or just P xg N) the associated bundle to the G-
principal bundle P and to the differentiable G-space N. The set P xg N is also
called the fotal space of the associated bundle. For each x € M, the set

P, xg N =n"1(z)
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is called the fiber of P xg NN over .

Notice that each fiber P, X N is naturally endowed with the Ge¢-structure
]/3; = {]3 i p € Px}. Since Gt is a subgroup of Diff (IV), such Gg-structure
can be weakened to a Diff (/V)-structure that corresponds to the structure of a dif-
ferentiable manifold smoothly diffeomorphic to N on the fiber P, xg N (recall
Example[I.1.4).

Our goal now is to endow the entire total space P X g /N with the structure of
a differentiable manifold. Given a smooth local section s : U — P of P then we
have an associated bijective map:

(142) 5:U x N 3 (2,n) — [s(z),n] = s(z)(n) € 771(U) C P x¢ N,

which we call the local trivialization of the associated bundle P x & IN correspond-
ing to the smooth local section s. If s1 : Uy — P, s9 : Uy — P are smooth local
sections of P and if g : U; N Uz — G denotes the transition map from s; to s
then the transition map §1_1 o §o from §; to S9 is given by:

47108 (U NU) x N 3 (z,n) — (z,9(z)-n) € (U1NU) x N

and is therefore a smooth diffeomorphism between open sets. It follows from the
result of Exercise that there exists a unique differential structure on the set
P x¢ N such that for every smooth local section s : U — P of P the set 77 1(U)
isopenin P x N and the local trivialization 5 is a smooth diffeomorphism. We will
always regard the total space P X N of an associated bundle to be endowed with
such differential structure. The fact that the topologies of M and N are Hausdorff
and second countable implies that the topology of P X g N is also Hausdorff and
second countable, so that P Xg N is a differentiable manifold. One can easily
check the following facts:

the projection 7 : P xg N — M is a smooth submersion;

the quotient map q : P x N — P X N is a smooth submersion;

for every x € M the fiber P, X N is a smooth submanifold of P xg IV;
for every x € M and every p € P, if the fiber P, x5 N is endowed with
the differential structure inherited from P x& N as a submanifold then
themap p: N — P, Xg N is a smooth diffeomorphism.

The last item above implies that the differential structure of P, X N that is ob-

tained by weakening the Ge¢-structure 1/3; coincides with the differential structure
that P, xg N inherits from P xo N.

EXAMPLE 1.4.2 (the trivial associated bundle). Let M be a differentiable man-
ifold, Py be a principal space whose structural group G is a Lie group and let N
be a differentiable G-space. Consider the trivial principal bundle P = M x P
(recall Example [1.3.2). The associated bundle P x¢ N can be naturally iden-
tified with the cartesian product M x (Py Xg N) of M by the fiber product
Py xg N. The fiber product Py X N is endowed with a G¢-structure that can
be weakened into a Diff (V)-structure that corresponds to the structure of a differ-
entiable manifold smoothly diffeomorphic to N. Clearly the differential structure
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of P xg N = M x (Py xg N) coincides with the standard differential structure
defined in a cartesian product of differentiable manifolds.

EXAMPLE 1.4.3. Letll : P — M be a G-principal bundle and /N be a differ-
entiable G-space. If U is an open subset of M then the total space of the associated
bundle (P|7) xg N is equal to the open subset 771 (U) of the total space of the
associated bundle m : P xg N — M. Clearly, the differential structure of the
associated bundle (P|y) X N coincides with the differential structure it inherits
from P X N as an open subset.

DEFINITION 1.4.4. Givenx € M, p € P, andn € N then the tangent space
Tipn) (P X V) is a subspace of Tj,, (P X IV) and it is called the vertical spacef
P x¢a N at [p, n]; we write:

Ver[pm](P Xa N) = T[

p’n](Px Xaq N)

Clearly:
Verp, ) (P xg N) = Ker(dn([p, n])).

Notice that, since p is a smooth diffeomorphism from N onto the fiber P, xg N,
its differential at » € N is an isomorphism:

(1.4.3) dp(n) : TuN — Verp, ,,(P xg N)

from the tangent space T}, /N onto the vertical space.
In the example below we look at a case that is of particular interest to us.

EXAMPLE 1.4.5. Let Ej be a real finite-dimensional vector space and assume
that we are given a smooth representation p : G — GL(Ejy) of a Lie group G
on Fy. Then Ej is a differentiable G-space and the effective group G is a Lie
subgroup of the general linear group GL(Ey). If IT : P — M is a G-principal
bundle then we can consider the associated bundle P x & Ey. For each x € M, the
fiber P, x g Ep has the structure of a real vector space such that for every p € P,
the map p : Ey — P, Xg Ep is a linear isomorphism (recall Example [I.2.26).
Since each p is both a smooth diffeomorphism and a linear isomorphism, it follows
that the differential structure of the fiber P, X Ey (inherited from the total space
P x g Ey) coincides with the differential structure that is determined by its real
finite-dimensional vector space structure. We can therefore identify the vertical
space at any point of the fiber P, x s Ey with the fiber itself, i.e.:

(144) Ver[pveo](P XaG Eo) = T[p,eo](Pz XaG Eo) = Px XaG Eo,

for all p € P, and all eg € Ey. Moreover, the linear isomorphism (1.4.3)) is just p,
1e.:

(1.4.5) dp(eg) = p: By — P, x¢ Eo,

for all p € P, and all eg € Ej.
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1.4.1. Local sections of an associated bundle. Let II : P — M be a G-
principal bundle, N be a differentiable G-space and consider the associated bundle
m: P xXg N — M and the quotientmapgq : P x N — P xg N.

DEFINITION 1.4.6. By a local sectionof the associated bundle P x5 N we
mean amap € : U — P Xg N defined on an open subset U of M such that
moe=Idy,i.e.,suchthate(z) € P, xg N, forall z € U.

Ife: U — P xg N is alocal section of P xg N andifs : U — Pisa
smooth local section of P then there exists a unique map € : U — N such that
e =qo (s,€),i.e., such that:

(1.4.6) e(z) = [s(x), é(z)],

for all z € U; namely, € is just the second coordinate of the map 3! o e. We call
€ the representation of € with respect to s. Clearly € is smooth if and only if € is
smooth.

1.4.2. The differential of the quotient map. Let Il : P — M be a G-
principal bundle, N be a differentiable GG-space and consider the associated bundle
m: PxgN — M and the quotientmap q: Px N — P xgN. Foreveryx € M,
the map q carries P, x N onto the fiber P, x ¢V over x and therefore, forall p € P,
and all n € N, the differential dq(p, n) carries T(;, ) (P x N') = Very(P) ® T, N
to the vertical space Very, (P xg N). We wish to compute the restriction of
the differential dq(p,n) to Ver,(P) & T, N. To this aim, we identify Ver,(P)
with the Lie algebra g via the canonical isomorphism (1.3.3) and we identify
Very, ) (P xg N) with T, N via the isomorphism (I.4.3). Recall from Defini-
tion that for every X € g, we denote by X the induced vector field on the
differentiable manifold N and by X ¥ the induced vector field on the differentiable
manifold P.

LEMMA 1.4.7. Let1l : P — M be a G-principal bundle, N be a differentiable

G-space and consider the associated bundle w : P xg N — M and the quotient
map q: P X N — P xg N. Givenp € P, n € N then the dotted arrow in the
commutative diagram:

Ver,(P) @ T,,N dap.n) Ver(, ) (P xg N)

dﬁp(1)@1dT~ NTdﬁ(N)
gD TN > TN
is given by:
g®T,N 3 (X,u) — u+ XN(n) € T,N.

PROOF. Set z = II(p). The map q(p,-) : N — P, xg N is the same as p and
therefore the dotted arrow on the diagram carries (0, u) to u, for all w € T, N. To
conclude the proof, we show that the dotted arrow on the diagram carries (X, 0) to
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XN (n), forall X € g; this follows from the commutative diagram:

q("n)

Px Px Xa N
o] X
G 5 N
by differentiation. ([

COROLLARY 1.4.8. LetIl : P — M be a G-principal bundle, N be a differ-

entiable G-space and consider the associated bundle 7 : P xg N — M and the
quotient map q : P X N — P Xg N. Givenp € P, n € N then the kernel of
dq(p, n) is equal to the image under the isomorphism:

dg,(1)®1d: g T,,N — Ver,(P) & T,,N
of the space:
{(X,-Xx"(n)): X e g} Cg® T,N;
more explicitly:
Ker(dq(p,n)) = {(Xp(p), —XN(n)) : X € g} C Very(P)®T,N.
PROOF. By differentiating (1.4.1]), we see that the diagram:

dd(p,n
(1.4.7) T,P & T,N e Thym (P xa N)

.M

commutes. Thus the kernel of dq(p,n) is contained in Ver,(P) & T;,,N. The
conclusion now follows easily from Lemma|l.4.7 U

EXAMPLE 1.4.9. Let us go back to the context of Example [I.4.5] and let us
take a closer look at the statement of Lemma Denote by p : g — gl(Ep) the
differential at 1 € G of the representation p : G — GL(Ey); by gl(Ep) we have
denoted the Lie algebra of the general linear group GL(Ey ), which is just the space
of all linear endomorphisms of Ej, endowed with the standard Lie bracket of linear
operators. Given X € g then the induced vector field X ©0 on the manifold E is
given by X0 (eg) = p(X) - eq, for all eg € Ep; thus X0 : Ey — Ej is just the
linear map p(X ). Keeping in mind (T.423)), Lemma|1.4.7]tells us that the restriction
to Very,(P) & Ey of the differential of the quotient map q : P x Eyg — P X Ej at
apoint (p,eg) € P x Ey is given by:

dd(preq) (ABp(1) - X, ) = p(u+ p(X) - e0) = [p,u+ p(X) - eg] € Py x ¢ Eo,
for all X € gand all w € Ey. For instance, if G is a Lie subgroup of GL(Ey)
and p : G — GL(E)) is the inclusion map then g is a Lie subalgebra of gl(E)),
p: g — gl(Ep) is the inclusion map and thus p(X) is just X itself; hence:
dq(p,eo) (dﬁp(l) - X, u) = ﬁ(u + X(e())) = [pa U+ X(€O)] € P, x¢g Ep,
forall X € gandall v € Ejy.
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1.4.3. Induced maps on associated bundles. In Subsection |1.2.1| we have
defined the notion of induced maps on fiber products. Such notion can be applied
fiberwise to get a notion of induced map on an associated bundle. More precisely,
let P, ) be principal bundles over a differentiable manifold M with structural
groups GG and H, respectively. Let ¢ : P — () be a morphism of principal bundles
and let ¢9 : G — H denote its subjacent Lie group homomorphism. Given a
differentiable H-space N we consider the smooth left action of G on N defined in
(1.2.20)), so that N is also a differentiable G-space. For each x € M, the morphism
of principal spaces ¢, : P, — Q, induces a map qggg P xg N — Q, xg N and
thus there is a map:

b:PxgN—QxpgN

whose restriction to the fiber P, xg N is equal to g%x, for all x € M. More
explicitly, we have:

é([p,n]) = [6(p), n],

forallp € Pandalln € N. We call g% the map inducedindexassociated bun-
dle!induced map on by ¢ on the associated bundles. Notice that the following
diagram:

Id
PXNLQXN

(1.4.8) qi lq'
PxgN ; Qxug N

commutes, where ¢, q’ denote the quotient maps.
Since for each x € M the map ¢, is bijective (Corollary [1.2.32) then clearly
the map ¢ is also bijective. Moreover, we have the following:

LEMMA 1.4.10. Let P, QQ be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — Q) be a
morphism of principal bundles and let ¢y : G — H denote its subjacent Lie group
homomorphism. Given a differentiable H-space N we consider the smooth left
action of G on N defined by (1.2.20). The induced map ¢ : P xg N — Q xg N
is a smooth diffeomorphism.

PROOF. Let s : U — P be a smooth local section of P and set s’ = ¢ o s, so
that ' : U — @ is a smooth local section of (). We have a commutative diagram
analogous to diagram (1.2.23):

(Plv) xa N
(1.4.9) o~

8

(Qlv) xu N

1R

)

UxN
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Since 4 and s’ are smooth diffeomorphisms, we conclude that (5 is a smooth local
diffeomorphism. Since ¢ is bijective, it follows that ¢ is indeed a global smooth
diffeomorphism. U

As in Subsection [I.2.1] we have also a more general notion of induced map.
Let P, @ be principal bundles over a differentiable manifold M with structural
groups GG and H, respectively. Let ¢ : P — () be a morphism of principal bundles
with subjacent Lie group homomorphism ¢¢ : G — H. Let N be a differen-
tiable G-space and N’ be a differentiable H-space; assume that we are given a
¢o-equivariant map x : N — N’. For each x € M the map ¢, : P, — Qg
is a morphism of principal spaces with subjacent group homomorphism ¢y and
therefore we have an induced map:

Gz Xk Pr xg N — Qg XHN/~
We can therefore consider the induced map:
¢>N</€:P><GN—>Q><HN/

whose restriction to the fiber P, xg N is equal to ¢, X &, for all z € M. Notice
that the following diagram:

PxN—2 L oxN

(1.4.10) ql lq'
/
P xg N oy Qxg N

commutes, where ¢, q' denote the quotient maps. If N = N’ and N is endowed
with the action of G defined in then the induced map ¢ x Id is the same
as ¢.

The induced map ¢ X k retains many properties of the map ~ as is shown by
the following:

LEMMA 1.4.11. Let P, Q be principal bundles over a nonempty differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — @ be a
morphism of principal bundles with subjacent Lie group homomorphism ¢q : G —
H, let N be a differentiable G-space and N' be a differentiable H-space; assume
that we are given a ¢g-equivariant map v : N — N'. Consider the induced map
dxk:PxgN — Qxyg N’ Then:

(a) ¢ x k is smooth if and only if k is smooth;

(b) ¢ x kK is injective (resp., surjective) if and only if k is injective (resp.,
surjective);

(c) & X K is a smooth immersion (resp., a smooth submersion) if and only if
K is a smooth immersion (resp., a smooth submersion);

(d) ¢ x K is a smooth embedding if and only if k is a smooth embedding;

(e) ¢ % k is an open mapping if and only if k is an open mapping.
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PROOF. Let s : U — P be a smooth local section of P and set s’ = ¢ o s, so

that s’ : U — @ is a smooth local section of Q). We have a commutative diagram
similar to (1.2.22)):

PR

(Ply) xa¢ N (Qly) xu N’

§T~ NTA,

- 09 !
UxN . UxN

The conclusion follows then easily from the fact that the maps 5 and s’ are smooth
diffeomorphisms (for the proof of item (d), use also the result of Exercise[A.2). [

Notice that if IT : P — M is a G-principal bundle, N is a differentiable G-
space and Ny is a smooth submanifold of NV invariant by the action of G then the
inclusion map ¢ : Ng — N is a smooth (G-equivariant embedding and therefore,
by Lemma [I.4.T1] the induced map Id x i : P xg Ny — P Xg N is a smooth
embedding. We use the map Id x ¢ to identify P X ¢ Ny with a smooth submanifold
of P xg N. Notice that if Ny is an open submanifold of N then P X Ny is an
open submanifold of P x¢ N (item (e) of Lemma [[.4.1T).

1.4.4. The associated bundle to a pull-back. Let P be a G-principal bundle
over a differentiable manifold M and let f : M’ — M be a smooth map defined in
a differentiable manifold M’. Given a differentiable G-space N then the associated
bundle (f*P) xg N can be identified with the following subset of the cartesian
product M’ x (P xg N):

(1.4.11) U {y} x (P xa N)).

yeM’
We have the following:

LEMMA 1.4.12. Let P be a G-principal bundle over a differentiable manifold
M and let f : M’ — M be a smooth map defined in a differentiable manifold M’.
Let N be a differentiable G-space. If we identify the associated bundle (f*P)xgN
with the set (1.4.11)) then the inclusion map of (f*P) xg N in M' x (P xg N) is
a smooth embedding.

PROOF. By the result of Exercise in order to prove that the inclusion map
(f*P) x¢ N — M' x (P x¢g N) is a smooth embedding it suffices to verify
that for every smooth local section s : U — P of P the inclusion map from the
open subset ((f*P) xg N) N (f~1(U) x (P xgN)) = ((f*P)’f—l(U)) xa N of
(f*P)xg N to M’ x (P xgN) is a smooth embedding. Set o = so f and consider
the smooth local section ‘& : f~Y(U) — f*P of f*P suchthat fo T = 0. We
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have a commutative diagram:

(f*P)l -1y xa N —2 #1177y x ((P|y) x@ N)

%Tm &Tldx§

—1 -1
U)x N U UxN
SO X N o )X (UxA)
in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is a smooth embedding and the conclusion follows. O

1.5. Vector bundles and the principal bundle of frames

Let M be a differentiable manifold, E(y be a real finite-dimensional vector
space, F' be aset and m : © — M be a map; for each x € M we denote by E,
the subset 71 (x) of E and we call it the fiber of E over z. Assume that for each
x € M we are given a real vector space structure on the fiber £, such that Ey and
E, have the same dimension. The set FR g, (E,) of all Ey-frames of E,, is thus a
principal space with structural group GL(Ey). We set:

FRg,(E) = |J FRg(E,)
zeM
and we consider the map IT : FRg,(E) — M that sends FRg,(E;) to z, for all
e M.

DEFINITION 1.5.1. A vector bundle consists of:

e aset F, called the total space;

a differentiable manifold M, called the base space;

amap 7 : E — M, called the projection;

a real finite-dimensional vector space Fy, called the typical fiber;

a real vector space structure on the fiber E, = 7~!(x) such that Ey and
E . have the same dimension, for all z € M;

e a maximal atlas A,y of local sections of I : FRg, (E) — M.

When working with vector bundles we will refer to the projection 7 or to the
total space F as if it were the collection of all the objects listed in Definition|1.5.1
We will also say that E is a vector bundle over M. The maximal atlas A ax
makes II : FRg,(E) — M into a GL(Ep)-principal bundle over M; we call it
the principal bundle of Ey-frames (or simply the principal bundle of frames) of the
vector bundle 7 : £ — M. A (smooth) local section of FRg,(E) will also be
called a (smooth) local Eqy-frame (or simply a local frame) of the vector bundle E.
When Ey = R"™ we write FR(E) instead of FRg, (E).

Let us now define a differential structure on the total space of a vector bundle.
This is done as follows. The typical fiber Ej is a differentiable GL(Ep)-space in a
obvious way; since the frame bundle FR g, (E) is a GL(E))-principal bundle we
may thus consider the associated bundle FR g, (E) x Eo. The contraction map C¥
defined by:

(1.5.1) C¥ . FRE,(E) x Eo 3 [p, eo) — pleg) € E
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is bijective and it restricts to a linear isomorphism from FR g, (E;) x Ep to E, for
all z € M (recall Example [[.2.28)). Thus, there is a unique differential structure
on the set F that makes the contraction map C¥ a smooth diffeomorphism. We
will always consider the total space E of a vector bundle to be endowed with such
differential structure. Clearly the topology of E is Hausdorff and second countable,
so that F is a differentiable manifold. The following facts follow directly from the
corresponding facts stated in Section for general associated bundles and from
the comments made in Example

the projection 7 : £ — M is a smooth submersion;

the map FR, (E) x Ey 3 (p,eo) — p(ep) € E is a smooth submersion;
for every x € M the fiber E, is a smooth submanifold of F;

for every x € M the differential structure that the fiber E, inherits from
F as a submanifold coincides with the differential structure that is deter-
mined by its real finite-dimensional vector space structure.

Let s : U — FRp, (F) be a smooth local section of FR g, (E) and set § = C o 3;
more explicitly, the map 3 is given by:

5:U X Ey> (x,e0) — s(z)-eg e L (U) CE.

The map $ is a smooth diffeomorphism and we will call it the local trivialization

of E corresponding to the smooth local Ey-frame s. Notice that the differential
structure of the total space E' can also be characterized by the fact that for every
smooth local Ey-frame s : U — FRg, (E) the map § is a smooth diffeomorphism
onto the open subset 71 (U) of E.

EXAMPLE 1.5.2 (the trivial vector bundle). Let M be a differentiable manifold
and E be areal finite-dimensional vector space. Set E' = M X Ej and consider the
map 7 : F — M given by projection onto the first coordinate. For every x € M
we identify the fiber E, = {x} x Ey with Ej so that E, has the structure of a real
vector space and:

FRg,(M x Ey) = M x GL(Ejp).
The set FR g, (M x Ey) is thus naturally endowed with the structure of a GL(Ep)-
principle bundle (see Example [1.3.2)) and therefore F is a vector bundle over M
which we call the trivial vector bundle over M with typical fiber Ey. Clearly
the differential structure of E = M x Ej coincides with the standard differential
structure given to a cartesian product of differentiable manifolds.

EXAMPLE 1.5.3. Let m : E — M be a vector bundle with typical fiber Ey. If
U is an open subset of M, we set:

Ely =7 *U);

the projection 7w : £ — M restricts to a map from F|y to M and for each x € U
the fiber E, of E|y over z is endowed with the structure of a real vector space.
Clearly:

FREg,(Elv) = FRey(E)|u,
so that FR g, (E|y) is a GL(E)p)-principal bundle over the differentiable manifold
U (see Example . Thus E|y is a vector bundle over U which we call the
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restriction of the vector bundle E to the open set U. Clearly, the differential struc-
ture of E|;; coincides with the differential structure it inherits from E as an open
subset.

EXAMPLE 1.5.4 (the tangent bundle). Let M be an n-dimensional differen-

tiable manifold, let
™ = | ) T.M
zeM

denote its tangent bundle and let  : T'M — M denote the standard projection that
sends T, M to z, for all x € M. For every x € M, the fiber T, M has the structure
of a real vector space isomorphic to R". Let ¢ : U — U be a local chart of M,
where U is an open subset of M and U is an open subset of R". For every © € U
the map dy(z)~! : R® — T,,M is a linear isomorphism and the map:

§9:U 32— dp(x)"' € FR(TM)

is alocal section of FR(T'M ) — M. If¢p : V — V is another local chart of M and
if = poyp~! 1 (UNV) — p(UNV') denotes the transition map from ) to ¢ then
the transition map from s¥ to s¥ is givenby U NV > z — da(¢(z)) € GL(R™)
and therefore the set:

(1.5.2) {s?: ¢ isalocal chart of M}

is an atlas of local sections of FR(T'M) — M. We endow FR(T'M) with the
unique maximal atlas of local sections of FR(T'M) — M containing (1.5.2) and
then m : T'M — M is a vector bundle over M with typical fiber R".

EXAMPLE 1.5.5. Let P be a G-principal bundle over a differentiable manifold
M, Ey be areal finite-dimensional vector space and p : G — GL(Ey) be a smooth
representation of G on Ey. As explained in Example[I.4.5] the fibers of the associ-
ated bundle P X Ej have the structure of a real vector space isomorphic to Ej. In
order to make P X FEj into a vector bundle over M with typical fiber £, we have
to describe a maximal atlas of local sections of FRg, (P x¢ Ejp). This is done as
follows. Consider the map (recall (I.2.16)):

(1.5.3) §:P3pr—peFRg (P xg Ey).

Clearly $ is fiber-preserving and for each x € M it restricts to a morphism of prin-
cipal spaces from P, to FRg, (P, X Ep) whose subjacent group homomorphism
is the representation p : G — GL(Ej). By Lemma[1.3.11] there exists a unique
maximal atlas of local sections of FR g, (P X Ey) — M that makes $) into a mor-
phism of principal bundles. We will always regard the associated bundle P x & Ej
as a vector bundle with FRg, (P X Ey) endowed with the maximal atlas of local
sections that makes $) a morphism of principal bundles.

Observe that P x g Ej has, in principle, two distinct differential structures: one
that was defined in Section [1.4{for arbitrary associated bundles and the other that is
assigned to the total space of vector bundles, i.e., the one for which the contraction
map:

(1.5.4)  cP*eBo . FRy (P x¢ Eo) x Fo 3 [0, e0) — o(eo) € P xg o
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is a smooth diffeomorphism. In order to check that these two differential structures
coincide we endow P x Ey with the differential structure that makes C*¢Fo
into a smooth diffeomorphism and we show that for every smooth local section
s : U — P the map s is a smooth diffeomorphism onto an open subset of P X g Ejy
(recall that this is precisely the characterization of the differential structure of the
total space of an associated bundle introduced in Section . Set s1 = Hos, s0
that s; : U — FRg, (P X¢ Ep) is a smooth local Ey-frame of the vector bundle
P X Ey. We claim that:

(1.5.5) 5= 3,

i.e., the local trivialization of the associated bundle P x g Ey corresponding to the
smooth local section s of P is equal to the local trivialization of the vector bundle
P xqg Ey corresponding to the smooth local Ey-frame s;. Namely, given z € U,
eg € Ey then:

$1(z,e0) = s1(x) - €0 = H(s(z)) - eo = s(z)(e0) = [s(z), e0] = 5(z, €9).

Since the trivialization §; is a smooth diffeomorphism onto an open subset of the
total space of the vector bundle P x ¢ Ej, it follows from (1.3.5)) that § is also a
smooth diffeomorphism onto an open subset of P x g Ey. This concludes the proof
that the two natural differential structures of P x g Ej coincide. An alternative argu-
ment to prove the coincidence of these two differential structures of P X Ej is the
following: we endow P x ¢ Eyy with the differential structure defined in Section[I.4]
and we show that the contraction map C”*%0 is a smooth diffeomorphism. Since
$ is a morphism of principal bundles, we have an induced map:

5/:_\) P xqg Ey> [p, 60] — [f)(p),eo] € FREO(P Xa EO) x Ey.
By Lemma(1.4.10] 9 is a smooth diffeomorphism. To conclude the proof that the
contraction map CP*¢%0 is a smooth diffeomorphism, we show that CP'*cFo ig
equal to the inverse of $. Since both CP*cEo and §) are bijective, it suffices to

check that CF*c o o 5% is the identity map of P xg FEy; givenp € P, eg € Ey, we
compute:

CP*eB(§([p, eol) ) = C7*O (19(p), eo]) = C7*0 ([p, )
= p(eo) = [p, eo].

DEFINITION 1.5.6. Given z € M and e € E, then the tangent space T, F, is
a subspace of T, F and it is called the vertical space of the vector bundle F at e;
we write:

Ver(E) = T E,.
Clearly:
Ver.(E) = Ker(dr(e)).

Since for every z € M the fiber E, is a real finite-dimensional vector space, we
identify the tangent space T, E/; at a point e € E, with E, itself, i.e.:

Vere(E) = TE, = E,.
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For each x € M, the contraction map C¥ restricts to a linear isomorphism from
FRE,(E;) x Ep to E, and thus its differential at a point [p, eg] of FRg, (Ez) x Eo
restricts to a linear isomorphism from the vertical space Very, .1 (FR Eo(E) % EO)
to Ver, () (E); recalling from (1.4.4) that the vertical space of FRg, (F) x Ep at
[p, eo] is identified with the fiber product FRg,(E,) x Ep then the restriction to

the vertical space of the differential of C¥ at [p, eg] is given by:
CE* . FRE,(Fy) % Eo 2 [p, eo] — p(eo) € Ex.

1.5.1. Local sections of a vector bundle. Let 7 : £ — M be a vector bundle
with typical fiber Ej.

DEFINITION 1.5.7. By a local section of the vector bundle £ we mean a map
€ : U — E defined on an open subset U of M such that 7 o € is the inclusion map
of Uin M, i.e., such that e(x) € E,, forall z € U.

If e : U — Eis alocal section of E and if s : U — FRp,(E) is a smooth
local Fy-frame of E then the map € : U — Fj defined by:

é(z) = s(x) ™" - e(2) € En,

for all x € U is called the representation of the section € with respect to the smooth
local Ey-frame s. If § is the local trivialization of E corresponding to s then:

e(x) = é(x, 6(1’)),

for all z € U; therefore the local section € is smooth if and only if its representation
€ 1s smooth.

A globally defined local section € : M — FE of a vector bundle E will be called
a global section (or just a section) of E. Notice that a local section € : U — E of
E is the same as a global section of the restricted vector bundle E|;;. We denote
by T(FE) the set of all sections of E and by I'(E) the set of all smooth sections
of E. Clearly T'(E) is a real vector space endowed with the obvious operations
of pointwise addition and multiplication by scalars; moreover, T'(E) is a module
over the ring RM of all maps f : M — R. If s : U — FRp,(E) is a smooth
local Ey-frame of E then the map ¢ — ¢ that assigns to each section € € T'(E|/)
its representation € : U — FEj with respect to s is a linear isomorphism of real
vector spaces and also an isomorphism of R -modules. Since € is smooth if and
only if € is smooth, it follows that T'(E) is a subspace of T'(E); but it is obviously
not an RM-submodule in general. Let C°°(M) denote the set of all smooth maps
f: M — R; clearly C*°(M) is a subring of RM, T'(E) is a C°°(M )-module and
I'(E) is a C*°(M)-submodule of T'(E).

EXAMPLE 1.5.8. Let M be a differentiable manifold. A (smooth) section of
the tangent bundle 7'M is the same as a (smooth) vector field on M.

EXAMPLE 1.59. Let II : P — M be a G-principal bundle, Ej be a real
finite-dimensional vector space and p : G — GL(Ej) be a smooth representation.
The associated bundle P x & Ejy is a vector bundle over M with typical fiber Ej

(recall Example|1.5.5) and the map $ : P — FRg, (P x¢g Ep) defined by (1.5.3)
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is a morphism of principal bundles whose subjacent Lie group homomorphism is
p. If s : U — P is a smooth local section of P then the composition §) o 5 is a
smooth local Fy-frame of P x¢ Ey. Lete : U — P X FEy be a local section of
the associated bundle P X Ey. In Subsection we have defined the notion of
representation of € with respect to s (recall (I.4.6)). It is easily seen that the map
€ : U — Ej that represents the local section € of the vector bundle P x g Ey with
respect to the smooth local Ey-frame §) o s is the same as the map that represents
the local section € of the associated bundle P x s Ey with respect to the smooth
local section s of P.

EXAMPLE 1.5.10. Let 7 : E — M be a vector bundle with typical fiber Ey
and consider the contraction map C¥ : FRg,(E) x Ey — E. Ife : U — FEisa
local section of E then then (C¥)~! o ¢ is a local section of FR g, (E) x Eo and

(€®)7 o) (@) = [s(x), &),

for all z € U. Notice that the representation of the local section (C¥)~! o ¢ of
the associated bundle FRg, (E) x Ep with respect to the smooth local section s
of FRg, (E) (in the sense of Subsection [1.4.1)) coincides with the representation of
the local section € of the vector bundle F with respect to the smooth local Ey-frame
sof E.

1.5.2. Morphisms of vector bundles. We now define the natural morphisms
of the category of vector bundles.

DEFINITION 1.5.11. Let E, F be vector bundles over the same differentiable
manifold M. A map L : E — F is called fiber preserving if L(E,) C F, for all
x € M;weset L, = L|g, : B, — F,. The map L is called fiberwise linear if
L is fiber preserving and if L, is a linear map, for all x € M. A smooth fiberwise
linear map L : E — F'is called a vector bundle morphism.

Denote by Ey, Fy the typical fibers of FE and F, respectively and let s, s’ be
smooth local sections of FR g, (E) and FR g, (F) respectively, both defined in the
same open subset U of M. If L : E — F'is a fiberwise linear map then we set:

L(z) = s'(z) " o Ly o 5(z) € Lin(Eo, Fp),

for all x € U, where Lin(Ey, Fy) denotes the space of all linear maps from Ej to

Fy. We call L:U— Lin(Ey, Fy) the representation of L with respect to s and s’.
We have a commutative diagram:

L

E|y Flu
ETE ETSV
U x Eo = U x FQ

(z,e0)—(z,L(x)-€0)

in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is smooth if and only if the map L is smooth. It follows that:
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e if L is a morphism of vector bundles then its representation L with respect
to arbitrary smooth local sections s and s’ is smooth;

o if L is a fiberwise linear map and if every point of M is contained in
the domain U of a pair s, s’ of smooth local sections for which the cor-
responding representation L is smooth then L is a morphism of vector
bundles.

Let L : E — F be a morphism of vector bundles. Obviously L is bijective
if and only if L, : E, — F) is a linear isomorphism, for all x € M. A bijective
morphism of vector bundles L : £ — F' will be called an isomorphism of vector
bundles. If L : E — F is an isomorphism of vector bundles then L is a smooth
diffeomorphism and the map L= : F — E is also _an isomorphism of vector
bundles; namely, L~ 1is clearly fiberwise linear and if L is the representation of L
with respect to local sections s and s’ then z +— E(x)_l is the representation of
L~ with respect to s and s'.

EXAMPLE 1.5.12. For any vector bundle 7 : £ — M, the contraction map
CE is obviously an isomorphism of vector bundles from FR, (E) x Fy onto E.

EXAMPLE 1.5.13. If s : U — FRp,(E) is a smooth local Ep-frame of the
vector bundle E then the local trivialization § : U x Ey — E|y is an isomorphism
of vector bundles from the trivial bundle U x Ej onto E|.

EXAMPLE 1.5.14. Let P be a G-principal bundle over a differentiable man-
ifold M, Ej be a real finite-dimensional vector space and p : G — GL(E)) be
a smooth representation. If s : U — P is a smooth local section then the map
§:U x Ey — (Ply) xg FEo (recall (T.4.2)) is a vector bundle isomorphism,’
Notice that this example can also be seen as a particular case of Example [1.5.13]
Namely, by (I.5.3), § = 31, where s1 = Hosand $ : P — FRg, (P x¢ Ep) is
the morphism of principal bundles defined in (1.5.3).

Let us particularize Lemma|1.4.10|to the context of vector bundles.

LEMMA 1.5.15. Let P, Q) be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — @ be a
morphism of principal bundles and let ¢g : G — H denote its subjacent Lie group
homomorphism. Given a real finite-dimensional vector space Eg and a smooth
representation p : H — GL(Ey), we consider the smooth representation of G in
Ey given by pogg : G — GL(Ep). Then the induced map é: PxcEy — QxuEy
is an isomorphism of vector bundles.

PROOF. The restriction of <;3 to each fiber of P x g FEj is a linear isomorphism
(Example|1.2.33). Moreover, Lemma|l.4.10/implies that ¢ is smooth. (]

We also have a version of Lemmal(l.4.1 1l for vector bundles.

4Recall from Example that the differential structure of P X g Ej that makes the map s a
smooth diffeomorphism coincides with the differential structure that P X ¢ E has as the total space
of a vector bundle.
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LEMMA 1.5.16. Let P, QQ be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — @ be
a morphism of principal bundles and let ¢y : G — H denote its subjacent Lie
group homomorphism. Let Ey, Fy be real finite-dimensional vector spaces and let
p: G — GL(Ey), p/ : H— GL(Fy) be smooth representations. Assume that we
are given a linear map Ty : Eg — Fy such that Ty o p(g) = p’(gbo(g)) o Ty, for all
g € G. Then the induced map ¢ x Ty : P x¢ FEg — Q X Fy is a vector bundle
morphism.

PROOF. Clearly ¢ x Tj is fiber preserving and, by Example|1.2.33| ¢ x T is
fiberwise linear. Finally, Lemma|l.4.11|implies that ¢ x Tj is smooth. ([

DEFINITION 1.5.17. Let P be a G-principal bundle over a differentiable man-
ifold M, Ej be a real finite-dimensional vector space, p : G — GL(Ep) be a
smooth representation, E/ be a vector bundle over M with typical fiber Ey and
¢ : P — FRE,(F) be a morphism of principal bundles whose subjacent Lie group
homomorphism is the representation p. We set:

C®=CPod:PxgEy>[p e — ¢(p)-eo €F,

and we call C? the ¢-contraction map.

It follows from Lemma|1.5.15{and Example [1.5.12fthat Cf is an isomorphism

of vector bundles.

There is a relation between isomorphisms of vector bundles and isomorphisms
of the corresponding principal bundles of frames. Let E, E’ be vector bundles
over a differentiable manifold M, with the same typical fiber Ej. Given a bijective
fiberwise linear map L : E — E’ then the map:

Ly :FRg,(E)>p+— Lope FRg,(E)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is the identity (recall Examples
and [1.2.23). We call L, the map induced by L on the frame bundles. We have the
following:

LEMMA 1.5.18. Let E, E' be vector bundles over the same differentiable man-
ifold M, with the same typical fiber Ey. If L : E — E' is a bijective fiberwise
linear map then L is smooth if and only if the induced map L, is smooth; in other
words, L is an isomorphism of vector bundles if and only if L is an isomorphism
of principal bundles whose subjacent Lie group homomorphism is the identity.

PROOF. Lets: U — FRg,(F), s : U — FRg,(E") be smooth local sections
and denote by L:U— Lin(Ep, Ey) the representation of L with respect to s and
s’. Since L is an isomorphism of vector bundles, the map L takes values on the
general linear group GL(Ey); we have:

(L, 0 s)(z) = Ly 0 s(z) = §'(z) o L(x),
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for all z € U. Since both s’ and L are smooth, it follows that L, o s is a smooth
local section of FR g, (E’). Hence, by the result of Exercise L, is a morphism
of principal bundles whose subjacent Lie group homomorphism is the identity.

Conversely, assume that L, is an isomorphism of principal bundles whose sub-
jacent Lie group homomorphism is the identity. We have an induced map:

L. : FRy,(E) x Ey — FRg,(E') % Eo

which is a smooth diffeomorphism, by Lemma [I.4.10] It is easily seen that the
diagram:

—

FRp, (E) x Bo — = FRy, (E') x Eo
(1.5.6) cEl lcy
E 7 E’
commutes. This proves that L is smooth. ([

EXAMPLE 1.5.19. If s : U — FRpg,(E) is a smooth local Ep-frame of a
vector bundle E then the map (s : U x GL(Ey) — FRg,(F|y) (recall (1.3.2)) is
an isomorphism of principal bundles whose subjacent Lie group homomorphism is
the identity map of GL(Ej) (see Example[1.3.10). Clearly 3, = (3),.

1.5.3. Pull-back of vector bundles. Let 7 : £ — M be a vector bundle over
a differentiable manifold M with typical fiber E and let f : M’ — M be a smooth
map defined on a differentiable manifold M’. The pull-back of E by f is the set
f*FE defined by:

FFE=J ({9} x By

yeM’

The set f*E is a subset of the cartesian product M’ x E. The restriction to f*FE of
the projection onto the first coordinate is a map 71 : f*FE — M’ and the restriction
to f*E of the projection onto the second coordinate is a map f : f*E — E; we
have a commutative diagram:

M’ T> M
For each y € M, the fiber (f*E), is equal to {y} x Ey,); we will identify the
fiber (f*E)y of f*E with the fiber Ey, of E. Since every fiber of f*E is a
fiber of F, each fiber of f*FE is endowed with the structure of a real vector space
isomorphic to Ey. The set FRg,(f*E) can be naturally identified with the pull-
back f*FRg,(E); this identification makes FRg, (f*E) into a GL(E)-principal
bundle and thus f*F into a vector bundle with typical fiber Fy.
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EXAMPLE 1.5.20. Let 7w : E — M be a vector bundle with typical fiber Ey. If
U is an open subset of M and ¢ : U — M denotes the inclusion map then the pull-
back i*E can be identified with the restriction E|y (see Example [1.5.3); namely,

by Example(1.3.17} we have i*FRg,(E) = FRg,(F)|v = FRg, (E|v).

EXAMPLE 1.5.21. Let w : E — M be a vector bundle with typical fiber Ej,
f:M — M,g: M" — M’ be smooth maps, where M’, M" are differentiable
manifolds. Both ¢*f*E and (f o g)*F are vector bundles over M"; there exists
an obvious map L : g* f*E — (f o g)*E, which is the identity on each fiber. The
corresponding map:

L. : FRp,(g"f'E) — FRu, ((f 0 9)"E)

is the isomorphism of principal bundles considered in Example [1.3.24} thus, by
Lemmal|l.5.18] L is an isomorphism of vector bundles. We use such isomorphism
to identify the vector bundles ¢* f*E and (f o g)*E.

The following lemma is the analogue of Lemma[I.3.16] for vector bundles.

LEMMA 1.5.22. Let m : E — M be a vector bundle with typical fiber Ey,
M’ be a differentiable manifold and f : M' — M be a smooth map. Denote by
w1 2 f*E — M’ the pull-back of E by f. The map (1, f) : f*E — M' x E is
a smooth embedding whose image is the set of pairs (y,e) € M’ x E such that

f(y) = n(e). In particular, the map f : f*E — E is smooth.

Notice that the map (71, f) is just the inclusion map of f*F into the cartesian
product M’ x E.

PROOF. Clearly the image of (71, f) consists of the pairs (y,e) € M’ x E
such that f(y) = m(e). To prove that (71, f) is an embedding, we consider the
commutative diagram:

FRp, (f*E) x By — """~ M' x (FRpg,(E) % Fo)

cf*El iIdXCE

*E _ M x E
(ﬂ-lvf)

The vertical arrows of the diagram are smooth diffeomorphisms and the top arrow
of the diagram is a smooth embedding, by Lemma |1.4.12] Hence (71, f) is a
smooth embedding. O

COROLLARY 1.5.23 (universal property of the pull-back). Under the condi-
tions of Lemma let X be a differentiable manifold and let ¢ : X — M,
¢o : X — E be maps with m o ¢o = f o ¢1. Then there exists a unique map
¢: X — f*E such that o ¢ = ¢1 and f o ¢ = ¢o. The map ¢ is smooth.

PROOF. The hypothesis 7 o ¢ = f o ¢1 means that the image of the map
(¢1,¢2) : X — M'x E is contained in the image of the injective map (71, f); thus

there exists a unique map ¢ : X — f*F such that (7, f) o ¢ = (¢1, $2). Since

(71, f) is an embedding and (¢1, ¢2) is smooth, it follows that ¢ is smooth. [
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DEFINITION 1.5.24. By a local section of the vector bundle E along f we
mean a map ¢ : U’ — P defined on an open subset U’ of M’ satisfying the
condition 7 o € = f|y.

EXAMPLE 1.5.25. If e : U — FE'is a local section of E then the composition
eo f: f~1(U) — Eis alocal section of E along f.

Given a local section € : U’ — E of E along f there exists a unique local
section € : U’ — f*E of f*FE such that f o € = ¢; the following commutative
diagram illustrates this situation:

f*Ef;>E

7

U——>M
flyr
Thus, composition on the left with f induces a bijection between the set of local
sections of f*FE and the set of local sections of F along f.

COROLLARY 1.5.26. Under the conditions of Lemmall.5.22 if e : U’ — E is
a smooth local section of E along f then the unique local section € : U "'— f*E of
f*FE such that f o € = € is also smooth.

PROOF. Apply Corollary [1.5.23|with X = U’, ¢; the inclusion map of U’ in
M’ and ¢ = €. The map ¢ given by the thesis of Corollary [1.5.23|is precisely
E. ]
Corollary 1.5.26|tells us that composition on the left with f induces a bijection

between the set of smooth local sections of f* E and the set of smooth local sections
of E along f.

EXAMPLE 1.5.27. Let M’, M be differentiable manifolds and f : M’ — M
be a smooth map. Denote by 7 : TM — M, ' : TM' — M the projections.
Applying the universal property of pull-backs (Corollary [1.5.23) with X = TM’,
o1 =7, po = df : TM — TM' and E = TM, we obtain a smooth map
— _ «— —
df : TM' — f*TM such that f odf = df and 71 o df = 7. Clearly, df is a
morphism of vector bundles. More generally, given vector bundles 7 : £ — M,
7'+ E' — M’ and smoothmaps L : E' — E, f : M" — M such that the diagram:

Eli)E
1
M’4>f M

commutes then the universal property of pull-backs gives us a smooth map L:
E' — f*Esuchthat fo L = Land 7 o L = 7'. If for all y € M’, the restriction
L|g, : E;, — Ejy(y) is linear then L is a morphism of vector bundles.
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1.5.4. Vector subbundles. Let 7 : £ — M be a vector bundle with typical
fiber Ey, Fy be a subspace of Ey and F’ be a subset of E such that for every z € M,
the set F,, = F'NE, is a subspace of the fiber E, having the same dimension as Fj.
Given x € M, then an Ey-frame p € FRE, (E,) is said to be adapted to (Fy, F)
if p is adapted to (Fy, F,), i.e., if p(Fy) = F, (recall Example [1.1.10). Consider
the set:

FRp, (E; Fo, F) = | ) FRE,(Ey; Fo, Fy)
zeM
of all Ey-frames of E adapted to (Fp, F'). Foreachx € M, the set FR g, (Ey; Fo, Fy)
is a principal subspace of FR g, (E,) whose structural group is the Lie subgroup
GL(E(); Fg) of GL(E())

DEFINITION 1.5.28. Let 7w : E — M be a vector bundle with typical fiber Ej.
A subset F' C FE is called a vector subbundle if there exists a subspace Fy of Ej
such that:

(a) for each x € M, the set F,, = F'N E, is a subspace of F, having the
same dimension as Fp;

(b) FRE,(E; Fy, F) is a principal subbundle of FRpg,(E) with structural
group GL(Ey; Fp).

Condition (b) in Definition [I.5.28] means that every point of A/ belongs to the
domain U of a smooth local Ey-frame s : U — FRg,(F) of E such that s(x)
maps Fy to Fy, forallz € U.

REMARK 1.5.29. If Fy is a subspace of Ej such that conditions (a) and (b) in
Definition are satisfied then every subspace F| of Ej having the same di-
mension as Fy satisfies conditions (a) and (b). Namely, let ¢ € GL(FE)) be a linear
isomorphism of Ey such that g(F)) = Fy. The map vy, : FRg,(E) — FRg,(E)
is an isomorphism of principal bundles whose subjacent Lie group isomorphism is
the inner automorphism Z, -1 of GL(Ey) (Exercise|[1.44); since:

yg(FREO(E; Fy, F)) =FRpg, (E; F), F),

it follows that if FR g, (E; Fo, F') is a principal subbundle of FR g, (E) with struc-
tural group GL(Ey; Fp) then FR g, (E; F{}, F') is a principal subbundle of FR g, (E)
with structural group Z,-1 (GL(E; FO)) = GL(E; F}}) (Exercise . It follows
that if F' is a vector subbundle of E and if Fj is a subspace of Ey such that condi-
tion (a) in Definition [1.5.28|is satisfied then also condition (b) is satisfied.

Let us now show how a vector subbundle I of a vector bundle 7 : £ — M
can be regarded as a vector bundle in its own right. Let Fy be a subspace of the
typical fiber Ey of E such that condition (a) in Definition [1.5.28| is satisfied (by
Remark also condition (b) is then satisfied). First of all, the projection
m : E — M restricts to a map 7|p : F' — M and for all z € M the fiber
F, is endowed with the structure of a real vector space isomorphic to the real
finite-dimensional vector space Fj. In order to make F' a vector bundle over M
with typical fiber Fj, we have to describe a maximal atlas of local sections of
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FRE,(F) — M. If p € FRg, (E; Fy, F) is an Ep-frame of E adapted to (Fp, F)
then p|, is an Fy-frame of F'; we have therefore a map:

(1.5.8) FREg,(E; Fo, F) 3 p— p|gr, € FRE,(F)

that is fiber preserving and whose restriction to each fiber is a morphism of princi-
pal spaces whose subjacent Lie group homomorphism is:

(1.5.9) GL(EQ; Fg) 5T — T’Fo € GL(F[))

Thus, by Lemma [1.3.T1] there exists a unique maximal atlas of local sections of
FRp,(F') such that (I.5.8) is a morphism of principal bundles. We will always
consider a vector subbundle to be endowed with the structure of vector bundle
described above.

PROPOSITION 1.5.30. If E is a vector bundle and F' is a vector subbundle of
FE then F is an embedded submanifold of E and the differential structure of F (as
a total space of a vector bundle) coincides with the differential structure it inherits
from E as an embedded submanifold. In particular, the inclusion map of F in E is
smooth and hence a morphism of vector bundles.

PROOF. Denote by Fjy, Ey the typical fibers of F' and F, respectively. If ¢
denotes the morphism of principal bundles (I.5.8)) then by Lemma|[I.4.10]the map:

t:FRp, (E; Fy, F) x Fy — FRp, (F) x F

is a smooth diffeomorphism, where we consider the smooth representation of the
structural group GL(Ey; Fy) of FRp, (E; Fy, F) on Fy given by (1.5.9). If i de-
notes the inclusion map of FRg, (E; Fy, F') in FRE,(E) and if iy denotes the
inclusion map of Fy in Ey then the map:

1% 10 : FREO(E; Fo,F) X Fy — FREO(E) X Ey
is a smooth embedding, by Lemma[[.4.T1] It is easy to see that the diagram:

(i Xig)ot™1

FRp, (F) x Fo FRE,(E) x Eo

CFlL\z N\LcE

F E

inclusion

commutes. Thus, the inclusion map of F'in E is a smooth embedding. U
PROPOSITION 1.5.31. Let E, E’ be vector bundles over the same differentiable
manifold M and let L : E — E’' be a morphism of vector bundles. Then:

(a) if L is injective then its image L(E) is a vector subbundle of E';
(b) if L is surjective then its kernel Ker(L) = |J, 5 Ker(Ly) is a vector
subbundle of .

To prove Proposition [I.5.3T we need the following:

LEMMA 1.5.32. Let Ey, E() be real finite-dimensional vector spaces, M be a
differentiable manifold, L : M — Lin(Ey, E{)) be a smooth map and x, € M be
a fixed point.
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(a) Assume that z(aco) is injective. Given a subspace Fy of E, having the
same dimension as Ey then there exists a smooth map g : U — GL(E{)
defined in an open neighborhood U of xq in M such that the linear iso-
morphism g(z) : E\ — Ej carries Fy to the image of E($), for all
zeU. _

(b) Assume that L(xq) is surjective. Given a subspace Fy of Ey with dim(Fp) =
dim(Ey) — dim(EY)) then there exists a smooth map g : U — GL(Ejp)
defined in an open neighborhood U of x( in M such that the linear iso-
morphism g(z) : Eg — Eg carries Fy to the kernel of L(x), for all
zel.

PROOF. Letus prove (a). Choose a subspace Z of E|, such that E{; = L(z0)(Eo)®

Z. Foreachz € M, let g(x) : Ey ® Z — E be the linear map such that g(z)|g,
equals L () and g(z)| 7 equals the inclusion. Then g : M — Lin(Ey @ Z, E}) isa
smooth map and g(x¢) is a linear isomorphism; thus, there exists an open neighbor-
hood U of x( in M such that g(x) is a linear isomorphism, for all z € U. Since Fj
has the same dimension as Ej, there exists a linear isomorphism 7" : Ey — Eo® Z
with T'(Fp) = Ep @ {0}. Setting g(x) = g(z) o T, for all x € U, then:

9(x)(Fp) = g(x)(Eo @ {0}) = L(x)(E).
This concludes the proof of (a). Now let us prove (b). Choose a subspace Z of Ej
such that By = Ker (L(z0)) @ Z; denote by p : Eg — Ker(L(x)) the projection
onto the first coordinate corresponding to such direct sum decomposition. For each
x e M,letg(z): Ey — E)® Ker(z(mo)) be the linear map g(z) = (f(x),p)
Then:
g: M — Lin(Eo, El® Ker(i(m@))

is a smooth map and g(xy) is a linear isomorphism; thus, there exists an open
neighborhood U of xg in M such that g(z) is a linear isomorphism, for all z € U.
It is easy to see that:

g(x) [Ker(L(x))] = {0} & Ker(L(x0)),

for all z € U. Now, since Fy) has the same dimension as Ker(L(z)), there
exists a linear isomorphism 7' : Ey — E| @ Ker(z(xo)) such that T'(Fp) =
{0}@Ker(L(xo)). Setting g(x) = g(x)~'oT forallz € Utheng : U — GL(Ep)
is a smooth map and: N

g(z)(Fy) = Ker(L(ﬂs)),

for all z € U. This concludes the proof. O

PROOF OF PROPOSITION[LL5.31]. Denote by Ey, E|, respectively the typical
fibers of E and E’. Let us prove (a). Assume that L is injective and let Fy be a
subspace of E{, having the same dimension as Ey. Given o € M, we have to
find a smooth local section of FRE() (E") defined in an open neighborhood of z
in M with image contained in FR g (E'; Fo, L(E)). Let s : V — FRp, (E), &'
V —FRg, (E") be smooth local sections, defined in the same open neighborhood
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V of 29 in M; denote by L : V — Lin(Ey, E}) the representation of L with
respect to s and s’. Since E(xo) is injective, Lemma gives us a smooth
map g : U — GL(E{)) defined in an open neighborhood U of z in V' such that
the linear isomorphism g(z) : E{, — E| carries Fj to the image of L(z), for all
x € U. Clearly, the smooth local section:

U3ar s'(x)og(r) € FRyg (E)

of FRy (£') has image contained in FR (E'; Fo, L(E)). This proves (a). Let
us prove (b). Assume that L is surjective and let Fj be a subspace of Ejy with
dim(Fp) = dim(Ep) — dim(E()). Given z9 € M, we have to find a smooth
local section of FR g, (F) defined in an open neighborhood of x in M with image
contained in FR, (E; Fy, Ker(L)). As before, let s : V — FRp,(E), s’ : V —
FR E) (E") be smooth local sections, defined in the same open neighborhood V' of
o in M; denote by L:V > Lin(Ey, E{) the representatlon of L with respect

to s and s’. Since L(xo) is surjective, Lemma 2| gives us a smooth map ¢ :
U — GL(E]) defined in an open neighborhood U of xg in V such that the linear

isomorphism g(z) : Ey — Eg carries Fy to the kernel of L(z), for all z € U.
Clearly, the smooth local section:
U3z s(x)og(r) € FRg,(E)

of FRg,(E) has image contained in FR, (E; Fy, Ker(L)). This concludes the
proof of (b). O

DEFINITION 1.5.33. Let M be a differentiable manifold. By a distribution on
M we mean a subset D of T'M such that forallz € M, D, = DNT,Misa
subspace of the tangent space T, M. By a smooth distribution on M we mean a
vector subbundle D of the tangent bundle 7M.

1.6. Functorial constructions with vector bundles

Given an integer n > 1, we denote by Lec™ the category whose objects are n-
tuples (V;)"_; of real finite-dimensional vector spaces and whose morphisms from
(Vi) to (W;)_, are n-tuples (T;)"_; of linear isomorphisms 7; : V; — W;. We
set Yec = Yec'. A functor T : Bec" — Yec is called smooth if for any object
(V)i of Yec" the map:

(1.6.1) §:GL(Vi) x --- x GL(V,,)) — GL(&(Vl, .. .,Vn))

is smooth. Observe that (1.6.1)) is a Lie group homomorphism; its differential at
the identity is a Lie algebra homomorphism that will be denoted by:
(1.6.2) frolVi)@---@gl(Va) — g[(g(Vl, cee Vn))

We call f the differential of the smooth functor §.
Let m : E — M be a vector bundle with typical fiber Fy. Given a smooth
functor § : LVec — Yec we set:

(1.6.3) 3(E) = 3(E:)

zeM
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where the union in is understood to be disjoinﬂ; we have an obviously
defined projection map §(E) — M that sends F(E,) to z, for all z € M. For
each x € M, the fiber §(E,) of §(E) over x has the structure of a real vector
space having the same dimension as §(Ep). In order to make §(F) into a vector
bundle with typical fiber F(Ey), we will describe a maximal atlas of local sections
of FRg(p,) (8(E)) — M. The map:

(1.6.4) 3 :FRE(E) 3 p— F(p) € FRy(p,) (3(E))

is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is:

(1.6.5) GL(Ep) 2 T — §(T) € GL(§(Ep)).

Thus, Lem gives us a unique maximal atlas of local sections of FRz( ) (ﬁ (E ))
that makes (1.6.4) into a morphism of principal bundles. We will always consider
S (E) to be endowed with the vector bundle structure described above.
Notice that if s : U — FRp,(E) is a (smooth) local Ey-frame of £ then § o s
is a (smooth) local §(Ep)-frame of F(E); we call § o s the local frame induced by

song(E).

REMARK 1.6.1. Let § : Uec — Yec be a smooth functor and 7 : £ — M
be a vector bundle with typical fiber Ey. Since is a morphism of principal
bundles whose subjacent Lie group homomorphism is the representation (1.6.5]),
we are in the situation described in Definition|1.5.17|and thus we have the following
isomorphism of vector bundles:

€3 =35 0 F: FRp, (E) x $(Eo) 3 [p.¢] — F(p) - ¢ € F(E).
— Yec

EXAMPLE 1.6.2. If § : DUec is the identity functor then for every
vector bundle E the vector bundle §(F) coincides with E itself. For any object V'
of Yec, the map § is the identity map of gl(V).

EXAMPLE 1.6.3. Let Z be a fixed real finite-dimensional vector space and
consider the constant functor § : Uec — Yec that sends any object V' of Yec
to Z and any linear isomorphism 7" : V. — W to the identity map of Z. For
any object V' of Lec, the map f : gl(V) — gl(Z) is the identically zero map.
Given a vector bundle E over a differentiable manifold M with typical fiber Ey
then §(F) is the trivial vector bundle M x Z (recall Example ; namely, if
FRz(M x Z) = M x GL(Z) is endowed with the structure of a trivial GL(Z)-
principal bundle (see Example [I.3.2)) then the map:

S :FRE,(E) 2 p— (II(p),I1d) € M x GL(Z) =FRz(M x Z)
is a morphism of principal bundles.

Now, a less trivial example.

3If the union is not disjoint, one can always replace F(E5) with {z} x §(Es), or else modify
the functor § so that F(V) is replaced with {V'} x §(V), for every real finite-dimensional vector
space V.
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EXAMPLE 1.6.4. Let § : Lec — Yec be the functor that sends V' to the dual
space V* and a linear isomorphism 7" : V. — W to T*~! : V* — W*, where
T : W* — V* denotes the transpose map of T'. The functor F is clearly smooth
and for any object V' of Uec, the map § is given by:

frol(V)s X — —X" € gl(V").

Given a vector bundle E then the vector bundle §(E) is denoted by E* and it is
called the dual bundle of E. If E = T'M is the tangent bundle of the differentiable
manifold M then the dual bundle T'M* is also called the cotangent bundle of M.

EXAMPLE 1.6.5. Let § : Uec — Yec be the functor that sends V' to the space
Lin(V') of linear endomorphisms of V' and a linear isomorphism 7" : V' — W to
the linear isomorphism:

Ir:Lin(V)> L+ ToLoT ! e Lin(W).
The functor § is clearly smooth and for any object V' of Uec, the map:
fral(V) — gl(Lin(V))
is given by:
J(X) - L=[X,L]=XoL—-LoX,
forall X € gl(V) and all L € Lin(V'). Given a vector bundle E' then the vector
bundle §(£) will be denoted by Lin(E).

Given vector spaces Vi, ..., Vi, W, we denote by Lin(V4,..., Vi; W) the
space of k-linear maps B : V; X -+ x Vi — W; by Ling(V, W) we denote the
space of k-linear maps B : V' x---xV — W. By Lin} (V, W) (resp., Linf,(V, W))
we denote the subspace of Ling (V, W) consisting of symmetric (resp., alternating)
k-linear maps.

EXAMPLE 1.6.6. Let £ > 1 be fixed and let § : Lec — Lec be the functor
that sends V' to Ling(V,R) and a linear isomorphism 7" : V' — W to the linear
isomorphism:

Ling(V,R) > B+— B(T ', ..., T7) € Ling (W, R).
The functor § is clearly smooth and for any object V' of Uec, the map:
f:gl(V) — gl(Ling(V,R))
is given by:
f(X)-L=—-L(X+,+..., )= L(-,X-...,-)— = L(-,+,..., X"),

for all X € gl(V) and all L € Ling(V,R). Given a vector bundle E then the
vector bundle F(E) is denoted by Ling(E, R). If M is a differentiable manifold
then a section of Ling (7'M, R) is called a covariant k-tensor field on M.

EXAMPLE 1.6.7. By replacing Lin; with Lin} or Lin? throughout Exam-
ple we obtain vector bundles Lin}(F,R), Lin?(E,R). The sections of
Lin},(T'M,R) are called symmetric covariant k-tensor fields on M and the sec-
tions of Linj, (7'M, R) are called k-forms or differential forms of degree k on M.
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EXAMPLE 1.6.8. Let Z be a fixed real finite-dimensional vector space. By
replacing R with Z throughout Examples and we obtain vector bundles
Ling(E, Z), Linj(E, Z) and Lin%(E, Z). The sections of Ling(TM, Z) (resp.,
Lin§ (T'M, Z)) are called Z-valued covariant k-tensor fields (resp., symmetric Z-
valued covariant k-tensor fields) on M the sections of Lin% (7'M, Z) are called
Z-valued k-forms on M.

Let us now generalize the construction described above to the case of smooth
functors of several variables. Let n > 1 be fixed and let § : Lec" — Yec be a
smooth functor. Given vector bundles E1, ..., E™ over a differentiable manifold
M with typical fibers E}, ..., E}, respectively, we set:

3(E',....E") =] 8(E},... B,

zeM
where the union is understood to be disjoint. We have an obviously defined pro-
jection F(EL, ..., E™) — M that sends §(E.,..., E?) to =, for all x € M; for
each x in M the fiber F(EL, ..., E") has the structure of a real finite-dimensional
vector space having the same dimension as F(E}, ..., EZ). The fiberwise product
FRp (BY) % - % FRpn (E™) is a principal bundle over M with structural group

GL(E}) x - -+ x GL(E}); the map:

n 5 n
FRpi (E') % -« FRpg (E") — FRyp gy (3(EY,..., E"))
(pla"'vpn) '—>§(pla>pn)

(1.6.6)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is:

GL(Ej) x --- x GL(E}) — GL((Ej, - .., EY))

1.6.7
( ) (Tl,,Tn)l—>§(T1,,Tn)

Lemmalf(l.3.11|gives us a unique maximal atlas of local sections of
FRg(gy,.mp (B(E, ..., E") — M

that makes (1.6.6) into a morphism of principal bundles. We will always consider

S(EY, ..., E") to be endowed with the vector bundle structure described above.
Ifst: U — FRy:i (E%) is a (smooth) local E}-frame of E%, i = 1,...,n,
then § o (s!,...,s") is a (smooth) local F(E}, ..., E})-frame of the vector bun-

dle F(EY,...,E™); wecall § o (s',...,s") the frame induced by s', ..., s" on
S(EL,... EM).

REMARK 1.6.9. Let E', ..., E™ be vector bundles over a differentiable mani-
fold M with typical fibers Eé, ..., B respectively, and let § : Uec" — Yec be a
smooth functor. Since is a morphism of principal bundles whose subjacent
Lie group homomorphism is the representation (1.6.7)), we are in the situation de-
scribed in Definition|1.5.17|and thus we have the following isomorphism of vector
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bundles:
(FRy (E") % -+~ FRyy (E™)) % §(Eg, ... Ey)
(1.6.8) s
S(E,...,E")
which is given by:
CS — 3B B og (1, pn), ¢l — F(P1,- .-, 0n) - e
EXAMPLE 1.6.10. Let M be a differentiable manifold, E{, ..., E¥ be real

finite-dimensional vector spaces and consider the trivial vector bundles:
E'=MxE), i=1,...,n.
If § : Yec” — Yec is a smooth functor then F(E?, ..., E) can be identified

as a set with the trivial vector bundle M x F(E{,..., E}). Let us show that
S(EY, ..., E™) is a trivial vector bundle, i.e., such identification is a vector bun-

dle isomorphism. To this aim, we look at the corresponding principal bundles of
frames. The principal bundle of F(E}, ..., E})-frames of F(E',..., E"™) can be
identified as a set with the trivial principal bundle:

M x GL(&(E&, e ,Eg)).

We have to check that such identification is an isomorphism of principal bundles.
This follows from the following two observations; first (see Exercise , the
fiberwise product:
FRpi (E') % -« FRpg (E") = (M x GL(Ep)) x - x (M x GL(EY))
is identified as a principal bundle with the trivial principal bundle:
M x (GL(E}) x - -+ x GL(EY)).

Second, the map (1.6.6) can be identified with the product of the identity map of
M by the map so that (1.6.6)) is smooth when

FRyg 5 (B(E',..., E™))
is identified with the trivial principal bundle M x GL(§(Ej, ..., EY)).

EXAMPLE 1.6.11. Let § : Yec? — Yec be the functor that sends an object
(V1,V2) to Vi @ V4, and a morphism (77, 75) to T7 & T5. The functor § is smooth
and for any object (V, V3) of Yec?, the map:

fral(Vh) @ gl(Va) — gl(V1 © Va)

is given by:
f(XlaXQ) — Xl ©® X27

for all X1 € gl(V4), X2 € gl(Vs). Given vector bundles E', E? over a differen-
tiable manifold M then the vector bundle F(E*, E?) will be denoted by E* @ E?
is will be called the Whitney sum of E' and E?.
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EXAMPLE 1.6.12. Let § : Vec? — Yec be the functor that sends (17, V3) to
Lin(V1, Va) and (71, T?) to:

Lin(Vi,V2) 3 L+ Ty o Lo T, € Lin(Wy, Wa),

where 17 : V4 — Wy and T5 : Vo — W are linear isomorphisms. The functor §
is smooth and for any object (V1, V2) of Yec?, the map:

f:al(Vi) @ gl(Va) — gl(Lin(V1, V2))

is given by:
f(Xl,XQ) -L = AX'QOL—LOAXH7

for all X7 € gl(V4), Xo € gl(V2) and all L € Lin(V;, V3). Given vector bundles
E*, E% over M, the vector bundle F(E*, E?) will be denoted by Lin(E!, E?). A
fiberwise linear map L : E' — E? can be identified with a section x — L, of the
vector bundle Lin(E!, E?). If s' : U — FR B (E%) is a smooth local E}-frame of
E*, i = 1,2, and if s denotes the frame of Lin(E", E?) induced by s' and s? then
the representation of the fiberwise linear map L with respect to s! and s? is equal
to the representation of the section x — L, with respect to s. It follows that L is a
vector bundle morphism if and only if  — L, is a smooth section of Lin(E!, E?).
From now on we will systematically identify vector bundle morphisms from E* to
E? with smooth sections of Lin(E", E?).

EXAMPLE 1.6.13. Let k& > 1 be fixed and let § : Yec**! — Wec be the
functor that sends (Vi,..., Vg, W) to Lin(Vi,..., Vi; W) and that sends linear
isomorphisms T; : V; — V/, i =1,...,k,T : W — W’ to the linear isomor-
phism:

Lin(Vy,..., Vi W) — Lin(V{, ..., V; W')
Br—ToB(Ty ", ...,T; ).
The functor § is smooth and for any object (V1, ..., Vi, W) of Yech+! the map:
frol(i) @@ gl(Vi) @ gl(W) — gl(Lin(Va,..., Vis W)
is given by:
(X1, X, X) - L=XoL(...,) = L(X1...,-) —---
—L( ..., Xg),

forall X; € gl(V;),i =1,...,k, X € gl(W), L € Lin(V4,...,Vi; W). Given
vector bundles E', ..., E*, F over M, we will denote the vector bundle F(E', ..., E* F)
by Lin(E', ..., E¥; F). When E' = ... = E¥ = E, we write Liny (E, F) rather

than Lin(E", ..., E*; F). Sections of the vector bundle Ling (T M, F) are called
F-valued covariant k-tensor fields on M.

EXAMPLE 1.6.14. Let £ > 1 be fixed and let § : Yec® — Yec be the functor
that sends (V1, V2) to Lin3, (V1, V) and (T4, 1) to:

Lin}(Vi,Va) 3 B+ Ty o B(T{Y-,..., Ty 1) € Ling (W7, Wa),
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where T : Vi — Wh, To : Vo — W5 are linear isomorphisms. The functor § is
smooth and for any object (V3, Vz) of Bec?, the map:
f:al(V1) © gl(Va) — gl(Linj,(V1, V2))
is given by:
f(X1,X9)  L=Xo0L(+...,") —L(Xy+y...,:)—-—L(~..., X1"),

for all X; € gl(V1), X2 € gl(V2) and all L € Linj (V;, V3). Given vector bun-
dles E, F' over M, the vector bundle F(E, F') will be denoted by Linj (E, F').
An analogous construction replacing Linj, with Linj, gives us the vector bundle
Lin}(E, F). The sections of Lin} (T'M, F') are called symmetric F-valued covari-
ant k-tensor fields on M and the sections of Lin} (7'M, F') are called F-valued
k-forms on M.

CONVENTION. From now on, when describing smooth functors we will only
specify their actions on objects and leave as an exercise to the reader the task of
describing their actions on morphisms.

PROPOSITION 1.6.15. Let m,n > 1 be fixed and let:
§=@G"....8") : Ve — Vec", & : Vec" — Vec

be smooth funcz‘omﬂ' consider the smooth functor & o § : Lec™ — Yec. Given

vector bundles EY, ..., E™ over a differentiable manifold M then:
(1.6.9) (BoF)(E',....,E™) =& (F (E',...,E™),....3"(E',...,.E™)).

PROOEF. Clearly both sides of (1.6.9) are equal as sets; we have to check that
the principal bundle structure of their corresponding principal bundles of frames are
also the same. Denote by Ej the typical fiber of the vector bundle E%,i = 1,...,m,
by F7 = F/(E}, ..., Ef) the typical fiber of §/(E',...,E™), j = 1,...,n
and by G = &(F!,... F") the typical fiber of (& o F)(E",..., E™). For each
j=1,...,n, let FRy; (37 (E,..., E™)) be endowed with the unique principal
fiber bundle structure that makes the map:

(1.6.10)  § :FRpi (E') %% FRpp (E™) — FRp; (§ (E',..., E™))

a morphism of principal bundles and let FR¢ ((& o §)(E", ..., E™)) be endowed
with the unique principal bundle structure that makes the map:

FRp (§Y(EY, ..., E™)) %+ x FRpn (§"(EL, ..., E™))
(1.6.11) ®
FRG((BoF)(EY,...,E™))

a morphism of principal bundles. To conclude the proof, we have to verify that the
map:

(1.6.12) BoF : FREé(El)*- - *FRgp (E™) — FRg((®03)(E',...,E™))

The smoothness of § means that every ﬁ’ is smooth.



1.6. FUNCTORIAL CONSTRUCTIONS WITH VECTOR BUNDLES 65

is a morphism of principal bundles. This follows from the universal property of the
fiberwise product of principal bundles (Corollary|1.3.27) and from the fact that the
composition of morphisms of principal bundles is a morphism of principal bundles

(see Exercise [1.43). O

PROPOSITION 1.6.16. Letn > 1 be fixed and let § : Vec" — Lec be a smooth
functor. Let E1, El, e E™, E" be vector bundles over a differentiable manifold
Mand L' : E* — Ez, 1 =1,...,n, be vector bundle isomorphisms. The map:

S(LY,.... L") :§(EY,... . E") —FE',....E"

whose restriction to the fiber F(EL, ... Em) is equal to F(LL,..., L"), for all
x € M is a vector bundle isomorphism.

PROOF. Clearly (L', ..., L") is fiber preserving, fiberwise linear and bijec-
tive. Fori = 1,...,n, denote by E}, (resp., by Eé) the typical fiber of E’ (resp.,
of EY). Let s1, 51, ..., s, 5", be smooth local sections respectively of the prin-
cipal bundles of frames FR j1 (EY), FREOI (El), -..» FRgp (E™), FRg» (E™), all
defined in the same open subset U of M. Set:

3:50(51,...,571), 5230(513---7§n)7

so that s is a smooth local section of FRz g1 pon) (J(E',...,E™)) and 5is a

. —1 —=n .
smooth local section of FRﬁ(E},---Ey) (E(E soe o B )) Fori=1,...,n,let

L' : U — Lin(E}, Ey)
denote the representation of L’ with respect to s’ and 5 (see Subsection [1.5.2));
since each L is a morphism of vector bundles, the maps L’ are smooth. Since
each L' is a vector bundle isomorphism, the map Li actually takes values in the
set Iso(Eé,EOZ) of linear isomorphisms from E} to E,. It is easy to see that the

representation of L with respect to s and s is equal to the composition of the map
(L',..., L") with the map:

Iso(EL, Eg) x -+ x Iso(ER, B

E
Iso(§(EL,..., ED), §(Ey,..., E))

Such map is smooth (see Exercise [[.66) and hence the representation of L with
respect to s and s is smooth. This concludes the proof. ([l

EXAMPLE 1.6.17. Letn > 1 be fixed and let § : Lec" — Lec be a smooth
functor. Let E1, ..., E™ be vector bundles over the differentiable manifold M with
typical fibers E&, ..., B, respectively. Let st ..., s be smooth local sections of
the principal bundles FR 1 (EY),...,FR gy (E™) respectively, defined in an open
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subset U of M. If L' = §' : U x E§ — E'|yy denotes the smooth local trivialization
corresponding to s* then L’ is a vector bundle isomorphism and:

S(L... L") =3,
where s = F o (s!,...,s"): U — FRE(E(%?._”ESL)(&(EI, .., EM).
Let § : Yec" — Yec be a smooth functor. Given vector bundles E',...,E"

over a differentiable manifold M and a smooth map f : M’ — M defined in a
differentiable manifold M’ then there exists an obvious bijective map:

(1.6.13) (B, ... E") — F(f*E',... . f*E™).
We have the following:

PROPOSITION 1.6.18. Letn > 1 be fixed and let § : Lec" — Vec be a smooth
functor. Given vector bundles E*, ..., E" over a differentiable manifold M and a
smooth map f : M' — M defined in a differentiable manifold M’ then the map
(1.6.13)) is an isomorphism of vector bundles.

PROOF. The map (1.6.13) induces a map:
FRyp .oy (fS(EY ... E"))
(1.6.14) l
FRy(g,...mm) BB .., fTE™))

as in the statement of Lemma [I.5.18} the map (1.6.14) is fiber preserving and its
restriction to each fiber is a morphism of principal spaces whose subjacent group
homomorphism is the identity. We have to show that (I.6.14)) is an isomorphism
of principal bundles; in fact, by the result of Exercise [I.46] it suffices to show that
(1.6.14) is a morphism of principal bundles. Recall from Subsection[I.5.3]that:

FRE(E%,...,ESL)(]C*E(EIP'-aEn)) = ["FRyg; Eg)(ﬁ(El,...,E”)).

02

By considering the pull-back by f of the morphism of principal bundles
(recall Example [I.3.23)) we obtain a morphism of principal bundles:

f*(FRg (EY) x--- % FRpp (E™))

o

FFRygs,..mp) (B(EY ..., E™))

1
0

Using the isomorphism of principal bundles described in Lemma([I.3.29|we identify
the principal bundles:

(1.6.15) f (FREé(El) - x FRgp (E™))
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and:
(1.6.16) (f*FRp1(E")) x---* (f*FRgy (E"))
=FRpi (f*E') x---xFRyp (f*E").

We have a commutative diagram:
(1.6.17)

FRy (f*E") %+ x FRyp (f*E™)
X
s FRzm1 . pn (g(f*El,...,f*E”))
e S(Eg s Eq)

FRyy,..mp) (f*S(ES ..., E))

To conclude that (I.6.14)) is a morphism of principal bundles, simply apply Corol-
lary [1.3.12]to such commutative diagram. O

1.6.1. Smooth natural transformations.

DEFINITION 1.6.19. Letn > 1 be fixed and let §§, & be smooth functors from
Yec" to Yec. By a smooth natural transformation from § to & we mean a rule O
that associates to each object (Vi, ..., V},) of Lec™ an open subset Dom (N, v;,)
of §(V1,...,V},) and a smooth map:

mvl7._.7vn : DOm(th__.7Vn) — Q(Vl, ey Vn)

in such a way that given objects (Vi,...,V,), (Wy,...,W,,) of Lec" and a mor-
phism (71, ...,T;) from (Vi,...,V,) to (Wy,..., W,) then:

(@ F(T1, ..., Tn)(Dom(Ny;, ;) = Dom(Nw, _w;,);
(b) the following diagram is commutative:

Dom(Mvy, ... v;,) S(V1,..., Vo)
S(Tl,...,Tn)l lﬁ(Th---an)
Dom(Nw, ...w,,) A S(Wi,...,W,)

Lo Wn

A smooth natural transformation 91 from § to & is said to be linear if for every
object (V1,...,V,,) of Yec", we have:

Dom(Nyy,..v;,) = F(V1,..., Vi)
and the map Ny, v, : §(V1,..., V) — &(V1,...,V,) is linear.

EXAMPLE 1.6.20. Consider the smooth functors 3§, B0 = 1,2, from %2 to
Yec defined by:

SV, Vo) =Vi@ Ve, &' (V,Vo)=V;, i=1,2.
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The rule that assigns to each object (V7, V3) of Yec? the map:
%/lyz Vi@ Va3 (vi,v2) — v €V,
is a linear smooth natural transformation from § to &= 1,2.

EXAMPLE 1.6.21. If §, &' are as in Example [1.6.20|then the rules that assign
to each object (V1, V2) of Yec? the maps:

M1yt Vi D v— (v,0) € V4 @ Vs,
‘3‘(%/17‘/2:‘/2 Svi— (0,v) € Vi @& Vs,

are linear smooth natural transformations from & to § and from &2 to §, respec-
tively.

EXAMPLE 1.6.22. Consider the smooth functors §, & from Yec? to Vec de-
fined by:

&(Vla ‘/2) = Lin(Vla VY2)7 Q(‘/h VQ) = Lln(VYQ*7 Vl*)
The rule that assigns to each object (7, V3) of PYec? the map:
Ny, v, - Lin(Vy, Vo) o T +—— T* € Lin(V5', V{")

is a linear smooth natural transformation from § to &.

EXAMPLE 1.6.23. Consider the smooth functors §, & from Yec? to Yec de-
fined by:

§(V1, V2, V3) = Lin(V2, V3) ® Lin(V1, V2),
&(V1, V2, V3) = Lin(V1, V3).
The rule that assigns to each object (V1, Va, V3) of Vec? the map:
Ny, ve,vs - Lin(Va, Va) @ Lin(Vy, Vo) 2 (T,T") — T o T" € Lin(V4, Va)
is a smooth natural transformation from § to &.

EXAMPLE 1.6.24. Let & > 1 be fixed and consider the smooth functors §, &
from %]fﬂ to Yec defined by:

E(Vb .. .,Vk+1) = Lin(Vl, .. .,Vk;Vk+1) eVia--- Vg,
@(‘/17 . '7Vk2+1) = Vk-‘rl'

The rule that assigns to each object (V1, ..., Vii1) of Yeck ! the map Ny,
defined by:

V41

Lin(Vi,...,VisVier1) @V1 @ -+ @ Vi — Vs
(B’Ul""avk) ’—>B(U1,...,’Uk)

is a smooth natural transformation from § to &.
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EXAMPLE 1.6.25. Let k > 1 be fixed and consider the smooth functors § from
Vec" 2 to Vec defined by:

SVi, ., Viyo) = Lin(Vig1, Vigo) © Lin(Va, ..o, Vi Vg,
S(Vi, ..., Viro) = Lin(Vi, ..., Vi; Viega).
The rule that assigns to each object (V1, . .., Viia) of Yec**? the map Ny,
defined by:
Lin(Viy1, Vir2) © Lin(Va, ..o Vis Vierr) — Lin(Va, ..o, Vi Vigo)
(L,B)— Lo B

is a smooth natural transformation from § to &.

Vita

EXAMPLE 1.6.26. Consider the smooth functors §, & from Lec? to Vec de-
fined by: B
§(V1,V2) = Lin(V1,V2),  &(V1,V2) = Lin(Va, V1).
Given real vector spaces Vi, Vi, we denote by Iso(V1, V2) the (possibly empty)
subset of Lin(V1, V2) consisting of linear isomorphisms. The rule that assigns to

each object (7, V3) of PYec? the map:
Nyy1, @ Is0(Vi, Vo) 3 T +— T71 € Lin(Va, Vi)
is a smooth natural transformation from § to &.

EXAMPLE 1.6.27. Consider the smooth functors §, & from Uec to Lec defined
by:
F(V)=Lin(V), &(V)=R.
The rule that assigns to each object V' of Lec the map:
Ny :Lin(V)>T — det(T) € R
is a smooth natural transformation from § to &.

Given smooth functors §, ® from Uec" to Yec, a smooth natural transforma-

tion N from F to & and vector bundles E', ..., E™ over a differentiable manifold
M then 91 induces a map:

(1.6.18) Npr g Dom(Np1 pn) — S(EL, ..., E™),

where:

Dom(Np1  pn) = | Dom(Npy . pe) C F(EL,...,E").
xeM
The map Mg pr is defined by the requirement that for each = € M, its restric-
tion to Dom(MNg1 . gn)isequal to Np1  pn.

PROPOSITION 1.6.28. Let n > 1 be fixed. Given smooth functors §, & from
Lec" to Vec, a smooth natural transformation N from § to & and vector bun-
dles E', ..., E™ over a differentiable manifold M then Dom(Np1  gn) is an
open subset of the total space of the vector bundle ﬁ(El, ..., E™) and the map
Np1  pn is smooth. In particular, if N is linear then N1 pn is a vector bundle
morphism.
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PROOF. Denote by Ej the typical fiber of E%, i = 1,...,n. The naturality of
Otimplies that the open subset Dom (g pn ) of the vector space § (Ed, ..., E})
is invariant under the representation (1.6.7) so that, by Lemma [1.4.11} the fiber
product:

(1.6.19) (FR g (E") %+« FREz (E™)) x Dom(Npg: . pn)
is an open submanifold of:

(FRpi (E') - --x FRgp (E")) x §(Ey, .- -, Eg).
It follows easily from the naturality of 91 that the vector bundle isomorphism (1.6.8))
carries (1.6.19) to Dom(M g1 pn), so Dom(Mp1  gn) is indeed an open subset
of F(E',..., E™). The naturality of 0N also implies that the diagram:

Idp xM
PX Eé ,,,,, Ep

P x Dom(Ng . ) Px&(E,...,Ep)
(1.6.20) Cgiu mlck‘i
Dom(Np1, . pn) G(EY,...,E")

commutes, where P = FRp (BY) % -+ % FRpn(E™). The fact that the map
Np1  pn is smooth now follows from the fact that the map Idp x ‘ﬁEg,...,Eg; is

smooth (Lemma[T.4.TT).

EXAMPLE 1.6.29. Let E', E? be vector bundles over a differentiable manifold
M and consider the Whitney sum E' @ E?. Applying Proposition to the
linear smooth natural transformations described in Examples[1.6.20|and [T.6.21] we
conclude that the projections pr; : E' @ E? — E° and the inclusions ¢; : B! —
E' @ E?, i = 1,2, are vector bundle morphisms. This implies the following
property: if € is a section of E' @ E? and ¢! = pr; o€, i = 1,2, are the coordinates
of e then € is smooth if and only if ¢! and € are smooth. Namely, if € is smooth then
obviously €' and €? are smooth, because the projections are smooth; conversely, if
¢! and €2 are smooth then € = 11 o €' + 13 0 €2. See Exercises and for
more basic results concerning Whitney sums.

REMARK 1.6.30. Let 7 : E — M be a vector bundle and E!, E? be vector
subbundles of E such that E, = El @ E2, for all x € M; denote by j; : B! — E,
i = 1,2, the inclusion maps. Consider the Whitney sum E' @ E? and denote by
1+ B — E' @ E?, i = 1,2, the inclusion maps. By the result of Exercise [1.70]
there exists a unique vector bundle morphismj : E' @ E? — E such thatjou; = j;,
1 = 1,2. Clearly j is a vector bundle isomorphism. We will use the isomorphism j
to identify the vector bundle E with the Whitney sum E' @ E?. Thus, if E', E? are
vector subbundles of a vector bundle E such that E, = E} @ E2, forall x € M,
we will write E = E' & E?.

EXAMPLE 1.6.31. Let E*, ..., E*, F be vector bundles over a‘differentiable
manifold M, B be a smooth section of Lin(E',...,E*; F) and € be a smooth
section of E*, ¢ = 1,..., k. Applying Proposition [1.6.28| to the smooth natural
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transformation of Example we obtain that the section B(e!,..., ") of F
defined by:

B}, ..., ") (z) = By ('(2),... ,ek(:v)), x €M,
is smooth. Namely, the map:

Ny pgen tLin(E', .. EM EFYeFE' .. .0 BF — EF!
is smooth and:
B(e', ..., e = Npr . grpo (B, e, ).

Recall also that (B, ¢!, ..., €¥) is smooth (Example [1.6.29). Thus, every smooth
section B of Lin(E", ..., E¥; F) defines a C*° (M )-multilinear map:
T(EY) - - xT(E*) 3 (¢,...,é") — B(', ..., ) e T(F).

The result of Exercises and says that, conversely, every C°°(M )-mul-
tilinear map from I'(E') x --- x T'(E¥) to T'(F) is defined by a unique smooth
section B of Lin(El, ..., E" F). In view of this correspondence we will be al-
lowed to identify smooth sections of Lin(E",..., E*; F') with the corresponding
C°°(M)-multilinear maps.

EXAMPLE 1.6.32. Let EL, ..., E¥, F, F’ be vector bundles over a differen-
tiable manifold M, B be a section of Lin(E',...,E¥; F)and L : F — F’ be
a vector bundle morphism. Recall from Example [1.6.12] that we identify L with
the smooth section = +— L, of Lin(F, F’). We will denote (with some abuse of
notation) by L o B the section of Lin(E", ..., E*; F') defined by:

(Lo B)(z) =L, o B(x),

for all x € M. We claim that if B is smooth then also L o B is smooth. Namely,
by Example|1.6.29} (L, B) is a smooth section of the Whitney sum:

Lin(F, F') ® Lin(EY, ..., E* F).

If O is the smooth natural transformation defined in Example then:
LoB=Ngm __ prpme(L,B),

and therefore L o B is smooth by Proposition[1.6.28]

EXAMPLE 1.6.33. Given real finite-dimensional vector spaces Vi, ..., Vi,
Vit1s ---» Vierp, W then we have a linear isomorphism:
Lin(Vi,..., Vs Lin(Vig1, -« ., Viaps W) — Lin(Va, ..., Vg s W)
(1.6.21) B+—— B
defined by:
B(v1, ..., Uy U1y - - - Vktp) = B(v1, ..., 0g) - (Vp1s oo Vkp) € W,

forall vy € Vi, ..., Vkyp € Viyp. The linear isomorphism (1.6.21)) defines a linear
smooth natural transformation between smooth functors and therefore, given vector
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bundles E', ..., E**P_ F over a differentiable manifold M, as an application of
Proposition|1.6.28| we get an isomorphism of vector bundles:

Lin(E',..., E% Lin(E", ..., E¥7; F)) — Lin(E', ..., E"7; F).
We will henceforth identify the vector bundles:
Lin(E',..., B Lin(E*", .. EFP F)), Lin(E',...,E"7;F)

using such isomorphism.

1.7. The group of left translations of the fiber

LetII : P — M be a G-principal bundle. For each point z € M, the fiber
P, is a principal space and thus we may consider the group Left(P,) of all left
translations of P, (recall Definition|1.2.10). For each p € P,, we have an isomor-
phism 7, : G — Left(P;) (recall (I.2.3)) and there exists a unique differential
structure on Left(P,) that makes 7, into a smooth diffeomorphism; the commu-
tativity of diagram (I.2.4)) shows that the differential structure on Left(P,) does
not depend on the choice of p € P,. Endowed with such differential structure,
the group Left(P,) is a Lie group and the map Z, is a Lie group isomorphism, for
all p € P,. We know that the left action of Left(P,) on P, is free and transitive
(recall Lemma|[[.2.12)). We claim that it is smooth. Namely, choose any p € P,; if
we identify Left(P,) with G via Z,, and P, with G via the smooth diffeomorphism
[p then the left action of Left(P,) on P, is identified with the action of G on itself
by left-translations. More explicitly, the following diagram commutes:

action

Left(P,) x P, —*<% o p,

IpxﬁpT: ﬁTﬁp
G

Gx@G

multiplication

Since the vertical arrows of the diagram are smooth diffeomorphisms and the bot-
tom arrow of the diagram is smooth, it follows that the top arrow of the diagram is
also smooth.

Let us denote by left(P,) the Lie algebra of the Lie group Left(P,). For each
p € Py, the differential of the Lie group isomorphism Z,, at the identity gives us a
Lie algebra isomorphism Ad,,; more explicitly, we set:

Ad, =dZ,(1) : g — left(Py),
where g denotes the Lie algebra of G. By differentiating the commutative diagram

(I.2.4) we obtain:

9 __Ad,

~

(1.7.1) Ad, s (eft(P,)

K

where p,p’ € P, and g = p~!p’ is the element of G that carries p to p'.

g
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ExXAMPLE 1.7.1. Let m : E — M be a vector bundle with typical fiber
Ey and consider its GL(Ep)-principal bundle of frames FRg,(E). Let x € M
be fixed. In Example we made the convention of identifying the group
Left (FRE, (E,)) of left translations of FR, (E,) with the general linear group
GL(E,) of E, through the isomorphism GL(E;,) 3 T + T € Left(FRg, (E,)).
Under such identification, the canonical left action of the group Left (FR Eo (Ez))
on FR g, (E;) is identified with the action of GL(E;) on FRg, (E;) given by com-
position of linear isomorphisms. Moreover, for every p € FRg,(E;) the isomor-
phism Z,, is given by Z,(g) = po g o p~ ! (recall (T.2.7)) and thus the differential
structure of GL(E,,) that makes Z,, into a smooth diffeomorphism is the standard
one. The Lie algebra [eft(FREO (Ex)) is therefore identified with the Lie algebra
gl(E;) of GL(E,); differentiating we see that, for every p € FRg, (E;),
the Lie algebra isomorphism Ad,, is given by:

(1.7.2) Ady(X)=poXop ' e gl(E,),
for all X € gl(Ep).

REMARK 1.7.2. Let H be a Lie subgroup of G with Lie algebra h C g and
let Q C P be an H-principal subbundle of P. For each x € M, the fiber @), is
a principal subspace of the fiber P, with structural group H C G. Recall that we
have made the convention of identifying the group Left(Q,) with the subgroup of
Left(P,) consisting of those left translations ¢ : P, — P, such that t(Q;) C Qx
(see Lemmal(l.2.19). The commutativity of diagram implies that Left(Q)
is a Lie subgroup of Left(P,) and therefore we identify the Lie algebra left((Q;)
with a Lie subalgebra of [left(P,). For each p € @,, we have Lie group iso-
morphisms If : G — Left(P;) and Zg) : H — Left(Q) (see Remark
whose differentials at the identity are respectively the Lie algebra isomorphisms
Adl g — [eft(P;) and AdY : b — [eft(Q,). By differentiating (T:2:12) we
obtain a commutative diagram:

kﬁ(@z) inclusion [fo(Pr)
(1.7.3) Ad;‘?TE ETAdf
b g

inclusion

that shows that Adlf;2 is just the restriction of Ad:f to b.

1.8. G-structures on vector bundles

Let m : E — M be a vector bundle with typical fiber Fy and denote by
FRE,(E) the GL(E)y)-principal bundle of frames of E.

DEFINITION 1.8.1. Given a Lie subgroup G of GL(E)) then by a G-structure
on £ we mean a G-principal subbundle P of FRg, (E). A local Ep-frame s : U —
FRE,(E) of E with s(U) C P is said to be compatible with the G-structure P.
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Observe that if P is a G-structure on E then for each x € M, P, is a G-
structure on the vector space E, (recall Definition[I.1.7). We may therefore think
intuitively of a G-structure P on a vector bundle F as a family (P,),cps of G-
structures on the fibers E, of E that “varies smoothly” with x € M.

Let P be a G-structure on a vector bundle 7 : £ — M with typical fiber
Ey. Recall from Example that for each x € M we identify the Lie group
Left (FRE, (E,)) of left translations of FR, (E,) with the general linear group
GL(E;). We will denote by G, the Lie group Left(P,) of left translations of the
fiber P, and by g, the Lie algebra left(P,) of G,. Recall from Remark that
we identify G, with a Lie subgroup of Left (FRg, (E;)) = GL(E,) and g, with
a Lie subalgebra of left(FRg, (E;)) = gl(E,). Also recall from Example
that the Lie group G, is identified with the group Isog(FE,) of all G-structure
preserving endomorphisms 7" : £, — E, of E,. It should be noticed that the two
identifications we have made regarding G, are compatible (see (I.2.11)).

DEFINITION 1.8.2. Let E, F' be vector bundles over the same differentiable
manifold M, with the same typical fiber Ey. Let G be a Lie subgroup of GL(E))
and assume that ' and F' are endowed with G-structures P and @), respectively. A
morphism of vector bundles L : F — F is said to be G-structure preserving if for
every x € M, the linear map L, : E, — F is G-structure preserving.

Clearly, every G-structure preserving morphism of vector bundles is in fact an
isomorphism of vector bundles. Moreover, an isomorphism of vector bundles L :
E — F is G-structure preserving if and only if L, (P) C @ (recall Lemmal|l.5.18).

EXAMPLE 1.8.3. Let 7w : E — M be a vector bundle with typical fiber Ey, G
be a Lie subgroup of GL(Ey) and P C FRg,(E) be a G-structure on E. Given
a differentiable manifold M’ and a smooth map f : M’ — M, then the pull-back
[*P is a G-structure on the vector bundle f*E (recall Example[1.3.23).

EXAMPLE 1.8.4. Let 7w : E — M be a vector bundle with typical fiber Ey. By
a semi-Riemannian structure on E we mean a smooth section g of Lin$ (E, R) such
that for all x € M, g, : £, x E, — R is an indefinite inner product on F,. If g is
a semi-Riemannian structure on E and if the index n_(g,) of g, is independent of
x € M then we call n_(g;) the index of the semi-Riemannian structure g and we
write n_(g) = n_(gy), forall z € M. A semi-Riemannian structure of index zero
is also called a Riemannian structure. If g is a semi-Riemannian structure on F of
index r and if an indefinite inner product (-, -)o of index r is fixed on the typical
fiber Ey then the set:

FRy, (E) = | FRY,(E.)
xeM

of all orthonormal frames of F is a principal subbundle of FR g, (E) with structural
group O(Ep). Thus, FR%, (E) is an O(Ep)-structure on the vector bundle £.

EXAMPLE 1.8.5. Let m : E — M be a vector bundle with typical fiber E
and F be a vector subbundle of E. If Fj is a subspace of Ej such that dim(Fp) =
dim(F;) forall z € M then the set FR g, (E; Fo, F') of all Ey-frames of E adapted
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to (Fp, F) is a principal subbundle of FR g, (F) with structural group GL(Ey; Fp).
Thus FRg, (E; Fo, F') is a GL(Ey; Fy)-structure on the vector bundle E. If g is a
semi-Riemannian structure on E and if an indefinite inner product on Ej is fixed
then the set:

FRY, (E; Fo, F) & FRy, (E; Fo, F) N FRY, (E)
is an O(Ep; Fp)-structure on the vector bundle F if FR;, (Ey; Fo, Fr) # () for all
r e M.

EXAMPLE 1.8.6. Let7 : E — M be a vector bundle with typical fiber Ey and
e € T'(E) be a smooth section of E with ¢(z) # 0, forall z € M. If ey € Episa
nonzero vector then the set:

FREO(E; 60,6) déf U FREO (Ex;eo,e(x))

zeM

of all Ey-frames of E that are adapted to (e, €) is a GL(Ep; ep)-structure on the
vector bundle E. If g is a semi-Riemannian structure on £ and if an indefinite
inner product on Ej is fixed then the set:

def
FRY, (E;eo,€) = FRE,(E; €0, €) NFRY, (E)

is an O(FEp; eg)-structure on the vector bundle E if FRY;, (Em; €o, e(ac)) # () for all
x e M.

EXAMPLE 1.8.7. Let m : E — M be a vector bundle with typical fiber Ej.
By an almost complex structure on E we mean a smooth section J of Lin(E) such
that .J, is a complex structure on E,, for all z € M. If Jy is a complex structure
on Fj then the set:

FRS, (B) € | FRE, (E.)
zeM
of all complex frames of E is a GL(Ey, Jp)-structure on the vector bundle E. If
g is a semi-Riemannian structure on E of index , (-,)f, is an indefinite inner
product on Ey of index r, Jy is anti-symmetric with respect to (-, -) g, and J; is
anti-symmetric with respect to g, for all x € M then:

u def o c
FR}, (E) = FRY, (E) NFRS, (B)

is an U(E)p)-structure on E.

REMARK 1.8.8. The reader might find odd the use of the name “almost com-
plex” in Example This choice comes from the fact that, in the literature,
an almost complex structure in a manifold M is a smooth section J of Lin(7T'M)
such that J, is a complex structure in T, M, for all x € M. By a complex struc-
ture on M it is meant an almost complex structure J on M which is integrable in
the sense that M can be covered with local charts ¢ : U — U C R2" such that
dpy o Jp = Jy o dp,, for all z € U, where Jy denotes the canonical complex
structure of R?".
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DEFINITION 1.8.9. Let M be an n-dimensional differentiable manifold and let
G be a Lie subgroup of GL(R™). By a G-structure on M we mean a G-structure
P C FR(T'M) on the tangent bundle 7'M

DEFINITION 1.8.10. Let G be a Lie subgroup of GL(R") and M’, M be
n-dimensional differentiable manifolds endowed with G-structures P’ and P, re-
spectively. A smooth map f : M’ — M is said to be G-structure preserving
if the vector bundle morphism (Z" : TM' — f*TM (recall Example is
G-structure preserving, where f*T'M is endowed with the G-structure f*P.

Clearly, if a smooth map f : M’ — M is G-structure preserving then f is a
local diffeomorphism. Moreover, given a smooth local diffeomorphism f : M’ —
M, if we define a map (df). : FR(TM') — FR(T'M) by:

(1.8.1) (df)s : FR(TM') 3 p+— df op € FR(TM),

then f is G-structure preserving if and only if (df).(P’) C P.

Clearly the composition of G-structure preserving maps is a G-structure pre-
serving map and if f is a G-structure preserving diffeomorphism then also f~! is
a G-structure preserving diffeomorphism.

DEFINITION 1.8.11. Let M be a differentiable manifold. By a Riemannian
metric (resp., semi-Riemannian metric) on M we mean a Riemannian structure
(resp., semi-Riemannian structure) g on 7'M ; the pair (M, g) is called a Riemann-
ian manifold (resp., semi-Riemannian manifold).

Exercises
G-structures on sets.

EXERCISE 1.1. Let G be a group and assume that we are given a left (resp.,
right) action of GG on a set A. A subset B of A is called G-invariant if g - a (resp.,
a-g)isin B for all ¢ € B. Show that a subset B of A is G-invariant if and only if
it is equal to a union of G-orbits.

EXERCISE 1.2. Let G be a group and assume that we are given a (left or right)
action of G on a set A. If G is a subgroup of G then for every G-orbit B C A there
exists exactly one G-orbit B C A containing B.

EXERCISE 1.3. Let G be a group and assume that we are given a left (resp.,
right) action of G on a nonempty set A. Assume that the action is free and transitive.
Let G be a subgroup of G. For any fixed a € A, show that the bijective map
Be : G — A induces a bijection between the set of right (resp., left) cosets of G
in G and the set of orbits of the action of G on A. Conclude that if Xy and X
are sets having the same cardinality and if G is a subgroup of Bij(Xj) then the
(possibly infinite) number of possible G-structures on X is equal to the index of G
in Bij(Xy).

EXERCISE 1.4. Let Ry be a ring and let G be the subgroup of Bij(Ry) con-
sisting of all ring automorphisms of Ry. Show that:
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e given a ring R isomorphic to Ry then the set of all ring isomorphisms
p: Ry — R is a G-structure on R modeled upon Ry;

e if a G-structure P is given on a set R then there exists a unique ring
structure on R such that P is the set of all ring isomorphisms from R to
R.

Repeat the exercise above replacing the word “ring” by “group”, “field”, “topolog-
ical space” or any other standard mathematical structure.

EXERCISE 1.5. Let X be a set and G be a subgroup of Bij(X(). Show that:

e the composite of G-structure preserving maps is a G-structure preserving
map;

e any (-structure preserving map is bijective and its inverse is also a G-
structure preserving map.

Conclude that sets endowed with G-structures and G-structure preserving maps
constitute a category in which all morphisms are isomorphisms and in which all
objects are isomorphic.

EXERCISE 1.6. Let Ry be a ring and let G be the subgroup of Bij(R) con-
sisting of all ring automorphisms of Ry. Given a ring R isomorphic to Ry, let us
regard R as a set endowed with the G-structure consisting of all ring isomorphisms
p: Ry — R (see Exercise[I.4)). Show that:

e givenrings R, S then amap f : R — S is G-structure preserving if and
only if f is a ring isomorphism;

e the category of rings isomorphic to Ry and ring isomorphisms is isomor-
phic to the category of sets endowed with G-structure and G-structure
preserving maps.

Repeat the exercise above replacing the word “ring” by “group”, “field”, “topolog-
ical space” or any other standard mathematical structure.

EXERCISE 1.7. Let € be a category in which all morphisms are isomorphisms
and in which all objects are isomorphi Let X, be a fixed object of € and let §
be a functor from € to the category of sets and maps. Let G = Iso(Xj) denote
the group of isomorphisms of the object Xy, Xy = F(Ap) be the set corresponding
to the object Xy and G denote the image of G under the group homomorphism
T : Iso(Xp) — Bij(Xp). For every object X of €, denote by P~ the image of the
map § : Iso(Xp, X) — Bij(Xo, F(X)).

e Show that P? is a Ge¢-structure on the set F(X), for every object X' of
the category €.

o If f : X — Y is a morphism of &, show that §(f) : §(X) — F(V) isa
Glg-structure preserving map.

e For every object X' of €, let F*(X) denote the set F(X) endowed with
the G o¢-structure P and for each morphism § : X — ) of € let F*(f)

For instance, one can start with an arbitrary category and then consider the subcategory whose
objects are an isomorphism class of objects of the original category and whose morphisms are the
morphisms of the original category that are isomorphisms.
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be the same as §(f). Show that §* is a functor from € to the category of
sets endowed with Geg-structure and G¢-structure preserving maps.

e Assume that the functor § has the following additional property: given
an object X' of €, a set Y and a bijection f : F(X) — Y, there exists
a unique pair (), f), such that ) is an object of &€, f : X — Y isa
morphism of &, F(¥) = Y and §(f) = f. Under this assumption, show
that the functor §* is an isomorphism of categories.

o Obtain the results of Exercises [1.4|and as consequences of the previ-
ous items by considering appropriate categories € and by taking § to be
a forgetful functor.

Principal spaces.

EXERCISE 1.8. Let € be an arbitrary category and let Aj be a fixed object of
€. Show that, for any object X" of € that is isomorphic to X, the set Iso( Xy, X') of
all isomorphisms from Xy to X is a principal space whose structural group is the
group Iso(Xy) of all isomorphisms of the object Xy (the right action of Iso(Xp) on
Iso(AXp, X) is given by composition of morphisms).

EXERCISE 1.9. Given principal spaces P, (), R with the same structural group
G and left translations ¢t : P — @, s : Q — R, show that the composite s o t is
also a left translation. Show also that every left translation ¢ : P — () is bijective
and that its inverse ¢t ! : Q — P is again a left translation.

EXERCISE 1.10. Let G be a group. There is a category whose objects are
principal spaces with structural group G and whose morphisms are left translations.
Show that in this category every morphism is an isomorphism and all objects are
isomorphic.

EXERCISE 1.11 (the functor Iso(Xp, -)). Let € be a category as in the statement
of Exercise let Xy be a fixed object of €. Recall from Exercise that for
every object X' of &, the set Iso(X(, X) is a principal space with structural group
Iso(Xp). Given objects X', Y of € and a morphism f from X" to ), show that the
map:

fi : Iso(Xp, X) — Iso(Xp,))

given by composition with | on the left is a left translation. Moreover, show that
the rule:

X — Iso(Xp, X), fr—— f«

defines a functor from the category € to the category of principal spaces with struc-
tural group Iso(Xp) and left translations.

EXERCISE 1.12. Prove that the functor Iso(Xj, -) defined in Exercise is
both full and faithful, i.e., given objects X, ) of &, show that the map:

Iso(X,Y) 3 f — f. € Left(Iso(Xp, X),Iso(Xp, V))



EXERCISES 79

isa bijectio

EXERCISE 1.13. Let P be a principal space with structural group G. Recall
from Example that Left(G, P) = {8, : p € P} and from Example
that Left(G) = {Ly : g € G}. Show that Left(G, P) C Bij(G, P) is a Left(G)-
structure on the set P. Moreover, given a Left(G)-structure P on a set P, show
that there exists a unique right action of GG on P that makes P into a principal space
with structural group G such that Left(G, P) = P. This means that a Left(G)-

structure on a set P is the same as the structure of a principal space with structural
group G on P (compare with Exercise|l.4).

EXERCISE 1.14. Let P, @) be principal spaces with the same structural group
G and let us regard P, Q as sets endowed with the Left(G)-structures Left(G, P)
and Left(G, Q) respectively (see Exercise [I.13). Show thatamap ¢ : P — Q
is Left(G)-structure preserving if and only if ¢ is a left translation. Conclude that
the category of principal spaces with structural group G and left translations is
isomorphic to the category of sets endowed with Left(G)-structure and Left(G)-
structure preserving maps (compare with Exercise[1.6).

EXERCISE 1.15. Let V, W be n-dimensional real vector spaces and con-
sider the principal spaces FR (V') and FR (W) with structural group GL(RR™). Let
T : V — W be a linear isomorphism and consider the corresponding left trans-
lation 7% : FR(V) — FR(W). Given p € FR(V), ¢ € FR(W) then, as in
Example the left translation 7T} corresponds to an element g of GL(RR"),
which we can identify with an n x n invertible real matrix. Show that g is the
matrix representation of the linear map 7" : V' — W with respect to the bases p
and q.

EXERCISE 1.16. Let P, , R be principal spaces whose structural groups are
G, H and K respectively. Let ¢ : P — @, ¥ : Q — R be morphisms of principal
spaces with subjacent group homomorphisms ¢g : G — H and )9 : H — K
respectively. Show that ¢ o ¢ : P — R is a morphism of principal spaces with
subjacent group homomorphism g o ¢y : G — K.

EXERCISE 1.17. Let P, (Q be principal spaces with structural groups &G and H
respectively and let ¢ : P — () be a morphism of principal spaces with subjacent
group homomorphism ¢ : G — H. Given p € P and setting ¢ = ¢(p), show that
the following diagram commutes:

¢

*>Q

~

(12) Bp = | Bq

—
1R

G———

%o

8Since the category of principal spaces with structural group Iso(X,) has only one isomorphism
class of objects, it follows that the functor Iso(Xp, -) is a category equivalence. However, there is no
natural choice of a category equivalence going in the opposite direction.
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Conclude that ¢ is injective (resp., surjective) if and only if ¢g is injective (resp.,
surjective).

EXERCISE 1.18. Let P, (Q be principal spaces with structural groups G and H
respectively. Let ¢ : P — () be an isomorphism of principal spaces with subjacent
group homomorphism ¢ : G — H. Show that ¢~! : Q — P is an isomorphism
of principal spaces with subjacent group homomorphism ¢, L. H -G

EXERCISE 1.19. Let P, () be principal spaces with structural groups G and H
respectively and let ¢ : P — () be a morphism of principal spaces with subjacent
group homomorphism ¢y : G — H. Given principal subspaces P’ C P, Q' C Q
with structural groups G’ C G, H' C H respectively, show that:

e ¢(P’) is a principal subspace of @ and its structural group is ¢o(G’);
e ¢~1(Q) is a principal subspace of P and its structural group is ¢, LH.

EXERCISE 1.20. Let P, () be principal spaces with structural groups G and H
respectively and let ¢g : G — H be a homomorphism. Given p € P, g € (), show
that there exists a unique morphisms of principal spaces ¢ : P — () with subjacent
group homomorphism ¢ such that ¢(p) = q.

EXERCISE 1.21. Let P be a principal space with structural group G and let K
be a normal subgroup of G. Let P/ K denote the quotient set of P consisting of all
K-orbits. Show that:

def
(pK) - (9K) = (p-9)K, peP, g€,
defines a right action of the quotient group GG/ K on the set P/K. Show that this
action makes P/K into a principal space with structural group G/ K and that the
quotient map P — P/K is a morphism of principal spaces whose subjacent group
homomorphism is the quotient map G — G/K. We call P/ K the quotient of the
principal space P by the action of the normal subgroup K of G.

EXERCISE 1.22 (reduction of counter-domain). Let P, Q’, Q be principal
spaces with structural groups GG, H' and H respectively and let ¢ : P — Q,
t : @ — @ be morphisms of principal spaces with subjacent group homomor-
phisms ¢g : G — H and 1o : H — H respectively. Assume that ¢ is injective
and that ¢(P) C ¢(Q'). Show that there exists a unique map ¢' : P — Q' such
that the diagram:

1
(1.3) t

commutes; moreover, show that ¢o(G) C to(H') and that ¢ is a morphism of
principal spaces whose subjacent group homomorphism is the unique map ¢y, for
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which the diagram

il
(1.4) L0

G !
o B

commutes.

EXERCISE 1.23 (passing to the quotient). Let P, Pand Q be principal spaces
with structural groups G, G and H respectively and letq: P — P, ¢ : P — Q be
morphisms of principal spaces with subjacent group homomorphisms qg : G — G

and ¢g : G — H respectively. Assume that qg is surjective and that its kernel is
contained in the kernel of ¢. Show that:

e there exists a unique map ¢ : P — @ for which the following diagram

commutes:
X\

¢

g

(1.5)

K=Y
-

Q

ol

e the map ¢ is a morphism of principal spaces whose subjacent group ho-
momorphism ¢g : G — H is the unique map for which the following
diagram commutes:

G
oo
(1.6) qu \\\\\\\\
G

— H

®o

e set K = Ker(¢g), P = P/K,G = G/K and take q : P — P/K to be
the quotient map. Conclude that ¢ : P/K — ¢(P) is an isomorphism
of principal spaces whose subjacent group homomorphism is the group
isomorphism ¢o : G/K — H.

EXERCISE 1.24. Let G, H be groups, P, () be principal spaces with structural
group G, and P’, Q' be principal spaces with structural group H. Let ¢ : P' — P,
1 : Q' — @ be morphisms of principal spaces with the same subjacent group
homomorphism ¢g : H — G. Show that for every left translation ¢t : P/ — @’
there exists a unique left translation ¢ : P — @ for which the following diagram
commutes:

Pp—t-0Q

Jf

P/?Ql
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We have therefore a map:
(1.7) Left(P',Q") > t — t € Left(P, Q).

Prove the following facts about the map (1.7):

e if ¢ is injective then the map is also injective;

o if ¢ is surjective then the map is also surjective;

e if P=Q, P = Q" and ¢ = 1) then is a group homomorphism from
Left(P’) to Left(P).

EXERCISE 1.25. Let P, P’ be principal spaces with structural groups G and
H respectively. Let ¢ : P’ — P be a morphism of principal spaces with subjacent
group homomorphism ¢y : H — G. In Exercise we have constructed a
group homomorphism Left(P’) 3 t +— ¢ € Left(P). Given p’ € P’ and setting
p = ¢(p') € P, show that the following diagram commutes:

t—t

Left(P") Left(P)
Ty T o = sz
H ™ G

EXERCISE 1.26. Let P, P’ be principal spaces with structural groups G and
G’ respectively; let ¢ : P — P’ be an isomorphism of principal spaces whose
subjacent group homomorphism is ¢g : G — G'.

e Show that the map:
Ty : Left(P) 3t potog ! € Left(P)

is a group isomorphism.
e Given p € P and setting p’ = ¢(p) € P’, show that the following dia-
gram commutes:

Ty
Left(P) Left(P')
(1.8) IPT Tfp/
I
G o0 G

e Let Q C P be a principal subspace; set Q' = ¢(Q), ¢ = ¢lg : Q — Q.
Show that the diagram:

Iy
Left(P)

Left(P")
(1.9) inclusionT Tinclusion
Left(Q) ———— Left(Q’)
Ly

comimutes.
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EXERCISE 1.27. Let P be a principal space with structural group G. Show
that, for any g € G, the map vy, : P — P is an isomorphism of principal spaces
whose subjacent group homomorphismis Z,-1 : G — G.

EXERCISE 1.28. Let € be a category, A, X1, X be isomorphic objects of &
and leti: &} — Ap be an isomorphism. Show that the map:
7 Iso(Xp, X) 2 f— foi € Iso(A), X)
is an isomorphism of principal spaces whose subjacent group homomorphism is

Ifl, where:

T : Tso(Xy) 3 f—iofoi™! € Iso(Ap).

EXERCISE 1.29. Let € be a category, Xy, X7, X be isomorphic objects of
€andleti: &7 — Ay be an isomorphism. Show that the following diagram

commutes (see Exercises and [1.28)):
Left (Iso(Xo, X)) I Left (Iso(&;, X))

Iso(X)

Fiber products.

EXERCISE 1.30. Let P, ) be principal spaces with structural groups G and
H respectively; let ¢ : P — () be a morphism of principal spaces with subjacent
group homomorphism ¢g : G — H. Let N be an H-space with effective group
H C Bij(IV). We regard N also as a G-space by considering the action of G
on N defined by (1.2.20), so that the effective group G¢ of the G-space N is a
subgroup of Hes. The fiber product Q) x gz N is endowed with an H¢-structure and
the fiber product P x ¢ N is endowed with a Ge¢-structure; such Ge¢-structure can
be weakened into an H¢-structure. Show that the induced map qAS : Pxg N —
Q X N is Het-structure preserving.

EXERCISE 1.31 (the functor @ xg N). Let P, () be principal spaces with
the same structural group G and let N be a G-space. Given a left translation
t : P — ( then, since t is a morphism of principal spaces whose subjacent group
homomorphism is the identity (Example [I.2.23)), we have an induced map:

f:PXGN—>Q><GN,
which is G¢-structure preserving (Exercise[1.30). Show that:

(a) therule P — P xg N, t — t defines a functor from the category of prin-
cipal spaces with structural group GG and left translations to the category
of sets endowed with Geg-structures and G¢-structure preserving maps;

(b) the functor @ X N defined in item (a) is full, i.e., given principal spaces
P, ) with structural group G, the map:

(1.10) Left(P, Q) Str— t S ISOGef(P xXa N,Q Xa N)

is surjective;
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(c) if the action of GG on N is effective then the functor e x & N is faithful,
i.e., given principal spaces P, () with structural group G, the map (I1.10)

is injective.
EXERCISE 1.32 (the functor @ X G is naturally isomorphic to the identity).
Let GG be a group and let us regard GG as a G-space by letting G act on itself by left

translations; then G¢f = Left(G). Given a principal space P with structural group
G, show that the map:

(1.11) P>pr—[p 1] € P xgCG

is Left(G)-structure preserving, where P is endowed with the Left(G)-structure
Left(G, P) (recall Exercise [1.13). Show that (I.TT) gives a natural isomorphism
from the identity functor to the functor e X G; more explicitly, given principal
spaces P, () with structural group G and a left translation ¢t : P — (), show that
the diagram:

Co PXGG

z I

@ 9xed

commutes.

EXERCISE 1.33. Let GG be a group and let us regard GG as a G-space by letting
G act on itself on the left by conjugation; then Gt = {Ig g €eqG } is the group
of all inner automorphisms of G, which is a subgroup of Aut(G), the group of all
group automorphisms of G. Let P be a principal space with structural group G.
The fiber product P X G is endowed with a G¢-structure (the reader should be
aware that this fiber product is not the same considered in Exercise [I.32) that can
be weakened to an Aut(G)-structure. We can therefore regard P X G as a group
(recall Exercise[I.4). Show that the map:

(1.12) P xqG>p,g|— Z,(g) € Left(P)

is a well-defined group isomorphism. Show that this isomorphism is natural, i.e.,
given principal spaces P and () with structural group GG and given a left translation
t: P — @ then the following diagram commutes:

(L.12)

P xg@G Left(P)
(1.13) EL th
Qxac G o] Left(Q)

where Z; : Left(P) — Left(Q) is defined by Z;(s) =tosot 1.

EXERCISE 1.34. Generalize the naturality property described by the commu-
tative diagram to the following context: let P, () be principal spaces with
structural groups G and H, respectively. Let ¢ : P — () be a morphism of princi-
pal spaces with subjacent group homomorphism ¢g : G — H. Let us regard G as
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a G-space (resp., H as an H-space) by letting G (resp., H) act on itself on the left
by conjugation. Show that the following map is well-defined:

(1.14) PxaG3[p,g]— [o(p), ¢o(9)] € Q xu H.
Show also that the following diagram commutes:

PxcG Left(P)

@l ‘/tv—nﬁ

Q xXg H Left(Q)

where the map ¢ — ¢ is defined in Exercise

EXERCISE 1.35. Let G be a group and let N and N’ be G-spaces. A map
k : N — N'is called G-equivariant if k(g - n) = g - k(n), for all g € G and all
n € N. For a fixed group G, show that:
e (G-spaces and G-equivariant maps constitute a category;
e if  : N — N’is a bijective G-equivariant map then x~! : N — N is
also G-equivariant.

EXERCISE 1.36 (the functor P x e). Let G be a group, N, N’ be G-spaces
and xk : N — N’ be a G-equivariant map. Consider the induced map:

Idx x:PxgN >|[p,n]— [p,r(n)] € PxgN.

Show that the rule:
N+—— PxgN, rkr—Idxk

defines a functor from the category of G-spaces and G-equivariant maps to the
category of sets and maps.

EXERCISE 1.37 (the functor G X g e is naturally isomorphic to the identity).
Let G be a group and N be a G-space with effective group G¢r. We regard G as
a principal space with structural group G (recall Example [1.2.2)) and the set N to
be endowed with its canonical Gs-structure (recall Example[I.1.5). Show that the
map:

(1.15) Nonr+—[l,n] € Gxg N

is Go¢-structure preserving. Show also that the map (I.13) is natural in the follow-
ing sense: given G-spaces N, N’ and a G-equivariant map s : N — N’ then the
diagram

N L0 GXGN
HJ/ ild%n
N’ G xg N’

commutes.
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EXERCISE 1.38. Let P be a principal space with structural group G and let
N be a G-space. Show that if N is identified with the fiber product G x5 N by
(I.15)) then, for all p € P, the map p : N — P X N is identified with the map

Bp :G xg N — P x¢g N (recall Example1.2.11{and Exercise|1.31).

EXERCISE 1.39. Let € be a category as in the statement of Exercise and
let Xy be a fixed object of €; set G = Iso(Ap). Let § be a functor from € to
the category of sets and maps and set Xg = F(A&p). The functor § induces a
homomorphism from G = Iso(X}) to Bij(X() and therefore we get a left action
of G on X that makes the set X into a (G-space with effective group G¢. Recall
that in Exercisewe have constructed a functor §* from € to the category of sets
endowed with Ges-structures and Go¢-structure preserving maps. Show that:

o for each object X" of € the map:
(1.16) Iso(Xp, X) xa Xo 3 [p,n] — F(p)(n) € F*(X)

is Geg-structure preserving;

e (I.16) defines a natural isomorphism from the composition of the func-
tors Iso(Xp, -) and e x g X to the functor §°, i.e., for every morphism
f: X — Y of &, the following diagram commutes:

Tso(Xp, X) %6 Xo — 22 §5(X)

f:l lﬁ(f)

ISO(X(), y) Xa X()

_—
(T-16) L
e obtain Lemma(1.2.29|as a consequence of the previous items.

EXERCISE 1.40. The goal of this exercise is to prove a naturality property
for the map (1.2.18). Let P, ) be principal spaces with structural groups G, H
respectively and let ¢ : P — (Q be a morphism of principal spaces with subjacent
group homomorphism ¢y : G — H. Let N be an H-space; we regard N as a
G-space by considering the action of G on N defined by g - n = ¢o(g) - n, for all
g € G and all n € N. Consider the induced mapd; :Pxg N — @ xg N and

A~

let (¢)+ : Bij(N, P X N) — Bij(N,Q x g N) be the map given by composition

N

with ¢ on the left. Show that the following diagram commutes:

P-2-qQ
p—p q—q

Bij(N, P x¢ N) B Bij(N,Q x g N)
?)

Principal fiber bundles.
EXERCISE 1.41. Let M be a differentiable manifold, G be a Lie group, P be
asetand let II : P — M be a map. Assume that for each x € M we are given a

right action of GG on the fiber P, that makes it into a principal space with structural
group G. Let A be an atlas of local sections of II. Show that:
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(a) if two local sections s1 : Uy — P, sy : Us — P of Il are compatible
with every local section that belongs to A then s1 and so are compatible
with each other;

(b) the set A ax of all local sections of IT that are compatible with every
local section that belongs to A is the largest atlas of local sections of II
containing A, i.e., Amax is an atlas of local sections of IT containing .4
and A,.x contains every atlas of local sections of II that contains .4;

(c) the set A,,.x define on item (b) is a maximal atlas of local sections of II
in the sense that it is not properly contained in any atlas of local sections
of II.

EXERCISE 1.42. LetIl : P — M be a G-principal bundle. Show that:

de-g(( -g) = dIIL(¢),
forallp e P,( € T,Pandall g € G.

EXERCISE 1.43. Let P, ), R be principal bundles over a differentiable man-
ifold M with structural groups GG, H and K, respectively. Let ¢ : P — @,
¥ : @ — R be morphisms of principal bundles with subjacent Lie group ho-
momorphisms ¢g : G — H and ¢y9 : H — K respectively. Show that the
composition ¥ o ¢ : P — R is a morphism of principal bundles with subjacent Lie
group homomorphism g o ¢g : G — K.

EXERCISE 1.44. Letll : P — M be a G-principal bundle. Show that for every
g € G, the map v, : P — P is an isomorphism of principal bundles whose subja-
cent Lie group homomorphism is Z,-1 : G — G (compare with Exercise[[.27).

EXERCISE 1.45. Let P, @) be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — () be a
fiber-preserving map and let ¢o : G — H be a Lie group homomorphism such
that for every x € M, ¢|p, : P, — @, is a morphism of principal spaces with
subjacent group homomorphism ¢g. Show that if there exists an atlas .A of smooth
sections of P such that ¢ o s is smooth for all s in 4 then ¢ is a morphism of
principal bundles with subjacent Lie group homomorphism ¢g.

EXERCISE 1.46. Let P, (Q be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — () be a
morphism of principal bundles and let ¢g : G — H be the Lie group homomor-
phism subjacent to ¢. Show that:

e (¢ isinjective (resp., surjective) if and only if ¢q is injective (resp., surjec-
tive);

® (¢ is injective (resp., surjective) if and only if ¢ is an immersion (resp., a
submersion);

e ¢ is a map of constant rank (the rank of ¢ is equal to the dimension of M
plus the rank of ¢);

e if ¢ is bijective then ¢ : P — () is a smooth diffeomorphism and the
map ¢! : Q — P is a morphism of principal bundles whose subjacent
Lie group homomorphism is ¢ H -G
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EXERCISE 1.47. Let P, @) be principal bundles over the same differentiable
manifold M with structural groups G and H, respectively. Let ¢ : P — () be
a morphism of principal bundles and let ¢g : G — H be its subjacent Lie group
homomorphism. Given a principal subbundle P’ of P with structural group G’,
show that ¢(P’) is a principal subbundle of ) with structural group ¢o(G").

EXERCISE 1.48. Let IT : P — M be a G-principal bundle and let K be a
closed normal subgroup of G. Let P/K denote the quotient set of P consisting of
all K-orbits. We have a map:

II: P/K > pK +—— II(p) € M

such that for each x € M the fiber (P/K), is equal to the quotient P, /K of
the principal space P, by the action of the normal subgroup K of G; the quotient
P, /K is itself a principal space with structural group G/ K (recall Exercise
and the quotient group G/K is a Lie group. Denote by q : P — P/K the
quotient map. Show that there exists a unique maximal atlas of local sections of
II: P/K — M that makes P/K a (G/K)-principal bundle and the quotient map
g a morphism of principal bundles whose subjacent Lie group homomorphism is
the quotient map G — G /K. We call P/K the quotient of the principal bundle P
by the action of the closed normal subgroup K of G.

EXERCISE 1.49 (reduction of counter-domain). Let P, ()’, @ be principal bun-
dles over a differentiable manifold M with structural groups G, H' and H, respec-
tively. Let¢p : P — @, ¢ : @ — @ be morphisms of principal bundles with
subjacent Lie group homomorphisms ¢y : G — H and vy : H' — H respec-
tively. Assume that ¢ is injective and that ¢(P) C «+(Q’). Show that there exists
a unique map ¢ : P — @’ such that diagram (1.3) commutes; moreover, show
that ¢o(G) C to(H') and that ¢’ is a morphism of principal bundles whose sub-
jacent Lie group homomorphism is the unique map ¢, for which diagram (I.4)
commutes.

EXERCISE 1.50 (passing to the quotient). Let P, P and Q be principal bun-
dles over the same differentiable manifold M with structural groups G, G and H,
respectively. Letq : P — P, ¢ : P — @ be morphisms of principal bundles with
subjacent Lie group homomorphisms qq : G — G and ¢g : G — H respectively.
Assume that qq is surjective and that its kernel is contained in the kernel of ¢g.
Show that:

e there exists a unique map ¢ : P — @ for which diagram (T.3)) commutes;

e the map ¢ is a morphism of principal bundles whose subjacent Lie group
homomorphism ¢g : G — H is the unique map for which diagram (T.6)
commutes:

e set K = Ker(¢p), P = P/K,G = G/K and take q : P — P/K to be
the quotient map. Conclude that ¢ : P/K — ¢(P) is an isomorphism of
principal bundles whose subjacent Lie group homomorphism is the Lie
group isomorphism ¢g : G/K — H.
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EXERCISE 1.51. Let M, &, & be differentiable manifolds and let 7 : £ — M
be a smooth map. We call the quadruple (M, &, 7, &) a fiber bundle if every
point of M has an open neighborhood U C M for which there exists a smooth
diffeomorphism o : 7= 1(U ) — U x &p such that the diagram:

UXEO

\ A projection

commutes. Such a map « is called a local trivialization of the fiber bundle. We
call M the base space, £ the total space, 7 the projection and & the typical fiber.
For each z € M, the set £, = m!(x) is called the fiber over z. Show that the
projection 7 is a surjective submersion and that for each x € M the fiber &, is a
smooth submanifold of £ diffeomorphic to &.

EXERCISE 1.52. Let II : P — M be a principal fiber bundle with structural
group G. Show that P is a fiber bundle over M with typical fiber G.

Pull-back of principal bundles.

EXERCISE 1.53. Let € be an arbitrary category, M, M’ and S be objects of €
and f : M' — M, 7 : S — M be morphisms of &. A pull-back of the quintuple
(§,m, M, M, 8) is a triple (§*S, 71, f) such that:

e {*S is an object of &, 71 : *S — M/, : {*S — S are morphisms of €
and o f = fom;
e given an object X of € and morphisms 71 : X — M/, 15 : X — S with
m o Ty = f o7 then there exists a unique morphism 7 : X — %5 of €
suchthat T o7 =1y and fo 7 = 7.
The notion of pull-back is illustrated by the following commutative diagram:

(1.17) ff§ ——8

T1 f
N
M ; M

The morphism f is called the canonical map of the pull-back {*S. Show that a quin-
tuple (f, 7w, M, M’ S) has at most one pull-back up to isomorphism; this means
that if (f*S, 71, f) and ((§*S)’, 7, ') are both pull-backs of (f, 7, M, M’,S) then
there exists a unique isomorphism ¢ : f*S — (f*S)’ of € such that 7} 0 ¢ = m;
and f o ¢ = f.

EXERCISE 1.54. Let M, M’', Sbesetsand f : M’ — M, 7 : S — M be
maps. Let f*S denote the subset of the cartesian product M’ x S defined by:

(1.18) f*S={(y,p) e M' xS : f(y) ==(p)}.
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Denote by 71 : f*S — M/, f : J*S — S the restrictions to f*.S of the projections

of M'x S. Show that (f*S, 71, f) is a pull-back of (f,m, M, M’, S) in the category
of sets and maps.

EXERCISE 1.55. Let M, M’, S be differentiable manifolds and f : M’ — M,
m : S — M be smooth maps such that at least one of them is a submersiorﬂ Show
that:

e the set (T.18) is a smooth submanifold of the cartesian product M’ x S;
e forall (y,p) € f*S, the tangent space T, ) (f*S) is given by:

(1.19) Tty (f*S) ={(v,¢) e TM" ® TS : dfy(v) = dmy(¢) };

o ifm:f*S—M,f:fS—S denote the restrictions of the projections

of M’ x S then the triple (f*S, 71, f) is a pull-back of (f, 7w, M, M’ S)
in the category of differentiable manifolds and smooth maps.

The fiberwise product of principal bundles.

EXERCISE 1.56. Let M be a differentiable manifold and let Py, (g be prin-
cipal spaces whose structural groups are Lie groups; consider the trivial principal
bundles P = M X Py and Q = M X Qo (see Example [1.3.2). The fiberwise
product P % ) can be naturally identified as a set with M x (Py x Q). Show
that P x @ is also a trivial principal bundle, i.e., if M x (Py x Qo) is regarded as
a trivial principal bundle then the identification of P x @ with M x (Py x Qo) is
an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity (recall from Example that Py x (g is also a principal space
whose structural group is a Lie group).

EXERCISE 1.57. LetIl : P — M, II' : Q — M be G-principal bundles.
Consider the pull-back IT; : I[T*Q) — P of the principal bundle ) by the map II
and the fiberwise product II x II' : P % (Q — M. Show that there exists a unique
map T : II*Q — P x () such that the diagram:

P
Iy
b1y
IT*Q T PxQ
|2
i
Q

9In fact, the following weaker hypothesis also works: for every y € M’, p € S with f (y) =
7(p), the tangent space 7't (,) (M) equals the sum of the images of the linear maps d f(y) and d=(p).
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commutes. Moreover, show that T is a smooth diffeomorphism and that the dia-
gram:

P*Q

commutes as well.
Associated bundles.

EXERCISE 1.58. Let I : P — M be a G-principal bundle and consider the
action of GG on itself by left translations. Show that the map:
P>pr—p 1€ PxgCG
is a smooth fiber-preserving diffeomorphism.

EXERCISE 1.59. Let Il : P — M be a G-principal bundle and N be a differ-
entiable G-space. For each x € M, we have an action of Left(P,) on P, xg N
given by:

(1.20) Left(Py) x (Py xaN) 3 (¢, [p,n]) — t([p,n]) = [t(p),n] € Py xg N.
This action is effective if the action of G on N is effective (see Exercise [1.31]).
Show that, for fixed p € P,, if we identify Left(P,) with G via Z, and P, xg N

with IV via p then the action (1.20) is identified with the action of G on N; more
precisely, show that the diagram:

Left(Py) x (Py x¢ N) — 20

IpxﬁTN ~T;§

G x N N

action

commutes. Conclude that the action (1.20) is smooth.

EXERCISE 1.60. Let IT : P — M be a G-principal bundle and consider the
union:
Left(P) = | ] Left(Py).
zeM
Let G act on itself on the left by conjugation. The result of Exercise[I.33]implies
that the map:

(1.21) P xq G > p,g|— Z,(g) € Left(P)

is a fiber-preserving bijection. We endow Left(P) with the unique differential
structure that makes (I.21)) a smooth diffeomorphism. Show that:

o Left(P) is a fiber bundle over M with typical fiber G;
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e the map Left(P) x P > (t,p) — t(p) € P is smooth;
e if V is a differentiable manifold and (g, n) — ¢-n is a smooth left action
of G on N then the map:

Left(P) (P xg N) > (t,[p,n]) — [t(p),n] € P xg N
18 smooth.
Vector bundles.

EXERCISE 1.61 (change of typical fiber). Let m : E — M be a vector bundle
with typical fiber Ey, let E; be a real vector space and leti : £y — Ej be a linear
isomorphism. Consider the map:

7i: FRE,(E) 2 p—— poie FRg, (E).
e Use Lemma [[.3.11] to show that there exists a unique maximal atlas of
local sections of FRg, (E) — M that makes ~; into an isomorphism

of principal bundles whose subjacent Lie group homomorphism is Z;~ 1
where:

T, :GL(F)) 2T +——ioToi ' € GL(Ey).

e Show that the maximal atlas of local sections of FRg, (E) — M that
makes ~; into an isomorphism of principal bundles does not depend on
the choice of the linear isomorphism i : £} — Ej.

e The construction above allows us to regard 7 : £ — M as a vector
bundle with typical fiber £';. Show that the differential structure on the
total space E does not change when the typical fiber is changed from Ej
to Fy.

EXERCISE 1.62. Let m : E — M be a vector bundle over a differentiable
manifold M and let ¢ : U — FE be a smooth local section. Given x € U, and
an open neighborhood V of z in M with V' C U, show that there exists a smooth
global section € € I'(E') such that €|y = €|y

EXERCISE 1.63. Let7 : E — M, n’ : F — M be vector bundles over a
differentiable manifold M and let L : T'(E) — T'(F) be a C°°(M)-linear map.
Given z € M show that there exists a linear map L, : E, — F} such that
L(€)(z) = Ly(e(x)), forall e € T'(E).

More generally, given vector bundles 7 : E' — M, i = 1,...,n and a
C°°(M)-multilinear map B : T'(E!) x - - - x T'(E™) — T'(F), show that for every
x € M there exists a multilinear map B, : E.L x --- x E" — F, such that
B(et, ..., ) (x) = By(€1(x),...,en(z)), forallg € T(EY),i=1,...,n.

REMARK. The result of Exercise [[.63] does not hold for infinite-dimensional
Hilbert vector bundles. See [2] for a counter-example.

EXERCISE 1.64. Let £, M be differentiable manifolds and 7 : £ — M be a
smooth submersion. Show that:
U Ker(dr(e)) C TE

ecl
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is a smooth distribution on £.
Pull-back of vector bundles.

EXERCISE 1.65. Let m : E — M be a vector bundle with typical fiber £y and
let £ be a real vector space isomorphic to Ey. As we have seen in Exercise[I.61]
the vector bundle £ can also be regarded as a vector bundle with typical fiber F1;
denote such vector bundle with changed typical fiber by E. Given a smooth map
f : M' — M defined in a differentiable manifold M’, show that the pull-backs
f*E and f*F differ only by their typical fibers.

Functorial constructions with vector bundles.

EXERCISE 1.66. Let n > 1 be fixed and let § : Lec™ — Yec be a smooth
functor. Given objects (V4,...,V,,), (W1,...,W,,) of Lec", show that the map:

Iso(Vi, Wy) x - -+ x Iso(Vy, Wp,)

|

Iso(F(Vi, ..., Vo), §(Wh,...,Wy))

(=

is smooth.

EXERCISE 1.67. Let n > 1 be fixed and let § : Lec" — Yec be a smooth
functor. Given an isomorphism (77, ..., T,,) from an object (V1,...,V,,) of Lec™
to an object (W1, ..., W,,) of Lec™, show that the following diagram commutes:

gl(Vi) ®--- @ gl(Vy) gl(F(Vi,..., Vo))
ITl@meBZT"J/ lzsm ,,,,, Tn)

9[(W1) SRR g[(Wn) ? g[(E(Wla sy Wn))

where Z7 denotes conjugation by an isomorphism 7.

EXERCISE 1.68. Let n > 1 be fixed and let § : Yec™ — Yec be a smooth
functor. Let EY, ..., E™ be vector bundles over a differentiable manifold M with
typical fibers Eé, ..., By, respectively. For each ¢ = 1,...,n, let Eé be a real
vector space isomorphic to Eé. As we have seen in Exercise the vector bundle
E' can also be regarded as a vector bundle with typical fiber Eé; denote such
vector bundle with changed typical fiber by E'. Show that the vector bundles
S(EY, ..., E") and ﬁ(El, ..., E™) differ only by their typical fibers.

EXERCISE 1.69. Let k > 1 be fixed and let Z be a fixed real finite-dimensional

vector space. Consider the smooth functors § : Vec® — Vec, & PYeckt! — Yec
defined by:

ﬁ(vl, . ,Vk) = Lin(Vl, .. .,Vk;Z),
@(Vl, .. .,Vk,W) = Lin(Vl, .. .,Vk;W);
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the definitions of § and & on morphisms are as in Example [1.6.13| Given vector
bundles E*, ..., E* over a differentiable manifold M, show that:

F(EY,...,E*) =@8(F',...,E* M x 7).

EXERCISE 1.70. Let E', E2, F be vector bundles over a differentiable man-
ifold M and denote by pr; : E' ® E? — E',1; : E' — E' ® E?,i = 1,2, the
projections and the inclusion maps, respectively.

(a) Given morphisms of vector bundles L' F — E' i = 1,2, show that
there exists a unique morphism of vector bundles L : F' — E such that
pr,o L =L, fori=1,2.

(b) Given morphisms of vector bundles L' : E* — F,i = 1,2, show that
there exists a unique morphism of vector bundles L : &£ — F' such that
Loy =L fori=1,2.

EXERCISE 1.71. Let E', E? be vector bundles over a differentiable manifold
M. Show that the natural inclusion map from the Whitney sum E! @ E? to the
cartesian product E' x E? is a smooth embedding. Prove analogues of Corollar-

ies[1.3.26|and [1.3.27|to Whitney sums.

EXERCISE 1.72. Under the conditions of Exercise [[.63] show that the map
x + B, is a smooth section of the vector bundle Lin(E*, ..., E"; F).

G-structures on vector bundles.

EXERCISE 1.73. Let A be a Lie group and M be a differentiable A-space. We
define a smooth left action of A on FR(T'M) by setting:

g-p=dyy(x)op,

forallz € M,p € FR(T,M) and all g € A. Let zy € M be fixed and consider
the isotropic representation py, of A,, on T, M defined by:

Py Azy D g+ dyg(z0) € GL(T, M).
Let pp € FR(T,, M) be fixed and consider the group isomorphism
T,, : GL(R™) — GL(T}, M)

defined by Z,,(T') = pooTop; ', forall T € GL(R"). Set G = I, (pzy (Asy)) C
GL(RR™). If the action of A on M is transitive, show that the A-orbit of pg in
FR(T M) is a G-structure on M.

EXERCISE 1.74. Let M, M’ be n-dimensional differentiable manifolds, f :
M — M’ be a smooth diffeomorphism, G be a Lie subgroup of GL(RR") and P
be a G-structure on M. Show that:

P'={dfop:pe P}

is the unique G-structure on M’ that makes f into a G-structure preserving map.
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EXERCISE 1.75. Let m : E — M be a vector bundle endowed with a semi-

Riemannian structure g and let E’ be a vector subbundle of E. The orthogonal
subbundle of E' in F is defined by:

(B = U {e € E,: gule,¢') =0, foralle’ € E,}.
zeM
(a) Show that (E’)* is a vector subbundle of E.
(b) If E’ is nondegenerate for g in the sense that the restriction of g, to E!, x

E! is a nondegenerate symmetric bilinear form on E!, for all z € M,
show that E = E' @ (E')*.



CHAPTER 2

The theory of connections

2.1. The general concept of connection

Let w : E — M be a vector bundle with typical fiber Ey and lete € T'(E) be a
smooth section of . If E = M x Ej is the trivial vector bundle over M then € is
of the form €(x) = (z,€é(x)), where € : M — Ey is a smooth map; let us identity
the smooth section € of E = M x Ej with the smooth map € : M — Ej. Given
a point z € M and a tangent vector v € T, M, we can consider the directional
derivative dé(z) - v of € at the point z, in the direction of v. In general, if E is
an arbitrary vector bundle, what sense can be made of the directional derivative
of a smooth section ¢ € I'(F) at a point z € M, in the direction of a vector
v € T, M? Let us first approach the problem by considering a smooth local Ey-
frame s : U — FRE,(E) withx € U. Let é : U — Ej denote the representation
of €|y with respect to s. The directional derivative dé(x) - v is an element of the
typical fiber Ey and it corresponds via the isomorphism s(z) : Fy — E, to a
vector of the fiber E; an apparently reasonable attempt at defining the directional
derivative of € at the point  in the direction of v is:

directional derivative of € at the point x in the direction of v

= s(z)(dé(z) - v).
Of course, in order to check that such definition makes sense, one has to look at
what happens when another smooth local Ey-frame s’ : V' — FRp,(F) with
x € Vischosen. Let g : U NV — GL(Ep) denote the transition map from s’ to
s, so that s(y) = s'(y) o g(y), forally € U N V; then:

e(y) =s(y) - &) = 5'(y) - (9(v) - €(v)),
forall y € U NV, so that the representation ¢’ of €|y with respect to s’ satisfies:
€y) =g(y) - €y),
forally € U N V. Then:
dé'(z) -v = (dg(z) - v) - €(z) + g(z) - (dé(z) - v),
and:
s'(z)(d€' (z) - v) = s(z) (g(x)fl [(dg(z) - v) - €($)]) + s(z)(dé(z) - v).

The presence of the first term in the righthand side of the equality above shows
that our plan for defining the directional derivative of a smooth section € didn’t
work. Let us look at the problem from a different angle. If ¢ : M — E is a

96
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smooth section of E then for every x € M we can consider the differential de(x),
which is a linear map from 75 M to T,y E; for every v € T; M, we have therefore
de(z) - v € Ty E. In the case that E = M x Ej is the trivial bundle over M then
¢ is of the form €(z) = (z, é(z)) and:

de(z) v = (v,dé(z) - v) € Te)E =T:M @ E.

Hence, in the case of the trivial bundle, the object that we wish to call the direc-
tional derivative of ¢ at the point x in the direction of v is the second coordinate of
the vector de(x) - v. If 7 : E— M is a general vector bundle then de(x) - v is just
an element of T ,) &/ and it makes no sense to talk about the “second coordinate”
of de(x) - v. Notice that, since 7 o € is the identity map of M, we have:

dre(y (de(z) - v) = v,

so that, just in the case of the trivial bundle, the vector de(z) - v contains v as one of
its components. The difficulty here is that there is no canonical way of extracting
the “other component” from de(z) - v. More precisely, the difficulty is that we
don’t have a direct sum decomposition T; M @ Ep of T¢(,)E just like we had in
the case of the trivial bundle M x Ejy. We have a canonical subspace Ver,(,)FE of
Te(z)E (recall Deﬁnition@ but such subspace has no canonical complement in
the case of a general vector bundle F.

The problems we have encountered in the attempts to define a notion of di-
rectional derivative for sections of an arbitrary vector bundle indicate that indeed
no canonical notion of directional derivative for sections of general vector bundles
exists. In order to define such a notion, the vector bundle E has to be endowed with
some additional structure. The additional structure on E that will allow us to define
a notion of directional derivative for smooth sections of E is what we shall call a
connection on E. In order to make this definition precise, we start by considering
the problem of lack of a natural complement for the vertical space Ver.(E) in the
tangent space to the total space T E. Let us give some definitions.

DEFINITION 2.1.1. Let £, M be differentiable manifolds and let 7 : £ — M
be a smooth submersion. Given e € £ then the space Ker (dw(e)) is called the
vertical subspace of T.E at the point e with respect to the submersion 7; assuming
that the submersion 7 is fixed by the context, we denote the vertical subspace by
Vere(£). A subspace H of T, is called horizontal with respect to 7 if it is a
complement of Ver.(€) in T.&, i.e., if:

T.E = H @ Vere(E).

A distribution H on the manifold & is called horizontal with respect to m if H, is a
horizontal subspace of T.£ for every e € £. A smooth horizontal distribution on £
will also be called a generalized connection on £ (with respect to 7).

Notice that for all z € M, 7~1(z) is a smooth submanifold of £ and for every
e € m1(x) we have:

Ver.(€) = T. (7 ().
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We set:
Ver(€) = U Ver () C TE.
ecf

The result of Exercise says that Ver(€) is a smooth distribution on £. We call
it the vertical distribution on £ or also the vertical bundle of £ determined by 7.

Notice that a subspace H of T.£ is horizontal with respect to 7 if and only if
the restriction of dr(e) to H is an isomorphism onto 7.y M (see Exercise .

When a horizontal distribution on £ is fixed by the context we will usually
denote it by Hor(&); then:

2.1.1) T,E = Hor, (&) & Ver, (&),

for all e € £. We denote by pyer : TE — Ver(E) (resp., phor : TE — Hor(&)) the
map whose restriction to T.€ is equal to the projection onto the second coordinate
(resp., the first coordinate) corresponding to the direct sum decomposition (2.1.1)),
for all e € £. We call pye; (resp., Pror) the vertical projection (resp., the horizontal
projection) determined by the horizontal distribution Hor(€). Notice that if Hor(E)
is a smooth distribution then the projections pye,; and pyo,; are morphisms of vector
bundles; in this case, we also call Hor (&) the horizontal bundle of .

DEFINITION 2.1.2. Let £, M be differentiable manifolds and let 7 : £ — M
be a smooth submersion. By a local section of m we meanamap € : U — & defined
on an open subset U of M such that 7 o € is the inclusion map of U in M. Let
Hor(€) be a generalized connection on £. If € : U — £ is a smooth local section
of 7 then, given z € U, v € T, M, the covariant derivative of € at the point x in
the direction of v with respect to the generalized connection Hor (&) is denoted by
V€ and it is defined by:

(2.1.2) Ve = prer (de(z) - v) € Very,(€);

we call V the covariant derivative operator associated to the generalized connec-
tion Hor(&). Given z € U, if V,e = 0, for all v € T, M then the local section € is
said to be parallel at x with respect to Hor(E); if € is parallel at every x € U we
say simply that € is parallel with respect to Hor(E).

Clearly the covariant derivative Ve is linear in v. Moreover, € is parallel at =
with respect to Hor(€) if and only if:

dez(TxM) = HOI"G(:E)S.
DEFINITION 2.1.3. Let 7 : £ — M, 7’ : & — M be smooth submersions; a
map ¢ : £ — £’ is said to be fiber preserving if:
mo¢=m.

Let Hor(&), Hor(&’) be generalized connections on &€ and &' respectively. A
smooth map ¢ : £ — &£’ is said to be connection preserving if it is fiber preserving
and:

(2.1.3) d¢e (Hore(£)) = Hory ey (£'),
foralle € £.
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Clearly the composition of fiber preserving (resp., connection preserving) maps
is also fiber preserving (resp., connection preserving). Moreover, the inverse of a
bijective fiber preserving map (resp., of a smooth connection preserving diffeomor-
phism) is also fiber preserving (resp., connection preserving).

Observe that if ¢ : &€ — &' is fiber preserving and if € : U — & is a local
section of 7w then ¢ o ¢ : U — &' is a local section of 7', If ¢ : £ — &£’ is a smooth
fiber preserving map then for all z € M and all e € 7~ !(z) the following diagram
commutes:

doe
T.E ’ Tye)€'
(2.1.4)
dme dﬁ;(ﬁ)
T, M

In particular, we have:

(2.1.5) dge (Vere(€)) C Verye)(€).

DEFINITION 2.1.4. A smooth submersion 7 : £& — M is said to have the
global extension property if for every smooth local section € : U — & of m and
every x € U there exists a smooth global section € : M — & such that € and € are
equal on some neighborhood of x contained in U.

The result of Exercise[I.62]shows that the projection of a vector bundle has the
global extension property.

LEMMA 2.1.5. Let: £ — M, ' : & — M be smooth submersions and let
Hor (&), Hor(&') be generalized connections on € and E' respectively. Denote by
V and V' respectively the covariant derivative operators corresponding to Hor (&)
and Hor(E'). Given a smooth fiber preserving map ¢ : £ — &' then the following
conditions are equivalent:

(a) ¢ is connection preserving;
(b) d¢e(Hor(€)) C Horye)(E'), forall e € &;
(¢c) for any smooth local section € : U — & of w, it is:
(2.1.6) V(o €) = doe(z)(Voe),
forallx € Uandallv € T, M.

If 7 : £ — M has the global extension property then conditions (a), (b) and (c)
are also equivalent to:

(d) for any smooth global section ¢ : M — & of w, equality holds, for
allx € M and allv € T M.

PROOF. The equivalence between (a) and (b) follows from the commutativity
of diagram (2.1.4), applying the results of Exercises [2.2]and [2.3] Now assume (a)
and let us prove (c). Denote by pyer and pl,. the vertical projections determined by
Hor (&) and by Hor(&'), respectively. From (2.1.3) and (2.1.3) we get that:

pi/er (d¢€(<)) = d¢e (pver(C)) ,
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forall e € £ and all ¢ € T.£. Thus, given a smooth local section € : U — &£ of m,
we have:

V;((ﬁ o 6) - p(/er [d(be(z) (deﬂ?(v))] = d¢e(x) [pver (dea: (U))]
= d¢e(m)(vve)a

forall x € U and all v € T, M. This proves (c). Conversely, assume (c) and let
us prove (a). Let e € & be fixed and set 7(e) = x € M. Choose an arbitrary
submanifold S of £ with e € S and T.S = Hor.(&). Since:

d(rls)e = dmelr,5 : TeS — T M

is an isomorphism then, possibly taking a smaller S, we may assume that 7|g is a
smooth diffeomorphism onto an open neighborhood U of = in M. Then:

e=(nlg) U —E&

is a smooth local section of 7, €(x) = e and € is parallel at x with respect to
Hor(&). Now (2.1.6) implies that ¢ o € is parallel at z with respect to Hor(E’) and
hence:

dge (Hore(£)) = (dge o dep) (T M) = d(¢ 0 €)4 (T M) = Hory)(E'),

proving (a). Finally, assume that 7 : £€ — M has the global extension property
and let us prove that (a), (b) and (c) are all equivalent to (d). It is obvious that (c)
implies (d). The proof of the fact that (d) implies (a) can be done by repeating the
same steps of our proof that (c) implies (a), keeping in mind that the smooth local
section € : U — & of 7 constructed in that proof can be replaced by a smooth
global section € : M — &. ([

COROLLARY 2.1.6. Let m : £ — M be a smooth submersion endowed with
generalized connections Hor (&) and Hor'(£); denote by V and V' respectively
the covariant derivative operators corresponding to Hor(E) and Hor' (). If:

(2.1.7) Ve = Vi,

for every smooth local section € : U — & of w and for every v € T M|y then
Hor (&) = Hor'(€). Moreover, if  has the global extension property and if
holds for every smooth global section € : M — & of m and for every v € T M then
Hor(&) = Hor'(€).

PROOF. Apply Lemma[2.1.5|with ¢ the identity map of €. O

Let us go back to our discussion about directional derivatives of smooth sec-
tions of a vector bundle m : E — M. The projection 7 of the vector bundle is
a smooth submersion and the notions of vertical space and local section given in
Definitions and are consistent with the ones given in Section If
Hor(FE) is a generalized connection on E then for every smooth section ¢ € T'(FE),
every point x € M and every vector v € T, M, the covariant derivative Ve is
an element of the vertical space Ver,(,)E, which is identified with the fiber E.
Although the covariant derivative Ve is linear in v, it doesn’t have in general the
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other “nice” properties that one would expect from a notion of directional deriva-
tive; for instance, the covariant derivative V¢ is not in general linear in €. It turns
out that for some generalized connections Hor(E), the corresponding notion of co-
variant derivative of smooth sections of E satisfies all the desirable properties. The
difficulty is that it is not so easy to give a direct description of the properties that
the generalized connection Hor(E) should satisfy in order that the corresponding
covariant derivative V satisfies all the desirable properties.

Our plan for developing the theory of connections is the following: we first
study the notion of connection on principal bundles. A principal connection on a
principal bundle is just a generalized connection on the total space that is invariant
under the action of the structural group. We show how a principal connection on a
principal bundle induces a generalized connection in any of its associated bundles.
In particular, if E is a vector bundle, a principal connection on the principal bun-
dle of frames FR g, (E) induces a generalized connection Hor(E) on E (recall the
isomorphism given by the contraction map (1.5.1])). Looking at the situation from
a different perspective, we will define the notion of linear connection on a vector
bundle E simply by stating that a linear connection on E is the same as a covari-
ant derivative operator V satisfying some natural properties. It will be seen that
the covariant derivative operator determined by a generalized connection Hor(E)
induced from a principal connection on FR g, (E) is indeed a linear connection on
FE; moreover, there is a one to one correspondence between the principal connec-
tions on the principal bundle FR g, (E) and the linear connections V on the vector
bundle E.

2.1.1. Pull-back of generalized connections and submersions.

DEFINITION 2.1.7. Let £, M, M’ be differentiable manifolds, = : £ — M be
a smooth submersion and let f : M’ — M be a smooth map. By a local section
of ™ along f we mean amap ¢ : U’ — & with m o e = f|y/, where U’ is an open
subset of M'. If Hor(&) is a generalized connection on £ with respect to 7 and if
g : U — & is a smooth local section of 7 along f then we set:

Ve = Pver (de(y) : U) € Vera(y) (5)7

forally e U',v e TyM "and we call V ¢ the covariant derivative of ¢ at the point
y in the direction of v. Given y € U’, if V& = 0, for all v € T, M’ then the local
section ¢ is said to be parallel at y with respect to Hor(&); if € is parallel at every
y € U’ we say simply that ¢ is parallel with respect to Hor(E).

Clearly the covariant derivative V¢ is linear in v. Moreover, € is parallel at y
with respect to Hor(€) if and only if:

dey (T, M") C Horg(,E.

Ifn:& — M,n : £ — M are smooth submersions, ¢ : £ — &' is fiber
preserving and if e : U’ — & is a local section of 7 along a map f : M’ — M then
obviously ¢ o e : U — &’ is a local section of 7’ along f. We have the following

analogue of (2.1.6):
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LEMMA 2.1.8. Letw : £ — M, 7' : & — M be smooth submersions endowed
with generalized connections Hor(E), Hor (&), respectively, M’ be a differentiable
manifold, f : M' — M be a smooth map, ¢ : & — E' be a smooth connection
preserving map and € : U' — & be a local section of w along f. Then:

v;(‘b o 8) = d¢5(y)(vv5)7

forally e U',v € T,M’, where V, V' denote respectively the covariant derivative
operators with respect to Hor(E) and Hor(E").

PROOF. It is analogous to the proof of (2.1.6) in Lemma[2.1.5] O

Let &, M, M’ be differentiable manifolds, 7 : £ — M be a smooth submersion
and let f : M’ — M be a smooth map. We set:

FE={(y,e) e M'xE: f(y) =m(e)}

and we denote by 71 : f*€ — M', f : f*€ — & respectively the restriction to f*&
of the first and of the second projection of the cartesian product M’ x €. Since 7 is
a submersion, the result of Exercise[I.55]says that f*£ is a smooth submanifold of
M’ x € and that the triple (f*&,my, f) is the pull-back of (f, 7, M, M’ E) in the
category of differentiable manifolds and smooth maps. Since 7 is a submersion, it
follows easily from that also 71 : f*€ — M’ is a submersion. We call the
submersion 71 : f*€ — M’ the pull-back of the submersion 7 : £ — M by f and

we call f : f*€ — & the canonical map of the pull-back f*&.

REMARK 2.1.9. Giveny € M’ then:
™ (y) = vy x 7 (W)

we thus identify 7, ' (y) with 7~ (f(y)) in the obvious way. Under such identi-
fication, the restriction to 7, 1(y) of the canonical map f is the identity map of
a1 ( f (y)) In particular, for all ¢ € f*&, we identify the vertical space Ver.(f*E)
with the vertical space Ver () and the restriction to Ver¢(f*&) of the differen-
tial d f with the identity map of Ver (. (£).

Clearly the composition on the left with f of a (smooth) local section of the
submersion m : f*€ — M’ is a (smooth) local section of 7 : £ — M along f.
Conversely, using the property of pull-backs described in diagram (1.17), we see
that if ¢ : U’ — & is a (smooth) local section of 7 : £ — M along f then there
exists a unique (smooth) local section € : U’ — f*&€ of m : f*€ — M’ such that
f o€ = e. The situation is illustrated by the following commutative diagram:

f*gf4>g
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LEMMA 2.1.10. Let w : £ — M be a smooth submersion, M' be a differen-
tiable manifold and f : M' — M be a smooth map. If Hor(&) is a generalized
connection on € with respect to m : £ — M then:

(2.1.8) Hore(f*€) = df; ! (Horyo(€)) C Te(f*E), e € f*E,
is a generalized connection on f*E with respect to my : f*€ — M.

PROOF. Keeping in mind Remark [2.1.9] it follows from the result of Exer-
cise[2.4{that (2.1.8)) defines an horizontal distribution on f*& with respect to 7y. It
is easy to see that Hor(f*€) is indeed a smooth distribution on f*£. |

DEFINITION 2.1.11. The generalized connection Hor(f*£) defined in (2.1.8)
is called the pull-back of the generalized connection Hor (&) by f.

LEMMA 2.1.12. Let m : £ — M be a smooth submersion endowed with a
generalized connection Hor(E), M’ be a differentiable manifold and f : M' — M
be a smooth map; assume that w1 : f*€ — M’ is endowed with the generalized
connection Hor(f*E) obtained from Hor(E) by pull-back. Then, given a smooth
local section € : U' — & of w along f, we have:

—
Vee = Ve,

forallv € TM'|¢yr. In particular, € is parallel at a point y € U’ if and only if ‘&
is parallel at y.

PROOF. It follows easily from the observation that, for all e € f*&, the differ-
ential d f, maps Hor,(f*€) to Hor () and from the observation that d f is the
identity on the vertical space Ver () () (see Remark 2.1.9). 0

2.2. Connections on principal fiber bundles
LetII: P — M be a G-principal bundle over a differentiable manifold M.

DEFINITION 2.2.1. A principal connection on P is a generalized connection
Hor(P) on P that is G-invariant, i.e.:

dyg (Hory(P)) = Hory.4(P),

forall p € Pandall g € G, where v, : P — P denotes the diffeomorphism given
by the action of g on P.

Recall from (1.3.4)) that the vertical distribution Ver(P) is also G-invariant.

From now on, by a connection on a principal bundle we will mean implicitly a
principal connection.

Let Hor(P) be a horizontal distribution on P. The existence of a canoni-
cal isomorphism between the vertical space Ver,(P) and the Lie algebra g of the
structural group (recall (1.3.3)) allows us to canonically associate to the distribu-
tion Hor(P) a g-valued 1-form w on P such that Ker(w,) = Hor,(P), for all
p € P. Namely, we define w by setting:

(dﬂp(l))_l(o €g, if{ e Ver,(P),

(2.2.1) wp(() = { 0eg, if ¢ € Hory(P),
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for all p € P, where (dﬂp(l))f1 : Ver,(P) — g is the inverse of the linear
isomorphism (1.3.3).

LEMMA 2.2.2. Let Hor(P) be a horizontal distribution on P and let w be the
g-valued 1-form on P defined by 2.2.1). Then Hor(P) is smooth if and only if w

is smooth.

PROOF. Consider the map L., : TP — P x g whose restriction to 7, P is
given by ( — (p, wp(C )), for all p € P. If w is smooth then L, is smooth and
therefore it is a morphism of vector bundles from the tangent bundle T'P to the
trivial vector bundle P x g. Since L, is surjective, its kernel Ker(L,,) = Hor(P)
is a vector subbundle of T'P, by Proposition thus, Hor(P) is a smooth
distribution on P. Conversely, assume that the horizontal distribution Hor(P) is
smooth. Consider the map Lg : P x g — Ver(P) defined by

Lp(p, X) = dp,p(1) - X,
forall p € P and all X € g. The map Lg is smooth, since it is the restriction
to P x g C TP x TG of the differential of the right action P x G — P of G
on P. Thus Lg is an isomorphism of vector bundles. Since Hor(P) is smooth,
the vertical projection pye, : TP — Ver(P) is a morphism of vector bundles and
therefore L, = Lgl 0 Pyer : TP — P X gis also a morphism of vector bundles. It
follows that w is smooth. ([

Let us determine what conditions on the g-valued 1-form w defined by (2.2.1)
correspond to the G-invariance of the horizontal distribution Hor(P). Assume that
Hor(P) is G-invariant. From the commutativity of diagram (1.3.5)), it follows that
the diagram:

T,p " g
(222) d%q(p)l lAdgl
Tp.gP Wp-g

commutes, for all p € P and all g € G'; namely, simply check that Ad,-1 0w, and
Wp.g © dy4(p) coincide both on Hor,(P) and on Ver,(P). The commutativity of
diagram (2.2.2) for all p € P, g € G is equivalent to the requirement that:

(2.2.3) Yy w = Adg-1 0w,
for all g € GG. Motivated by this, we give the following:

DEFINITION 2.2.3. Let V be a real finite-dimensional vector space and let
p : G — GL(V) be a smooth representation of G on V. A V-valued differential
form A on the total space P is said to be p-pseudo G-invariant (or pseudo G-
invariant with respect to p) if:

T A=plg) o
forallg € G.
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Equality (2.2.3) says that w is pseudo G-invariant with respect to the adjoint
representation Ad : G — GL(g) of the Lie group G on its Lie algebra g.

LEMMA 2.2.4. Let Hor(P) be a horizontal distribution on P and let w be the
g-valued 1-form on P defined by (2.2.1). Then Hor(P) is G-invariant if and only
if w is Ad-pseudo G-invariant.

PROOF. We have already shown that if Hor(P) is G-invariant then w is Ad-
pseudo G-invariant. Conversely, if w is Ad-pseudo G-invariant then diagram (2.2.2))
commutes for all p € P, g € GG and therefore:

(2.2.4) dvy (Hor,(P)) C Horpg(P),

forall p € P, g € G. Replacing p with p - g and g with ¢! in (2.2.4) we
get the opposite inclusion Hory,.4(P) C dvg(Hor,(P)) and hence Hor(P) is G-
invariant. (]

DEFINITION 2.2.5. Let II : P — M be a G-principal bundle and for each

p € P denote by (d,(1)) . Ver,(P) — g the inverse of the linear isomorphism
(I.3.3). A smooth g-valued Ad-pseudo G-invariant 1-form w on P satisfying the
condition:

(2.2.5) Wplvery(p) = (AB,(1)) "

for all p € P is called a connection form on P.

If w is a g-valued 1-form on P satisfying condition (2.2.5)) for all p € P then
the distribution Hor(P) defined by:

(2.2.6) Hor,(P) = Ker(wp),

for all p € P is horizontal (see Exercise[2.1)). If w is a connection form on P then
Lemmas and imply that the horizontal distribution Hor(P) defined by

is a connection on P. Conversely, if Hor(P) is a connection on P then the
g-valued 1-form w on P defined by (2.2.1)) is a connection form on P. Thus, we
have the following:

THEOREM 2.2.6. LetI1 : P — M be a principal bundle. Equality (2.2.6)) de-
fines a one-to-one correspondence between connections Hor(P) on P and smooth
connection forms w on P. O

EXAMPLE 2.2.7. Let M be a differentiable manifold and let P be a principal
space whose structural group is a Lie group G. There is a canonical connection on
the trivial principal bundle P = M x F, defined by:

Hor(, ) (P) = T:M © {0} C T:M © T,Py = T(z ) P,

forall z € M, p € Py. If w is the connection form associated to such connection
then for all (z,p) € P, w(yyp) : TuM © TpPy — g is the composition of the

projection T, M & T, Py — T, Py with (d8,(1)) ' : TPy — g.
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EXAMPLE 2.2.8. Let Il : P — M be a G-principal bundle and let Hor(P)
be a connection on P. If U is an open subset of M then clearly the intersection
Hor(P) N T'(P|y) is a connection on the restricted principal bundle P|y. Obvi-
ously the connection form associated to Hor(P) N T'(P|y) is just the restriction
of the connection form associated to Hor(P). In Exercise we ask the reader
to show that a connection on P is determined by a family of pairwise compatible
connections on restrictions of P to open subsets of M.

EXAMPLE 2.2.9. Let us understand better the notion of connection form by
considering a trivial principal bundle P = M x G. Let w be a g-valued 1-form
on P. By differentiating the action of G on itself by right translations we obtain a
right action of GG on its own tangent bundle T'G given by:

Xg= ng (X)7
forall g € G and all X € TG (recall (1.1.2)). The right action of G on T'P
obtained by differentiating the right action of G on P is therefore given by:
def
(U, X) g = d79(2}7 X) = (’U, Xg)7

forallv € TM, X € TG and all g € G. Let us take a closer look at the condition
of Ad-pseudo G-invariance. By the result of Exercise w is Ad-pseudo G-
invariant if and only if the equality (2.2.3) holds at the point of M x {1} C P, i.e.,
if and only if:

(2.2.7) W(z,g) (v, Xg) = Ady (w(x71)(v,X)),

forallz € M,v € T, M, g € Gandall X € g. Let @ be the g-valued 1-form on
M which is the pull-back of w by the local section s' : M > x + (x,1) € P of
P. The equality (s!')*w = @ means that:

(2.2.8) W(x,1) (’U, 0) = Wy (7)),

forall z € M and all v € T, M. Now let us consider condition (2.2.5). By
the result of Exercise under the assumption that w is Ad-pseudo G-invariant,
condition holds forall p € P if and only if itholds forallp € M x{1} C P,
i.e., if and only if:

(2.2.9) W) (0, X) = X,

for all z € M and all X € g. Conditions (2.2.7), (2.2.8)) and (2.2.9) together are
equivalent to:

(2.2.10) W(z,g) (0, X g) = Ady—1 (g (v) + X),

forallz € M,v € T, M, g € G and all X € g. We have shown that given
a g-valued 1-form @ on M then there exists a unique Ad-pseudo G-invariant g-
valued 1-form w on P = M X @ satisfying condition (2.2.3)) for all p € P with

(s')*w = @; the 1-form w is given by ([2.2.10). Notice that equality (2.2.10) implies
that w is smooth if and only if @ is smooth.
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LEMMA 2.2.10. Let Il : P — M be a G-principal bundle and let s : U — P
be a smooth local section of P. If & is a g-valued 1-form on U then there exists
a unique Ad-pseudo G-invariant g-valued 1-form w on the principal bundle Py
satisfying condition [2.2.3)) for all p € P|y with s*w = &. Moreover, w is smooth
if and only if o is smooth.

PROOF. The discussion presented in Example [2.2.9] shows that the lemma
holds in the case that P = M X G is the trivial bundle and the local section s
is equal to s' : M > = + (x,1) € P. To prove the general case, consider the
following commutative diagram (recall (1.3.2)):

UxG is P|U

N

The map s is an isomorphism from the trivial principal bundle U x G to P|y
whose subjacent Lie group homomorphism is the identity map of GG (recall Exam-
ple . Given a g-valued 1-form w on P|;; then the result of Exercisesand
2.12imply that w is Ad-pseudo G-invariant and satisfies forall p € P|y if
and only if 3w is Ad-pseudo G-invariant and satisfies forallp € U x G.
Moreover, s*w = @ if and only if (s')*(3fw) = @. The conclusion follows. [

If w is a connection form on P and s : U — P is a smooth local section then
the smooth g-valued 1-form @ = s*w on U is called the representation of w with
respect to the smooth local section s. Lemma [2.2.10] states that a connection form
w on P|y is uniquely determined by its representation w with respect to a given
smooth local section s : U — P.

Let us now discuss the notion of connection preserving maps in the context of
principal bundles (recall Definition [2.1.3).

LEMMA 2.2.11. Let 11 : P — M, II' : Q — M be principal bundles with
structural groups G and H, respectively; denote by g and b the Lie algebras of G
and H respectively. Let ¢ : P — @ be a morphism of principal bundles with subja-
cent Lie group homomorphism ¢q : G — H; denote by ¢o : g — b the differential
of ¢o at the identity. Let Hor(P), Hor(Q) be respectively a G-invariant horizontal
distribution on P and an H-invariant horizontal distribution on Q). Denote by w",
w¥ respectively the g-valued 1-form on P associated to Hor(P) and the H-valued
1-form on Q) associated to Hor(Q), defined as in (2.2.1). The following conditions

are equivalent:

(a) for every x € M there exists p € P, such that

(2.2.11) d¢p (Hory(P)) C Horg ) (Q);
(b) ¢ is connection preserving;
(©) ¢*w? = dpow’;
(d) every point of M is in the domain of a smooth local section s : U — P
of P such that (¢ o 5)*w®@ = ¢g o (s*wh).
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PROOF. Assume (a) and let us prove (b). Given g € G, h € H, denote by
7;3 : P — P and 7}? : @@ — (@ respectively the diffeomorphism given by the
action of g on P and the diffeomorphism given by the action of h on (). Since
¢o is the Lie group homomorphism subjacent to ¢, setting h = ¢o(g), then the
following diagram commutes:

¢

P—Q
%’fl o
P—Q

¢

by differentiation, we get another commutative diagram:

de(p)

TpP T<Z>(p)Q
(2.2.12) dvé’(p)l ldv,?w(p))
T,..P T
Pg o) 6(p-9)@

Observing d~’ (p) maps the space Hor,,(P) to the space Hor,,4(P) and dvi? (¢(p))
maps the space Horg,(Q) to the space Hory,,.¢)(Q), the commutativity of dia-

gram ([2.2.12) and (2.2.11)) imply that:
d¢p.g (HOI‘p.g (P)) C Hor¢(p,g) (Q),

for all g € G. Thus (2.2.T1) holds for all p € P. Now (b) follows directly from
Lemma[2.1.5] Now assume (b) and let us prove (c). Given p € P then the linear
maps (¢*w?), = wg(p) o d¢pp and ¢y o wl” are both zero on Hor,(P) and they

coincide on Ver,(P), by the result of Exercise Therefore (¢) holds. To prove
that (c) implies (d), simply observe that the equality in (d) is equivalent to:

(2.2.13) s*(¢*w?) = s*(¢g o wh).

Finally, assume (d) and let us prove (a). Let x € M be fixed and choose a smooth
local section s : U — P of P with € U such that (2.2.13) holds. Set p = s(z)
and let us show that (2.2.1T)) holds. Equality (2.2.13) implies that the linear maps
(gb*wQ)p and ¢ o w}f’ coincide on the image of ds,; by the result of Exercise[2.1 ll,
they also coincide on Ver,,(P). Since T,P = ds, (T, M) & Ver,(P), it follows
that:

wf(p) o dy, = (¢*w?), = doow?.
Hence d¢,, maps the kernel of w;; into the kernel of wq?(p), proving 22.11). O

EXAMPLE 2.2.12. The morphism of principal bundle Id x ¢ of Example
is obviously connection preserving if the trivial principal bundles M x Py and
M x g are endowed with their canonical connections (see Example [2.2.7)).
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PROPOSITION 2.2.13. Let P, ) be principal bundles over the same differen-
tiable manifold M and let ¢ : P — Q be a morphism of principal bundles. Given
a connection Hor(P) on P then there exists a unique connection Hor(Q) on Q) for
which ¢ is connection preserving.

PROOF. Let G, H denote respectively the structural groups of P and () and let
¢o : G — H denote the Lie group homomorphism subjacent to ¢. Let w’ be the
connection form corresponding to Hor(P). We first prove the proposition under
the assumption that P admits a globally defined smooth local section s : M — P.
Let o = s*w’ denote the representation of w!” with respect to s. A connection
Hor(Q) on @ makes ¢ connection preserving if and only if its connection form w®
satisfies:

(2.2.14) (¢pos)*w? =dpowm,

where <f;0 denotes the differential of ¢ at the identity (see item (d) on the statement
of Lemmal[2.2.11). Since pos: M — @ is a smooth globally defined local section
of Q, Lem implies that there exists a unique connection form w® on Q
such that (2.2.14) holds. This completes the proof in the case where P admits a
globally defined smooth local section. To prove the general case, let M = | J;; Us
be an open cover of M such that U; is the domain of some smooth local section
of P, for all i« € I. The case already proven therefore applies to the restriction
of ¢ to P|y,. The conclusion is now easily obtained by applying the result of
Exercise 2.6l O

DEFINITION 2.2.14. If ¢ : P — (@ is a morphism of principal bundles and
Hor(P) is a connection on P then the unique connection Hor(Q) on @ that makes
¢ connection preserving is called the push-forward of Hor(P) by ¢.

In analogy with Corollary|1.3.12] we have the following:

COROLLARY 2.2.15. Let P, P, Q be principal bundles over a differentiable
manifold M and let ¢ : P — Q, ¢ : P — P, ¢/ : P' — Q be morphisms of
principal bundles such that the diagram:

N

P’?Q

commutes. Given connections Hor(P), Hor(P'), Hor(Q) on P, P' and Q respec-
tively such that both ¢ and 1) are connection preserving then also ¢' is connection
preserving.

PROOF. Let Hor’(Q) be the push-forward of Hor(P’) by ¢'. Both connections
Hor(Q) and Hor'(Q)) make ¢ = ¢’ o 1) connection preserving. By the uniqueness
part of Proposition |2.2.13] we have Hor(Q) = Hor’(Q). This concludes the proof.

O



110 2. THE THEORY OF CONNECTIONS

2.2.1. The connection on the fiberwise product. Given connections on prin-
cipal bundles P, () over M then we have a naturally induced connection on the
fiberwise product P x Q).

PROPOSITION 2.2.16. Let P, ) be principal bundles over the same differen-
tiable manifold M, with structural groups G and H, respectively; denote by g, b
respectively the Lie algebras of G and H. If Hor(P) is a connection on P and
Hor(Q) is a connection on @ then there exists a unique connection Hor(P * Q)
on P x Q such that Hor(P) is the push-forward of Hor(P x Q) by the projection
pr; : PxQ — P and such that Hor(Q) is the push-forward of Hor(P * Q) by
the projection pry : P % (Q — (). Moreover, if w® is the g-valued connection
form associated to Hor(P) and w® is the h-valued connection form associated to

Hor(Q) then (pr} w® priw®) is the (g ® b)-valued connection form associated
to Hor(P x Q).

PROOF. The maps pr; and pr, are both connection preserving if and only if the
connection form associated to the connection on Px( is equal to (pr} w?’, pr} w?)
(see item (c) on Lemma [2.2.TT). To conclude the proof, we just have to show that
w = (priw® prjw?) is indeed a connection form on P x Q. Clearly, w is a
smooth (g @ h)-valued 1-form on P x Q. Given (p,q) € P x Q, the fact that the
restriction of w, ) to Ver(, (P * Q) is equal to (df, 4 (1)) ~! follows from the
result of Exercise applied to the morphisms pr; and pr,. Finally, the Ad-
pseudo (G x H)-invariance of w follows from the result of Exercise also
applied to the morphisms pr; and pr,. U

DEFINITION 2.2.17. Let P, () be principal bundles over the same differen-
tiable manifold M. Given connections Hor(P) and Hor(Q) on P and () respec-
tively then the unique connection Hor(P * Q) on P * () that makes the projections
pry : PxQ — P, pry: Px(Q — () connection preserving is called the fiberwise
product connection of Hor(P) by Hor(Q).

EXAMPLE 2.2.18. Let M be a differentiable manifold and Py, Q)g be principal
spaces whose structural groups are Lie groups; consider the trivial principal bun-
dles P = M x Pyand Q = M x (. In Exercise [1.56] we asked the reader to
show that the fiberwise product P % () is identified with the trivial principal bundle
M x (Py x Qo). We claim that the canonical connection of the trivial principal
bundle P x @ is equal to the fiberwise product of the canonical connections of
the trivial principal bundles P and @ (see Example 2.2.7). Namely, if P x @ is
endowed with its canonical connection then the projections pry : P % @ — P,
pry ¢ Px (@ — @ are connection preserving, which follows from what has been
observed in Example 2.2.12

LEMMA 2.2.19. Let P, P’, Q be principal bundles over a differentiable mani-
fold M endowed with connections Hor(P), Hor(P") and Hor(Q), respectively. Let
P x P’ be endowed with the fiberwise product connection of Hor(P) by Hor(P").
Denote by pry : Px P' — P, pry : P x P' — P’ the projections. A morphism
of principal bundles ¢ : Q — P % P’ is connection preserving if and only if both
pry o ¢ and pry 0 ¢ are connection preserving.
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PROOF. Obviously pr; o ¢ and pr, o ¢ are connection preserving if ¢ is con-
nection preserving. Conversely, assume that both pr; o¢ and pr, o ¢ are connection
preserving. Denote by Hor(P * P’) the push-forward of Hor(Q) by ¢. The proof
will be concluded if we show that Hor(P x P’) is the fiberwise product connection
of Hor(P) by Hor(P'); to this aim, it suffices to verify that both pr; and pr, are
connection preserving when P + P’ is endowed with the connection Hor(P x P’).
This follows by applying Corollary 2.2.15]to the diagrams:

Q Q
| e e =

PxP —5—P Px P —5 =P

COROLLARY 2.2.20. Let P, P', Q, Q' be principal bundles over a differen-
tiable manifold M endowed with connections and let ¢ : P — P, : Q — Q'
be connection preserving morphisms of principal bundles. The morphism of prin-
cipal bundles ¢ <1 : P x @Q — P’ % Q' (see Example is also connection

preserving. [l

2.2.2. Pull-back of connections. Let II : P — M be a G-principal bundle
over a differentiable manifold M and let f : M’ — M be a smooth map defined
in a differentiable manifold M’. We will now show how a connection Hor(P) on
P induces a connection on the pull-back bundle f*P.

LEMMA 2.2.21. Let Il : P — M be a G-principal bundle over a differentiable
manifold M and let f : M " — M be a smooth map defined in a differentiable
manifold M'; denote by f : f*P — P the canonical map of the pull-back f*P. If
w is a connection form on P then f*w is a connection form on f*P.

PROOF. We have to check the Ad-pseudo G-invariance of f*w and the equal-
ity:

T -1
(2.2.15) (Fplvery(rep) = (dBp(1))
for all p € f*P. Equality 2.2.15) follows from (2.2.5)), observing that, for all
y € M’, the restriction of f to the fiber (f*P), = Py, is just the identity map of

Py (). Let us check the Ad-pseudo G-invariant of f*w. For each g € G, denote by
’yf : P — P and by ’yg P f*P — f*P respectively the map given by the action

of g on P and the map given by the action of g on f*P. Clearly, 75 of = fo yg*P,
for all g € G. We compute:

(g Y (Fro)y=(ford ) w= (g o f)'w= F*((n,)w)
= [*(Ady-1 ow) = Ad,-1 0 (ffw).
This concludes the proof. U

Recalling from Theorem that we have a one-to-one correspondence be-
tween smooth connection forms and connection on a principal bundle, we can give
the following:
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DEFINITION 2.2.22. Let Il : P — M be a principal bundle and f : M’ — M
be a smooth map defined on a differentiable manifold M’. Given a connection
Hor(P) on P then the pull-back of Hor(P) by f is the connection Hor(f*P) on
f*P corresponding to the connection form f*w, where w is the connection form
on P corresponding to Hor(P).

EXAMPLE 2.2.23. Let Il : P — M be a principal bundle and U be an open
subset of M. In Example we have identified the restriction P|y with the
pull-back ¢* P, where i : U — M denotes the inclusion map. If Hor(P) is a con-
nection on P then clearly the pull-back of Hor(P) by 1 is equal to the connection
Hor(P) N T(P|y) on P|y (see Example[2.2.8).

EXAMPLE 2.2.24. LetII : P — M be a principal bundle and f : M’ — M,
g : M"” — M’ be smooth maps, where M’, M" are differentiable manifolds. Let
Hor(P) be a connection on P. In Example we have identified the principal
bundles g* f*P and (f o g)*P. Using such identification, we have f o g = fog.
We claim that the pull-back of Hor(P) by f o g is equal to the pull-back by g of the
pull-back by f of Hor(P). Namely, if w denotes the connection form of Hor(P)
then:

(fog)w=(fog)w=g"(fw).
LEMMA 2.2.25. Let 11 : P — M be a principal bundle and f : M’ — M be a
smooth map defined on a differentiable manifold M’'. Let Hor(P) be a connection

on P and let Hor(f*P) denote the pull-back of Hor(P) by f. If f : f*P — P
denotes the map defined in Subsection then:

Hory(f*P) = df, " (Hor ) (P)).
forallp € f*P.

PROOF. Since f*w is the connection form corresponding to the connection
Hor(f*P), then:

Hor,(f*P) = Ker((f*w),) = Ker(wgy © df,)
= df;l(Ker(wf(p))) = dfp_l(HOI'JF(p) (P)),
forallp € f*P. O

LEMMA 2.2.26. Let P, Q) be principal bundles over a differentiable manifold
M endowed with connections Hor(P), Hor(Q), respectively and let ¢ : P — Q
be a connection preserving morphism of principal bundles. If f : M' — M is a
smooth map defined on a differentiable manifold M' and f*P, f*Q are endowed
respectively with the pull-back of Hor(P), Hor(Q) by f then the morphism of
principal bundles f*¢ : f*P — f*Q (recall Example is also connection
preserving.

PROOF. If w”, w? denote respectively the connection forms associated to
Hor(P) and Hor(Q) then the connection form on f*P is (f¥)*w” and the con-
nection form on f*Q@ is (f?)*w?. Denote by ¢y the subjacent Lie group homo-

morphism of ¢ and by ¢ its differential at the identity. Since ¢ is connection
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preserving, ¢*w? = ¢y o w’ (recall part (c) of Lemma[2.2.11). Hence:

(F0)* ((JO) w?) B2 (7P)(9*w?) = (F7)* (@0 0 )
=doo ((f)w). O
LEMMA 2.2.27. Let P, @ be principal bundles over a differentiable mani-
fold M endowed with connections Hor(P), Hor(Q), respectively and denote by
Hor(P * Q) the fiberwise product connection. Let f : M' — M be a smooth
map defined on a differentiable manifold M’ and let f*P, f*Q, f*(P * Q) be en-

dowed respectively with the pull-back of Hor(P), Hor(Q), Hor(P x Q) by f. If
(f*P) % (f*Q) is endowed with the fiberwise product connection then the isomor-

phism of principal bundles (1.3.13) from f*(PxQ) to (f*P)*(f*Q) is connection
preserving.

PROOF. Let A : f*(P x Q) — (f*P) = (f*Q) denote the isomorphism of
principal bundles (1.3.13) and:

pry: PxQ — P, pry : PxQ — Q,
pri  (f*P) % (f*Q) — f*P, pr}: (f*P)x(f*Q) — [*Q,

denote the projections. If w”, w? denote respectively the connection form as-
sociated to Hor(P), Hor(Q) then the connection form of f*(P % Q) is (recall
Proposition [2.2.16)):

(f79)* (priw”, pryw?)
and the connection form of (f*P) x (f*Q) is:

(x) (7). (o) (7)) ).

Since A is an isomorphism of principal bundles whose subjacent Lie group homo-
morphism is the identity, the conclusion will follow if we show that (recall part (c)

of Lemma [2.2.T1):
(2.2.16)

X (o) (7)), (o) ((F2)w?) ) = (F7*9)* (priw”, prisw?).
But (2.2.16)) follows directly from the equalities:
fpopr{o)\:prlofP*Q7 fQoprgo)\:prQOfP*Q.

This conclude the proof. U

2.2.3. Parallel transport. Let Il : P — M be a G-principal bundle endowed
with a connection Hor(P). Given a smooth curve v : I — M then by a parallel
lifting of v we mean a smooth curve v : I — P with Il o 4 = ~ such that
7'(t) € Hors ;) (P), for all £ € I. Recall from Definition E that 7 is a parallel
lifting of ~y if and only if v is a parallel section of II : P — M along ~y. In the
terminology of Definition we say that 7 is a horizontal lifting of ~.

We have the following:
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PROPOSITION 2.2.28. Let Il : P — M be a G-principal bundle endowed with
a connection Hor(P). Given a smooth curve vy : I — M, to € I and p € P,y
then there exists a unique parallel lifting 5 : I — P of v with 4(ty) = p.

PROOF. We have to show that M has the horizontal lifting property for paths
(see Definition [A.5.5); by Lemma it is sufficient to show that for every
smooth local section s : U — P, the open set U has the horizontal lifting property
for paths. To this aim, it is enough to show that for every smooth curve v : I — U,
every to € I and every go € G, there exists a parallel lifting (v, g) : I — U x G of
~ with g(tg) = go, where the trivial principal bundle U x G is endowed with the
connection that makes the isomorphism of principal bundles 35 : U x G — P|y
connection preserving (recall Example[I1.3.10). Let w denote the connection form
of U x (G and let @ be the g-valued 1-form on U that is equal to the pull-back of w
by the section U > z +— (z,1) € U x G; then (recall 2.2.10)):

W(z,q)(v, Xg) = Ady (@x(v) + X),

forallz € U, g € G,v € T, M and all X € g. The curve (v, g) is horizontal if
and only if:

Wino.9(en (V' (1) '(8) =0,
for all ¢ € I; this is equivalent to:

g'(t) = =, (V' (1)) 9(),

forallt € I. The conclusion now follows from Corollary by setting X (t) =
—@y0 (V) € 9. 2

DEFINITION 2.2.29. LetII : P — M be a G-principal bundle endowed with a
connection Hor(P). Given a smooth curve 7y : [a,b] — M and a pointp € P, ), if
4 : [a,b] — P denotes the unique parallel lifting of v with ¥(a) = p then 5(b) € P
is called the parallel transport of p along .

We now prove (for later use) a result concerning the existence of local sections
of a principal bundle that are parallel along “radial curves” issuing from a fixed
point. More precisely, we have the following:

LEMMA 2.2.30. Let Il : P — M be a G-principal bundle endowed with a
connection Hor(P), Z be a real finite-dimensional vector space, Uy be an open
subset of Z which is star-shaped at the origirﬂ U be an open subset of M and
I+ Uo — U be a smooth diffeomorphism. Then, for all p € Py there exists a

smooth local section s : U — P such that S(f(O)) = pand for all z € Z the
curve:

{teR:tzeUp} >t s(f(tz)) € P
is a parallel lifting of the “radial curve” t — f(tz).

IThis means that 0 € Uop and tz € Uy, forall z € Up and all t € [0, 1].
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PROOF. The map:
H:{(zt)e ZxR:tz€Up} > (2,t)— f(tz) € M
is a smooth Z-parametric family of curves (see Definition[A.5.7). For each z € Uy,
let:
{teR:tzeUp) >t H(z,t) €P

be the parallel lifting of ¢ — H (2, t) with H(z,0) = p, whose existence is guaran-

teed by Proposition |2.2.28] By Proposition , the map H is smooth. We claim
that:

(2.2.17) H(ct,z) = H(t,cz),

forallt € R, c € R, 2 € Z with ctz € Up. Namely, for fixed c € R and z € Z,
both curves:

t— H(ct,z), t+—— H(t,c2)
are parallel liftings of t — f(ctz) € M and they assume the same value p att = 0.
The claim follows from the uniqueness part of Proposition [2.2.28] Now the desired
smooth local section s : U — P is defined by:
s(z) = H(1, f (),
for all z € U. We have:

I(s(x)) = H(L, fH(2)) = f(f(2) ==,

and, for all z € Z, the curve:

t— s(f(tz)) = H(1,tz) L=aL H(t,z) e P
is a parallel lifting of ¢ — f(¢z). This concludes the proof. 0

2.3. The generalized connection on the associated bundle

A connection on a principal bundle P induces a generalized connection on all
the associated bundles of P. More precisely, we have the following:

LEMMA 2.3.1. Let Il : P — M be a G-principal bundle and let N be a
differentiable G-space. Consider the associated bundle P X N and denote by
q: Px N — P xqg N the quotient map. Given a connection Hor(P) on P then
there is a unique distribution Hor(P X N) on P xg N such that:

(2.3.1) Horp, ,j(P xg N) = dq(p,,) (Hor,(P) @ {0}),

forallp € P, n € N. Moreover, the distribution Hor(P x g N) is smooth and
horizontal with respect to the projection ™ : P xg N — M, i.e., Hor(P xg N) is
a generalized connection on P xg N.

PROOF. Given g € G, denote by 'yéj : P — P and by 'yév : N — N the
diffeomorphisms given by the action of g on P and on IV, respectively. The action
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of g on the product P x N (recall (1.2.14)) is given by 7;3,1 X yév. We have a
commutative diagram:

PxN
(2.3.2) 7571 Xy PxgN

Px N

Given p € P, n € N, then the differential of 75 _, takes Hor,(P) to Hor,, ;1 (P)
and thus the differential of v, x fyév takes Hor,(P) @ {0} to Hor,, ,—1(P) & {0}.
Differentiating diagram we therefore obtain:

dq ) (Horp(P) & {0}) = ddp.g-1 gy (Horp, g1 (P) & {0}),

proving that Hor(P x ¢ N) is well-defined by equality (2.3.1). The uniqueness
of the distribution Hor(P x N) satisfying (2.3.1)) is obvious. The fact that the
distribution Hor (P x ¢ N) is horizontal follows from the result of Exercise[2.2]and
from the commutativity of diagram (1.4.7). Finally, let us prove that Hor(P x & N)
is smooth. Consider the morphism of vector bundles:

dq:T(P x N) — q*T(P xg N),

defined as in Example Notice that the result of Exercise also says
that the restriction of dq to the vector subbundle Hor(P) @ {0} of T(P x N)
is injective; thus, by Proposition diq(Hor(P) @ {O}) is a vector subbundle
of *T' (P xgN). Let f : A — P x N be a smooth local section of the submersion
g, where A is an open subset of P X N. Since q o f is the identity map of A, we
can identify T'(P X N)|4 with the pull-back f*q*T'(P xg N). Then:

Hor(P x¢ N)NT(P x¢ N)|a = f*dq(Hor(P) & {0})
and hence Hor(P x¢ N) is a subbundle of T'(P x¢g N). O

DEFINITION 2.3.2. The generalized connection Hor(P X N) whose exis-
tence is given by Lemma [2.3.1]is called the generalized connection associated to
the principal connection Hor(P) on P.

LEMMA 2.3.3. Under the conditions of Lemma[l.4.11} assume that P, Q) are
endowed with connections Hor(P) and Hor(Q), respectively and that the associ-
ated bundles P x N, Q Xy N' are endowed with the corresponding associated
connections. If ¢ is connection preserving then also ¢ X k is connection preserv-
ing; conversely, if ¢ X k is connection preserving and if the action of H is effective
on k(N then also ¢ is connection preserving.

PROOF. Denotebyq: PxN — PxgN,q' : Qx N’ — Qx g N’ the quotient
maps. Letp € P, n € N be fixed and set ¢ = ¢(p), n’ = k(n). Differentiating
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(1.4.10), we obtain a commutative diagram:

d¢p®d"‘§n

T,P & T,N T,Q & T,y N'

(2.3.3) dq(pm)l idq/(q,n/)
T; n PxgN)—— > T, n X N/
il (P X6 N) oy o (@ )

If ¢ is connection preserving then the top arrow of (2.3.3)) carries the space Hor,, (P)&®
{0} to Hory (Q)®{0}, so that the bottom arrow of (2.3.3) carries the space Hory, ,, (Px ¢
N) to Horpg (@ X N "); thus, ¢ x k is connection preserving. Conversely, as-
sume that ¢ X & is connection preserving and that the action of H on N’ is effective

on x(N). Let p € P be fixed and set ¢ = ¢(p). The commutativity of diagram

and the fact that ¢ X x is connection preserving imply that:

daf, 1 [dep (Hory (P)) & {0}] = daf, . (Hore(Q) & {0}),
foralln € N, where n’ = k(n). This is equivalent to (see Exercise[2.13)):

(2.3.4) (dd)p (Hor,(P)) @ {0}) + Ker(dq'(g,n"))

= (Hory(Q) ® {0}) + Ker(dg'(g,n")).
Recall from Corollary [I.4.8]that:
(2.3.5) Ker(dq'(¢,n")) = {(X9(q), —XN'(n)) : X € p}.

Choose any ¢ € d¢,(Hor,(P)) and let us show that ¢ is in Horg(Q). Write
¢ = Cn + G, with ¢, € Horg(Q) and ¢, € Very(Q); let X € b be such that
(v = X%(q). We have to show that X = 0. Given n € N then ((,0) belongs to
the lefthand side of (2.3.4)) and thus it belongs also to the righthand side (2.3.4));
thus, by (2.3.3)), there exists ¢’ € Hory(Q) and Y € b with:

(¢;0) = (¢',0) + (Y9(q), YN (")),
so that: )
(=G+X%) = +Y%) and YV(n)=0.
Since ¢y, ¢’ € Hory(Q) and X9 (q), Y¥(q) € Ver,(Q), we have X%(q) = Y?(q)
and therefore X = Y; thus:
XNy = XN (k(n)) =0,
for all n € N. It now follows from Lemma that X = 0. O

COROLLARY 2.3.4. Under the conditions of Lemma[l.4.10} assume that P, Q)
are endowed with connections Hor(P) and Hor(Q), respectively and that the as-
sociated bundles P x g N, Q X g N are endowed with the corresponding associated
connections. If ¢ is connection preserving then also QAS Is connection preserving;
conversely, if the action of H on N is effective then if (5 is connection preserving
then also ¢ is connection preserving.

PROOF. Apply Lemma to the case where & is the identity map of N. [J
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COROLLARY 2.3.5. Let P be a G-principal bundle endowed with connections
Hor(P), Hor'(P) and let N be a differentiable G-space; assume that the action
of G on N is effective. If both connections Hor(P) and Hor' (P) are associated to
the same connection on P X N then Hor(P) = Hor'(P).

PROOF. Apply Corollary with ¢ the identity map of P. (]

Let us show how the covariant derivative of a local section of P x5 IN can
be computed using its representation with respect to a local section of P (recall
(11.4.6)).

LEMMA 2.3.6. Let Il : P — M be a G-principal bundle with connection
Hor(P); denote by w its connection form. Let N be a differentiable G-space
and P xg N be the corresponding associated bundle of P, endowed with the
generalized connection associated to Hor(P). Let s : U — P, e : U — P xg N
be smooth local sections; denote by ¢ and & respectively the representations of €
and of w with respect to s. Given x € U, v € T, M and setting p = s(x), n = é(z)
then the covariant derivative V e is given by (recall Definition[A.2.3):

Ve = dpp[dés (v) + (@2(0)) " ()] € Verp (P xg N).
PROOF. Since € = q o (s, €), we have:

dez(v) = dq(p,n) (dsw(v),déc(v));
writing ds; (v) = Chor + Cver With Chor € Horp(P) and (yer € Ver,(P) then:

(236) dex(v) = dq(p,n) (Chorv O) + dCI(p,n) (Cvera dga: (U))’

and dq(p, ) (Chor, 0) € Horp, (P xg N). Lemma m then implies that the
second term on the righthand side of (2.3.6)) is equal to Py, (dex(v)) and that:

dq(p,n) (Cvera dé, (U)) = dpn [dgl” (U) + xN (n)] ’

where X € g satisfies (ver = dB3,(1) - X. Clearly, X = w;,(ds,(v)) = @,(v). The
conclusion follows. O

COROLLARY 2.3.7. Let 1l : P — M be a G-principal bundle with connection
Hor(P) and denote by w its connection form. Let Ey be a real finite-dimensional
vector space and let p : G — GL(Ey) be a smooth representation of G on Ey;
consider the corresponding associated bundle P X o Ey, endowed with the gener-
alized connection associated to Hor(P). Let s : U — P, e : U — P xg Ey be
smooth local sections and denote by € and & respectively the representations of €
and of w with respect to s. Given x € U, v € T, M and setting p = s(x), then the
covariant derivative V ye is given by:

Ve = pldéz(v) + p(@g(v)) - €(x)] = [p,déx(v) + p(@x(v)) - €(x)],

where p = dp(1) : g — gl(Ey). In particular, if G is a Lie subgroup of GL(FEy)
and p is the inclusion then:

(2.3.7) Ve = p[déz(v) + @ (v) - €(@)] = [p, déx(v) + @z (v) - €(z)].
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PROOF. Follows directly from Lemma (recall also (1.4.5) and Exam-
ple[1.4.9). O

2.4. Connections on vector bundles

Let 7 : E — M be a vector bundle with typical fiber Ey. Recall (see Subsec-
tion[1.5.1) that the set I'( E') of all smooth sections of E is a real vector space and
also a module over the ring C'°°(M) of all smooth real-valued functions on M.

Let X € I'(T'M) be a smooth vector field on M and f € C°°(M ) be a smooth
real valued function on M (or, more generally, f can be a smooth map on M taking
values on a fixed real finite-dimensional vector space). We denote by X ( f) the map
defined by X (f)(x) = df(z) - X(z), forall z € M.

DEFINITION 2.4.1. A connection on the vector bundle F is an R-bilinear map

V:T(TM)xT(E) > (X,e) — Vxe € I'(E)
that is C°° (M )-linear in X and satisfies the Leibnitz rule:
4.1 Vx(fe) = X(f)e+ fVxe,
forall X e I(TM),e e I'(E) and all f € C*(M).

Given € € T'(E), it follows from the C°°(M )-linearity of the map X +— V xe

(see Exercise[I.63)) that for each z € M there exists a linear map:
T.M>v+—— Vye € E,
such that:
Ve = (Vxe)(x),
forall X € I'(T'M ) with X (z) = v. Notice that (2.4.T)) implies:
(2.4.2) Vu(fe) =dfe(v)e(x) + f(x)Vye,
foralle e T(E), f € C*°(M),z € M and allv € T, M.

REMARK 2.4.2. If for every x € M we are given an R-bilinear map:
T,M xT'(E) > (v,e) — Vye € E,

such that (2.4.2)) holds forall e € T'(E), f € C*°(M),z € M,v € T, M and such
that for all X € I'(TM), € € T'(E) the map:

M>zr— Vxpeel
is smooth then clearly there exists a unique connection V on E such that:
(Vxe)(z) = Vx (e,
forall X e I'(TM),e e I'(F)and all x € M.
Using the result of Exercise we can give the following:

DEFINITION 2.4.3. Given a vector bundle 7 : £ — M endowed with a con-
nection V and a smooth section ¢ € I'(F) we define the covariant derivative of
€ to be the smooth section Ve of the vector bundle Lin(7'M, E) that carries each
x € M to the linear map T, M > v — Vye € Ej.
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A connection on a vector bundle £ induces a connection on every restriction
of E to open subsets of the base space. This is the content of the following:

LEMMA 2.44. Let m : E — M be a vector bundle and V be a connection on
E. Given an open subset U of M then there exists a unique connection VU on the
restricted vector bundle E|i; such that:

(2.4.3) VY (ely) = Ve,
foralle e T'(FE) and allv € TM]|y.

PROOF. Let ¢ € I'(E|y), € U be given and choose ¢ € T'(E) such that e
and ¢ are equal on an open neighborhood of = in U (for instance, multiply € by a
smooth real-valued map on M with support contained in U and that is equal to 1
in a neighborhood of z). If V¥ is a connection on E|; satisfying (2.4.3) then the
result of Exercise [2.14]implies that:

(2.4.4) VUe =Vye, veT,M;

this proves the uniqueness of VY. Notice that the result of Exercise also
implies that the righthand side of does not depend on the choice of the
smooth section ¢ € T'(FE) that is equal to € on a open neighborhood of x in U.
Thus, we can use (2.4.4) as a definition for VU¢'. Tt is easily checked that V¥ is
indeed a connection on E/|;; (see Remark . O

From now on, we make the convention of denoting the connection VY defined
by Lemma by the same symbol ¥V used to denote the connection of E, unless
an explicit reference to the open subset U is needed.

EXAMPLE 2.4.5. Let M be a differentiable manifold, Ey be a real finite-
dimensional vector space. In the trivial vector bundle M X Ej there exists a
canonically defined connection that will be denoted by the symbol dl; namely,
identifying T'(M x Ey) with the space of Ey-valued smooth maps on M then
d:T(TM)xT'(M x Ey) — I'(M x Ey) is defined by:

(dixe)(x) = de(x) - X (),
forall z € M, all X € I'(T'M) and every smooth map € : M — Ej.
EXAMPLE 2.4.6. Let 7 : E' — M be a vector bundle with typical fiber Fy and

let s : U — FRp,(E) be a smooth local Ey-frame of E. We define a connection
dI® associated to s on the vector bundle E/|;; by setting:

(2.4.5) (de)(z) = s(x)[déx (X (2))],

foralle € T'(E|y), X € T(T'M|y) and all x € U, where € : U — Ej denotes
the representation of € with respect to s. The connection dI* on E|y is related by
the vector bundle isomorphism § : U x Ey — E|y to the canonical connection
dl on the trivial principal bundle U x Ej (this will be formalized later on, see
Example[2.5.11]).
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REMARK 2.4.7. Given connections V and V' on the vector bundle E then the
map t: T(TM) x T'(FE) — I'(E) defined by:

t(X,e) = Vxe — Ve e I'(E),

forall X € T'(T'M), e € T'(E) is C°°(M)-bilinear. Thus, for each = € M there
exists a bilinear map t, : T, M x E, — E_ such that:

te (X(w), e(m)) =t(X,¢)(x),

forall X € T'(TM), e € T(E) (see Exercise[1.63)); in view of Example [1.6.31 we
can identify t with the smooth section 2 — t,, of the vector bundle Lin(7T'M, E; E).
Recall from Example that the vector bundle Lin(T M, E; E) is identified
with Lin (7'M, Lin(E)) and therefore t is identified with a smooth Lin(E)-valued
covariant 1-tensor field on M. Notice that if V is an arbitrary connection on £ and
t: T'(TM) x I'(E) — T'(E) is an arbitrary C°° (M )-bilinear map then V + t is
also a connection on E.

DEFINITION 2.4.8. Let V be a connection on E and let s : U — FRg,(E)
be a smooth local Ey-frame of E. The Christoffel tensor of the connection V with
respect to s is the C'°° (M )-bilinear map

I':T'(TM|y) xT'(E|ly) — T'(E|y)
defined by I' = V — dI* (recall (2.4.5))).

As in Remark[2.4.7] we can identify the Christoffel tensor I" with a smooth sec-
tion of the vector bundle Lin(T'M |y, E|y; E|y) or with a smooth Lin(E)-valued
covariant 1-tensor field on U C M.

Let us make more explicit the meaning of the Christoffel tensor I' of the con-
nection V with respect to a smooth local Ey-frame s : U — FRp,(E). For all
e e I'(Ely),z € Uandallv € T, M, we have:

(2.4.6) Ve = s(z)(déz(v)) + Tz (v, e(z)),
where € : U — FEj denotes the representation of € with respect to s.
DEFINITION 2.4.9. The curvature tensor of a connection V is the map
R:T(TM)xT'(I'M)xTI'(E) — I'(E)
defined by:
R(X,Y)e=VxVye—VyVxe— Vix,y]€;

forall X,Y € T'(TM), ¢ € T'(E), where [X,Y] € T'(T'M) denotes the Lie
bracket of X and Y.

It is easy to check that the curvature tensor R is C°°(M )-trilinear and thus,
for each z € M, it defines a trilinear map R, : T, M x T, M x E, — E, (see
Exercise [1.63)). Obviously the curvature tensor is anti-symmetric with respect to
its two first variables.
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DEFINITION 2.4.10. Given a connection V on the tangent bundle 7'M, the
torsion tensor of V is the map T : T'(T'M) x T'(T'M) — I'(T'M) defined by:

T(X,Y)=VxY -VyX — [X,Y],
forall X, Y € I'(T'M). More generally, if V is a connection on an arbitrary vector

bundle 7 : £ — M andif ¢ : TM — E is a vector bundle morphism then the
t-torsion tensor of V is the map T* : T'(TM) x T'(T'M) — I'(E) defined by:

TH(X,Y) =Vx(«(Y)) = Vy (X)) —([X,Y]),

forall X,Y € T'(T'M). A connection V on 7'M whose torsion tensor 7" is identi-
cally zero is said to be symmetric.

Clearly, if E = TM and ¢ : TM — TM is the identity then T* = T'. It is easy
to check that the ¢-torsion tensor 7" is C°° (M )-bilinear and thus, for each x € M,
it defines a bilinear map T, : T, M x T,,M — E, (see Exercise[I.63]). Obviously
the (-torsion tensor is anti-symmetric.

2.5. Relating linear connections with principal connections

Let # : E — M be a vector bundle over a differentiable manifold M with
typical fiber Ey and let Hor (FR g, (E )) be a principal connection on the frame
bundle FRg, (F). Such principal connection induces an associated connection
Hor (FREO (E) % E()) on the associated bundle FR g, (E) x Ey (see Section .
The contraction map C¥ (recall (T.5.1)) carries Hor (FR 5, (E) % Eg) to a general-
ized connection Hor(E) on E, i.e., Hor(E) is the unique generalized connection
on E that makes the smooth diffeomorphism C* connection preserving. More
explicitly, Hor(FE) is defined by:

(2.5.1) Hory(,) (E) = dC[; i [Horp,
for all [p, 60] € FREO (E) x Ey.

(FREO (E) X EO)]7

eo]

DEFINITION 2.5.1. Let m : EE — M be a vector bundle over a differentiable
manifold M with typical fiber £ and let Hor (FR £, (E )) be a principal connection
on the frame bundle FR g, (F). The generalized connection Hor(E) on E defined
by (2:51) is called the generalized connection induced by Hor (FRg, (E)).

The generalized connections on the vector bundle E and on the associated bun-
dle FRg,(E) x Ey define covariant derivative operators for smooth local sections
of E and of FRg, (F) x Ey, respectively; let us use the symbol V to denote both
of them. Since C¥ is connection preserving, by Lemma we have:

Ve = dCP [V, ((CF) o e)],

for every smooth local section € : U — E and forallv € T'M|y. Since CF is linear
on the fibers, its differential restricted to a vertical space is just the restriction of
the contraction map C¥ itself; thus:

(2.5.2) Ve =CP[V,((C") o),
forallv € TM|y and all e € T'(E|y).
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Now let s : U — FRp, (E) be a smooth local Ey-frame of the vector bundle F
and let € : U — Ej denote the representation of a smooth local sectione : U — E
of E/ with respect to s; then:

(CE)_l oe=qo(s,é),

where q : FRg, (E) x Ey — FRg,(F) x Ey denotes the quotient map. The
representation of (C¥)~!oe with respect to s is also equal to € (see Example|1.5.10)).

Using equality we obtain:
(2.5.3) Vo((CF) o) = [s(z),déx(v) + @u(v) - E(z)],

forall z € U and all v € T, M, where @ denotes the representation with respect
to s of the connection form w corresponding to Hor (FR £, (E )) From (2.5.2) and

(2.5.3) we get:

(2.5.4) Ve = 5(x) [déz(v) + @z (v) - €(2)],
foralle €e T'(E|y), all z € U and all v € T, M. If we set:
(2.5.5) T2 (v) = Ty (02 (v) = s(2) 0 @0y (v) 0 5(2) ™ € gl(E,),

forall z € U, v € T, M, then formula (2.5.4) becomes (recall (2.4.3)):
Ve =dije + Tz (v) - €(x).

If follows that V is indeed a connection on the vector bundle E and that the
Christoffel tensor I' of V with respect to the smooth local Ey-frame s is given

by (2.5.5). We have proven:

PROPOSITION 2.5.2. Let w : E — M be a vector bundle over a differentiable
manifold M with typical fiber FEy and let Hor (FJ—:{E0 (E)) be a principal connec-
tion on the frame bundle FR,(E); denote by Hor(E) the induced generalized
connection on E. The covariant derivative operator NV corresponding to Hor(E')
is a linear connection on the vector bundle E; moreover, if s : U — FRE, (E) is
a smooth local Fy-frame of E then the Christoffel tensor of V with respect to the
smooth local Ey-frame s and the representation v = s*w of the connection form
w of Hor (FR, (E)) with respect to s are related by equality (2.5.3). O

As a converse to Proposition[2.5.2] we will now show that every linear connec-
tion V on E is induced by a unique principal connection on the principal bundle of
frames of E.

REMARK 2.5.3. If U is an open subset of M and Hor(FRg,(E)) is a con-
nection on FR 5 (E) then we have a corresponding connection Hor (FR g, (E)|v)
on FRE,(E)|uv = FRg,(E|y) (see Example 2.2.8). Clearly, if V is the connec-
tion on E associated to Hor (FR g, (E)) then the connection on E|; associated to
Hor (FRE, (E)|v) is just VY (recall Lemma [2.4.4).

PROPOSITION 2.54. Let m : EE — M be a vector bundle with typical fiber
Ey. For every linear connection V on the vector bundle I there exists a unique
principal connection Hor (FR Eo (E)) on the principal bundle of frames FRg,(E)
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such that V is the covariant derivative operator corresponding to the induced gen-
eralized connection Hor(E) on E.

PROOF. Using the results of Exercises [2.6] [2.15] and Remark [2.5.3] it is easy
to see that it suffices to prove the proposition in the case where the frame bundle
FRE,(F) admits a globally defined smooth local section s : M — FRpg,(E).
Let us therefore assume that such globally defined smooth local section s exists.
Let I" denote the Christoffel tensor of V with respect to s. Given a connection
Hor(FREg,(E)) on FRg, (E) with connection form w, let us denote by @ the rep-
resentation of w with respect to s. Then V is associated with Hor (FR Eo (E)) if and
only if (2.5.5) holds, for all z € M. But (2.5.5) defines a unique smooth gl(Ep)-
valued 1-form on M and Lemma [2.2.10]says that there exists a unique connection
form w on FRg, (F) with @ = s*w. The conclusion follows. O

COROLLARY 2.5.5. Let m : E — M be a vector bundle with typical fiber
Ey. Given a linear connection V on E then there exists a unique generalized
connection Hor(E) on E whose covariant derivative operator is V.

PROOF. The existence follows from Proposition [2.5.4|and the uniqueness fol-
lows from Corollary [2.1.6] keeping in mind the fact that the submersion 7 has the
global extension property (see Exercise|1.62)). U

COROLLARY 2.5.6. Let m : E — M be a vector bundle with typical fiber E.
If Hor(E) is a generalized connection on E whose covariant derivative operator
V is a linear connection on E then there exists a unique principal connection
Hor(FR,(E)) on the principal bundle of frames ¥R, (E) such that Hor(E) is
induced by Hor (FR, (E)). O

The result of Propositions [2.5.2] [2.5.4] and of Corollaries [2.5.5] and [2.5.6] can

be summarized as follows: the set of linear connections on a vector bundle £ is in
one-to-one correspondence with a subset of the set of all generalized connections
on E. Such subset of the set of generalized connections on E is precisely the set
of generalized connections that are induced by principal connections on FRg, (E).
Moreover, there is also a one-to-one correspondence between the set of principal
connections on FR, (E) and the set of generalized connections on £ whose co-
variant derivative operator is a linear connection; in particular, there is a one-to-one
correspondence between the set of principal connections on FR g, (E) and the set
of linear connections on E. From now on, we use such one-to-one correspondence
to identify the set of linear connections on E with a subset of the set of generalized
connections on E.

EXAMPLE 2.5.7. Let M be a differentiable manifold, Ey be a real finite-
dimensional vector space and consider the trivial vector bundle £ = M X Ej.
Its principal bundle of Ejy-frames is the trivial principal bundle:

P =M x GL(Ey).

We claim that the canonical connection dl of E (see Example [2.4.5)) is induced
by the canonical connection of P (see Example [2.2.7). To prove the claim, let
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s : M — P be the smooth section defined by s(z) = (z,1d), where Id € GL(Ep)
denotes the identity map of Ej. Obviously the connection dI* (Example [2.4.6) on
E is the canonical connection of the trivial bundle E. If V is the connection on
E induced by the trivial connection on P then V = dI* + I', where I" denotes
the Christoffel tensor of V with respect to s. We have to check that I' = 0. If
w is the connection form of the trivial connection of P then it is easy to see that
w = s*w = 0 and hence I' = 0, by formula (2.5.5).

LEMMA 2.5.8. Let m : E — M be a vector bundle with typical fiber Ey, V,
V' be connections on E and w, &' respectively be the connections forms of the
corresponding connections on the principal bundle FRg,(E). Set t =V — V'. If
s: U — FRE,(F) is a smooth local section then the diagram:

ol(Ex)

/

TwM Is(ac)

<s*<w%

gl(Eo)

commutes, for all © € U, where t;, : TyM — gl(E;) denotes the map v — (v, -)
and L, denotes conjugation by the linear isomorphism s(z) : By — Ej.

PROOF. Let I', I denote the Christoffel tensors with respect to s of V and V',
respectively. Clearly, t = I' — I". The conclusion is obtained immediately using

25.5). 0

EXAMPLE 2.5.9 (linear connection induced on an associated vector bundle).
Let II : P — M be a G-principal bundle, Ey be a real finite-dimensional vec-
tor space and p : G — GL(FEp) be a smooth representation of G on Ejy, so
that the associated bundle P X FEj is a vector bundle (recall Example |1.5.5).
Given a principal connection Hor(P) on the principal bundle P, we obtain a prin-
cipal connection Hor (FRg, (P x¢ Ep)) on FRp, (P x¢ Eo) by taking the push-
forward (recall Definition of Hor(P) by the morphism of principal bun-
dles 5 : P — FRp,(P x¢ Ep) defined in (I.5.3). The principal connection
Hor (FR £, (P X¢ EO)) therefore induces a linear connection V on the vector bun-
dle P xg Ep.

Notice that the principal connection Hor(P) of P induces an associated gener-
alized connection Hor(P x ¢ Ep) on the associated bundle P x ¢ Ey as explained
in Section 2.3] We claim that V is precisely the covariant derivative operator
of such generalized connection. To prove the claim, we have to check that if
FREg, (P xg Ep) x Ey is endowed with the generalized connection associated
to Hor (FREO(P X EO)) and if P x¢ Ejy is endowed with the generalized con-
nection associated to Hor(P) then the contraction map is connection pre-
serving. But this follows from the observation that the contraction map is
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the inverse of the induced map 9 (recall Example i and from the fact that § is
connection preserving (recall Corollary [2.3.4).

2.5.1. Connection preserving morphisms of vector bundles. Since linear
connections on vector bundles are particular cases of generalized connections then
it makes sense to talk about connection preserving maps between vector bundles
endowed with linear connections (recall Definition [2.1.3]).

LEMMA 2.5.10. Let E, E' be vector bundles endowed with linear connections
V and V', respectively. Let L : E — E' be a morphism of vector bundles. The
following conditions are equivalent:

(a) L is connection preserving,

(b) Vi (Loe)= L(Vye), forallv e TM and all e € T'(E).

Moreover, if E and E' have the same typical fiber Ey and if L is an isomorphism
of vector bundles then (a), (b) are also equivalent to:

(¢) the morphism of principal bundles L, : FRg,(E) — FRg,(E’) is con-
nection preserving, where FRg, (E) and FR g, (E") are endowed with the
unique principal connections that induces the linear connections V and
V', respectively.

PROOF. The equivalence between (a) and (b) follows from the equivalence
between (a) and (d) in Lemma [2.1.5] by observing that the projection of a vector
bundle has the global extension property (see Exercise[I.62). To prove the equiv-
alence between (a) and (c), consider the commutative diagram (1.5.6). Since the
contraction maps C¥ and C’ are connection preserving diffeomorphisms, it fol-
lows that L is connection preserving if and only if f; is. Finally, since the action
of GL(Ep) on Ej is effective, it follows from Corollarythat L, is connection
preserving if and only if L, is. (]

EXAMPLE 2.5.11. Letm : E — M be a vector bundle with typical fiber E
and s : U — FRE, (F) be a smooth local Ey-frame of E. The corresponding trivi-
alization § : U x Ey — E|y is a vector bundle isomorphism (see Example ;
if the trivial vector bundle U x Ej is endowed with its canonical connection dl (see
Example [2.4.5) and E|y; is endowed with the connection dI* (see Example [2.4.6)
then $ is connection preserving.

EXAMPLE 2.5.12. Let 7 : EE — M be a vector bundle with typical fiber Ey
endowed with a connection V and let s : U — FRp,(E) be a smooth local Ey-
frame of E. Denote by w the connection form of the connection on FRg, (E)
associated to V and set w = s*w. Then w is a smooth Lin(Ejy)-valued covari-
ant 1-tensor field on U that can be identified with a C°°(U)-bilinear map from
I'(TM|y) xT(U x Ey) toT'(U x Ep) (recall Examples|1.6.31|and|1.6.33)). If E|y
is endowed with the connection VY and the trivial vector bundle U x Ej is endowed
with the connection dl + @ then it follows from (2.5.4) that the local trivialization
5:U x Ey — E|y is a connection preserving vector bundle isomorphism.

EXAMPLE 2.5.13. Let # : EE — M be a vector bundle with typical fiber
Ey endowed with a linear connection V; denote by Hor (FR Eo (E)) the principal
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connection on the frame bundle FR g, (F) that induces V. As explained in Exam-
ple the principal connection Hor (FRE0 (E )) induces a linear connection on
the fiber product FR g, (E') % Ep; moreover, such linear connection is the covariant
derivative operator of the generalized connection induced by Hor (FR Eo (E)) on
the fiber product FRg, (E) x Ej (as explained in Section 2.3). The contraction
map C¥ : FRg,(E) x Ey — F is therefore a connection preserving isomorphism
of vector bundles (by the very definition of the relation between Hor (FR Eo (E))
and V).

EXAMPLE 2.5.14. Let P be a G-principal bundle over a differentiable man-
ifold M, Ej be a real finite-dimensional vector space, p : G — GL(Ep) be a
smooth representation, E be a vector bundle over M with typical fiber Ey and
¢ : P — FRE,(F) be a morphism of principal bundles whose subjacent Lie group
homomorphism is the representation p. If P is endowed with a principal connec-
tion Hor(P), FR, (E) is endowed with the principal connection Hor (FRg, (E))
obtained by push-forward of Hor(P) by ¢, E is endowed with the linear connec-
tion induced by Hor(FRE, (E)) and if P x Ej is endowed with the linear con-
nection induced by Hor(P) (as explained in Example[2.5.9) then the ¢-contraction
map C? : P xg Ey — E (see Definition is a connection preserving iso-
morphism of principal bundles. Namely, C? is the composition of quS and C¥ and
both of them are connection preserving isomorphisms of vector bundles (see Corol-

lary and Example [2.5.13).

2.6. Pull-back of connections on vector bundles

Let 7 : E — M be a vector bundle with typical fiber Ey. Let f : M’ — M
be a smooth map defined in a differentiable manifold M’. Given a connection V
on F, then the pull-back of V by f is a connection f*V on the pull-back vec-
tor bundle f*E defined as follows; let Hor (FREO(E)) be the connection on the
principal bundle of Ey-frames of E associated to V (Proposition [2.5.4). Consider
the pull-back Hor(f*FRg,(E)) of the connection Hor (FRp, (E)) by f (recall
Definition 2.2.22). Since the principal bundles f*FRp,(E) and FRg, (f*E) are
identified with each other, Hor (f*FRp, (E)) is a connection on FR, (f*E); the
connection f*V on f*FE is the connection associated to Hor ( f*FRE, (E))

EXAMPLE 2.6.1. Let m : E — M be a vector bundle with typical fiber Ej
endowed with a connection V. If U is an open subset of M and i : U — M
denotes the inclusion map then, identifying i* E with E|y as in Example [1.5.20]
the pull-back i*V is equal to the connection V¥ (see Lemma M This follows

from Remark [2.5.3|and Example [2.2.23]

EXAMPLE 2.6.2. Let m : EE — M be a vector bundle endowed with a connec-
tion Vand let f : M’ — M, g : M"” — M’ be smooth maps, where M’, M" are
differentiable manifolds. Recall from Example [I.5.21] that we have identified the
vector bundles ¢* f*E and (f o g)* E. It follows directly from Example 2.2.24|that:

(fog)'V=g"(f"V).
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The connection f*V defines a horizontal distribution Hor(f*E) on f*E. The
horizontal distributions Hor(f*E) and Hor(E) are related by the following:

LEMMA 2.63. Let m : E — M be a vector bundle and f : M' — M be a
smooth map defined in a differentiable manifold M'. Let V be a connection on E
and let Hor(E), Hor(f*E) be the horizontal distributions defined by V and f*¥V
respectively. If f : f*E — E denotes the map defined in Subsectionm then:

Hor.(f*E) = df, ' (Hory (E)),
foralle € f*E.
PROOF. Consider the quotient maps:
q:FRg,(E) x Eg — FREg,(E) x Ey,
qr : FRE,(f*E) x Ey — FRE,(f*E) x Eo.
We have a commutative diagram:

fx1d

FREO(f*E) X EO FREO(E) X Eo

2.6.1
( ) Cm A

/ f

where we have denoted by £ also the map from:
FRp, (f*E) = [*FRg, (E)

to FRE,(E) defined in Subsection Let e € f*E be fixed. Choose a
pair (p,eg) in FRE, (f*E) x Ey with (C/"F o q)(p,e0) = e, so that (C¥ o
q4)(f(p),e0) = f(e). Recall from (2:3:1) and (2:5.1) that:

Hor,(f*E) = (€7 © 4)(p,cq) (Hory (FRi, (£ ) & {0}

E
Hor o (B) = d(C” 0 0) 7o) (Hor ) (R, (B)) & {0}).
Differentiating diagram (2.6.1)), we obtain:

(2.6.2)

df,®ld
T,FRp, (f*E) ® Eg ——— Ty, FRE, (E) ® Ey
(2.6.3) d(cf*quf)(,,ml J{d(Cqu)(f_(P)»ﬁo)
T.(f*E) 7 Tie P
By Lemma[2.2.25] we have:

(dfp e 1d)~! (Horf(p) (FRE,(E)) & {0}) = Hor, (FRE, (f*E)) @ {0}.

Applying the result of Exercise 2.18]to diagram (2.6.3), keeping in mind (2.6.2)),
we obtain:

Hor.(f*E) C dfe_l(Horf(e)(E)).
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Since df, carries Ver.(f*E) isomorphically onto Ver F(e)(E), we have:

df ! (Hor ) (E)) N Ver(f*E) = {0}.
The conclusion now follows from the result of Exercise 2.3 O
COROLLARY 2.6.4. Under the hypotheses of Lemma lete : U — FE
be a smooth local section of E along f defined in an open subset U' of M' and

let € : U — f*E be the smooth local section of f*E such that ¢ = f o € (recall
diagram (1.5.7)). Then, for everyy € U', v € T,M', we have:

(f*v)v € = Pver (dﬁ(y) : U) € Ef(y)7
where pyey : TE — Ver(E) denotes the vertical projection determined by the
horizontal distribution Hor(E).

PROOF. Let ple; : T (f*E) — Ver(f*FE) denote the vertical projection deter-
mined by the horizontal distribution Hor(f*E). We have (recall (2.1.2)):

(f*V)o € = ple (de(y) - v).
Lemma implies easily that:

dfo p\]:er = Pver © d.f
The conclusion follows by observing that for all e € (f*E), = Ey(,), the restric-
tion to Vere(f*E) = Ey(,) of dfe is just the identity map of Efy).- O

Motivated by Corollary [2.6.4 we give the following:

DEFINITION 2.6.5. Let 7w : E — M be a vector bundle and f : M’ — M be a
smooth map defined in a differentiable manifold M’. Let V be a connection on E.
Given a smooth local section € : U’ — E of F along f defined in an open subset
U’ of M', we set:

V€ = Prer (de(y) : U) € Ef),
forally € U, v € T,M’', where pyer : TE — Ver(E) denotes the vertical
projection determined by the horizontal distribution defined by V.

Corollary says that if € : U’ — f*FE is the smooth local section of f*F
such that f o € = e then:

Vye = (f*v)v €,
forallv € TM'|¢.

LEMMA 2.6.6. Let 7 : E — M be a vector bundle and f : M' — M be a
smooth map defined in a differentiable manifold M'. Let € : U — E be a smooth
local section of E defined in an open subset U of M and consider the smooth local
sectioneo f: f~Y(U) — E of E along f. Forally € f~*(U) and all v € T, M,
we have:

VU(E of)= vdfy(v)e-
PROOF. We compute:

VU(E ° f) = pver(d(6 ° f)(y) ’ 1}) = Pver (df(f(y)) : (dfy(v))> = vdfy(v)f' U
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REMARK 2.6.7. Lemmal[2.6.6]says that if e : U — E is a smooth local section
of £ and if € : f~Y(U) — f*E is the smooth local section of f*E such that
fo&=eo f then:

(f*V)pe= Vdfy(v)67
forall y € f~1(U) and all v € T, M’. Such property actually completely char-
acterizes the connection f*V. This follows from the result of Exercise by
observing that for all y € M’ and all e € (f*E), there exists smooth local sec-
tionse: U — E,é: f~Y(U) — f*E with foé=eo fand é(y) = e.

2.7. Functorial constructions with connections on vector bundles

Let § : Lec" — Yec be a smooth functor. Let EY, ..., E™ be vector bun-
dles over a differentiable manifold M with typical fibers Eé, ..., E{; recall from
Section that we have defined a vector bundle F(E1, ..., E™) over M with typ-
ical fiber ﬁ(Eé, ..., Eg). Given connections Vi, ...,V"on E', ..., E" respec-
tively, we will now define a naturally induced connection V = F(V!,..., V") on
S(EY ..., E™).

Fori=1,...,n,let Hor(FR B (E")) be the connection on the principal bun-
dle of Eé—frames of E* associated to V* (Proposition . Consider the fiberwise
product:

(2.7.1) FRpi (E') % - % FRpg (E").

endowed with the fiberwise product of the connections Hor(FREé (EZ)) i =
1,...,n (recall Definition 2.2.17). We define V = F(V?,...,V") to be the
connection on F(E*, ..., E™) induced by the push-forward of the connection on

(2.7.1) by the morphism of principal bundles (I.6.6) (recall Definition|2.2.14). If w
is the gl( E})-valued connection form of Hor (FREé (E")) andwis the gl(F(E, . .., EY))-

valued connection form of the connection on the principal bundle FR B}, ED) (5 (B, ..., E"))
associated to F(V1,..., V") then:
(2.7.2) F'w=fo (priw',...,priw"),

where f denotes the differential of the smooth functor § (recall (1.6.2)), pr;, i =
1,...,n, denote the projections of the fiberwise product (2.7.1) and the map § that

appears in (2.7.2) is the morphism of principal bundles (1.6.6). Formula (2.7.2)
follows immediately from Lemma [2.2.TT|part (c) and from Proposition[2.2.16]

EXAMPLE 2.7.1. Let M be a differentiable manifold and let EJ, ..., E} be
real finite-dimensional vector spaces; consider the trivial vector bundles:

E'=MxE), i=1,...,n,
endowed with their canonical connections V¢ (see Example EI) Let § be a
smooth functor from Pec" to Vec. Recall from Example(1.6.10that F(EY, ..., E™)
is identified with the trivial vector bundle E = M X §(Ey, . .., EJ). We claim that
(V1L ..., V™) is the canonical connection of the trivial vector bundle E. Namely,
the connection V' is associated to the trivial connection on the trivial principal
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bundle FREé(Ei) = M x GL(E}), i = 1,...,n (see Example ; also, the
fiberwise product connection on is the canonical connection of the trivial
principal bundle M x (GL(Ej) x --- x GL(Eg)) (see Example . The
map is identified with the product of the identity map of M by the map
(T6.7); thus, as observed in Example 2.2.12] when M x GL(§(E},..., Ey)) is
endowed with its canonical connection, the map (1.6.6) is connection preserving.
This proves the claim.

PROPOSITION 2.7.2. Under the hypotheses of Proposition if the vec-

—1 = . . .
tor bundles EY, E~, ..., E", E" are endowed respectively with connections Vi
=1 = . . . ; .
V,....V" V" and if the isomorphisms of vector bundles L' are connection pre-
serving then the isomorphism of vector bundles § (L',... L") is also connection

preserving, when the vector bundles F(E*, ..., E"), E(El, ..., E") are endowed

respectively with the connections F(V1,... V") and ﬁ(ﬁl, A AL

PROOF. We can assume without loss of generality that E(i) = Eé, for all
1 = 1,...,n; the formal justification of this claim is obtained from the results
of Exercises[I.61}[1.68]and [2.19] Consider the following commutative diagram:

FRy(gy....ip) (B(E", - E")) —>FRgn oy (S(E'.....E"))

((RAAE]

FRpi (EB') % - x FRpg (E") —— FR (E'

LlsxL?

)* cee *FRES(ETL)

The vertical arrows of the diagram are connection preserving, by the definition of
F(VL,..., V") and 5(?1, ..., V™). Since the vector bundle isomorphisms L
are connection preserving, then also the bottom horizontal arrow of the diagram

is connection preserving, by Lemma [2.5.10] and by Corollary 2.2.20] Then the
dotted arrow is connection preserving and hence, by Corollary [2.2.15] also the top

horizontal arrow is connection preserving. ([
COROLLARY 2.7.3. Let n > 1 be fixed and let § : Lec" — Yec be a
smooth functor. Let EY ..., E™ be vector bundles over the differentiable mani-

fold M with typical fibers E&, .., By Let st ..., s™ be smooth local sections of
FRp (EY), ..., FRpn (E™) respectively, defined in an open subset U of M. If, for

i=1,...,n, V* denotes the connection associated to s* as in Examplethen

1 ny . . .
S(VE,...,V*") is the connection associated to s = F o (s',..., s™).

PROOF. For i = 1,...,n, the local trivialization §° : U x Eé — EYyisa
connection preserving vector bundle isomorphism, when U x Ej is endowed with

its canonical connection and Ei|U is endowed with V' (see Example|2.5.11)). We
have 5 = F(5',...,5") (Example|1.6.17) and thus  is connection preserving when
U x §(E}, ..., EY) is endowed with its canonical connection and:

SE,...,EMv =5Ey,...,E"v)
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is endowed with the connection § (Vsl ..., V*") (see Example|2.7.1|and Proposi-
tion[2.7.2)). The conclusion follows.

PROPOSITION 2.7.4. Under the hypotheses of Proposition|1.6.15, if V1, ...,
V'™ are connections on E', ..., E™ respectively then:

(GoF)(VEH ...,V =8(F (VH....,V™), ..., (V! ..., V™).

PROOF. For ¢ = 1,...,m, let FRE(Z-J (E?) be endowed with the connection
associated to V¥ and let:
(2.7.3) FRpi (E') %--- % FRpgp (E™)

be endowed with the fiberwise product connection. As in the proof of Proposi-

tion[1.6.13] we set:
FI=§/(EY ... EDY, j=1,...,n, G=@(F', ... F").

If FRp; (5 (ES,- .. ,E(’]n)) is endowed with the connection associated to the con-

nection F(V1, ..., V™) then the morphism of principal bundles (T.6.10) is con-
nection preserving. Thus, if:

FRp (§H(EY, ..., E™)) - xFRpn (§"(E",...,E™))
is endowed with the fiberwise product connection then the morphism of principal
bundles:

FRpi (E') - x FRpp (E™)
=33
FRp (§'(EY,...,E™)) %% FRpn (§"(E", ..., E™))

is connection preserving, by Lemma [2.2.19| If FR((& o §)(E',...,E™)) is
endowed with the connection associated to:

(2.7.4) S(FH V. V™)L (VL V)

then the morphism of principal bundles is also connection preserving. This
implies that the composition (1.6.12)) is connection preserving, which shows that
the connection on FR¢ ((& o §)(E', ..., E™)) associated to is the push-
forward by & o § of the connection on (2.7.3). This concludes the proof. g

PROPOSITION 2.7.5. Under the hypotheses of Proposition let V' be a
connectionon E*, i = 1,...,n. If f*§(E, ..., E") is endowed with the connec-
tion f*§(VL,...,V") and F(f*E", ..., f*E") is endowed with the connection
S(f*VL, .., f*V") then the vector bundle isomorphism is connection

preserving.

PROOF. We will show that the arrows § and f*§ in the commutative diagram

(1.6.17) are connection preserving and this will imply (see Corollary [2.2.15) that
also ((1.6.14) is connection preserving. By Lemma [2.5.10} (1.6.13) is connection
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preserving if and only if is connection preserving. The fact that the ar-
row § in is connection preserving is just the definition of the connec-
tion F(f*V1L, ..., f*V"). The fact that the arrow f*F in is connection
preserving follows from the fact that is connection preserving and from
Lemma The reader should observe that in this argument we have implic-
itly used that the identification between the principal bundles (1.6.15) and (1.6.16)

made in the proof of Proposition is also connection preserving; this is proved
in Lemma ]

COROLLARY 2.7.6. Let n > 1 be fixed and let § : Vec" — Vec be a smooth
functor. Let E', ..., E™ be vector bundles over the differentiable manifold M
endowed with connections V1, ..., V", respectively. If U is an open subset of M
then (recall Lemma|2.4.4)):

F((VHY,..,(v)Y) =F(V,... . v
PROOF. Simply apply Proposition to the inclusion map f : U — M of

Uin M. O

PROPOSITION 2.7.7. Letn > 1 be fixed and let § : Lec" — Vec be a smooth
functor. Let E L .., E™ be vector bundles over a di]ferentiable manifold M with
typical fibers Eé, o, By Fori=1,...,n, let Vi, V' be connections on E* and

consider the C°° (M )-bilinear map t = V' — V' : T(T M) x T'(E*) — T'(E") as

in Remark[2.4.7) For eachi =1,...,n, eachx € M and each v € T;;M, denote

by t.(v,-) € gl(EL) the linear map given by e — t..(v, e). Set:
V=3§V',...,V"), V=g§V..., V",

andt =N — V. Then:

t(v, ) = F(th (v, ), ..., (v, ")) € gU(S(EL, ..., ED)),
forall x € M and all v € T, M, where § denotes the differential of the smooth
functor § (recall (1.6.2)).

PROOF. Let w’ (resp., @') denote the connection form of the connection in
FREé(EZ) associated to V* (resp., to V*), i = 1,...,n, and let w (resp., &) denote
the connection form of the connection in:

(2.7.5) FRyp . oy (S(E', ..., E"))

-----

associated toV (resp., to 6). Let z € M be fixed and choose smooth local sections
s U — FREé(E’), i =1,...,n, where U is an open neighborhood of z in M.

Then (s!,...,s") is a smooth local section of 2.7.1) and s = F o (s},...,s")isa
smooth local section of (2.7.3). Using (2.7.2)), we compute:
s*w = (51, S (Fw) = (st ... ,3")*@0 (priw’, ... ,pr;‘;w"))
=fo ((s',.... ") (priw'), ..., (s' ..., ") (priw™))

=fo ((s")wh ..., (") w");
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similarly:
s*o=fo ((s")@,....(s")a"),
so that:
(2.7.6) s*(w—a) =fo ((s")*(w!' =@, ..., (s") (W —a")).
Lemma|2.5.8|implies that:
(2.7.7) Ty [((8) (@' = &%) (v)] = (v, ") € gl(EL),
forallve T, M,i=1,...,n; similarly:
(2.7.8) Ty [(s"(w — @) (v)] = ta(v,-) € gl(B(EL, ..., EY)),

for all v € T, M. The conclusion follows from (2.7.6), (2.7.7) and (2.7.8) by
applying the result of Exercise m to the isomorphisms s'(z) : Ej — E., i =
1,...,n. [l

COROLLARY 2.7.8. Let n > 1 be fixed and let § : Vec" — Vec be a smooth
functor. Let E, ..., E™ be vector bundles over the differentiable manifold M with

typical fibers E}, ..., EJ. Let s', ..., s be smooth local sections of the principal
bundles FR o (EY), ..., FRESL(E”) respectively, defined in an open subset U of

M. Let VY, ..., V" be connections on EY, e E"™, respectively and denote by I
the Christoffel tensor of V' with respectto s',i = 1,...,n. Ifs = Fo (s',...,s")
and I is the Christoffel tensor of § (Vl, ..., V™) with respect to s then:

Ty(v,) = f(Th(v,),. ... [2(v,")),
Jorall x € U and all v € T, M, where | denotes the differential of the smooth
Sfunctor § (recall (1.6.2)).

PROOF. Simply observe that IV = Vi — V', i = 1,...,n, and that:
3V, V) =,
by Corollary O

Recall that we have shown in Proposition that smooth natural transfor-
mations between smooth functors induce smooth fiber-preserving maps between
vector bundles; now we show how to compute the covariant derivative of such
maps.

PROPOSITION 2.7.9. Under the hypotheses of Proposition let the vec-
tor bundles E, ..., E™ be endowed with connections V3, ..., V"; set:
V=3V, ...,V"Y, V =¢WV. .. V.

Ifthe vector bundles §(E*, ..., E™) and &(E', ... E™) are endowed respectively
with the connections NV and ' then the map N E1,... En IS connection preserving. In
particular, by Lemmam given a smooth local section € : U — &(El, ..., E™)
with image contained in Dom(Npg1  gn) then forall x € U, v € T M, we have:

(279) V;(WEQ”E” o 6) = dealc:vE;TcL (6(1‘)) . VUG.
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Moreover, if N is linear then N1 pn is a connection preserving morphism of
vector bundles, i.e.:

VMg, pro€) =Ng1  pn(Vee),
forallx € Uandallv € T, M.

PROOF. Follows directly from the commutativity of diagram (1.6.20)), keeping
in mind that CS, C® are connection preserving isomorphisms of vector bundles (Ex-
ample|2.5.14) and that Idp X Mg En is connection preserving (Lemma 2.3.3).

L]

EXAMPLE 2.7.10. Let E', E? be vector bundles over a differentiable mani-
fold M endowed with connections V!, V2. If § denotes the functor defined in

Example[1.6.11|then F(E', E?) = E' @ E% and
V=vev:¥gv vy

is a connection on E' @ E? called the direct sum of the connections V! and V2.
Given a smooth local section:

€= (e1,60): U — E' @ E?

then:

VUE = (V,},El, vgeg),
for all v € T'M. Namely, by applying Proposition [2.7.9] to the linear smooth
natural transformations 91, fIIQ defined in Example [1.6.20| we conclude that the
projections E' @ E? — E', i = 1,2 are connection preserving vector bundle
morphisms; thus, the i-th coordinate of Ve is equal to Vig;.

EXAMPLE 2.7.11. Let E, E’ be vector bundles endowed with connections V,
V' and consider the connections Ling(V, V') and Lin} (V, V') induced respec-
tively on the vector bundles Lin (E, E'), Linj (E, E’). If B is a smooth local sec-
tion of Linj, (E, E’) then the covariant derivatives of B with respect to Ling (V, V')
and Lin} (V, V') coincide. Namely, the inclusion map:

Lin},(V, V') — Ling(V, V")

is a linear smooth natural transformation and thus, by Proposition [2.7.9] the inclu-
sion map of Liny (E, E') into Lin} (E, E') is a connection preserving vector bundle
morphism. A similar statement holds with Linj, replaced with Linj.

EXAMPLE 2.7.12. Let E', ..., E*, F be vector bundles over a differentiable
manifold M endowed with connections V!, ..., V¥, V' respectively. Consider
the induced connection:

V = Lin(V%,..., Vv

on the vector bundle Lin(El, ..., E" F). Given a smooth section B of the vector
bundle Lin(El, ..., E¥ F') and a smooth section €' of the vector bundle E* for
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i=1,...,k then:
(2.7.10) VI (B(€',...,é") = (VuB)(e', ... ")
+ B(Vie, . .. ")+ 4+ B(e, ..., VFeh),

for all v € T'M. Namely, consider the natural transformation 91 defined in Exam-

ple[I.6.31} we have:
B(e', ... e = Npg1_grero (B, e, ),
and therefore, using Proposition we get:
VE(B(e',....€) =VE M prpo(Be,...,))
B Fy (B(:U), el(x), . ,ek(aj)) - (VyB, Vquel, e Vﬁek)
= (VoB)(e}, ..., ")+ B(Viel, ... ")+ -+ B(, ..., VEeH).
Observe that can be used as a formula to compute V, B.

REMARK 2.7.13. Let E, F' be vector bundles over a differentiable manifold M
endowed with connections V¥, V', respectively. If L is identified with a smooth
section of Lin(F, F') then it follows directly from formula (2.7.10) that:

(2.7.11) (VxL)(e) = VK (L(e)) — L(V&e),
for all X € T'(TM), e € T'(E), where V = Lin(V¥, VF). Tt follows that L is
connection preserving if and only if the section z +— L, of Lin(E, F') is parallel.

REMARK 2.7.14. Let E be a vector bundle over a differentiable manifold M
and let V!, V2 be connections on E with V2 — V! = . If L : E — FE is
the identity map and V = Lin(V!, V?) then formula implies that the
covariant derivative of L (seen as a section of Lin(F)) is given by:

VL =+t
EXAMPLE 2.7.15. Let EL, ..., E*, F, F’ be vector bundles over a differen-

tiable manifold M endowed with connections V!, ..., V¥, V¥ and V" respec-
tively. Consider the induced connections:

V =Lin(V',..., V& V), vV =Lin(V,..., V5 V),
V" = Lin(VF, v,
onLin(E', ..., EF; F), Lin(E",..., E*; F") and Lin(F, F') respectively. Given

a smooth section B : M — Lin(E',..., E*; F) and a vector bundle morphism
L: F — F' then:

V(Lo B)=(ViyL)oB(z)+ Ly oV,B,

forall x € M, v € T, M, where, as usual, L is identified with the smooth section
x +— Ly of Lin(F, F'). Namely, consider the natural transformation 91 defined in
Example|1.6.32f we have:

LoB= mEIW.’Ek’F’F/ o) (L, B),



2.7. FUNCTORIAL CONSTRUCTIONS WITH CONNECTIONS ON VECTOR BUNDLES 137

and therefore, using Proposition we get:
V;J(L oB)= V;J (mElEkFF/ o (L, B))
Ek F. F! (L:m B(x)) -(VyL,V,B)
(VyL) o B(z) + Ly 0 VB,

forallz € M and allv € T, M.
REMARK 2.7.16. In Example [2.7.15] if the vector bundle morphism L is con-

nection preserving then:
V,(LoB)=L,oV,B,
forall x € M and all v € T, M (see Remark|[2.7.13).

2.7.1. Covariant exterior differentiation of vector bundle valued forms. If
EY, ..., E*, F are vector bundles over a differentiable manifold M endowed with
connections and if B is a smooth section of the vector bundle Lin(El, ..., E* F)
then the covariant derivative V B is a smooth section of the vector bundle:
(2.7.12) Lin(TM,Lin(E', ..., EF; F)).

Recall from Example that we identify the vector bundle (2.7.12) with the
vector bundle Lin (7'M, E' ... EF, F'). Notice that, given a smooth section B of
Lin(E',..., E¥; F) then:

VB(X,e1,...,ex) = (VxB)(e1,...,€x),
forall X € T(TM), e; € T(EY), ..., ¢ € T'(E"). In particular, if E is a vector
bundle over M and if both E and T'M are endowed with connections then for every

smooth E-valued covariant k-tensor field B on M the covariant derivative VB is
a smooth E-valued covariant (k + 1)-tensor field on M.

LEMMA 2.7.17. Let m : E — M be a vector bundle endowed with a connec-
tion V¥ and let V, V' be symmetric connections on T M ; we also denote by V and

V' the induced connections on the vector bundle Linj,(T'M, E). Given a smooth
E-valued k-form ¢ on M then:

Alt((VO)(z)) = Alt((V'0)(2)),
forallx € M.

PROOF. Set t = V — V/; since both V and V' are symmetric, then also t
is symmetric. Using Proposition and the computation of f done in Exam-

ple[I.6.14] we obtain:
(vvg - V{UE)(Ul, ce 7Uk) = [i(t(vv ')a 0) : ém] (Ub s 7Uk)
(2.7.13) = —Ex(t(v,vl),vg, e vk) — = Ez(vl, Vo, ... ,t(v,vk)),

for all v,vy,...,vx € T, M and all x € M. Since the ¢-th summand in (2.7.13)) is
symmetric in v and v;, its alternator vanishes (see Remark|A.3.2). The conclusion
follows. (]

In view of Lemmal|2.7.17] we can give the following:
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DEFINITION 2.7.18. Let # : E — M be a vector bundle endowed with a
connection and let £ be a smooth E-valued k-form on M with values on E. The
covariant exterior differential of ¢ is the smooth E-valued (k + 1)-form on M
defined by:

(DO)(z) = % Alt((Vf)(x)),
for all z € M, where V denotes the connection induced on Lin? (7'M, E) by the
given connection on £ and by an arbitrarily chosen symmetric connection on 7M.

EXAMPLE 2.7.19. Let M be a differentiable manifold and E be a real finite-
dimensional vector space. A (smooth) k-form on M taking values in the trivial
vector bundle M x FEj is the same as a (smooth) Ey-valued k-form on M. If
M x Ej is endowed with the canonical connection dl then the exterior covariant
derivative of a smooth k-form on M taking values in M x FEjy coincides with its
standard exterior derivative.

PROPOSITION 2.7.20. Let E, F' be vector bundles over a differentiable mani-
fold M endowed with connections, L : E — F' be a vector bundle morphism and
l be a smooth E-valued k-form on M. Then:

D(Lol)=VLAl+LoDe,

where VL is seen as a Lin(E, F')-valued 1-form on M and the wedge product
V L N £ is taken with respect to the obvious bilinear pairing:

Lin(E,, F,) x E, — F,.
In particular, if L is connection preserving then (see Remark|2.7.13)):
D(Lo¥)= LoDt

PROOF. We compute (see Example [2.7.15):

(Vo (Lo ) (v, ..., 0%41)
= (VL) o ly(va,...,v0p41) + Ly o (Vi 0)(v2y .oy Vkt1),

forall z € M and all vy,...,vgy1 € T, M. The conclusion follows by taking
alternators on both sides of the above equality. (]

COROLLARY 2.7.21. Let E be a vector bundle over a differentiable manifold
M endowed with connections V', V?; set t = V? — V1. Given a smooth E-valued
k-form ¢ on M, we denote by D'/ the exterior covariant derivative of { associated
to V' i =1,2. Then:
D% =D+ tA,

where tis seen as a Lin(E)-valued 1-form.

PROOF. Apply Proposition[2.7.20|with L the identity morphism of F, keeping
in mind Remark 2.7.14 O

EXAMPLE 2.7.22. Let 7 : E — M be a vector bundle with typical fiber Ey
and let ¢« : TM — FE be a morphism of vector bundles. We identify ¢ with a
smooth section of Lin(7'M, E'), which is a smooth E-valued 1-form on M. Given
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a connection V¥ on E and an arbitrary connection VM on T'M then, by (2.7.11),
we have:
(VO(X,Y) = (Vxo)(Y) = VR (((Y)) = «(VXY).

If VM is symmetric then:
DL(X7 Y) = (VL> (X7 Y) - (VL)(Ya X)
= VX (1Y) = V¥ (X)) = VXY = V' X)
= VX (((Y)) = VT (X)) = o([X,Y]),
proving that the covariant exterior differential D¢ is the ¢-torsion tensor of V.
DEFINITION 2.7.23. Let 7 : E — M be a vector bundle and ¢ be an E-valued
k-form on M. Given a differentiable manifold M’ and a smooth map f : M’ — M

then the pull-back of £ by f, denoted by f*/, is the f*FE-valued k-form on M’
defined by:

forally € M.
More explicitly, f*¢ is given by:

(f*é)y(vh R ,’Uk) = ff(y) (dfy(’l)l), ceey dfy(vk)) S Ef(y) = (f*E)y,

forally € M and all vy, ..., v, € T,M'.
Clearly f*{ is smooth if £ is smooth.
We have the following:

LEMMA 2.7.24. Let m : EE — M be a vector bundle endowed with a connec-
tion V and { be an E-valued k-form on M. Let f : M' — M be a smooth map
defined in a differentiable manifold M’ and let the vector bundle f* E be endowed
with the pull-back connection f*V. Then:

D(f*¢) = f*DL.
PROOF. g

COROLLARY 2.7.25. Let m : E — M be a vector bundle endowed with a
connection V, v : TM — E be a vector bundle morphism, M' be a differen-
tiable manifold and f : M' — M be a smooth map. Consider the vector bundle
morphism i/ : TM' — f*FE defined by:

— «—
' =1vodf = (f"1)odf.
If T" denotes the -torsion of the connection V and if T denotes the !'-torsion of
the connection f*V then:

Ty =dfyTi
forall y € M'; more explicitly:
T, (v,w) = T}(y) (dfy(v),dfy(w)) € B = (f*E)y,
forally € M’ and all v,w € T,M'.

y)?
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PROOF. If the vector bundle morphism is identified with a E-valued 1-form
on M and the vector bundle morphism /' is identified with a f* E-valued 1-form
on M’ then:

= f*.

The conclusion follows from Lemma|2.7.24|and from Example[2.7.22 U

2.8. The components of a linear connection

Let 7 : E — M be a vector bundle and let E', E? be vector subbundles
of E such that £ = E' @ E? (see Remark [1.6.30); denote by pr; : B — E1,
pry : B — E? the corresponding projections. If V!, V2 are connections on E'!
and E? respectively then the direct sum of V! and V2 (recall Example is
the unique connection V on E such that:

(2.8.1) Vxe = V(pry oe€) + Vi (pryoe),

forall X € I'(T'M) and all € € I'(E). Not every connection V on E is a direct
sum of connections on E! and E2. Given a connection V on E, we set:

V%{Q =pryoVxe € 1"(E1)7
V3es = pryo Vyey € T(E?),
al'(X,e) = pr; o Vxey € T(EY),
o*(X,e1) = pryo Vxe € T'(E?),

2.8.2)

forall X € T'(TM) and all ¢; € T'(E'), € € T'(E?). Clearly V! and V? are
connections on E' and E?, respectively. Moreover, o', a2 are C°°(M)-bilinear
and therefore (see Exercises|[I.63]and they can be identified respectively with
smooth sections:

o' e T(Lin(TM,E* EY)), o € T(Lin(TM, E'; E?)).

The maps V!, V2, al, o? defined in (2.8.2)) are collectively called the components
of the connection V relatively to the direct sum decomposition £ = E'@® E2. Con-
versely, given connections V!, V? respectively on E' and E? and given smooth
sections o € T'(Lin(TM, E% E')), o® € T'(Lin(TM, E'; E?)) then there ex-
ists a unique connection V on F whose components are Vi, V2 ol and o?;
namely, V is given by:

(2.8.3) Vxe= Ve +al (X, e) + Vier + (X, e),
forall X € T'(TM),e € I'(E), where €, = pr; o € and €2 = pry o €.

PROPOSITION 2.8.1 (generalized Gauss, Codazzi, Ricci equations). Let 7 :
E — M be a vector bundle, E*, E? be vector subbundles of Ewith & = El'e E?
and V be a connection on E; denote by VY V2 ol and o the components of V.
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If R, R', R? denote respectively the curvature tensors of ¥V, V' and V? then:
(2.8.4)

pry (Re(v,w)er) = Ry (v, w)er + ag (v, a2 (w, e1)) — ol (w, o2 (v, €1)),
(2.8.5)
pry(Re (v, w)ez) = R2(v,w)es + o2 (v,ozglc(w, e2)) — o? (w, ol (v, €2)),

forallz € M, e; € E% ey € Eg and all v,w € T, M. Moreover, given a connec-

tion VM on T M with torsion T and denoting by V® the induced connections on
Lin(TM, E?; EY) and on Lin(TM, E*; E?) then:

2.86) pry(Re(v,w)er) = (VEa?) (v, w,e1) — (VPa?),(w, v, e1)
o —I—ai(Tx(v,w),el),
2.87) pr; (Rx(v,w)eg) = (V2al), (v, w, e2) — (VPal),(w, v, e2)
o + ai(Tx(v,w),eg),

forallr € M, e; € Ei, ey € E:% and all v,w € T, M.

PROOF. A straightforward computation. (]

Equation (2.8.4) is called the generalized Gauss equation, (2.8.3) is the gener-
alized Ricci equation and (2.8.6) and are the generalized Codazzi equations.

EXAMPLE 2.8.2. Let 7 : E — M be a vector bundle, E', E? be vector
subbundles of E with E = E!' @ E? and V be a connection on F; denote by Vi,
V2, a! and o the components of V. Assume that we are given a vector bundle
morphism ¢; : TM — E' and denote by « : TM — E the composition of ¢; with
the inclusion map of E' in E. The ¢-torsion 7" of V is easily computed as:

(2.8.8) T (v,w) = T4 (v,w) + a? (v, 11(w)) — o? (w,t1(v)),

forall x € M, v,w € T, M, where T denotes the ¢{-torsion of V'. Notice that
T" = 0 if and only if 7** = 0 and for all x € M, the E%—valued bilinear map

a2 (-, 11-) on T, M is symmetric.

EXAMPLE 2.8.3. Let 7 : E — M be a vector bundle and consider the Whitney
sum £ = TM @ FE. Let @ be a connection on £ with components VM VE o€
I'(Lin(TM,TM; E)), o € T'(Lin(TM, E;TM)), where VM is a connection
on TM and V¥ is a connection on E. Denoting by ¢ : TM — E the inclusion
map, formula becomes:

Tr(v,w) = (Téw(v,w),ax(v,w) — ax(w,v)),

forall x € M, v,w € T, M, where T" denotes the ¢-torsion of ¥V and TM denotes
the torsion of V. Notice that 7* = 0 if and only if both the connection V¥ and
« are symmetric.
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2.8.1. Connections compatible with a semi-Riemannian structure. Let 7 :
E — M be a vector bundle endowed with a semi-Riemannian structure g €
I'(Lin3(E, R)). A connection V on E is said to be compatible with g if Vg = 0.
Using the condition Vg = 0 is equivalent to:

(2.3.9) X (g(e1,e2)) = g(Vxer, e2) + g(e1, Vxea),

forall X € I'(T'M) and all €1, 2 € T'(E).

If g is a semi-Riemannian structure on a vector bundle £ then two subbundles
E', E? of E are said to be orthogonal with respect to g if g, (eq,e2) = 0, for all
x € M, e; € EL, e5 € E2. Observe that if E = E' @ E? with E', E? orthogonal
subbundles of E then, for ¢ = 1,2, the restriction of g to E' is a semi-Riemannian
structure on E°.

LEMMA 2.84. Let m : E — M be a vector bundle endowed with a semi-
Riemannian structure g, E', E? be orthogonal vector subbundles of E with E =
E' ® E? and ¥ be a connection on E; denote by V', V2, o' and o the compo-
nents of V. Then V is compatible with g if and only if the following conditions
hold:

(1) V'is compatible with ¢', i = 1,2, where g' denotes the semi-Riemannian
structure on E' obtained by restriction of g;

2) gx(ag(v,el),eg) + gx(el,a;(v,eg)) =0 forallz € M, v € T, M,
e1 € EL eq € B2

PROOF. It is a straightforward computation using (2.8.9), (2.8.2) and (2.8.3).
O

Condition (2) on the statement of Lemma [2.8.4] can be written as:

(2.8.10) ay(v) = —a2(v)*,

T

forall z € M, v € T, M, where o} (v) € Lin(E2, E}) is the linear map ey
al(v,ez), a2(v) € Lin(EL, E2) is the linear map e; +— a2(v,e;) and the star
denotes transposition with respect to the nondegenerate bilinear forms g} and g2.

Thus, if £ = E' @ E? is a g-orthogonal direct sum decomposition, in order to
describe the components of a connection V on E which is compatible with g, one
has only to specify connections V!, V2 on E!, E? respectively compatible with
g%, g% and a smooth section o of Lin(T'M, E'; E?). The components a! of V
is then obtained by (2.8.10). Thus, when dealing with a connection V compatible
with a semi-Riemannian structure, we call V!, V2 and a2 the components of V
with respect to the decomposition £ = E! @ E2.

Let us take a look at the generalized Gauss, Codazzi and Ricci equations for a
connection V compatible with a semi-Riemannian structure g. First, we observe
that the Codazzi equations (2.8.6) and (2.8.7) are equivalent to each other. Namely,
by the result of Exercise forall zx € M, v,w € T, M, the linear operator
R, (v, w) on E is anti-symmetric; thus, the linear map:

b1y (Ra(v,w)|p1) « By — B
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is equal to minus the transpose of the linear map:
pry (Re(v,w)|g2) : B — Ey.

Moreover, using (2.8.10), it follows that for all x € M, v,w € T,M, the linear
map:

(VPal),(v,w) : E? — E!
is equal to minus the transpose of the linear map:

(V2a?),(v,w) : B — E2.
Thus equation is obtained from (2.8.6) by taking transpositions on both
sides. Observe also that the generalized Ricci equation (2.8.5]) can be rewritten as:
(2.8.11)  pryo Ry(v,w)|gz = R2(v,w) + o (w)a?(v)* — a®(v)a®(w)*.

Notice that both sides of (2.8.11) are anti-symmetric linear operators on E2. Thus,
if the fibers of E? are one-dimensional, it follows that the generalized Ricci equa-
tion is trivial in the case of connections compatible with a semi-Riemannian metric.

DEFINITION 2.8.5. Let (M, g), (M, j) be semi-Riemannian manifolds. By an
isometric immersion of (M, g) into (M, g) we mean a smooth map f : M — M
such that:

(2.8.12) 9f(z) (dfx(v), dfx(w)) = gz (v, w),

forallz € M,v,w € T, M.
Clearly every isometric immersion is a smooth immersion.

EXAMPLE 2.8.6. Let (M, g), (M, g) be semi-Riemannian manifolds and f :
— <— J—
M — M be an isometric immersion. The map df : TM — f*T'M is an injective

morphism of vector bundles and therefore its image ((ﬁ (T'M) is a vector subbundle
of f*T'M that is isomorphic to 7'M . We denote by f the orthogonal subbundle

— J—

of df (TM) in f*T M (see Exercise | and we call it the normal bundle of the
«—

isometric immersion f. It follows from (2.8.12)) that d f (7'M ) is nondegenerate for

g and therefore:

(2.8.13) FTM = df(TM) & f.

Let V denote the Levi-Civita connection of (M, g) (see Exercise and con-
sider the pull-back connection f*V. The components of f*V relatively to the
direct sum decomposition (2.8.13) are denoted by V, V+, o, where V is a con-
nection on E" (TM), V* is a connection on f* and « is a smooth section of
—
Lin(TM,df(TM); f+). By Lemma V is compatible with the semi-Riemannian
structure of E" (T'M) obtained by restricting g; moreover, setting 1y = ch :
™M — ch(TM), L= éff : TM — f*T'M then, since the (-torsion of f*V
is zero (Corollary 2.7.25)), it follows from Example [2.8.2]that the ¢;-torsion of V is

zero. Thus, using ¢ to identify 7'M with Eﬁ (T M), it follows that V is precisely
the Levi-Civita connection of (M, g); namely, V is symmetric and compatible with

g. Again using ¢; to identify T'M with E" (T'M), we see that the component « of
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[*V is identified with a smooth section of Ling(T'M, f+). Since the ¢-torsion of
f*V is zero, it follows from Example that « is actually a smooth section
of Liny(TM, f1), i.e., for every x € M, ay : ToM x T,M — f;- is a sym-
metric bilinear form. We call « the second fundamental form and V- the normal
connection of the isometric immersion f.

2.9. Differential forms in a principal bundle

Let IT : P — M be a G-principal bundle endowed with a connection Hor(P);
denote by w the connection form of Hor(P), which is a 1-form on P taking values
in the Lie algebra g of G. Given a (possibly vector-valued) smooth differential
k-form A on P, we denote by d\ its (standard) exterior differential, which is a
smooth (k + 1)-form on P (taking values in the same vector space as \).

DEFINITION 2.9.1. Let A be a (possibly vector-valued) smooth k-form on P.
The covariant exterior differential of \ is the (k + 1)-form D on P (taking values
in the same vector space as \) defined by:

DXp(Cts- - Chr1) = A (Pror(C1), - - -, Phor (1)) 4
forallp € Pandall (1, ..., Cp+1 € T, P.

Clearly the covariant exterior differential of a smooth k-form on P is a smooth
(k + 1)-form on P.

LEMMA 29.2. Let P be a G-principal bundle endowed with a connection
Hor(P), Ey be a real finite-dimensional vector space and p : G — GL(Ey)
be a smooth representation of G on Ey. If X\ is a smooth p-pseudo G-invariant
differential form on P then its covariant exterior differential DX is also p-pseudo
G-invariant.

PROOF. Letg € G,p € Pand (i,...,(rt1 € T, P be fixed. Using the result
of Exercise [2.8] we compute:

(')’; DA)p(Ciy- -+ 5Cht1) = DApg(Ci- gy Cht1 - 9)
= dApg (Pror(C1-9), - s Phor (Crr1 - 9))
= dApg (Pnor(C1) - 95+ -+ Pror(Chy1) - 9)
= (75 dN)p (Pror (C1): - - -+ Phor(Ch41))
= (dy; A)p (Pror(C1), - - - Phor(Crs1))
=d(p(g) "o )\)p(Phor(Cl), - Phor(Cet1))
=p(g)"" - ANy (Phor(C1), - -+, Pror (Cit1))
= p(9) " DA, -+ Crp)- O

DEFINITION 2.9.3. The curvature form of the connection Hor(P) is the g-
valued smooth 2-form on P defined by:

Q) = Duw.
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DEFINITION 2.9.4. A (possibly vector-valued) differential k-form A on P is
said to be horizontal if:

)‘p(Ch e 7C1€) = Oa

forallp € P, (1, ..., ¢x € T, P, provided that at least one of the vectors (; is in
Ver,(P).

EXAMPLE 2.9.5. The covariant exterior differential of a smooth differential
form A on P is always horizontal, even if A is not horizontal. In particular, the
curvature form of a connection is always horizontal.

Given a G-principal bundle II : P — M then, since we are given a smooth
right action of G on P, one can define for every A in the Lie algebra g the smooth
vector field A” € T'(TP) on P induced by A (recall Definition |A.2.3). Clearly
Ag € Ver,,(P) and:

(2.9.1) wp(AL) = A,
forallp € P.

LEMMA 2.9.6. Let Il : P — M be a principal bundle endowed with a con-
nection Hor(P). Given a vector field X on M then for every g € G the horizontal
lift XPor js vg-related to itself, i.e.:

Xhor(p . g) — Xhor(p) g,
forallp € P.

PROOF. Since Hor(P) is G-invariant X" (p) - g is in Hory.,(P); moreover,
the result of Exercise[I.42]implies that:

dIIp.g (Xhor(p) -g) = dII (Xhor(p)) = X (I(p)).
This proves that X" (p - g) = X" (p) - g. 0

COROLLARY 2.9.7. Let 1l : P — M be a G-principal bundle endowed with a
connection Hor(P). Given a vector field X on M and A € g then:

[AP,Xhor] = 0.

PROOF. The flow of A" at time ¢ is equal to Yexp(ta), for all ¢ € R. The
conclusion follows. U

PROPOSITION 2.9.8. The curvature form 2 is given by:
(2.9.2) Q=dw+iwAw,

where the wedge product is considered with respect to the Lie bracket of g. More
explicitly, (2.9.2) means that:

(2.9.3) Qp(C1, C2) = dwp(Cr, G2) + [wp(Cr), wp(C2)],
forallp € Pandall ¢,(2 € T,P.

PROOF. Since both sides of equality (2.9.3) are bilinear and antisymmetric in
((1, C2), it suffices to verify the equality in the cases:
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(@) C1,¢2 € Hory(P);
(b) ¢1 € Hory(P), (2 € Very(P);

(©) C1,G2 € Very(P).

Equality (2.9.3) is obvious in case (a). To prove the equality in case (b), let X
be an arbitrary smooth vector field on M such that X (TI(p)) = dII,(¢1) and set

A = w((2) € g; clearly X" (p) = ¢; and AT (p) = (5. Using Cartan’s formula
for exterior differentiation we compute:

dw(Xhor,AP) — Xhor(w(AP)) _ AP(W(Xhor)) _ w([Xhor’AP]).
Since w(AF) is a constant map (see (2.9.1)) and w(X"°") = 0, then:
dw(X"r, AP) = —w([x"r, A7),

Moreover, by Corollary [Xhor  AP] = 0 and thus dw,((1, ) = 0. Clearly
all the other terms in equality (2.9.3) are also equal to zero, proving the equality in
case (b). To prove the equality in case (c), set A; = w((;) € g, so that AF (p) = ¢,
1 = 1, 2. Using again Cartan’s formula for exterior differentiation, we obtain:

de(Ch CQ) = —Wp ([Afv Ag]l’)
By the result of Exercise [AP AP] = [Ay, A9)F, so that:

dwp (€1, G2) = —[A1, Ag] = —[w(C1), w(C2)],
proving equality in case (c). O

Let Ey be a real finite-dimensional vector space and let p : G — GL(E)y) be
a smooth representation of G on Ey. Consider the associated bundle P x g Ej.
Let ¢ be a k-form on M with values on the vector bundle P x g Ey. We define an
Ey-valued k-form X on P by setting:

(2.9.4) Mp(Clo s Ge) =D £y (ATT(C)s - - -, dITL(Gk)) € Eo,

forall x € M and all p € P,. Clearly A is horizontal and it is smooth if ¢ is
smooth. We claim that A is p-pseudo G-invariant. Let p € P and g € G be given
and set ¢ = p - g. We compute:

(Ve Np(Crse 3 Ge) = Ag(Cv 9o, G- 9) =G La(Crye o )
= p(g)_l : )‘p(gla e aCk‘)a

where in the second equality we have used the result of Exercise [[.42] and in the
last equality we have used that § = p o p(g) (recall (I.2.17)).

DEFINITION 2.9.9. Let £ be a P x ¢ Ey-valued k-form on M. The Ey-valued
k-form A defined by (2.9.4), forall p € P and all (1, ..., € TP, is called the
differential form associated to {.

LEMMA 2.9.10. Let 11 : P — M be a G-principal bundle, Eqy be a real finite-
dimensional vector space and p : G — GL(Ey) be a smooth representation of G
on Ey. Let A\ be an Eqy-valued horizontal p-pseudo G-invariant k-form on P. Then
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there exists a unique P X ¢ Eg-valued k-form £ on M such that \ is associated to
L Ifs: U — P is asmooth local section then the following equality holds:

(2.9.5) [s(x), (s"N)z(v1, ... vp)] = La(v1, - 0k),
forallx € Uand all vy, ... v, € T, M. Moreover, £ is smooth if \ is smooth.

PROOF. Givenx € M, vy,...,v; € T, M, we set:
(29.6) Ly(v1,...,v5) =P Ap(Crse vy ) = [, Ap(Cas -+, )] € Py X Eo,

where p is arbitrarily chosen in P, and the vectors (1, ...,(; € T),P are chosen
with dII,((;) = vi, @ = 1,...,k. We have to check that the righthand side of
(2.9.6) does not depend on the choices of p and (1, ..., (;. Independence of the
choice of the (;’s amounts to proving that:

)\p(<17- . an) = )‘P(Cl + Alv S 7Ck +Ak)7

where A1, ..., A € Very(P) are vertical; this follows immediately from the mul-
tilinearity of A, and from the horizontality of A. Once the independence of the
(;’s has been established, the independence of the p will follow once we prove the
equality:

(297) (j )\q(Cl *g,.. '7Ck g) :ﬁ )‘p(Cb .. '7Ck)7

where ¢ = p - g (recall from Exercise that dII,(¢; - g) = dIL,(G) = v,
fori = 1,...,k). To prove we use ¢ = p o p(g) (recall (T.2.17)) and the

p-pseudo G-invariance of A as follows:

G- A(CLegs - G- 9) =q- (g Ap)(C1s -5 G
= (qop(g)il) ')‘p(€1>"'7<.k) :ﬁAp(Claagk)

Obviously equality is equivalent to A being associated to ¢ (equality (2.9.4)),
so that /¢ is indeed the unique P X g FEjy-valued k-form on M such that A is as-
sociated to ¢. If s : U — P is a smooth local section then equality is
proven by taking p = s(x) and (; = ds,(v;), i = 1,...,k, in (2.9.6), keeping
in mind that dIT,,) (dsx(vi)) = v;. Now assume that A\ is smooth. The map
§:U x Eg — (P|y) X¢ Ey defined in (1.4.2) is an isomorphism of vector bundles
(see Example|1.5.14) and therefore / is smooth if and only if 5§ ! o/ is smooth (see
Example|1.6.32). The smoothness of § ! o £ is proven by observing that equality
(2.9.3) is the same as:

§71ol=s"\ O

REMARK 2.9.11. Let II : P — M be a G-principal bundle and p : G —
GL(Ey) be a smooth representation. Let A be a horizontal p-pseudo G-invariant
k-form on P and £ be a P x ¢ Ey-valued k-form on M. If every point of M is in the
domain of a smooth local section s : U — P such that equality (2.9.5)) holds then
£ is associated to \. Namely, if ¢’ is the P x g Ey-valued k-form on M associated
to A then equality (2.9.5)) holds with ¢ replaced with ¢'. Thus, £|; = ¢'|y.
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LEMMA 2.9.12. Let P be a G-principal bundle endowed with a connection
Hor(P), Ey be a real finite-dimensional vector space and p : G — GL(Ey) be
a smooth representation of G on Ey. If \ is a smooth horizontal p-pseudo G-
invariant differential form on P then its exterior covariant derivative is given by:

(2.9.8) DA=dA+wA,

where w denotes the g-valued connection form of Hor(P) and the wedge product
is taken with respect to the bilinear pairing:

gx Ey> (X,e) — p(X) e,
and p = dp(1) : g — gl(Ep).

PROOF. Formula (2.9.8) is equivalent to:

(299) DAP(Cﬂv"‘agk) = dAp(COvCla“ka)
1
+o5 2. 580(0) 2(@n(Co©)) - Moy Catry),

0ESK+1

for all p € P and all (p,...,(r € T,P. By multilinearity, it suffices to prove
formula when each (; is either horizontal or vertical. If all the (;’s are
horizontal, the equality is obvious. Assume that at least two of the (;’s are vertical,
say (o and ;. Clearly, both the lefthand side and the sum on the righthand side of
(2.9.9) vanish; we have to check that, in this case, also the term with d\ vanishes.
Set A; = wy(¢;) € gand Z; = AZP, so that Z;(p) = (;, for i = 0,1. Choose
arbitrary smooth vector fields Z; on P with Z;(p) = (;, fori = 2,... k. Using
Cartan’s formula for exterior differentiation (A.3.2), it is clear that d\(Z, . .., Zy)
vanishes; namely, since Zy, Z; and [Zy, Z1] are vertical and ) is horizontal, all the
terms in the righthand side of Cartan’s formula vanish. Now assume that exactly
one of the (;’s is vertical; by antisymmetry, we may assume that (j is vertical. Set
Ay = wp(Co) € 9, 2o = AOP; fori = 1,...,k, let X; be a smooth vector field
on M with X;(II(p)) = dIL,({;) and set Z; = XP°". Then Z;(p) = ¢, for all
1 =0,..., k. Using again Cartan’s formula for exterior differentiation, keeping in
mind Corollary and the fact that )\ is horizontal, we obtain:

AN Zo, ..., Zy) = Zo(M(Z1, ..., Zy)).
Since Z is vertical, in order to compute Zo (A(Z1, ..., Z;)) (p), it suffices to con-

sider the restriction of A(Z1,. .., Z) to the fiber P,, where x = II(p). Denoting
by f : P, — FEj such restriction, we obtain:

dAp(Cos - -+ Gk) = dfp(Co) = dfp(dBp(1) - Ao) = d(f © Bp)(1) - Ao.
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But:

pg( ( ) Xhor( 9))

(foBp)(g)=f(p-g9)=A
)‘pg(X "(p)-g Xhor( ) - g)
A
= (

pg(Cl g?"'JCk'g)
’7; ) (Cla---v(k)
p(g) )‘p(Cl""vgk))

for all g € G therefore:

(2.9.10) d/\p(C(), e 7<k> = d(f o ﬂp)(l) A = —ﬁ(A()) . )\p(cl, ceey Ck)

Now let us compute the sum on the righthand side of (2.9.9); clearly, all the terms
of that sum vanish, except for those with (0) = 0. Such terms are all equal to
p(Ao) - Ap(Cis - - ., Ci) and therefore their sum is equal to k!p(Ag) - A\p(Cis - -, Ci)-
Using (2.9.10), we conclude that the righthand side of (2.9.9) Vanlshes Obviously
also the lefthand side of (2.9.9) vanishes and the proof is complete. ]

REMARK 2.9.13. Let 7 : £ — M be a vector bundle with typical fiber Ejy
endowed with a connection V and let Hor (FREO (E )) be the corresponding con-
nection on the principal bundle of frames FRg, (E). Let p : GL(Ey) — GL(Ep)
be the identity map. A horizontal p-pseudo GL(Ep)-invariant differential form
A on FRE,(E) is associated to a unique differential form ¢ on M with values in
FRE,(E) x Eo. By composing ¢ with the contraction map C¥, we obtain a differ-
ential form C¥ o £ on M with values on E. In this situation, we will also say that
X and CF o ¢ are associated.

More generally, let P be a G-principal bundle over a differentiable manifold
M, let Ej be a real finite-dimensional vector space, let p : G — GL(Ep) be a
smooth representation and let ¢ : P — FRpg,(E) be a morphism of principal bun-
dles whose subjacent Lie group homomorphism is the representation p. We have
then an isomorphism of vector bundles (recall Deﬁnition C? from P x¢ Ey
to E. A horizontal p-pseudo invariant differential form A on P is associated to a
unique differential form £ on M with values in P X Ey. By composing ¢ with the
¢-contraction map C?, we obtain a differential form C? o £ on M with values on E.
In this situation, we will also say that A and C? o £ are associated. A few particular
situations where this occurs are presented in Remarks [I.6.1]and [1.6.9]

DEFINITION 2.9.14. Let M be a differentiable manifold and consider the
GL(R"™)-principal bundle FR (7' M) of frames of 7M. The identity map of 7'M
can be identified with a 7'M -valued smooth 1-form on M the canonical form 6
of FR(T'M) is the R™-valued smooth 1-form on FR(7'M) that is associated to
the identity map of T'M. More generally, let 7 : E — M be a vector bundle
with typical fiber Ey and let ¢ : TM — FE be a morphism of vector bundles. We
can identify ¢ with a smooth F-valued 1-form on M. The ¢-canonical form 6" of
FRE, (E) is the Ep-valued smooth 1-form on FR g, (E) that is associated to .

More explicitly, we have:
(2.9.11) 0,(¢) = p~ ' (dIL,(¢)) € R,
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forall p € FR(T'M), ¢ € T,FR(T'M) and, more generally:

045(¢) = p~ " (1z - dIIL(Q)) € Ey,
forallz € M, p € FREg,(E,), ¢ € T,)FRE,(F). Notice thatif s : U — FRg, (F)
1s a smooth local section then:
(2.9.12) (5%6"), = s(x) ' o1y : TuM — Ej,

for all x € U; namely, if I : FRg,(E) — M denotes the projection then the
composition dII,,) o ds, is the identity map of T M.

DEFINITION 2.9.15. Let M be a differentiable manifold and consider the
GL(R™)-principal bundle FR(T'M) of frames of TM. The torsion form © of
FR(T M) is defined by:

O = D6.
More generally, let m : E — M be a vector bundle with typical fiber Ey and let
¢ : TM — E be amorphism of vector bundles. The ¢-torsion form ©' of FRg, (E)
is defined by:

0" = D"
Observe that by (2.9.8) we have:
(2.9.13) 0'=d0" +w A6,

where the wedge product is taken with respect to the obvious bilinear pairing of
g[(Eo) and Eo.

The curvature tensor R of a connection V on a vector bundle 7 : E — M can
be identified with a smooth gl(E)-valued 2-form on M. We have the following:

LEMMA 2.9.16. Let 1 : E — M be a vector bundle with typical fiber E
endowed with a connection V. The curvature form ) corresponding to the con-
nection on the principal bundle of frames FR g, (E) is associated to the curvature
tensor R; more explicitly:

(2.9.14) po (€1, G) op ™t = Ry (I, (1), dIy(¢2)) € Lin(E,),
forallz € M, p € FRE,(Ey), (1, (2 € TyFRE,(E), where

II:FRE,(E) — M
denotes the projection.

PROOF. Let s : U — FRp,(E) be a smooth local section and set w = s*w,
Q = s*Q. Keeping in mind equality (2.9.5) and Remark [2.9.13] we see that the
proof will be concluded once we show that:
s(z) o (Qu(v,w)) o s(z) ™" = Ry(v,w),

forall z € U and all v,w € T, M. Let X,Y € I'(TM|y) and € € T'(E|y) be
fixed; denote by € : U — Ej the representation of ¢ with respect to s. We have to
show that:
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for all x € U. We compute R(X,Y )e using as follows; the representation
of Vy e with respect to s is given by:

Y(Ee)+w()-e
Therefore, the representation of V x Vy€ with respect to s is equal to:
(2.9.15) X(Y () +X (@(Y))-e4+a(Y)-X (&) +&(X)-Y (&) + (&(X)ow(Y))-&.
Similarly the representation of VyV x e with respect to s is equal to:
(2.9.16) Y (X (€))+Y (0(X))-e4@(X)-Y () +@(Y) X (&) +(w(Y)ow(X)) ¢,
and the representation of V| y)e with respect to s is equal to:
(2.9.17) [(X,Y](6) + @([X,Y]) - &

Hence, using (2.9.13)), (2.9.16), (2.9.17) and Cartan’s formula for exterior differ-
entiation (A.3.3), we obtain that the representation of R(X,Y")e with respect to s
is equal to:

do(X,Y) e+ [0(X),0(Y)]e=Q(X,Y) &
The conclusion follows. [l

PROPOSITION 2.9.17. Let 11 : P — M be a G-principal bundle endowed with
a connection, Ey be a real finite-dimensional vector space and p : G — GL(Ey)
be a smooth representation of G on Ey. Assume that the vector bundle P x g Ey
is endowed with connection defined in Example If 0 is a smooth P x ¢ FEy-
valued k-form on M and X is the associated Fy-valued k-form on P then the
covariant exterior differential D\ is associated to the covariant exterior differential

De.

PROOF. Let s : U — P be a smooth local section. Then, equality (2.9.5)
holds. We have to prove that (see Remark [2.9.TT):

(2.9.18) [s(z), (s*DA)z(v1, ..., vp41)] = Dly(v1, ..., vk+1),
forall z € U and all vy,...,vx11 € T, M. Define $ : P — FRg, (P xg Eo)
as in (I.5.3)) and set s; = $) o s, so that § = §; (see (1.5.5)). Let w denote the g-
valued connection form of the connection of P and let w’ denote the gl( Ey)-valued
connection form of the connection of FRg, (P x¢ Ep). Since $) is connection
preserving, we have:
5")*(4), — ﬁ o (,U,
where p = dp(1) : g — gl(Ep) (see (c) of Lemma2.2.11)). Setting @ = s*w then:
siw ="' = s"(pow) =pow.
By Example [2.5.12] the vector bundle isomorphism:
S1: U x E() — (P|U) XGEQ

is connection preserving if the trivial vector bundle U x Ej is endowed with the
connection d + sjw’ = dl + p o w, where the gl(Ey)-valued 1-form p o @ on U is
identified with the C'*°(U)-bilinear map:

L(TM|y) xT(U x Ep) 2 (X,€) — (pow(X))(e) € T(U x Eyp).
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Set { = 5;1 ol = 571 o/; by (2.9.5), we have ! = s*\. Denote by D/ the
exterior covariant derivative of the Fy-valued k-form ¢ associated to the connection
dl 4+ p o @ on the trivial bundle U x Ej; since §; is connection preserving, by

Proposition we have:
(2.9.19) 50Dl =3 0Dl =D/,
Moreover, by Corollary and Example
DI =dl+ (pom) AL,
where the wedge product is taken with respect to the obvious bilinear pairing of
gl(Ep) with Ey. If we consider the bilinear pairing of g with Ey given by:

gx Ey> (A,e)— p(A)-e€ Ey
then (50 @) Al =& AL, so that:
Di=dl+wAlL.
Taking the pull-back by s on both sides of and using that s*\ = ¢ we obtain:
sSDA=dl +w AL,

so that:
s*DX = D/,
and, by (2.9.19):
50 DA =D,
proving (2.9.18). This concludes the proof. O

COROLLARY 2.9.18. The t-torsion form ©" is associated to the i-torsion ten-
sor T*; more explicitly:
(2.9.20) p(05(¢1,¢2)) = T (dIL,(¢1), AL, (G2)) € B,
forallz € M, p € FRg,(Ey), ¢1,¢ € Ty)FRE, (E), where
II:FREg,(E) — M
denotes the projection.

PROOF. Follows immediately from Proposition[2.9.17|and from Example[2.7.22]
([l

2.10. Relating connections with principal subbundles

Let IT : P — M be a G-principal bundle endowed with a connection Hor(P).
Let H be a Lie subgroup of G and let () C P be an H-principal subbundle of P. It
may be the case that the distribution Hor(P) is tangent to the submanifold Q of P;
in this case (and only in this case), the restriction of Hor(P) to @ is a connection
on the H-principal bundle Q. If Hor(P) is tangent to (), we say that the connection
Hor(P) is compatible with the subbundle ). Let us take a look at the general case.
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Denote by w the connection form of Hor(P). For each x € M and each p € P,,
the map:

(2.10.1) (A, wp) : TP 5 ¢ — (dI,(¢),wp(¢)) € TuM @ g
is an isomorphism; namely we have a direct sum decomposition
T, P = Hor,(P) & Ver,(P),

the map dII, sends Hor,(P) isomorphically onto 7;;M and the map w, sends
Ver,(P) isomorphically onto g (recall that the restriction of w,, to Ver,(P) is the
inverse of the canonical isomorphism (1.3.3))). If the connection Hor(P) is com-
patible with subbundle @) then, for all p € (@), the space T},() corresponds via
(2.10.1) to the space T, M @ h (see Exercise[2.23). In the general case, we wish to
define a tensor that measures how much (dIl,, w,)(7,Q) deviates from T;,M @ b.
We have the following:

LEMMA 2.10.1. Let Il : P — M be a G-principal bundle endowed with
a connection Hor(P), H be a Lie subgroup of G and Q) C P an H-principal
subbundle of P. Given x € M, p € @, then there exists a unique linear map
L : T,M — g/b such that the image of T),() under the isomorphism (2.10.1)) is
equal to:

{(v,X)e T,M®g:Lv)=X+h}.

Moreover, if s : U — Q is a smooth local section of Q with s(z) = pand @ = s*w
is the representation of the connection form w with respect to s, then L is given by
the composition of w,, : T, M — g with the canonical quotient map g — g/b.

PROOF. Let S C T, M @ g denote the image of T},() under the isomorphism
(2.10.1)). The existence and uniqueness of the desired map L is obtained by an ele-
mentary linear algebra argument, from the following two facts, that will be proven
below:

(a) the restriction to S of the first projection T, M & g — T, M is surjective;
b) SN(0®g)=0Dh.

Assertion (a) follows from the fact that the restriction of dII, : T,P — T, M to
T, @ is surjective and from the commutativity of the following diagram:

T.Mdyg

dH\ A projection

To prove (b), we observe first that 7},() N Ver,(P) = Ver,(Q); namely:
T,Q N Ver,(P) = Ker(dIl,|7,q) = Ker(d(Il|g),) = Ver,(Q).

Since the isomorphism (2.10.1) carries Ver,(P) to 0 & g, we have to show that
(2.10.1)) carries Ver,(Q) to 0 & h. This follows by differentiating the commutative
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diagram below:

inclusion

Qu P,
Bp T & = Tﬁp
H inclusion G

Let now s : U — @ be a smooth local section of () with s(x) = p and set
@ = s*w. Clearly, the image of ds, is contained in 7,,. Given v € T, M then
dsg(v) is in T),() and the image of ds, (v) under (2.10.1) is equal to:

(v, wp(dsx(v))) = (U, @x(v)).

Hence the graph of w, : T, M — g is contained in S and the conclusion follows.
]

REMARK 2.10.2. From Lemma [2.10.1] it follows in particular that, although
the linear map w, : 7, M — g depends on the choice of the section s of ) with
s(z) = p, the composite map T, M —=— g — g/b only depends on the choice
of p € Q.

Given z € M, recall that we have identified the Lie group Left(Q,) of left
translations of the fiber (), with a Lie subgroup of the Lie group Left(P,) of left
translations of the fiber P,; we have also identified the Lie algebra left(Q,) of
Left(Q,) with a Lie subalgebra of the Lie algebra left(P,) of Left(P,). Given
p € QQ; we have a Lie algebra isomorphism Ad,, : g — left(P;) that carries ) onto
left(Q.) (recall (I.7.3)); therefore, we have an induced isomorphism Ad,, : g/h —

(eft(Pr)/left(Qx)-

LEMMA 2.10.3. Let Il : P — M be a G-principal bundle endowed with a
connection whose connection form is w and Q be a principal subbundle of P with
structural group H. Let s : U — Q be a smooth local section of Q, x € U and set
p=s(z) and © = s*w. The map 3¢ : TyM — (eft(Py)/1eft(Qy) defined by the
diagram:

(2.10.2)

does not depend on the choice of the local section s.

PROOF. We observe first that the composition of @, with the quotient map
g — g/b depends only on p, by Remark in particular, 35}2 depends only on
p. Let p,p’ € Q. be fixed. Write p’ = p - h, with h € H. Denote by 7, : P — P
the diffeomorphism given by the action of h on P and consider the local section
s’ =qpo0s: U — Q of Q; obviously, s'(x) = p'. Setting &' = s'*w then it follows
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from (2.2.3) that @’ = Adj, -1 o @. We have the following commutative diagram:

quotient

o a/b \Aidp>
.M — o Ad, ft(P) /f(Q.)
J}ZC mp/
g quotient g/h

where Ad},—: is obtained from Adj,-1 by passing to the quotient. The commuta-
tivity of the rightmost triangle on the diagram above follows from (1.7.1). This
concludes the proof. ([

DEFINITION 2.10.4. The linear map 3% : T, M — [eft(P,)/left(Q.) defined
by diagram (2.10.2) is called the covariant derivative of the subbundle () at the
pointz € M.

REMARK 2.10.5. It follows directly from Lemma [2.10.1] and from the defi-
nition of J% that if IT : P — M is a G-principal bundle, @) is an H-principal
subbundle of P and p € (@ then the image of 7,() under the isomorphism
is the subspace of T); M & g given by:

{(v,X)eT,M ®g: ((Hp)—l ojg)(v) =X +h}.

Let P, P’ be principal bundles over the same differentiable manifold M and
let ¢ : P — P’ be an isomorphism of principal bundles. For each x € M, the
isomorphism of principal spaces ¢, : P, — P, induces a group isomorphism
Iy, - Left(P,) — Left(P;) (see Exercise [1.26); the commutativity of diagram
implies that Z,_ is in fact a Lie group isomorphism and therefore we may
consider its differential at the identity, which we denote by:

Adg, = dTy, (1) : left(P,) — left(PL).

Let Q C P be a principal subbundle and set Q' = ¢(Q). By the commutativity of
diagram (L.9), Adg, carries left(Q.) onto [eft(Q’,) and therefore we get an induced
map:

(2.10.3) Ady, : left(Py)/left(Qy) — left(PL)/left(QY)

by passing to the quotient.

LEMMA 2.10.6. Let P, P’ be principal bundles over the same differentiable
manifold M endowed with connections. Let ¢ : P — P’ be a connection preserv-
ing isomorphism of principal bundles. Let () C P be a principal subbundle and
set Q' = ¢(Q). Then, for all x € M:

3?' = Ady, o 39,

where M% is defined in (2.10.3).
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PROOF. Let G, G', H, H' denote the structural groups of P, P’, Q and Q’
respectively and let ¢ : G — G’ denote the Lie group homomorphism subjacent to
¢. Let z € M be fixed and choose a smooth local section s : U — Q; set p = s(x)
and p’ = ¢(p). By differentiating diagram (I.8), we get another commutative
diagram:

Ady
[eft(P) (eft(P')
Ady T TAdp/
!
S, ¢

By passing to the quotient, we obtain another commutative diagram:

ot (P) /1eft(Q) — = Left(P')/1eft(Q)
(2.10.4) Ade TAdp/
g/b o g/y

where gzgo . g/b — g’/b’ is obtained from ¢ by passing to the quotient.
Let w, w’ denote the connection forms of the connections of P and P’ respec-
tively; since the map ¢ is connection preserving, we have (see (¢) of Lemma[2.2.T1):

¢"w' = goow,

where ¢y = dg¢g(1). We compute 79 using the smooth local section s of () and

3¢ using the smooth local section ¢ o s of Q'; set © = s*w and @’ = (¢ o s)*/,
so that:

(2.10.5) @ = ¢g 0 Wy

The conclusion is now obtained from (2.10.4) and (2.10.5) observing that the fol-
lowing diagram:

Ady,

left(Py)/left(Qx) [eft(P;)/left(CQ7)
. 7 TAdp A7dp’ T \:' -
g/ ® g'/b
. ' quotientT Tquotient :
,7 ‘%0 / .
g g ;
sz | 7 Wy @’ Vin'/
T,M ..

commutes. O
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2.11. The inner torsion of a G-structure

Let 7 : E — M be a vector bundle with typical fiber Ey endowed with a con-
nection V, let G be a Lie subgroup of GL(Ey) and P C FRp, (E) be a G-structure
on E. The connection V is associated to a unique connection Hor (FRg, (E)) on
the GL(Ej)-principal bundle FR g, (E) (recall Proposition [2.5.4). We may there-
fore consider the covariant derivative 3% : T, M — gl(FE,)/g. of the G-principal
subbundle P of FRg, (E) at a point z € M (recall the notation introduced in Sec-
tion . We call 3 the inner torsion of the G-structure P at the point z with
respect to the connection V. The following lemma gives a simple way of comput-
ing 3.

LEMMA 2.11.1. Let m : E — M be a vector bundle with typical fiber E,
let G be a Lie subgroup of GL(Eyp) and let P C FRE,(F) be a G-structure on
E; assume that a connection V on E is given. If s : U — P is a smooth local
Eo-frame of E compatible with P then the inner torsion 32 : T, M — gl(E,)/g.
of the G-structure P at the point x is given by the composition of the Christoffel
tensor Ty : T, M — gl(E,) of the connection ¥ with respect to s and the quotient

map gl(E;) — gl(Ez)/ 8z

PROOF. Let w denote the connection form of Hor(FRg,(E)) and set @ =
s*w. From 2.5.5) and (I.7.2) we get I'; = Ad, o w,, where p = s(z). The
conclusion follows from the commutativity of the following diagram:

3
T, M — (E (E — (Ey)/9z
o Ol(Eo) — i 9l(Eo) /e 3 gl(Ez)/g _
\ iAdp /
o quotient
g[(Em)M/

EXAMPLE 2.11.2. Let 7 : E — M be a vector bundle with typical fiber Ey
and let s : M — FRpg,(E) be a global smooth section. Then P = s(M) is a
G-structure on E with G = {Idg, }. For each z € M, we have G, = {Idg, } and
g: = {0}. If V is a connection in E then 37 : T,M — gl(E,) is equal to the
Christoffel tensor I, : T, M — gl(E,) corresponding to s.

EXAMPLE 2.11.3. Let # : E — M be a vector bundle with typical fiber
Ey endowed with a semi-Riemannian structure g of index r and let (-,-)g, be
an indefinite inner product of index r on Ey. Then (recall Example [I.8.4) P =
FR%, (E) is a G-structure on E with G = O(E)p). If V is a connection on £, let
us compute the inner torsion of P with respect to V. Let x € M be fixed. The
inner torsion J% is a linear map from 7, M to the quotient gl(E,)/g,. Clearly, G,
is the group of linear isometries of F, (with respect to g,.) and g, is the Lie algebra
of linear endomorphisms of F, that are anti-symmetric (with respect to g,). We
identify gl(E,) /g, with the space sym(FE;) of all linear endomorphisms of E,, that
are symmetric (with respect to g,) via the map:

(2.11.1) 9U(E2) /82 3 T + gz — 3(T + T%) € sym(E,),
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where T : E, — FE, denotes the transpose of T' with respect to g, i.e., the unique
linear endomorphism of E,, such that:

Jx (T(e), e') = g (e, T* (e’)),

for all e,/ € E,. Thus, the inner torsion 3% is identified with a linear map from
T, M tosym(E;). Let s : U — P be a smooth local section with x € U and let
e, e’ € E, be fixed; consider the local sections ¢, €’ : U — E defined by:

(2.11.2) e(y) = (s(y)os(x)™) -e,
€(y) = (sy) os(x)™") - ¢,

for all y € U. Since the representations of € and ¢’ with respect to s are constant,
we have:

(2.11.3) Vee =dle+ T (v) - e(x) =T5(v) - €(x),

Ve =die + T, (v) - €(z) =Tp(v) - (),
for all v € T, M. Since s is a local section of FR, (E), it follows that:

9y (e(), € (y)) = (s(x) " -es(2) ™" - &)y,
for all y € U, so that the real-valued map g(e, €') is constant. Thus:

0="2v(g(e,€)) = (Vug)(e,€) + g2(Vue, €') + ga(e, Vie)
= (Vug)(e,€') + g2 (T2(v) - €, €') + gz (e, T (v) - €),

for all v € T, M. Then:

gx[(Fx(v) + Fm(v)*) -e, e'] = —(Vu9)(e, €)
and (Lemma2.11.1]and (2.11.1)):

9:(37 (v).) = 392 [(Ta(v) + Ta(v)), -] = =5 Vg,

forall x € M, v € T,M. Identifying V,9 : E, x E;, — R with a linear
endomorphism of E,, we obtain:

jx (U) = _%vvg'

Thus, the inner torsion of P is essentially the covariant derivative of the semi-
Riemannian structure g. In particular, 3P = 0 if and only if Vg = 0, i.e., V is
compatible with the semi-Riemannian structure g.

EXAMPLE 2.11.4. Let # : EE — M be a vector bundle with typical fiber
FEy and F' be a vector subbundle of F. If Fy is a subspace of Fy such that
dim(Fp) = dim(F,) for all z € M then the set P = FRp,(E; Fy, F') of all
Ey-frames of E adapted to (Fy, F') is a G-structure on E with G = GL(Ejy; Fp)
(Example[I.8.5). Let V be a connection on £ and let us compute the inner torsion
JP. Let € M be fixed. Clearly G, = GL(E,; F,) and g, is the Lie algebra of
linear endomorphisms 7" : E, — E, with T(F,) C F,. We identify the quotient
gl(E;)/g, with the space Lin(F;, E,/F,) via the map:

9(E2)/8: 2T + 9o — qoT|p, € Lin(Fy, E;/Fy),
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where q : E, — E,/F, denotes the quotient map. Thus, the inner torsion Jf
is identified with a linear map from 7, M to Lin(F,, E,/F,). Lets : U — P
be a smooth local section with x € U. Given e € F,, we define a local sec-
tion € : U — E asin (Z.11.2). Then the representation of € with respect to s is
constant and holds, for all v € T, M. Moreover, since s takes values in
FRE, (E; Fo, F), we have ¢(U) C F. Thus:

Ve + Fp = ol (v,e) € B,/ Fy,

where of" denotes the second fundamental form of the vector subbundle F' (Exer-

cise[2.20). Then:
L.(v)-e+ F, = ol (v,e)
and:
30 (w) = ol (v,-) € Lin(F,, B,/ Fy),
forallz € M,v € T, M. In particular, 3P = 0if and only if af =0, ie.,ifand

only if the covariant derivative of any smooth section of F' is a smooth section of
F.

EXAMPLE 2.11.5. Let 7w : £ — M, F, Ey, Fy be as in Example [2.11.4
Let g be a semi-Riemannian structure on E, (-,-) g, be an indefinite inner prod-
uct on Eq and assume that FR, (Ey; Fo, ;) # 0, for all z € M. Then P =
FRY;, (E; Fo, F) is a G-structure on £ with G = O(Ep; Fy) (Example|1.8.5). For
simplicity, we assume that the restriction of g, to F, x F; is nondegenerate, for
all z € M; thus, E = F @ F1. Denote by q : E — F the projection. Let
V be a connection on E and let x € M be fixed. We compute J2. We have
G, = O(Ey; F,) and g, is the Lie algebra of linear endomorphisms 7" : £, — E,
that are anti-symmetric (with respect to ¢,) and satisfy T'(F,.) C F,. We have an
isomorphism:

ol(Ey)/9s — sym(Ey) & Lin(Fy, Fj—)
T+go— (3(T+T7), 38: 0 (T = T)|R,),
so that we identify J© with a linear map from T,,M to the space sym(E,) @
Lin(F, F;-). Consider the component:
a € T'(Lin(TM, F; F*))
of V with respect to the decomposition £ = F @ F'*. Let s : U — P be a smooth
local section with 2 € U. As in Example [2.11.3] we have:

3 (Fa(v) + Ta(v)") = =5V,
for all v € T, M. Moreover, arguing as in Example [2.11.4] we obtain:
9(T2(v) - €) = ax (v, ),
forallve T, M, e € E,. Then:
2.11.4) 5(Tu(v) =Ty (v)*) = T(v) = §(Ta(v) + T (v)*) = Tu(v) + 5Vog,
and:
35 (0) = (= 3Veg,az(v,) + 300 Vuglr,),
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forallz € M, v € T, M, where Vg is identified with a linear endomorphism of
E,. In particular, 3¥ = 0 if and only if Vg = 0 and a = 0, i.e., if and only if V
is compatible with g and the covariant derivative of any smooth section of F'is a
smooth section of F'.

EXAMPLE 2.11.6. Let m# : EE — M be a vector bundle with typical fiber
Ey and € € T'(F) be a smooth section of E with e(z) # 0, for all z € M. If
eo € Ej is a nonzero vector then P = FRpg,(E; e, €) is a G-structure on E with
G = GL(Ejp; eg) (Example|1.8.6). Let V be a connection on E and let us compute
JP. Letz € M be fixed. Then G, = GL(E,;€(z)) and g, is the Lie algebra
of linear endomorphisms 7' : E, — E, such that T'(e(z)) = 0. We identify the
quotient gl(F,)/g, with E, via the map:

9(E2)/92 2 T + ga — T(e(2)) € Ex.
Let s : U — P be a smooth local section with = € U. Then J% is identified with a
linear map from 7, M to E,. Since s takes values in FR g, (E; ep, €), we have:
e(y) = s(y) - eo,

so that the representation of € with respect to s is constant and:
(2.11.5) Ve =T42(v) - e(x),
for all v € T, M. Then:

for all v € T, M and:
Jp = (Ve)(x),

for all z € M. In particular, 3¥ = 0 if and only if the section ¢ is parallel.
Assume now that ¢ is a semi-Riemannian structure on E, (-,-)g, is an indefinite
inner product on Ey and that FRY, (Eq;eo,€(x)) # 0, for all z € M. Then
P = FRY, (Ej;eo,€) is a G-structure on E with G = O(Ejp; eg). Let us compute
3P, Let z € M be fixed. Then G, = O(Ez; e(x)) and g, is the Lie algebra of
anti-symmetric linear endomorphisms 1" of £ such that T' (e(az)) = 0. We have
the following linear isomorphism:

0U(Ey)/ge 2T+ guv— (3(T+T%), 3T — T%) - e(x)) €sym(E,) & e(z)*

where ¢(2)* denotes the kernel of g, (e(z),-). Let s : U — P be a smooth local
section with z € U. As in Example [2.11.3] we have:

%(Fm(v) + Fm(v)*) = _%vvga
and, as in (2.11.4):
%(Fx(v) - Fx(v)*) = Pm(v) + %va,
for all v € T, M. Moreover, (2.11.5]) holds. Then:
2(P2(v) = Ta()*) - e(x) = Vye + 2(Vog) (e(2)).

Hence:
30 (0) = (= 3Vug Vue + 5(Vag) (e()) ),
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forall z € M, v € T, M. In particular, 3¥ = 0 if and only if V is compatible with
g and € is parallel.

EXAMPLE 2.11.7. Let m : E — M be a vector bundle with typical fiber Ej,
J be an almost complex structure on E' and .Jy be a complex structure on Ey. The
set P = FR; (E) is a G-structure on E with G = GL(Ey, Jo) (Example .
Let V be a connection on E and let us compute J°. Let z € M be fixed. Then
G, = GL(E,, J;) and g, is the Lie algebra of linear endomorphisms 7" : £, —
E, such that T o J, = J, oT". We have an isomorphism:

ol(E) /92 2T +gov— [T, J] € m(Exv Jz),

where [T, J,] =T o J, — J,oT and m(Ex, Jz) denotes the space of linear maps
T:FE,— E;suchthatT o J, 4+ J,oT = 0. Let s : U — P be a smooth local
section with z € U and let e € E,, be fixed. We define a local sectione : U — FE as
in (2.11.2). Then ¢(z) = e and the representation of € with respect to s is constant;
moreover, since s takes values in FR; (£), also the representation of J(¢) with
respect to s is constant. Then:

Ve =T4(v,e), V, (J(e)) =T, (v, Jr(e)),

and:

Vu(J(€)) = (Vo) (e) + Jo(Vye),
for all v € T, M. We therefore obtain:

Lp(v)ody =Vyd + Jp ol (v).
Hence:

jx (U) =V,

for all z € M and all v € T, M. In particular, 3 = 0 if and only if .J is parallel.

EXAMPLE 2.11.8. Let m : E — M be a vector bundle with typical fiber Fy,
J be an almost complex structure on F, g be a semi-Riemannian structure on F,
Jo be a complex structure on Ey and (-, -) g, be an indefinite inner product on Ej.
Assume that J, is anti-symmetric with respect to g, for all x € M, that Jj is anti-
symmetric with respect to (-, -) g, and that g, has the same index as (-, ) g,, for
all z € M. Then the set P = FR, (F) is a G-structure on £ with G = U(E)p)
(Example. Let V be a connection on E and let us compute J°. Let z € M be
fixed. We have G, = U(F,) and g, is the Lie algebra of linear maps 7" : E, — E,
such that T' o J, = J, o T and such that T is anti-symmetric with respect to g.
We have a linear isomorphism:

g[(EIE)/gx I Sym(El“) @ ma(Exa Jm)
where ma(Ex, J;) denotes the space of linear maps 7" : E, — F, that are anti-

symmetric with respect to g, and such that 7' o J, + J, 0T = 0. Lets: U — P
be a smooth local section with z € U. As in Example[2.11.3} we have:

5(T2(v) + T2 (v)") = =5 Vg,
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for all v € T, M. Moreover, as in Example[2.11.7}, we have:
[Fr(ﬂ), Ja:] =V, J,
for all v € T, M. Then:

and:
T2(v) = To(v)*, Jo] = Vo = [Vug, Jo].

NO|—

Hence:

Iy (0) = (= 3Vug, Vo = [Vog, Jal),
for all z € M and all v € T, M. In particular, J¥ = 0 if and only if V is
compatible with g and .J is parallel.

REMARK 2.11.9. Let M be an n-dimensional differentiable manifold endowed
with a connection V, G be a Lie subgroup of GL(R") and P C FR(T M) be a
G-structure on T'M. We denote by Hor (FR(T'M)) the connection on FR(T'M)
associated to V and by w the corresponding connection form. Given x € M,
p € P,, we have a linear isomorphism:

(2.11.6) (dIL,, wp) : T,FR(TM) — T, M & gl(R")

as in (2.10.1). We have seen in Remark that the image of 7, P under the
isomorphism (2.11.6)) is equal to:

{(v, X) € T,M & gl(R") : ((Ad,) "' 0 3F)(v) = X + g}

Since p is an isomorphism from R" to T,, M, by composing [2.11.6) with p~* & Id
we obtain another linear isomorphism (recall (2.9.11))):

(2.11.7) (0p,wp) : T,FR(TM) —— R™ @ gl(R™).
The image of T}, P under (2.11.7) is obviously equal to:
{(u, X) e R" @ gl(R") : ((/po)—l o3r op)(u) =X +g}.

If 3 = 0, i.e., if V is compatible with P and if p : I — FR(FE) is a smooth
horizontal curve such that p(tg) € P for some ¢y € I then p(t) € P forall ¢ € I.
We now generalize this property to the case where J° is not necessarily zero.

PROPOSITION 2.11.10. Let E be a vector bundle of rank k over a manifold
M, V be a connection on E, G be a Lie subgroup of GL(R¥) and P C FR(E)
be a G-structure on E. Letp : I — FE be a smooth curve and set v = 1l o p,
where I1 : FR(E) — M denotes the projection. Assume that p(I) N P # (. Then
p(I) C P if and only if:

(2.118) 3o (@) = (Vip)(®) o p(t) ™ + 9401
forallt € 1.
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PROOF. Since T'P is invariant by the action of G in T'(FR(E)), there exists a
GL(IR¥)-invariant smooth distribution D on the manifold FR(E) such that D, =
T,P, for all p € P. Such distribution is integrable because P - g is an integral
submanifold of D, for all g € GL(RF). For all z € M and all p € FR(E,), we

define £, : T,M — gl(R¥)/g by setting £, = Aidp_1 o JP and we define V), by
setting:

(2.11.9) Vp={(v,X) € T.M @ gl(RF) : L,(v) = X +g}.
Clearly:
Lipog = mg—l oLp,
and therefore:
(2.11.10) (Id® Ady-1)(Vp) = Vpoy,

for all p € FR(F) and all g € GL(RF).

We claim that (dI1,, w,)(Dp) = Vp, forall p € FR(E). Namely, by the defini-
tion of inner torsion, such equality holds for p € P. The fact that the equality holds
for any p € FR(F) follows from (2.11.10) and from the fact that the diagram:

(dllpog,wpog)
_—

TyogFR(E) Z T, M @ gl(RF)
gT TId@Adgl

T,FR(E = T, M @ gl(RF

pFR(E) (T, o) ® gl(R")

commutes, for all z € M, p € FR(E,) and all g € GL(R*). Now:

(AL 0y, wp(e)) (P'(8)) = (4/(8), (1) ™ 0 (Vap)(1)),

for all ¢ € I and therefore p is tangent to D if and only if holds. If
p(I) C P then, since P is an integral submanifold of D, it follows that p is tangent
to D and thus holds. Conversely, assume that holds and that
p(I) N P # . Since for all g € GL(R¥), P - g is an integral submanifold of
D, it follows that the set p~ (P - g) is open in I; thus p~—!(P) is both open and
closed in I and the conclusion follows. U

Exercises

The general concept of connection.

EXERCISE 2.1. Let V, W be vector spaces and let 7' : V' — W be a linear
map. Given a subspace Z of V, show that V' = Z @ Ker(T) if and only if the map
T|z: Z — T(V)is an isomorphism.
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EXERCISE 2.2. Let V1, V5, V'’ be vector spaces and assume that we are given
linear maps Ty : Vi — V', Ty : Vo — V', L : V| — V5 such that the diagram:

Vl
commutes and such that 77 and 75 have the same image (this is the case, for in-
stance, if both T and 7% are surjective or if L is surjective). Let Z be a subspace

of V1 with Vi = Z @ Ker(77). Show that the restriction of L to Z is injective and
that Vo = L(Z) ® Ker(T3).

EXERCISE 2.3. Let W be a vector space and Wy, Wa, W3 be subspaces of W
such that W = Wy @ W and Wy N W) = {0}. Show that Wy C W if and only
if Wy = Wj. Conclude that, under the hypotheses and notations of Exercise
if Z' is a subspace of Vo with Vo = Z' @ Ker(T») then L(Z) C Z' if and only if
L(Z)=27.

EXERCISE 2.4. Let V, W be vector spaces, 7' : V' — W be a linear map and
Vo C V, Wy C W be subspaces such that T'|y;, : Vo — W) is an isomorphism. If
H is a subspace of W with W = H & W, show that:

V=T"YH)aW.

EXERCISE 2.5. Let £, M be differentiable manifolds, = : £ — M be a smooth
submersion and € : U — FE be a smooth local section of 7. Show that forall x € U,
the image of de(z) is a horizontal subspace of T )€

Vi

Va

Connections on principal fiber bundles.

EXERCISE 2.6. LetII : P — M be a G-principal bundle and let M = | J,.; U;
be an open cover of M. Assume that for every ¢ € [ it is given a connection
Hor(P|y,) on the principal bundle P|y, and assume that for all 7,5 € I and all
x € U; NU; we have Hor,(P|y,) = Hory(P|y,). Show that there exists a unique
connection Hor(P) on P such that Hor, (P) = Hor,(P|y,), for all ¢ € I and all
z e U;.

EXERCISE 2.7. LetII : P — M be a G-principal bundle, V' be a real finite-
dimensional vector space and let p : G — GL(V') be a smooth representation of
G on V. Show that a V' -valued differential form A\ on P is p-pseudo G-invariant if
and only if for every x € M, there exists a point p € P, such that:

(g Np = p(9) ™" 0 Ay,
forall g € G.

EXERCISE 2.8. Let P be a G-principal bundle endowed with a connection
Hor(P) and denote by pyer : TP — Ver(P), phor : TP — Hor(P) respectively
the vertical and the horizontal projections determined by the horizontal distribution
Hor(P). Given g € G, p € P, { € T),P, show that:

pver(g'g) :pver<<> "9, phor(('g) :phor(C) g



EXERCISES 165

EXERCISE 2.9. LetIT : P — M be a G-principal bundle and let w be a Ad-
pseudo G-invariant g-valued 1-form on P. Show that if for every x € M there

exists p € P, such that condition (2.2.3) holds then condition (2.2.5) holds for all
p€EP.

EXERCISE 2.10. Let Il : P — M be a G-principal bundle, V' be a real finite-
dimensional vector space and p : G — GL(V') be a smooth representation of G on
V. Let A1, A2 be V-valued p-pseudo G-invariant k-forms on P and assume that:

)\Zly(Cb ceey Ck;) = A?;(Cla SRR Ck)a

forallp € P, (1,...,(; € T,P, provided that at least one of the vectors (; is in
Ver,(P). Given a smooth local section s : U — P of P, show that if s*\! = s*\?
then A\! and \? are equal on P|.

EXERCISE 2.11. Let P, () be principal bundles over the same differentiable
manifold M, with structural groups G and H, respectively. Let ¢ : P — @ be
a morphism of principal bundles whose subjacent Lie group homomorphism is
¢o : G — H. Denote by g, b the Lie algebras of G and H respectively and by
¢o : g — b the differential of ¢ at the identity. For p € P, ¢ € (@, denote by
ﬁlff :G — P, 5(}@ : H — (@ the maps given by action at p and by action at ¢,
respectively; consider the linear isomorphisms:

dBl (1) : g — Ver,(P), dBE(1):h — Very(Q).

Let w be an h-valued 1-form on () such that:

-1
wQ|Verq(Q) = (dﬂ;‘?(l)) y
for all ¢ € Q. Show that:

(9" W)plver,(P) = d0 © (dﬂé)(l))_17
forallp € P.

EXERCISE 2.12. Let P, () be principal bundles over the same differentiable
manifold M, with structural groups G and H, respectively. Let ¢ : P — @ be
a morphism of principal bundles and let ¢g : G — H denote its subjacent Lie
group homomorphism. Let V' be a real finite-dimensional vector space and let
p: H — GL(V) be a smooth representation of H on V. If A is a p-pseudo H-
invariant differential form on @, show that ¢*\ is a (p o ¢g)-pseudo G-invariant
differential form on P.

Connections on vector bundles.

EXERCISE 2.13. Let V, W be vector spaces and 7" : V' — W be a linear map.
Given subspaces Z, Z' of V, show that T'(Z) = T'(Z') if and only if Z+Ker(T') =
7' + Ker(T).

EXERCISE 2.14. Let w : E — M be a vector bundle and V be a connection
on E. Given a smooth section € € I'(E) of E that vanishes on an open subset U of
M, show that Ve also vanishes, for all v € T'M ;. Conclude that, if €, ¢’ € T'(E)
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are equal on an open subset U of M then V,e and V,€ are also equal, for all
veTM |U~

EXERCISE 2.15. Let m : E — M be a vector bundle and V be a connection
on F.

e Given open subsets U, V of M with V' C U, consider the connection
VY induced by V on E|; and the connection (VY)Y induced by VY on
(E|y)|v = E|v. Show that (VY)V is the same as V"

e Let V' be another connection on E. If every point of M has an open
neighborhood U in M such that VY = V'Y show that V = V.

EXERCISE 2.16. Let V, V' be connections on a vector bundle 7 : £ — M.
Assume that for all x € M and all e € E, there exists a smooth local section
€ : U — E of E defined in an open neighborhood U of z in M such that e(x) = e
and:

Ve = Vi,
forall v € T, M. Show that V = V’.

EXERCISE 2.17. Let m : EE — M be a vector bundle with typical fiber Ejy
endowed with a connection V and let /1 be a real vector space isomorphic to Ej.
As we have seen in Exercise [[.61} 7 : E — M can be regarded also as a vector
bundle with typical fiber F;. Since the differential structure of E does not depend
on the typical fiber, the space I'(F) also doesn’t depend on the typical fiber and
hence V is also a connection on the vector bundle 7w : £ — M with typical fiber
E;. The connection V is associated to connections on both principal bundles of
frames FRg,(E) and FR, (E). Show that:

o the horizontal distribution on F defined by V does not depend on the
typical fiber;

e for any linear isomorphism i : F; — Ep, the isomorphism of principal
bundles ; defined in Exercise[I.61]is connection preserving.

Pull-back of connections on vector bundles.

EXERCISE 2.18. Assume that we are given a commutative diagram of sets and
maps:
f

HB

N

(]

<
<

Q

— D
Given a subset S of B, show that ¢(f~(S)) C g~ (¥(9)).
Functorial constructions with connections on vector bundles.

EXERCISE 2.19. Let n > 1 be fixed and let § : Lec™ — Yec be a smooth
functor. Let E', ..., E™ be vector bundles over a differentiable manifold M with
typical fibers Eé, ..., B, respectively. For each ¢ = 1,...,n, let Eé be a real
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vector space isomorphic to Ej. As we have seen in Exercise the vector bun-
dle E can also be regarded as a vector bundle with typical fiber ES; denote such
vector bundle with changed typical fiber by E'. As we have seen in Exercise |1.68]
the vector bundles F(E', ..., E") and F(E ', ..., E") differ only by their typical
fibers. Fori =1,. .. ,n, let V' be a connection on E'; then V' is also a connection
on E' (recall Exercise EI} The reader should observe that the construction of
the connection F(V?, ..., V") depends in principle not only on the connections
V* but also on the typical fibers of the vector bundles. Show that, in fact, the con-

nection F(V1, ..., V") does not depend on the typical fibers of the vector bundles
involved.

The components of a linear connection.

EXERCISE 2.20. Let 7 : E — M be a vector bundle endowed with a connec-
tion V and F' be a vector subbundle of E. Denote by q : E — E/F the quotient
map. Show that the map:

I'(TM) xT(F) > (X,e) — qo Vxe e I'(E/F)
is C°°(M)-bilinear. Conclude that there exists a smooth section a” of Lin(T'M, F; E/F)
such that:
Ve + Fy = al (v,e(z)) € B,/ Fy,

forallz € M,v € T, M. We call o the second fundamental form of the subbun-
dle F.

EXERCISE 2.21. Let 7 : E — M be a vector bundle endowed with a semi-
Riemannian structure g and a connection V compatible with g. If R denotes the
curvature tensor of V, show that for all x € M, v,w € T, M, the linear operator
Ri(v,w): E; 3 e— Ry(v,w)e € E, is anti-symmetric with respect to ¢, i.e.:

9z (R:E(Ua w)e, e/) = —0z (67 Rz(“» w)e'),
foralle, e’ € E,.
EXERCISE 2.22. Let (M, g) be a semi-Riemannian manifold. Show that there

exists a unique connection V on M which is both symmetric and compatible with
the semi-Riemannian metric g; such connection is defined by the equality:

Q.11) g(VxY,Z) = %(X (9(Y, 2)) + Y (9(Z X)) — Z(g(X,Y))

~ g(X,[.2]) + (¥, 12, X]) + (2,[X,Y])),

and is called the Levi-Civita connection of the semi-Riemannian manifold (M, g).
Formula (2.11)) is known as Koszul formula.

Relating connections with principal subbundles.

EXERCISE 2.23. Let Il : P — M be a G-principal bundle endowed with a
connection Hor(P) and let () be an H-principal subbundle of P; denote by w the
connection form of Hor(P). Show that the following conditions are equivalent:
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Hor,(P) C T,Q, forall p € Q;

T,Q = Horp(P) & Ver,(Q), forall p € Q;

the 1-form w|q takes values in b, i.e., w,(T,Q) C b, forall p € Q;

there exists a connection on the principal bundle ) such that the inclusion
map ( — P is connection preserving;

e the isomorphism (2.10.1) carries 7, onto T, M @ b, for all x € M and
allp € Q.

The inner torsion of a G-structure.

EXERCISE 2.24. Let m : EE — M be a vector bundle with typical fiber Ey
endowed with a connection V, E; be a real vector space and i : By — Ej be a
linear isomorphism. Let G be a Lie subgroup of GL(Ep) and P C FRg,(E) be
a G-structure on E. Then 7;(P) C FRg, (E) is a Z, ' (G)-structure on E (see
Exercises and [I.47). Show that the inner torsion of P is equal to the inner
torsion of ;(P).



CHAPTER 3

Immersion theorems

3.1. Affine manifolds

DEFINITION 3.1.1. By a connection on a differentiable manifold M we mean
a connection on its tangent bundle 7'M . An affine manifold is a pair (M, V), where
M is a differentiable manifold and V is a connection on M.

Affine geometry is the geometry of affine manifolds. This is a large class of
manifolds containing in particular the class of semi-Riemannian manifolds (see

Exercise [2.22)).

DEFINITION 3.1.2. Let (M, V) be an affine manifold. A geodesic in M is a
smooth curve y : I — M such that ' : I — T'M is parallel.

LetG : TM — TTM be the vector field on T'M such that for all v € T M,
G(v) € T,TM is the unique horizontal vector such that dm,(G(v)) = v. The
vector field G is smooth and it is called the geodesic vector field of (M, V). Clearly,
acurve 5 : I — T'M is an integral curve of G if and only if v = [To 7 is a geodesic
and ¥ = +/. If:

F9 :Dom(F9) c R x TM — TM
denotes the maximal flow of G then the map:
exp: {veTM:(1,v) € Dom(Fg)} Sv— W(Fg(l,v)) eM

is called the exponential map of the affine manifold (M, V). Clearly the domain
Dom(exp) of exp is an open subset of 7'M and exp is a smooth map.
PROPOSITION 3.1.3. Let (M, V) be an affine manifold. Then:
(a) forallty € R and allv € T M, the curve:

v:{teR: (t—to)v € Dom(exp)} >t — exp ((t — to)v) € M

is a geodesic with ~'(tg) = v;

(b) if v : I — M is a geodesic then for all ty € I, t € I, we have y(t) =
exp ((t — to)v), where v =~/ (to) € TM;

(c) given x € M, ifexp, : Dom(exp) N T, M — M denotes the restriction
of exp to Dom(exp) N T, M then exp,(0) = x and dexp,(0) is the
identity map of T, M.

PROOF. O

169
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Observe that item (c) of Proposition implies that for all x € M, exp,,
restricts to a smooth diffeomorphism of an open neighborhood of the origin in
T, M onto an open neighborhood of z in M.

DEFINITION 3.1.4. An affine manifold (M, V) is said to be geodesically com-
plete if the domain of the exponential map is the whole tangent bundle T'M, i.e., it
for all v € T'M there exists a geodesic v : R — M with 7/(0) = v.

DEFINITION 3.1.5. Let M’, M be affine manifolds. An affine map from M’
to M is a smooth map f : M’ — M such that the morphism of vector bundles

éff : TM' — f*T M (recall Example|1.5.27) is connection preserving.

The composition of affine maps is an affine map. If a smooth diffeomorphism
f : M’ — M is an affine map then also f~' : M — M’ is an affine map (see

Exercise [3.1)).

3.2. Homogeneous affine manifolds

Let M be an affine manifold. The set Aff(M) of all affine smooth diffeomor-
phisms f : M — M is a subgroup of Diff (M). We have the following:

THEOREM 3.2.1. Let M be an affine manifold with a finite number of con-
nected components. Then the group Aft(M) admits a unique manifold structure
such that Aff(M) is a Lie group and such that the topology of Aff(M) is the
compact-open topology. Moreover, the canonical left action Aff(M) x M — M
is smooth.

PROOF. See [8]. U

DEFINITION 3.2.2. An affine manifold is said to be homogeneous if the group
Aff(M) acts transitively on M.

Let M be an homogeneous affine manifold having a finite number of connected
components. If A is any Lie subgroup of Aff(M) that acts transitively on M (for
instance, A = Aff(M)) then, given zy € M, we have a smooth diffeomorphism:

(3.2.1) Buo : AJAzy D gAz, — g(x0) € M.

The manifold A/A,, can be endowed with a uniquely defined connection that
makes (3.2.1)) an affine diffeomorphism (see Exercise [3.2)). Obviously such con-
nection on A/Ay, is A-invariant, i.e., for all g € A, the smooth diffeomorphism:

Ly: AJAy, D hAyy — (gh) Ay, € AJAs,

is affine.

In the remainder of the section we the problem of determining the A-invariant
connections on a manifold A/H, where A is a Lie group and H is a closed sub-
group of A. Denote by a and b, respectively, the Lie algebras of A and H. Let us
fix an arbitrary subspace m of a with a = b & m and let us denote by py : a — b,
Ppm : @ — m the projections. Denote by q : A — A/H the quotient map and
set 1 = q(1). The restriction of dq; to m is an isomorphism onto T5(A/H); we
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will always identify T5(A/H ) with m via such isomorphism. For h € H, the lin-
ear isomorphism Ady, : a — a carries h to h and therefore we have an induced
isomorphism Adj, : m — m defined by:

Aid}L =pyo Adh|m-

Notice that Ad : H — GL(m) is a smooth representation of H on m; we call Ad
the isotropic representation of H on m. The differential of Ad at the identity will
be denoted by ad : h — gl(m); we have:

adx (V) = pu([X,Y]),
forall X € b, Y € m. We have a commutative diagram:

In

A A
i |9
A/H ? A/H
By differentiating such diagram we obtain:
(3.2.2) dL(1) = Ady,

forall h € H.

Let T'(A/H) be the tangent bundle of A/H and consider the GL(m)-principal
bundleﬂ FRum(T(A/H)). We have a smooth left action of A on FRw (T(A/H))
defined by:

(3.2.3) g-p=dL,(x)op,
forallz € A/H, p € FRn(T,(A/H)) and all g € A. We can therefore define a
smooth left action of A x GL(m) on FRy(T(A/H)) by setting:
(3.2.4) (9.7)-p=(g-por =g (por 1),
forall p € FRm(T(A/H)), g € A, 7 € GL(m). Let:
Idy € FRu(T(A/H))

denote the identity map of m and S C A x GL(m) denote the isotropy group
of Idy. Clearly, the action (3.2.4) is transitive and therefore we have a smooth
diffeomorphism:

(325) T:(AxGL(m))/S> (9,7)S+— (9,7)-1
= dfg Do

(I)or™! € FRn(T(A/H)).

Iwe may consider as the typical fiber of the tangent bundle 7'(A/H) the space m rather than

R"™ (see Exercise .
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We have a commutative diagram:

(A x GL(m T FRn(T(A/H))
(3.2.6) \ /
where IT’ is defined by:
(3.2.7) IT": (A x GL(m))/S > (g9,7)S — gH € A/H.

Using (3.2.2), we get:

S =Gr(Ad) = {(h,Ady) : h€ H} C H x GL(m).
The Lie algebra of S is therefore given by:
(3.2.8) s = Gr(ad) = {(X,adx): X € b} C h & gl(m).

A connection on A/H is uniquely determined by a connection on the principal
bundle FRw(T(A/H)), which is determined by a smooth horizontal GL(m)-
invariant distribution Hor[FRm (T'(4/H))]; we denote by D the smooth distri-
bution on the quotient (A x GL(m)) /S that corresponds to Hor [FRm (T'(A/H))]
via the smooth diffeomorphism Y. A connection on A/H is A-invariant if and
only if the horizontal distribution on FRy(T(A/H)) is A-invariant (see Exer-
cise . Hence, the A-invariant connections of A/H are in one to one correspon-
dence with the (A X GL(m))—invariant (necessarily smooth) distributions D on
(A x GL(m))/S that are horizontal with respect to IT'.

From equality it follows that m @ gl(m) is a complement of s in the
space a & gl(m). Therefore, the differential at the point (1, Idy,)S of the quotient
map:

A x GL(m) 3 (g,7) — (g,7)S € (A x GL(m))/S

restricts to an isomorphism from mégl(m) to the tangent space of (Ax GL(m)) /S
at (1,1dy,)S; we will therefore identify this tangent space with m & gl(m) via such
isomorphism. Consider the isotropic representation

(3.2.9) Ad: S — GL(m & gl(m))

of Sonm @ gl(m). A (A x GL(m))-invariant distribution D on (A x GL(m))/S
is uniquely determined by a subspace 0 = D(j 14,,)s of m @ gl(m) that is invariant
under the isotropic representation (3.2.9) (see Exercise[3.5). It is easily computed
that the isotropic representation (3.2.9) is given by:

(32.10)  Ady: (X,5) — (Ady(X),AdyoroAd, — ady ad,(x))s

forall X € m, k € gl(m), h € H, where s = (h,Ad;,) € S. The differential of
ad : s — gl(m @ gl(m)) of (3:2:9) is given by:

(3211) m0’ : (Xa H) L (QY(X)’ [£Y7F"’] - aph [Y,X])v
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forall X € m, x € gl(m), Y € b, where o = (Y, ady) € s. The differential of I’
at (1,1dy,)S is given by (see (3.2.7)):

(3.2.12) dIl'((1,1dw)S) : m @ gl(m) > (X, k) — X € m.

Thus, D is horizontal with respect to IT' if and only if ? is a complement of gl(m)
inm @ gl(m). We have the following:

PROPOSITION 3.2.3. The A-invariant connections on A/H are in one to one
correspondence with the linear maps A : m — gl(m) satisfying the condition:

[E— 771 JR— S—
(3.2.13) Adp o M(X) 0 Ad), — ady, aq,(x) = AMAdr(X)),
forallh € H and all X € m. Condition (3.2.13)) implies:
(32.14) [ady, A(X)] — adyyvox) = A(ady (X)),

forall X e mandallY € V. If H is connected then condition (3.2.13)) is equiva-
lent to condition (3.2.14)).

PROOF. A subspace 0 of m & gl(m) is a complement of gl(m) if and only if it
is the graph of a linear map A\ : m — gl(m). Using (3.2.10), it is easily seen that
Gr(A) is invariant under the isotropic representation (3.2.9)) if and only if condition
holds. The rest of the statement follows from (3.2.11)) and from the result
of Exercise O

We will now compute the curvature and the torsion of an A-invariant connec-
tion V on A/H in terms of the corresponding linear map A. To this aim, recall
that q : A — A/H is an H-principal bundle (see Example and consider the
morphism of principal bundles:

(3.2.15) ¢:A3gr— dL,(1) € FRn(T(A/H))

whose subjacent Lie group homomorphism is the isotropic representation Ad :
H — GL(m). Denote by w and 6 respectively the connection form and the canon-
ical form on FRw(T(A/H)). By the result of Exercise [3.4] (with f = L), w
and 0 are invariant by the action of A on FRy(T'(A/H)). It then follows that the
differential forms ¢*w and ¢*6 on A are left invariant. Clearly:
(0" Q1(X,Y) = d(¢"w)1 (X, Y) + 5(("w)1 A (§"w)1)(X,Y)
= —(¢"wn (X, Y]) + [(¢"w)1(X), (¢"w)1(Y)],

G216 (40),(X,Y) = d(6"0)1 (X, Y) + ((¢*w)1 A (6°0)1)(X,Y)
= —(¢"01 ([X,Y]) + (") (X) - ("0 (Y)
— (¢*w)1(Y) - (¢%0)1(X),

for all X,Y € a. Our strategy is to compute ¢*w, ¢*0 and then use (3.2.16) to
compute ¢*() and ¢*O. From ¢*() and ¢*© the curvature and torsion tensor of the
connection V are easily computed. We have the following:
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LEMMA 3.2.4. The left invariant forms ¢*w and ¢*0 on A are given by:

(3.2.17) (6" w)1(X) = Mpm(X)) +ady, (x).,
(3.2.18) (¢70)1(X) = pm(X),
forall X € a.

PROOF. We start by computing Y*w and T*6. Consider the diffeomorphism:
Bidy : GL(m) 2 7+ 7 € FRn(T3(A/H))

given by action at Idy,. The differential of (14, at Idym € GL(m) is an isomor-
phism:

(3.2.19) dBid,, (Idm) : gl(m) — Verya,, [FRm(T1(A/H))].

The restriction of w to Verya,, [FRm(75(A/H))] is the inverse of (3:2.19). The
isomorphism:

(3.2.20) dY((1,1dm)S) : m @ gl(m) — Tig, FRm(T5(A/H))

carries gl(m) (which is the kernel of (3:2:12)) to Veryq,, [FRm(T7(A/H))] (see
(3:2.6)). The restriction of T*w to gl(m) is equal to the composition of the re-
striction of (3:2.20) to gl(m) with the inverse of (3.2.19). Such composition is the
differential at (1, Idy,)S of the map:

Bt o T I'7(1) = (H x GL(m))/S — GL(m)
(h,7)S — Adj o7 L.
This is computed easily as:
YW1 1dp)s : (M) 3 K — —k € gl(m).

The map (3:2.20) carries Gr(\) to Horyq,, [FRm(T7(A/H))] and therefore T*w
vanishes on Gr(\). This yields:

(3.2.21) T w1 1dp)s : Mm@ gl(m) > (X, k) —— A(X) — K € gl(m).
As to Y*0, we have:
T0(1,1dp)s = AM1a,, © AV (1 14,)s = dITq,

ie.

(3.2.22) Y501 1dm)s : M@ gl(m) 3 (X, k) — X €m.

Let us now compute ¢*w and ¢*f. We have:

(3.2.23) P*'w=(YT"1op)"T*w, ¢*0=(T"1op)*T*0,
where:

YT 'og:A> g+ (9,1dm)S € (A x GL(m))/S.
The differential of Y~! o ¢ at 1 € A is given by:
(3.2.24) d(X o)1 a3 X — (pm(X), —ady, (x)) € m & gl(m).
The conclusion follows from (3.2.21)), (3.2.22)), (3.2.23)) and (3.2.24). O
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COROLLARY 3.2.5. The left invariant forms ¢*Q) and ¢*© on A are given by:
(3.2.25) (¢*M1(X,Y) = —(Aopm)([X,Y]) — ady, (x,v]
+ [)‘(pm(X)) + aph (X)>» /\(pm(y)) + ﬁph (Y)] ;

(3.2.26) (0*ON(X,Y) = —pm([X, Y]) + AM(pm(X)) - pu(Y)
- )\(Pm(Y)) “Pm(X)
+ ady, (x) (Pm(Y))
- Eph Y) (pm(X)),
forall XY € a.
PROOF. Follows from Lemma(3.2.4|and from (3.2.16). [l

THEOREM 3.2.6. Let A be a Lie group and H be a closed subgroup of A.
Denote by a, b respectively the Lie algebras of A and H; let m be an arbitrary
subspace of a with a = b @ m and denote by py : a — b, pm : a — m the
projections. Let \ : m — gl(m) be a linear map satisfying condition (3.2.13)
and let the manifold A/H be endowed with the A-invariant connection NV whose
horizontal space Horyq,, [F R (T(A /H ))] is the image under dY (see (3.2.5))) of
the graph of . Then, the curvature and torsion tensors of V at the point 1 =
1-H € A/H are given by:

R m xm 3 (X,Y) — [MX),\(Y)] — ady, [x,v]
— (Aopm)([X,Y]) €gl(m),
Tr:mxm> (X,Y)— —pu([X,Y]) + AM(X) - Y = A(Y) - X €m,
where we identify m with T7(A/H) by the differential of the quotient map A —
A/H.
PROOF. By Lemma[2.9.16|and Corollary we have:
Ri(X,Y) =Q(G,¢), T(X,Y)=06(0,0),
where (1, (2 € Tia, FRm(T7(A/H)) are chosen with:
(3.2.27) dIl(G) = X, dI(G) =Y.
If ¢ is defined by (3.2.T3) then (1 = d¢1(X), 2 = d¢1(Y) satisty (3.2.27); thus:
Ri(X,Y) = (¢"Q1(X,Y), Ti(X,Y) = (¢"O)(X,Y),
for all X,Y € m. The conclusion follows from Corollary ]

3.3. Homogeneous affine manifolds with G-structure

DEFINITION 3.3.1. Let M be an n-dimensional differentiable manifold, G be
a Lie subgroup of GL(IR™) and assume that M is endowed with a connection V and
a G-structure P C FR(T'M). The triple (M, V, P) is said to be a homogeneous
affine manifold with G-structure if for every xz,y € M and every p € P, q € P,
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there exists a smooth affine G-structure preserving diffeomorphism f : M — M
such that f(z) =y and df(z) op = q.

Given an affine manifold M endowed with a G-structure P we denote by
Aff (M) the subgroup of Aff(M) consisting of G-structure preserving affine dif-
feomorphisms of M. We have the following:

PROPOSITION 3.3.2. Let (M, V) be a connected affine manifold with G-struc-
ture P and assume that (M, ¥V, P) is homogeneous. Then Aff (M) is a Lie sub-
group of Aff(M).

PROOF. Since M is connected, the action of Aff(M) on FR(T'M) is free;
given p € P, the orbit Aff(M)p C FR(TM) is an almost embedded submanifold
of FR(T'M), since it is an integral submanifold of a smooth involutive distribu-
tion on FR(T'M). The assumption that (M, V, P) is homogeneous implies that
P = Aff¢(M)p. Since P is an immersed submanifold of FR(7'M) contained in
the almost embedded submanifold Aff(M)p then P is also an immersed subman-
ifold of Aff(M)p. The smooth diffeomorphism (3, : Aff(M) — Aff(M)p carries
Aff¢(M) to P and thus Aff(M) is an immersed submanifold of Aff(A/). The
conclusion follows. U

Let (M, V) be a connected affine manifold with G-structure P and assume
that (M, V, P) is homogeneous. Set A = Aff (M), so that A is a Lie group and
the left action of A on M is smooth and transitive. Given a point g € M, then we
have a smooth diffeomorphism 3, from A/A,, to M (see (3.2.1)) and A/A,, is
endowed with a unique connection that makes (3, an affine diffeomorphism; such
connection is A-invariant. Moreover, A/A,, is endowed with a unique G-structure
that makes (3., G-structure preserving (see Exercise [1.74); such G-structure is
given by:

(3.3.1) {d(B;,)op:pe€ P}
Since (M, V, P) is homogeneous, if we fix py € Py, then:
(3.3.2) P={dysopy:g€A}.

Since Bx_ol 0y = fg o Bx_ol, it follows from (3.3.2) that the G-structure (3.3.1)) on
A/ Az, is equal to:

(3.3.3) {dLy(1) o d(B; ) opo: g€ A}
Setting i9 = d(B;,') o po : R" — a/as, then (B33) is just the orbit of g €

FR(T7(A/Az,)) under the action of A.
We now consider the following setup:

a Lie group A with Lie algebra a;

a closed Lie subgroup H of A with Lie algebra b;

a complement m of h on a (as usual, we identify 75 (A/H ) with m);

an A-invariant connection V on A/H corresponding to a linear map \ :
m — gl(m) as in Proposition [3.2.3}

e alinear isomorphismi: R — m.
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Consider the isotropic representation Ad : H — GL(m), the group isomorphism
7, : GL(R") — GL(m) defined by Z;(7) = io7oi™!, forall 7 € GL(m) and set:

G'=7;'(Ad(H)) c GLR").

Consider the smooth left action of A on FR(T'(A/H)) defined as in (3:2.3) and
let P' C FR(T(A/H)) be the A-orbit of i. Then P'is a G'-structure on A/H
(see Exercise . The _group GiI of all Gi—struc.ture preserving eﬂomorphisms
of T1(A/H) = mis just Ad(H); its Lie algebra g} is thus equal to ad(h).

We will now determine the inner torsion 37" : m — gl(m)/ad(h) of the G'-

structure P on A/H. By the result of Exercise we may as well compute the
inner torsion of the G-structure:

(3.3.4) P=~Y(P)={dL,: g€ A} C FRa(T(A/H)),

where G' = Z;(G') = Ad(H). Notice that P is just the image of the morphism of
principal spaces ¢ defined in (3.2.13).

PROPOSITION 3.3.3. Let V be an A-invariant connection on A/H corre-
sponding to a linear map A\, as in Proposition The inner torsion 3{3 im o
gl(m)/ad(h) of the Ad(H)-structure (3.3.4) on A/H is equal to the composition
of A : m — gl(m) with the quotient map gl(m) — gl(m)/ad(h).

PROOF. Let s : U — A be a smooth local section of the quotient map A —
A/H with 1 € U, s(1) = 1 and dsj(m) = m; notice that dsj is just the inclusion
map of m in a. Notice that ¢ o s is a smooth local section of P — A/H. Set
w = (¢ o s)*w, where w denotes the connection form of V. By diagram (2.10.2),
in order to conclude the proof, it suffices to show that w7 is equal to A\. We have
w = s*(¢*w) and therefore:

Wy = (¢*w)1 o dsi.

The conclusion follows directly from (3.2.17). O

3.4. Affine immersions in homogeneous spaces

Let M be an n-dimensional differentiable manifold, G be a Lie subgroup of
GL(R™) and assume that M is endowed with a connection V and a G-structure
P C FR(T'M). For each x € M we denote by G, the Lie subgroup of GL(T, M)
consisting of G-structure preserving endomorphisms of T, M, by g, C gl(T, M)
the Lie algebra of G and by 3 : T,M — gl(T,M)/g. the inner torsion of the
G-structure P (recall Section [1.8). The triple (M, V, P) will be called an affine
manifold with G-structure. Given points x,y € M and a G-structure preserving
map o : T,M — T,M then the Lie group isomorphism Z, : GL(T,M) —
GL(Ty M) defined by:

Z, : GL(T,M)>T+—coToo * € GL(T,M)
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carries G, onto G,,. Its differential at the identity Ad, : gl(T, M) — gl(T,,M)
carries g, onto g, and therefore it induces a linear isomorphism

Ad, : gl (T M) /g — gU(TyM)/gy.

DEFINITION 3.4.1. Let V, V' be real vector spaces and o : V' — V' be a linear
isomorphism. Given a multilinear map B’ € Ling(V’, V') then the pull-back of
B’ by o is the multilinear map o*B € Ling(V, V') defined by:

(c*B)(v1,...,v05) =0 ! [B(o(v1),...,0(uv))],

forallvy,...,v; € V. Given multilinear maps B € Ling(V, V), B € Ling(V', V')
and a (not necessarily invertible) linear map o : V' — V' then B is said to be o-
related with B’ if:

(3.4.1) B'(o(v1),...,0(vk)) = o(B(vy,...,v)),

for all v1,...,v; € V. More generally, if V1, ..., V. are subspaces of V and if
B € Lin(V4,...,Vi; V), B' € Ling(V’, V') are multilinear maps then B is said
to be o-related with B’ if (3.4.1)) holds for all v; € V4, ..., v; € Vj.

Clearly, if o : V' — V' is a linear isomorphism and if B’ € Ling(V’, V') then
o* B’ is the only multilinear map B in Ling(V, V) that is o-related with B’.

DEFINITION 3.4.2. Let M be an n-dimensional differentiable manifold, M be
an n-dimensional differentiable manifold and let 7 : E — M be a vector bundle
over M with typical fiber R*, where 7 = n + k. Set . E =TM & E, so that E
is a vector bundle over M with typical fiber R". Let ¥ and ¥ be connections on
E and on TM respectively. By an affine immersion of (M, E, 6) into the affine
manifold (M, V) we mean a pair (f, L), where f : M — M is a smooth map,
L:E— f*T'M is a connection preserving vector bundle isomorphism and:

(3.4.2) Ly, = dfs,

for all z € M, where f*T'M is endowed with the connection f*V. By a local
affine immersion of (M, E ,V) into (M, V) we mean an affine immersion (f, L)
of (U, E|y, V) into (M, V), where U is an open subset of M; we call U the domain
of the local affine immersion (f, L).

Observe that if (f, L) is a (local) affine immersion, condition (3.4.2)) implies
that f is an immersion.

There exists in the literature a notion of affine immersion between affine man-
ifolds (see [11, Definition 1.1, Chapter II]). Using our terminology, such notion of
affine immersion is:

DEFINITION 3.4.3. Given affine manifolds (M, V), (M, V) then a smooth
map f : M — M is said to be an affine immersion of (M, V) into (M, V) if there
exists a vector bundle 7 : & — M, a connection VonE=TM @ F and a vector
bundle isomorphism L : E — f*TM such that (f, L) is an affine immersion of
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(M, E,V) into (M, V) and such that V is a component of V with respect to the

~

decomposition £ =TM & E, i.e.
VxY = prl(ﬁxY),
forall X,Y € I'(TM), where pr; : E — TM denotes the first projection.

LEMMA 3.4.4. Fix objects M, M, 7: E — M, E @ and V as in Defini-
tion Let s : U — FR(E) be a smooth local frame of E, f : U — M
be a map and L : E|U — f*T'M be a bijective fiberwise linear map. Define
F :U — FR(TM) by setting:

(3.4.3) F(z) = Ly o s(z) € FR(Tj(») M),

forall z € U. Denote by w™ the connection form on FR(TM) corresponding to
the connection Hor (FR(TM)) associated to N and by w™ the connection form

on FR(E) corresponding to the connection Hor (FR(E )) associated to V. Denote
also by 0™ the canonical form of FR(TM) and by OM the i-canonical form of

FR(E’) where 1 : TM — E denotes the inclusion map. Then (f, L) is a local
affine immersion with domain U if and only if the map F' is smooth and:

(3.4.4) FroM — s+ oM
(3.4.5) FroM — g* oM.

PROOF. Denote by L, : FR(E) — FR(f*TM) = f*FR(TM) the map
induced by L and by f : f*FR(TM) — FR(T'M) the canonical map of the
pull-back f*FR(TM). Clearly:

(3.4.6) F=foL,os.

We claim that F' is smooth if and only if both f and L are smooth. Namely, if both
f and L are smooth then equality implies that I is smooth. Conversely, if
F is smooth then f is also smooth, since f = IT o F, where IT : FR(T'M) — M
denotes the projection. Moreover, F' is a local section of FR(7'M) along f and:

o
Lios=F,

so that L, o s is smooth by Corollary Since s is an atlas of local sections
for the principal bundle FR(E)|y, it follows from the result of Exercise that
L, : FR(E)|y — FR(f*TM) is a (smooth) isomorphism of principal bundles
whose subjacent Lie group homomorphism is the identity map of GL(IR™). Hence
L is smooth by Lemma|l.5.18

Now, assuming that F', f and L are smooth, we prove that L is connection
preserving if and only if holds. Recall from (c) of Lemma [2.5.10] that L is
connection preserving if and only if L, : FR(E) — FR(f*TM) is connection
preserving. By definition, the connection form of the pull-back FR(f*TM) =
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f*FR(TM) is equal to f *wM.: thus, by part (d) of Lemmal[2.2.11| L, is connection
preserving if and only if:
(3.4.7) (L 0 8)*(FfwM) = s*w™.

But (3.4.7) is obviously the same as (3.4.5)), by (3.4.6).
Finally, let us prove that L|7, ps = dfy for all z € U if and only if (3.4.4)

holds. Using (2.9.12)), we see that (3.4.4) holds if and only if:

(3.4.8) F(z) lo Al p(y) 0 dF, = s(z) "t oy,

forall z € U. Since IT o F = f, we see that (3.4.8) holds if and only if:

(3.4.9) F(z) ' odf, = s(z) ',

for all x € U. Finally, since F'(x) = L, o s(x), it is clear that holds if and
only if Ly|7, s = df,. This concludes the proof. O

COROLLARY 3.4.5 (uniqueness of affine immersions with initial data). Let
M, M, 7 : E — M, E, % and ¥V be as in Definition ' assume that M
is connected. If (f', LY), (f2, L) are both affine immersions of (M, E, V) into
(M, V) and if there exists xo € M with:

fl(mo) - f2($[)), Lio = L:2z:07

then (f1,L1) = (f2, L?)
PROOF. Denote by f% : (f)*T'M — TM the canonical map of the pull-back

(f)*TM,i=1,2. Clearly (f*, L') = (f?, L?) if and only if the maps:
(3.4.10) flol': M —TM, f?0Ll?*:M—TM
are equal. The set of points of M where the maps (3.4.10) coincide is obviously
closed and, by our hypotheses, nonempty. Let us check that such set is also open.
Let # € M be a point at which the maps (3.4.10) coincide. Let s : U — FR(FE)
be a smooth local frame of 2 where U is a connected open neighborhood of z in
M. Fori = 1,2, define F* : U — FR(T'M) by setting F"*(y) = L; o s(y), for all
y € U. Then F!(x) = F?(r) and Lemma implies that F* is a smooth map
satisfying: -

(Fz)*(eM’wM) — (S*QM, S*(,UM),
for i = 1, 2. Since for each p € FR(T'M), the linear map:

62, WMy . T,FR(TM) — R” @ gl(R")

p ' %p
is an isomorphism (recall (2.11.7)) then Lemma implies that F'' = F?2,
Hence the maps (3.4.10) coincide in U and we are done. O

DEFINITION 3.4.6. An affine manifold with G-structure (M, V, P) is said to
be infinitesimally homogeneous if for all x,y € M and all G-structure preserving
map o : T, M — T, M, the following conditions hold:

e Ad, o3P :3500;
e T, is o-related with T7;
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e R, is o-related with R,.

The condition of infinitesimal homogeneity means that curvature, torsion and
inner torsion are constant with respect to frames that are in the G-structure. This
statement is made more precise in the following:

LEMMA 3.4.7. Let (M,V, P) be an n-dimensional affine manifold with G-
structure, where G is a Lie subgroup of GL(R™). Then (M, V, P) is infinitesimally
homogeneous if and only if there exists multilinear maps Ry € Linz(R"™, R"),
Ty € Ling(R™, R"™) and a linear map 3, : R™ — gl(R™)/g such that:

p* Ry = Ry, p™Tp =To,
(3.4.11) o
Ad, o3y =7T, op,

forallx € M and all p € P,.

PROOF. Assume the existence of Ry, Ty, J, such that (3.4.11)) holds for all
x € Mandall p € P,. Let z,y € M and a G-structure preserving map o :
T, M — T,M be fixed. Choose any p € P, and set ¢ = 0 o p, so that g € P,.
Then:

PRy =Ro=q Ry =p“0" Ry,
and then R, = 0" Ry, i.e., R, is o-related with I2,,. Similarly, T is o-related with
T,. Moreover Ad, o J; = 3L op, Ad, o7, = 35 o g and therefore:
jgoaop:jgoq:rdqojo :rdoordpojo :ngojfop,
proving Ad, o 37 = 35 o 0. Conversely, assume that (M, V, P) is infinitesimally
homogeneous. Choose any x € M and any p € P, and set:
Ry=p'Ry, To=p"Ty, Jo=(Ady) " 03] op.
Givenany y € M, q € P, theno = ¢ op~ !t T,M — Ty M is a G-structure
preserving map and therefore 0* R, = R, 0T, = T, and Ad, o 35 = "5 oo0.
Then:
¢'Ry=p'0c"Ry=p"Ry = Ry, ¢ Ty=p'oc"T,=pT,="To;
moreover:
Ad, 03y =Adjo(Ad,) ol op=Ad, 03 op=3"0cop=1"0y

This concludes the proof. ([

Roughly speaking, an affine manifold with G-structure (M, V, P) is infinites-
imally homogeneous if one can describe the inner torsion J7, the torsion tensor T
and the curvature tensor R by formulas that involve only the G-structure. A bet-
ter understanding of this statement can be obtained by considering the following
examples.

EXAMPLE 3.4.8. Let (M, g) be an n-dimensional semi-Riemannian manifold
with n_(g) = r having constant sectional curvature ¢ € R. This means that:

Gz (Rx(v,w)uw) = c(gx(v,w)2 — gx(v,v)gz(w,w)),
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for all x € M and all v,w € T, M, where R denotes the curvature tensor of the
Levi-Civita connection V of (M, g). It is well-known (see Exercise [3.8) that if
(M, g) has constant sectional curvature c then the curvature tensor R is given by:

(3.4.12) R, (v,w)u = c(gx(w, u)v — gz (v, u)w),

forallx € M and all v, w,u € T, M.

If P = FR®(TM) is the O, (R™)-structure on M consisting of all orthonormal
frames then the triple (M, V, P) is infinitesimally homogeneous. Namely, 37 = 0,
T = 0 and formula (3.4.12) says that the curvature tensor R is constant on frames
that belong to the G-structure (the curvature tensor R can be described using only
the G-structure P, that can be identified with the metric tensor g). In this situation,
the multilinear maps Ry, T, J, of Lemma 3.4.7]are given by Ty = 0, J, = 0 and:

Ry R x R™ x R" 3 (v,w,u) — {w, u)v — (v, upw € R”,
where (-, ) denotes the Minkowski bilinear form of index r in R".

EXAMPLE 3.4.9. Let A be an n-dimensional Lie group and V be a left invari-
ant connection on A4, i.e., the left translations of A are affine maps. Denote by a the
Lie algebra of A. The connection V is determined by a linear map I" : a — Lin(a)
and it is given by:

(3.4.13) VX = g(dX,(v) + (g ) - X(g)),

forall g € A, v € T;,A and all X € T'(T'A), where X(g9) = g7*X(g). The
curvature tensor of V at 1 € A is easily computed as:

Ri(X,Y) = [[(X),T(Y)] - T([X,Y]),

for all X,Y € a. Choose any linear isomorphism pg : R® — a. Consider the
global smooth section s : A — FR(T'A) defined by:

(3.4.14) s(g) = dLy(1) o po € FR(T,A),

forall g € A, where L, : A — A denotes left translation by g. Then P =
s(A) is a G-structure on A with G = {Idg~}. Since the left translations of A
are affine G-structure preserving diffeomorphisms, it follows that (A, V, P) is a
homogeneous (and infinitesimally homogeneous) affine manifold with G-structure.
The Christoffel tensor of V with respect to s is given by:

T,A>v+—dL,(1)oT'(g ') odLy(1)"" € Lin(T,A)

for all g € A. The inner torsion 3% coincides with the Christoffel tensor (Exam-

ple[ZTT2).

EXAMPLE 3.4.10. Let (M, g'), (M2, g*) be semi-Riemannian manifolds with
dim(M;) = ng, n_(g%) = r;, i = 1,2. Assume that (M;, g*) has constant sectional
curvature ¢; € R, ¢+ = 1,2. Consider the product M = M; x M, endowed with
the metric g obtained by taking the orthogonal sum of ¢g' and ¢, i.e.:

9(z1,22) ((017 v2), (w1, w2)) = 9;1(01, wy) + 93202 (v, w2),
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for all z; € My, xo € Mo, vi,w; € Ty, M; and all vo,wy € T, Ms. The
curvature tensor R of the Levi-Civita connection V of (M, g) is given by (recall

EZT)
(3415) R(xl,xz)((v17v2)7 (’U)l,U)Q))(Ul,’UJQ)

= (gil(wlaul)vl - 95151 (Ul, Ul)wl)
+ c2 (93;2 (wa, ug)vg — 952 (v2, U2)w2),
forall z; € My, x9 € My, u1,v1,w; € Ty, My and all ug, ve, we € Ty, M. Set:
P =FR®(TM;R™ @ {0}"2, pr (T M1)),

where pry : M — M denotes the first projection and R™ "2 = R™ & R"2
is endowed with the orthogonal sum of the Minkowski bilinear forms of indexes
71 and ro. More explicitly, for all (z1,22) € M, P, ;) is the set of all linear
isometries p : R™*"2 — T(, .M such that p(R™ & {0}"2) = T, My & {0}
and (automatically) p({0}™ @ R"2) = {0} @ T}, M>. Then P is a G-structure on
M with:

G = O(R™*™2;R™ & {0}™) = O,, (R™) x O,,(R").

We claim that (M, V, P) is infinitesimally homogeneous. Since V is compati-
ble with g and the covariant derivative of sections of prj(7'M;) are sections of
pri (T M), it follows from Example that the inner torsion 3% is zero. More-
over, the torsion of V is zero and formula (3.4.135) implies that R is constant on
frames that belong to the G-structure P.

EXAMPLE 3.4.11. Let (M, g) be a semi-Riemannian manifold and let .J be an
almost complex structure on M such that J, is anti-symmetric with respect to g,
forall z € M. Assume that .J is parallel with respect to the Levi-Civita connection
V. Then (M,g,J) is called a semi-Kdhler manifold; when ¢ is a Riemannian
metric, we call (M, g, J) a Kiihler manifold. We say that (M, g, J) has constant
holomorphic curvature c € R if:

9o [Ra (v, J(0))v, Jv] = —cgq (v, v)?,

forall x € M and all v € T, M. It is well-known (see Exercise 3.9) that if
(M, g, J) has constant holomorphic curvature ¢ then the curvature tensor R is given
by:

(3.4.16) Ry(v,w)u = —%[ga(v, W)w — go(w, w)v — gz (v, Jp(u)) Jz(w)
+ 9z (wa Jx(“))l’c(”) —29s (U, Jx(w))Jx(u)]a

forall z € M and all v, w,u € T, M. If (M, g, J) is a semi-Kdhler manifold with
constant holomorphic curvature and if P = FR"(T'M ) then (M, V, P) is infinites-
imally homogeneous. Namely, the inner torsion J* is zero (Example , the
torsion is zero and formula (3.4.16) shows that R is constant in frames that belong
to P.
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EXAMPLE 3.4.12. Let (M, g) be an n-dimensional semi-Riemannian manifold
where ¢ has index 7 and let £ € T'(T'M) be a smooth vector field on M with
92 (&(x),&(x)) = 1, forall z € M. Let us endow R™ with the Minkowski bilinear
form (-, -) of index r; denote by ey, ..., e, the canonical basis of R". Assume that
there exists a trilinear map Ry : R” x R” x R® — R" and a linear map L :
R™ — R™ such that for every z € M and every linear isometry p : R* — T, M
with p(e1) = &(z), the following conditions holds:

(a) Ry is p-related with R;

(b) poLo=(V&)zop
Set P = FR®(T'M;eq,£), so that P is a G-structure on M with G = O(R"; e1)
(Example 2. . Then (M, V, P) is infinitesimally homogeneous. Namely, this
follows from Lernma [3.4.7] keeping in mind that, since V is compatible with g,
the inner torsion J7 can be identified with V¢ (Example m It will also be
interesting to consider the case where M is oriented and (a) and (b) above hold only
for orientation preserving linear isometries p : R" — T, M with p(e;) = &(x). In
this case, one considers the open subset of P consisting of orientation preserving
frames, which is a principal bundle with structural group'

{T € O(R";¢1) : det(T) = 1}.
Interesting examples of Riemannian manifolds satlsfylng the conditions above are

the homogeneous 3-dimensional Riemannian manifolds with an isometry group of
dimension 4 (see, for instance, [7]]).

DEFINITION 3.4.13. Fix objects M, M, = : E — M, E, V and V as in
Deﬁmtlon 2} Let G be a Lie subgroup of GL(R™) and assume that E and TM
are endowed Wlth G-structures P and P, respectively. A (local) affine immersion
(f,L) of (M, E, V) into (M, V) is said to be G-structure preserving if L is a

G-structure preserving isomorphism of vector bundles, where f *T'M is endowed
with the G-structure f*P (recall Example|[1.8.3).

THEOREM 3.4.14. Fix objects M, M,nm:E— M EVV,G, PandP
as in Deﬁmtlon 3.4.13| Denote by T,RT R, respectively the i-torsion of v, the
curvature of V, the torsion of V and the CLﬂchture of V, where v : TM — E

denotes the inclusion map. Assume that (M, ¥, P) is infinitesimally homogeneous

and that for all x € M, y € M and every G-structure preserving map o : E —
T, M, the following conditions hold:

@ Ad, 03P =3P o olp
(b) 7} T M x T, M — lzx is J-Ielated withTy : TyZLJ X Tyl\if — TyAJ,'
() Ry : T:M x T M x B, — E, is o-related with R, : Ty, M x Ty, M X
T,M — T,M.
Then, for all xy € M, all yo € M and for every G-structure preserving map

o) Ex0 — T, oM there exists a G-structure preserving local affine immersion

(f,L) of (M, E, V) into (M, ) whose domain is an open neighborhood U of x
in M and such that f(xo) = yo, Ly, = 00.



3.4. AFFINE IMMERSIONS IN HOMOGENEOUS SPACES 185

PROOF. Denote by w™ M the connection form on FR(TM) corresponding to
the connection Hor (FR(T M )) associated to V and by w? the connection form

on FR(E) corresponding to the connection Hor (FR(E)) associated to V. Denote
also by 9™ the canonical form of FR(T'M) and by 6™ the (-canonical form of
FR(E), where « : TM — E denotes the inclusion map. Let s : V — P be a
smooth local section with g € V. Denote by AP the 1-form on P obtained by

restricting the R™ & gl(R™)-valued 1-form (#,w™) and by AV the R™ & gl(R™)-
valued 1-form on V' defined by

Since (M, V, P) is infinitesimally homogeneous, by Lemma | there exists a
linear map J, : R™ — gl(R™)/g such that:

(3.4.17) AdyoJy =3 op,

forally € M and all p € ?y. Let us show that for all x € M and all p € P, we
have:

(3.4.18) (Ad,)"'o ﬁf =TJgop Hrm

Namely, choose any y € M, p € Fy andsetc = pop !, sothat o : Ex — Tyﬂ
is G-structure preserving (notice that p = ¢ o p and use Remark|I.1.14)). Then:

A3 ~P _~P ~P o1 GATh = ~ -1
Ady 0T, =Ty ooln,m =T, 0opop |n,m = AdgoTJyop |nm,

and:
Ad, 038 = Adyo (Ad,) "L o3P,
so that:
Adyo (Ady) "L od% = AdyoTyop Ymur,
proving (3.4.18).

We divide the rest of the proof into steps.

Step 1. The thesis of the theorem follows once it is shown the existence of a
smooth map F : U — P defined in an open neighborhood U of xy in V' such

that F*AY = \V|y and F(x) = 0 o s(x).

Assume that we are given a smooth map F' : U — P defined in an open
neighborhood U of x¢ in V such that F*A\P = AV |¢; and F(zq) = 0¢ 0 s(zq).
Set f =Ilo F : U — M, where II denotes the projection of the principal
bundle P. We define a fiberwise linear map L : E|U — f*TM by setting:

L,=F(z)os(z)"': E, — TpyM = (f*TM),,

for all x € U; thus (3.4.3) holds. Clearly f(xo) = yo and L,, = 0¢. Since F'
is smooth and:

F O™ M) = XV | = ((s|) 0™, (s]p)*w™),
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Lemmal3.4.4|implies that the pair (f, L) is a local affine immersion of (M, E, V)
into (M, V) with domain U. Since, for all z € U, s(z) is in P, and F(x) is

in Py(y), equality (3.4.3) implies that L is G-structure preserving (see Re-
mark

Step 2. For all p € P, the linear map )\f maps Tpﬁ isomorphically onto the
space:

(3.4.19) {(u, X) e R" @ gl(R") : Jp(u) = X + g}.
Follows directly from Remark [2.11.9]and from equality (3.4.17)).

Step 3. The 1-form \V takes values in the space (3.4.19).
Letxz € V and v € T, M be fixed. We have:
M (@) = ((50M)a(v), (5%™)a(0)) B (s(2) 7" - 0, (M) ().
We have to check that:
Jo(s(2) ™" v) = (s'w™)u(v) + 0.

By the definition of JZ, we have:

(Ady()) (37 () = (s"w)a(v) + 8.
But formula with p = s(z) gives:

(ms(z))_l (35(’0)) = 30 (S(x)_l : U)'
Step 4. There exists a smooth map F : U — P as in step

We apply Proposition [A:4.7] Observe that, since o is G-structure pre-
serving and s(zo) € P, we have o o s(zo) € P; thus, once the hypothe-
ses of Proposition have been checked, its thesis will give us a smooth
map F' : U — P defined in an open neighborhood U of zg in V with
F(x0) = 000 s(zo) and F*\’ = \V|y. Letx € V,y € M,p € P, be
fixed. By step 3} the linear map \Y maps T, M to (3.4.19) and by step [2| the
linear map AL maps TP isomorphically onto (3:4.19); therefore, we get a
linear map:

T = (/\5)71 o\ T,M — T,P.
In order to apply Proposition[A.4.7, we need to check that:

(3.4.20) Al = any.
Obviously (3.4.20) is the same as:

(3.4.21) oM = (s*doM),, Tdwll = (s*dwM),.
Clearly:

T*HpM = (S*QM)I, T*wﬁﬁ = (s*wM)x,
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so that (3.4.21) is equivalent to:
7*(dgM + WM A O, = (57(d6M + WM A GM))
T*(dwﬁ + %wﬁ A wﬁ)p = (s*(dw™ + T WM A wM))x.
But, by (2.9.2) and (2.9.13)), (3.4.22) is the same as:
(3.4.23) oM = (s*oM),, ol = (s*aM),,

(3.4.22)

where ©M denotes the torsion form of FR(TM), QM denotes the curvature
form of the connection of FR(T'M ), ©M denotes the ¢-torsion form of FR(E)
and QM denotes the curvature form of the connection of FR(E). Equalities

(3:4:23) hold if and only if:
M (7(0), 7 52(v), dsg(w)),
an O3 (), 7(w)) = O3 (A (0}, dsw)
pr (T(’Z)), T(w)) = Q?E[m) (dsm(v)a dsx(w))a

for all v,w € T,M. Denote by I FR(E) — M the projection; using
(2.9.20) and (2.9.14), keeping in mind that dII,) o ds, is the identity of
T, M, we obtain that (3.4.24)) is equivalent to:

5 (Ty (ATl ()], Tl lr(w)]) ) = s(2) ™! (Ta(o, w)),
5 0 By (dTTy{r (o)), AT, {r(w)]) o p = ()~ 0 Ralv,w) o 5().
Let us compute dII; o 7 : T, M — T, M. Given u € R", X € gl(R") with
(u, X) in (3:419) then (A?)*l(u X) = ¢, where ¢ € T, P satisfies:

02 (¢) = p~HdT(Q)) = s

(3.4.25)

thus: B N

(dTT 0 (AD) 1) (u, X) = p(uw).
Given v € T, M then, using (2.9.12)), we see that the first component of \Y (v)
is s(z)~! - v; therefore:

(dT; 0 7)(v) = (0 (AD) Lo AY)(v) = (Fo s(z) 1) (v).

Setting 0 = po s(z)~! : E, — T, M then (3.4.23) is equivalent to:
7 (Ty(o(0),0w) ) = s(2) ™ (T (v,w)),
o R, (o(v),0(w)) op = s(x) " o Ry(v,w) o s(x),

which is the same as:

Ty(o(v),0(w)) = U(T (v,w)),

(3.4.26) _
Ry(o(v),0(w)) =0co Ry(v,w) oo L.

Finally, since o is G-structure preserving, our hypotheses say that c*71", = ’fx
and 0* Ry, = Ry, i.e., (3.4.26) holds. This concludes the proof. O
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3.4.1. The global affine immersions theorem.

THEOREM 3.4.15. Under the assumptions of Theorem[3.4.14} if M is simply-
connected and (M,V) is geodesically complete then, for all xo in M, all yo €
M and for all G-structure preserving map oy : Egg0 — TyOM there exists a G-

structure preserving affine immersion (f, L) of (M, E, V) into (M, ) such that
f(zo) = yo, Lz, = 0o. Moreover if M is connected then, by Corollary such
affine immersion (f, L) is unique.

LEMMA 3.4.16. Let (M, V), (M, V) be n-dimensional affine manifolds, G be
a Lie subgroup of GL(R™), P C FR(TM) be a G-structure on M, PcC FR(TM)
be a G-structure on . M and s : V. — P be a smooth local section of P. Denote
by oM, LM, oM w , wM respectively the canonical form of FR(T M), the connection
form of FR(TM), the canonical form of FR(TM) and the connection form of
FR(TM). Set:

A= (s0M, s*wM)

and denote by AP the restriction to P of (GM, wﬁ). Lety:I—V,pu:I— M be
geodesics and [i : I — P be a parallel lifting of ji. Assume that s o y is a parallel
lifting of v and that:

(3.4.27) s(v(t0)) ™"+ (to) = fltto) "+ 1 (to),
for some ty € 1. Then:

(3.4.28) A (1) = My (7 (1)),
forallt € 1.

PROOF. Since s oy and i are both parallel, we have:
(5"w™) 0 (V' (1) = Wiiony @y (s 07)'(1) =0, wiy ('(1)) =0,
forall ¢ € I, so that (3.4.28) is equivalent to:

(5°0M) 0 (Y1) = 030, (B (1)),
forall t € I. By (2.9.12), we have:

(5° M), (7 (1) = s((1) "~ (1),
for all ¢ € I; moreover:
On (B (1)) = ()™ - ' (1),

for all t € I. Since y and 1 are geodesics, the curves y' : I — T'M and p/ : I —
TM are parallel; since sovy : I — FR(T'M) and i : I — FR(T'M) are also
parallel, the maps:

I3t—s(y(t)" ’(t) eR”, It a(t) -4/ (t) eR"
are constant and therefore ( implies that:
-1 -
s('y(t)) () = A (8),
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for all ¢t € I. The conclusion follows. O

LEMMA 3.4.17. Let (M, V), (M, ) be n-dimensional affine manifolds, G be
a Lie subgroup of GL(R"), P C FR(TM) be a G-structure on M, P C FR(TM)
be a G structure on M; assume that (M, V) is geodesically complete Denote by
T R TR respectively the torsion of V, the curvature of V, the torsion of V
and the curvature of V. Assume that for all z € M, y € M and every G-structure
preserving map o : T, M — T, M, the following conditions hold:
(a) Ad, o jf = ’Jyﬁo o;
(b) Ty : ToM x Ty M — Ty M is o-related with Ty, : T, M x T, M — T, M;
(©) Ry : ToM xTpM x T, M — T, M is o-related with R,, : T,,M x T, M x
TyM — T, M.
Let 1 € M be fixed and let Vy be an open subset of T,,, M that is star-shaped at
the origin and such that exp,, maps Vy diffeomorphically onto an open subset V
of M. Then, for all zo € V, all yo € M and for every G-structure preserving map

oo : TyeM — TyOM there exists a G-structure preserving affine map f : V — M
such that f(xo) = yo, dfz, = 00.

REMARK 3.4.18. Observe that, if M is nonempty, conditions (a), (b) and (c)
in the statement of Lemma imply that (M, V, P) is infinitesimally homo-
geneous. A similar observatlon does not holds in the case of Theorem (3.4.14]
because the relations that appear in conditions (a), (b) and (c) in the statement of
Theorem [3.4.14] involve restrictions of the tensors.

~

PROOF. By Lemma [2.2.30} there exists a smooth local section s : V. — P
such that for all v € T, M, the curve ¢ — s(exp,, (tv)) € P is a parallel lifting

of the geodesic ¢ +— exp,, (tv). Define 6™, wM, oM WM AV and A" as in the
statement of Lemma[3.4.T6 Our strategy is to employ Proposition[A.4.10|to obtain
a smooth map F': V' — P such that F(x) = 0 o s(xo) and F*AP = \V. Once
this map F is obtained, we set f = Il o I/, where Il : P — M denotes the
projection; then, arguing as in step [T] of the proof of Theorem [3.4.14] it will follow
that f is a G-structure preserving affine map such that f(xg) = yo, dfz, = 0o.
Let us check the validity of the hypotheses of Proposition [A.4.10] Hypothesis (a)
is obtained as in the proof of steps 2] and [3] of Theorem [3.4.14] and hypothesis (b)
is obtained as in the proof of step {] of Theorem [3.4.14] Hypothesis (c) (i.e., the
simply-connectedness of V) follows from the fact that V' is homeomorphic to a
star-shaped open subset of 13, M. To prove that hypothesis (d) holds, we consider
the set C of all geodesics v : [0,1] — V such that s o «y is a parallel lifting of ~.
The fact that C is rich follows by considering the map:

H:[0,1]xV 3 (t,2) — exp,, (texp, (z)) € V.

Finally, given v € C and p € P, we have to show that there exists a smooth curve
fi : [0,1] — P such that /i(0) = p and such that (3.4.28) holds, for all ¢ € [0, 1].
Since (M, V) is geodesically complete, there exists a geodesic p : [0,1] — M
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with 2(0) = II(p) and:

_ ~1
w(0) = [pos(4(0) "] -+'(0).
Let i : [0,1] — P be a parallel lifting of u with fi(0) = p (Proposition[2.2.28). By
Lemma 3.4.16] (3.4.28) holds, for all ¢ € [0, 1]. This concludes the proof. (]

We can now prove a global version of Theorem |3.4.14|in codimension zero.

PROPOSITION 3.4.19. Under the conditions of Lemma if M is simply-
connected then for all xo € M, all yo € M and for every G-structure preserving
map oo @ TpoM — TyOM there exists a G-structure preserving affine map f :
M — M such that f(xg) = yo and dfy, = oo. If M is connected then such f is

unique, by Corollary[3.4.5

PROOF. We may assume without loss of generality that M is connected. Our
plan is to use the globalization theory explained in Section [B.4] Let us define a
pre-sheaf on M as follows: for every open subset U of M, P(U) is the set of all
G-structure preserving affine maps f : U — M and given open subsets U, V C M
with V' C U, the map Py y : P(U) — P(V) is given by f +— f|y. The fact
that the pre-sheaf 3 has the localization property is trivial. The fact that 3 has the
uniqueness property follows from Corollary Moreover, given x1 € M, if
Vo is an open subset of T, M, star-shaped at the origin, such that exp,, maps
Vo diffeomorphically onto an open subset V' of M then it follows easily from
Lemma that V' has the extension property with respect to 3. Thus, 3 has
the extension property. We are therefore under the hypotheses of Corollary
Now, let f : V' — M be a G-structure preserving affine map defined on a con-
nected open neighborhood V' of xy with f (xo) = yo and d fxo = 0y (the existence
of f can be obtained either from Lemma or from Theorem m By
Corollarym B.4.22] there exists f € P(X) such that f|,y = f. This concludes the
proof. (|

REMARK 3.4.20. Under the conditions of Proposition 3.4.19] if in addition
(M, V) is geodesically complete, M is simply-connected and both M and M are
connected then the map f given by the thesis of the proposition is a smooth diffeo-
morphism. Namely, one can interchange the roles of M and M to obtain a smooth
inverse for the map f.

PROPOSITION 3.4.21. Let (M, V) be an affine manifold endowed with a G-
structure P. If M is connected and simply-connected, (M,V) is geodesically
complete and (M, V, P) is infinitesimally homogeneous then (M, ¥V, P) is a ho-
mogeneous affine manifold with G-structure.

PROOF. Take (M,V,P) = (M,V,P) in Proposition [3.4.19| and use Re-
mark [3.4.201 O

PROOF OF THEOREM [3.4. T3l We can assume without loss of generality that

M is connected. We will first prove the theorem under the additional assump-
tion that M is simply-connected so that, by Proposition 1, (M,V,P)isa
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homogeneous affine manifold with G-structure. We will use the globalization the-
ory explained in Section Let us define a pre-sheaf on M as follows: for
every open subset U of M, B(U) is the set of all G-structure preserving local
affine immersions (f, L) of (M, E, V) into (M, V) with domain U; given open
subsets U, V' C M with V' C U, the map Pyv : PU) — P(V) is given by
(f,L)— (flv, L] Elv)' The fact that the pre-sheaf 3 has the localization property
is trivial. The fact that 3 has the uniqueness property follows from Corollary[3.4.3]
Let us now show that every open subset U of M such that B(U) is nonempty has
the extension property with respect to B3; since, by Theorem [3.4.14] the set of such
open sets U cover M, it will follow that the pre-sheaf 3 has the extension property.
Let then U be an open subset of M such that §3(U) is nonempty and let (f, L) in
PB(U) be fixed. Given a nonempty connected open subset V' of U and an affine
immersion (f, L) in P(V'), we show that ( f, L) admits an extension to U. Choose
any zg € V; the linear map:

N
(3.4.29) Loy o L)+ Ty

is G-structure preserving. Thus, by the homogeneity of (M, V, P), there exists a
affine G-structure preserving diffeomorphism g : M — M such that g(f(z0)) =

f(zo) and dg, is equal to (3.4.29). Then:
J— N AL — A
(f.L) = (go f.(f*dg)o L)

is in B(U) and f(xg) = f(w0), Lyy = Lu,. Since V is connected, by Corol-
lary the restriction of (f,L) to V is equal to (f,L). This concludes the
proof that 3 has the extension property. We are therefore under the hypotheses of
Corollary which allows us to extend a G-structure preserving local affine
immersion given by Theorem [3.4.14] to the desired G-structure preserving affine
immersion of (M, E, V) into (M, V). The general case in which M is not simply-
connected can be obtained by considering the universal covering of M. O

3.5. Isometric immersions into homogeneous semi-Riemannian manifolds

DEFINITION 3.5.1. Suppose we are given the following data:

e an fi-dimensional semi-Riemannian manifold (M, ), where the semi-
Riemannian metric g has index 7;

e an n-dimensional semi-Riemannian manifold (M, g), where the semi-
Riemannian metric g has index r;

e avector bundle 7 : £ — M with typical fiber R* endowed with a semi-
Riemannian structure gE of index s, wheren =n+ kand 7 =r + s;

e a connection V¥ on E compatible with g%;

e a smooth section o’ of Lin§(T'M, E).

By a local solution of the semi-Riemannian isometric immersion problem corre-
sponding to the data above we mean a pair (f,S), where f : U — M is an
isometric immersion defined in an open subset U of M and S : E|y — f= is an
isomorphism of vector bundles such that:
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® 1) (Sz(e), S2(¢) = gl (e, ). forallz € U and all e, € E,;
e S is connection preserving if F is endowed with V¥ and f is endowed
with the normal connection V-
e S carries o’ to the second fundamental form o of the isometric immer-
sion f,i.e., Sy 0l = ag, forall x € U.
We call U the domain of the local solution (f,S). By a solution of the semi-
Riemannian isometric immersion problem we mean a local solution (f, S) whose
domain is M.

Consider the vector bundle E = TM & E endowed with the semi-Riemannian
structure § whose restrictions to 7'M and F are g and g” respectively and such that
T M and E are orthogonal. Let G be a Lie subgroup of Or (Rn) P be a G-structure

on E and P be a G-structure on M such that P C FR°(E ) and P C FR°(T'M).
A local solution (f, S) of the semi-Riemannian isometric immersion problem with
domain U C M is said to be G-structure preserving if for all x € U, the linear
isomorphism:

dfe ® Sy 1 By = TyM @ Ey — dfo (T, M) ® fiF = Ty M
is G-structure preserving.

THEOREM 3.5.2. Suppose we are given data as in Definition [3.5.1} denote
by V the Levi-Civita connection of (M, g) and by N the Levi-Civita connection

of (M, ). Consider the vector bundle E = TM & E endowed with the semi-
Riemannian structure g whose restrictions to T M and E are g and g® respec-
tively and such that TM and E are orthogonal. Let ¥V be the connectton on E
that is Compatlble with G and whose components are V, VE and o (see § Subsec-
tion . Let G be a Lie subgroup of Or (IR") P be a G-structure on E and P
be a G structure on M such that P C FR®(E) and P C FR®(T'M). Assume that
(M, ¥V, P) is infinitesimally homogeneaus and that for all x € M, y € M and
every G-structure preserving map o : Ex — T M, the following conditions hold:

(a) o relates the inner torsion of P with the inner torsion of P, i.e.:

Ad, 03 = ’Jyﬁ °0;
(b) the Gauss equation holds:
3[Ry (0(0),0(w)) o (1), 0(2)] = g0 (Ra(v, w)u, 2)
— Gz ( (w U) aO( )) +ga} ( (U U) agz(waz))v
forall u,v,w,z € T, M;
(¢) the Codazzi equation holds:
3. (B, (0(0). 0 (w)) o (). 0(e)] = g ((V*a®)a(v,w, ). )
— ((V®CE ) (wa v, u)v 6),

for all u,v,w € T, M and all ¢ € E,, where V® denotes the connection
induced by V and V¥ on Ling(TM, E);
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(d) the Ricci equation holds:

3y [Ry(o(v),0(w))ole),a(e)] = g7 (R (v, w)e, )
+ gz (ag(v)* e, ad(w)* - ) — go (ag(w)* e,al(v)*- ),
forallv,w € TyM and all e, €’ € E,, where RY denotes the curvature
tensor of VF.

Then, for all o € M, all yo € M and for every G-structure preserving map
o Exo — TyOM there exists a G-structure preserving local solution (f,S)
of the semi-Riemannian isometric immersion problem whose domain is an open
neighborhood U of x( such that f(xz¢) = yo,

(3.5.1) 00 = dfuy®Sug : Euy = TugM @ Eyy — dfyy (T M) & fif = T,y M.

If M is connected and simply-connected and if (M, V) is geodesically complete
then one can find a unique G-structure preserving global solution (f,S) of the
semi-Riemannian isometric immersion problem satisfying the initial condition above.

PROOF. This is an application of Theorems [3.4.14] and [3.4.13] First, notice
that if (f, L) is a G-structure preserving local affine immersion of (M, E, V) into
(M, V) then, setting S = L|g : E — f=, the pair (f, S) is a G-structure pre-
serving local solution of the semi-Riemannian isometric immersion problem; con-
versely, if (f, .S) is a G-structure preserving local solution of the semi-Riemannian

isometric immersion problem then, setting L = ch @ S, the pair (f,L) is a G-
structure preserving local affine immersion of (M, E, @) into (M, V). Now ob-
serve that:
e hypothesis (a) of Theorem [3.4.14]is the same as hypothesis (a) of this
theorem;
e hypothesis (b) of Theorem[3.4.14|follows from the symmetry of the Levi-
Civita connection V and from the symmetry of a” (see Example ;
e hypothesis (c) of Theorem [3.4.14] follows from the Gauss, Codazzi and
Ricci equations (Proposition [2.8.T).
This concludes the proof. ([

Let us see some explicit examples of applications of Theorem[3.5.2] by looking
closer at its hypotheses in particular situations.

EXAMPLE 3.5.3. Assume that (M, §) has constant sectional curvature ¢ € R
(recall Example [3.4.8). Set @ = O(R™), P = FR(E) and P = FR®(TM).
Then (M,V, P) is infinitesimally homogeneous. We have 3P = 0 and 37 =
0 because the connections V and V are compatible with the semi-Riemannian
structures g and g, respectively (Example [2.11.3). Thus, hypothesis (a) of The-
orem is automatically satisfied. By (3.4.12)), the lefthand side of the Gauss
equation becomes:

C(gl‘(w’ U)QI(U’ Z) - gx(vv u)gﬂc (w7 Z))
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and the lefthand sides of the Codazzi and Ricci equations vanish. Thus, in this case,
Theorem[3.5.2] gives us the classical fundamental theorem of isometric immersions
(see for instance [S]). More explicitly, for all zg € M, all yg € M and for every
linear isometry oy : E’wo — Ty, M there exists a local solution (f, S) of the semi-
Riemannian isometric immersion problem whose domain is an open neighborhood
U of x( such that f(zg) = yo and (3.5.1)) holds.

EXAMPLE 3.5.4. Let (M, g'), (M2, g%) be semi-Riemannian manifolds with
dim(M;) = ng, n_(g%) = r;, i = 1,2. Assume that (M;, ') has constant sectional
curvature ¢; € R, i = 1,2. Consider the product M = M; x M, endowed with the
metric g obtained by taking the orthogonal sum of g' and ¢? (as in Example3.4.10).
Setn =ny 4+ no, ¥ =1y + 1o,

P =FR°(TM;R™ @& {0}", pr}(TM)),
where pry : M — M;j denotes the first projection and R? = R™ & R" is
endowed with the orthogonal sum of the Minkowski bilinear forms of indexes rq
and r9. Then P is a G-structure on M with:
G = O(R™R™ & {0}") = 0, (R™) x O, (R™)

and (M, V, P) is infinitesimally homogeneous. Let F be a vector subbundle of £
whose fibers are n-dimensional and set:

P =FR°(E;R™ & {0}™, F).
Let us assume that P is nonemptyl for all z € M, so that P is a G-structure
on E (Example . Since 3 = 0, hypothesis (a) of Theorem means
that ’JP =0, i.e., the covariant derlvatlve V of sections of F' are sections of F'

(Example [2.11.5). Denote by 7%’ . E — F, 7r Fr B — FLothe projections

corresponding to the direct sum decomposition E = F @ FL. The lefthand side of
the Gauss equation becomes (recall (3.4.13)):

e1 [ (rF (w), 7 (1)) g (27 (v), 77 (2))
—gu(m <>, <>)gx< <>,7rF<z>)}
+ c2[ga (7 my ))9( Z))
—gx( O <>)gx( P (w), 7" (2))].

The lefthand side of the Codazzi and Ricci equatlons are zero. The thesis of The-
orem“becomes for all zg € M, all y° = (y?,43) € M and for every linear
isometry oy : ExO — Ty M with oo(Fy,) =T, yo M1 @ {0} there exists a local so-
lution (f,.S) of the semi-Riemannian isometric immersion problem whose domain

is an open neighborhood U of x¢ such that f(zg) = y°, satisfying (3:3.1)) and such
that:

(dfﬂv S SIE)(FZ) = T(prlof)(a:)Ml S {0}7

This is equivalent to a compatibility condition between indexes of suitable restrictions of §. It
holds automatically, for instance, in the Riemannian case.
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forallx € U.

EXAMPLE 3.5.5. Assume that / M = Ais aLie group and that g is a left invari-
ant semi-Riemannian metric on M. Then the connection V is also left invariant

and it is given by (3.4.13), where I' : a — Lin(a) is equal to (see (2.11)):

3.5.2) NX) Y =[X,Y]— (ady)*(X) — (adx)"(Y),

forall X, Y € a, where adx (Y') = [X,Y]. Choose a linear isometry pp : R™ — a
and consider tlismooth global section s : M — FR°(T'M) defined by (3.4.14).
Then P = s(M) is a G-structure on M with G = {Idga} and (M, V, P) is
(infinitesimally) homogeneous. Let § : M — FR(E E) be a global smooth frame

of E, so that P = §(M) is a G-structure on E. Hypothesis (a) of Theorem
means that for all x € M the diagram:

7, _
CfszML \LAdU
o — Lin(a)

commutes, where o = pg o §(z) 7! : E, — a, T denotes the Christoffel tensor of
v with respect to § and T is given by (3.5.2)). In the lefthand side of the Gauss,
Codazzi and Ricci equations, one should replace g, by g1, R, by Ry and o should
be understood as pg o 8(z)~1; Ry is given by:

Ri(X,Y) = [I(X),I(Y)] - T([X,Y]),
for all X,Y € a. The thesis of Theorem becomes: for all g € M and
all yo € M there exists a local solution (f,.S) of the semi-Riemannian isometric

immersion problem whose domain is an open neighborhood U of z( such that
f(x0) = yo and such that:

(dfy @ Sy) 0 8(x) = s(f(a:)),

forall x € U.

EXAMPLE 3.5.6. Assume that M is endowed with an almost complex struc-
ture .J such that (M, g, J) is a semi-Kihler manifold with constant holomorphic
curvature ¢ € R (recall Examplem Set P = FR"(T'M) and G = Uz(R"),
so that P is a G-structure on M and (M, V, P) is infinitesimally homogeneous.
Let J be an almost complex structure on M and J¥ be an almost complex struc-
ture on F; we define an almost complex structure JonE by setting jz(v, e) =
(Jz(v), JE(e)), forallz € M, v € T,M, e € E,. Assume that, for all z € M,
J, and JF are anti-symmetric with respect to g, and gr, respectlvely, so that J
is anti-symmetric with respect to g. Set P= FR"(E ) so that P is a G-structure
on E. We have 37 = 0 because the connection V is compatible with the semi-
Riemannian structure g and JAIS parallel (Example . Thus, hypothesis (a)

of Theorem means that J is parallel with respect to V. An easy computation
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shows that J is parallel with respect to V if and only if the following conditions
hold:

e J is parallel with respect to V, i.e., (M, g, J) is Kéhler;
e JF is parallel with respect to V¥,
e ¥ is C-bilinear, i.e., a2 (J,-, ) = al(-, Jp) = JF 0 a°, forall x € M.

By (3.4.16)), the lefthand side of the Gauss equation becomes:

— ﬂgz(v,u)gm(w, 2) — ge(w,u) gz (v, 2) — ga (v, Jm(u))gx(Jw(w), z)
+ 9z (wu Jx(u))ga: (Jx(v)a Z) — 29, (7}7 Jx(w))gw(Jz(u)v Z)] )

and the lefthand sides of the Codazzi and Ricci equations vanish. Thus, in this
case, Theorem [3.5.2] gives us a fundamental theorem for isometric immersions of
Kihler manifolds. More explicitly, for all 29 € M, all yo € M and for every
C-linear isometry oq : Exo — TyOM (.e., 7y0 009 = 0g©° jxo) there exists a
local solution (f, S) of the semi-Riemannian isometric immersion problem whose
domain is an open neighborhood U of xg such that f(z) = yo, such that (3.5.1)
holds and d f, & S, : Ea: — Tf(x)M is C-linear, forall x € U.

EXAMPLE 3.5.7. Assume that (M, g) is endowed with a smooth vector field
¢ such that g(§, &) = 1 and such that the conditions described in Example [3.4.12
hold. Set P = FR°(T'M;ey,§), so that P is a G-structure on M with G =

O(R"™; e1). Then (M, V, P) is infinitesimally homogeneous. Let ¢ : M — E be a
smooth global section of E (e is determined by a smooth vector | field on M and by
a smooth global section of E) and assume that g(e,€) = 1. Set P = FR°(E; e, ¢),
so that P is a G-structure on . E. Hypothesis (a) in Theorem means that for
every x € M and every p € ch, we have:

po LO’p—l(TzM) = (§€)z o p|p_1(TIM)‘

The lefthand side of the Gauss equation becomes:
(Ro(p™"(v),p~ (w))p~ " (u), p™}(2)),

where p € 1335 is chosen arbitrarily. Similar considerations hold for the Codazzi
and Ricci equations. The thesis of Theorem [3.5.2] becomes: for all z9 € M, all
yo € M and for every linear isometry oy : Exo — Ty, M with oy (e(mo)) = &(yo)
there exists a local solution (f,S) of the semi-Riemannian isometric immersion
problem whose domain is an open neighborhood U of z( such that f(xo) = o,
satisfying (3.5.1) and such that:

(dfe & Sz) (e(@)) = £(f(2)),

for all z € U. Considering the case where (M, g) is a homogeneous 3-dimensional
Riemannian manifold with an isometry group of dimension 4, we obtain the results
concerning the existence of isometric immersions that appear in [7]].
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Exercises
Affine manifolds.

EXERCISE 3.1. Let M’, M be affine manifolds and f : M’ — M be a smooth
diffeomorphism. Given a vector field X on M’, we denote by f, X the vector field
on M defined by:

fiX=dfoXof L
Show that if f is affine if and only if:

[(VxY) = Vi x(f:Y),
forall X,Y € T'(TM). Conclude that if f is affine then also f~! is affine.

EXERCISE 3.2. Let M’, M be differentiable manifolds and f : M’ — M be
a smooth diffeomorphism. Given a connection V' on M’, show that there exists a
unique connection V on M such that f is affine.

EXERCISE 3.3. Let M’, M be affine manifolds and f : M’ — M be a smooth
local diffeomorphism. Consider the smooth map (df). defined in (I.8.1). Show
that f is affine if and only if:

d((df)),[Hory (FR(TM’))] = Hory (FR(TM)),
for all p € FR(T'M'), where ¢ = (df).(p).

EXERCISE 3.4. Let M’, M be affine manifolds and f : M’ — M be a smooth
local diffeomorphism. Consider the smooth map (d f). defined in (I.8.1). Denote
by w, w' respectively the connection forms on FR(7'M) and on FR(7T'M’). Denote
also by 6, ¢’ respectively the canonical forms of FR(7T'M ) and of FR(T'M'). Show
that:

e the pull-back of 6 by (df). is equal to ¢';
e [ is affine if and only if the pull-back of w by (df), is equal to o'

Homogeneous affine manifolds.

EXERCISE 3.5. Let GG be a Lie group and H be a closed subgroup of G; denote
by g, h respectively the Lie algebras of G and H. Let m be a complement of § on g.
We identify the tangent space of G/ H at 1 = 1H via the differential of the quotient
map G — G/H and we consider the isotropic representation Ad : H — GL(m) of
H on m. Show that if D is a (necessarily smooth) G-invariant distribution on G/H
then D7 C m is an Ad-invariant subspace of m. Conversely, if 0 is an Ad-invariant
subspace of m then there exists a unique G-invariant distribution D on G/H with
D1 =0.

EXERCISE 3.6. Let GG be a Lie group, V be a real finite-dimensional vector
space and p : G — GL(V') a smooth representation of G on V. Denote by p : g —
gl(V) the differential of p at the identity. Given a subspace W of V, show that if
p(g)(W) =W, forall g € G then p(X)(W) C W, for all X € g. Conversely, if
G is connected, show that if p(X)(W) C W, for all X € g then p(g)(W) = W,
forallg € G.
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Affine immersions in homogeneous spaces.

EXERCISE 3.7. Let V, V', V" be real vector spaces and let:
o:V—V, oV =V
be linear maps. Given multilinear maps:
B € Ling(V,V), B €Ling(V', V"), B" e Ling(V", V"),
show that:

e if B is o-related with B’ and B’ is o’-related with B” then B is (¢/ o 0)-
related with B”;

e if o is an isomorphism and B is o-related with B’ then B’ is 0~ !-related
with B.

EXERCISE 3.8. Let V be a real-finite dimensional vector space, g : V x V —
R be a nondegenerate symmetric bilinear formon Vand R: V xV x V — V be
a trilinear map such that:

R(Ua w)u = _R(w7 U)u7 g(R(U, ’UJ)’LL, Z) = _g(R(Ua ’U))Z, 'LL),
R(v,w)u + R(u,v)w + R(w,u)v =0,
for all v, w,u, z € V. Given ¢ € R, show that the following conditions are equiv-
alent:
° g(R(U,w)v,w) = c(g(v, w)? — g(v,v)g(w, w)), for all v, w € V;
e R(v,w)u = c(g(w,u)v - g(v,u)w), for all v, w,u € V.
EXERCISE 3.9. Let V be a real-finite dimensional vector space, g : V x V —

R be a nondegenerate symmetric bilinear form on V, J be a g-anti-symmetric
complex structureon V and R : V x V x V — V be a trilinear map such that:

R(v,w)u = —R(w,v)u, g(R(v,w)u, z) = —g(R(v,w)z,u),
R(v,w)u + R(u,v)w + R(w,u)v =0,
R(v,w)J(u) = J(R(v,w)u),

for all v, w,u,z € V. Given ¢ € R, show that the following conditions are equiv-
alent:



APPENDIX A

Vector fields and differential forms

A.l. Differentiable manifolds

Basic knowledge of the theory of differentiable manifolds (standard references
for the subject are [1, 13,19, 12]) is a prerequisite for reading this book. Many au-
thors define differentiable manifold by starting with a topological space and then
introducing a differentiable atlas. In many situations (for instance, Sections [I.3]
and [[.4)), one does not have a natural topology to star with and thus it is easier to
define differentiable manifolds by starting only with a set and then, later, introduc-
ing a topology that is induced by the atlas. We adopt this point of view and, for
the reader’s convenience, we present here a complete definition of differentiable
manifold.

Let M be a set. By an n-dimensional local chart (or, more simply, a local
chart) on M we mean a bijective map ¢ : U — U where U is an arbitrary subset
of M and U is an open subset of R". Given n-dimensional local charts ¢ : U — U
andy: V — V on M then the transition map from ¢ to v is the bijective map:

Yo lipUNV)—pUNV).

We say that ¢ and v are compatible if o(U N'V') and (U N V') are both open in
R™ and if the transition map 1) o ¢! is a smooth diffeomorphism (by “smooth”
we will always mean “of class C'*°”). Notice that the local charts ¢ and ¢ are
compatible when their domains are disjoint. By an n-dimensional atlas (or, more
simply, an atlas) on M we mean a set .4 of n-dimensional local charts on M such
that:

e the union of the domains of the local charts ¢ € A is M;
e given p, 1 € A then ¢ and 1) are compatible.

If A is an atlas on M and if two local charts ¢, v on M are compatible with
every local chart that belongs to A then ¢ and ¢ are compatible with each other;
thus, every atlas A on M is contained in a unique maximal atlas. Such maximal
atlas consists of all local charts on M that are compatible with every local chart
that belongs to .4. A maximal atlas on a set M is also called a differential structure
on M.

If Ais an atlas on a set M then there exists a unique topology 7 on M such
that for every local chart ¢ : U — U that belongs to A the set U is open in M
and the map ¢ is a homeomorphism; the topology 7 consists of all subsets A of M
such that (U N A) is open in R", for every local chart ¢ : U — U that belongs to

199
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A. We call 7 the topology induced by the atlas A. If A, A’ are atlases on M and
A C A’ then clearly A and A" induce the same topology on M.

DEFINITION A.1.1. An n-dimensional differentiable manifold (or simply a
differentiable manifold) is a set M endowed with a maximal n-dimensional atlas
A such that the topology induced by A on M is Hausdorff and second countable
(i.e., admits a countable basis of open subsets).

We adopt the following convention: if M is a differentiable manifold with
maximal atlas A then by a “local chart” of M/ we mean a local chart of M that
belongs to A.

A.1.1. Submanifolds. By ‘“submanifold” we will always mean “embedded
submanifold”, unless otherwise stated. In some occasions, we will also talk about
immersed submanifolds and almost embedded submanifolds. We list the defini-
tions and some basic results (without proof) below.

DEFINITION A.1.2. Let M be an n-dimensional differentiable manifold. A
subset IV of M is said to be a smooth submanifold if there exists an integer k,
0 < k < n, such that for all z € N, there exists a local chart ¢ : U — U such that
o(UNN)=Un (R* @ {0}"~*) and = € U. Such a local chart is said to be a
submanifold chart for N.

If N is a smooth submanifold and we consider the restriction to /N of all sub-
manifold charts, we obtain an atlas for /N that makes it into a k-dimensional differ-
entiable manifold; moreover, the inclusion map of NV in M is a smooth embedding,
i.e., it is a smooth immersion and a homeomorphism onto its imagfﬂ It is well-
known that if N, M are differentiable manifolds and f : N — M is a smooth
embedding then f (V) is a smooth submanifold of M and the map f : N — f(N)
is a smooth diffeomorphism when f(N) is endowed with the atlas obtained by
restriction of the submanifold charts. Thus, smooth submanifolds are also called
embedded submanifolds.

DEFINITION A.1.3. Let M be a differentiable manifold. By an immersed sub-
manifold of M we mean a differentiable manifold NV that is contained in M (as a
set) and such that the inclusion map of NV in M is a smooth immersion.

The following result is a well-known consequence of the local form of immer-
sions:

PROPOSITION A.1.4. Let P, M be differentiable manifolds and N be an im-
mersed submanifold of M. If f : P — M is a smooth map with f(P) C N
and fo : P — N is obtained from f by restriction of counter-domain then fy is
smooth if and only if it is continuous. In particular, if N is embedded in M then f
is smooth if and only if fy is smooth. U

IThe condition that the inclusion map of N in M is a homeomorphism onto its image means
that the topology on N induced by the atlas coincides with the topology that N inherits from M.
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The annoying fact about immersed submanifolds is that reduction of counter-
domain does not necessarily maintain smoothness. However, the class of embed-
ded submanifolds is not general enough for us to work with maximal integral sub-
manifolds of involutive distributions and with Lie subgroups. Thus, we have the
following intermediate situation.

DEFINITION A.1.5. Let M be a differentiable manifold and N be an immersed
submanifold of M. We say that N is almost embedded if every point z € N has an
open neighborhood U in M such that the connected component containing = with
respect to the topology inherited from M of U N N is an embedded submanifold
of M.

We have the following:

PROPOSITION A.1.6. Let M be a differentiable manifold, N be an almost
embedded submanifold of M and X be a locally connected topological space. If
f+ X — M is a continuous map with f(X) C N and if fo : X — N is obtained
from f by reduction of counter-domain then fy is also continuous. In particular,
by Proposition[A.1.4} if X is a differentiable manifold and [ is smooth then also fo

is smooth. |

It turns out that integral submanifolds of involutive distributions are almost
embedded (see Remark [A.4.4). In particular, Lie subgroups of Lie groups are
almost embedded, since they are integral submanifolds of distributions obtained
by left translation of a Lie algebra.

A.1.2. Lie groups. Some basic knowledge of Lie groups is also assumed from
the reader. A standard reference is [[12]]. We just give here the basic terminology.

A Lie group is a group GG endowed with a differentiable structure A such that
the group operations:

GxG3(xy)r—ayecG, Gozr—az'cG

are smooth and G is a differentiable manifold, i.e., the topology induced from A is
Hausdorff and second Countableﬂ By a Lie subgroup of G we mean an immersed
submanifold H of G that is also a subgroup of GG and such that [ is a Lie group
endowed with the multiplication induced from G (actually, it is proven in [12] that
if H is both an immersed submanifold of G and a subgroup of G then H is indeed
a Lie subgroup of ). A Lie subgroup H of G is an embedded submanifold of G
if and only if it is a closed subset of G; moreover, any closed subgroup H of G is
automatically a Lie subgroup.

If G is a Lie group then for all g € G, the left translation L, : G — G and the
right translation R, : G — G are smooth diffeomorphisms. Informally speaking,
any object that lives on G is said to be left (resp., right) invariant if it is preserved
by all left (resp., right) translations. For instance, a vector field X on G is left

2Actually, Hausdorff is automatic because every T1 topological group is automatically Haus-
dorff. Moreover, second countability is equivalent to the assumption that G has a countable number
of connected components; namely, this follows from the observation that if GG is connected and U is
a neighborhood of the identity 1 € G then G = |J._, U™.
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(resp., right) invariant if X is L -related (resp., R -related) to itself, for all g € G
(see Definition[A.2.T)). Left (resp., right) invariant vector fields are automatically
smooth. If g denotes the tangent space to GG at the unit element 1 € ( then the map
X — X(1) gives an isomorphism from the space of left invariant vector fields
onto g. We endow g with the Lie bracket operations by such isomorphism from the
usual Lie bracket of vector fields (Proposition implies that the Lie bracket of
left invariant vector fields is left invariant). The space g endowed with such bracket
operation is called the Lie algebra of g.

We have a natural left (resp., right) action of G on its tangent bundle obtained
by differentiating the left (resp., right) action of G on itself by left (resp., right)
translations; more explicitly, ¢ € G acts on v € T'G and gives dLy(v) (resp.,
dRy(v)). We then set:

guv = dLg(U)a vg = ng(v)a

forall g € G and all v € T'G. Given X € g then the unique left invariant (resp.,
right invariant) vector field on G whose value at 1 is X is denoted by X’ (resp.,
Xy and it is given by X (g) = gX (resp., Xf(g) = Xg), forall g € G.

Given Lie groups GG, H, then by a Lie group homomorphism from G to H we
mean a group homomorphism f : G — H which is smooth (actually, a continuous
group homomorphism between Lie groups is automatically smooth). If f is a Lie
group homomorphism then its differential f = df(1) at the identity gives us a Lie
algebra homomorphisnﬂ from the Lie algebra g of G to the Lie algebra h) of H.
In particular, if H is a Lie subgroup of G then the inclusion map i : H — G is
a Lie group homomorphism and the differential of ¢ at the identity allows us to
identify b with a Lie subalgebra of g. For every g € G, the inner automorphism
7, : G — G'is a Lie group isomorphism and its differential at the identity, denoted
by Ad, : g — g is a Lie algebra isomorphism. The map:

Ad: G > g+ Ad, € GL(g)

is known as the adjoint representation of G in g. Its differential at the identity is a
linear map:

ad:g> X —— ady € gl(g)
called the adjoint representation of g on itself. We have:

adx(Y) = [X,Y],

forall X,Y € g.

Given X € g then there exists exactly one Lie group homomorphism v : R —
G with 4/(0) = X. This is called the one-parameter subgroup of G generated
by X. The smooth curve ~ is an integral curve of both X” and X . The map
exp : g 2 X — (1) € G is called the exponential map of G. The exponential
map of a Lie group is smooth and for all X € g, the corresponding one-parameter
subgroup is given by ¢ — exp(tX).

A distribution D C T'G in a Lie group G is said to be left (resp., right) invariant
if dLy(D) = D (resp., dRy(D) = D), for all g € G. A left or right invariant

3A Lie algebra homomorphism is a linear map that preserves Lie brackets.
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distribution D on G is completely determined by the subspace D; of g; moreover,
left or right invariant distributions on a Lie group are automatically smooth. A left
or right invariant distribution D on G is involutive (Definition if and only
if Dy is a Lie subalgebra of g. If H is a Lie subgroup of GG then H is an integral
submanifold (Definition of the involutive left invariant distribution D on G
with D; = h. In particular (see Remark [A.4.4)), Lie subgroups are always almost
embedded submanifolds.

A.2. Vector fields and flows

We continue our summary of the basic theory of differentiable manifolds.
Again, more details can be found in [1}, 3} 9} 12].

By a vector field on a differentiable manifold M we mean a section X of the
tangent bundle 7'M, i.e.,amap X : M — TM with X (z) € T, M, forallx € M.
In the terminology of Subsection[I.5.1] the space of all smooth vector fields on M
is denoted by I'(T'M).

Given a vector field X in M and a smooth map f : M — R, we denote by
X(f) : M — R the map defined by X (f)(z) = df(z) - X(z), for all z € M.
We use such notation also if f takes values in a fixed real finite-dimensional vector
space.

Given smooth vector fields X,Y € T'(T'M) then there exists a unique vector
field Z on M such that Z(f) = X (Y (f)) — Y/(X(f)). The vector field Z is
smooth and it is called the Lie bracket of X and Y. We write Z = [X,Y].

DEFINITION A.2.1. Let M, N be differentiable manifolds and f : M — N
be a smooth map. We say that two vector fields X € T'(T'M), Y € I'(T'N) are
f-related if:

Y(f(2)) = dfe(X(2)),
forall z € M.

We recall the following:

PROPOSITION A.2.2. Let M, N be differentiable manifolds, f : M — N be a
smooth map and X, X' € T'(TM), Y,Y' € T(T'N) be vector fields. Assume that
Y is f-related with X and that Y' is f-related with X'. Then [Y,Y"] is f-related
with [ X, X'].

PROOF. See [12]. O

Let G be a Lie group and N be a differentiable manifold; assume that we are
given a (left or right) smooth action of G on V.

DEFINITION A.2.3. Given a vector X in the Lie algebra g of G, we denote by
XN the induced vector field on the differentiable manifold N defined by:

XN(n) =dg,(1)- X € T,N,
for all n € N, where 3, : G — N is the map given by action on the element n.

It can be shown that the induced vector field X*V is smooth.
The following result was used in the proof of Lemma[2.3.3]
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LEMMA A.2.4. Let G be a Lie group and N be a differentiable manifold;
assume that we are given a (left or right) smooth action of G on N. Assume that
the action of G is effective on a subset A of N. Then, given X € g, if XV (n) =0
foralln € Athen X = 0.

PROOF. If X¥(n) = 0 then exp(tX) is in the isotropy group G, for all
t € R. Thus, if XV (n) = 0 forall n € A then exp(tX) € (,c4 Gn = {1}, for
all ¢ € R. Hence X = 0. i

DEFINITION A.2.5. Let 7w : £ — M be a smooth submersion and let Hor(E)
be a generalized connection on £ with respect to . Given a vector field X on
M then the horizontal lift of X is the unique vector field X" on £ such that
Xhor(e) € Hor (&) and:

dme (X" (e)) = X (7 (e)),
foralle € £.
It can be shown that if X is smooth then X" is also smooth.

DEFINITION A.2.6. Let M be a differentiable manifold and X € I'(T'M) be
a smooth vector field on M. By an integral curve of X we mean a smooth map
v : I — M defined in an interval I C R with:

7(t) = X(v(1)),

forall t € I. Given o € M then a maximal integral curve of X through x is an
integral curve v : I — M of X such that:

e 0 € Iand~(0) = zo;

e if o : J — M is an integral curve of X with 0 € J and p(0) = xg then

J CTandp=n|y.
THEOREM A.2.7 (maximal flow of a vector field). Let M be a differentiable

manifold and X € T'(T M) be a smooth vector field on M. Then:

e for each o € M, there exists a unique maximal integral curve of X
through xq and its domain is an open interval;

® if Voo : Iy, — M denotes the maximal integral curve of X through g
then the set:

U (o} x Iny) = {(z0.t) : 20 € M, t € I, }
ToEM
is open in M x R and the maximal flow of X defined by:
F¥: | (fzo} x Ing) 3 (w0,1) ¥ Yo (t) € M
roEM
is a smooth map.

PROOF. See [1]]. ]

COROLLARY A.2.8. Let M be a differentiable manifold and X € T'(T'M) be
a smooth vector field on M. If v, : I — M, o : I — M are integral curves of X
with 1 (to) = v2(to) for some ty € I then 1 = 7.
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PROOF. Observe that both ¢ — 1 (t + to) and t — ~2(t + to) are restrictions
of the maximal integral curve of X through z¢ = 71 (to). O

DEFINITION A.2.9. Let M be a differentiable manifold. By a time dependent
vector field on M we mean a map X : A — T'M such that X (¢,z) € T,,M, for
all (t,z) € A, where A is an open subset of R x M.

In other words, a time dependent vector field on M, is a local section of T'M
along the projection R x M > (t,z) — z € M. We have a version of Defini-
tion for time-dependent vector fields:

DEFINITION A.2.10. Let M be a differentiable manifold and X : A C R x
M — T'M be a smooth time-dependent vector field on M. By an integral curve
of X we mean a smooth map v : I — M defined in an interval [ C R with

(t,7(t)) € Aand:

V(1) =X (A1),
for all t € I. Given (tg,x0) € A then a maximal integral curve of X through
(to, xo) is an integral curve y : I — M of X such that:

e tgeland ’}/(to) = X0,
e if 4 : J — M is an integral curve of X with ¢y € J and u(tg) = zo then
J CIandp="7l;.
Theorem generalizes to time-dependent vector fields, as follows:

THEOREM A.2.11 (maximal flow of a time-dependent vector field). Let M be
a differentiable manifold and X : A C Rx M — T'M be a smooth time-dependent
vector field on M. Then:

e for each (to,xg) € A, there exists a unique maximal integral curve of X
through (to, xo) and its domain is an open interval;

® if Ytowo) © Litoo) — M denotes the maximal integral curve of X
through (to, xo) then the set:

U ({(to,l‘o)} X I(to,xo)) = {(t0>1'07t) : (to,l‘o) S A7 le I(to,xo)}
(to,xo)GA
isopenin R x M x R and the maximal flow of X defined by:
FX : U ({(tg,xo)} X I(to,ﬂco)) > (to,xo,t) — ’}/(to,gﬁo)(t) e M
(to,zo)EA
is a smooth map.
PROOF. Follows by applying Theorem to the smooth vector field:
As (tx)— (L, X(t,z) e ROTM =T A
on the open set A. O
COROLLARY A.2.12. Let M be a differentiable manifold and X : A C R x
M — TM be a smooth time-dependent vector field on M. If v1 : I — M,

vo : I — M are integral curves of X with v1(tg) = v2(to) for some to € I then
71 =72
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PROOF. Observe that both ~; and 7, are restrictions of the maximal integral
curve of X through (g, x¢), where xo = 71 (to) = Y2(to)- O

DEFINITION A.2.13. Let M be a differentiable manifold, / C R be an open
interval and X : I x M — T'M be a time-dependent vector field. We say that X is
spatially homogeneous if for every x,y € M there exists a smooth diffeomorphism
f: M — M such that f(x) = y and:

(A2.1) X(t f(2)) = df-(X(t, 2)),
forallt € I,z € M.

Observe that if a smooth diffeomorphism f : M — M satisfying (A.2.1)) for
allt € I,z € M and if v : J — M is an integral curve of X then f o~y is also an
integral curve of X.

LEMMA A.2.14. Let M be a differentiable manifold, I C R be an open inter-
val and X : I x M — TM be a smooth time-dependent spatially homogeneous
vector field. Then the domain of the maximal flow of X is I x M x I, i.e., for every
(to,xo) € I x M, the domain of the maximal integral curve of X through (to, zo)
is I.

PROOF. Let v : J — M be the maximal integral curve through (¢, zo); then
to € J and J is an open interval contained in /. Assume by contradiction that J is
properly contained in I; then, for instance, b = sup J is in I. The triple (b, 29, b)
is obviously in the domain A of the maximal flow of X (recall Theorem [A.2.TT).
Since A is openin R x M x R, there exists ¢ > 0 such that |b — &, b+ [ x {zo} x
]b —e,b+ €[ is contained in A; we can also take ¢ > 0 sufficiently small so that
b— 5 € J. By the definition of A, there exists an integral curve  of X through
(b—%, a:o) defined on the interval |b — &, b + ¢[. Since X is spatially homogeneous,
there exists a smooth diffeomorphism f : M — M such that (A.2.T)) holds for all
t € I, z € M and such that f(z9) = (b — §). Then f o p is an integral curve
of X with (f o u)(b—§) =~(b— 5) and, therefore, by Corollary A.2.12L ~ and
f o p are equal on the intersection of their domains. We can therefore use f o u to
extend 7 to an integral curve of X defined in J U |b — &, b + €[, which contradicts
the maximality of «. This concludes the proof. (]

COROLLARY A.2.15. Let G be a Lie group, I C R be an interval and X :
I — g be a smooth curve in the Lie algebra g of G. Then for every ty € I and
every go € G there exists a smooth curve g : I — G such that g(to) = go and:

(A.2.2) g'(t) = X(t)g(t),
forallt € 1.

PROOF. We can assume without loss of generality that I is open; otherwise,
take an arbitrary smooth extension of X to an open interval. Clearly, g satisfies
(A.2.2) if and only if g is an integral curve of the time-dependent vector field given
by:

I xG>(t,h)— X(t)h € T},G.
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Such vector field is smooth and spatially homogeneous; namely, the smooth dif-
feomorphism f that is required by Definition [A.2.13| can be taken to be a right
translation. The conclusion follows from Lemma[A.2.14 U

A.3. Differential forms

DEFINITION A.3.1. Let Vi, ..., Vi, V{, ..., V/, W, W' be real finite-dimen-
sional vector spaces and let B : Vi x - - x Vi, = W, B' : V] x-- . xV/ — W’ be
multilinear maps. Suppose that a bilinear map:

(A3.1) WxW 3 (ww)r—w-weW”

is fixed, where WW” is a real finite-dimensional vector space. We define the ten-

sor product of B by B’ (with respect to the bilinear pairing (A.3.1))) to be the

multilinear map (B ® B’) : Vi x -+ x Vi, x V| x --- x V' — W" given by:
(B® B')(v1,..., 05,01, ...,v)) = Bv,...,v) - B'(v},...,v)),

forallv; € Vi, ..., v € Vi, v) € V], ..., € V).

Denote by S, the symmetric group on & elements (see Example [1.1.2)). Given
o € S* and a multilinear map B € Ling(V, W), we denote by o - B the multilinear
map defined by:
(o B)(vo, ..+, k1) = B(Vg(0)s - - » Vo (k1))
for all vy, ...,vx—1 € V. The alternator of B is defined by:
Alt(B) = Z sgn(o)(o - B).
€Sk
Clearly, Alt(B) is always alternating; moreover, if B is alternating then Alt(B) =
(k")B.
REMARK A.3.2. Clearly, we have:
Alt(o - B) = sgn(o)Alt(B).

Thus, if there exists an odd permutation o with o - B = B then Alt(B) = 0; in
particular, if B is symmetric with respect to some pair of variables then Alt(B) =
0.

Given B € Lin}(V, W), B’ € Lin}(V, W’), then the tensor product B ® B’ is
not in general antisymmetric. We give the following:

DEFINITION A.3.3. Let V, W, W', W be real finite-dimensional vector
spaces, B € Lin%(V,W), B’ € Lin}(V,W’) and assume that we are given a
bilinear pairing (A.3.1). The exterior product (or wedge product) of B by B’ (with
respect to (A.3.1)) is defined by:

1
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The reader should recall from Example the notion of (vector valued)
differential forms.

We now recall the definition of exterior differential of a smooth differential
form. We start with the case of open subsets of R"™. A differential k-form on an
open subset U of R™ can be identified with a map w from U to the vector space
Lin (R™, R). If w is a smooth differential k-form on U then we can consider the
standard differential of w at a point x € U, denoted by dlw,, is a linear map from
R" to Lin%(R"™, R) that can be identified with the (k + 1)-linear map:

RnX-"XIR”B(UO,-..,Uk)’_>d1wx(UO)'(U17H-7/Uk)ER'

Thus dw : z — dlw, is a smooth map from U to Ling1(R"™, R). We set:

1
dw, = HAlt(dex) ,

for all x € U, so that dw is a smooth (k 4 1)-form on U. The following results are
standard:

(a) if w, A are respectively a k-form and an [-form on U then d(w) =
(dw)* + (=1)kw A dN;

(b) ddw = 0;

(c) if V is an open subset of R, U is an open subset of R™, f : V — U'is a
smooth map and w is a smooth differential k-form on U then d(f*w) =
frdw.

Property (c) allows us to define the exterior differential of a smooth k-form w on a
differentiable manifold M so thatif p : U — U C R" is a local chart of M then
dwly = ¢*d((¢!)*w). With such definition, properties (a), (b) and (c) also hold
for the exterior differential of forms on manifolds.

A direct formula for computing the exterior differential of a k-form on a man-
ifold is given by the following:

LEMMA A.3.4 (Cartan’s formula for exterior differential). Let A be a (possibly

vector valued) smooth k-form on a differentiable manifold M. Given vector fields
Xo,..., X, € T(T'M), then:

k
(A32) dA(Xo, X1,.... Xp) = > (-1 X;(MXo, ..., X;, ..., X))
1=0
+ 3 (DMK Xp) Koy Xy, Xy, X,

i<j

where the hat indicates that the term is omitted in the list.
PROOF. See [12]. ]
Cartan’s formula for exterior differentiation becomes:

(A3.3) dM(X,Y) = X(A(Y)) - Y (A(X)) — A([X,Y]).

for 1-forms.
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A.4. The Frobenius theorem

DEFINITION A.4.1. Let M be a differentiable manifold and D C T'M be a
smooth distribution on M. By an integral submanifold of D we mean an immersed
submanifold S C M such that T, = D,, for all z € S. We say that D is
integrable if for every x € M there exists an integral submanifold S of D with
xeS.

Observe that if D is integral then for every x € M there exists an embedded
integral submanifold S of D with z € S; namely, if S is an immersed integral
submanifold of D with x € S then a sufficiently small open neighborhood of x in
S is an embedded integral submanifold of D.

DEFINITION A.4.2. A smooth distribution D C T'M is said to be involutive if
forall X,Y € I'(D) the Lie bracket [X, Y] is in I'(D).

THEOREM A.4.3 (Frobenius). Let M be a differentiable manifold. A smooth
distribution D C T' M on M is involutive if and only if it is integrable.

PROOF. See [12]. O

REMARK A.4.4. If D is a smooth involutive distribution in a differentiable
manifold M then every integral submanifold S C M of D is almost embedded in
M.

Let M be a differentiable manifold and D C T'M be a smooth distribution on
M. By a maximal integral submanifold of D we mean a connected immersed in-
tegral submanifold S C M of D which is not properly contained in any connected
immersed integral submanifold of D.

THEOREM A.4.5 (Global Frobenius). Let M be a differentiable manifold and
D C TM be a smooth involutive distribution on M. Then for every x € M there
exists a unique maximal integral submanifold S C M of D with x € S.

PROOF. See [12]. O

REMARK A.4.6. If D is a smooth involutive distribution in a differentiable
manifold M and if S C M is a maximal integral submanifold of D then the follow-
ing condition holds: if v : [a,b] — M is a smooth curve such that 7'(t) € D),
for every t € [a,b] and if y(t9) € S for some tg € [a,b] then y(t) € S, for all
t € la,b].

Frobenius theorem can be seen as a result concerning the existence of solutions
of a certain class of first order partial differential equations called total PDEs;
informally speaking, a total PDE is an equation (on the unknown f) of the form
df, = F(m, f (m)) The relation between solutions of total PDEs and integral
submanifolds of distributions is that the graph of a solution of a total PDE is an
integral submanifold of an appropriate distribution. We now study a particular
case of this situation in the language of differential forms.

Let M, N be differentiable manifolds, V' be a real finite-dimensional vector
space and AM, AV, be V-valued smooth 1-forms on M and on N respectively;
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assume that Aflv : TyN — V is an isomorphism, for all y € N. We are interested
in finding smooth maps f : U — N defined on an open subset U of M with:
(A.4.1) PN =AM
Notice that (A.4.1) is equivalent to:

df(l‘):Txf(m), rel,
where, forx € M,y € N, 75y : T, M — T, N denotes the linear map defined by:

(A4.2) oy = (A)) T o MM
Consider the smooth distribution D on M x N defined by:
(A4.3) Dy = Gr(7ay) C TeM @ TyN =T, (M x N),

forall x € M,y € N. Clearly, a smooth map f : U — N defined on an
open subset U of M satisfies if and only if the graph of f is an integral
submanifold of D. Hence, the existence of a map f satisfying can be
obtained as an application of the Frobenius theorem.

We have the following:

PROPOSITION A.4.7. Let M, N be differentiable manifolds, V' be a real finite-
dimensional vector space and MM AN be V-valued smooth 1-forms on M and on
N respectively; assume that /\éV : TyN — V is an isomorphism, for all y € N.
The following conditions are equivalent:

(a) forallx € M, y € N there exists a smooth map f : U — N defined
in an open neighborhood U of x in M with f(x) = y such that (A.4.1)
holds;

(d) forallz € M, y € N, T;yd)\é\[ = dAiw, where Tyy : T M — T, N is the
linear map defined in (A.4.2).

PROOF. The fact that (a) implies (b) follows by taking the exterior differential
in both sides of (A.4.1). Now assume (b). Consider the smooth V-valued 1-form 6
on M x N defined by:

6 = pryA" —priat,

where pr;, pry denote the projections of the cartesian product M x N. Clearly,
for all (z,y) € M x N, Oy + TuM ® TyN — V is surjective and its kernel
equals (A.4.3). By Lemma[A.4.8] D is involutive if and only if df, ,) vanishes on
D(z,y) X D(z,y). for all (x,y) € M x N; but clearly such condition is equivalent
to (b). To conclude the proof, let x € M, y € N be fixed and let S C M X
N be an integral submanifold of D with (z,y) € S. Since the first projection
TyM @ TyN — T, M carries Dy, , isomorphically onto T, M then, by taking S
to be sufficiently small, we may assume that the map pr;|s : S — M is a smooth
diffeomorphism onto an open neighborhood U of z in M. The map f : U — N
defined by:

(A4.4) f=mpryo(pryls) ™"
is therefore smooth and its graph equals .S. Hence f satisfies (A.4.1). U
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LEMMA A.4.8. Let Q be a differentiable manifold, V' be a real finite-dimensional
vector space and 6 be a smooth V -valued 1-form on (). Assume that 0, : T,,(Q) — V'
is surjective, for all x € Q. Then the smooth distribution D = Ker(0) is involutive
if and only if A0, vanishes on D, x D, forall x € Q.

PROOF. Follows easily from Cartan’s formula for exterior differentiation (see

(A.3.3)). O

We now wish to prove a global version of Proposition To this aim, we
use the technique of “solving the total PDE along curves on M”.

If f: U C M — N is a smooth function satisfying andify: 1 —- U
is an arbitrary smooth curve then the smooth curve = f o~ : I — N satisfies:

(A.4.5) Ay (1 (8)) = MG, (/' (1)),
forall ¢ € I. Clearly (A.4.5)) is equivalent to:
(A.4.6) () = Ty (V' (1)

Notice that i : I — N satisfies (A.4.6) for all ¢ € [ if and only if y is an integral
curve of the smooth time-dependent vector field on NV defined b

(A4.7) Ix N >3 (t,y) — 7y (7 (t)) € TN.
We can now prove a uniqueness result for solutions of (A.4.1).

LEMMA A.49. Let M, N be differentiable manifolds, V be a real finite-
dimensional vector space and MM AN be V-valued smooth 1-forms on M and
on N respectively; assume that M is connected and that )\év : TyN — Vs an
isomorphism, forally € N. If fy : M — N, fo : M — N are smooth maps
with fiAN = MM 20N = A and if f1(z0) = fa(wo) for some xg € M then
fi=fa

PROOF. If v : I — M is a smooth curve such that f; (fy(to)) = fy (*y(to))
for some tg € I then fi oy = fy o ; namely, both f; oy and f5 o ~ are integral
curves of the smooth time-dependent vector field (see Corollary [A.2.12).
The conclusion follows from the observation that, since M is connected, every two
points of M can be joined by a piecewise smooth curve. ([

Finally, we have the following global result:

PROPOSITION A.4.10. Let M, N be differentiable manifolds, V be a real
finite-dimensional vector space and XM, \N, be V-valued smooth 1-forms on M
and on N respectively. Assume that:

(a) )\év : TyN — V is an isomorphism, for all y € N;
(b) condition (b) in the statement of Proposition|A.4.7 holds;
(¢c) M is simply-connected;

41f the interval I is not open, we can always consider a smooth extension of « to an open interval
I’ containing I so that the time-dependent vector field is defined on the open subset I’ X N
of R x N.
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(d) there exists a rich family C of smooth curves «y : [0, 1] — M such that for
every 7y in C and every y € N there exists a smooth curve y : [0,1] — N
such that 11(0) = y and (A.4.3) holds, for all t € [0, 1].
Then, for all xo € M, yg € N, there exists a smooth map f : M — N with
f(zo) = yo such that f*A\N = \M,

PROOF. We may assume without loss of generality that M is connected. Con-
sider the smooth distribution D on M x N defined by (A.4.3). As in the proof of
Proposition we see that D is involutive. Let x9 € M, yg € N be fixed and
let S C M x N be a maximal integral submanifold of D containing (xg, yo). Since
forall (z,y) € S, the first projection T, M & Ty N — T;; M maps T(,, ,yS = D(, )
isomorphically onto 7, M, we have that the map pr;|s : S — M is a smooth local
diffeomorphism, where pr; : M x N — M denotes the first projection. We will
now use Corollary [B.3.13]to establish that pr;|s : S — M is a covering map. To
this aim, we have to check that every v : [0,1] — M in C admits liftings with
arbitrary initial conditions with respect to pry|s. Let~y : [0,1] — M in C be
fixed and let (x,y) € S be such that pr;(z,y) = z = v(0). By our hypothe-
ses, there exists a smooth curve p : [0,1] — N such that 4(0) = y and (A.4.5)
holds, for all ¢ € [0,1]. Clearly (7/(t), 1/ (t)) € D(y(1),u(zy), for all t € [0,1] so
that, by Remark [A.4.6] the image of the curve (v, x) : [0,1] — M X N is con-
tained in S. Since S is almost embedded in M x N (Remark [A.4.4), the curve
(v,p) : [0,1] — S is continuous and it is therefore a lifting of v with initial
condition (z,y). This concludes the proof that pr;|s : S — M is a covering
map. Since M is connected and simply-connected, Corollary implies that
prils : S — M is a homeomorphism and hence a smooth diffeomorphism. The
conclusion is now obtained by defining f : M — N as in (A.4.4). U

A.5. Horizontal liftings of curves

DEFINITION A.5.1. Let £, M be differentiable manifolds, = : £ — M be a
smooth submersion and Hor(€) be a generalized connection on £ with respect to
7 (recall Definition[2.1.1). A smooth curve 4 : I — £ is said to be horizontal with
respect to Hor(&) if 5/ (t) € Horsy (), forallt € I. If v : I — M is a smooth
curve then a horizontal lifting of v with respect to 7 and Hor (&) is a smooth curve
4 : I — & which is horizontal with respect to Hor(£) and satisfies 7 o 4 = .

LEMMA A5.2. Let m : & — M be a smooth submersion and Hor(E) be a
generalized connection on € with respect tow. If 71 : I — &, 72 : I — & are both
horizontal liftings of a smooth curve v : I — M and if 1(to) = A2(to) for some
to € I then 1 = .

PROOF. If the interval I is not open, we start by considering a smooth exten-
sion of ~y to an open interval I’ containing I; such extension will still be denoted by
7. Consider the pull-back 71 : v*€ — I’ endowed with the generalized connection
Hor(y*£) obtained from Hor(€) by pull-back and denote by 7 : v*€ — & the
canonical map. Let X be the vector field on I’ such that X (¢t) = 1 € T,I’ for all
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t € I’ and let X"°T be the vector field on v*£ obtained from X by horizontal lift.
Using the property of pull-backs described in diagram (I.17)), we obtain smooth
curves (1)~ : I — ~v*E, (o) : I — v*E, with my o (3;) : I — I’ the inclu-
sion map of I in I’ and with 5 o (3;)~ = ~;, ¢ = 1,2. Since #; is parallel, also
(9:) is parallel (Lemma ; thus, for all ¢t € I’, we have:

§(3) (1) € Hor(y*€), dm(§(3)~ (1) =1 = X(1),
so that:
GG () = X" () (1),
and (%;)* is an integral curve of X", i = 1,2. Since:

(51) " (to) = (to, 71(t0)) = (to,F2(t0)) = (52) (to),
it follows from Corollary that (41) = (32)“ . Hence 41 = . O

In the terminology introduced in Definition [2.1.7 a smooth curve 4 : I — &£
is horizontal if and only if it is parallel. If 7 is a horizontal lift of v with 5(tp) = e
we say also that 7 is the parallel transport of e along .

LEMMA A.5.3. Let m : € — M be a smooth submersion and Hor(E) be
a generalized connection on € with respect to w. If v : I — M is a smooth
curve then for all ty € I and all e € 7! (fy(to)) there exists an open connected
neighborhood J of to in I and a horizontal lift 5 : J — € of y| ; with 3(to) = e.

PROOF. By considering an extension of -y, we can assume that [ is open. De-
finem : v — 1,7 : v*€ — £, X and X" as in the proof ofLemma Let
n:J — ~*E be an integral curve of X" with n(ty) = (to,e) € v*E, where J is
an open interval containing ¢(. Since X" is 7 -related with X, we have that 71 o
is an integral curve of X; thus (71 o n)(t) = ¢, for all t € J. It follows that J C I
and that 4 = 4 on is a lifting of | y; moreover, since 7 is parallel, also 7 is parallel
(Lemma[2.1.12). Hence 7 is an horizontal lifting of | with 3(¢9) = e. O

COROLLARY A.54. Let m : € — M be a smooth submersion and Hor (&)
be a generalized connection on & with respect to 7. Let v : I — M be a smooth
curve, to be an interior point of I and set I = I N ]|—o0, o], o = I N [tg, +oo].
Ify : I — & is a map such that 7|1, is a horizontal lifting of |1, and 7|1, is a
horizontal lifting of y|1, then 7 (is smooth and) it is a horizontal lifting of .

PROOF. By Lemma there exists an open subinterval J of I contain-
ing to and a horizontal lifting 4 : J — & of v|; such that §(t9) = J(t9). By
LemmalA.5.2] we have:

Yoo =Alnn,  Alon =Yk,
so that 4|y = 7| s. The conclusion follows. O

DEFINITION A.5.5. Let 7 : £ — M be a smooth submersion endowed with
a generalized connection Hor(£). An open subset U of M is said to have the
horizontal lifting property for paths if for every smooth curve v : I — U, every
to € I and every e € W_l(’y(t())) there exists a horizontal lifting ¥ : I — & of
with 5 (t9) = e.
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LEMMA A.5.6. Let m : £ — M be a smooth submersion endowed with a
generalized connection Hor(E). If M can be covered by open sets having the
horizontal lifting property for paths then M itself has the horizontal lifting property
for paths.

PROOF. Let 7 : [a,b] — M be a smooth curve and let e € 7' ((a)). By
the result of Exercise [A.5| it will suffice to prove that v admits a horizontal lifting
starting at e. The family of all sets of the form v ~*(U), where U runs over the open
subsets of M having the horizontal lifting property for paths, is an open cover of
the compact space [a, b]; let 6 > 0 be a Lebesgue number of such open cover, i.e.,
every subset of [a, b] having diameter less than ¢ is contained in some y~*(U).
Consider a partition a = tg < t; < -+ < tp = bof [a,b] with t;1; — t; < J,
fori = 0,1,...,k — 1. Since for each i, 7([ti,ti+1]) is contained in an open
subset of M having the horizontal lifting property for paths, we can find horizontal
liftings ¥; : [ti;tiv1] — € of V[, 1,17 = 0,1,...,k — 1, with Jo(to) = e and
Nit1(tit1) = Fi(tiy1), fori =0,1,...,k — 1. Let ¥ : [a,b] — & be the map such
that 7| [t;,ti1] = 7i» for all . Tt follows from Corollary that  is a horizontal
lifting of ~. (]

DEFINITION A.5.7. Let A and M be differentiable manifolds. By a smooth
A-parametric family of curves we mean a smooth map H : A — M where A is an
open subset of A x R such that for all A € A, the set:

A,\:{tEIRi(/\,t)EA}
is an interval (possibly empty).

EXAMPLE A.5.8. If X is a smooth vector field on a differentiable manifold M
then, by Theorem the maximal flow of X is a smooth M -parametric family
of curves on M containing M x {0}.

PROPOSITION A.59. Let m : € — M be a smooth submersion endowed
with a generalized connection Hor (&), let A be a differentiable manifold and let
H : A — M be a smooth A-parametric family of curves in M with A x {0} C A.

Ifﬁ : A — & is a map such that:
e forall \ € A, the curve Ay >t — ﬁ(A, t) is a horizontal lifting of the
curve Ay 3t — H(\ ),
o themap A 5 A — H(\,0) € & is smooth,
then H is smooth.

PROOF. Consider the pull-back 71 : H*€ — A endowed with the generalized
connection Hor(H*£) obtained from Hor(€) by pull-back and consider the canon-
ical map F : H*E — &. Since H is a section of & along H, there exists a unique
section (H)™ : A — H*E of m : H*€ — A with H o (H)™ = H. The property
of pull-backs described in diagram (1.17)) implies that the map:

A5 X— (H)"(X,0) € HE
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is smooth. To conclude the proof, it suffices to show that the map (H)“" is smooth.
Consider the smooth vector field X on A defined by:

X(A\t) = (0,1) € T\A & TR,

for all (\, ) € A; denote by X" the vector field on H*E obtained from X by
horizontal lift. Given A € A then, since the curve ¢ — H(\,t) is parallel, also
the curve ¢t — (H )~ (A, t) is parallel (Lemma|2.1.12)); thus, for all (\,t) € A, we
have:

L)~ (At) € Hor(H*E), dmy (L(H)~ (A1) = (0,1) = X(A\,1),

so that: B B
%(H)(_()V t) = Xhor((H)H(/M t))a

for all (\,t) € A. We have proven that t — (H)™(\,t) is an integral curve

of X" for all A € A. Hence, if F denotes the maximal flow of X" (see

Theorem [A.2.7), then:
(H)~(\t) =F((H)~()0),t),
for all (\,¢) € A. This concludes the proof. O

Exercises
Differentiable manifolds.

EXERCISE A.1. Let M be a set and let (N;);c; be a family of sets N;, each
of them endowed with a differential structure. For each i € I let ¢; : U; — N;
be a bijective map defined in a subset U; of M. Assume that M = |J;; U; and
that the maps ; are pairwise compatible in the sense that for all 7, j € I the set
©i(U; N Uj) is open in Nj, the set ¢;(U; N Uj) is open in N; and the transition
map:

piow;piUiNU;) — (Ui N U;)

is smooth. Show that there exists a unique differential structure on the set M such
that for every 7 € I the set U; is open in M and the map ¢; : U; — N; is a smooth
diffeomorphism.

EXERCISE A.2. Let M, N be differentiable manifolds and let f : M — N be
a map. Show that f is a smooth embedding if and only if for every x € M there
exists an open neighborhood U of f(x) in N such that f~!(U) is open in M and
flg=1@y : f7H(U) — N is a smooth embedding.

Vector fields on manifolds.

EXERCISE A.3. Let G be a Lie group, N be a differentiable manifold and
assume that we are given a smooth left (resp., right) action of G on N. Given
X € g, we denote by X, X respectively the left-invariant and the right-invariant
vector fields on G whose value at 1 € GG is X. Given a vector field Y on N, show
that the following conditions are equivalent:

o Y =XV,
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e foralln € N,Y is f3,-related with X & (resp., with X5,

EXERCISE A.4. Let G be a Lie group, N be a differentiable manifold and
assume that we are given a smooth left (resp., right) action of G on N. Given
X,Y € g, show that [XV, Y] = —[X, Y]V (resp., [XV, Y V] = [X,Y]™).

Horizontal liftings of curves.

EXERCISE A.5. Let 7 : £ — M be a smooth submersion endowed with a gen-
eralized connection Hor(&). Let U be an open subset of M having the following
property: for every smooth curve 7 : [a,b] — U and every e € 7~ !(y(a)), there
exists a horizontal lifting 4 : [a,b] — & of v with 4(a) = e. Show that U has the
horizontal lifting property for paths.



APPENDIX B

Topological tools

B.1. Compact-Open Topology

Let X, Y be topological spaces. Denote by €(X,Y") the set of continuous
maps f : X — Y. Given a compact subset K C X and an open subset U C Y we
set:

V(K;U)={fe¢X,Y): f(K)CU}.
The smallest topology on €(X,Y") containing the sets V(K;U) (with K C X
compact and U C Y open) is called the compact-open topology on €(X,Y"). The
collection of all finite intersections:

T

V(K Uy,

i=1
with K1,..., K, C X compact, Uj,...,U, C Y open and r a positive integer,
form a basis for the compact-open topology on €(X,Y); indeed, observe that the
sets V(K;U) cover €(X,Y) because V(K;U) = €(X,Y) if K and U are both
empty.

The main properties of the compact-open topology are described by the fol-

lowing two lemmas.

LEMMA B.1.1. Let A, X, Y be topological spaces and let f : A x X — Y be
a continuous map. Then, if €(X,Y") is endowed with the compact-open topology,
the map: .
f:A— EX,)Y),
defined by f(\)(z) = f(\,z), forall X € A, x € X, is continuous.

PROOF. 1t is sufficient to prove that the set f “H(V(K;U)) is open in A for
every compact set K C X and every openset U C Y. Let A € f‘l(V(K; U))
be fixed. The set f~1(U) is open in the product A x X and it contains {\} x K;
since K is compact, f ~1(U) also contains V' x K for some neighborhood V' of A
in A. Hence V C f~! (V(K;U)) and we are done. O

LEMMA B.1.2. Let A, X, Y be topological spaces and let f : A — €(X,Y)
be a continuous map, where the space €(X, lﬁ is endowed with the compact-open

topology. Assume that X is locally compac} Then the map f : A x X — Y
defined by f(\,x) = f(N\)(x), forall X € A, x € X is continuous.

IThis means that any neighborhood of an arbitrary point z € X contains a compact neighbor-
hood of x.

217
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PROOF. Let A € A, z € X be fixed and let U be an open neighborhood of
f(\, x)inY. Since the map f()) : X — Y is continuous, the set f(\)~*(U) is an
open neighborhood of x in X. Let K be a compact neighborhood of = contained
in f(A\)~1(U). Then f(X) is in V(K; U) and therefore we can find a neighborhood
V of Ain A with f(V) € V(K;U). Hence V x K is a neighborhood of (X, z) in
Ax Xand f(V xK)CU. O

We now focus on the space €([a, b], X ) of continuous curves 7 : [a,b] — X
on a fixed topological space X. By a partition of the interval [a,b] we mean a

finite subset P of [a,b] containing a and b; we write P = {to,...,t,} meaning
thata = top < t; < --- < t, = b. Given a partition P = {to,...,t,} of [a,b] and
a sequence Uy, Us, ..., U, of open subsets of X, we write:

B.1.1) V(P;Ui,...,U,)
= {”y S C([a,b],X) : ’y([ti_l,ti]) cU;,i1=1,... ,T‘}.
Obviously U(P; Uy, ..., U,) is an open subset of €([a,b], X) with respect to the

compact-open topology. Moreover, we have the following:

LEMMA B.1.3. Let X be a topological space and B be a basis of open subsets
for X. The sets B(P;Uy,...,U,), where P runs over the partitions of [a, b] and
Ui, ..., U, run over B, form a basis of open subsets for the compact-open topology

on €([a,b], X).

PROOF. Let Z be an open subset of QZ([a, b], X ) with respect to the compact-
open topology and let v € Z be fixed. We’ll find a partition P = {to,...,¢,} of
[a, b] and basic open sets Uy, ..., U, € B such that:

(B.1.2) v eW(P;U,...,U,) C Z.

By the definition of the compact-open topology, we can find compact subsets
Ki,...,Ks C [a,b] and open subsets V1, ..., Vs C X such that:

v € ﬂV(Kz‘;Vi) CZ.
=1

N v
=1 s

uek;
is an open neighborhood of y(u) in X and therefore it contains a basic open set
B, € B such that y(u) € B,. Set:

(B.1.3) Li=y""BJ)n (] (la,b]\ Ky).
i

Let u € [a, b] be fixed. The set:

Then u € I, and I, is open in [a, b]. Let § > 0 be a Lebesgue number for the open
cover Uue[a,b] I,, of the compact metric space [a, b]; this means that every subset

of [a, b] having diameter less than ¢ is contained in some I,,. Let P = {to,...,t,}
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be a partition of [a,b] with t; —t;_; < 6,forj=1,...,r. Foreachj=1,...,r
we can find u; € [a,b] with [t;_1,t;] C I;; set Uj = B,,;. We claim that
holds.

Since for j = 1,...,7, [tj-1,tj] C Iy, and ¥(Iy;) C By, = Uj, we have
v € YB(P;Uy,...,U,). To complete the proof, choose u € L(P;Uy,...,U,)
and let us prove that € ()7_; V(K;; V). Leti = 1,...,sand t € K be fixed.
We have ¢t € [t;_1,t;], for some j = 1,...,r. We claim that u; € K;; namely,
otherwise I,,; would be contained in [a, b] \KZ (recall (B.1.3)), but ¢ is in [,,; N K.
But u; € K; implies U; = B,, C V;. Finally, since u € U(P;Uy,...,U,), we
have u(t) € U; C V;. This proves that pu(K;) C V; fori =1,..., s and completes
the prove of the lemma. (]

B.2. Liftings

DEFINITION B.2.1. Let X, X, Y be topological spaces and 7 : : X — X,
f Y — X be continuous maps. By a lifting of f with respect to m we mean a
continuous map f : Y — X such that 7 o f=7.

LEMMA B.2.2. Let X, X, Y be topological spaces, f : Y — X be a continu-
ous map, T : X — X be a continuous locally injective ma‘ and let f1 Y - X,
f2 Y — X be liftings of f with respect to w. The set:

(B.2.1) {yeY: fily) = foy)}

isopeniny.

PROOF. Let y € Y be fixed with fl( ) = fg( ) If A is an open neighbor-

hood of fi(y) in X such that 7|4 in 1nJectlve then f;1(A) N 5 1(A) is an open
neighborhood of y in Y contained in (B.2.1). O

COROLLARY B.2.3. Let X, X, Y be topological spaces, with X Hausdorff
and Y connected. Let f 'Y — X be a continuous map, X > X bea
continuous locally injective map and let f1 Y - X, fg Y — X be liftings of f
with respect to . If f1 and f2 agree on some point of Y then f1 fg

PROOF. Since X is Hausdorff, the set (B.2.1) is closed in Y and it also open
by Lemma Moreover, it is nonempty, by our hypotheses. The conclusion
follows from the connectedness of Y. O

Let X , X be topological spaces and 7 : X — X be alocal homeomorphism,
i.e., for every z € X there exists an open neighborhoood A of Z in X such that
m(A) is open in X and the restriction 7|4 : A — 7(A) is a homeomorphism.
Corollary implies that, if X is Hausdorff and Y is connected then a continu-
ous map f : Y — X admits at most one lifting f:vy— X satisfying a prescribed
condition of the form f(yo) = Zo.

In what follows we will be mostly concerned with liftings of continuous curves
v :la,b] — X.

This means that every point of X hasa neighborhood in which 7 is injective.
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LEMMA B.2.4. Let X, X be topological spaces and T : X — X be a local
homeomorphism. Denote by L the set of pairs (xo, v) € X x €([a,b],X) such
that there exists a unlqu‘ lifting 7 : [a,b] — X of v with respect to T satzsfylng

the initial condition 5(a) = xo. Endow the sets €([a,b], X ) and €([a,b], ) with
the compact-open topology. The map:

L:L— (’Z([a,b],)?)

defined by L(Zo,~y) = 4, where 7 : |a,b] — X is the unique lifting of v such that
A(a) = Zo, is continuous.

PROOF. Let BB denote the collection of all open subsets A of X such that m(A)
is open in X and 7|4 : A — w(A) is a homeomorphism. Since 7 is a local
homeomorphism, the set 5 is a basis of open subsets of X. Let (Zo,7v) € Lbe
fixed and set ¥ = L(Zg,~). Let P = {to,...,t,} be a partition of [a, b] and let
Ay, ..., A, € Bbe such that (recall (B.1.1)):

5 € B(P; Ay, ..., A).

By Lemma|[B.1.3] in order to complete the proof, it suffices to find a neighborhood
of (Zg,) in L that is mapped by L into U(P; Ay,..., A,). Let Z denote the set
of pairs (go, i) in £ such that:

® yo € As;

o u([tiz1,ti]) C m(A;), fori=1,...,r;

o u(t;) em(A;NAiq),fori=1,...,r—1.
By definition of the compact-open topology in Q([a, b, X ) it is immediate that Z
is open in £. Moreover, (Zg,y) isin Z. We will show that L(Z) C U(P; Ay,..., A;).
Let (g0, ) € Z be fixed. For i = 1,...,r, we consider the continuous curve
fii : [ti_1,ti] — A; C X defined by:

fii = (m|a,) " o plie,_y aa)-

We claim that ;(t;) = fi;+1(t;), fori = 1,...,7 — 1. Namely, since u(t;) is
in m(A; N A;iy1), there exists p € A; N AZ+1 w1th p(ti) = m(p). Since 7|y, is
injective, f1;(t;) and p are in A; and 7 (fi;(t;)) = p(t;) = 7(p), it follows that
fi;(t;) = p. Similarly, since |4, , is injective, fi;11(t;) and p are in A;y; and
T (fit1(ti)) = p(t;) = w(p), it follows that fi;11(t;) = p. This proves the claim.

Since fi;(t;) = fii+1(t;), for i = 1,...,7 — 1, we can consider the curve
fi : [a,b] — X such that ;1) = fi> fori =1,...,r. The curve /i is a lifting
of u. Moreover, since 7| 4, is injective, 3o and fi(a) are in A; and:

m(fo) = p(a) = 7 (fi(a)),

it follows that fi(a) = go. Therefore L(go, ) = fi. The proof is completed by
observing that i1 € U(P; Ay,..., A,). O

3Notice that, by Corollary , if X is Hausdorff, the uniqueness of 4 is automatic.
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COROLLARY B.2.5. Let X, X, Y be topological spaces, T : X > Xbea
local homeomorphism and f 1Y X [a,b] — X, fo : Y — X be continuous maps
such that for every y € Y, the curve v, : [a,b] 5 t — f(y,t) € X has a unique

lifting 7 : [a,b] — X satisfying the initial condition 7y(a) = fo(y). Then f has a
unique lifting f - Y x [a,b] — X such that:

fly.a) = fo(y),
forallyeY.

PROOF. By Lemma[B.1.1] the map:
F:Y 3y, €€(ab], X)
is continuous. By our hypotheses, the continuous map:
(fo. F): Y — X x ¢([a,b], X)

takes values in £. It is clear that there exists a unique map f:Y x [a,b] — X
such that m o f = fand f(y,a) = fo(y), for all y € Y'; such map is given by:

Fy.t) = L(foly), F(y)) (1),

forally € Y, t € [a,b]. It follows from Lemmas and that f is indeed
continuous. O

DEFINITION B.2.6. Let X, X be topological spaces and 7 : X — Xbea
continuous map. We say that 7 has the unique lifting property for paths if for any
continuous map 7 : [a,b] — X and any Zo € 7 !(y(a)) there exists a unique

lifting 7 : [a, ] — X of v with 5(a) = Zo.

DEFINITION B.2.7. By a loop in a topological space X we mean a continuous
map v : [a,b] — X with y(a) = ~(b). We say that the loop ~ is contractible in X
if there exists a continuous map H : [0, 1] X [a,b] — X such that:

e H(0,t) =~(t), forallt € [a,b];

e H(s,a) = H(s,b), forall s € [0,1];

e the map [a,b] >t — H(1,t) € X is constant.
We say that X is simply-connected if every loop in X is contractible in X. We say
that X is semi-locally simply-connected if every point of X has a neighborhood V'
such that any loop in V is contractible in X.

LEMMA B.2.8. Let X, X be topological spaces and m : X — X be a local
homeomorphism. Assume that  has the unique lifting property for paths. Let A
be an arc-connected subset of X such that every loop in 7w(A) is contractible in X.
Then 7|4 is injective.

PROOF. Assume that 1,72 € A and that 7(Z;) = 7(Z2). Since A is arc-
connected, there exists a continuous map % : [a,b] — A with ¥(a) = #; and
(b) = Zo. Then v = 7 o 4 is a loop in 7(A); therefore ~y is contractible in X,
i.e., there exists a continuous map H : [0, 1] x [a,b] — X as in Definition [B.2.7]
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Since 7 has the unique lifting property for paths, Corollary gives us a lifting
H :[0,1] x [a,b] — X of H such that H(0,t) = 5(t), for all ¢ € [a, b].

Since the map [a, b] > t — H(1,t) € X is constant, the unique lifting property
for paths implies that its lifting [a,b] > ¢ — H(1,t) € X is also constant. In

particular, H(1,a) = H(1,b); therefore, the paths:
0,13s— H1—s,a) e X, [0,1]3>s— H(1—s,b) € X,

are liftings of the same path in X and they agree on s = 0. Again, by the unique
lifting property for paths, it follows that H(1—s,a) = H(1—s,b), forall s € [0, 1].
In particular:

1 =7(a) = H(0,a) = H(0,) = 3(b) = Z2.
This concludes the proof. U

COROLLARY B.2.9. Under the hypotheses of Lemma if in addition the
set A is open in X then w(A) is openin X and 7|4 : A — 7(A) is a homeomor-
phism.

PROOF. Simply observe that, being a local homeomorphism, 7 is an open
mapping; moreover, if A is open in X and the restriction of 7 to A is injective
then 7|4 : A — m(A) is a continuous, bijective open mapping. O

B.3. Covering Maps

DEFINITION B.3.1. Let X, X be topological spaces and 7 : X — X bean
arbitrary map. An open subset U C X is called a fundamental open subset of
X if 771(U) equals a disjoint union | J;; U; of open subsets U; of X such that
7|y, : Ui — U is a homeomorphism for all ¢ € I. We say that 7 is a covering map
if X can be covered by fundamental open subsets.

Obviously every covering map is a local homeomorphism.

DEFINITION B.3.2. We say that a topological space X is locally arc-connected
(resp., locally connected) if every point z € X has a fundamental system of arc-
connected (resp., connected) neighborhoods, i.e., if every neighborhood of x con-
tains a (not necessarily open) arc-connected (resp., connected) neighborhood of
x.

Obviously if X is locally arc-connected (resp., locally connected) then every
open subset of X is also locally arc-connected (resp., locally connected), when
endowed with the topology induced from X.

REMARK B.3.3. If X is locally arc-connected (resp., locally connected) then
every point of X has a fundamental system of open arc-connected (resp., con-
nected) neighborhoods, i.e., for every x € X and every neighborhood V' of =,
there exists an arc-connected (resp., a connected) open set C' with x € C' C V.
Namely, take C to be the arc-connected component (resp., connected component)
of the interior of V' containing = and use the fact that the arc-connected components
(resp., connected components) of an open subset are open (see Exercise B.IJ).
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LEMMA B.3.4. Let X, X be topological spaces and T : X — X be a local
homeomorphism. Assume that m has the unique lifting property for paths and that
X is locally arc-connected. Let U be an arc-connected open subset of X such that
every loop in U is contractible in X. Then U is a fundamental open subset of X.

PROOF. Let (U;)ier denote the arc-connected components of 7~ LU). Since
7~ 1(U) is open in X, each U is open in X (see ExermseE Obviously:

= U U,
el
and such union is disjoint. Let ¢ € I be fixed and let us show that 7|y, is a
homeomorphism onto U. Obviously 7(U;) C U. We claim that 7(U;) = U.
Given z € U, choose an arbitrary point £y € U; and let v : [a,b] — U be a
continuous map with y(a) = 7(Zg) and v(b) = x. By the unique lifting property
for paths, we can find a lifting 7 : [a,b] — X of ~ such that §(a) = &. Since
7 is a continuous curve in 7~ *(U) starting at a point of U; and since Uj is an arc-
connected component of 77~ 1(U), it follows that 7 takes values in U;. In particular
3(b) € U; and 7 (5(b)) = v(b) = . Finally, Corollaryimplies that 7|y, is a
homeomorphism onto 7(U;) = U. O

COROLLARY B.3.5. Let X, X be topological spaces and T : X - Xbea
local homeomorphism. Assume that w has the unique lifting property for paths and
that X is locally arc-connected and semi-locally simply-connected. Then 7 is a
covering map.

PROOF. Observe that, since 7 is a local homeomorphism and X is locally arc-

connected, it follows that also X is locally arc-connected. The conclusion follows
from Lemma (recall also Remark [B.3.3). O

Let X, X be topological spaces and 7 : X — X be alocal homeomorphism;
assume that X is Hausdorff, so that Corollary [B - 3| guarantees the uniqueness of
liftings (with prescribed initial conditions) of curves in X. Now let v : [a,b] — X
be a continuous curve and let Zy € 7' (7(a)) be such that ~ does not admit a

lifting 7 : [a, b] — X with §(a) = Zo. Consider the set:
(B3.1)  {t €]a,b] : V|jo admits a lifting 7 : [a,] — X with (a) = & }.

The set is not empty; namely, if A is an open neighborhood of Z( such that
m(A) isopenin X and 7|4 : A — 7(A) is a homeomorphism then there exists
e > 0 with y([a,a + €]) C (A) and therefore ¥ = (m|4) !  is a lifting
0f7‘[a,a+s} with ¥(a) = Zo.

Obviously if ¢ is in and ¢’ is in ]a, t] then also ¢’ is in (B.3.1)). Therefore
is an interval whose left endpoint is a. Let tg € |a, b] be the supremum of
(B3.1). Then ]a, to| is contained in (B3.1). For each ¢ € |a, to[, let 7 : [a,t] — X
be a lifting of |, 4 with 5;(a) = Zo. Given t,t' € ]a, o[, with ¢’ < ¢ then 7y
and :Yt|[a,t’] are both liftings of the same curve having the same initial condition;
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therefore 7y = (4. Therefore, there exists a unique curve 7 : [a,to[ — X
such that:

Fiag = Fts
for all ¢ € |a,to[. The curve 7 is continuous, since its restriction to ]a, t] is con-
tinuous for all t € Ja,to[. Moreover, 7 is a lifting of 7|4, satisfying the initial
condition ¥(a) = Zo. We call 4 the maximal partial lifting of  starting at .
We have the following:

LEMMA B.3.6. Let X, X be topological spaces and m : X — X be alocal
homeomorphism; assume that X is Hausdorff. Let v : [a,b] — X be a continuous
curve and let &g € T ! (’y(a)) be such that vy does not admit a lifting starting at
Zo. Let 7 : [a,to] — X be the maximal partial lifting of ~ starting at o, where
to € Ja,b]. Then 7y|jqy,) does not admit a lifting starting at Tq (i.e., to is not in

(B.3.1)).

PROOF. If ty = b then 7’[a,to] = v and, by our hypotheses, v does not admit a
lifting starting at Zo. Assume that o < b and assume by contradiction that 7|(, 4]
admits a lifting 5 : [a, to] — X with3(a) = Zo. Let A be an open neighborhood of
(to) in X such that 7(A) is openin X and 7| 4 : A — m(A) is a homeomorphism.
Then ~([to, to + €]) is contained in 7(A) for some & > 0. Consider the curve
fi : [to,to + €] — A defined by i = (7]4) ™" © ¥|jt,t9+e- Then fi is a lifting of
Y| [to,to+<] Starting at (o). Therefore the concatenation of 4 with /i is a lifting of
7|[a7t0+€} starting at 9. Thus ¢y + ¢ is in (B.3.1)), contradicting the fact that ¢ is

the supremum of (B.3.1). O

Recall that a point p in a topological space Y is called a limit value of a map
f :]a,b] — Y at the point b if for any neighborhood V' of p and any £ > 0 there
exists t € |b — ¢, b[ with f(t) € V. We have the following:

LEMMA B.3.7. Let X, X be Hausdorff topological spaces and 7 : X - X
be a local homeomorphism. Let vy : [a,b] — X be a continuous curve and let
Fo et (W(a)) be such that v does not admit a lifting starting at Zo. Denote by
3 i a, to] — X the maximal partial lifting of ~y starting at %o, where to € la, b].
Then the map v has no limit values at the point t.

PROOF. Assume by contradiction that p € X is a limit value of 4 at the point
to. We claim that m(p) = ~(top). Otherwise, we could find disjoint open sets
Uy, Uy C X with w(p) € Uy and y(to) € Us; then y(]to — &,t0]) C U, for
some ¢ > 0 and there exists t € Jtg — €, to[ with 7(¢) € 7~1(U;). This implies
v(t) = 7(7(t)) € U, contradicting Uy N Uz = (). The claim is proved.

Let now A be an open neighborhood of p in X such that m(A) is open in X
and 7|4 : A — w(A) is a homeomorphism. Since v(tg) = w(p) is in 7(A), we
can find & > 0 with y(]to — €, 0] ) C m(A). Now there exists ¢ € ]to — &, to[ with
7(t) € A. define i : [t, to] — A by setting:

fi = (7] 4) 7" 0t t0)-
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Then i is a lifting of 7|} ) starting at 7(); the concatenation of 7|(, 4 with /i is
therefore a lifting of y|(, ] starting at o. This contradicts Lemma O

COROLLARY B.3.8. Under the assumptions of Lemma we have:
(@) if (tp)n>1 is a sequence in [a,ty| converging to to then the sequence
(i(tn))n>1 has no converging subsequence in X ;

(b) if K is a compact subset of X then there exists £ > 0 such that:
’N}/(]to — E,to[) NK =0.

PROOF. If (i(tn))n>1 had a converging subsequence to a point p € X then
p would be a limit value of 4 at the point to. Thus (a) is proven. Let us prove
(b). For each point p € K, since p is not a limit value of 7 at the point ¢y, we can
find an open neighborhood U, of p in X and a positive number £, > 0 such that
Y(Jto — ep, tol) is disjoint from Uy,. The open cover Uper Up of K has a finite
subcover | J;_; Up,. Lete = min/_; &, > 0. Then ( Jto — €, to[ ) is disjoint from
K. (]

DEFINITION B.3.9. Let X, X be topological spaces and 7 : X — Xbea
continuous map. We will say that a continuous curve v : [a, b] — X admits liftings
with arbitrary initial conditions with respect to 7 if for every o € 7 !(y(a))

there exists a lifting 5 : [a, b] — X of v satisfying the initial condition §(a) = Zo.

In order to check that a local homeomorphism 7 : X — X has the unique
lifting property for paths, it suffices to show that a “sufficiently rich” set of curves
in X admits lifting with arbitrary initial conditions. This is made more precise in
the following:

DEFINITION B.3.10. Let X be a topological spaces and let C be a subset of
@([0, 1], X ) We say that C is rich in X if for every point p € X there exists a
neighborhood U of p in X, a point py € X and a continuous map H : [0,1] x U —
X such that the following conditions hold:

e H(0,z) =ppand H(1,z) =z, forall z € U,
e forany x € U, the curves:

(B.3.2) 0,1]>t— H(t,z) € X, [0,1]5t+— H(1—-t,z) € X,
are in C.

EXAMPLE B.3.11. If X is a differentiable manifold then the set of all smooth
curves 7 : [0, 1] — X is rich. Moreover, if X is a semi-Riemannian manifold then
the set of all geodesics 7 : [0, 1] — X is rich.

LEMMA B.3.12. Let X, X be topological spaces and T : X — X bea
local homeomorphism; assume that X is Hausdorff. If there exists a rich set C
of continuous curves v : [0,1] — X such that every v € C admits liftings with
arbitrary initial conditions with respect to 7 then 7 has the unique lifting property
for paths.



226 B. TOPOLOGICAL TOOLS

PROOF. Let v : [a,b] — X be a continuous curve and let g € 7 *(v(a))
be fixed. Assume by contradiction that v does not admit a lifting starting at Zo.
Let 4 : [a,to] — X be the maximal partial lifting of ~ starting at 7, where
to € Ja,b]. Set p = ~(to) and let U, pg and H be as in Definition Let
& > 0 be such that v([to — &,%]) C U and let fi : [0,1] — X be a lifting of the
curve [0,1] 5 ¢ — H(1 —t,y(to —€)) € X such that i(0) = J(to — €). Then
Po = fi(1) is a point in X such that 7(5y) = po. Since for every z € U the curve
[0,1] 5 ¢ = H(t,z) € X admits a lifting starting at po, Corollary B.2.5 gives us a
lifting H : [0,1] x U — X of H such that H (0, z) = po, forall # € U. The curves
0,1] ¢+ (1 —t) € X and [0,1] 5 t — H(t,~v(to —)) € X are liftings of
the same curve in X and they both start at the point pg; therefore they are equal. In
particular:

fi(0) = F(to — &) = H(1,7(to — €))-
Therefore [t — €,t9] > t — I:T(l,y(t)) € X is a lifting of Yljtg—e,to) Starting at
F(to — €); setting §(to) = H(1,7(t)) we thus obtain a lifting of Va,o] Starting
at Zo. This contradicts Lemma[B.3.6 O

COROLLARY B.3.13. Under the conditions of Lemma [B.3.12} if in addition,
X is locally arc-connected and semi-locally simply-connected then m : X — X is
a covering map.

PROOF. Follows readily from Lemma [B.3.12]and Corollary [B.3.5] d

In next lemma we show that uniqueness of liftings works for covering maps
m: X — X even if the space X is not Hausdorff (compare with Corollary i

LEMMA B.3.14. Let X, X, Y be topological spaces, with' Y connected. Let
f Y — X be a continuous map, m . X — X bea covering map and let
fi:Y — X, fo:Y — X be liftings off with respect to . If f1 and fo agree on
some point of Y then fi = fo.

PROOF. Consider the set defined in (B.2.T)). Since 7 is locally injective, (B.2.1)

is open, by Lemma [B.2.2} moreover, is nonempty, by our hypotheses. We
complete the proof by showing that is closed (without using that X is

Hausdorff). Let y € Y be a point not in ,ie., fily) # fa(y). We have
(fl( ) = 7T(f2( )) = f(y): letU C X be a fundamental open set containing

f(y). Then 771 (U) = U,¢; Ui, where (U;);c; is a family of disjoint open subsets
of X and 7 maps U; homeomorphically onto U, for all 7 € I. We have fl (y) e U;
and fg( ) € Uj, for some i,j € I. Since 7|y, is injective, it must be ¢ # j. Set
V = f71(U;) N fy 1(U;). Then V is an open neighborhood of y in Y. Moreover,

fi(V) C Uy, fo(V) C U; and U; N U;j = 0 therefore V is disjoint from (B.2.1).
This completes the proof. ]

LEMMA B.3.15. If7: X = Xisa covering map then m has the unique lifting
property for paths.
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PROOF. Let v : [a,b] — X be a continuous map and fix a point Ty €
71 (v(a)). We will show that ~y has a lifting 7 : [a,b] — X with 5(a) = Zo;
by Lemma|[B.3.14] such lifting is unique.

Let us start with the case where the image of -y is contained in a fundamental
open subset U of X. Write 7= 5(U) = ,;c; Ui, where (U;);cs is a family of
disjoint open subsets of X and 7 maps U; homeomorphically onto U for all 7 € I.
Since 7o € 7 1(U), we have & € U;, for some i € I. Then 7 = (7|y,) "L ovisa
lifting of  with ¥(a) = Zy.

Let us now go to the general case. Since the fundamental open subsets of
X form an open cover of X, its inverse images by v form an open cover of the
compact metric space [a, b]; let § > 0 be a Lebesgue number for this open cover,
i.e., every subset of [a,b] having diameter less than § is contained in the inverse
image by v of some fundamental open subset of X. Let P = {t¢,...,t,} be a
partition of [a,b] witht; —¢;_; < J,7=1,...,r. Then 7([ti_1,ti]) is contained
in a fundamental open subset of X; by the first part of the proof, the curve |, , ¢,
admits liftings with arbitrary initial conditions, for all ¢ = 1,...,r. We construct
a lifting ; of 7y, _, +,) by induction on i as follows. Let ; be a lifting of |y, 4
with 41 (a) = Zo. Assuming that 4; is constructed for some ¢ < r, we consider the
lifting ;1 Of Y|, 4,,,] With Fi11(t;) = Fi(ts).

Since the continuous curves 71, ..., 7, satisfy:
Fi(ti) = Yiv1(ti),
foralli =1,...,r— 1, we can define a continuous curve 7 : [a, b] — X by setting
Yit;_1,t) = Fi» fori = 1,...,r. Then 7 is a lifting of v and §(a) = Fo. This
concludes the proof. ([

COROLLARY B.3.16. Assume thatw: X — X isa covering map and that X
is locally arc-connected. If U is an arc-connected open subset of X such that every
loop in U is contractible in X (in particular, if U is simply-connected) then U is a
Sfundamental open subset of X.

PROOF. Follows from Lemmas [B.3.13and O

LEMMA B.3.17. If 7 : X > Xisa covering map then the image of 7 is closed
in X.

PROOF. Let x € X be a point outside the image of 7. Let U be a fundamental
open subset of X containing z. Then 7= }(U) = ;c; Ui, where (U;)icr is a
family of disjoint open subsets of X and 7 maps U; homeomorphically onto U for
all 7 € I. We claim that I = (); namely, otherwise there would exist some ¢ € [

and U = 7(U;) would be contained in the image of 7. Since I = (), it follows that
7 Y (U) =0, i.e., U is disjoint from the image of 7. O

COROLLARY B.3.18. If7: X > Xisa covering map, X is nonempty and X
is connected then T is surjective.

PROOF. The image of 7 is nonempty (because X is nonempty), open in X
(because 7 is a local homeomorphism) and, by Lemma|B.3.17| closed in X. [J
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COROLLARY B.3.19. Assume that 7 : X — X is a covering map, X is
nonempty and arc-connected and X is connected and simply-connected. Then T is
a homeomorphism.

PROOF. By Corollary [B.3.T8] = is surjective and by Lem 7 has the

unique lifting property for paths. It follows from Corollary [B.2.9| (with A = X)
that 7 is a homeomorphism. O

DEFINITION B.3.20. Let X, X be topological spaces and 7 :~)~( — X be a
continuous map. By a local section of m we mean amap s : U — X defined on an
open subset U of X such that 7 o s equals the inclusion map of U in X.

Notice that a continuous local section s : U — X of 7 is the same as a lifting
with respect to 7 of the inclusion map U — X of an open subset U of X.

LEMMA B.3.21. Let X, X be topological spaces and T : X > Xbea locally
injective continuous map. If s : U — X, s’ : U — X are continuous local
sections of w such that s(x) = s'(x) for some x € UNU’ then there exists an open
neighborhood V of x contained in U N U’ such that s|y = §'|y.

PROOF. Since s|yny and s'|ynys are both liftings of the inclusion map of
UNU’" into X, it follows from Lemma that the set of points of U N U’ where
s coincides with s’ is open. O

LEMMA B.3.22. Let X, X be topological spaces and m : X - X bea
locally injective continuous map; assume that X is Hausdorff. Lets : U — X,
s’ : U — X be continuous local sections of ™ with U connected. If s(z) = §'(x)
for some x € U then s = s'.

PROOF. It follows from Corollary [B.2.3| observing that s and s’ are both lift-
ings of the inclusion map of U into X. ]

LEMMA B.3.23. Let X, X be topological spaces and T : X — X be a local
homeomorphism. If s : U — X is a continuous local section of 7 then s(U) is
openin X and s : U — s(U) is a homeomorphism.

PROOF. The map s : U — s(U) is continuous, bijective and its inverse, which
is equal to 7|y @ s(U) — U, is also continuous; thus s : U — s(U) is a
homeomorphism. To complete the proof we show that s(U) is open in X. Given
2 € U, we will find a neighborhood of s(x) in X contained in s(U). Let A € X
be an open subset such that s(z) € A, 7(A) isopenin X and 7|4 : A — w(A) is
a homeomorphism. Then s’ = (7] 4)~! : 7(A) — X is a continuous local section
of mand s'(z) = s(z). By Lemma[B.3.21] there exists an open subset V of X with
xeV,VcUnm(A) and s|y = §|y. Since s’ is a homeomorphism onto an

open subset of X, it follows that s’ (V) is open in X; moreover:
s(x) € (V) =s(V) C s(U).
Hence s'(V) is a neighborhood of s(x) contained in s(U). O



B.3. COVERING MAPS 229

DEFINITION B.3.24. Let X, X be topological spaces and 7 : X — X be
a continuous map. An open subset U of X is said to be quasi-fundamental with
respect to 7 if for every x € U and every & € 7 !(x) there exists a continuous

local section s : U — X of  such that s(z) = Z.

REMARK B.3.25. Clearly, if U is a fundamental open subset of X with respect
to a continuous map 7 : X — X then U is also quasi-fundamental. Namely, write
7Y (U) = U,e; Ui, where (U;);cr is a family of pairwise disjoint open subsets of
X such that 7 maps U; homeomorphically onto U for all ¢ € I. Given x € U and
T €7 z)then ¥ € U; forsomei € I. Lets = (7|y,) L : U — X. Clearly s is
a continuous local section of 7 and s(z) = Z.

LEMMA B.3.26. Let X, X be topological spaces and m : X — X bea
local homeomorphism,; assume that X is Hausdorff. If U is a quasi-fundamental
connected open subset of X with respect to 7 then U is a fundamental open subset
of X with respect to .

PROOF. Let S be the set of all continuous local sections of 7 defined in U. We

claim that:
=1 (U) = s(0).
seS
Indeed, if s € S then obviously s(U) C 7~ *(U); moreover, given 7 € 7~ 1(U)
then + = 7(Z) € U and, since U is quasi-fundamental, there exists s € S

with s(x) = #. Thus & € s(U). This proves the claim. Now observe that, by
Lemma s(U) is open in X for all s € S; moreover, sy : 8(U) — U'is
a homeomorphism, being the inverse of s : U — s(U). To complete the proof, we
show that the union | J,. g s(U) is disjoint. Pick s, s’ € S with s(U) N s'(U) # 0.
Then there exists ,y € U with s(z) = s'(y). Observe that:

z=m(s(z)) =7(s'(y)) =y,

and thus s(z) = §'(x). Since U is connected and X is Hausdorff, using Lemma
we get that s = §'. O

COROLLARY B.3.27. Let X, X be topological spaces and m : X — X be
a local homeomorphism; assume that X is Hausdorff and that X is locally con-
nected. If X can be covered by quasi-fundamental open sets then m is a covering
map.

PROOF. Given x € X, there exists a quasi-fundamental open subset U of X
containing . Since X is locally connected, U contains an open connected neigh-
borhood U’ of z (see Remark [B.3.3). Obviously also U’ is quasi-fundamental.
Thus U’ is a fundamental open subset of X, by Lemma|[B.3.26] O

LEMMA B.3.28. Let X, X be topological spaces and T : X — X be a local
homeomorphism. IfY is a subset of X then the map:

T =71y T (Y) —Y
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is a local homeomorphism; moreover, if U C X is a fundamental open subset with
respect to w then U N'Y is a fundamental open subset of Y with respect to .

PROOF. Since 7 is a local homeomorphism, given Z € 7~!(Y") we can find an
open subset A of X with 7(A) openin X and 7|4 : A — 7(A) a homeomorphism.
Now ANa~!(Y') is an open subset of 7! (") containing Z and 7 (AN7~1(Y)) =
7(A) N'Y is open in Y; moreover, 7 maps A N 7~ (Y") homeomorphically onto
m(A) NY. Thus 7’ is a local homeomorphism. Now let us prove that U N'Y is
fundamental for 7. Write 71 (U) = (J,; Ui, where (U;);¢ is a family of disjoint
open subsets of X and 7 maps U; homeomorphically onto U, for all 7 € I. We
have:

AN UNY) = (U) nr (Y) = UnaH(Y),
i€l
and (U; N7~ 1(Y)),_, is a family of disjoint open subsets of 7" (Y"). Moreover,
7/ maps U; N 7w~ (Y") homeomorphically onto U N'Y, for all i € I. (]

COROLLARY B.3.29. If7: X > Xisa covering map and Y is a subset of X
then | —1(yy : 7 YY) — Y is also a covering map. O

LEMMA B.3.30. If 7 : X > Xisa covering map, X is locally arc-connected
and Y is an arc-connected component of X then wt|y : Y — X is also a covering
map.

PROOF. Let U be a fundamental arc-connected open subset of X (relatively to
7). We will show that U is also fundamental relatively to |y. Write 7 1(U) =
Uier Ui» where (U;)ier is a family of disjoint open subsets of X and 7 maps U;
homeomorphically onto U, for every ¢ € I. Since U; is homeomorphic to U,
we have that U; is arc-connected for every ¢+ € I; since Y is an arc-connected
component of )N(, we have either U; C Y or U, N Y = @, foralli € I. Set:

I'={iel:U;cY}.

Then (|5)~"(U) = 7~ (U) NY = U, U;. This proves that U is fundamental
for 7|3. Since  is a covering map and X is locally arc-connected, the result of
Exercise [B.2]implies that the fundamental arc-connected open subsets of X form a
covering of X. This concludes the proof. U

COROLLARY B.3.31. Assume that w: X — X isa covering map. LetY be a
connected, locally arc-connected and simply-connected subset of X and let Y be
an arc-connected component of 11 (Y'). Then wly Y — Y is a homeomorphism.

PROOF. By Corollary B.3.29, | —1(y) : 77 1Y) — Y is a covering map.
Since Y is locally arc-connected and Y is an arc-connected component of 7~ 1(Y),
Lemma |B.3.30|implies that 7| : Y — Y is also a covering map. The conclusion

follows from Corollary [B.3.19 ]
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COROLLARY B.3.32. Assume that7: X — X isa covering map and that
X is simply-connected and locally arc-connected. Assume also that the image of
m intersects every connected component of X. Then m admits a continuous global
section, i.e., a continuous local section s : X — X whose domain is X.

PROOF. Write X = Uz‘e 1 X, where each X; is a connected component of
X. Since X is locally arc-connected (and, in particular, locally connected), each
X; is open in X; thus each Xj is also locally arc-connected. The fact that X is
simply-connected implies that each X is also simply-connected. Let X, be an arc-
connected component of 77 1(X;); observe that, since the image of 7 intersects
X, the set 7~ !(X;) is nonempty and thus such an arc-connected component does
exist. It follows from Corollary that T maps X ; homeomorphically onto X;.
Lets; : X; — )?1- be the inverse of the homeomorphism 7| o )A(/i — X;. Then

each s; is a section of 7. The desired global section s : X — X is obtained by
setting s|x, = s;, for every i € I. O

B.4. Sheaves and Pre-Sheaves

DEFINITION B.4.1. Let X be a topological space. A pre-sheaf on X is a map
B that assigns to each open subset U C X a set B(U) and to each pair of open
subsets U,V C X with V. C U amap Py : P(U) — P(V) such that the
following properties hold:

e for every open subset U C X the map Py, is the identity map of the set

PO
e givenopen sets, U, VW C X with W C V C U then:

Bvw o Puyv = Buw.

REMARK B.4.2. A pre-sheaf on X is simply a contravariant functor from the
category of open subsets of X to the category of sets and maps. The morphisms
in the category of open subsets of X are defined as follows; if U,V C X are open
then the set of morphisms from V' to U has a single element if V' C U and it is
empty otherwise.

DEFINITION B.4.3. Given a topological space X, a sheaf over X is a pair
(S, ), where S is a topological space and 7w : S — X is a local homeomorphism.

EXAMPLE B.4.4. If (S, 7) is a sheaf over a topological space X then the fol-
lowing pre-sheaf ‘P is naturally associated to (S, 7): for every open subset U C X
let P(U) be the set of continuous local sections of 7 whose domain is U. Given
open subsets U,V C X with V' C U then the map By is defined by:

Puv(s) = slv,
forall s € P(U).
Let 3 be a pre-sheaf over a topological space X. Given a point x € X,

consider the disjoint union of all sets (U ), where U is an open neighborhood of
z in X. We define an equivalence relation ~ on such disjoint union as follows;
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given f1 € P(U1), fo € P(Usz), where Uy, Us are open neighborhoods of = in X
then fi ~ fy if and only if there exists an open neighborhood V' of x contained in
Uy N Uy such that Py, v (f1) = Pu,,v (f2). I U is an open neighborhood of z in
X and f € P(U) then the equivalence class of f corresponding to the equivalence
relation ~ will be denoted by [f], and will be called the germ of f at the point x.
We set:

Sy = { : f € P(U), for some open neighborhood U of z in X }

REMARK B.4.5. The set S, is simply the direct limit of the net U — B (U),
where U runs over the set of open neighborhoods of = ordered by reverse inclusion.

Let S denote the disjoint union of all S, with z € X. Let 7 : S — X denote
the map that carries S, to the point z. Our goal now is to define a topology on S.
Given an open subset U C X and an element f € B(U) we set:

V(f)={lfl.:xeU}CS.

Observe that if V' is an open subset of U then:

V(Buy(f) ={lfle : 2 €V}
namely, we have [‘BU,V(f)]I = [flz, forallz € V.
We claim that the set:
(B.4.1) {V(f): f € B(U), U an open subset of X }

is a basis for a topology on S. First, it is obvious that (B.4.1) is a covering of S.
Second, we have to prove the following property; given open subsets Uy, Us C X,
f1 € B(U1), f2 € P(Uz) and g € V(f1)NV(f2), there exists an element of (B.4.T)
containing g and contained in V(f1) N V(f2). Let us find such element of (B.4.1).
Since g € V(f1) N V(f2) we have g = [f1]z = [f2]s, for some z € U; N Us. Since
[fi]e = [f2]z, there must exist an open neighborhood V' of z contained in Uy N Uy
such that Py, v (f1) = Pu,,v (f2). Now it is easy to see that V (B, v (f1)) is an
element of containing g and contained in V(1) N V( f2).

In what follows we consider the set S endowed with the topology having
as a basis. Our goal is to show that (S, 7) is a sheaf over X. We start
with the following:

LEMMA B.4.6. Let U C X be an open subset. Given x € U and f € B(U)
then the set:

(B.4.2) {V(‘BU,v(f)) : V' an open neighborhood of x contained in U}

is a fundamental system of open neighborhoods of [f|. in S (i.e., every neighbor-
hood of [f)z in S contains an element of (B.4.2)).

PROOF. Let W be a neighborhood of [f], in S; since is a basis of
open subsets for S, we can find an open subset U; C X and f1 € P(U;) with
[flz € V(f1) € W. Since [fl, € V(f1), it mustbe z € U; and [f], = [fi]as
thus there exists an open neighborhood V' of x contained in U N U; such that

Buv (f) = Bu,,v(f1). Then V(Pu,,v(f1)) belongs to (B-42) and is contained
in W. g
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Given an open subset U C X and an element f € PB(U) we define a map
f:U — S by setting:

forallx € U.

LEMMA B.4.7. If U C X is an open subset and f € B(U) then the map f
maps U homeomorphically onto V().

PROOF. It is clear hat f : U — V(f) is a bijection. Moreover, if V' is open in
U (and hence in X), we have f(V) = V(SBUy(f)); thus f is an open mapping.
To complete the proof, we show that f is continuous. Let x € U be fixed and let
V(PBu,v(f)) be an element of the fundamental system of neighborhoods (B-4.2)
of f(z) = [f]+: by V we denote an open neighborhood of z contained in U. Then

F(V) = V(Bu,v(f)): this proves the continuity of f and completes the proof of
the lemma. U

COROLLARY B.4.8. The map w : S — X is a local homeomorphism. Thus
(S,7) is a sheaf over X.

PROOF. If U C X is an open subset and f € B (U) then 7 maps the open set
V(f) homeomorphically onto the open subset U of X; namely, the map:

Tl V() — U

is the inverse of the map f : U — V(f). The conclusion follows by observing that
the sets V(f) cover S. O

We call (S, ) the sheaf of germs associated to the pre-sheaf 3. Observe that
if U is an open subset of X and f € P(U) then f is a section of the sheaf of germs
defined in U.

DEFINITION B.4.9. We say that the pre-sheaf *3 has the localization property
if, given a family (U;);e; of open subsets of X and setting U = | J,; U; then the
map:

(B.43) BWU) > f— (Bow(N),e, € [[BO)

icl
is injective and its image consists of the families (f;)ics in [];c; B(U;) such that
mUi,UmUj (fl) — mUj,UiﬂUj (f])a for all Za] S 1.

REMARK B.4.10. Observe that if ‘3 has the localization property then the set
B(0) has exactly one element. Namely, consider the empty family (U;);e;, i.e., I
is the empty set. Then U = J,o; U; is the empty set and the image of the map
has exactly one element (the empty family (f;);c7). Thus (()) has exactly
one element as well.

DEFINITION B.4.11. Given pre-sheafs 3 and B’ over a topological space X
then an isomorphism from B to P’ is a map A that associates to each open subset
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U C X abijection Ay : B(U) — P'(U) such that, given open subsets U,V C X
with V' C U then the diagram:

Au

B'(U)
(B.4.4) ‘BU,V\L \L“BIU,V
B) —— (V)

commutes.

LEMMA B.4.12. If the pre-sheaf B has the localization property then, for
every open subset U C X, the map f — f gives a bijection between the set B(U)
and the set of continuous local sections of the sheaf of germs defined in U. More
precisely, such bijections give an isomorphism between the pre-sheaf {3 and the
pre-sheaf naturally associated to the sheaf of germs (S, ) (recall Example .

PROOF. We start by observing that, once we prove that the maps f +— f are
bijections, it will follow easily that they give an isomorphism of pre-sheaves (i.e.,
diagram commutes). Namely, given open subsets U,V C X with V C U
and given f € B(U), the commutativity of diagram is equivalent to:

g=flv,

where g = Py (f). A

Let U C X be an open subset. Let us prove that the map B(U) > f — f
is injective. Let f1, fo € P(U) be fixed and assume that ]?1 = fg For every
x € U we have [f1], = [f2], and thus there exists an open neighborhood U, of
x contained in U such that Py v, (f1) = Puw,(f2). Now U = (J,cyy Us and
thus the localization property implies that f; = fo. This proves the injectivity of
f=1

Now let s : U — S be a continuous local section of 7 and let us find f € B(U)
with s = f . For every x € U, s(x) is an element of S,; thus there exists an open
neighborhood U, of = and an element f, € PB(U,) such that s(z) = [f;],. Since s
and f, are both continuous local sections of 7 and since s(z) = fx(x), there exists
an open neighborhood V,, of = contained in U, N U such that s|y, = fx|vx (recall
Lemma B.3.21). Set g, = Bu,.v, (fz), for all z € U; we claim that there exists
[ € PBU) with By, (f) = ge., forall z € U. Since |, V2 is an open cover of
U, by the localization property, in order to prove the claim it suffices to show that
for every x,y € U we have:

B, vy, (92) = By, vy, (9y)-

Let z,y € U be fixed and set b1 = Py, v,nv, (92), ha = Py, vunv, (9y). We
have:

h1 = gzlvinv, = felveny, = slvanv, = fylveny, = dylveny, = he.
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By the first part of the proof, we get h; = hg. This proves the claim, i.e., there
exists f € P(U) with Py v, (f) = gz, for all z € U. This implies:

[f]x = [gac]x = [fx]x = S(x),
forall z € U. Hence f =s. [l

REMARK B.4.13. It is easily seen that the pre-sheaf naturally associated to a
sheaf (recall Example [B.4.4) always satisfies the localization property. Thus the
localization property is indeed an essential hypothesis in Lemma

DEFINITION B.4.14. We say that the pre-sheaf ‘I3 has the uniqueness property
if for every connected open subset U C X and every nonempty open subset V' C U
the map Py v is injective.

LEMMA B.4.15. If the pre-sheaf i3 has the uniqueness property and if X is
locally connected and Hausdor{f then the space S is Hausdorff.

PROOF. Let Uy,Usy C X be open sets, fi € B(U1), fo € P(Us), x € Uy,
y € Us be fixed with [ f1], # [f2],. We have to find disjoint open neighborhoods of
[f1]z and [fo], in S. If & # y, we can find disjoint open subsets V7, V2 C X with
x € Vi and y € V. Then 7—1(V}) and 7~1(V2) are disjoint open neighborhoods
of [f1]z and [fa],, respectively. Assume now that z = y. Let U be a connected
open neighborhood of z contained in U; N Us. Then V(‘,BULU( fl)) is an open
neighborhood of [f1], and V(Bu,,u(f2)) is an open neighborhood of [fa],. We
claim that V(Bu,,v(f1)) and V(Bu,,u(f2)) are disjoint. Otherwise, there would
exist z € U with [f1], = [f2]. and thus there would exist an open neighborhood V/
of z contained in U such that Pr;, v (f1) = Pu,, v (f2). This implies:

(Bu,v o PBu,v)(f1) = Buy o Bu,,v)(f2);

by the uniqueness property, By is injective and so

Bu, v (f1) = Poo,u(f2)

In particular, [f1], = [f2], contradicting our hypothesis. O

DEFINITION B.4.16. We say that an open subset U C X has the extension
property with respect to the pre-sheaf ‘3 if for every connected nonempty open
subset V' of U the map Py, is surjective. We say that the pre-sheaf 3 has the
extension property if X can be covered by open sets having the extension property
with respect to 3.

LEMMA B.4.17. Assume that X is locally connected. If U is an open subset of
X having the extension property with respect to the pre-sheaf B3 then U is quasi-
fundamental with respect tom : S — X.

PROOF. Let x € U and & € S be fixed, with 7(Z) = x. We have to find
a section s : U — S of 7 with s(z) = Z. Since Z € S,, there exists an open
neighborhood W of = and f € P(W) with £ = [f],. Let V be a connected open
neighborhood of x contained in U N W. Since U has the extension property with
respect to B, we can find g € P(U) with Pryv(9) = Pw,v(f). Hence s = gisa
section of 7 defined in U and s(z) = [¢]z = [f]z = 2. O
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COROLLARY B.4.18. Assume that X is Hausdorff and locally connected and
that the pre-sheaf 3 has the uniqueness property. If U is a connected open subset
of X having the extension property with respect to the pre-sheaf 3 then U is a
Sfundamental open subset of X with respect to the map .

PROOF. By Lemma[B.4.17] the set U is quasi-fundamental and by Lemma[B.4.15]
the space S is Hausdorff. The conclusion follows from Lemma [B.3.26] O

COROLLARY B.4.19. Assume that X is Hausdorff and locally connected and
that the pre-sheaf 13 has the uniqueness property and the extension property. Then
the map  : S — X is a covering map.

PROOF. By Lemma S is Hausdorff. The conclusion follows from
Corollary[B.3.27] O

The following is a converse of Lemma|B.4.17

LEMMA B.4.20. Assume that the pre-sheaf B has the localization property
and the uniqueness property. If an open subset U C X is quasi-fundamental with
respect to w : S — X then U has the extension property with respect to the pre-

sheaf ‘1.

PROOF. Let V be a connected nonempty open subset of U. Let f € B(V)
be fixed. We have to find an element g € P(U) with By v (g) = f. Choose an
arbitrary point z € V. The germ [f], is an element of S with 7 ([f],) = . Since
x € U and U is quasi-fundamental, it follows that there exists a continuous local
section s : U — S of 7 with s(x) = [f],. Since ‘P has the localization property,
Lemma [B.4.12] gives us an element g € PB(U) with s = §. Then [g], = s(z) =
[f]z and therefore there exists an open neighborhood W of z contained in V' such

that ;‘BU,W(Q) = muw(f); thus:
Bvw (Boy (9)) = Bvw (f).

Since ‘P has the uniqueness property and W is a nonempty open subset of the
connected open set V, we have Py v (g) = f. This concludes the proof. ([

Finally, we prove our main results.

LEMMA B.4.21. Assume that X is Hausdorff, locally arc-connected and that
the pre-sheaf B has the localization property, the uniqueness property and the
extension property. If U is an arc-connected open subset of X such that every loop
in U is contractible in X (in particular, if U is simply-connected) then U has the
extension property with respect to *J3.

PROOF. By Corollary the map 7 : S — X is a covering map. Ob-
serve that, since X is locally arc-connected and 7 : § — X is a local homeo-
morphism then S is also locally arc-connected; thus, by Corollary Uisa
fundamental open subset of X. By Remark U is quasi-fundamental and
hence Lemma [B.4.20]implies that U has the extension property. O
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COROLLARY B.4.22. Assume that X is Hausdorff, locally arc-connected, arc-
connected, simply-connected and that the pre-sheaf i3 has the localization prop-
erty, the uniqueness property and the extension property. Then for every connected
nonempty open subset V. C X and every f € B(V) there exists g € P(X) with

Px,v(g) = f.

PROOF. It follows from Lemma that X itself is an open subset of X
having the extension property. Thus, since V' is open, connected and nonempty, it
follows that the map Px 1 : P(X) — P(V) is surjective. O

LEMMA B.4.23. Assume that X is Hausdorff, locally arc-connected and sim-
ply-connected and that the pre-sheaf *3 has the localization property, the unique-
ness property and the extension property. Assume also that every connected com-
ponent of X contains a nonempty open set U such that PB(U) is nonempty. Then
the set B(X) is nonempty.

PROOF. By Corollary the map 7 : S — X is a covering map. Since
every connected component of X contains a nonempty set U such that B(U) is
nonempty, it follows that the image of 7 intersects every connected component
of X. It follows from Corolla that 7 admits a continuous global section
s: X — S. By Lemma , there exists f € P(X) with s = f. Hence PB(X)
is nonempty. (]

EXAMPLE B.4.24. Let X be simply-connected differentiable manifold and let
0 be a smooth closed 1-form on X. Let us prove that 6 is exact. For every open
subset U C X let P(U) be the set of smooth maps f : U — R with df = 6|y. If
U,V C X are open subsets with V' C U, define:

Buyv(f) = flv,

for all f € P(U). It is immediate that 3 is a pre-sheaf over X satisfying the
localization property. If U is a connected open subset of X and if f1, fo € P(U)
are equal at one point of U then f; = fo; this implies that 3 satisfies the uniqueness
property. Assuming the well-known fact that every smooth closed 1-form on an
open ball in Euclidean space is exact, we conclude that for every open subset U
of X that is diffeomorphic to an open ball in Euclidean space the set B(U) is
nonempty; in particular, every connected component of X contains a nonempty
open subset U such that P3(U) is nonempty. Finally, let us prove that 3 has the
extension property. To this aim, we prove that if U is an open subset of X that is
diffeomorphic to an open ball in Euclidean space then U has the extension property
with respect to 3. Namely, let V' be a connected nonempty open subset of U and
let f € P(V) be fixed. Since U is diffeomorphic to an open ball in Euclidean
space, there exists a smooth map f; : U — R with df; = 6|y. Since V is
connected, f1|y — f is constant and equal to some ¢ € R. Hence f; — ¢ € P(U)
and (f; — ¢)|y = f. This concludes the proof of the extension property. Now
Lemma implies that 3(X) is nonempty, i.e., there exists a smooth map
f: X — Rwithdf = 0. Hence 0 is exact.
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Exercises

EXERCISE B.1. Let X be a locally arc-connected (resp., locally connected)
topological space and let U be an open subset of X. Show that the arc-connected
components (resp., connected components) of U are open in X.

EXERCISE B.2. Let X, X be topological spaces and 7 : X — X be an
arbitrary map. If U C X is a fundamental open subset with respect to 7, show that
every open subset V' of U is also fundamental.
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