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Preface

This book contains the notes of a short course given by the two authors at the
14th School of Differential Geometry, held at the Universidade Federal da Bahia,
Salvador, Brazil, in July 2006. Our goal is to provide the reader/student with the
necessary tools for the understanding of an immersion theorem that holds in the
very general context of affine geometry. As most of our colleagues know, there is
no better way for learning a topic than teaching a course about it and, even better,
writing a book about it. This was precisely our original motivation for undertaking
this task, that lead us way beyond our most optimistic previsions of writing a short
and concise introduction to the machinery of fiber bundles and connections, and a
self-contained compact proof of a general immersion theorem.

The original idea was to find a unifying language for several isometric immer-
sion theorems that appear in the classical literature [5] (immersions into Riemann-
ian manifolds with constant sectional curvature, immersions into Kähler manifolds
of constant holomorphic curvature), and also some recent results (see for instance
[6, 7]) concerning the existence of isometric immersions in more general Riemann-
ian manifolds. The celebrated equations of Gauss, Codazzi and Ricci are well
known necessary conditions for the existence of isometric immersions. Additional
assumptions are needed in specific situations; the starting point of our theory was
precisely the interpretation of such additional assumptions in terms of “structure
preserving” maps, that eventually lead to the notion of G-structure. Giving a G-
structure on an n-dimensional manifoldM , whereG is a Lie subgroup of GL(Rn),
means that it is chosen a set of “preferred frames” of the tangent bundle of M on
which G acts freely and transitively. For instance, giving an O(Rn) structure is the
same as giving a Riemannian metric onM by specifying which are the orthonormal
frames of the metric.

The central result of the book is an immersion theorem into (infinitesimally)
homogeneous affine manifolds endowed with a G-structure. The covariant deriv-
ative of the G-structure with respect to the given connection gives a tensor field
on M , called the inner torsion of the G-structure, that plays a central role in our
theory. Infinitesimally homogeneous means that the curvature and the torsion of the
connection, as well as the inner torsion of theG-structure, are constant in frames of
the G-structure. For instance, consider the case that M is a Riemannian manifold
endowed with the Levi-Civita connection of its metric tensor, G is the orthogo-
nal group and the G-structure is given by the set of orthonormal frames. Since
parallel transport takes orthonormal frames to orthonormal frames, the inner tor-
sion of this G-structure is zero. The condition that the curvature tensor should be

v



vi PREFACE

constant in orthonormal frames is equivalent to the condition that M has constant
sectional curvature, and we recover in this case the classical “fundamental theo-
rem of isometric immersions in spaces of constant curvature”. Similarly, if M is a
Riemannian manifold endowed with an orthogonal almost complex structure, then
one has a G-structure on M , where G is the unitary group, by considering the set
of orthonormal complex frames of TM . In this case, the inner torsion of the G-
structure relatively to the Levi-Civita connection of the Riemannian metric is the
covariant derivative of the almost complex structure, which vanishes if and only if
M is Kähler. Requiring that the curvature tensor be constant in orthonormal com-
plex frames means that M has constant holomorphic curvature; in this context, our
immersion theorem reproduces the classical result of isometric immersions into
Kähler manifolds of constant holomorphic curvature. Another interesting example
of G-structure that will be considered in detail in these notes is the case of Rie-
mannian manifolds endowed with a distinguished unit vector field ξ; in this case,
we obtain an immersion theorem into Riemannian manifolds with the property that
both the curvature tensor and the covariant derivative of the vector field are con-
stant in orthonormal frames whose first vector is ξ. This is the case in a number of
important examples, like for instance all manifolds that are Riemannian products
of a space form with a copy of the real line, as well as all homogeneous, simply-
connected 3-dimensional manifolds whose isometry group has dimension 4. These
examples were first considered in [6]. Two more examples will be studied in some
detail. First, we will consider isometric immersions into Lie groups endowed with
a left invariant semi-Riemannian metric tensor. These manifolds have an obvious
1-structure, given by the choice of a distinguished orthonormal left invariant frame;
clearly, the curvature tensor is constant in this frame. Moreover, the inner torsion of
the structure is simply the Christoffel tensor associated to this frame, which is also
constant. The second example that will be treated in some detail is the case of iso-
metric immersions into products of manifolds with constant sectional curvature;
in this situation, the G-structure considered is the one consisting of orthonormal
frames adapted to a smooth distribution.

The book was written under severe time restrictions. Needless saying that,
in its present form, these notes carry a substantial number of lacks, imprecisions,
omissions, repetitions, etc. One evident weak point of the book is the total ab-
sence of reference to the already existing literature on the topic. Most the material
discussed in this book, as well as much of the notations employed, was simply
created on the blackboard of our offices, and not much attention has been given
to the possibility that different conventions might have been established by previ-
ous authors. Also, very little emphasis was given to the applications of the affine
immersion theorem, that are presently confined to the very last section of Chap-
ter 3, where a few isometric immersion theorems are discussed in the context of
semi-Riemannian geometry. Applications to general affine geometry are not even
mentioned in this book. Moreover, the reference list cited in the text is extremely
reduced, and it does not reflect the intense activity of research produced in the last
decades about affine geometry, submanifold theory, etc. In our apology, we must
emphasize that the entire material exposed in these three long Chapters and two
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Appendices started from zero and was produced in a period of seven months since
the beginning of our project.

On the other hand, we are particularly proud of having been able to write a text
which is basically self-contained, and in which very little prerequisite is assumed
on the reader’s side. Many preliminary topics discussed in these notes, that form
the core of the book, have been treated in much detail, with the hope that the text
might serve as a reference also for other purposes, beyond the problem of affine
immersions. Particular care has been given to the theory of principal fiber bundles
and principal connections, which are the basic tools for the study of many topics in
differential geometry. The theory of vector bundles is deduced from the theory of
principal fiber bundles via the principal bundle of frames. We feel we have done a
good job in relating the notions of principal connections and of linear connections
on vector bundles, via the notions of associated bundle and contraction map. A cer-
tain effort has been made to clarify some points that are sometimes treated without
many details in other texts, like for instance the question of inducing connections
on vector bundles constructed from a given one by functorial constructions. The
question is treated formally in this text with the introduction of the notion of smooth
natural transformation between functors, and with the proof of several results that
allow one to give a formal justification for many types of computations using con-
nections that are very useful in many applications. Also, we have tried to make the
exposition of the material in such a way that generalizations to the infinite dimen-
sional case should be easy to obtain. The global immersion results in this book
have been proven using a general “globalization technique” that is explained in
Appendix B in the language of pre-sheafs. An intensive effort has been made in
order to maintain the (sometimes heavy) notations and terminology self-consistent
throughout the text. The book has been written having in mind an hypothetical
reader that would read it sequentially from the beginning to the end. In spite of
this, lots of cross references have been added, and complete (and sometimes repet-
itive) statements have been chosen for each proposition proved.

Thanks are due to the Scientific Committee of the 14th School of Differential
Geometry for giving the authors the opportunity to teach this course. We also want
to thank the staff at IMPA for taking care of the publishing of the book, which was
done in a very short time. The authors gratefully acknowledge the sponsorship by
CNPq and Fapesp.

The two authors wish to dedicate this book to their colleague and friend Francesco
Mercuri, in occasion of his 60th birthday. Franco has been to the two authors an
example of careful dedication to research, teaching, and supervision of graduate
students.





CHAPTER 1

Principal and associated fiber bundles

1.1. G-structures on sets

A field of mathematics is sometimes characterized by the category it works
with. Of central importance among categories are the ones whose objects are sets
endowed with some sort of structure and whose morphisms are maps that preserve
the given structure. A structure on a set X is often described by a certain number
of operations, relations or some distinguished collection of subsets of the set X .
Following the ideas of the Klein program for geometry, a structure on a set X can
also be described along the following lines: one fixes a model space X0, which
is supposed to be endowed with a canonical version of the structure that is being
defined. Then, a collection P of bijective maps p : X0 → X is given in such
a way that if p : X0 → X , q : X0 → X belong to P then the transition map
p−1 ◦ q : X0 → X0 belongs to the group G of all automorphisms of the structure
of the model space X0. The set X thus inherits the structure from the model space
X0 via the given collection of bijective maps P . The maps p ∈ P can be thought
of as parameterizations of X .

To illustrate the ideas described above in a more concrete way, we consider
the following example. We wish to endow a set V with the structure of an n-
dimensional real vector space, where n is some fixed natural number. This is
usually done by defining on V a pair of operations and by verifying that such
operations satisfy a list of properties. Following the ideas explained in the para-
graph above, we would instead proceed as follows: let P be a set of bijective maps
p : Rn → V such that:

(a) for p, q ∈ P , the map p−1 ◦ q : Rn → Rn is a linear isomorphism;
(b) for every p ∈ P and every linear isomorphism g : Rn → Rn, the bijective

map p ◦ g : Rn → V is in P .

The set P can be thought of as being an n-dimensional real vector space structure
on the set V . Namely, using P and the canonical vector space operations of Rn,
one can define vector space operations on the set V by setting:

(1.1.1) v + w = p
(
p−1(v) + p−1(w)

)
, tv = p

(
tp−1(v)

)
,

for all v, w ∈ V and all t ∈ R, where p ∈ P is fixed. Clearly condition (a)
above implies that the operations on V defined by (1.1.1) do not depend on the
choice of the bijection p ∈ P . Moreover, the fact that the vector space operations
of Rn satisfy the standard vector space axioms implies that the operations defined
on V also satisfy the standard vector space axioms. If V is endowed with the
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2 1. PRINCIPAL AND ASSOCIATED FIBER BUNDLES

operations defined by (1.1.1) then the bijective maps p : Rn → V belonging to P
are linear isomorphisms; condition (b) above implies that P is actually the set of all
linear isomorphisms from Rn to V . Thus every set of bijective maps P satisfying
conditions (a) and (b) defines an n-dimensional real vector space structure on V .
Conversely, every n-dimensional real vector space structure on V defines a set of
bijections P satisfying conditions (a) and (b); just take P to be the set of all linear
isomorphisms from Rn to V . Using the standard terminology from the theory of
group actions, conditions (a) and (b) above say that P is an orbit of the right action
of the general linear group GL(Rn) on the set of all bijective maps p : Rn → V .
The set P will be thus called a GL(Rn)-structure on the set V .

Let us now present more explicitly the notions that were informally explained
in the discussion above. To this aim, we quickly recall the basic terminology of the
theory of group actions. Let G be a group with operation

G×G 3 (g1, g2) 7−→ g1g2 ∈ G
and unit element 1 ∈ G. Given an element g ∈ G, we denote by Lg : G→ G and
Rg : G → G respectively the left translation map and the right translation map
defined by:

(1.1.2) Lg(x) = gx, Rg(x) = xg,

for all x ∈ G; we also denote by Ig : G→ G the inner automorphism ofG defined
by:

(1.1.3) Ig = Lg ◦R−1
g = R−1

g ◦ Lg.
Given a set A then a left action of G on A is a map:

G×A 3 (g, a) 7−→ g · a ∈ A
satisfying the conditions 1 · a = a and (g1g2) · a = g1 · (g2 · a), for all g1, g2 ∈ G,
and all a ∈ A; similarly, a right action of G on A is a map:

A×G 3 (a, g) 7−→ a · g ∈ A
satisfying the conditions a · 1 = a and a · (g1g2) = (a · g1) · g2, for all g1, g2 ∈ G,
and all a ∈ A. Given a left action (resp., right action) of G on A then for every
a ∈ A we denote by βa : G → A the map given by action on the element a, i.e.,
we set:

(1.1.4) βa(g) = g · a,
(resp., βa(g) = a · g), for all g ∈ G. The set:

Ga = β−1
a (a)

is a subgroup of G and is called the isotropy group of the element a ∈ A. The
G-orbit (or, more simply, the orbit) of the element a ∈ A is the set Ga (resp.,
aG) given by the image of G under the map βa; a subset of A is called a G-orbit
(or, more simply, an orbit) if it is equal to the G-orbit of some element of A. The
set of all orbits constitute a partition of the set A. The map βa induces a bijection
from the set G/Ga of left (resp., right) cosets of the isotropy subgroup Ga onto
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the G-orbit of a. In particular, when the isotropy group Ga is trivial (i.e., when
Ga = {1}) then the map βa is a bijection from G onto the G-orbit of a. The action
is said to be transitive if there is only one G-orbit, i.e., if the map βa is surjective
for some (and hence for any) a ∈ A. The action is said to be free if the isotropy
group Ga is trivial for every a ∈ A. For each g ∈ G we denote by γg : A→ A the
bijection of A corresponding to the action of the element g, i.e., we set:

(1.1.5) γg(a) = g · a,
(resp., γg(a) = a · g), for all a ∈ A. If Bij(A) denotes the group of all bijective
maps of A endowed with the operation of composition then the map:

(1.1.6) G 3 g 7−→ γg ∈ Bij(A)

is a homomorphism (resp., a anti-homomorphism1). Conversely, every homomor-
phism (resp., every anti-homomorphism) (1.1.6) defines a left action (resp., a right
action) of G on A by setting g · a = γg(a) (resp., a · g = γg(a)), for all g ∈ G
and all a ∈ A. The action of G on A is said to be effective if the map (1.1.6) is
injective, i.e., if

⋂
a∈AGa = {1}; more generally, given a subset A′ of A, we say

that the action of G is effective on A′ if
⋂
a∈A′ Ga = {1}. The image of the map

(1.1.6) is a subgroup of G and it will be denoted by Gef . Notice that if the action
is effective then G is isomorphic to Gef ; in the general case, Gef is isomorphic to
the quotient of G by the normal subgroup

⋂
a∈AGa.

We now proceed to the statement of the main definitions of the section. Given
sets X0 and X , we denote by Bij(X0, X) the set of all bijections p : X0 → X .
The group Bij(X0) of all bijections of X0 acts on the right on the set Bij(X0, X)
by composition of maps. The action of Bij(X0) on Bij(X0, X) is clearly free and
transitive.

DEFINITION 1.1.1. Let X0 be a set and G a subgroup of Bij(X0). A G-
structure on a set X is a subset P of Bij(X0, X) which is a G-orbit. We say that
the G-structure P is modeled upon the set X0.

More explicitly, aG-structure on a setX is a nonempty subsetP of Bij(X0, X)
satisfying the following conditions:

(a) p−1 ◦ q : X0 → X0 is in G, for all p, q ∈ P ;
(b) p ◦ g : X0 → X is in P , for all p ∈ P and all g ∈ G.

EXAMPLE 1.1.2. Given a natural number n, denote by In the set:

In = {0, 1, . . . , n− 1}.
Let X be a set having n elements. By an ordering of the set X we mean a bijective
map p : In → X; notice that an ordering p : In → X of X can be identified
with the n-tuple

(
p(0), p(1), . . . , p(n − 1)

)
∈ Xn. Denote by Sn = Bij(In)

the symmetric group on n elements. The group Sn acts on the right on the set
Bij(In, X) of all orderings of X . If G is a subgroup of Sn then a G-structure
on X is a choice of a set of orderings P ⊂ Bij(In, X) which is an orbit of the

1Given groups G, H , then a anti-homomorphism φ : G → H is a map satisfying the condition
φ(g1g2) = φ(g2)φ(g1), for all g1, g2 ∈ G.
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action of G on Bij(In, X). For example, if G = {1} is the trivial group then a
G-structure on X is the same as the choice of one particular ordering p : In → X
of X . If G = Sn then there is only one G-structure on X , which is the entire set
Bij(In, X). If n ≥ 2 and G = An ⊂ Sn is the group of even permutations then
there are exactly two possible G-structures on X; if n = 3 and X = {a, b, c},
these G-structures are:

P =
{
(a, b, c), (c, a, b), (b, c, a)

}
,

and:

P ′ =
{
(a, c, b), (c, b, a), (b, a, c)

}
.

If G is an arbitrary subgroup of Sn then the number of possible G-structures on X
is equal to the index of G on Sn (see Exercise 1.3). If X is the set of vertices of an
(n−1)-dimensional affine simplex andG = An then the two possibleG-structures
of X are usually known as the two orientations of the given affine simplex.

If X0 and X are arbitrary sets having the same cardinality, then bijective maps
p : X0 → X will also be called X0-orderings of the set X . We remark that, when
this terminology is used, it is not assumed that the set X0 is endowed with some
order relation.

EXAMPLE 1.1.3. Let V be an n-dimensional real vector space. A frame of
V is a linear isomorphism p : Rn → V . Notice that p can be identified with the
basis of V obtained as image under p of the canonical basis of Rn; given a vector
v ∈ V , the n-tuple p−1(v) ∈ Rn contains the coordinates of v with respect to
the frame p. Let FR(V ) denote the set of all frames of V and let GL(Rn) denote
the general linear group of Rn, i.e., the group of all linear isomorphisms of Rn.
Then GL(Rn) is a subgroup of Bij(Rn) and FR(V ) is a GL(Rn)-structure on V
modeled upon Rn. Notice that given a set V and a GL(Rn)-structure P on V
then there exists a unique n-dimensional real vector space structure on V such that
P = FR(V ). A GL(Rn)-structure on a set can thus be thought of as being the
same as an n-dimensional real vector space structure on that set.

Let V0 and V be arbitrary vector spaces having the same dimension and the
same field of scalars; a linear isomorphism p : V0 → V will be called a V0-frame
of V . Let GL(V0) denote the general linear group of V0, i.e., the group of all linear
isomorphisms of V0. Then GL(V0) is a subgroup of Bij(V0) and the set FRV0(V )
of all V0-frames of V is a GL(V0)-structure on the set V modeled upon V0. Given a
set V and a GL(V0)-structure on V then there exists a unique vector space structure
on V such that P = FRV0(V ).

EXAMPLE 1.1.4. Let M0 and M be diffeomorphic differentiable manifolds
and denote by Diff(M0) ⊂ Bij(M0) the group of all diffeomorphisms of M0. The
set Diff(M0,M) of all diffeomorphisms p : M0 → M is a Diff(M0)-structure on
M modeled upon M0. Conversely, given a Diff(M0)-structure P on a set M then
there exists a unique differentiable manifold structure on M such that P equals
Diff(M0,M).
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In Exercise 1.4 the reader is asked to explore more examples like 1.1.3 and
1.1.4.

EXAMPLE 1.1.5. If X0 is a set and G is a subgroup of Bij(X0) then the set G
itself is a G-structure on X0; namely, G is the G-orbit of the identity map of X0.
The set G is called the canonical G-structure of the model space X0. Notice that
the canonical GL(Rn)-structure of Rn is identified with the canonical real vector
space structure of Rn.

LetX0 be a set,G be a subgroup of Bij(X0) andH be a subgroup ofG. If P is
a G-structure on a set X then P is a union of H-orbits; any one of this H-orbits is
an H-structure on X . On the other hand, if G is a subgroup of Bij(X0) containing
G then there exists exactly one G-orbit containing P (see Exercise 1.2); it’s the
only G-structure on X containing P . We state the following:

DEFINITION 1.1.6. If P is a G-structure on a set X and H is a subgroup of
G then an H-structure Q on X contained in P is said to be a strengtheningof the
G-structure P . We also say that P is a weakeningof the H-structure Q.

Thus if H is a proper subgroup of G there are several ways of strengthening a
G-structure P into an H-structure (it follows from the result of Exercise 1.3 that
the number of such strengthenings is precisely the index of H in G); on the other
hand, there is only one way of weakening an H-structure into a G-structure. In
order to strengthen a structure one has to introduce new information; in order to
weaken a structure, one has just to “forget” about something. In this sense, G-
structures are stronger when the group G is smaller. The largest possible group G,
which is Bij(X0), gives no structure at all; namely, if X has the same cardinality
as X0 then there exists exactly one Bij(X0)-structure on X , which is the entire
set Bij(X0, X). On the other extreme, if G = {1} is the trivial group containing
only the identity map of X0 then a G-structure on X is the same as a bijection
p : X0 → X; it allows one to identify the set X with the model set X0.

The following particularization of Definition 1.1.1 is the one that we will be
more interested in.

DEFINITION 1.1.7. Let V0, V be vector spaces having the same dimension and
the same field of scalars. Given a subgroup G of GL(V0) then by a G-structure on
the vector space V we mean a G-structure P on the set V that strengthens the
GL(V0)-structure FRV0(V ) of V .

In other words, if G is a subgroup of GL(V0), a G-structure on a vector space
V is a G-structure P on the set V such that every p ∈ P is a linear isomorphism
from V0 to V .

EXAMPLE 1.1.8. Let V be an n-dimensional real vector space endowed with
an inner product 〈·, ·〉V , i.e., a positive definite symmetric bilinear form. A frame
p : Rn → V is called orthonormal if it is a linear isometry, i.e., if:

〈p(x), p(y)〉V = 〈x, y〉,
for all x, y ∈ Rn, where 〈·, ·〉 denotes the canonical (positive definite) inner product
〈·, ·〉 ofRn. Equivalently, p is orthonormal if it carries the canonical basis ofRn to
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an orthonormal basis of V . Let O(Rn) denote the orthogonal group ofRn, i.e., the
subgroup of GL(Rn) consisting of all linear isometries of Rn. The set FRo(V ) of
all orthonormal frames of V is an O(Rn)-structure on the vector space V modeled
upon Rn. Conversely, given an n-dimensional real vector space V and an O(Rn)-
structure P on V then there exists a unique inner product 〈·, ·〉V on V such that
P = FRo(V ).

Let V0 and V be finite-dimensional real vector spaces having the same di-
mension, endowed with inner products 〈·, ·〉V0 and 〈·, ·〉V , respectively; a V0-frame
p : V0 → V of V is called orthonormal if p is a linear isometry. Let O(V0, 〈·, ·〉V0)
denote the orthogonal group of V0, i.e., the subgroup of GL(V0) consisting of
all linear isometries. The set FRo

V0
(V ) of all orthonormal V0-frames of V is an

O(V0, 〈·, ·〉V0)-structure on V modeled upon V0. Conversely, given a real vector
space V and an O(V0, 〈·, ·〉V0)-structure P on V then there exists a unique inner
product 〈·, ·〉V on V such that P = FRo

V0
(V ).

EXAMPLE 1.1.9. Let V be a real vector space. A bilinear form:

V × V 3 (v, w) 7−→ 〈v, w〉V ∈ R

on V is said to be nondegenerate if 〈v, w〉V = 0 for all w ∈ V implies v = 0. The
index of a symmetric bilinear form 〈·, ·〉V on V is defined by:

n−
(
〈·, ·〉V

)
= sup

{
dim(W ) : W is a subspace of V and

〈·, ·〉V is negative definite on W
}
.

An indefinite inner product 〈·, ·〉V on V is a nondegenerate symmetric bilinear form
on V . For instance, the Minkowski bilinear form of index r in Rn, defined by:

〈x, y〉 =
n−r∑
i=1

xiyi −
n∑

i=n−r+1

xiyi,

for all x, y ∈ Rn, is an indefinite inner product of index r in Rn. If 〈·, ·〉V is
an indefinite inner product on V then we denote by O(V, 〈·, ·〉V ) the subgroup of
GL(V ) consisting of all linear isometries T : V → V , i.e.:

O(V, 〈·, ·〉V ) =
{
T ∈ GL(V ) : 〈T (v), T (w)〉V = 〈v, w〉V ,

for all v, w ∈ V
}
.

We call O(V, 〈·, ·〉V ) the orthogonal group of V ; when the indefinite inner product
〈·, ·〉V is given by the context, we will write simply O(V ). If 〈·, ·〉 is the Minkowski
bilinear form of index r in Rn then the orthogonal group O(Rn, 〈·, ·〉) will also be
denoted by Or(Rn).

Let V0 and V be finite-dimensional real vector spaces having the same di-
mension, endowed with indefinite inner products 〈·, ·〉V0 and 〈·, ·〉V , respectively;
assume that 〈·, ·〉V0 and 〈·, ·〉V have the same index. A V0-frame p : V0 → V
of V is called orthonormal if p is a linear isometry. The set FRo

V0
(V ) of all or-

thonormal V0-frames of V is an O(V0, 〈·, ·〉V0)-structure on V modeled upon V0.
Conversely, given a real vector space V and an O(V0, 〈·, ·〉V0)-structure P on V
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then there exists a unique indefinite inner product 〈·, ·〉V on V , having the same
index as 〈·, ·〉V0 , such that P = FRo

V0
(V ). If 〈·, ·〉V has index r, V0 = Rn and

〈·, ·〉V0 is the Minkowski bilinear form of index r then we write FRo(V ) instead of
FRo

V0
(V ).

EXAMPLE 1.1.10. Let V0, V be finite dimensional vector spaces having the
same dimension and the same field of scalars; let W0 be a subspace of V0 and
W be a subspace of V such that W0 has the same dimension as W . A V0-
frame p ∈ FRV0(V ) of V is said to be adapted to (W0,W ) if p(W0) = W .
The set FRV0(V ;W0,W ) of all V0-frames of V that are adapted to (W0,W ) is a
GL(V0;W0)-structure on the vector space V modeled upon V0, where GL(V0;W0)
denotes the subgroup of the general linear group GL(V0) consisting of all linear
isomorphisms T : V0 → V0 such that T (W0) = W0. If V0 and V are endowed
with positive definite or indefinite inner products, we set:

FRo
V0

(V ;W0,W ) = FRV0(V ;W0,W ) ∩ FRo
V0

(V ),

O(V0;W0) = GL(V0;W0) ∩O(V0).

If the set FRo
V0

(V ;W0,W ) is nonempty then it is an O(V0;W0)-structure on the
vector space V modeled upon V0.

EXAMPLE 1.1.11. Let V0, V be vector spaces having the same dimension and
the same field of scalars. Let v0 ∈ V0, v ∈ V be fixed nonzero vectors. A V0-
frame p ∈ FRV0(V ) of V is said to be adapted to (v0, v) if p(v0) = v. The set
FRV0(V ; v0, v) of all V0-frames of V that are adapted to (v0, v) is a GL(V0; v0)-
structure on the vector space V modeled upon V0, where GL(V0; v0) denotes the
subgroup of GL(V0) consisting of all linear isomorphisms T : V0 → V0 such that
T (v0) = v0. If V0 and V are real vector spaces endowed with positive definite or
indefinite inner products, we set:

FRo
V0

(V ; v0, v) = FRV0(V ; v0, v) ∩ FRo
V0

(V ),

O(V0; v0) = GL(V0; v0) ∩O(V0).

If the set FRo
V0

(V ; v0, v) is nonempty then it is an O(V0; v0)-structure on the vector
space V modeled upon V0.

EXAMPLE 1.1.12. Let V be a real vector space endowed with a complex struc-
ture J , i.e., J is a linear endomorphism of V such that J2 equals minus the identity
map of V . The canonical complex structure J0 of R2n is defined by:

J0(x, y) = (−y, x),
for all x, y ∈ Rn. If V0, V are real vector spaces with the same dimension endowed
with complex structures J0 and J , respectively then the set:

FRc
V0

(V ) =
{
p ∈ FRV0(V ) : p ◦ J0 = J ◦ p

}
is a GL(V0, J0)-structure on the vector space V modeled upon V0, where GL(V0, J0)
denotes the subgroup of GL(V0) consisting of all linear isomorphisms of V0 that
commute with J0. Conversely, if P is a GL(V0, J0)-structure on the vector space
V then there exists a unique complex structure J on V such that P = FRc

V0
(V ).
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An element p of FRc
V0

(V ) is called a complex frame of V . When V0 is equal to
R2n endowed with its canonical complex structure, we write FRc(V ) instead of
FRc

V0
(V ).

Let 〈·, ·〉V be a positive definite or indefinite inner product on V . Assume that
J is anti-symmetric with respect to 〈·, ·〉V , i.e.:

〈J(v), w〉V + 〈v, J(w)〉V = 0,

for all v, w ∈ V . The unitary group of V with respect to J and 〈·, ·〉V is defined
by:

U(V, J, 〈·, ·〉V ) = O(V, 〈·, ·〉V ) ∩GL(V, J).
We write also U(V ) when J and 〈·, ·〉V are fixed by the context. IfR2n is endowed
with the canonical complex structure J0 and the indefinite inner product:

(1.1.7) 〈(x, y), (x′, y′)〉 =
n−r∑
i=1

(xix′i + yiy
′
i)

−
n∑

i=n−r+1

(xix′i + yiy
′
i), x, y, x′, y′ ∈ Rn,

of index 2r then the unitary group U(R2n, J0, 〈·, ·〉) will be denoted by Ur(R2n).
Given finite dimensional real vector spaces V0, V having the same dimension, and
endowed respectively with indefinite inner products 〈·, ·〉V0 , 〈·, ·〉V having the same
index and complex structures J0 : V0 → V0, J : V → V anti-symmetric with
respect to 〈·, ·〉V0 , 〈·, ·〉V respectively then we set:

FRu
V0

(V ) =
{
p ∈ FRo

V0
(V ) : p ◦ J0 = J ◦ p

}
.

The set FRu
V0

(V ) is a U(V0, J0, 〈·, ·〉V0)-structure on the vector space V . Con-
versely, if P is a U(V0, J0, 〈·, ·〉V0)-structure on the vector space V then there ex-
ists a unique indefinite inner product 〈·, ·〉V on V and a unique complex structure
J : V → V anti-symmetric with respect to 〈·, ·〉V such that P = FRu

V0
(V ). When

V0 is R2n endowed with its canonical complex structure and the indefinite inner
product (1.1.7) we write FRu(V ) instead of FRu

V0
(V ).

Let us now define the natural morphisms of the category of sets endowed with
G-structure.

DEFINITION 1.1.13. Let X0 be a set, G be a subgroup of Bij(X0) and let X ,
Y be sets endowed with G-structures P and Q respectively. A map f : X → Y is
said to be G-structure preserving if f ◦ p is in Q, for all p ∈ P .

REMARK 1.1.14. Notice that if f ◦ p is in Q for some p ∈ P then the map
f : X → Y is G-structure preserving; namely, every other element of P is of the
form p ◦ g with g ∈ G and f ◦ (p ◦ g) = (f ◦ p) ◦ g is also in Q.

The composite of G-structure preserving maps is again a G-structure pre-
serving map; moreover, every G-structure preserving map is bijective and its in-
verse is also a G-structure preserving map (see Exercise 1.5). We denote by
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IsoG(X,Y ′) the set of all G-structure preserving maps from X to Y and we set
IsoG(X) = IsoG(X,X).

EXAMPLE 1.1.15. Let V0, V , W be vector spaces having the same dimension
and the same field of scalars. If V andW are regarded respectively as sets endowed
with the GL(V0)-structures FRV0(V ) and FRV0(W ) then a map f : V → W is
GL(V0)-structure preserving if and only if f is a linear isomorphism. Assume
that V0, V and W are finite-dimensional real vector spaces endowed with inner
products. If V and W are regarded as sets endowed with the O(V0)-structures
FRo

V0
(V ) and FRo

V0
(W ) respectively then a map f : V → W is O(V0)-structure

preserving if and only if f is a linear isometry.

Notice that if V0, V , W are vector spaces, G is a subgroup of GL(V0) and if
P ⊂ FRV0(V ) and Q ⊂ FRV0(W ) are G-structures on V and W respectively
then every G-structure preserving map f : V → W is automatically a linear
isomorphism.

EXAMPLE 1.1.16. Let M0, M , N be differentiable manifolds with M and N
both smoothly diffeomorphic toM0. If the setsM andN are endowed respectively
with the Diff(M0)-structures Diff(M0,M) and Diff(M0, N) then a map f : M →
N is Diff(M0)-structure preserving if and only if it is a smooth diffeomorphism.

See Exercise 1.6 for more examples like 1.1.15 and 1.1.16.

EXAMPLE 1.1.17. Let X0, X be sets, G be a subgroup of GL(X0) and P be a
G-structure on the set X . If the model space X0 is endowed with its canonical G-
structure (recall Example 1.1.5) then theG-structure preserving maps f : X0 → X
are precisely the elements of the G-structure P , i.e.:

(1.1.8) IsoG(X0, X) = P.

EXAMPLE 1.1.18. Let X0 be a set, G, G′ be subgroups of Bij(X0) such that
G ⊂ G′, P , Q be G-structures on sets X , Y respectively and P ′, Q′ be G′-
structures that weaken respectively P and Q. If a map f : X → Y is G-structure
preserving then it is also G′-structure preserving, i.e., IsoG(X,Y ) ⊂ IsoG′(X,Y ).

1.2. Principal spaces and fiber products

Principal spaces are the algebraic structures that will play the role of the fibers
of the principal bundles, to be introduced later on Section 1.3. Principal spaces
bare the same relation to groups as affine spaces bare to vector spaces. Recall that
an affine space is a nonempty setA endowed with a free and transitive action of the
additive abelian group of a vector space V . The affine space A can be identified
with the vector space V once a point of A (a origin) is chosen. In a similar way,
a principal space is, roughly speaking, an object that becomes a group once the
position of the unit element is chosen.

The name “principal space” comes from the idea that any set with G-structure
can be obtained from a principal space through a natural construction that we call
the fiber product. Fiber products will be studied in Subsection 1.2.1.
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DEFINITION 1.2.1. A principal space consists of a nonempty set P and a
group G acting freely and transitively on P on the right. We call G the structural
group of the principal space P .

Observe that the condition that the action of G on P be free and transitive
means that for every p, p′ ∈ P there exists a unique element g ∈ G with p′ = p · g;
we say that g carries p to p′. The unique element g of G that carries p to p′ is
denoted by p−1p′. The operation:

P × P 3 (p, p′) 7−→ p−1p′ ∈ G
is analogous to the operation of difference of points in the theory of affine spaces.
Notice that it’s the whole expression p−1p′ that has a meaning; for a general princi-
pal space, we cannot write just p−1, although in most concrete examples the object
p−1 is indeed defined (but it’s not an element of the principal space P ).

EXAMPLE 1.2.2. Any group G is a principal space with structural group G, if
we let G act on itself by right translations.

EXAMPLE 1.2.3. Let G be a group and H be a subgroup of G. For any g ∈ G,
the left coset gH is a principal space with structural group H .

EXAMPLE 1.2.4. Given a natural number n and a set X with n elements then
the set Bij(In, X) of all orderings of X (recall Example 1.1.2) is a principal space
with structural group Sn. More generally, if X0 and X are sets having the same
cardinality then the set Bij(X0, X) of all X0-orderings of X is a principal space
with structural group Bij(X0).

EXAMPLE 1.2.5. Let V be an n-dimensional real vector space. The set FR(V )
of all frames of V (recall Example 1.1.3) is a principal space with structural group
GL(Rn). More generally, if V0 and V are arbitrary vector spaces having the same
dimension and the same field of scalars then the set FRV0(V ) of all V0-frames of
V is a principal space with structural group GL(V0).

In Exercise 1.8 the reader is asked to generalize Examples 1.2.4 and 1.2.5.

EXAMPLE 1.2.6. Let X0 be a set, G be a subgroup of Bij(X0) and P be a G-
structure on a set X . Then P is a principal space with structural group G. Notice
that, since P = IsoG(X0, X) (see Example 1.1.17), we are again dealing with a
particular case of the situation described in Exercise 1.8.

EXAMPLE 1.2.7. Let P and Q be principal spaces with structural groups G
and H respectively. The cartesian product P × Q can be naturally regarded as a
principal space with structural group G×H; the right action of G×H on P ×Q
is defined by:

(p, q) · (g, h) = (p · g, q · h),
for all (p, q) ∈ P ×Q and all (g, h) ∈ G×H .

DEFINITION 1.2.8. Let P be a principal space with structural group G and let
H be a subgroup of G. If Q ⊂ P is an H-orbit then Q is itself a principal space
with structural group H; we call Q a principal subspace of P .
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The result of Exercise 1.3 implies that the number of principal subspaces of P
with structural group H is equal to the index of H in G.

EXAMPLE 1.2.9. Let X0 and X be sets having the same cardinality and let G
be a subgroup of Bij(X0). The set Bij(X0, X) is a principal space with structural
group Bij(X0); the principal subspaces of Bij(X0, X) with structural group G are
precisely the G-structures of X . If P is a G-structure on X and H is a subgroup
of G then the H-structures on X that strengthen P are precisely the principal sub-
spaces of P with structural group H .

DEFINITION 1.2.10. Let P , Q be principal spaces with the same structural
group G. A map t : P → Q is called a left translation if

t(p · g) = t(p) · g,
for all p ∈ P and all g ∈ G. The set of all left translations t : P → Q will be
denoted by Left(P,Q).

If we think of the structural group G as being the group of right translations of
a principal space, then left translations are precisely the maps that commute with
right translations.

Notice that the composite of left translations is again a left translation; more-
over, a left translations is always bijective and its inverse is also a left translation
(see Exercise 1.9). If t : P → P is a left translation from a principal space P to
itself, we say simply that t is a left translation of P . The set Left(P, P ) of all left
translations of P is a group under composition and it will be denoted simply by
Left(P ).

EXAMPLE 1.2.11. If P is a principal space with structural group G then for
all p ∈ P the map βp : G → P of action on the element p (recall (1.1.4)) is a left
translation that carries the unit element 1 ∈ G to p ∈ P .

We think informally of βp as being the identification between the principal
space P and the structural group G that arises by declaring p ∈ P to be the unit
element; this is analogous to the identification between an affine space and the
corresponding vector space that arises by declaring a point of the affine space to be
the origin.

Let us compare the identifications βp and βp′ of G with P that arise from
different choices of points p, p′ ∈ P . If g = p−1p′ is the element of G that carries
p to p′ then we have the following commutative diagram:

(1.2.1)

G
βp

$$H
HHHHH

Lg−1

��

P

G
βp′

::vvvvvv

Diagram 1.2.1 says that two different identifications of a principal space P
with its structural group G differ by a left translation of G. This is the same that
happens in the theory of affine spaces: two different choices of origin for an affine
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space A give identifications with the corresponding vector space V that differ by a
translation of V . Obviously, since the additive group of a vector space is abelian,
there is no distinction between right and left translations in the theory of affine
spaces and vector spaces.

A left translation is uniquely determined by its value at a point of its domain.
More explicitly, we have the following:

LEMMA 1.2.12. Let P , Q be principal spaces with the same structural group
G. Given p ∈ P , q ∈ Q then there exists a unique left translation t ∈ Left(P,Q)
with t(p) = q.

PROOF. Clearly t = βq ◦ β−1
p is a left translation from P to Q such that

t(p) = q (see Example 1.2.11). To prove uniqueness, let t1, t2 ∈ Left(P,Q) be
given with t1(p) = t2(p); then:

t1(p · g) = t1(p) · g = t2(p) · g = t2(p · g),
for all g ∈ G, so that t1 = t2. �

Lemma 1.2.12 implies that the canonical left action of the group of left trans-
lations Left(P ) on P is free and transitive. Given p, p′ ∈ P then the unique left
translation t ∈ Left(P ) with t(p) = p′ is denoted by p′p−1.

EXAMPLE 1.2.13. If G is a group then the left translations of the principal
space G (recall Example 1.2.2) are just the left translations of the group G, i.e., the
mapsLg : G→ Gwith g ∈ G. Namely, the associativity of the multiplication ofG
implies that the maps Lg are left translations of the principal space G; conversely,
if t : G → G is a left translation of the principal space G then Lemma 1.2.12
implies that t = Lg, with g = t(1). Thus:

Left(G) =
{
Lg : g ∈ G

}
.

Obviously the map g 7→ Lg gives an isomorphism from the groupG onto the group
Left(G) of left translations of G.

EXAMPLE 1.2.14. We have seen in Example 1.2.11 that if P is a principal
space with structural group G then the maps βp : G → P , p ∈ P are left transla-
tions. It follows from Lemma 1.2.12 that these are in fact the only left translations
from G to P , i.e.:

Left(G,P ) =
{
βp : p ∈ P

}
.

EXAMPLE 1.2.15. Let P ,Q be principal spaces with the same structural group
G and let p ∈ P , q ∈ Q be fixed. If t : P → Q is a left translation then the
composition β−1

q ◦ t ◦ βp : G → G is also a left translation and therefore, by
Example 1.2.13, there exists a unique g ∈ G with β−1

q ◦ t◦βp = Lg. This situation
is illustrated by the following commutative diagram:

(1.2.2)

P
t // Q

G
Lg

//

βp ∼=

OO

G

βq∼=

OO
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We see that a choice of elements p ∈ P , q ∈ Q induces a bijection between the
set Left(P,Q) and the group G; such bijection associates to each t ∈ Left(P,Q)
the element g ∈ G that makes diagram (1.2.2) commutative. When P = Q, the
bijection just described between Left(P ) and G is an isomorphism of groups and
we will denote it by Ip. More explicitly, for each p ∈ P we define the map Ip by:

(1.2.3) Ip : G 3 g 7−→ βp ◦ Lg ◦ β−1
p ∈ Left(P ).

We see that the group of left translations Left(P ) is isomorphic to the structural
group G (the group of right translations of P ), but the isomorphism is in general
not canonical: it depends on the choice of an element p ∈ P . For p, p′ ∈ P , the
group isomorphisms Ip and Ip′ differ by an inner automorphism of G; namely, the
following diagram commutes:

(1.2.4)

G Ip
((PPPPPP

Ig−1

��

Left(P )

G Ip′

66nnnnnn

where g = p−1p′ is the element of G that carries p to p′.

REMARK 1.2.16. Let P be a principal space with structural group G and let
g ∈ G be fixed. If P is identified with G by means of the map βp : G → P for
some choice of p ∈ P , then the map γg : P → P given by the action of g (recall
(1.1.5)) is identified with the map Rg : G → G of right translation by g; more
explicitly, we have a commutative diagram:

P
γg // P

G
Rg

//

βp ∼=

OO

G

∼= βp

OO

We could also identify the domain of γg with G via βp and the counter-domain
of γg with G via βp·g; this yields an identification of γg with the inner automor-
phism Ig−1 of G, which is illustrated by the commutative diagram:

(1.2.5)

P
γg // P

G Ig−1

//

βp ∼=

OO

G

∼= βp·g

OO

EXAMPLE 1.2.17. Let V0, V , W be vector spaces having the same dimension
and the same field of scalars. Given a linear isomorphism T : V → W then the
map

T∗ : FRV0(V ) −→ FRV0(W )
given by composition with T on the left is a left translation. Moreover, every
left translation t : FRV0(V ) → FRV0(W ) is equal to T∗ for a unique linear
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isomorphism T : V → W . To prove this, choose any p ∈ FRV0(V ) and let
T : V → W be the unique linear isomorphism such that T ◦ p = t(p); it follows
from Lemma 1.2.12 that t = T∗. We conclude that the rule T 7→ T∗ defines a
bijection from the set of linear isomorphisms T : V → W onto the set of left
translations t : FRV0(V )→ FRV0(W ). If V = W , we obtain a bijection:

(1.2.6) GL(V ) 3 T 7−→ T∗ ∈ Left
(
FRV0(V )

)
;

such bijection is in fact a group isomorphism. We will therefore, from now on, al-
ways identify the groups GL(V ) and Left

(
FRV0(V )

)
via the isomorphism (1.2.6).

Notice that, under such identification, for any given p ∈ FRV0(V ), the isomor-
phism Ip : GL(V0)→ Left

(
FRV0(V )

) ∼= GL(V ) is given by:

(1.2.7) Ip(g) = p ◦ g ◦ p−1 ∈ GL(V ), g ∈ GL(V0).

It may be instructive to solve Exercise 1.15 now.

EXAMPLE 1.2.18. Let X0 be a set, G be a subgroup of Bij(X0) and P , Q be
respectively a G-structure on a set X and a G-structure on a set Y . Then P and
Q are principal spaces with structural group G. If f : X → Y is a G-structure
preserving map then the map f∗ : P → Q given by composition with f on the left
is a left translation. Arguing as in Example 1.2.17, we see that every left translation
from P toQ is of the form f∗ for a uniqueG-structure preserving map f : X → Y ;
in other words, the map:

IsoG(X,Y ) 3 f 7−→ f∗ ∈ Left(P,Q)

is a bijection. Moreover, for X = Y , P = Q, the map:

(1.2.8) IsoG(X) 3 f 7−→ f∗ ∈ Left(P )

is a group isomorphism. We will from now on always identify the groups IsoG(X)
and Left(P ) via the isomorphism (1.2.8).

In Exercises 1.11 and 1.12 the reader is asked to generalize the idea of Exam-
ples 1.2.17 and 1.2.18 to a more abstract context.

If P and Q are G-structures on sets X and Y respectively, H is a subgroup
of G and P ′, Q′ are H-structures that strengthen respectively P and Q then the
set Left(P,Q) is identified with the set IsoG(X,Y ) and the set Left(P ′, Q′) is
identified with the set IsoH(X,Y ). Since IsoH(X,Y ) is a subset of IsoG(X,Y ),
we should have an identification of Left(P ′, Q′) with a subset of Left(P,Q). This
is the objective of our next lemma.

LEMMA 1.2.19. Let P , Q be principal spaces with structural group G and let
P ′ ⊂ P , Q′ ⊂ Q be principal subspaces with structural group H ⊂ G. Then
every left translation t : P ′ → Q′ extends uniquely to a left translation t̄ : P → Q.
The map:

(1.2.9) Left(P ′, Q′) 3 t 7−→ t̄ ∈ Left(P,Q)

is injective and its image is the set:

(1.2.10)
{
s ∈ Left(P,Q) : s(P ′) ⊂ Q′

}
.
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Moreover, if P = Q and P ′ = Q′ then the map (1.2.9) is an injective group
homomorphism and therefore its image (1.2.10) is a subgroup of Left(P ).

PROOF. Let t ∈ Left(P ′, Q′) be given and choose any p ∈ P ′; then, by
Lemma 1.2.12, there exists a unique left translation t̄ : P → Q with t̄(p) = t(p).
For any g ∈ H we have t̄(p · g) = t̄(p) · g = t(p) · g = t(p · g), which proves
that t̄ is an extension of t; clearly, t̄ is the unique left translation that extends t. We
have thus established that the map (1.2.9) is well-defined; obviously, such map is
injective and its image is contained in (1.2.10). Given any s ∈ Left(P,Q) with
s(P ′) ⊂ Q′ then the map t : P ′ → Q′ obtained by restricting s is a left translation
and thus s = t̄. This proves that the image of (1.2.9) is equal to (1.2.10). Finally, if
P = Q, P ′ = Q′ and t1, t2 ∈ Left(P ′) then t̄1 ◦ t̄2 is a left translation that extends
t1 ◦ t2; hence t1 ◦ t2 = t̄1 ◦ t̄2 and (1.2.9) is a group homomorphism. �

Under the conditions of the statement of Lemma 1.2.19, we will from now on
always identify the set Left(P ′, Q′) with the subset (1.2.10) of Left(P,Q) via the
map (1.2.9). In particular, the group Left(P ′) is identified with a subgroup of
Left(P ). Under such identification, the canonical left action of Left(P ′) on P ′ is
identified with the restriction of the canonical left action of Left(P ) on P . Observe
also that the identification we have made here is consistent with the identifications
made in Example 1.2.18. More explicitly, if P and Q are G-structures on sets
X and Y respectively, H is a subgroup of G and P ′, Q′ are H-structures that
strengthen respectively P and Q then the following diagram commutes:

(1.2.11)

IsoG(X,Y )
f 7→f∗
∼=

// Left(P,Q)

IsoH(X,Y )

inclusion

OO

f 7→f∗

∼= // Left(P ′, Q′)

(1.2.9)

OO

In Exercise 1.24 the reader is asked to generalize Lemma 1.2.19.

REMARK 1.2.20. Let P be a principal space with structural group G; for each
p ∈ P , we have an isomorphism Ip : G → Left(P ) (recall (1.2.3)). For the sake
of this discussion, let us write IPp instead of just Ip. If Q is a principal subspace of
P with structural group H ⊂ G then for each p ∈ Q we also have an isomorphism
IQp : H → Left(Q). For a fixed p ∈ Q, we have the following commutative
diagram:

(1.2.12)

Left(Q) t7→t̄ // Left(P )

H

IQp ∼=

OO

inclusion
// G

∼= IPp

OO

This means that, identifying Left(Q) with a subgroup of Left(P ) then the isomor-
phism IQp is just a restriction of the isomorphism IPp .

In Exercise 1.25 the reader is asked to generalize this.
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DEFINITION 1.2.21. Let G, H be groups, P be a G-principal space and Q be
an H-principal space. A map φ : P → Q is said to be a morphism of principal
spaces if there exists a group homomorphism φ0 : G→ H such that:

(1.2.13) φ(p · g) = φ(p) · φ0(g),

for all p ∈ P and all g ∈ G. We call φ0 the group homomorphism subjacent to the
morphism φ.

The fact that the action of H on Q is free implies that map φ0 : G → H such
that equality (1.2.13) holds for all p ∈ P , g ∈ G is unique.

The composition ψ◦φ of morphisms of principal spaces φ and ψ with subjacent
group homomorphisms φ0 and ψ0 is a morphism of principal spaces with subjacent
group homomorphism ψ0◦φ0 (see Exercise 1.16). A morphism of principal spaces
φ is bijective if and only if its subjacent group homomorphism φ0 is bijective (see
Exercise 1.17). A bijective morphism of principal spaces is called an isomorphism
of principal spaces. If φ is an isomorphism of principal spaces with subjacent
group homomorphism φ0 then φ−1 is also an isomorphism of principal spaces with
subjacent group homomorphism φ−1

0 (see Exercise 1.18).

EXAMPLE 1.2.22. If P is a principal space with structural groupG andQ ⊂ P
is a principal subspace with structural group H ⊂ G then the inclusion map from
Q to P is a morphism of principal spaces whose subjacent group homomorphism
is the inclusion map from H to G.

There is a natural notion of quotient of a principal space and the quotient map
is another example of a morphism of principal spaces. See Exercise 1.21 for the
details.

EXAMPLE 1.2.23. If P , Q are principal spaces with the same structural group
G then the left translations t : P → Q are precisely the morphisms of principal
spaces whose subjacent group homomorphism is the identity map of G.

1.2.1. Fiber products. IfX is a set endowed with aG-structure then the set of
all G-structure preserving maps from the model space X0 to X is a principal space
with structural group G (recall Example 1.2.6). Thus, to each set X endowed
with a G-structure there corresponds a principal space with structural group G.
The notion of fiber product that we study in this subsection provides us with a
construction that goes in the opposite direction.

Before we give the definition of fiber product, we need the following:

DEFINITION 1.2.24. Let G be a group. By a G-space we mean a set N en-
dowed with a left action of G. The subgroup Gef of Bij(N) given by the image of
the homomorphism G 3 g 7→ γg ∈ Bij(N) corresponding to the action of G on N
is called the effective group of the G-space N .

Let G be a group, P be a principal space with structural group G and N be a
G-space. We have a left-action of G on the cartesian product P ×N defined by:

(1.2.14) g · (p, n) = (p · g−1, g · n),
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for all g ∈ G, p ∈ P and all n ∈ N . Denote by [p, n] the G-orbit of an element
(p, n) of P ×N and by P ×G N the set of all G-orbits. We call P ×G N the fiber
product of the principal space P with the G-space N . Notice that for all p ∈ P ,
g ∈ G, n ∈ N we have the equality:

(1.2.15) [p · g, n] = [p, g · n].

We will use also the following alternative notation for the fiber product P ×G N :

P ×∼ N
def= P ×G N,

where there is no interest in emphasizing the group G. Notice that the abbreviated
notation P ×∼N should cause no confusion, since the structural groupG is encoded
in the principal space P .

Let us now show that the fiber product P ×G N is naturally endowed with a
Gef -structure modeled upon N . We need the following:

LEMMA 1.2.25. If P is a principal space with structural group G and N is a
G-space then for each p ∈ P the map:

(1.2.16) p̂ : N 3 n 7−→ [p, n] ∈ P ×G N
is bijective.

PROOF. Given n, n′ ∈ N with [p, n] = [p, n′] then there exists g ∈ G with
g · (p, n) = (p, n′). This means that p = p · g−1 and n′ = g ·n. Since the action of
G on P is free, the equality p = p · g−1 implies g = 1 and therefore n = n′. Let
us now show that p̂ is surjective. An arbitrary element of P ×G N is of the form
[q, n], with q ∈ P , n ∈ N . Since the action of G on P is transitive, there exists
g ∈ G with q = p · g. Hence p̂(g · n) = [p, g · n] = [p · g, n] = [q, n]. �

Given p ∈ P , g ∈ G and setting q = p · g then equality (1.2.15) means that the
following diagram commutes:

(1.2.17)

N
p̂

$$HH
HHH

H

P ×G N

N
q̂

::vvvvvv

γg

OO

It follows that the map:

(1.2.18) H : P 3 p 7−→ p̂ ∈ Bij(N,P ×G N)

is a morphism of principal spaces whose subjacent group homomorphism is the
map G 3 g 7→ γg ∈ Bij(N). The image of (1.2.18) is the set:

(1.2.19) P̂ =
{
p̂ : p ∈ P

}
⊂ Bij(N,P ×G N).

By the result of Exercise 1.19, P̂ is a principal subspace of Bij(N,P ×G N) with
structural group Gef . Thus, P̂ is a Gef -structure on the fiber product P ×G N
modeled upon N (recall Example 1.2.9). From now on, we will always consider
the fiber product P ×G N to be endowed with the Gef -structure P̂ .
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Observe that the map (1.2.18) is injective if and only if the action of G on
N is effective (see Exercise 1.17); in this case, the map P 3 p 7→ p̂ ∈ P̂ is an
isomorphism of principal spaces. In the general case, P̂ is isomorphic to a quotient
of the principal space P (see Exercises 1.21 and 1.23).

EXAMPLE 1.2.26. Let G be a group and V0 be a vector space. A represen-
tation of G in V0 is a group homomorphism ρ : G → GL(V0). Notice that a
representation of G in V0 is the same as a left action of G on the set V0 such that
for every g ∈ G the action of g on V0 is a linear map. In particular, a representation
ρ of G in V0 makes V0 into a G-space with effective group Gef = ρ(G). Let P be
a principal space with structural group G. The fiber product P ×G V0 is endowed
with the Gef -structure P̂ ; since Gef is a subgroup of GL(V0), the Gef -structure
P̂ can be weakened to a GL(V0)-structure on P ×G V0. Such GL(V0)-structure
makes the fiber product P ×G V0 into a vector space isomorphic to V0 (recall Ex-
ample 1.1.3). The GL(V0)-structure of P ×GV0 then becomes the set of V0-frames
FRV0(P ×G V0) of P ×G V0 and therefore P̂ is contained in FRV0(P ×G V0); in
other words, for every p ∈ P the map p̂ : V0 → P ×G V0 is a linear isomorphism.

EXAMPLE 1.2.27. Let G be a group, P be a principal space with structural
groupG andN be a differentiable manifold. Assume that we are given a left action
of G on N by diffeomorphisms, i.e., the subgroup Gef of Bij(N) is contained in
the group Diff(N) of all diffeomorphisms of N (this is the case, for instance, if G
is a Lie group and the actionG×N → N is smooth). ThusN is aG-space and the
fiber product P×GN is endowed with theGef -structure P̂ , which can be weakened
to a Diff(N)-structure. Such Diff(N)-structure makes P×GN into a differentiable
manifold (recall Example 1.1.4) and P̂ is contained in Diff(N,P ×G N); in other
words, for every p ∈ P the map p̂ : N → P ×G N is a diffeomorphism.

We will show now that any set with G-structure is naturally isomorphic to a
suitable fiber product. Let us start with a concrete example.

EXAMPLE 1.2.28. Let V0, V be vector spaces having the same dimension and
the same field of scalars; consider the principal space FRV0(V ) with structural
group GL(V0). The vector space V0 is a GL(V0)-space in a obvious way and the
fiber product FRV0(V )×∼ V0 is endowed with a GL(V0)-structure that makes it into
a vector space isomorphic to V0. Such fiber product is in fact naturally isomorphic
to V ; more explicitly, the contraction map CV defined by:

CV : FRV0(V )×∼ V0 3 [p, v] 7−→ p(v) ∈ V
is a (well-defined) linear isomorphism.

The idea behind Example 1.2.28 is generalized by the following:

LEMMA 1.2.29. Let X0 be a set, G be a subgroup of Bij(X0) and P be a G-
structure on a set X . The inclusion map of G in Bij(X0) determines a left action
of G on X0, so that X0 is a G-space with effective group Gef = G. Then, the
contraction map CX defined by:

CX : IsoG(X0, X)×G X0 = P ×G X0 3 [p, x] 7−→ p(x) ∈ X
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is a (well-defined) G-structure preserving map (recall (1.1.8)).

PROOF. If [p, x] = [q, y] then q = p ◦ g−1 and y = g(x), for some g ∈ G;
thus p(x) = q(y) and the contraction map CX is well-defined. To prove that it is
G-structure preserving, choose any p ∈ P and observe that the diagram:

P ×G X0
CX // X

X0

p̂

ddIIIIIIIII p

>>}}}}}}}}

commutes. Hence CX is a composition of G-structure preserving maps and it is
therefore itself G-structure preserving. �

In Exercise 1.39 the reader is asked to generalize Lemma 1.2.29 to a more
abstract context.

We finish the section by defining some natural notions of induced maps on
fiber products.

Let P , Q be principal spaces with structural groups G and H respectively; let
φ : P → Q be a morphism of principal spaces with subjacent group homomor-
phism φ0 : G → H . If N is an H-space then we can also regard N as a G-space
by considering the action of G on N defined by:

(1.2.20) g · n = φ0(g) · n,

for all g ∈ G and all n ∈ N . We define a map:

φ̂ : P ×G N −→ Q×H N

induced by φ by setting:
φ̂
(
[p, n]

)
= [φ(p), n],

for all p ∈ P and all n ∈ N . The map φ̂ is well-defined; namely, given g ∈ G
then:

[φ(p · g−1), g · n] = [φ(p) · φ0(g)−1, g · n]
(1.2.20)= [φ(p) · φ0(g)−1, φ0(g) · n] = [φ(p), n],

for all p ∈ P and all n ∈ N . Notice that the following diagram:

(1.2.21)

P ×N
φ×Id //

quotient map
��

Q×N

quotient map
��

P ×G N
φ̂

// Q×H N

commutes.
We can also define an induced map on fiber products in a more general setting.

We need the following:
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DEFINITION 1.2.30. Let G, H be groups, N be a G-space and N ′ be an H-
space. Given a group homomorphism φ0 : G→ H then a map κ : N → N ′ is said
to be φ0-equivariant2 if:

κ(g · n) = φ0(g) · κ(n),

for all n ∈ N and all g ∈ G.

Let P , Q be principal spaces with structural groups G and H respectively and
let φ : P → Q be a morphism of principal spaces with subjacent group homomor-
phism φ0 : G → H . Let N be a G-space and N ′ be an H-space and assume that
we are given a φ0-equivariant map κ : N → N ′. We define a map:

φ×∼ κ : P ×G N −→ Q×H N ′

induced by φ and κ by setting:

(φ×∼ κ)
(
[p, n]

)
= [φ(p), κ(n)],

for all p ∈ P and all n ∈ N . The map φ×∼ κ is well-defined; namely, given g ∈ G
then:

[φ(p · g−1), κ(g · n)] = [φ(p) · φ0(g)−1, φ0(g) · κ(n)] = [φ(p), κ(n)],

for all p ∈ P and all n ∈ N . Notice that the following diagram commutes:

P ×N

quotient map
��

φ×κ // Q×N ′

quotient map
��

P ×G N
φ×∼κ

// Q×H N ′

Observe that if N = N ′ and if the action of G on N is defined by (1.2.20) then the
identity map of N is φ0-equivariant and the induced map φ×∼ Id is just φ̂.

The induced map φ ×∼ κ retains many properties of the map κ, as is shown by
the following:

LEMMA 1.2.31. Let P , Q be principal spaces with structural groupsG andH
respectively and let φ : P → Q be a morphism of principal spaces with subjacent
group homomorphism φ0 : G → H . Let N be a G-space and N ′ be an H-space
and assume that we are given a φ0-equivariant map κ : N → N ′. Then, for all
p ∈ P , the following diagram commutes:

(1.2.22)

P ×G N
φ×∼κ // Q×H N ′

N

p̂

OO

κ
// N ′

q̂

OO

2If N ′ is regarded as a G-space with action defined as in (1.2.20) then the condition of κ
being φ0-equivariant is equivalent to the condition of κ being G-equivariant in the sense defined in
Exercise 1.35.



1.2. PRINCIPAL SPACES AND FIBER PRODUCTS 21

where q = φ(p). In particular, the map κ is injective (resp., surjective) if and only
if the induced map φ×∼ κ is injective (resp., surjective).

PROOF. Given n ∈ N then:

(φ×∼ κ)
(
p̂(n)

)
= (φ×∼ κ)

(
[p, n]

)
= [q, κ(n)] = q̂

(
κ(n)

)
,

so that diagram (1.2.22) commutes. The claim relating the injectivity and the sur-
jectivity of the maps κ and φ ×∼ κ follows by observing that the maps p̂ and q̂ are
bijective. �

COROLLARY 1.2.32. Let P , Q be principal spaces with structural groups G
and H respectively; let φ : P → Q be a morphism of principal spaces with
subjacent group homomorphism φ0 : G → H . Let N be an H-space and let
us regard N also as a G-space by considering the action of G on N defined by
(1.2.20). Then the induced map φ̂ : P ×G N → Q ×H N is bijective and for all
p ∈ P , the following diagram commutes:

(1.2.23)
P ×G N

φ̂ // Q×H N

N

p̂

ddHHHHHHHHH q̂

::vvvvvvvvv

where q = φ(p).

PROOF. Apply Lemma 1.2.31 with κ the identity map of N . �

In Exercise 1.30 we ask the reader to prove that the induced map φ̂ is structure
preserving, in a suitable sense.

EXAMPLE 1.2.33. Let V0, V , W0, W be vector spaces having the same field
of scalars; assume that V0 (resp., that W0) has the same dimension as V (resp., as
W ). Let P , Q be principal spaces with structural groups G and H , respectively
and let ρ : G → GL(V0), ρ′ : H → GL(W0) be representations. Assume that
we are given a morphism of principal spaces φ : P → Q with subjacent group
homomorphism φ0 : G → H and a linear map T0 : V0 → W0. Clearly, T0 is
φ0-equivariant if and only if:

T0 ◦ ρ(g) = ρ′
(
φ0(g)

)
◦ T0,

for all g ∈ G. If T0 is φ0-equivariant, we obtain an induced map:

φ×∼ T0 : P ×G V0 −→ Q×H W0.

We have seen in Example 1.2.26 that the fiber products P ×G V0 and Q ×H W0

are vector spaces. We claim that the induced map φ×∼ T0 is linear. Namely, choose
any p ∈ P and set q = φ(p); the analogue of commutative diagram (1.2.22) in this
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context is:

P ×G V0

φ×∼T0 // Q×GW0

V0

p̂

OO

T0

// W0

q̂

OO

The linearity of φ ×∼ T0 follows from the fact that the maps p̂ and q̂ are linear
isomorphisms. Observe that, if V0 = W0, T0 is the identity map of V0 and ρ = ρ′ ◦
φ0 then the induced map φ×∼T0 is equal to φ̂; thus, the map φ̂ : P×GV0 → Q×HV0

is a linear isomorphism.

1.3. Principal fiber bundles

Let M be a differentiable manifold, G be a Lie group, P be a set and let
Π : P → M be a map; for each x ∈ M we denote by Px the subset Π−1(x) of P
and we call it the fiber of P over x. Assume that for each x ∈ M we are given a
right action of G on the fiber Px that makes it into a principal space with structural
group G; equivalently, assume that the map Π is surjective and that we are given a
right action

(1.3.1) P ×G 3 (p, g) 7−→ p · g ∈ P
of G on P such that Π(p · g) = Π(p) for all p ∈ P , g ∈ G and such that for all
p, q ∈ P with Π(p) = Π(p) there exists a unique g ∈ G with p · g = q.

By a local section of Π we mean a map s : U → P defined on an open subset
U of M such that Π ◦ s is the inclusion map of U in M ; this means that s(x)
is a point of the fiber Px, for all x ∈ U . A local section s of Π whose domain
is the entire manifold M will be called a section (or global section) of Π. Given
local sections s1 : U1 → P , s2 : U2 → P of Π then there exists a unique map
g : U1 ∩ U2 → G such that s2(x) = s1(x) · g(x), for all x ∈ U1 ∩ U2. The map g
is called the transition map from s1 to s2. The local sections s1 and s2 are called
compatible if the map g is smooth (this is the case, for instance, if U1 ∩ U2 = ∅).
An atlas of local sections of Π is a set A of local sections of Π such that:

• the union of the domains of the local sections belonging toA is the whole
manifold M ;
• any two local sections belonging to A are compatible.

It is easy to see that any atlas A of local sections of Π is contained in a unique
maximal atlas Amax of local sections of Π (see Exercise 1.41).

DEFINITION 1.3.1. A principal fiber bundle (or, more simply, a principal bun-
dle) consists of:

• a set P , called the total space;
• a differentiable manifold M , called the base space;
• a map Π : P →M , called the projection;
• a Lie group G, called the structural group;
• a right action (1.3.1) of G on P that makes the fiber Px = Π−1(x) into a

principal space with structural group G, for all x ∈M ;
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• a maximal atlas Amax of local sections of Π. The elements of Amax are
called the admissible local sections of the principal bundle.

When working with principal fiber bundles we will usually refer to the projec-
tion Π : P →M or to the total space P as if it were the collection of all the objects
listed in Definition 1.3.1. We will also say that P is a principal bundle over M or
that P (or Π : P →M ) is a G-principal bundle.

Let P be a G-principal bundle over M . For every admissible local section
s : U → P the map:

(1.3.2) βs : U ×G 3 (x, g) 7−→ s(x) · g ∈ Π−1(U) ⊂ P
is a bijection. It follows from the result of Exercise A.1 that there exists a unique
differential structure on the set P such that for every admissible local section
s : U → P the set Π−1(U) is open in P and the map βs is a smooth diffeo-
morphism. We will always regard the total space P of a principal bundle to be
endowed with such differential structure. The fact that the topologies of M and G
are Hausdorff and second countable implies that the topology of P is also Haus-
dorff and second countable, so that P is a differentiable manifold. One can easily
check the following facts:

• the right action (1.3.1) of G on P is a smooth map;
• the projection Π : P →M is a smooth submersion;
• for every x ∈M the fiber Px is a smooth submanifold of P ;
• for every x ∈M and every p ∈ Px the map βp : G→ Px (recall (1.1.4))

is a smooth diffeomorphism;
• every admissible local section s : U → P is a smooth map;
• if a local section s : U → P is a smooth map then it is compatible with

every admissible local section and therefore (by the maximality ofAmax)
it is itself an admissible local section.

Thus, the admissible local sections of P are precisely the same as the smooth local
sections of P . Observe also that if s : U → P is a smooth local section of P and
if g : U → G is a smooth map then, since the action (1.3.1) is smooth, it follows
that:

s′ : U 3 x 7−→ s(x) · g(x) ∈ P
is also a smooth local section of P .

EXAMPLE 1.3.2 (trivial principal bundle). Let M be a differentiable manifold
and let P0 be a principal space whose structural group G is a Lie group (for in-
stance, we can take P0 = G). Set P = M × P0. Let Π : P → M denote the
projection onto the first coordinate and define a right action of G on P by setting
(x, p) · g = (x, p · g), for all x ∈ M , p ∈ P0 and all g ∈ G. For every p ∈ P0

the map sp : M 3 x 7→ (x, p) ∈ P is a (globally defined) local section of Π and
the set

{
sp : p ∈ P0

}
is an atlas of local sections of Π. Thus P is a G-principal

bundle overM which we call the trivial principal bundle overM with typical fiber
P0.indexprincipal bundle!trivial Let P0 be endowed with the differential structure
that makes the map βp : G → P0 a smooth diffeomorphism, for every p ∈ P (the
existence of such differential structure follows from commutative diagram (1.2.1)).
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Clearly the differential structure of P = M × P0 coincides with the standard dif-
ferential structure defined on a cartesian product of differentiable manifolds.

EXAMPLE 1.3.3. Let Π : P → M be a G-principal bundle. If U is an open
subset of M , we set:

P |U = Π−1(U) ⊂ P.
The right action ofG on P restricts to a right action ofG on P |U and the projection
Π restricts to a map (also denoted by Π) from P |U to U . The set P |U is then a G-
principal bundle over the manifold U endowed with the maximal atlas of local
sections consisting of all the smooth local sections of P with domain contained
in U . We call P |U the restriction of the principal bundle P to the open set U .
Obviously, P |U is an open subset of P ; moreover, the differential structure of P |U
coincides with the differential structure it inherits from P as an open subset.

EXAMPLE 1.3.4. Let G be a Lie group and H a closed subgroup of G. Con-
sider the quotient map Π : G → G/H and the action of H on G by right trans-
lations. For each x ∈ G/H , the fiber Π−1(x) is a left coset of H in G and it
is therefore a principal space with structural group H (see Example 1.2.3). Since
G is a manifold, we can talk about smooth local sections of Π. If s1 : U → G,
s2 : V → G are smooth local sections of Π then the transition map h : U∩V → H
is given by:

h(x) = s1(x)−1s2(x),

for all x ∈ U ∩ V , and therefore it is smooth. Hence the set of all smooth local
sections of Π is an atlas of local sections of Π and Π : G→ G/H is anH-principal
bundle endowed with atlas of all smooth local sections of Π. It is easily seen that
the differential structure on G induced by such atlas coincides with the original
differential structure of G.

DEFINITION 1.3.5. Given x ∈M and p ∈ Px, then the tangent space TpPx is
a subspace of TpP and it is called the vertical space of P at p; we write:

Verp(P ) = TpPx.

Clearly, Verp(P ) is equal to the kernel of dΠ(p), i.e.:

Verp(P ) = Ker
(
dΠ(p)

)
.

Since the map βp is a smooth diffeomorphism from G onto the fiber containing p,
its differential at the unit element 1 ∈ G is an isomorphism

(1.3.3) dβp(1) : g −→ Verp(P )

from the Lie algebra g of the structural group G onto the vertical space Verp(P ).
We call (1.3.3) the canonical isomorphism from g to Verp(P ).

By differentiating the right action (1.3.1) of G on P with respect to the first
variable we obtain a right action TP ×G→ TP of G on the tangent bundle TP ;
more explicitly, for every g ∈ G and every ζ ∈ TP we set:

ζ · g = dγg(ζ) ∈ TP,
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where γg : P → P is the diffeomorphism given by the action of g on P . Since
the diffeomorphism γg takes fibers to fibers, the action of G on TP takes vertical
spaces to vertical spaces, i.e.:

(1.3.4) dγg
(
Verp(P )

)
= Verp·g(P ),

for all p ∈ P and all g ∈ G. Let us look at the action of G on vertical spaces by
identifying them with the Lie algebra g via the canonical isomorphisms; for every
p ∈ P , g ∈ G, we have the following commutative diagram:

(1.3.5)

Verp(P )
action of g // Verp·g(P )

g
Adg−1

//

dβp(1) ∼=

OO

g

dβp·g(1)∼=

OO

where Ad denotes the adjoint representation of G on g defined by (recall (1.1.3)):

Adg = dIg(1) : g −→ g,

for all g ∈ G. The commutativity of diagram (1.3.5) follows from the commuta-
tivity of diagram (1.2.5) by differentiation.

DEFINITION 1.3.6. Let P be a G-principal bundle over M and let H be a Lie
subgroup of G. A principal subbundle of P with structural group H is a subset Q
of P satisfying the following conditions:

• for all x ∈M , Qx = Px∩Q is a principal subspace of Px with structural
group H , i.e., Qx is an H-orbit;
• for all x ∈ M , there exists a smooth local section s : U → P such that
x ∈ U and s(U) ⊂ Q.

We consider the restriction of the right action of G on P to a right action of H
on Q and we consider the restriction of the projection Π : P → M to Q. Then
Q is an H-principal bundle over M endowed with the maximal atlas consisting of
all local sections s : U → Q of Q for which i ◦ s : U → P is smooth3, where
i : Q→ P denotes the inclusion map.

Being the total space of a principal bundle, the set Q is endowed with a differ-
ential structure. Let us take a look at the relation between the differential structure
of Q and of P . If s : U → Q is a smooth local section of Q then i ◦ s : U → P is

3To prove the compatibility between the local sections of Q the reader should recall the follow-
ing important result from the theory of Lie groups: if G is a Lie group and H is a Lie subgroup of G
then a smooth map having G as its counter-domain and having its image contained in H remains a
smooth map if we replace its counter-domain by H .
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a smooth local section of P and we have a commutative diagram:

U ×G
βi◦s
∼=

// P |U

U ×H
βs

∼= //

inclusion

OO

Q|U

inclusion

OO

in which the horizontal arrows are smooth diffeomorphisms. It follows that the
inclusion map i : Q → P is a smooth immersion. Unfortunately, it is not in
general an embedding; in fact, the inclusion map i : Q → P is an embedding if
and only if H is an embedded Lie subgroup of G (recall that a subgroup H of G
is an embedded Lie subgroup of G if and only if H is closed in G). Although Q
is in general just an immersed submanifold of P , it has the following reduction of
counter-domain property: if X is a locally connected topological space (resp., a
differentiable manifold) and if φ : X → Q is a map such that i ◦ φ : X → P
is continuous (resp., smooth) then the map φ : X → Q is also continuous (resp.,
smooth). In fact, the principal subbundle Q is an almost embedded submanifold of
P .

Let us now define the natural morphisms of the category of principal bundles
with base space M .

DEFINITION 1.3.7. Let P , Q be principal bundles over the same differentiable
manifold M , with structural groups G and H respectively. A map φ : P → Q is
called fiber preserving if φ(Px) ⊂ Qx, for all x ∈ M . A morphism of principal
bundles from P to Q is a smooth fiber preserving map φ : P → Q for which there
exists a group homomorphism φ0 : G → H such that for all x ∈ M , the map
φx = φ|Px : Px → Qx is a morphism of principal spaces with subjacent group
homomorphism φ0.

The group homomorphism φ0 : G→ H is uniquely determined from the mor-
phism of principal bundles φ : P → Q; the commutativity of diagram (1.2) (with
P and Q replaced by fibers Px and Qx, respectively) shows that the smoothness
of φ implies the smoothness of the group homomorphism φ0. Thus, φ0 is indeed
a Lie group homomorphism. We call it the Lie group homomorphism subjacent to
the morphism of principal bundles φ.

The composition ψ ◦ φ of morphisms of principal bundles φ and ψ with sub-
jacent Lie group homomorphisms φ0 and ψ0 is a morphism of principal bundles
with subjacent Lie group homomorphism ψ0 ◦φ0 (see Exercise 1.43). A morphism
of principal bundles φ is bijective if and only if its subjacent Lie group homo-
morphism φ0 is bijective. A bijective morphism of principal bundles is called an
isomorphism of principal bundles. If φ is an isomorphism of principal bundles
with subjacent Lie group homomorphism φ0 then φ is a smooth diffeomorphism
and φ−1 is also an isomorphism of principal bundles with subjacent Lie group ho-
momorphism φ−1

0 (see Exercise 1.46).

EXAMPLE 1.3.8. If P is a G-principal bundle, H is a Lie subgroup of G and
Q is an H-principal subbundle of P then the inclusion map from Q to P is a
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morphism of principal bundles whose subjacent Lie group homomorphism is the
inclusion map from H to G (compare with Example 1.2.22).

EXAMPLE 1.3.9. Let M be a differentiable manifold and P0, Q0 be principal
spaces whose structural groups are Lie groups G, H , respectively; consider the
trivial principal bundles M × P0 and M × Q0. Let φ : P0 → Q0 be a morphism
of principal spaces whose subjacent group homomorphism φ0 : G → H is a Lie
group homomorphism. Then Id × φ : M × P0 → M × Q0 is a morphism of
principal bundles whose subjacent Lie group homomorphism is φ0.

EXAMPLE 1.3.10. Let P be a G-principal bundle over a differentiable man-
ifold M and let s : U → P be a smooth local section of P . The map βs is an
isomorphism of principal bundles from the trivial G-principal bundle U ×G onto
P |U . The Lie group homomorphism subjacent to βs is the identity map of G.

A fiber preserving map φ : P → Q that is a morphism of principal spaces on
each fiber can be used to push-forward the principal bundle structure of the domain
P to the counter-domain Q; more precisely, we have the following:

LEMMA 1.3.11. Let Π : P →M be aG-principal bundle over a differentiable
manifold M . Let Q be a set, Π′ : Q → M be a map, H be a Lie group and
assume that it is given right action of H on Q that makes the fiber Qx into a
principal space with structural group H , for all x ∈ M . Let φ0 : G → H be
a Lie group homomorphism and let φ : P → Q be a fiber preserving map such
that φ|Px : Px → Qx is a morphism of principal spaces with subjacent group
homomorphism φ0, for all x ∈ M . Then there exists a unique maximal atlas of
local sections of Π′ that makes φ : P → Q a morphism of principal bundles.

PROOF. Consider the following set of local sections of Π′:

(1.3.6)
{
φ ◦ s : s is a smooth local section of P

}
.

Let us show that (1.3.6) is an atlas of local sections of Π′. Obviously, the domains
of the local sections belonging to (1.3.6) constitute a covering of M . Moreover, if
s1 : U1 → P , s2 : U2 → P are smooth local sections of P with transition map
g : U1∩U2 → G then the transition map from φ◦s1 to φ◦s2 is φ0◦g : U1∩U2 → H;
thus φ ◦ s1 and φ ◦ s2 are compatible and (1.3.6) is an atlas of local sections of Π′.
To conclude the proof, observe that a maximal atlas Amax of local sections of Π′

makes φ : P → Q a morphism of principal bundles if and only if Amax is the
maximal atlas of local sections of Π′ containing (1.3.6) (see Exercise 1.45). �

COROLLARY 1.3.12. Let P , P ′, Q be principal bundles over a differentiable
manifold M with structural groups G, G′ and H respectively. Let φ : P → Q,
ψ : P → P ′ be morphisms of principal bundles with subjacent Lie group ho-
momorphisms φ0 : G → H and ψ0 : G → G′. Let φ′0 : G′ → H be a Lie
group homomorphism and let φ′ : P ′ → Q be a fiber preserving map such that
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φ|P ′x : P ′x → Qx is a morphism of principal spaces with subjacent group homo-
morphism φ′0, for all x ∈M . Assume that the diagram:

P
φ

  @
@@

@@
@@

@

ψ

��
P ′

φ′
// Q

commutes. Then φ′ is a morphism of principal bundles with subjacent Lie group
homomorphism φ′0.

PROOF. Let Amax be the maximal atlas of local sections of the principal bun-
dle Q and let A′max be the unique maximal atlas of local sections of Q that makes
φ′ a morphism of principal bundles. Both Amax and A′max make φ = φ′ ◦ ψ a
morphism of principal bundles; by the uniqueness part of Lemma 1.3.11, we have
Amax = A′max. This concludes the proof. �

1.3.1. Pull-back of principal bundles. A G-principal bundle over a differen-
tiable manifold M can be though of as a “smoothly varying” family (Px)x∈M of
principal spaces Px with structural group G parameterized by the points of M . If
M ′ is another differentiable manifold and f : M ′ →M is a smooth map then it is
natural to consider a reparametrization (Pf(y))y∈M ′ of the family (Px)x∈M by the
map f . This idea motivates the definition of the pull-back of a principal bundle.
Let us now give the precise definitions.

Let Π : P → M be a G-principal bundle and let f : M ′ → M be a smooth
map defined on a differentiable manifold M ′. The pull-back of P by f is the set
f∗P defined by:

f∗P =
⋃
y∈M ′

(
{y} × Pf(y)

)
.

Thus, the set f∗P is a subset of the cartesian product M ′ × P . The restriction
to f∗P of the projection onto the first coordinate is a map Π1 : f∗P → M ′

and the restriction to f∗P of the projection onto the second coordinate is a map
f̄ : f∗P → P ; the following diagram commutes:

(1.3.7)

f∗P
f̄ //

Π1

��

P

Π

��
M ′

f
// M

We call f̄ : f∗P → P the canonical map associated to the pull-back f∗P ; when it
is necessary to make the principal bundle P explicit, we will also write f̄P instead
of just f̄ .

Notice that the pull-back f∗P is precisely the subset of M ′ × P where the
maps Π ◦ f̄ and f ◦ Π1 coincide; moreover, the map (Π1, f̄) : f∗P → M ′ × P
is just the inclusion map. From this two simple observations, we get the following
set-theoretical lemma:
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LEMMA 1.3.13. Let Π : P → M be a G-principal bundle, M ′ be a differ-
entiable manifold and f : M ′ → M be a smooth map. Given a set X and maps
τ1 : X → M ′, τ2 : X → P with Π ◦ τ2 = f ◦ τ1 then there exists a unique map
τ : X → f∗P such that Π1 ◦ τ = τ1 and f̄ ◦ τ = τ2.

PROOF. The condition Π ◦ τ2 = f ◦ τ1 means that the image of the map
(τ1, τ2) : X →M ′ × P is contained in f∗P ; since (Π1, f̄) is the inclusion map of
f∗P into M ′ × P , there exists a unique map τ : X → f∗P such that:

(1.3.8) (Π1, f̄) ◦ τ = (τ1, τ2).

But this last equality is equivalent to Π1 ◦ τ = τ1 and f̄ ◦ τ = τ2. �

The situation in Lemma 1.3.13 is illustrated by the following commutative
diagram:

(1.3.9)

X τ2

  

τ1

""

τ

!!
f∗P

f̄
//

Π1

��

P

Π

��
M ′

f
// M

In Exercise 1.53 we define the general notion of pull-back in arbitrary categories
and in Exercise 1.54 we ask the reader to generalize Lemma 1.3.13 by presenting
the notion of pull-back in the category of sets and maps.

Our goal now is to make Π1 : f∗P → M ′ into a G-principal bundle over M ′.
For each y ∈M ′, the fiber (f∗P )y is equal to {y}×Pf(y); we will identify the fiber
(f∗P )y of f∗P with the fiber Pf(y) of P . Under such identification, every fiber of
f∗P is a fiber of P and thus each fiber of f∗P is endowed with a right action of
G that makes it into a principal space with structural group G. Our next step is to
define an atlas of local sections of Π1.

DEFINITION 1.3.14. By a local section of the principal bundle P along f we
mean a map σ : U ′ → P defined on an open subset U ′ of M ′ satisfying the
condition Π ◦ σ = f |U ′ .

EXAMPLE 1.3.15. If s : U → P is a local section of P then the composition
s ◦ f : f−1(U)→ P is a local section of P along f .

Clearly, if we compose a local section of Π1 : f∗P → M ′ on the left with
f̄ , we obtain a local section of P along f ; moreover, if σ : U ′ → P is a local
section of P along f then there exists a unique local section ←−σ : U ′ → f∗P
of Π1 : f∗P → M ′ such that f̄ ◦ ←−σ = σ. Namely, taking X = U ′, τ1 to
be the inclusion map of U ′ in M ′ and τ2 = σ then ←−σ is the map τ given by
the thesis of Lemma 1.3.13. The following commutative diagram illustrates the
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relation between←−σ and σ:

f∗P
f̄ // P

Π

��
U ′

←−σ

OO

σ

==zzzzzzzz

f |U′
// M

We have thus established that composition on the left with f̄ induces a bijection
between the set of local sections of Π1 : f∗P → M ′ and the set of local sections
of P along f .

Let s1 : U1 → P , s2 : U2 → P be smooth local sections of P with transition
map g : U1 ∩ U2 → G. Set σi = si ◦ f , i = 1, 2, and consider the local section
←−σi : f−1(Ui) → f∗P of Π1 : f∗P → M ′ such that f̄ ◦ ←−σi = σi, i = 1, 2.
Evidently, the transition map from ←−σ1 to ←−σ2 is g ◦ f : f−1(U1 ∩ U2) → G and
therefore the local sections ←−σ1 and ←−σ2 are compatible. This observation implies
that the set:

(1.3.10)
{←−σ : σ = s ◦ f and s is a smooth local section of P

}
is an atlas of local sections of Π1 : f∗P → M ′. If we endow f∗P with the
unique maximal atlas of local sections containing (1.3.10) then f∗P becomes a
G-principal bundle over M ′. We will always consider the pull-back f∗P to be
endowed with such maximal atlas of local sections.

The following lemma allows us to understand better the manifold structure of
the total space f∗P .

LEMMA 1.3.16. Let Π : P → M be a G-principal bundle, M ′ be a differen-
tiable manifold and f : M ′ → M be a smooth map. Let Π1 : f∗P → M ′ denote
the pull-back of P by f . Then the map (Π1, f̄) : f∗P → M ′ × P is a smooth
embedding; in particular, the canonical map f̄ : f∗P → P is smooth.

PROOF. By the result of Exercise A.2, in order to prove that (Π1, f̄) is a
smooth embedding, it suffices to show that for every smooth local section s : U →
P of P the restriction of the map (Π1, f̄) to the open set (Π1, f̄)−1

(
f−1(U)×P

)
=

(f∗P )|f−1(U) is a smooth embedding. Set σ = s ◦ f and consider the local section
←−σ of f∗P such that f̄ ◦←−σ = σ. We have a commutative diagram:

(f∗P )|f−1(U)
(Π1,f̄) // f−1(U)× P |U

f−1(U)×G

β←−σ ∼=

OO

(y,g) 7→(y,f(y),g)
// f−1(U)× (U ×G)

Id×βs∼=

OO

in which the vertical arrows are smooth diffeomorphisms. The proof is concluded
by observing that the bottom arrow of the diagram is a smooth embedding. �

Lemma 1.3.16 says that the pull-back of principal bundles is a particular case
of the notion of pull-back in the category of differentiable manifolds and smooth
maps (see Exercise 1.55).
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EXAMPLE 1.3.17. Let Π : P → M be a G-principal bundle. If U is an
open subset of M and i : U → M denotes the inclusion map then the canonical
map ı̄ : i∗P → P is injective and its image is equal to P |U . Moreover, the
map ı̄ : i∗P → P |U is an isomorphism of principal bundles whose subjacent Lie
group homomorphism is the identity map of G (the fact that ı̄ is smooth follows
from Lemma 1.3.16). We will use the map ı̄ to identify the pull-back i∗P with the
restricted principal bundle P |U .

Using Lemma 1.3.16 we can prove the following important property of pull-
backs.

PROPOSITION 1.3.18 (universal property of the pull-back). Under the condi-
tions of Lemma 1.3.13, if X is a differentiable manifold then the map τ is smooth
if and only if both τ1 and τ2 are smooth.

PROOF. Follows directly from the equality (1.3.8) and from the fact that the
map (Π1, f̄) is a smooth embedding (Lemma 1.3.16). �

COROLLARY 1.3.19. Let Π : P → M be a principal bundle, M ′ be a differ-
entiable manifold and f : M ′ →M be a smooth map. A local section σ : U ′ → P
of P along f is smooth if and only if the local section←−σ : U ′ → f∗P of f∗P is
smooth.

PROOF. If we takeX = U ′, τ1 to be the inclusion map of U ′ inM ′ and τ2 = σ
then←−σ is the map τ given by the thesis of Lemma 1.3.13. The conclusion follows
from Proposition 1.3.18. �

Corollary 1.3.19 implies that composition on the left with f̄ induces a bijection
between the set of smooth local sections of f∗P and the set of smooth local sections
of P along f .

DEFINITION 1.3.20. Let Π : P → M , Π′ : P ′ → M ′ be principal bundles
with structural groups G and G′, respectively and let f : M ′ → M be a smooth
map. A map ϕ : P ′ → P is said to be fiber preserving along f if ϕ(P ′y) ⊂ Pf(y),
for all y ∈ M ′. By a morphism of principal bundles along f from P ′ to P we
mean a smooth map ϕ : P ′ → P such that:

• ϕ is fiber preserving along f ;
• there exists a group homomorphism ϕ0 : G′ → G such that for all y in
M ′ the map ϕy = ϕ|P ′y : P ′y → Pf(y) is a morphism of principal spaces
with subjacent group homomorphism ϕ0.

As we have previously observed for morphisms of principal bundles (recall
Definition 1.3.7), if ϕ is a morphism of principal bundles along f then the group
homomorphism ϕ0 is uniquely determined by ϕ and the smoothness of ϕ implies
the smoothness of ϕ0. We call ϕ0 the Lie group homomorphism subjacent to ϕ.
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Clearly a map ϕ : P ′ → P is fiber preserving along f : M ′ → M if and only
if the diagram:

(1.3.11)

P ′
ϕ //

Π′

��

P

Π
��

M ′
f
// M

commutes.

EXAMPLE 1.3.21. If Π : P → M is a principal bundle with structural group
G and if f : M ′ → M is a smooth map defined in a differentiable manifold M ′

then the canonical map f̄ : f∗P → P is fiber preserving along f (compare (1.3.7)
with (1.3.11)); moreover, f̄ is a morphism of principal bundles along f whose
subjacent Lie group homomorphism is the identity map of G. If Π′ : P ′ → M ′

is a G′-principal bundle over M ′ then the composition of f̄ with a fiber preserving
map from P ′ to f∗P is a fiber preserving map along f from P ′ to P . Conversely,
if a map ϕ : P ′ → f∗P is fiber preserving along f then there exists a unique fiber
preserving map←−ϕ : P ′ → f∗P such that f̄ ◦ ←−ϕ = f ; namely, the map←−ϕ is the
map τ given by the thesis of Lemma 1.3.13, if we take X = P ′, τ1 = Π′ and
τ2 = ϕ. The relation between ϕ and←−ϕ is illustrated by the following commutative
diagram:

P ′ ϕ

  

Π′

""

←−ϕ
!!
f∗P

f̄
//

Π1

��

P

Π

��
M ′

f
// M

We can now state another corollary of Proposition 1.3.18.

COROLLARY 1.3.22. Let Π : P → M , Π′ : P ′ → M ′ be principal bundles
with structural groups G and G′, respectively, f : M ′ → M be a smooth map
and ϕ : P ′ → P be a fiber preserving map along f . Then ϕ is smooth if and
only if the fiber preserving map ←−ϕ : P ′ → f∗P is smooth. Moreover, ϕ is a
morphism of principal bundles along f with subjacent Lie group homomorphism
ϕ0 : G′ → G if and only if←−ϕ is a morphism of principal bundles with subjacent
Lie group homomorphism ϕ0.

PROOF. The fact that ϕ is smooth if and only if ←−ϕ is smooth follows from
Proposition 1.3.18 and Example 1.3.21. The rest of the thesis follows from the
observation that for all y ∈M ′ the maps:

ϕy : P ′y −→ Pf(y),
←−ϕy : P ′y −→ (f∗P )y = Pf(y)

are the same. �
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EXAMPLE 1.3.23. Let Π : P → M , Π′ : Q → M be principal bundles
with structural groups G and H , respectively; let M ′ be a differentiable manifold
and let f : M ′ → M be a smooth map. Given a morphism of principal bundles
φ : P → Q with subjacent Lie group homomorphism φ0 : G→ H then:

φ ◦ f̄P : f∗P −→ Q

is a morphism of principal bundles along f with subjacent Lie group homomor-
phism φ0; we set:

f∗φ =
←−−−−
φ ◦ f̄P ,

so that f∗φ : f∗P → f∗Q is the unique fiber preserving map such that the diagram:

(1.3.12)

P
φ // Q

f∗P

f̄P

OO

f∗φ
// f∗Q

f̄Q

OO

commutes. By Corollary 1.3.22, the map f∗φ is a morphism of principal bundles
with subjacent Lie group homomorphism φ0. We call f∗φ the pull-back of the
morphism φ by f . As a particular case of this construction, notice that if P is a
principal subbundle of Q and i : P → Q denotes the inclusion map then f∗P is a
principal subbundle of f∗Q and f∗i : f∗P → f∗Q is the inclusion map.

EXAMPLE 1.3.24. Let M , M ′, M ′′ be differentiable manifolds, P be a G-
principal bundle over M and let f : M ′ → M , g : M ′′ → M ′ be smooth maps.
The composition f̄ ◦ ḡ of the canonical maps:

f̄ : f∗P −→ P, ḡ : g∗f∗P −→ f∗P

is a morphism of principal spaces along f ◦ g whose subjacent Lie group homo-
morphism is the identity map of G. Thus, by Corollary 1.3.22, the map:

(1.3.13)
←−−−
f̄ ◦ ḡ : g∗f∗P −→ (f ◦ g)∗P

characterized by the equality:

f ◦ g ◦
←−−−
f̄ ◦ ḡ = f̄ ◦ ḡ

is an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity map of G. We use the map (1.3.13) to identify the principal bundles
g∗f∗P and (f ◦ g)∗P . Under such identification, we have:

f ◦ g = f̄ ◦ ḡ.

1.3.2. The fiberwise product of principal bundles. Let Π : P → M and
Π′ : Q → M be principal fiber bundles with structural groups G and H , respec-
tively. The fiberwise product of P with Q is the set P ? Q defined by:

P ? Q =
⋃
x∈M

(Px ×Qx).



34 1. PRINCIPAL AND ASSOCIATED FIBER BUNDLES

Thus the fiberwise product P ? Q is the subset of the cartesian product P × Q
consisting of all the pairs (p, q) such that Π(p) = Π′(q). Consider the map Π ? Π′

defined by:
Π ?Π′ : P ? Q 3 (p, q) 7−→ Π(p) = Π′(q) ∈M.

The fiber (P ? Q)x of the fiberwise product over a point x ∈ M is the cartesian
product Px × Qx, which is a principal space with structural group G ×H (recall
Example 1.2.7). If s : U → P , s′ : U → Q are local sections of P and Q
respectively then the map:

(s, s′) : U 3 x 7−→
(
s(x), s′(x)

)
∈ P ? Q

is a local section of P ? Q. The set:

(1.3.14)

{
(s, s′) : s, s′ are smooth local sections of P , Q, respectively

and the domain of s equals the domain of s′
}

is an atlas of local sections of Π ? Π′ : P ? Q → M . Thus, the fiberwise product
P ? Q is a (G × H)-principal bundle over M endowed with the unique maximal
atlas of local sections containing (1.3.14). We will always consider the fiberwise
product P ? Q to be endowed with such maximal atlas of local sections.

LEMMA 1.3.25. Let Π : P → M , Π′ : Q → M be principal fiber bundles
with structural groups G and H , respectively. The inclusion map of P ?Q into the
cartesian product P ×Q is a smooth embedding.

PROOF. By the result of Exercise A.2, in order to prove that the inclusion map
P ?Q→ P ×Q is a smooth embedding it suffices to show that given smooth local
sections s : U → P , s′ : U → Q of P and Q respectively then the inclusion map
from the open subset (P ? Q) ∩ (P |U ×Q|U ) = (P ? Q)|U of P ? Q to P ×Q is
a smooth embedding. We have a commutative diagram:

(P ? Q)|U
inclusion // (P |U )× (Q|U )

U × (G×H)

β(s,s′) ∼=

OO

(x,g,h) 7→(x,g,x,h)
// (U ×G)× (U ×H)

∼= βs×βs′

OO

in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is a smooth embedding and the conclusion follows. �

Let pr1 : P ? Q → P , pr2 : P ? Q → Q denote the restrictions to P ? Q
of the projections of the cartesian product P × Q. It follows from Lemma 1.3.25
that pr1 and pr2 are smooth; moreover, pr1 and pr2 are clearly morphisms of prin-
cipal bundles whose subjacent Lie group homomorphisms are the correspondent
projections of the cartesian product G×H .

COROLLARY 1.3.26. Under the conditions of Lemma 1.3.25, if φ1 : X → P ,
φ2 : X → Q are smooth maps defined in a differentiable manifold X such that
Π ◦ φ1 = Π′ ◦ φ2 then there exists a unique map φ : X → P ? Q such that
pr1 ◦ φ = φ1 and pr2 ◦ φ = φ2. The map φ is smooth.
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PROOF. The hypothesis Π ◦ φ1 = Π′ ◦ φ2 means that the image of the map
(φ1, φ2) : X → P × Q is contained in P ? Q. The map φ must therefore be the
map obtained from (φ1, φ2) by replacing the counter-domain P ×Q by P ?Q. �

COROLLARY 1.3.27 (universal property of the fiberwise product). Under the
conditions of Lemma 1.3.25, let K be a Lie group R be a K-principal bundle over
M . Given morphisms of principal bundles φ1 : R → P , φ2 : R → Q then
there exists a unique morphism of principal bundles φ : R → P ? Q such that
pr1 ◦ φ = φ1 and pr2 ◦ φ = φ2.

PROOF. Apply Corollary 1.3.26 with X = R. If φ0
1 : K → G, φ0

2 : K → H
are the subjacent Lie group homomorphisms to φ1 and φ2 respectively then it is
immediate that the smooth map φ : R → P ? Q given by the thesis of Corol-
lary 1.3.26 is a morphism of principal bundles with subjacent Lie group homomor-
phism (φ0

1, φ
0
2) : K → G×H . �

The commutative diagram below illustrates the statement of Corollary 1.3.27:

P

R

φ1

33ggggggggggggggggggggggggggg φ //

φ2

++VVVVVVVVVVVVVVVVVVVVVVVVVVVV P ? P ′
pr1

::uuuuuuuuu

pr2

$$H
HH

HH
HH

HH
H

Q

If the reader feels that there is some relation between the notions of pull-back
and of fiberwise product then he or she is right. See Exercise 1.57 for details.

EXAMPLE 1.3.28. Let P , P ′, Q, Q′ be principal bundles over a differentiable
manifold M and let φ : P → P ′, ψ : Q→ Q′ be morphisms of principal bundles.
Denote by:

pr1 : P ? Q −→ P, pr2 : P ? Q −→ Q,

pr′1 : P ′ ? Q′ −→ P ′, pr′2 : P ′ ? Q′ −→ Q′,

the projections. By Corollary 1.3.27, there exists a unique morphism of principal
bundles:

φ ? ψ : P ? Q −→ P ′ ? Q′

such that pr′1 ◦ (φ ? ψ) = φ ◦ pr1 and pr′2 ◦ (φ ? ψ) = ψ ◦ pr2.

LEMMA 1.3.29. Let Π : P →M and Π′ : Q→M be principal fiber bundles
and let f : M ′ → M be a smooth map defined in a differentiable manifold M ′.
The map:

(1.3.15) f∗(P ? Q) 3
(
y, (p, q)

)
7−→

(
(y, p), (y, q)

)
∈ (f∗P ) ? (f∗Q)

is an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity.
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PROOF. The fact that (1.3.15) is a morphism of principal bundles follows by
applying Corollary 1.3.27 with (recall Example 1.3.23):

φ1 = f∗pr1 : f∗(P ? Q) −→ f∗P, φ2 = f∗pr2 : f∗(P ? Q) −→ f∗Q.

The fact that (1.3.15) is an isomorphism of principal bundles then follows from the
result of Exercise 1.46. �

1.4. Associated bundles

Associated bundles are constructed from principal bundles by a fiberwise ap-
plication of the notion of fiber product discussed in Subsection 1.2.1. We begin by
stating a smooth version of Definition 1.2.24.

DEFINITION 1.4.1. By a differentiableG-space we mean a differentiable man-
ifold N endowed with a smooth left action G×N → N of a Lie group G.

Notice that the effective group Gef of a differentiable G-space is a subgroup
of the group Diff(N) of all smooth diffeomorphisms of N . The kernel of the
homomorphism G 3 g 7→ γg ∈ Diff(N) corresponding to the left action of G on
N is a closed normal subgroup of G and Gef is isomorphic to the quotient of G by
such kernel; we can therefore endow Gef with the structure of a Lie group.

Let Π : P →M be aG-principal bundle and letN be a differentiableG-space.
For each x ∈M we consider the fiber product Px ×G N of the principal space Px
by the G-space N and we set:

P ×G N =
⋃
x∈M

(Px ×G N);

we have a projection map:

π : P ×G N −→M

that sends Px ×G N to the point x ∈M and a quotient map q defined by:

q : P ×N 3 (p, n) 7−→ [p, n] ∈ P ×G N.
The following commutative diagram illustrates the relation between the maps Π, π
and q:

(1.4.1)

P ×N
first projection

��

q

##G
GGGGGGG

P

Π
��

P ×G N

π
{{wwwwwwww

M

We call π : P ×G N → M (or just P ×G N ) the associated bundle to the G-
principal bundle P and to the differentiable G-space N . The set P ×G N is also
called the total space of the associated bundle. For each x ∈M , the set

Px ×G N = π−1(x)
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is called the fiber of P ×G N over x.
Notice that each fiber Px ×G N is naturally endowed with the Gef -structure

P̂x =
{
p̂ : p ∈ Px

}
. Since Gef is a subgroup of Diff(N), such Gef -structure

can be weakened to a Diff(N)-structure that corresponds to the structure of a dif-
ferentiable manifold smoothly diffeomorphic to N on the fiber Px ×G N (recall
Example 1.1.4).

Our goal now is to endow the entire total space P ×G N with the structure of
a differentiable manifold. Given a smooth local section s : U → P of P then we
have an associated bijective map:

(1.4.2) ŝ : U ×N 3 (x, n) 7−→ [s(x), n] = ŝ(x)(n) ∈ π−1(U) ⊂ P ×G N,

which we call the local trivialization of the associated bundle P ×GN correspond-
ing to the smooth local section s. If s1 : U1 → P , s2 : U2 → P are smooth local
sections of P and if g : U1 ∩ U2 → G denotes the transition map from s1 to s2
then the transition map ŝ−1

1 ◦ ŝ2 from ŝ1 to ŝ2 is given by:

ŝ−1
1 ◦ ŝ2 : (U1 ∩ U2)×N 3 (x, n) 7−→

(
x, g(x) · n

)
∈ (U1 ∩ U2)×N

and is therefore a smooth diffeomorphism between open sets. It follows from the
result of Exercise A.1 that there exists a unique differential structure on the set
P ×G N such that for every smooth local section s : U → P of P the set π−1(U)
is open inP×GN and the local trivialization ŝ is a smooth diffeomorphism. We will
always regard the total space P ×GN of an associated bundle to be endowed with
such differential structure. The fact that the topologies of M and N are Hausdorff
and second countable implies that the topology of P ×G N is also Hausdorff and
second countable, so that P ×G N is a differentiable manifold. One can easily
check the following facts:

• the projection π : P ×G N →M is a smooth submersion;
• the quotient map q : P ×N → P ×G N is a smooth submersion;
• for every x ∈M the fiber Px×GN is a smooth submanifold of P ×GN ;
• for every x ∈M and every p ∈ Px, if the fiber Px×GN is endowed with

the differential structure inherited from P ×G N as a submanifold then
the map p̂ : N → Px ×G N is a smooth diffeomorphism.

The last item above implies that the differential structure of Px ×G N that is ob-
tained by weakening the Gef -structure P̂x coincides with the differential structure
that Px ×G N inherits from P ×G N .

EXAMPLE 1.4.2 (the trivial associated bundle). LetM be a differentiable man-
ifold, P0 be a principal space whose structural group G is a Lie group and let N
be a differentiable G-space. Consider the trivial principal bundle P = M × P0

(recall Example 1.3.2). The associated bundle P ×G N can be naturally iden-
tified with the cartesian product M × (P0 ×G N) of M by the fiber product
P0 ×G N . The fiber product P0 ×G N is endowed with a Gef -structure that can
be weakened into a Diff(N)-structure that corresponds to the structure of a differ-
entiable manifold smoothly diffeomorphic to N . Clearly the differential structure
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of P ×G N = M × (P0 ×G N) coincides with the standard differential structure
defined in a cartesian product of differentiable manifolds.

EXAMPLE 1.4.3. Let Π : P →M be a G-principal bundle and N be a differ-
entiableG-space. If U is an open subset ofM then the total space of the associated
bundle (P |U ) ×G N is equal to the open subset π−1(U) of the total space of the
associated bundle π : P ×G N → M . Clearly, the differential structure of the
associated bundle (P |U ) ×G N coincides with the differential structure it inherits
from P ×G N as an open subset.

DEFINITION 1.4.4. Given x ∈ M , p ∈ Px and n ∈ N then the tangent space
T[p,n](Px×GN) is a subspace of T[p,n](P×GN) and it is called the vertical spacef
P ×G N at [p, n]; we write:

Ver[p,n](P ×G N) = T[p,n](Px ×G N).

Clearly:

Ver[p,n](P ×G N) = Ker
(
dπ([p, n])

)
.

Notice that, since p̂ is a smooth diffeomorphism from N onto the fiber Px ×G N ,
its differential at n ∈ N is an isomorphism:

(1.4.3) dp̂(n) : TnN −→ Ver[p,n](P ×G N)

from the tangent space TnN onto the vertical space.
In the example below we look at a case that is of particular interest to us.

EXAMPLE 1.4.5. Let E0 be a real finite-dimensional vector space and assume
that we are given a smooth representation ρ : G → GL(E0) of a Lie group G
on E0. Then E0 is a differentiable G-space and the effective group Gef is a Lie
subgroup of the general linear group GL(E0). If Π : P → M is a G-principal
bundle then we can consider the associated bundle P ×G E0. For each x ∈M , the
fiber Px ×G E0 has the structure of a real vector space such that for every p ∈ Px
the map p̂ : E0 → Px ×G E0 is a linear isomorphism (recall Example 1.2.26).
Since each p̂ is both a smooth diffeomorphism and a linear isomorphism, it follows
that the differential structure of the fiber Px ×G E0 (inherited from the total space
P ×G E0) coincides with the differential structure that is determined by its real
finite-dimensional vector space structure. We can therefore identify the vertical
space at any point of the fiber Px ×G E0 with the fiber itself, i.e.:

(1.4.4) Ver[p,e0](P ×G E0) = T[p,e0](Px ×G E0) ∼= Px ×G E0,

for all p ∈ Px and all e0 ∈ E0. Moreover, the linear isomorphism (1.4.3) is just p̂,
i.e.:

(1.4.5) dp̂(e0) = p̂ : E0 −→ Px ×G E0,

for all p ∈ Px and all e0 ∈ E0.
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1.4.1. Local sections of an associated bundle. Let Π : P → M be a G-
principal bundle, N be a differentiable G-space and consider the associated bundle
π : P ×G N →M and the quotient map q : P ×N → P ×G N .

DEFINITION 1.4.6. By a local sectionof the associated bundle P ×G N we
mean a map ε : U → P ×G N defined on an open subset U of M such that
π ◦ ε = IdU , i.e., such that ε(x) ∈ Px ×G N , for all x ∈ U .

If ε : U → P ×G N is a local section of P ×G N and if s : U → P is a
smooth local section of P then there exists a unique map ε̃ : U → N such that
ε = q ◦ (s, ε̃), i.e., such that:

(1.4.6) ε(x) = [s(x), ε̃(x)],

for all x ∈ U ; namely, ε̃ is just the second coordinate of the map ŝ−1 ◦ ε. We call
ε̃ the representation of ε with respect to s. Clearly ε is smooth if and only if ε̃ is
smooth.

1.4.2. The differential of the quotient map. Let Π : P → M be a G-
principal bundle, N be a differentiable G-space and consider the associated bundle
π : P ×GN →M and the quotient map q : P ×N → P ×GN . For every x ∈M ,
the map q carries Px×N onto the fiber Px×GN over x and therefore, for all p ∈ Px
and all n ∈ N , the differential dq(p, n) carries T(p,n)(Px×N) = Verp(P )⊕TnN
to the vertical space Ver[p,n](P ×G N). We wish to compute the restriction of
the differential dq(p, n) to Verp(P ) ⊕ TnN . To this aim, we identify Verp(P )
with the Lie algebra g via the canonical isomorphism (1.3.3) and we identify
Ver[p,n](P ×G N) with TnN via the isomorphism (1.4.3). Recall from Defini-
tion A.2.3 that for every X ∈ g, we denote by XN the induced vector field on the
differentiable manifold N and by XP the induced vector field on the differentiable
manifold P .

LEMMA 1.4.7. Let Π : P →M be aG-principal bundle,N be a differentiable
G-space and consider the associated bundle π : P ×G N → M and the quotient
map q : P × N → P ×G N . Given p ∈ P , n ∈ N then the dotted arrow in the
commutative diagram:

Verp(P )⊕ TnN
dq(p,n) // Ver(p,n)(P ×G N)

g⊕ TnN

dβp(1)⊕Id ∼=

OO

// TnN

dp̂(n)∼=

OO

is given by:
g⊕ TnN 3 (X,u) 7−→ u+XN (n) ∈ TnN.

PROOF. Set x = Π(p). The map q(p, ·) : N → Px ×G N is the same as p̂ and
therefore the dotted arrow on the diagram carries (0, u) to u, for all u ∈ TnN . To
conclude the proof, we show that the dotted arrow on the diagram carries (X, 0) to
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XN (n), for all X ∈ g; this follows from the commutative diagram:

Px
q(·,n) // Px ×G N

G

βp

OO

βn
// N

p̂

OO

by differentiation. �

COROLLARY 1.4.8. Let Π : P → M be a G-principal bundle, N be a differ-
entiable G-space and consider the associated bundle π : P ×G N → M and the
quotient map q : P × N → P ×G N . Given p ∈ P , n ∈ N then the kernel of
dq(p, n) is equal to the image under the isomorphism:

dβp(1)⊕ Id : g⊕ TnN −→ Verp(P )⊕ TnN
of the space: {(

X,−XN (n)
)

: X ∈ g
}
⊂ g⊕ TnN ;

more explicitly:

Ker
(
dq(p, n)

)
=

{
(XP (p),−XN (n)

)
: X ∈ g

}
⊂ Verp(P )⊕ TnN.

PROOF. By differentiating (1.4.1), we see that the diagram:

(1.4.7) TpP ⊕ TnN

dΠp◦pr1 &&LLLLLLLLLL

dq(p,n) // T[p,n](P ×G N)

dπ[p,n]xxppppppppppp

TxM

commutes. Thus the kernel of dq(p, n) is contained in Verp(P ) ⊕ TnN . The
conclusion now follows easily from Lemma 1.4.7. �

EXAMPLE 1.4.9. Let us go back to the context of Example 1.4.5 and let us
take a closer look at the statement of Lemma 1.4.7. Denote by ρ̄ : g→ gl(E0) the
differential at 1 ∈ G of the representation ρ : G → GL(E0); by gl(E0) we have
denoted the Lie algebra of the general linear group GL(E0), which is just the space
of all linear endomorphisms ofE0, endowed with the standard Lie bracket of linear
operators. Given X ∈ g then the induced vector field XE0 on the manifold E0 is
given by XE0(e0) = ρ̄(X) · e0, for all e0 ∈ E0; thus XE0 : E0 → E0 is just the
linear map ρ̄(X). Keeping in mind (1.4.5), Lemma 1.4.7 tells us that the restriction
to Verp(P )⊕E0 of the differential of the quotient map q : P ×E0 → P ×GE0 at
a point (p, e0) ∈ P × E0 is given by:

dq(p,e0)

(
dβp(1) ·X,u

)
= p̂

(
u+ ρ̄(X) · e0

)
= [p, u+ ρ̄(X) · e0] ∈ Px ×G E0,

for all X ∈ g and all u ∈ E0. For instance, if G is a Lie subgroup of GL(E0)
and ρ : G → GL(E0) is the inclusion map then g is a Lie subalgebra of gl(E0),
ρ̄ : g→ gl(E0) is the inclusion map and thus ρ̄(X) is just X itself; hence:

dq(p,e0)

(
dβp(1) ·X,u

)
= p̂

(
u+X(e0)

)
= [p, u+X(e0)] ∈ Px ×G E0,

for all X ∈ g and all u ∈ E0.
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1.4.3. Induced maps on associated bundles. In Subsection 1.2.1 we have
defined the notion of induced maps on fiber products. Such notion can be applied
fiberwise to get a notion of induced map on an associated bundle. More precisely,
let P , Q be principal bundles over a differentiable manifold M with structural
groups G and H , respectively. Let φ : P → Q be a morphism of principal bundles
and let φ0 : G → H denote its subjacent Lie group homomorphism. Given a
differentiable H-space N we consider the smooth left action of G on N defined in
(1.2.20), so thatN is also a differentiableG-space. For each x ∈M , the morphism
of principal spaces φx : Px → Qx induces a map φ̂x : Px ×GN → Qx ×H N and
thus there is a map:

φ̂ : P ×G N −→ Q×H N

whose restriction to the fiber Px ×G N is equal to φ̂x, for all x ∈ M . More
explicitly, we have:

φ̂
(
[p, n]

)
= [φ(p), n],

for all p ∈ P and all n ∈ N . We call φ̂ the map inducedindexassociated bun-
dle!induced map on by φ on the associated bundles. Notice that the following
diagram:

(1.4.8)

P ×N
φ×Id //

q

��

Q×N

q′

��
P ×G N

φ̂

// Q×H N

commutes, where q, q′ denote the quotient maps.
Since for each x ∈ M the map φ̂x is bijective (Corollary 1.2.32) then clearly

the map φ̂ is also bijective. Moreover, we have the following:

LEMMA 1.4.10. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be a
morphism of principal bundles and let φ0 : G→ H denote its subjacent Lie group
homomorphism. Given a differentiable H-space N we consider the smooth left
action of G on N defined by (1.2.20). The induced map φ̂ : P ×GN −→ Q×H N
is a smooth diffeomorphism.

PROOF. Let s : U → P be a smooth local section of P and set s′ = φ ◦ s, so
that s′ : U → Q is a smooth local section of Q. We have a commutative diagram
analogous to diagram (1.2.23):

(1.4.9)
(P |U )×G N

φ̂ // (Q|U )×H N

U ×N
ŝ

∼=
eeKKKKKKKKKK ŝ′

∼=
99ssssssssss
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Since ŝ and ŝ′ are smooth diffeomorphisms, we conclude that φ̂ is a smooth local
diffeomorphism. Since φ̂ is bijective, it follows that φ̂ is indeed a global smooth
diffeomorphism. �

As in Subsection 1.2.1 we have also a more general notion of induced map.
Let P , Q be principal bundles over a differentiable manifold M with structural
groups G and H , respectively. Let φ : P → Q be a morphism of principal bundles
with subjacent Lie group homomorphism φ0 : G → H . Let N be a differen-
tiable G-space and N ′ be a differentiable H-space; assume that we are given a
φ0-equivariant map κ : N → N ′. For each x ∈ M the map φx : Px → Qx
is a morphism of principal spaces with subjacent group homomorphism φ0 and
therefore we have an induced map:

φx ×∼ κ : Px ×G N −→ Qx ×H N ′.

We can therefore consider the induced map:

φ×∼ κ : P ×G N −→ Q×H N ′

whose restriction to the fiber Px ×G N is equal to φx ×∼ κ, for all x ∈ M . Notice
that the following diagram:

(1.4.10)

P ×N
φ×κ //

q

��

Q×N ′

q′

��
P ×G N

φ×∼κ
// Q×H N ′

commutes, where q, q′ denote the quotient maps. If N = N ′ and N is endowed
with the action of G defined in (1.2.20) then the induced map φ ×∼ Id is the same
as φ̂.

The induced map φ ×∼ κ retains many properties of the map κ as is shown by
the following:

LEMMA 1.4.11. Let P , Q be principal bundles over a nonempty differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be a
morphism of principal bundles with subjacent Lie group homomorphism φ0 : G→
H , let N be a differentiable G-space and N ′ be a differentiable H-space; assume
that we are given a φ0-equivariant map κ : N → N ′. Consider the induced map
φ×∼ κ : P ×G N → Q×H N ′. Then:

(a) φ×∼ κ is smooth if and only if κ is smooth;
(b) φ ×∼ κ is injective (resp., surjective) if and only if κ is injective (resp.,

surjective);
(c) φ ×∼ κ is a smooth immersion (resp., a smooth submersion) if and only if

κ is a smooth immersion (resp., a smooth submersion);
(d) φ×∼ κ is a smooth embedding if and only if κ is a smooth embedding;
(e) φ×∼ κ is an open mapping if and only if κ is an open mapping.
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PROOF. Let s : U → P be a smooth local section of P and set s′ = φ ◦ s, so
that s′ : U → Q is a smooth local section of Q. We have a commutative diagram
similar to (1.2.22):

(P |U )×G N
φ×∼κ // (Q|U )×H N ′

U ×N

ŝ ∼=

OO

Id×κ
// U ×N ′

∼= ŝ′

OO

The conclusion follows then easily from the fact that the maps ŝ and ŝ′ are smooth
diffeomorphisms (for the proof of item (d), use also the result of Exercise A.2). �

Notice that if Π : P → M is a G-principal bundle, N is a differentiable G-
space and N0 is a smooth submanifold of N invariant by the action of G then the
inclusion map i : N0 → N is a smooth G-equivariant embedding and therefore,
by Lemma 1.4.11, the induced map Id ×∼ i : P ×G N0 → P ×G N is a smooth
embedding. We use the map Id×∼ i to identify P ×GN0 with a smooth submanifold
of P ×G N . Notice that if N0 is an open submanifold of N then P ×G N0 is an
open submanifold of P ×G N (item (e) of Lemma 1.4.11).

1.4.4. The associated bundle to a pull-back. Let P be a G-principal bundle
over a differentiable manifold M and let f : M ′ →M be a smooth map defined in
a differentiable manifoldM ′. Given a differentiableG-spaceN then the associated
bundle (f∗P ) ×G N can be identified with the following subset of the cartesian
product M ′ × (P ×G N):

(1.4.11)
⋃
y∈M ′

(
{y} × (Pf(y) ×G N)

)
.

We have the following:

LEMMA 1.4.12. Let P be a G-principal bundle over a differentiable manifold
M and let f : M ′ →M be a smooth map defined in a differentiable manifold M ′.
LetN be a differentiableG-space. If we identify the associated bundle (f∗P )×GN
with the set (1.4.11) then the inclusion map of (f∗P )×G N in M ′ × (P ×G N) is
a smooth embedding.

PROOF. By the result of Exercise A.2, in order to prove that the inclusion map
(f∗P ) ×G N → M ′ × (P ×G N) is a smooth embedding it suffices to verify
that for every smooth local section s : U → P of P the inclusion map from the
open subset

(
(f∗P )×GN

)
∩

(
f−1(U)× (P ×GN)

)
=

(
(f∗P )|f−1(U)

)
×GN of

(f∗P )×GN toM ′×(P×GN) is a smooth embedding. Set σ = s◦f and consider
the smooth local section←−σ : f−1(U) → f∗P of f∗P such that f̄ ◦ ←−σ = σ. We
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have a commutative diagram:

(f∗P )|f−1(U) ×G N
inclusion // f−1(U)×

(
(P |U )×G N

)

f−1(U)×N
(y,n) 7→(y,f(y),n)

//

←̂−σ ∼=

OO

f−1(U)× (U ×N)

∼= Id×ŝ

OO

in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is a smooth embedding and the conclusion follows. �

1.5. Vector bundles and the principal bundle of frames

Let M be a differentiable manifold, E0 be a real finite-dimensional vector
space, E be a set and π : E → M be a map; for each x ∈ M we denote by Ex
the subset π−1(x) of E and we call it the fiber of E over x. Assume that for each
x ∈M we are given a real vector space structure on the fiber Ex such that E0 and
Ex have the same dimension. The set FRE0(Ex) of all E0-frames of Ex is thus a
principal space with structural group GL(E0). We set:

FRE0(E) =
⋃
x∈M

FRE0(Ex)

and we consider the map Π : FRE0(E) → M that sends FRE0(Ex) to x, for all
x ∈M .

DEFINITION 1.5.1. A vector bundle consists of:
• a set E, called the total space;
• a differentiable manifold M , called the base space;
• a map π : E →M , called the projection;
• a real finite-dimensional vector space E0, called the typical fiber;
• a real vector space structure on the fiber Ex = π−1(x) such that E0 and
Ex have the same dimension, for all x ∈M ;
• a maximal atlas Amax of local sections of Π : FRE0(E)→M .

When working with vector bundles we will refer to the projection π or to the
total space E as if it were the collection of all the objects listed in Definition 1.5.1.
We will also say that E is a vector bundle over M . The maximal atlas Amax

makes Π : FRE0(E) → M into a GL(E0)-principal bundle over M ; we call it
the principal bundle of E0-frames (or simply the principal bundle of frames) of the
vector bundle π : E → M . A (smooth) local section of FRE0(E) will also be
called a (smooth) local E0-frame (or simply a local frame) of the vector bundle E.
When E0 = Rn we write FR(E) instead of FRE0(E).

Let us now define a differential structure on the total space of a vector bundle.
This is done as follows. The typical fiber E0 is a differentiable GL(E0)-space in a
obvious way; since the frame bundle FRE0(E) is a GL(E0)-principal bundle we
may thus consider the associated bundle FRE0(E)×∼ E0. The contraction map CE
defined by:

(1.5.1) CE : FRE0(E)×∼ E0 3 [p, e0] 7−→ p(e0) ∈ E
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is bijective and it restricts to a linear isomorphism from FRE0(Ex)×∼E0 to Ex, for
all x ∈ M (recall Example 1.2.28). Thus, there is a unique differential structure
on the set E that makes the contraction map CE a smooth diffeomorphism. We
will always consider the total space E of a vector bundle to be endowed with such
differential structure. Clearly the topology ofE is Hausdorff and second countable,
so that E is a differentiable manifold. The following facts follow directly from the
corresponding facts stated in Section 1.4 for general associated bundles and from
the comments made in Example 1.4.5:

• the projection π : E →M is a smooth submersion;
• the map FRE0(E)×E0 3 (p, e0) 7→ p(e0) ∈ E is a smooth submersion;
• for every x ∈M the fiber Ex is a smooth submanifold of E;
• for every x ∈ M the differential structure that the fiber Ex inherits from
E as a submanifold coincides with the differential structure that is deter-
mined by its real finite-dimensional vector space structure.

Let s : U → FRE0(E) be a smooth local section of FRE0(E) and set š = CE ◦ ŝ;
more explicitly, the map š is given by:

š : U × E0 3 (x, e0) 7−→ s(x) · e0 ∈ π−1(U) ⊂ E.
The map š is a smooth diffeomorphism and we will call it the local trivialization
of E corresponding to the smooth local E0-frame s. Notice that the differential

structure of the total space E can also be characterized by the fact that for every
smooth local E0-frame s : U → FRE0(E) the map š is a smooth diffeomorphism
onto the open subset π−1(U) of E.

EXAMPLE 1.5.2 (the trivial vector bundle). LetM be a differentiable manifold
andE0 be a real finite-dimensional vector space. SetE = M×E0 and consider the
map π : E → M given by projection onto the first coordinate. For every x ∈ M
we identify the fiber Ex = {x} ×E0 with E0 so that Ex has the structure of a real
vector space and:

FRE0(M × E0) = M ×GL(E0).
The set FRE0(M ×E0) is thus naturally endowed with the structure of a GL(E0)-
principle bundle (see Example 1.3.2) and therefore E is a vector bundle over M
which we call the trivial vector bundle over M with typical fiber E0. Clearly
the differential structure of E = M × E0 coincides with the standard differential
structure given to a cartesian product of differentiable manifolds.

EXAMPLE 1.5.3. Let π : E → M be a vector bundle with typical fiber E0. If
U is an open subset of M , we set:

E|U = π−1(U);

the projection π : E → M restricts to a map from E|U to M and for each x ∈ U
the fiber Ex of E|U over x is endowed with the structure of a real vector space.
Clearly:

FRE0(E|U ) = FRE0(E)|U ,
so that FRE0(E|U ) is a GL(E0)-principal bundle over the differentiable manifold
U (see Example 1.3.3). Thus E|U is a vector bundle over U which we call the
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restriction of the vector bundle E to the open set U . Clearly, the differential struc-
ture of E|U coincides with the differential structure it inherits from E as an open
subset.

EXAMPLE 1.5.4 (the tangent bundle). Let M be an n-dimensional differen-
tiable manifold, let

TM =
⋃
x∈M

TxM

denote its tangent bundle and let π : TM →M denote the standard projection that
sends TxM to x, for all x ∈M . For every x ∈M , the fiber TxM has the structure
of a real vector space isomorphic to Rn. Let ϕ : U → Ũ be a local chart of M ,
where U is an open subset of M and Ũ is an open subset of Rn. For every x ∈ U
the map dϕ(x)−1 : Rn → TxM is a linear isomorphism and the map:

sϕ : U 3 x 7−→ dϕ(x)−1 ∈ FR(TM)

is a local section of FR(TM)→M . If ψ : V → Ṽ is another local chart ofM and
if α = ϕ◦ψ−1 : ψ(U∩V )→ ϕ(U∩V ) denotes the transition map fromψ toϕ then
the transition map from sϕ to sψ is given by U ∩ V 3 x 7→ dα

(
ψ(x)

)
∈ GL(Rn)

and therefore the set:

(1.5.2)
{
sϕ : ϕ is a local chart of M

}
is an atlas of local sections of FR(TM) → M . We endow FR(TM) with the
unique maximal atlas of local sections of FR(TM) → M containing (1.5.2) and
then π : TM →M is a vector bundle over M with typical fiber Rn.

EXAMPLE 1.5.5. Let P be aG-principal bundle over a differentiable manifold
M , E0 be a real finite-dimensional vector space and ρ : G→ GL(E0) be a smooth
representation of G on E0. As explained in Example 1.4.5, the fibers of the associ-
ated bundle P ×GE0 have the structure of a real vector space isomorphic to E0. In
order to make P ×GE0 into a vector bundle over M with typical fiber E0, we have
to describe a maximal atlas of local sections of FRE0(P ×G E0). This is done as
follows. Consider the map (recall (1.2.16)):

(1.5.3) H : P 3 p 7−→ p̂ ∈ FRE0(P ×G E0).

Clearly H is fiber-preserving and for each x ∈M it restricts to a morphism of prin-
cipal spaces from Px to FRE0(Px ×G E0) whose subjacent group homomorphism
is the representation ρ : G → GL(E0). By Lemma 1.3.11, there exists a unique
maximal atlas of local sections of FRE0(P ×GE0)→M that makes H into a mor-
phism of principal bundles. We will always regard the associated bundle P ×G E0

as a vector bundle with FRE0(P ×G E0) endowed with the maximal atlas of local
sections that makes H a morphism of principal bundles.

Observe that P ×GE0 has, in principle, two distinct differential structures: one
that was defined in Section 1.4 for arbitrary associated bundles and the other that is
assigned to the total space of vector bundles, i.e., the one for which the contraction
map:

(1.5.4) CP×GE0 : FRE0(P ×G E0)×∼ E0 3 [%, e0] 7−→ %(e0) ∈ P ×G E0
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is a smooth diffeomorphism. In order to check that these two differential structures
coincide we endow P ×G E0 with the differential structure that makes CP×GE0

into a smooth diffeomorphism and we show that for every smooth local section
s : U → P the map ŝ is a smooth diffeomorphism onto an open subset of P ×GE0

(recall that this is precisely the characterization of the differential structure of the
total space of an associated bundle introduced in Section 1.4). Set s1 = H ◦ s, so
that s1 : U → FRE0(P ×G E0) is a smooth local E0-frame of the vector bundle
P ×G E0. We claim that:

(1.5.5) ŝ = š1,

i.e., the local trivialization of the associated bundle P ×G E0 corresponding to the
smooth local section s of P is equal to the local trivialization of the vector bundle
P ×G E0 corresponding to the smooth local E0-frame s1. Namely, given x ∈ U ,
e0 ∈ E0 then:

š1(x, e0) = s1(x) · e0 = H
(
s(x)

)
· e0 = ŝ(x)(e0) = [s(x), e0] = ŝ(x, e0).

Since the trivialization š1 is a smooth diffeomorphism onto an open subset of the
total space of the vector bundle P ×G E0, it follows from (1.5.5) that ŝ is also a
smooth diffeomorphism onto an open subset of P ×GE0. This concludes the proof
that the two natural differential structures of P×GE0 coincide. An alternative argu-
ment to prove the coincidence of these two differential structures of P ×GE0 is the
following: we endow P ×GE0 with the differential structure defined in Section 1.4
and we show that the contraction map CP×GE0 is a smooth diffeomorphism. Since
H is a morphism of principal bundles, we have an induced map:

Ĥ : P ×G E0 3 [p, e0] 7−→ [H(p), e0] ∈ FRE0(P ×G E0)×∼ E0.

By Lemma 1.4.10, Ĥ is a smooth diffeomorphism. To conclude the proof that the
contraction map CP×GE0 is a smooth diffeomorphism, we show that CP×GE0 is
equal to the inverse of Ĥ. Since both CP×GE0 and Ĥ are bijective, it suffices to
check that CP×GE0 ◦ Ĥ is the identity map of P ×G E0; given p ∈ P , e0 ∈ E0, we
compute:

CP×GE0

(
Ĥ

(
[p, e0]

))
= CP×GE0

(
[H(p), e0]

)
= CP×GE0

(
[p̂, e0]

)
= p̂(e0) = [p, e0].

DEFINITION 1.5.6. Given x ∈ M and e ∈ Ex then the tangent space TeEx is
a subspace of TeE and it is called the vertical space of the vector bundle E at e;
we write:

Vere(E) = TeEx.

Clearly:
Vere(E) = Ker

(
dπ(e)

)
.

Since for every x ∈ M the fiber Ex is a real finite-dimensional vector space, we
identify the tangent space TeEx at a point e ∈ Ex with Ex itself, i.e.:

Vere(E) = TeEx ∼= Ex.
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For each x ∈ M , the contraction map CE restricts to a linear isomorphism from
FRE0(Ex)×∼ E0 to Ex and thus its differential at a point [p, e0] of FRE0(Ex)×∼ E0

restricts to a linear isomorphism from the vertical space Ver[p,e0]

(
FRE0(E)×∼ E0

)
to Verp(e0)(E); recalling from (1.4.4) that the vertical space of FRE0(E) ×∼ E0 at
[p, e0] is identified with the fiber product FRE0(Ex) ×∼ E0 then the restriction to
the vertical space of the differential of CE at [p, e0] is given by:

CEx : FRE0(Ex)×∼ E0 3 [p, e0] 7−→ p(e0) ∈ Ex.

1.5.1. Local sections of a vector bundle. Let π : E →M be a vector bundle
with typical fiber E0.

DEFINITION 1.5.7. By a local section of the vector bundle E we mean a map
ε : U → E defined on an open subset U of M such that π ◦ ε is the inclusion map
of U in M , i.e., such that ε(x) ∈ Ex, for all x ∈ U .

If ε : U → E is a local section of E and if s : U → FRE0(E) is a smooth
local E0-frame of E then the map ε̃ : U → E0 defined by:

ε̃(x) = s(x)−1 · ε(x) ∈ E0,

for all x ∈ U is called the representation of the section εwith respect to the smooth
local E0-frame s. If š is the local trivialization of E corresponding to s then:

ε(x) = š
(
x, ε̃(x)

)
,

for all x ∈ U ; therefore the local section ε is smooth if and only if its representation
ε̃ is smooth.

A globally defined local section ε : M → E of a vector bundleE will be called
a global section (or just a section) of E. Notice that a local section ε : U → E of
E is the same as a global section of the restricted vector bundle E|U . We denote
by Γ(E) the set of all sections of E and by Γ(E) the set of all smooth sections
of E. Clearly Γ(E) is a real vector space endowed with the obvious operations
of pointwise addition and multiplication by scalars; moreover, Γ(E) is a module
over the ring RM of all maps f : M → R. If s : U → FRE0(E) is a smooth
local E0-frame of E then the map ε → ε̃ that assigns to each section ε ∈ Γ(E|U )
its representation ε̃ : U → E0 with respect to s is a linear isomorphism of real
vector spaces and also an isomorphism of RM -modules. Since ε is smooth if and
only if ε̃ is smooth, it follows that Γ(E) is a subspace of Γ(E); but it is obviously
not an RM -submodule in general. Let C∞(M) denote the set of all smooth maps
f : M → R; clearly C∞(M) is a subring of RM , Γ(E) is a C∞(M)-module and
Γ(E) is a C∞(M)-submodule of Γ(E).

EXAMPLE 1.5.8. Let M be a differentiable manifold. A (smooth) section of
the tangent bundle TM is the same as a (smooth) vector field on M .

EXAMPLE 1.5.9. Let Π : P → M be a G-principal bundle, E0 be a real
finite-dimensional vector space and ρ : G→ GL(E0) be a smooth representation.
The associated bundle P ×G E0 is a vector bundle over M with typical fiber E0

(recall Example 1.5.5) and the map H : P → FRE0(P ×G E0) defined by (1.5.3)
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is a morphism of principal bundles whose subjacent Lie group homomorphism is
ρ. If s : U → P is a smooth local section of P then the composition H ◦ s is a
smooth local E0-frame of P ×G E0. Let ε : U → P ×G E0 be a local section of
the associated bundle P ×G E0. In Subsection 1.4.1 we have defined the notion of
representation of ε with respect to s (recall (1.4.6)). It is easily seen that the map
ε̃ : U → E0 that represents the local section ε of the vector bundle P ×G E0 with
respect to the smooth local E0-frame H ◦ s is the same as the map that represents
the local section ε of the associated bundle P ×G E0 with respect to the smooth
local section s of P .

EXAMPLE 1.5.10. Let π : E → M be a vector bundle with typical fiber E0

and consider the contraction map CE : FRE0(E) ×∼ E0 → E. If ε : U → E is a
local section of E then then (CE)−1 ◦ ε is a local section of FRE0(E)×∼ E0 and(

(CE)−1 ◦ ε
)
(x) = [s(x), ε̃(x)],

for all x ∈ U . Notice that the representation of the local section (CE)−1 ◦ ε of
the associated bundle FRE0(E) ×∼ E0 with respect to the smooth local section s
of FRE0(E) (in the sense of Subsection 1.4.1) coincides with the representation of
the local section ε of the vector bundleE with respect to the smooth localE0-frame
s of E.

1.5.2. Morphisms of vector bundles. We now define the natural morphisms
of the category of vector bundles.

DEFINITION 1.5.11. Let E, F be vector bundles over the same differentiable
manifold M . A map L : E → F is called fiber preserving if L(Ex) ⊂ Fx for all
x ∈ M ; we set Lx = L|Ex : Ex → Fx. The map L is called fiberwise linear if
L is fiber preserving and if Lx is a linear map, for all x ∈ M . A smooth fiberwise
linear map L : E → F is called a vector bundle morphism.

Denote by E0, F0 the typical fibers of E and F , respectively and let s, s′ be
smooth local sections of FRE0(E) and FRF0(F ) respectively, both defined in the
same open subset U of M . If L : E → F is a fiberwise linear map then we set:

L̃(x) = s′(x)−1 ◦ Lx ◦ s(x) ∈ Lin(E0, F0),

for all x ∈ U , where Lin(E0, F0) denotes the space of all linear maps from E0 to
F0. We call L̃ : U → Lin(E0, F0) the representation of L with respect to s and s′.
We have a commutative diagram:

E|U
L // F |U

U × E0

š ∼=

OO

(x,e0) 7→(x,L̃(x)·e0)

// U × F0

∼= š′

OO

in which the vertical arrows are smooth diffeomorphisms. Clearly the bottom arrow
of the diagram is smooth if and only if the map L̃ is smooth. It follows that:
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• ifL is a morphism of vector bundles then its representation L̃with respect
to arbitrary smooth local sections s and s′ is smooth;
• if L is a fiberwise linear map and if every point of M is contained in

the domain U of a pair s, s′ of smooth local sections for which the cor-
responding representation L̃ is smooth then L is a morphism of vector
bundles.

Let L : E → F be a morphism of vector bundles. Obviously L is bijective
if and only if Lx : Ex → Fx is a linear isomorphism, for all x ∈ M . A bijective
morphism of vector bundles L : E → F will be called an isomorphism of vector
bundles. If L : E → F is an isomorphism of vector bundles then L is a smooth
diffeomorphism and the map L−1 : F → E is also an isomorphism of vector
bundles; namely, L−1 is clearly fiberwise linear and if L̃ is the representation of L
with respect to local sections s and s′ then x 7→ L̃(x)−1 is the representation of
L−1 with respect to s and s′.

EXAMPLE 1.5.12. For any vector bundle π : E → M , the contraction map
CE is obviously an isomorphism of vector bundles from FRE0(E)×∼ E0 onto E.

EXAMPLE 1.5.13. If s : U → FRE0(E) is a smooth local E0-frame of the
vector bundle E then the local trivialization š : U ×E0 → E|U is an isomorphism
of vector bundles from the trivial bundle U × E0 onto E|U .

EXAMPLE 1.5.14. Let P be a G-principal bundle over a differentiable man-
ifold M , E0 be a real finite-dimensional vector space and ρ : G → GL(E0) be
a smooth representation. If s : U → P is a smooth local section then the map
ŝ : U × E0 → (P |U ) ×G E0 (recall (1.4.2)) is a vector bundle isomorphism.4

Notice that this example can also be seen as a particular case of Example 1.5.13.
Namely, by (1.5.5), ŝ = š1, where s1 = H ◦ s and H : P → FRE0(P ×G E0) is
the morphism of principal bundles defined in (1.5.3).

Let us particularize Lemma 1.4.10 to the context of vector bundles.

LEMMA 1.5.15. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be a
morphism of principal bundles and let φ0 : G→ H denote its subjacent Lie group
homomorphism. Given a real finite-dimensional vector space E0 and a smooth
representation ρ : H → GL(E0), we consider the smooth representation of G in
E0 given by ρ◦φ0 : G→ GL(E0). Then the induced map φ̂ : P×GE0 → Q×HE0

is an isomorphism of vector bundles.

PROOF. The restriction of φ̂ to each fiber of P ×G E0 is a linear isomorphism
(Example 1.2.33). Moreover, Lemma 1.4.10 implies that φ̂ is smooth. �

We also have a version of Lemma 1.4.11 for vector bundles.

4Recall from Example 1.5.5 that the differential structure of P ×G E0 that makes the map ŝ a
smooth diffeomorphism coincides with the differential structure that P ×G E0 has as the total space
of a vector bundle.
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LEMMA 1.5.16. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be
a morphism of principal bundles and let φ0 : G → H denote its subjacent Lie
group homomorphism. Let E0, F0 be real finite-dimensional vector spaces and let
ρ : G → GL(E0), ρ′ : H → GL(F0) be smooth representations. Assume that we
are given a linear map T0 : E0 → F0 such that T0 ◦ ρ(g) = ρ′

(
φ0(g)

)
◦ T0, for all

g ∈ G. Then the induced map φ ×∼ T0 : P ×G E0 → Q ×H F0 is a vector bundle
morphism.

PROOF. Clearly φ×∼ T0 is fiber preserving and, by Example 1.2.33, φ×∼ T0 is
fiberwise linear. Finally, Lemma 1.4.11 implies that φ×∼ T0 is smooth. �

DEFINITION 1.5.17. Let P be a G-principal bundle over a differentiable man-
ifold M , E0 be a real finite-dimensional vector space, ρ : G → GL(E0) be a
smooth representation, E be a vector bundle over M with typical fiber E0 and
φ : P → FRE0(E) be a morphism of principal bundles whose subjacent Lie group
homomorphism is the representation ρ. We set:

Cφ = CE ◦ φ̂ : P ×G E0 3 [p, e0] 7−→ φ(p) · e0 ∈ E,

and we call Cφ the φ-contraction map.

It follows from Lemma 1.5.15 and Example 1.5.12 that CEφ is an isomorphism
of vector bundles.

There is a relation between isomorphisms of vector bundles and isomorphisms
of the corresponding principal bundles of frames. Let E, E′ be vector bundles
over a differentiable manifold M , with the same typical fiber E0. Given a bijective
fiberwise linear map L : E → E′ then the map:

L∗ : FRE0(E) 3 p 7−→ L ◦ p ∈ FRE0(E
′)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is the identity (recall Examples 1.2.17
and 1.2.23). We call L∗ the map induced by L on the frame bundles. We have the
following:

LEMMA 1.5.18. LetE,E′ be vector bundles over the same differentiable man-
ifold M , with the same typical fiber E0. If L : E → E′ is a bijective fiberwise
linear map then L is smooth if and only if the induced map L∗ is smooth; in other
words, L is an isomorphism of vector bundles if and only if L∗ is an isomorphism
of principal bundles whose subjacent Lie group homomorphism is the identity.

PROOF. Let s : U → FRE0(E), s′ : U → FRE0(E
′) be smooth local sections

and denote by L̃ : U → Lin(E0, E0) the representation of L with respect to s and
s′. Since L is an isomorphism of vector bundles, the map L̃ takes values on the
general linear group GL(E0); we have:

(L∗ ◦ s)(x) = Lx ◦ s(x) = s′(x) ◦ L̃(x),
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for all x ∈ U . Since both s′ and L̃ are smooth, it follows that L∗ ◦ s is a smooth
local section of FRE0(E

′). Hence, by the result of Exercise 1.45, L∗ is a morphism
of principal bundles whose subjacent Lie group homomorphism is the identity.

Conversely, assume that L∗ is an isomorphism of principal bundles whose sub-
jacent Lie group homomorphism is the identity. We have an induced map:

L̂∗ : FRE0(E)×∼ E0 −→ FRE0(E
′)×∼ E0

which is a smooth diffeomorphism, by Lemma 1.4.10. It is easily seen that the
diagram:

(1.5.6)

FRE0(E)×∼ E0
L̂∗ //

CE
��

FRE0(E
′)×∼ E0

CE′

��
E

L
// E′

commutes. This proves that L is smooth. �

EXAMPLE 1.5.19. If s : U → FRE0(E) is a smooth local E0-frame of a
vector bundle E then the map βs : U ×GL(E0)→ FRE0(E|U ) (recall (1.3.2)) is
an isomorphism of principal bundles whose subjacent Lie group homomorphism is
the identity map of GL(E0) (see Example 1.3.10). Clearly βs = (š)∗.

1.5.3. Pull-back of vector bundles. Let π : E →M be a vector bundle over
a differentiable manifoldM with typical fiberE0 and let f : M ′ →M be a smooth
map defined on a differentiable manifold M ′. The pull-back of E by f is the set
f∗E defined by:

f∗E =
⋃
y∈M ′

(
{y} × Ef(y)

)
.

The set f∗E is a subset of the cartesian product M ′×E. The restriction to f∗E of
the projection onto the first coordinate is a map π1 : f∗E →M ′ and the restriction
to f∗E of the projection onto the second coordinate is a map f̄ : f∗E → E; we
have a commutative diagram:

f∗E
f̄ //

π1

��

E

π

��
M ′

f
// M

For each y ∈ M ′, the fiber (f∗E)y is equal to {y} × Ef(y); we will identify the
fiber (f∗E)y of f∗E with the fiber Ef(y) of E. Since every fiber of f∗E is a
fiber of E, each fiber of f∗E is endowed with the structure of a real vector space
isomorphic to E0. The set FRE0(f

∗E) can be naturally identified with the pull-
back f∗FRE0(E); this identification makes FRE0(f

∗E) into a GL(E0)-principal
bundle and thus f∗E into a vector bundle with typical fiber E0.
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EXAMPLE 1.5.20. Let π : E →M be a vector bundle with typical fiber E0. If
U is an open subset of M and i : U →M denotes the inclusion map then the pull-
back i∗E can be identified with the restriction E|U (see Example 1.5.3); namely,
by Example 1.3.17, we have i∗FRE0(E) = FRE0(E)|U = FRE0(E|U ).

EXAMPLE 1.5.21. Let π : E → M be a vector bundle with typical fiber E0,
f : M ′ → M , g : M ′′ → M ′ be smooth maps, where M ′, M ′′ are differentiable
manifolds. Both g∗f∗E and (f ◦ g)∗E are vector bundles over M ′′; there exists
an obvious map L : g∗f∗E → (f ◦ g)∗E, which is the identity on each fiber. The
corresponding map:

L∗ : FRE0(g
∗f∗E) −→ FRE0

(
(f ◦ g)∗E

)
is the isomorphism of principal bundles considered in Example 1.3.24; thus, by
Lemma 1.5.18, L is an isomorphism of vector bundles. We use such isomorphism
to identify the vector bundles g∗f∗E and (f ◦ g)∗E.

The following lemma is the analogue of Lemma 1.3.16 for vector bundles.

LEMMA 1.5.22. Let π : E → M be a vector bundle with typical fiber E0,
M ′ be a differentiable manifold and f : M ′ → M be a smooth map. Denote by
π1 : f∗E → M ′ the pull-back of E by f . The map (π1, f̄) : f∗E → M ′ × E is
a smooth embedding whose image is the set of pairs (y, e) ∈ M ′ × E such that
f(y) = π(e). In particular, the map f̄ : f∗E → E is smooth.

Notice that the map (π1, f̄) is just the inclusion map of f∗E into the cartesian
product M ′ × E.

PROOF. Clearly the image of (π1, f̄) consists of the pairs (y, e) ∈ M ′ × E
such that f(y) = π(e). To prove that (π1, f̄) is an embedding, we consider the
commutative diagram:

FRE0(f
∗E)×∼ E0

inclusion //

Cf∗E
��

M ′ ×
(
FRE0(E)×∼ E0

)
Id×CE
��

f∗E
(π1,f̄)

// M ′ × E

The vertical arrows of the diagram are smooth diffeomorphisms and the top arrow
of the diagram is a smooth embedding, by Lemma 1.4.12. Hence (π1, f̄) is a
smooth embedding. �

COROLLARY 1.5.23 (universal property of the pull-back). Under the condi-
tions of Lemma 1.5.22, let X be a differentiable manifold and let φ1 : X → M ′,
φ2 : X → E be maps with π ◦ φ2 = f ◦ φ1. Then there exists a unique map
φ : X → f∗E such that π1 ◦ φ = φ1 and f̄ ◦ φ = φ2. The map φ is smooth.

PROOF. The hypothesis π ◦ φ2 = f ◦ φ1 means that the image of the map
(φ1, φ2) : X →M ′×E is contained in the image of the injective map (π1, f̄); thus
there exists a unique map φ : X → f∗E such that (π1, f̄) ◦ φ = (φ1, φ2). Since
(π1, f̄) is an embedding and (φ1, φ2) is smooth, it follows that φ is smooth. �
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DEFINITION 1.5.24. By a local section of the vector bundle E along f we
mean a map ε : U ′ → P defined on an open subset U ′ of M ′ satisfying the
condition π ◦ ε = f |U ′ .

EXAMPLE 1.5.25. If ε : U → E is a local section of E then the composition
ε ◦ f : f−1(U)→ E is a local section of E along f .

Given a local section ε : U ′ → E of E along f there exists a unique local
section ε̄ : U ′ → f∗E of f∗E such that f̄ ◦ ε̄ = ε; the following commutative
diagram illustrates this situation:

(1.5.7)

f∗E
f̄ // E

π

��
U ′

ε̄

OO

ε

==zzzzzzzz

f |U′
// M

Thus, composition on the left with f̄ induces a bijection between the set of local
sections of f∗E and the set of local sections of E along f .

COROLLARY 1.5.26. Under the conditions of Lemma 1.5.22, if ε : U ′ → E is
a smooth local section of E along f then the unique local section ε̄ : U ′ → f∗E of
f∗E such that f̄ ◦ ε̄ = ε is also smooth.

PROOF. Apply Corollary 1.5.23 with X = U ′, φ1 the inclusion map of U ′ in
M ′ and φ2 = ε. The map φ given by the thesis of Corollary 1.5.23 is precisely
ε̄. �

Corollary 1.5.26 tells us that composition on the left with f̄ induces a bijection
between the set of smooth local sections of f∗E and the set of smooth local sections
of E along f .

EXAMPLE 1.5.27. Let M ′, M be differentiable manifolds and f : M ′ → M
be a smooth map. Denote by π : TM → M , π′ : TM ′ → M the projections.
Applying the universal property of pull-backs (Corollary 1.5.23) with X = TM ′,
φ1 = π′, φ2 = df : TM → TM ′ and E = TM , we obtain a smooth map←−
df : TM ′ → f∗TM such that f̄ ◦

←−
df = df and π1 ◦

←−
df = π′. Clearly,

←−
df is a

morphism of vector bundles. More generally, given vector bundles π : E → M ,
π′ : E′ →M ′ and smooth maps L : E′ → E, f : M ′ →M such that the diagram:

E′
L //

π′

��

E

π

��
M ′

f
// M

commutes then the universal property of pull-backs gives us a smooth map L :
E′ → f∗E such that f̄ ◦ L = L and π1 ◦ L = π′. If for all y ∈M ′, the restriction
L|E′y : E′y → Ef(y) is linear then L is a morphism of vector bundles.
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1.5.4. Vector subbundles. Let π : E → M be a vector bundle with typical
fiberE0, F0 be a subspace ofE0 and F be a subset ofE such that for every x ∈M ,
the set Fx = F ∩Ex is a subspace of the fiberEx having the same dimension as F0.
Given x ∈ M , then an E0-frame p ∈ FRE0(Ex) is said to be adapted to (F0, F )
if p is adapted to (F0, Fx), i.e., if p(F0) = Fx (recall Example 1.1.10). Consider
the set:

FRE0(E;F0, F ) =
⋃
x∈M

FRE0(Ex;F0, Fx)

of allE0-frames ofE adapted to (F0, F ). For each x ∈M , the set FRE0(Ex;F0, Fx)
is a principal subspace of FRE0(Ex) whose structural group is the Lie subgroup
GL(E0;F0) of GL(E0).

DEFINITION 1.5.28. Let π : E →M be a vector bundle with typical fiber E0.
A subset F ⊂ E is called a vector subbundle if there exists a subspace F0 of E0

such that:
(a) for each x ∈ M , the set Fx = F ∩ Ex is a subspace of Ex having the

same dimension as F0;
(b) FRE0(E;F0, F ) is a principal subbundle of FRE0(E) with structural

group GL(E0;F0).

Condition (b) in Definition 1.5.28 means that every point of M belongs to the
domain U of a smooth local E0-frame s : U → FRE0(E) of E such that s(x)
maps F0 to Fx, for all x ∈ U .

REMARK 1.5.29. If F0 is a subspace of E0 such that conditions (a) and (b) in
Definition 1.5.28 are satisfied then every subspace F ′0 of E0 having the same di-
mension as F0 satisfies conditions (a) and (b). Namely, let g ∈ GL(E0) be a linear
isomorphism of E0 such that g(F ′0) = F0. The map γg : FRE0(E) → FRE0(E)
is an isomorphism of principal bundles whose subjacent Lie group isomorphism is
the inner automorphism Ig−1 of GL(E0) (Exercise 1.44); since:

γg
(
FRE0(E;F0, F )

)
= FRE0(E;F ′0, F ),

it follows that if FRE0(E;F0, F ) is a principal subbundle of FRE0(E) with struc-
tural group GL(E0;F0) then FRE0(E;F ′0, F ) is a principal subbundle of FRE0(E)
with structural group Ig−1

(
GL(E;F0)

)
= GL(E;F ′0) (Exercise 1.47). It follows

that if F is a vector subbundle of E and if F0 is a subspace of E0 such that condi-
tion (a) in Definition 1.5.28 is satisfied then also condition (b) is satisfied.

Let us now show how a vector subbundle F of a vector bundle π : E → M
can be regarded as a vector bundle in its own right. Let F0 be a subspace of the
typical fiber E0 of E such that condition (a) in Definition 1.5.28 is satisfied (by
Remark 1.5.29, also condition (b) is then satisfied). First of all, the projection
π : E → M restricts to a map π|F : F → M and for all x ∈ M the fiber
Fx is endowed with the structure of a real vector space isomorphic to the real
finite-dimensional vector space F0. In order to make F a vector bundle over M
with typical fiber F0, we have to describe a maximal atlas of local sections of
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FRF0(F ) → M . If p ∈ FRE0(E;F0, F ) is an E0-frame of E adapted to (F0, F )
then p|F0 is an F0-frame of F ; we have therefore a map:

(1.5.8) FRE0(E;F0, F ) 3 p 7−→ p|F0 ∈ FRF0(F )

that is fiber preserving and whose restriction to each fiber is a morphism of princi-
pal spaces whose subjacent Lie group homomorphism is:

(1.5.9) GL(E0;F0) 3 T 7−→ T |F0 ∈ GL(F0).

Thus, by Lemma 1.3.11, there exists a unique maximal atlas of local sections of
FRF0(F ) such that (1.5.8) is a morphism of principal bundles. We will always
consider a vector subbundle to be endowed with the structure of vector bundle
described above.

PROPOSITION 1.5.30. If E is a vector bundle and F is a vector subbundle of
E then F is an embedded submanifold of E and the differential structure of F (as
a total space of a vector bundle) coincides with the differential structure it inherits
from E as an embedded submanifold. In particular, the inclusion map of F in E is
smooth and hence a morphism of vector bundles.

PROOF. Denote by F0, E0 the typical fibers of F and E, respectively. If r
denotes the morphism of principal bundles (1.5.8) then by Lemma 1.4.10 the map:

r̂ : FRE0(E;F0, F )×∼ F0 −→ FRF0(F )×∼ F0

is a smooth diffeomorphism, where we consider the smooth representation of the
structural group GL(E0;F0) of FRE0(E;F0, F ) on F0 given by (1.5.9). If i de-
notes the inclusion map of FRE0(E;F0, F ) in FRE0(E) and if i0 denotes the
inclusion map of F0 in E0 then the map:

i×∼ i0 : FRE0(E;F0, F )×∼ F0 −→ FRE0(E)×∼ E0

is a smooth embedding, by Lemma 1.4.11. It is easy to see that the diagram:

FRF0(F )×∼ F0

(i×∼i0)◦r̂−1

//

CF ∼=

��

FRE0(E)×∼ E0

CE∼=

��
F

inclusion
// E

commutes. Thus, the inclusion map of F in E is a smooth embedding. �

PROPOSITION 1.5.31. LetE,E′ be vector bundles over the same differentiable
manifold M and let L : E → E′ be a morphism of vector bundles. Then:

(a) if L is injective then its image L(E) is a vector subbundle of E′;
(b) if L is surjective then its kernel Ker(L) =

⋃
x∈M Ker(Lx) is a vector

subbundle of E.

To prove Proposition 1.5.31, we need the following:

LEMMA 1.5.32. Let E0, E′0 be real finite-dimensional vector spaces, M be a
differentiable manifold, L̃ : M → Lin(E0, E

′
0) be a smooth map and x0 ∈ M be

a fixed point.



1.5. VECTOR BUNDLES AND THE PRINCIPAL BUNDLE OF FRAMES 57

(a) Assume that L̃(x0) is injective. Given a subspace F0 of E′0 having the
same dimension as E0 then there exists a smooth map g : U → GL(E′0)
defined in an open neighborhood U of x0 in M such that the linear iso-
morphism g(x) : E′0 → E′0 carries F0 to the image of L̃(x), for all
x ∈ U .

(b) Assume that L̃(x0) is surjective. Given a subspaceF0 ofE0 with dim(F0) =
dim(E0) − dim(E′0) then there exists a smooth map g : U → GL(E0)
defined in an open neighborhood U of x0 in M such that the linear iso-
morphism g(x) : E0 → E0 carries F0 to the kernel of L̃(x), for all
x ∈ U .

PROOF. Let us prove (a). Choose a subspaceZ ofE′0 such thatE′0 = L̃(x0)(E0)⊕
Z. For each x ∈ M , let ḡ(x) : E0 ⊕ Z → E′0 be the linear map such that ḡ(x)|E0

equals L̃(x) and ḡ(x)|Z equals the inclusion. Then ḡ : M → Lin(E0⊕Z,E′0) is a
smooth map and ḡ(x0) is a linear isomorphism; thus, there exists an open neighbor-
hood U of x0 in M such that ḡ(x) is a linear isomorphism, for all x ∈ U . Since F0

has the same dimension asE0, there exists a linear isomorphism T : E′0 → E0⊕Z
with T (F0) = E0 ⊕ {0}. Setting g(x) = ḡ(x) ◦ T , for all x ∈ U , then:

g(x)(F0) = ḡ(x)
(
E0 ⊕ {0}

)
= L̃(x)(E0).

This concludes the proof of (a). Now let us prove (b). Choose a subspace Z of E0

such that E0 = Ker
(
L̃(x0)

)
⊕ Z; denote by p : E0 → Ker

(
L̃(x0)

)
the projection

onto the first coordinate corresponding to such direct sum decomposition. For each
x ∈ M , let ḡ(x) : E0 → E′0 ⊕ Ker

(
L̃(x0)

)
be the linear map ḡ(x) =

(
L̃(x), p

)
.

Then:
ḡ : M −→ Lin

(
E0, E

′
0 ⊕Ker

(
L̃(x0)

))
is a smooth map and ḡ(x0) is a linear isomorphism; thus, there exists an open
neighborhood U of x0 in M such that ḡ(x) is a linear isomorphism, for all x ∈ U .
It is easy to see that:

ḡ(x)
[
Ker

(
L̃(x)

)]
= {0} ⊕Ker

(
L̃(x0)

)
,

for all x ∈ U . Now, since F0 has the same dimension as Ker
(
L̃(x0)

)
, there

exists a linear isomorphism T : E0 → E′0 ⊕ Ker
(
L̃(x0)

)
such that T (F0) =

{0}⊕Ker
(
L̃(x0)

)
. Setting g(x) = ḡ(x)−1◦T for all x ∈ U then g : U → GL(E0)

is a smooth map and:
g(x)(F0) = Ker

(
L̃(x)

)
,

for all x ∈ U . This concludes the proof. �

PROOF OF PROPOSITION 1.5.31. Denote by E0, E′0 respectively the typical
fibers of E and E′. Let us prove (a). Assume that L is injective and let F0 be a
subspace of E′0 having the same dimension as E0. Given x0 ∈ M , we have to
find a smooth local section of FRE′0

(E′) defined in an open neighborhood of x0

in M with image contained in FRE′0

(
E′;F0, L(E)

)
. Let s : V → FRE0(E), s′ :

V → FRE′0
(E′) be smooth local sections, defined in the same open neighborhood
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V of x0 in M ; denote by L̃ : V → Lin(E0, E
′
0) the representation of L with

respect to s and s′. Since L̃(x0) is injective, Lemma 1.5.32 gives us a smooth
map g : U → GL(E′0) defined in an open neighborhood U of x0 in V such that
the linear isomorphism g(x) : E′0 → E′0 carries F0 to the image of L̃(x), for all
x ∈ U . Clearly, the smooth local section:

U 3 x 7−→ s′(x) ◦ g(x) ∈ FRE′0
(E′)

of FRE′0
(E′) has image contained in FRE′0

(
E′;F0, L(E)

)
. This proves (a). Let

us prove (b). Assume that L is surjective and let F0 be a subspace of E0 with
dim(F0) = dim(E0) − dim(E′0). Given x0 ∈ M , we have to find a smooth
local section of FRE0(E) defined in an open neighborhood of x0 in M with image
contained in FRE0

(
E;F0,Ker(L)

)
. As before, let s : V → FRE0(E), s′ : V →

FRE′0
(E′) be smooth local sections, defined in the same open neighborhood V of

x0 in M ; denote by L̃ : V → Lin(E0, E
′
0) the representation of L with respect

to s and s′. Since L̃(x0) is surjective, Lemma 1.5.32 gives us a smooth map g :
U → GL(E′0) defined in an open neighborhood U of x0 in V such that the linear
isomorphism g(x) : E0 → E0 carries F0 to the kernel of L̃(x), for all x ∈ U .
Clearly, the smooth local section:

U 3 x 7−→ s(x) ◦ g(x) ∈ FRE0(E)

of FRE0(E) has image contained in FRE0

(
E;F0,Ker(L)

)
. This concludes the

proof of (b). �

DEFINITION 1.5.33. Let M be a differentiable manifold. By a distribution on
M we mean a subset D of TM such that for all x ∈ M , Dx = D ∩ TxM is a
subspace of the tangent space TxM . By a smooth distribution on M we mean a
vector subbundle D of the tangent bundle TM .

1.6. Functorial constructions with vector bundles

Given an integer n ≥ 1, we denote by Vecn the category whose objects are n-
tuples (Vi)ni=1 of real finite-dimensional vector spaces and whose morphisms from
(Vi)ni=1 to (Wi)ni=1 are n-tuples (Ti)ni=1 of linear isomorphisms Ti : Vi →Wi. We
set Vec = Vec1. A functor F : Vecn → Vec is called smooth if for any object
(Vi)ni=1 of Vecn the map:

(1.6.1) F : GL(V1)× · · · ×GL(Vn) −→ GL
(
F(V1, . . . , Vn)

)
is smooth. Observe that (1.6.1) is a Lie group homomorphism; its differential at
the identity is a Lie algebra homomorphism that will be denoted by:

(1.6.2) f : gl(V1)⊕ · · · ⊕ gl(Vn) −→ gl
(
F(V1, . . . , Vn)

)
.

We call f the differential of the smooth functor F.
Let π : E → M be a vector bundle with typical fiber E0. Given a smooth

functor F : Vec → Vec we set:

(1.6.3) F(E) =
⋃
x∈M

F(Ex),
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where the union in (1.6.3) is understood to be disjoint5; we have an obviously
defined projection map F(E) → M that sends F(Ex) to x, for all x ∈ M . For
each x ∈ M , the fiber F(Ex) of F(E) over x has the structure of a real vector
space having the same dimension as F(E0). In order to make F(E) into a vector
bundle with typical fiber F(E0), we will describe a maximal atlas of local sections
of FRF(E0)

(
F(E)

)
→M . The map:

(1.6.4) F : FRE0(E) 3 p 7−→ F(p) ∈ FRF(E0)

(
F(E)

)
is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is:

(1.6.5) GL(E0) 3 T 7−→ F(T ) ∈ GL
(
F(E0)

)
.

Thus, Lemma 1.3.11 gives us a unique maximal atlas of local sections of FRF(E0)

(
F(E)

)
that makes (1.6.4) into a morphism of principal bundles. We will always consider
F(E) to be endowed with the vector bundle structure described above.

Notice that if s : U → FRE0(E) is a (smooth) local E0-frame of E then F ◦ s
is a (smooth) local F(E0)-frame of F(E); we call F ◦ s the local frame induced by
s on F(E).

REMARK 1.6.1. Let F : Vec → Vec be a smooth functor and π : E → M
be a vector bundle with typical fiber E0. Since (1.6.4) is a morphism of principal
bundles whose subjacent Lie group homomorphism is the representation (1.6.5),
we are in the situation described in Definition 1.5.17 and thus we have the following
isomorphism of vector bundles:

CF = CF(E) ◦ F̂ : FRE0(E)×∼ F(E0) 3 [p, e] 7−→ F(p) · e ∈ F(E).

EXAMPLE 1.6.2. If F : Vec → Vec is the identity functor then for every
vector bundle E the vector bundle F(E) coincides with E itself. For any object V
of Vec, the map f is the identity map of gl(V ).

EXAMPLE 1.6.3. Let Z be a fixed real finite-dimensional vector space and
consider the constant functor F : Vec → Vec that sends any object V of Vec
to Z and any linear isomorphism T : V → W to the identity map of Z. For
any object V of Vec, the map f : gl(V ) → gl(Z) is the identically zero map.
Given a vector bundle E over a differentiable manifold M with typical fiber E0

then F(E) is the trivial vector bundle M × Z (recall Example 1.5.2); namely, if
FRZ(M × Z) = M × GL(Z) is endowed with the structure of a trivial GL(Z)-
principal bundle (see Example 1.3.2) then the map:

F : FRE0(E) 3 p 7−→
(
Π(p), Id

)
∈M ×GL(Z) = FRZ(M × Z)

is a morphism of principal bundles.

Now, a less trivial example.

5If the union is not disjoint, one can always replace F(Ex) with {x} × F(Ex), or else modify
the functor F so that F(V ) is replaced with {V } × F(V ), for every real finite-dimensional vector
space V .
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EXAMPLE 1.6.4. Let F : Vec → Vec be the functor that sends V to the dual
space V ∗ and a linear isomorphism T : V → W to T ∗−1 : V ∗ → W ∗, where
T ∗ : W ∗ → V ∗ denotes the transpose map of T . The functor F is clearly smooth
and for any object V of Vec, the map f is given by:

f : gl(V ) 3 X 7−→ −X∗ ∈ gl(V ∗).

Given a vector bundle E then the vector bundle F(E) is denoted by E∗ and it is
called the dual bundle of E. If E = TM is the tangent bundle of the differentiable
manifold M then the dual bundle TM∗ is also called the cotangent bundle of M .

EXAMPLE 1.6.5. Let F : Vec → Vec be the functor that sends V to the space
Lin(V ) of linear endomorphisms of V and a linear isomorphism T : V → W to
the linear isomorphism:

IT : Lin(V ) 3 L 7−→ T ◦ L ◦ T−1 ∈ Lin(W ).

The functor F is clearly smooth and for any object V of Vec, the map:

f : gl(V ) −→ gl
(
Lin(V )

)
is given by:

f(X) · L = [X,L] = X ◦ L− L ◦X,
for all X ∈ gl(V ) and all L ∈ Lin(V ). Given a vector bundle E then the vector
bundle F(E) will be denoted by Lin(E).

Given vector spaces V1, . . . , Vk, W , we denote by Lin(V1, . . . , Vk;W ) the
space of k-linear maps B : V1 × · · · × Vk → W ; by Link(V,W ) we denote the
space of k-linear mapsB : V ×· · ·×V →W . By Lins

k(V,W ) (resp., Lina
k(V,W ))

we denote the subspace of Link(V,W ) consisting of symmetric (resp., alternating)
k-linear maps.

EXAMPLE 1.6.6. Let k ≥ 1 be fixed and let F : Vec → Vec be the functor
that sends V to Link(V,R) and a linear isomorphism T : V → W to the linear
isomorphism:

Link(V,R) 3 B 7−→ B(T−1·, . . . , T−1·) ∈ Link(W,R).

The functor F is clearly smooth and for any object V of Vec, the map:

f : gl(V ) −→ gl
(
Link(V,R)

)
is given by:

f(X) · L = −L(X·, ·, . . . , ·)− L(·, X·, . . . , ·)− · · · − L(·, ·, . . . , X·),
for all X ∈ gl(V ) and all L ∈ Link(V,R). Given a vector bundle E then the
vector bundle F(E) is denoted by Link(E,R). If M is a differentiable manifold
then a section of Link(TM,R) is called a covariant k-tensor field on M .

EXAMPLE 1.6.7. By replacing Link with Lins
k or Lina

k throughout Exam-
ple 1.6.6 we obtain vector bundles Lins

k(E,R), Lina
k(E,R). The sections of

Lins
k(TM,R) are called symmetric covariant k-tensor fields on M and the sec-

tions of Lina
k(TM,R) are called k-forms or differential forms of degree k on M .
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EXAMPLE 1.6.8. Let Z be a fixed real finite-dimensional vector space. By
replacingR with Z throughout Examples 1.6.6 and 1.6.7 we obtain vector bundles
Link(E,Z), Lins

k(E,Z) and Lina
k(E,Z). The sections of Link(TM,Z) (resp.,

Lins
k(TM,Z)) are called Z-valued covariant k-tensor fields (resp., symmetric Z-

valued covariant k-tensor fields) on M ; the sections of Lina
k(TM,Z) are called

Z-valued k-forms on M .

Let us now generalize the construction described above to the case of smooth
functors of several variables. Let n ≥ 1 be fixed and let F : Vecn → Vec be a
smooth functor. Given vector bundles E1, . . . , En over a differentiable manifold
M with typical fibers E1

0 , . . . , En0 , respectively, we set:

F(E1, . . . , En) =
⋃
x∈M

F(E1
x, . . . , E

n
x ),

where the union is understood to be disjoint. We have an obviously defined pro-
jection F(E1, . . . , En) → M that sends F(E1

x, . . . , E
n
x ) to x, for all x ∈ M ; for

each x in M the fiber F(E1
x, . . . , E

n
x ) has the structure of a real finite-dimensional

vector space having the same dimension as F(E1
0 , . . . , E

n
0 ). The fiberwise product

FRE1
0
(E1) ? · · · ? FREn0

(En) is a principal bundle over M with structural group
GL(E1

0)× · · · ×GL(En0 ); the map:

(1.6.6)
FRE1

0
(E1) ? · · · ? FREn0

(En)
F
−−→ FRF(E1

0 ,...,E
n
0 )

(
F(E1, . . . , En)

)
(p1, . . . , pn) 7−→ F(p1, . . . , pn)

is fiber preserving and its restriction to each fiber is a morphism of principal spaces
whose subjacent Lie group homomorphism is:

(1.6.7)
GL(E1

0)× · · · ×GL(En0 ) −→ GL
(
F(E1

0 , . . . , E
n
0 )

)
(T1, . . . , Tn) 7−→ F(T1, . . . , Tn).

Lemma 1.3.11 gives us a unique maximal atlas of local sections of

FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
−→M

that makes (1.6.6) into a morphism of principal bundles. We will always consider
F(E1, . . . , En) to be endowed with the vector bundle structure described above.

If si : U → FREi0
(Ei) is a (smooth) local Ei0-frame of Ei, i = 1, . . . , n,

then F ◦ (s1, . . . , sn) is a (smooth) local F(E1
0 , . . . , E

n
0 )-frame of the vector bun-

dle F(E1, . . . , En); we call F ◦ (s1, . . . , sn) the frame induced by s1, . . . , sn on
F(E1, . . . , En).

REMARK 1.6.9. Let E1, . . . , En be vector bundles over a differentiable mani-
fold M with typical fibers E1

0 , . . . , En0 respectively, and let F : Vecn → Vec be a
smooth functor. Since (1.6.6) is a morphism of principal bundles whose subjacent
Lie group homomorphism is the representation (1.6.7), we are in the situation de-
scribed in Definition 1.5.17 and thus we have the following isomorphism of vector
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bundles:

(1.6.8)

(
FRE1

0
(E1) ? · · · ? FREn0

(En)
)
×∼ F(E1

0 , . . . , E
n
0 )

CF

��
F(E1, . . . , En)

which is given by:

CF = CF(E1,...,En) ◦ F̂ : [(p1, . . . , pn), e] 7−→ F(p1, . . . , pn) · e.

EXAMPLE 1.6.10. Let M be a differentiable manifold, E1
0 , . . . , En0 be real

finite-dimensional vector spaces and consider the trivial vector bundles:

Ei = M × Ei0, i = 1, . . . , n.

If F : Vecn → Vec is a smooth functor then F(E1, . . . , En) can be identified
as a set with the trivial vector bundle M × F(E1

0 , . . . , E
n
0 ). Let us show that

F(E1, . . . , En) is a trivial vector bundle, i.e., such identification is a vector bun-
dle isomorphism. To this aim, we look at the corresponding principal bundles of
frames. The principal bundle of F(E1

0 , . . . , E
n
0 )-frames of F(E1, . . . , En) can be

identified as a set with the trivial principal bundle:

M ×GL
(
F(E1

0 , . . . , E
n
0 )

)
.

We have to check that such identification is an isomorphism of principal bundles.
This follows from the following two observations; first (see Exercise 1.56), the
fiberwise product:

FRE1
0
(E1) ? · · · ? FREn0

(En) =
(
M ×GL(E1

0)
)
? · · · ?

(
M ×GL(En0 )

)
is identified as a principal bundle with the trivial principal bundle:

M ×
(
GL(E1

0)× · · · ×GL(En0 )
)
.

Second, the map (1.6.6) can be identified with the product of the identity map of
M by the map (1.6.7) so that (1.6.6) is smooth when

FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
is identified with the trivial principal bundle M ×GL

(
F(E1

0 , . . . , E
n
0 )

)
.

EXAMPLE 1.6.11. Let F : Vec2 → Vec be the functor that sends an object
(V1, V2) to V1 ⊕ V2 and a morphism (T1, T2) to T1 ⊕ T2. The functor F is smooth
and for any object (V1, V2) of Vec2, the map:

f : gl(V1)⊕ gl(V2) −→ gl(V1 ⊕ V2)

is given by:
f(X1, X2) = X1 ⊕X2,

for all X1 ∈ gl(V1), X2 ∈ gl(V2). Given vector bundles E1, E2 over a differen-
tiable manifold M then the vector bundle F(E1, E2) will be denoted by E1 ⊕ E2

is will be called the Whitney sum of E1 and E2.
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EXAMPLE 1.6.12. Let F : Vec2 → Vec be the functor that sends (V1, V2) to
Lin(V1, V2) and (T1, T2) to:

Lin(V1, V2) 3 L 7−→ T2 ◦ L ◦ T−1
1 ∈ Lin(W1,W2),

where T1 : V1 → W1 and T2 : V2 → W2 are linear isomorphisms. The functor F

is smooth and for any object (V1, V2) of Vec2, the map:

f : gl(V1)⊕ gl(V2) −→ gl
(
Lin(V1, V2)

)
is given by:

f(X1, X2) · L = X2 ◦ L− L ◦X1,

for all X1 ∈ gl(V1), X2 ∈ gl(V2) and all L ∈ Lin(V1, V2). Given vector bundles
E1, E2 over M , the vector bundle F(E1, E2) will be denoted by Lin(E1, E2). A
fiberwise linear map L : E1 → E2 can be identified with a section x 7→ Lx of the
vector bundle Lin(E1, E2). If si : U → FREi0

(Ei) is a smooth local Ei0-frame of
Ei, i = 1, 2, and if s denotes the frame of Lin(E1, E2) induced by s1 and s2 then
the representation of the fiberwise linear map L with respect to s1 and s2 is equal
to the representation of the section x 7→ Lx with respect to s. It follows that L is a
vector bundle morphism if and only if x 7→ Lx is a smooth section of Lin(E1, E2).
From now on we will systematically identify vector bundle morphisms from E1 to
E2 with smooth sections of Lin(E1, E2).

EXAMPLE 1.6.13. Let k ≥ 1 be fixed and let F : Veck+1 → Vec be the
functor that sends (V1, . . . , Vk,W ) to Lin(V1, . . . , Vk;W ) and that sends linear
isomorphisms Ti : Vi → V ′i , i = 1, . . . , k, T : W → W ′ to the linear isomor-
phism:

Lin(V1, . . . , Vk;W ) −→ Lin(V ′1 , . . . , V
′
k;W

′)

B 7−→ T ◦B(T−1
1 ·, . . . , T

−1
k ·).

The functor F is smooth and for any object (V1, . . . , Vk,W ) of Veck+1 the map:

f : gl(V1)⊕ · · · ⊕ gl(Vk)⊕ gl(W ) −→ gl
(
Lin(V1, . . . , Vk;W )

)
is given by:

f(X1, . . . , Xk, X) · L = X ◦ L(·, . . . , ·)− L(X1·, . . . , ·)− · · ·
− L(·, . . . , Xk·),

for all Xi ∈ gl(Vi), i = 1, . . . , k, X ∈ gl(W ), L ∈ Lin(V1, . . . , Vk;W ). Given
vector bundlesE1, . . . ,Ek, F overM , we will denote the vector bundle F(E1, . . . , Ek, F )
by Lin(E1, . . . , Ek;F ). When E1 = · · · = Ek = E, we write Link(E,F ) rather
than Lin(E1, . . . , Ek;F ). Sections of the vector bundle Link(TM,F ) are called
F -valued covariant k-tensor fields on M .

EXAMPLE 1.6.14. Let k ≥ 1 be fixed and let F : Vec2 → Vec be the functor
that sends (V1, V2) to Lins

k(V1, V2) and (T1, T2) to:

Lins
k(V1, V2) 3 B 7−→ T2 ◦B(T−1

1 ·, . . . , T
−1
1 ·) ∈ Lins

k(W1,W2),
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where T1 : V1 → W1, T2 : V2 → W2 are linear isomorphisms. The functor F is
smooth and for any object (V1, V2) of Vec2, the map:

f : gl(V1)⊕ gl(V2) −→ gl
(
Lins

k(V1, V2)
)

is given by:

f(X1, X2) · L = X2 ◦ L(·, . . . , ·)− L(X1·, . . . , ·)− · · · − L(·, . . . , X1·),
for all X1 ∈ gl(V1), X2 ∈ gl(V2) and all L ∈ Lins

k(V1, V2). Given vector bun-
dles E, F over M , the vector bundle F(E,F ) will be denoted by Lins

k(E,F ).
An analogous construction replacing Lins

k with Lina
k gives us the vector bundle

Lina
k(E,F ). The sections of Lins

k(TM,F ) are called symmetric F -valued covari-
ant k-tensor fields on M and the sections of Lina

k(TM,F ) are called F -valued
k-forms on M .

CONVENTION. From now on, when describing smooth functors we will only
specify their actions on objects and leave as an exercise to the reader the task of
describing their actions on morphisms.

PROPOSITION 1.6.15. Let m,n ≥ 1 be fixed and let:

F = (F1, . . . ,Fn) : Vecm −→ Vecn, G : Vecn −→ Vec

be smooth functors6; consider the smooth functor G ◦ F : Vecm → Vec. Given
vector bundles E1, . . . , Em over a differentiable manifold M then:

(1.6.9) (G ◦ F)(E1, . . . , Em) = G
(
F1(E1, . . . , Em), . . . ,Fn(E1, . . . , Em)

)
.

PROOF. Clearly both sides of (1.6.9) are equal as sets; we have to check that
the principal bundle structure of their corresponding principal bundles of frames are
also the same. Denote byEi0 the typical fiber of the vector bundleEi, i = 1, . . . ,m,
by F j = Fj(E1

0 , . . . , E
m
0 ) the typical fiber of Fj(E1, . . . , Em), j = 1, . . . , n

and by G = G(F 1, . . . , Fn) the typical fiber of (G ◦ F)(E1, . . . , Em). For each
j = 1, . . . , n, let FRF j

(
Fj(E1, . . . , Em)

)
be endowed with the unique principal

fiber bundle structure that makes the map:

(1.6.10) Fj : FRE1
0
(E1) ? · · · ? FREm0

(Em) −→ FRF j
(
Fj(E1, . . . , Em)

)
a morphism of principal bundles and let FRG

(
(G ◦ F)(E1, . . . , Em)

)
be endowed

with the unique principal bundle structure that makes the map:

(1.6.11)

FRF 1

(
F1(E1, . . . , Em)

)
? · · · ? FRFn

(
Fn(E1, . . . , Em)

)
G

��
FRG

(
(G ◦ F)(E1, . . . , Em)

)
a morphism of principal bundles. To conclude the proof, we have to verify that the
map:

(1.6.12) G◦F : FRE1
0
(E1)? · · ·?FREm0

(Em) −→ FRG

(
(G◦F)(E1, . . . , Em)

)
6The smoothness of F means that every Fi is smooth.
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is a morphism of principal bundles. This follows from the universal property of the
fiberwise product of principal bundles (Corollary 1.3.27) and from the fact that the
composition of morphisms of principal bundles is a morphism of principal bundles
(see Exercise 1.43). �

PROPOSITION 1.6.16. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, E 1, . . . , En, E n be vector bundles over a differentiable manifold
M and Li : Ei → E

i, i = 1, . . . , n, be vector bundle isomorphisms. The map:

F(L1, . . . , Ln) : F(E1, . . . , En) −→ F(E 1
, . . . , E

n)

whose restriction to the fiber F(E1
x, . . . , E

n
x ) is equal to F(L1

x, . . . , L
n
x), for all

x ∈M is a vector bundle isomorphism.

PROOF. Clearly F(L1, . . . , Ln) is fiber preserving, fiberwise linear and bijec-
tive. For i = 1, . . . , n, denote by Ei0 (resp., by E i

0) the typical fiber of Ei (resp.,
of E i). Let s1, s̄1, . . . , sn, s̄n, be smooth local sections respectively of the prin-
cipal bundles of frames FRE1

0
(E1), FR

E
1
0
(E 1), . . . , FREn0

(En), FRE
n
0
(E n), all

defined in the same open subset U of M . Set:

s = F ◦ (s1, . . . , sn), s̄ = F ◦ (s̄1, . . . , s̄n),

so that s is a smooth local section of FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
and s̄ is a

smooth local section of FR
F(E

1
0 ,...,E

n
0 )

(
F(E 1

, . . . , E
n)

)
. For i = 1, . . . , n, let:

L̃i : U −→ Lin(Ei0, E
i
0)

denote the representation of Li with respect to si and s̄i (see Subsection 1.5.2);
since each Li is a morphism of vector bundles, the maps L̃i are smooth. Since
each Li is a vector bundle isomorphism, the map L̃i actually takes values in the
set Iso(Ei0, E

i
0) of linear isomorphisms from Ei0 to E i

0. It is easy to see that the
representation of L with respect to s and s̄ is equal to the composition of the map
(L̃1, . . . , L̃n) with the map:

Iso(E1
0 , E

1
0 )× · · · × Iso(En0 , E

n
0 )

F

��

Iso
(
F(E1

0 , . . . , E
n
0 ),F(E 1

0 , . . . , E
n
0 )

)
Such map is smooth (see Exercise 1.66) and hence the representation of L with
respect to s and s̄ is smooth. This concludes the proof. �

EXAMPLE 1.6.17. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. LetE1, . . . , En be vector bundles over the differentiable manifoldM with
typical fibers E1

0 , . . . , En0 , respectively. Let s1, . . . , sn be smooth local sections of
the principal bundles FRE1

0
(E1), . . . , FREn0

(En) respectively, defined in an open
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subsetU ofM . IfLi = ši : U×Ei0 → Ei|U denotes the smooth local trivialization
corresponding to si then Li is a vector bundle isomorphism and:

F(L1, . . . , Ln) = š,

where s = F ◦ (s1, . . . , sn) : U → FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
.

Let F : Vecn → Vec be a smooth functor. Given vector bundles E1, . . . , En

over a differentiable manifold M and a smooth map f : M ′ → M defined in a
differentiable manifold M ′ then there exists an obvious bijective map:

(1.6.13) f∗F(E1, . . . , En) −→ F(f∗E1, . . . , f∗En).

We have the following:

PROPOSITION 1.6.18. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Given vector bundles E1, . . . , En over a differentiable manifold M and a
smooth map f : M ′ → M defined in a differentiable manifold M ′ then the map
(1.6.13) is an isomorphism of vector bundles.

PROOF. The map (1.6.13) induces a map:

(1.6.14)

FRF(E1
0 ,...,E

n
0 )

(
f∗F(E1, . . . , En)

)
��

FRF(E1
0 ,...,E

n
0 )

(
F(f∗E1, . . . , f∗En)

)
as in the statement of Lemma 1.5.18; the map (1.6.14) is fiber preserving and its
restriction to each fiber is a morphism of principal spaces whose subjacent group
homomorphism is the identity. We have to show that (1.6.14) is an isomorphism
of principal bundles; in fact, by the result of Exercise 1.46, it suffices to show that
(1.6.14) is a morphism of principal bundles. Recall from Subsection 1.5.3 that:

FRF(E1
0 ,...,E

n
0 )

(
f∗F(E1, . . . , En)

)
= f∗FRF(E1

0 ,...,E
n
0 )

(
F(E1, . . . , En)

)
.

By considering the pull-back by f of the morphism of principal bundles (1.6.6)
(recall Example 1.3.23) we obtain a morphism of principal bundles:

f∗
(
FRE1

0
(E1) ? · · · ? FREn0

(En)
)

f∗F

��
f∗FRF(E1

0 ,...,E
n
0 )

(
F(E1, . . . , En)

)
Using the isomorphism of principal bundles described in Lemma 1.3.29 we identify
the principal bundles:

(1.6.15) f∗
(
FRE1

0
(E1) ? · · · ? FREn0

(En)
)
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and:

(1.6.16)
(
f∗FRE1

0
(E1)

)
? · · · ?

(
f∗FREn0

(En)
)

= FRE1
0
(f∗E1) ? · · · ? FREn0

(f∗En).

We have a commutative diagram:
(1.6.17)

FRE1
0
(f∗E1) ? · · · ? FREn0

(f∗En)

f∗F

��

F

''OOOOOOOOOOOO

FRF(E1
0 ,...,E

n
0 )

(
F(f∗E1, . . . , f∗En)

)
FRF(E1

0 ,...,E
n
0 )

(
f∗F(E1, . . . , En)

)
(1.6.14)

77pppppppppppp

To conclude that (1.6.14) is a morphism of principal bundles, simply apply Corol-
lary 1.3.12 to such commutative diagram. �

1.6.1. Smooth natural transformations.

DEFINITION 1.6.19. Let n ≥ 1 be fixed and let F, G be smooth functors from
Vecn to Vec. By a smooth natural transformation from F to G we mean a rule N
that associates to each object (V1, . . . , Vn) of Vecn an open subset Dom(NV1,...,Vn)
of F(V1, . . . , Vn) and a smooth map:

NV1,...,Vn : Dom(NV1,...,Vn) −→ G(V1, . . . , Vn)

in such a way that given objects (V1, . . . , Vn), (W1, . . . ,Wn) of Vecn and a mor-
phism (T1, . . . , Tn) from (V1, . . . , Vn) to (W1, . . . ,Wn) then:

(a) F(T1, . . . , Tn)
(
Dom(NV1,...,Vn)

)
= Dom(NW1,...,Wn);

(b) the following diagram is commutative:

Dom(NV1,...,Vn)
NV1,...,Vn //

F(T1,...,Tn)

��

G(V1, . . . , Vn)

G(T1,...,Tn)

��
Dom(NW1,...,Wn) NW1,...,Wn

// G(W1, . . . ,Wn)

A smooth natural transformation N from F to G is said to be linear if for every
object (V1, . . . , Vn) of Vecn, we have:

Dom(NV1,...,Vn) = F(V1, . . . , Vn)

and the map NV1,...,Vn : F(V1, . . . , Vn)→ G(V1, . . . , Vn) is linear.

EXAMPLE 1.6.20. Consider the smooth functors F, Gi, i = 1, 2, from Vec2 to
Vec defined by:

F(V1, V2) = V1 ⊕ V2, Gi(V1, V2) = Vi, i = 1, 2.
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The rule that assigns to each object (V1, V2) of Vec2 the map:

Ni
V1,V2

: V1 ⊕ V2 3 (v1, v2) 7−→ vi ∈ Vi,

is a linear smooth natural transformation from F to Gi, i = 1, 2.

EXAMPLE 1.6.21. If F, Gi are as in Example 1.6.20 then the rules that assign
to each object (V1, V2) of Vec2 the maps:

N1
V1,V2

: V1 3 v 7−→ (v, 0) ∈ V1 ⊕ V2,

N2
V1,V2

: V2 3 v 7−→ (0, v) ∈ V1 ⊕ V2,

are linear smooth natural transformations from G1 to F and from G2 to F, respec-
tively.

EXAMPLE 1.6.22. Consider the smooth functors F, G from Vec2 to Vec de-
fined by:

F(V1, V2) = Lin(V1, V2), G(V1, V2) = Lin(V ∗2 , V
∗
1 ).

The rule that assigns to each object (V1, V2) of Vec2 the map:

NV1,V2 : Lin(V1, V2) 3 T 7−→ T ∗ ∈ Lin(V ∗2 , V
∗
1 )

is a linear smooth natural transformation from F to G.

EXAMPLE 1.6.23. Consider the smooth functors F, G from Vec3 to Vec de-
fined by:

F(V1, V2, V3) = Lin(V2, V3)⊕ Lin(V1, V2),

G(V1, V2, V3) = Lin(V1, V3).

The rule that assigns to each object (V1, V2, V3) of Vec3 the map:

NV1,V2,V3 : Lin(V2, V3)⊕ Lin(V1, V2) 3 (T, T ′) 7−→ T ◦ T ′ ∈ Lin(V1, V3)

is a smooth natural transformation from F to G.

EXAMPLE 1.6.24. Let k ≥ 1 be fixed and consider the smooth functors F, G

from Veck+1 to Vec defined by:

F(V1, . . . , Vk+1) = Lin(V1, . . . , Vk;Vk+1)⊕ V1 ⊕ · · · ⊕ Vk,
G(V1, . . . , Vk+1) = Vk+1.

The rule that assigns to each object (V1, . . . , Vk+1) of Veck+1 the map NV1,...,Vk+1

defined by:

Lin(V1, . . . , Vk;Vk+1)⊕ V1 ⊕ · · · ⊕ Vk −→ Vk+1

(B, v1, . . . , vk) 7−→ B(v1, . . . , vk)

is a smooth natural transformation from F to G.
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EXAMPLE 1.6.25. Let k ≥ 1 be fixed and consider the smooth functors F from
Veck+2 to Vec defined by:

F(V1, . . . , Vk+2) = Lin(Vk+1, Vk+2)⊕ Lin(V1, . . . , Vk;Vk+1),

G(V1, . . . , Vk+2) = Lin(V1, . . . , Vk;Vk+2).

The rule that assigns to each object (V1, . . . , Vk+2) of Veck+2 the map NV1,...,Vk+2

defined by:

Lin(Vk+1, Vk+2)⊕ Lin(V1, . . . , Vk;Vk+1) −→ Lin(V1, . . . , Vk;Vk+2)

(L,B) 7−→ L ◦B
is a smooth natural transformation from F to G.

EXAMPLE 1.6.26. Consider the smooth functors F, G from Vec2 to Vec de-
fined by:

F(V1, V2) = Lin(V1, V2), G(V1, V2) = Lin(V2, V1).
Given real vector spaces V1, V2, we denote by Iso(V1, V2) the (possibly empty)
subset of Lin(V1, V2) consisting of linear isomorphisms. The rule that assigns to
each object (V1, V2) of Vec2 the map:

NV1,V2 : Iso(V1, V2) 3 T 7−→ T−1 ∈ Lin(V2, V1)

is a smooth natural transformation from F to G.

EXAMPLE 1.6.27. Consider the smooth functors F, G from Vec to Vec defined
by:

F(V ) = Lin(V ), G(V ) = R.

The rule that assigns to each object V of Vec the map:

NV : Lin(V ) 3 T 7−→ det(T ) ∈ R
is a smooth natural transformation from F to G.

Given smooth functors F, G from Vecn to Vec, a smooth natural transforma-
tion N from F to G and vector bundles E1, . . . , En over a differentiable manifold
M then N induces a map:

(1.6.18) NE1,...,En : Dom(NE1,...,En) −→ G(E1, . . . , En),

where:

Dom(NE1,...,En) =
⋃
x∈M

Dom(NE1
x,...,E

n
x
) ⊂ F(E1, . . . , En).

The map NE1,...,En is defined by the requirement that for each x ∈ M , its restric-
tion to Dom(NE1

x,...,E
n
x
) is equal to NE1

x,...,E
n
x

.

PROPOSITION 1.6.28. Let n ≥ 1 be fixed. Given smooth functors F, G from
Vecn to Vec, a smooth natural transformation N from F to G and vector bun-
dles E1, . . . , En over a differentiable manifold M then Dom(NE1,...,En) is an
open subset of the total space of the vector bundle F(E1, . . . , En) and the map
NE1,...,En is smooth. In particular, if N is linear then NE1,...,En is a vector bundle
morphism.
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PROOF. Denote by Ei0 the typical fiber of Ei, i = 1, . . . , n. The naturality of
N implies that the open subset Dom(NE1

0 ,...,E
n
0
) of the vector space F(E1

0 , . . . , E
n
0 )

is invariant under the representation (1.6.7) so that, by Lemma 1.4.11, the fiber
product:

(1.6.19)
(
FRE1

0
(E1) ? · · · ? FREn0

(En)
)
×∼ Dom(NE1

0 ,...,E
n
0
)

is an open submanifold of:(
FRE1

0
(E1) ? · · · ? FREn0

(En)
)
×∼ F(E1

0 , . . . , E
n
0 ).

It follows easily from the naturality of N that the vector bundle isomorphism (1.6.8)
carries (1.6.19) to Dom(NE1,...,En), so Dom(NE1,...,En) is indeed an open subset
of F(E1, . . . , En). The naturality of N also implies that the diagram:

(1.6.20)

P ×∼ Dom(NE1
0 ,...,E

n
0
)

CF ∼=

��

IdP×∼N
E1

0 ,...,E
n
0 // P ×∼ G(E1

0 , . . . , E
n
0 )

∼= CG

��
Dom(NE1,...,En)

NE1,...,En

// G(E1, . . . , En)

commutes, where P = FRE1
0
(E1) ? · · · ? FREn0

(En). The fact that the map
NE1,...,En is smooth now follows from the fact that the map IdP ×∼ NE1

0 ,...,E
n
0

is
smooth (Lemma 1.4.11). �

EXAMPLE 1.6.29. LetE1,E2 be vector bundles over a differentiable manifold
M and consider the Whitney sum E1 ⊕ E2. Applying Proposition 1.6.28 to the
linear smooth natural transformations described in Examples 1.6.20 and 1.6.21 we
conclude that the projections pri : E1 ⊕ E2 → Ei and the inclusions ιi : Ei →
E1 ⊕ E2, i = 1, 2, are vector bundle morphisms. This implies the following
property: if ε is a section of E1⊕E2 and εi = pri ◦ ε, i = 1, 2, are the coordinates
of ε then ε is smooth if and only if ε1 and ε2 are smooth. Namely, if ε is smooth then
obviously ε1 and ε2 are smooth, because the projections are smooth; conversely, if
ε1 and ε2 are smooth then ε = ι1 ◦ ε1 + ι2 ◦ ε2. See Exercises 1.70 and 1.71 for
more basic results concerning Whitney sums.

REMARK 1.6.30. Let π : E → M be a vector bundle and E1, E2 be vector
subbundles of E such that Ex = E1

x ⊕ E2
x, for all x ∈M ; denote by ji : Ei → E,

i = 1, 2, the inclusion maps. Consider the Whitney sum E1 ⊕ E2 and denote by
ιi : Ei → E1 ⊕ E2, i = 1, 2, the inclusion maps. By the result of Exercise 1.70,
there exists a unique vector bundle morphism j : E1⊕E2 → E such that j◦ιi = ji,
i = 1, 2. Clearly j is a vector bundle isomorphism. We will use the isomorphism j
to identify the vector bundle E with the Whitney sum E1⊕E2. Thus, if E1, E2 are
vector subbundles of a vector bundle E such that Ex = E1

x ⊕ E2
x, for all x ∈ M ,

we will write E = E1 ⊕ E2.

EXAMPLE 1.6.31. Let E1, . . . , Ek, F be vector bundles over a differentiable
manifold M , B be a smooth section of Lin(E1, . . . , Ek;F ) and εi be a smooth
section of Ei, i = 1, . . . , k. Applying Proposition 1.6.28 to the smooth natural
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transformation of Example 1.6.24 we obtain that the section B(ε1, . . . , εk) of F
defined by:

B(ε1, . . . , εk)(x) = Bx
(
ε1(x), . . . , εk(x)

)
, x ∈M,

is smooth. Namely, the map:

NE1,...,Ek+1 : Lin(E1, . . . , Ek;Ek+1)⊕ E1 ⊕ · · · ⊕ Ek −→ Ek+1

is smooth and:

B(ε1, . . . , εk) = NE1,...,Ek,F ◦ (B, ε1, . . . , εk).

Recall also that (B, ε1, . . . , εk) is smooth (Example 1.6.29). Thus, every smooth
section B of Lin(E1, . . . , Ek;F ) defines a C∞(M)-multilinear map:

Γ(E1)× · · · × Γ(Ek) 3 (ε1, . . . , εk) 7−→ B(ε1, . . . , εk) ∈ Γ(F ).

The result of Exercises 1.63 and 1.72 says that, conversely, every C∞(M)-mul-
tilinear map from Γ(E1) × · · · × Γ(Ek) to Γ(F ) is defined by a unique smooth
section B of Lin(E1, . . . , Ek;F ). In view of this correspondence we will be al-
lowed to identify smooth sections of Lin(E1, . . . , Ek;F ) with the corresponding
C∞(M)-multilinear maps.

EXAMPLE 1.6.32. Let E1, . . . , Ek, F , F ′ be vector bundles over a differen-
tiable manifold M , B be a section of Lin(E1, . . . , Ek;F ) and L : F → F ′ be
a vector bundle morphism. Recall from Example 1.6.12 that we identify L with
the smooth section x 7→ Lx of Lin(F, F ′). We will denote (with some abuse of
notation) by L ◦B the section of Lin(E1, . . . , Ek;F ′) defined by:

(L ◦B)(x) = Lx ◦B(x),

for all x ∈ M . We claim that if B is smooth then also L ◦ B is smooth. Namely,
by Example 1.6.29, (L,B) is a smooth section of the Whitney sum:

Lin(F, F ′)⊕ Lin(E1, . . . , Ek;F ).

If N is the smooth natural transformation defined in Example 1.6.25 then:

L ◦B = NE1,...,Ek,F,F ′ ◦ (L,B),

and therefore L ◦B is smooth by Proposition 1.6.28.

EXAMPLE 1.6.33. Given real finite-dimensional vector spaces V1, . . . , Vk,
Vk+1, . . . , Vk+p, W then we have a linear isomorphism:

Lin
(
V1, . . . , Vk; Lin(Vk+1, . . . , Vk+p;W )

)
−→ Lin(V1, . . . , Vk+p;W )

B 7−→ B̃(1.6.21)

defined by:

B̃(v1, . . . , vk, vk+1, . . . , vk+p) = B(v1, . . . , vk) · (vk+1, . . . , vk+p) ∈W,

for all v1 ∈ V1, . . . , vk+p ∈ Vk+p. The linear isomorphism (1.6.21) defines a linear
smooth natural transformation between smooth functors and therefore, given vector
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bundles E1, . . . , Ek+p, F over a differentiable manifold M , as an application of
Proposition 1.6.28 we get an isomorphism of vector bundles:

Lin
(
E1, . . . , Ek; Lin(Ek+1, . . . , Ek+p;F )

)
−→ Lin(E1, . . . , Ek+p;F ).

We will henceforth identify the vector bundles:

Lin
(
E1, . . . , Ek; Lin(Ek+1, . . . , Ek+p;F )

)
, Lin(E1, . . . , Ek+p;F )

using such isomorphism.

1.7. The group of left translations of the fiber

Let Π : P → M be a G-principal bundle. For each point x ∈ M , the fiber
Px is a principal space and thus we may consider the group Left(Px) of all left
translations of Px (recall Definition 1.2.10). For each p ∈ Px, we have an isomor-
phism Ip : G → Left(Px) (recall (1.2.3)) and there exists a unique differential
structure on Left(Px) that makes Ip into a smooth diffeomorphism; the commu-
tativity of diagram (1.2.4) shows that the differential structure on Left(Px) does
not depend on the choice of p ∈ Px. Endowed with such differential structure,
the group Left(Px) is a Lie group and the map Ip is a Lie group isomorphism, for
all p ∈ Px. We know that the left action of Left(Px) on Px is free and transitive
(recall Lemma 1.2.12). We claim that it is smooth. Namely, choose any p ∈ Px; if
we identify Left(Px) with G via Ip and Px with G via the smooth diffeomorphism
βp then the left action of Left(Px) on Px is identified with the action of G on itself
by left-translations. More explicitly, the following diagram commutes:

Left(Px)× Px
action // Px

G×G

Ip×βp ∼=

OO

multiplication
// G

∼= βp

OO

Since the vertical arrows of the diagram are smooth diffeomorphisms and the bot-
tom arrow of the diagram is smooth, it follows that the top arrow of the diagram is
also smooth.

Let us denote by left(Px) the Lie algebra of the Lie group Left(Px). For each
p ∈ Px, the differential of the Lie group isomorphism Ip at the identity gives us a
Lie algebra isomorphism Adp; more explicitly, we set:

Adp = dIp(1) : g −→ left(Px),

where g denotes the Lie algebra of G. By differentiating the commutative diagram
(1.2.4) we obtain:

(1.7.1)

g Adp

''PPPPPP

Adg−1

��

left(Px)

g Adp′

77nnnnnn

where p, p′ ∈ Px and g = p−1p′ is the element of G that carries p to p′.



1.8. G-STRUCTURES ON VECTOR BUNDLES 73

EXAMPLE 1.7.1. Let π : E → M be a vector bundle with typical fiber
E0 and consider its GL(E0)-principal bundle of frames FRE0(E). Let x ∈ M
be fixed. In Example 1.2.17 we made the convention of identifying the group
Left

(
FRE0(Ex)

)
of left translations of FRE0(Ex) with the general linear group

GL(Ex) of Ex through the isomorphism GL(Ex) 3 T 7→ T∗ ∈ Left
(
FRE0(Ex)

)
.

Under such identification, the canonical left action of the group Left
(
FRE0(Ex)

)
on FRE0(Ex) is identified with the action of GL(Ex) on FRE0(Ex) given by com-
position of linear isomorphisms. Moreover, for every p ∈ FRE0(Ex) the isomor-
phism Ip is given by Ip(g) = p ◦ g ◦ p−1 (recall (1.2.7)) and thus the differential
structure of GL(Ex) that makes Ip into a smooth diffeomorphism is the standard
one. The Lie algebra left

(
FRE0(Ex)

)
is therefore identified with the Lie algebra

gl(Ex) of GL(Ex); differentiating (1.2.7) we see that, for every p ∈ FRE0(Ex),
the Lie algebra isomorphism Adp is given by:

(1.7.2) Adp(X) = p ◦X ◦ p−1 ∈ gl(Ex),

for all X ∈ gl(E0).

REMARK 1.7.2. Let H be a Lie subgroup of G with Lie algebra h ⊂ g and
let Q ⊂ P be an H-principal subbundle of P . For each x ∈ M , the fiber Qx is
a principal subspace of the fiber Px with structural group H ⊂ G. Recall that we
have made the convention of identifying the group Left(Qx) with the subgroup of
Left(Px) consisting of those left translations t : Px → Px such that t(Qx) ⊂ Qx
(see Lemma 1.2.19). The commutativity of diagram (1.2.12) implies that Left(Qx)
is a Lie subgroup of Left(Px) and therefore we identify the Lie algebra left(Qx)
with a Lie subalgebra of left(Px). For each p ∈ Qx, we have Lie group iso-
morphisms IPp : G → Left(Px) and IQp : H → Left(Qx) (see Remark 1.2.20)
whose differentials at the identity are respectively the Lie algebra isomorphisms
AdPp : g → left(Px) and AdQp : h → left(Qx). By differentiating (1.2.12) we
obtain a commutative diagram:

(1.7.3)

left(Qx)
inclusion // left(Px)

h

AdQp ∼=

OO

inclusion
// g

∼= AdPp

OO

that shows that AdQp is just the restriction of AdPp to h.

1.8. G-structures on vector bundles

Let π : E → M be a vector bundle with typical fiber E0 and denote by
FRE0(E) the GL(E0)-principal bundle of frames of E.

DEFINITION 1.8.1. Given a Lie subgroup G of GL(E0) then by a G-structure
onE we mean aG-principal subbundle P of FRE0(E). A localE0-frame s : U →
FRE0(E) of E with s(U) ⊂ P is said to be compatible with the G-structure P .
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Observe that if P is a G-structure on E then for each x ∈ M , Px is a G-
structure on the vector space Ex (recall Definition 1.1.7). We may therefore think
intuitively of a G-structure P on a vector bundle E as a family (Px)x∈M of G-
structures on the fibers Ex of E that “varies smoothly” with x ∈M .

Let P be a G-structure on a vector bundle π : E → M with typical fiber
E0. Recall from Example 1.7.1 that for each x ∈ M we identify the Lie group
Left

(
FRE0(Ex)

)
of left translations of FRE0(Ex) with the general linear group

GL(Ex). We will denote by Gx the Lie group Left(Px) of left translations of the
fiber Px and by gx the Lie algebra left(Px) of Gx. Recall from Remark 1.7.2 that
we identify Gx with a Lie subgroup of Left

(
FRE0(Ex)

) ∼= GL(Ex) and gx with
a Lie subalgebra of left

(
FRE0(Ex)

) ∼= gl(Ex). Also recall from Example 1.2.18
that the Lie group Gx is identified with the group IsoG(Ex) of all G-structure
preserving endomorphisms T : Ex → Ex of Ex. It should be noticed that the two
identifications we have made regarding Gx are compatible (see (1.2.11)).

DEFINITION 1.8.2. Let E, F be vector bundles over the same differentiable
manifold M , with the same typical fiber E0. Let G be a Lie subgroup of GL(E0)
and assume that E and F are endowed with G-structures P and Q, respectively. A
morphism of vector bundles L : E → F is said to be G-structure preserving if for
every x ∈M , the linear map Lx : Ex → Fx is G-structure preserving.

Clearly, every G-structure preserving morphism of vector bundles is in fact an
isomorphism of vector bundles. Moreover, an isomorphism of vector bundles L :
E → F isG-structure preserving if and only if L∗(P ) ⊂ Q (recall Lemma 1.5.18).

EXAMPLE 1.8.3. Let π : E → M be a vector bundle with typical fiber E0, G
be a Lie subgroup of GL(E0) and P ⊂ FRE0(E) be a G-structure on E. Given
a differentiable manifold M ′ and a smooth map f : M ′ → M , then the pull-back
f∗P is a G-structure on the vector bundle f∗E (recall Example 1.3.23).

EXAMPLE 1.8.4. Let π : E →M be a vector bundle with typical fiber E0. By
a semi-Riemannian structure onE we mean a smooth section g of Lins

2(E,R) such
that for all x ∈M , gx : Ex ×Ex → R is an indefinite inner product on Ex. If g is
a semi-Riemannian structure on E and if the index n−(gx) of gx is independent of
x ∈ M then we call n−(gx) the index of the semi-Riemannian structure g and we
write n−(g) = n−(gx), for all x ∈M . A semi-Riemannian structure of index zero
is also called a Riemannian structure. If g is a semi-Riemannian structure on E of
index r and if an indefinite inner product 〈·, ·〉0 of index r is fixed on the typical
fiber E0 then the set:

FRo
E0

(E) =
⋃
x∈M

FRo
E0

(Ex)

of all orthonormal frames ofE is a principal subbundle of FRE0(E) with structural
group O(E0). Thus, FRo

E0
(E) is an O(E0)-structure on the vector bundle E.

EXAMPLE 1.8.5. Let π : E → M be a vector bundle with typical fiber E0

and F be a vector subbundle of E. If F0 is a subspace of E0 such that dim(F0) =
dim(Fx) for all x ∈M then the set FRE0(E;F0, F ) of allE0-frames ofE adapted
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to (F0, F ) is a principal subbundle of FRE0(E) with structural group GL(E0;F0).
Thus FRE0(E;F0, F ) is a GL(E0;F0)-structure on the vector bundle E. If g is a
semi-Riemannian structure on E and if an indefinite inner product on E0 is fixed
then the set:

FRo
E0

(E;F0, F ) def= FRE0(E;F0, F ) ∩ FRo
E0

(E)

is an O(E0;F0)-structure on the vector bundle E if FRo
E0

(Ex;F0, Fx) 6= ∅ for all
x ∈M .

EXAMPLE 1.8.6. Let π : E →M be a vector bundle with typical fiber E0 and
ε ∈ Γ(E) be a smooth section of E with ε(x) 6= 0, for all x ∈ M . If e0 ∈ E0 is a
nonzero vector then the set:

FRE0(E; e0, ε)
def=

⋃
x∈M

FRE0

(
Ex; e0, ε(x)

)
of all E0-frames of E that are adapted to (e0, ε) is a GL(E0; e0)-structure on the
vector bundle E. If g is a semi-Riemannian structure on E and if an indefinite
inner product on E0 is fixed then the set:

FRo
E0

(E; e0, ε)
def= FRE0(E; e0, ε) ∩ FRo

E0
(E)

is an O(E0; e0)-structure on the vector bundle E if FRo
E0

(
Ex; e0, ε(x)

)
6= ∅ for all

x ∈M .

EXAMPLE 1.8.7. Let π : E → M be a vector bundle with typical fiber E0.
By an almost complex structure on E we mean a smooth section J of Lin(E) such
that Jx is a complex structure on Ex, for all x ∈ M . If J0 is a complex structure
on E0 then the set:

FRc
E0

(E) def=
⋃
x∈M

FRc
E0

(Ex)

of all complex frames of E is a GL(E0, J0)-structure on the vector bundle E. If
g is a semi-Riemannian structure on E of index r, 〈·, ·〉E0 is an indefinite inner
product on E0 of index r, J0 is anti-symmetric with respect to 〈·, ·〉E0 and Jx is
anti-symmetric with respect to gx for all x ∈M then:

FRu
E0

(E) def= FRo
E0

(E) ∩ FRc
E0

(E)

is an U(E0)-structure on E.

REMARK 1.8.8. The reader might find odd the use of the name “almost com-
plex” in Example 1.8.7. This choice comes from the fact that, in the literature,
an almost complex structure in a manifold M is a smooth section J of Lin(TM)
such that Jx is a complex structure in TxM , for all x ∈ M . By a complex struc-
ture on M it is meant an almost complex structure J on M which is integrable in
the sense that M can be covered with local charts ϕ : U → Ũ ⊂ R2n such that
dϕx ◦ Jx = J0 ◦ dϕx, for all x ∈ U , where J0 denotes the canonical complex
structure of R2n.
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DEFINITION 1.8.9. LetM be an n-dimensional differentiable manifold and let
G be a Lie subgroup of GL(Rn). By a G-structure on M we mean a G-structure
P ⊂ FR(TM) on the tangent bundle TM .

DEFINITION 1.8.10. Let G be a Lie subgroup of GL(Rn) and M ′, M be
n-dimensional differentiable manifolds endowed with G-structures P ′ and P , re-
spectively. A smooth map f : M ′ → M is said to be G-structure preserving
if the vector bundle morphism

←−
df : TM ′ → f∗TM (recall Example 1.5.27) is

G-structure preserving, where f∗TM is endowed with the G-structure f∗P .

Clearly, if a smooth map f : M ′ → M is G-structure preserving then f is a
local diffeomorphism. Moreover, given a smooth local diffeomorphism f : M ′ →
M , if we define a map (df)∗ : FR(TM ′)→ FR(TM) by:

(1.8.1) (df)∗ : FR(TM ′) 3 p 7−→ df ◦ p ∈ FR(TM),

then f is G-structure preserving if and only if (df)∗(P ′) ⊂ P .
Clearly the composition of G-structure preserving maps is a G-structure pre-

serving map and if f is a G-structure preserving diffeomorphism then also f−1 is
a G-structure preserving diffeomorphism.

DEFINITION 1.8.11. Let M be a differentiable manifold. By a Riemannian
metric (resp., semi-Riemannian metric) on M we mean a Riemannian structure
(resp., semi-Riemannian structure) g on TM ; the pair (M, g) is called a Riemann-
ian manifold (resp., semi-Riemannian manifold).

Exercises

G-structures on sets.

EXERCISE 1.1. Let G be a group and assume that we are given a left (resp.,
right) action of G on a set A. A subset B of A is called G-invariant if g · a (resp.,
a · g) is in B for all a ∈ B. Show that a subset B of A is G-invariant if and only if
it is equal to a union of G-orbits.

EXERCISE 1.2. Let G be a group and assume that we are given a (left or right)
action of G on a set A. If G is a subgroup of G then for every G-orbit B ⊂ A there
exists exactly one G-orbit B ⊂ A containing B.

EXERCISE 1.3. Let G be a group and assume that we are given a left (resp.,
right) action of G on a nonempty setA. Assume that the action is free and transitive.
Let G be a subgroup of G. For any fixed a ∈ A, show that the bijective map
βa : G → A induces a bijection between the set of right (resp., left) cosets of G
in G and the set of orbits of the action of G on A. Conclude that if X0 and X
are sets having the same cardinality and if G is a subgroup of Bij(X0) then the
(possibly infinite) number of possible G-structures on X is equal to the index of G
in Bij(X0).

EXERCISE 1.4. Let R0 be a ring and let G be the subgroup of Bij(R0) con-
sisting of all ring automorphisms of R0. Show that:
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• given a ring R isomorphic to R0 then the set of all ring isomorphisms
p : R0 → R is a G-structure on R modeled upon R0;
• if a G-structure P is given on a set R then there exists a unique ring

structure on R such that P is the set of all ring isomorphisms from R0 to
R.

Repeat the exercise above replacing the word “ring” by “group”, “field”, “topolog-
ical space” or any other standard mathematical structure.

EXERCISE 1.5. Let X0 be a set and G be a subgroup of Bij(X0). Show that:
• the composite of G-structure preserving maps is a G-structure preserving

map;
• any G-structure preserving map is bijective and its inverse is also a G-

structure preserving map.
Conclude that sets endowed with G-structures and G-structure preserving maps
constitute a category in which all morphisms are isomorphisms and in which all
objects are isomorphic.

EXERCISE 1.6. Let R0 be a ring and let G be the subgroup of Bij(R0) con-
sisting of all ring automorphisms of R0. Given a ring R isomorphic to R0, let us
regardR as a set endowed with theG-structure consisting of all ring isomorphisms
p : R0 → R (see Exercise 1.4). Show that:

• given rings R, S then a map f : R → S is G-structure preserving if and
only if f is a ring isomorphism;
• the category of rings isomorphic to R0 and ring isomorphisms is isomor-

phic to the category of sets endowed with G-structure and G-structure
preserving maps.

Repeat the exercise above replacing the word “ring” by “group”, “field”, “topolog-
ical space” or any other standard mathematical structure.

EXERCISE 1.7. Let C be a category in which all morphisms are isomorphisms
and in which all objects are isomorphic7. Let X0 be a fixed object of C and let F
be a functor from C to the category of sets and maps. Let G = Iso(X0) denote
the group of isomorphisms of the object X0, X0 = F(X0) be the set corresponding
to the object X0 and Gef denote the image of G under the group homomorphism
F : Iso(X0) → Bij(X0). For every object X of C, denote by PX the image of the
map F : Iso(X0,X )→ Bij

(
X0,F(X )

)
.

• Show that PX is a Gef -structure on the set F(X ), for every object X of
the category C.
• If f : X → Y is a morphism of C, show that F(f) : F(X ) → F(Y) is a
Gef -structure preserving map.
• For every object X of C, let F•(X) denote the set F(X) endowed with

the Gef -structure PX and for each morphism f : X → Y of C let F•(f)

7For instance, one can start with an arbitrary category and then consider the subcategory whose
objects are an isomorphism class of objects of the original category and whose morphisms are the
morphisms of the original category that are isomorphisms.
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be the same as F(f). Show that F• is a functor from C to the category of
sets endowed with Gef -structure and Gef -structure preserving maps.
• Assume that the functor F has the following additional property: given

an object X of C, a set Y and a bijection f : F(X ) → Y , there exists
a unique pair (Y, f), such that Y is an object of C, f : X → Y is a
morphism of C, F(Y) = Y and F(f) = f . Under this assumption, show
that the functor F• is an isomorphism of categories.
• Obtain the results of Exercises 1.4 and 1.6 as consequences of the previ-

ous items by considering appropriate categories C and by taking F to be
a forgetful functor.

Principal spaces.

EXERCISE 1.8. Let C be an arbitrary category and let X0 be a fixed object of
C. Show that, for any object X of C that is isomorphic to X0, the set Iso(X0,X ) of
all isomorphisms from X0 to X is a principal space whose structural group is the
group Iso(X0) of all isomorphisms of the object X0 (the right action of Iso(X0) on
Iso(X0,X ) is given by composition of morphisms).

EXERCISE 1.9. Given principal spaces P ,Q,R with the same structural group
G and left translations t : P → Q, s : Q → R, show that the composite s ◦ t is
also a left translation. Show also that every left translation t : P → Q is bijective
and that its inverse t−1 : Q→ P is again a left translation.

EXERCISE 1.10. Let G be a group. There is a category whose objects are
principal spaces with structural groupG and whose morphisms are left translations.
Show that in this category every morphism is an isomorphism and all objects are
isomorphic.

EXERCISE 1.11 (the functor Iso(X0, ·)). Let C be a category as in the statement
of Exercise 1.7; let X0 be a fixed object of C. Recall from Exercise 1.8 that for
every object X of C, the set Iso(X0,X ) is a principal space with structural group
Iso(X0). Given objects X , Y of C and a morphism f from X to Y , show that the
map:

f∗ : Iso(X0,X ) −→ Iso(X0,Y)

given by composition with f on the left is a left translation. Moreover, show that
the rule:

X 7−→ Iso(X0,X ), f 7−→ f∗

defines a functor from the category C to the category of principal spaces with struc-
tural group Iso(X0) and left translations.

EXERCISE 1.12. Prove that the functor Iso(X0, ·) defined in Exercise 1.11 is
both full and faithful, i.e., given objects X , Y of C, show that the map:

Iso(X,Y ) 3 f 7−→ f∗ ∈ Left
(
Iso(X0,X ), Iso(X0,Y)

)
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is a bijection8.

EXERCISE 1.13. Let P be a principal space with structural group G. Recall
from Example 1.2.14 that Left(G,P ) =

{
βp : p ∈ P

}
and from Example 1.2.13

that Left(G) =
{
Lg : g ∈ G

}
. Show that Left(G,P ) ⊂ Bij(G,P ) is a Left(G)-

structure on the set P . Moreover, given a Left(G)-structure P on a set P , show
that there exists a unique right action ofG on P that makes P into a principal space
with structural group G such that Left(G,P ) = P . This means that a Left(G)-
structure on a set P is the same as the structure of a principal space with structural
group G on P (compare with Exercise 1.4).

EXERCISE 1.14. Let P , Q be principal spaces with the same structural group
G and let us regard P , Q as sets endowed with the Left(G)-structures Left(G,P )
and Left(G,Q) respectively (see Exercise 1.13). Show that a map t : P → Q
is Left(G)-structure preserving if and only if t is a left translation. Conclude that
the category of principal spaces with structural group G and left translations is
isomorphic to the category of sets endowed with Left(G)-structure and Left(G)-
structure preserving maps (compare with Exercise 1.6).

EXERCISE 1.15. Let V , W be n-dimensional real vector spaces and con-
sider the principal spaces FR(V ) and FR(W ) with structural group GL(Rn). Let
T : V → W be a linear isomorphism and consider the corresponding left trans-
lation T∗ : FR(V ) → FR(W ). Given p ∈ FR(V ), q ∈ FR(W ) then, as in
Example 1.2.15, the left translation T∗ corresponds to an element g of GL(Rn),
which we can identify with an n × n invertible real matrix. Show that g is the
matrix representation of the linear map T : V → W with respect to the bases p
and q.

EXERCISE 1.16. Let P , Q, R be principal spaces whose structural groups are
G, H and K respectively. Let φ : P → Q, ψ : Q→ R be morphisms of principal
spaces with subjacent group homomorphisms φ0 : G → H and ψ0 : H → K
respectively. Show that ψ ◦ φ : P → R is a morphism of principal spaces with
subjacent group homomorphism ψ0 ◦ φ0 : G→ K.

EXERCISE 1.17. Let P , Q be principal spaces with structural groups G and H
respectively and let φ : P → Q be a morphism of principal spaces with subjacent
group homomorphism φ0 : G→ H . Given p ∈ P and setting q = φ(p), show that
the following diagram commutes:

(1.2)

P
φ // Q

G

βp ∼=

OO

φ0

// H

∼= βq

OO

8Since the category of principal spaces with structural group Iso(X0) has only one isomorphism
class of objects, it follows that the functor Iso(X0, ·) is a category equivalence. However, there is no
natural choice of a category equivalence going in the opposite direction.
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Conclude that φ is injective (resp., surjective) if and only if φ0 is injective (resp.,
surjective).

EXERCISE 1.18. Let P , Q be principal spaces with structural groups G and H
respectively. Let φ : P → Q be an isomorphism of principal spaces with subjacent
group homomorphism φ0 : G → H . Show that φ−1 : Q → P is an isomorphism
of principal spaces with subjacent group homomorphism φ−1

0 : H → G.

EXERCISE 1.19. Let P , Q be principal spaces with structural groups G and H
respectively and let φ : P → Q be a morphism of principal spaces with subjacent
group homomorphism φ0 : G → H . Given principal subspaces P ′ ⊂ P , Q′ ⊂ Q
with structural groups G′ ⊂ G, H ′ ⊂ H respectively, show that:

• φ(P ′) is a principal subspace of Q and its structural group is φ0(G′);
• φ−1(Q′) is a principal subspace of P and its structural group is φ−1

0 (H ′).

EXERCISE 1.20. Let P , Q be principal spaces with structural groups G and H
respectively and let φ0 : G→ H be a homomorphism. Given p ∈ P , q ∈ Q, show
that there exists a unique morphisms of principal spaces φ : P → Q with subjacent
group homomorphism φ0 such that φ(p) = q.

EXERCISE 1.21. Let P be a principal space with structural group G and let K
be a normal subgroup of G. Let P/K denote the quotient set of P consisting of all
K-orbits. Show that:

(pK) · (gK) def= (p · g)K, p ∈ P, g ∈ G,

defines a right action of the quotient group G/K on the set P/K. Show that this
action makes P/K into a principal space with structural group G/K and that the
quotient map P → P/K is a morphism of principal spaces whose subjacent group
homomorphism is the quotient map G → G/K. We call P/K the quotient of the
principal space P by the action of the normal subgroup K of G.

EXERCISE 1.22 (reduction of counter-domain). Let P , Q′, Q be principal
spaces with structural groups G, H ′ and H respectively and let φ : P → Q,
ι : Q′ → Q be morphisms of principal spaces with subjacent group homomor-
phisms φ0 : G → H and ι0 : H ′ → H respectively. Assume that ι0 is injective
and that φ(P ) ⊂ ι(Q′). Show that there exists a unique map φ′ : P → Q′ such
that the diagram:

(1.3)

Q

P
φ′
//

φ
??��������
Q′

ι

OO

commutes; moreover, show that φ0(G) ⊂ ι0(H ′) and that φ′ is a morphism of
principal spaces whose subjacent group homomorphism is the unique map φ′0 for
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which the diagram

(1.4)

H

G
φ′0

//

φ0

>>}}}}}}}}
H ′

ι0

OO

commutes.

EXERCISE 1.23 (passing to the quotient). Let P , P and Q be principal spaces
with structural groups G, G and H respectively and let q : P → P , φ : P → Q be
morphisms of principal spaces with subjacent group homomorphisms q0 : G→ G
and φ0 : G → H respectively. Assume that q0 is surjective and that its kernel is
contained in the kernel of φ0. Show that:

• there exists a unique map φ̄ : P → Q for which the following diagram
commutes:

(1.5)

P
φ

""F
FFFFFFFF

q

��
P

φ̄
// Q

• the map φ̄ is a morphism of principal spaces whose subjacent group ho-
momorphism φ̄0 : G → H is the unique map for which the following
diagram commutes:

(1.6)

G
φ0

""F
FFFFFFFF

q0

��
G

φ̄0

// H

• set K = Ker(φ0), P = P/K, G = G/K and take q : P → P/K to be
the quotient map. Conclude that φ̄ : P/K → φ(P ) is an isomorphism
of principal spaces whose subjacent group homomorphism is the group
isomorphism φ̄0 : G/K → H .

EXERCISE 1.24. Let G, H be groups, P , Q be principal spaces with structural
group G, and P ′, Q′ be principal spaces with structural group H . Let φ : P ′ → P ,
ψ : Q′ → Q be morphisms of principal spaces with the same subjacent group
homomorphism φ0 : H → G. Show that for every left translation t : P ′ → Q′

there exists a unique left translation t̄ : P → Q for which the following diagram
commutes:

P
t̄ // Q

P ′

φ

OO

t
// Q′

ψ

OO
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We have therefore a map:

(1.7) Left(P ′, Q′) 3 t 7−→ t̄ ∈ Left(P,Q).

Prove the following facts about the map (1.7):
• if φ0 is injective then the map (1.7) is also injective;
• if φ0 is surjective then the map (1.7) is also surjective;
• if P = Q, P ′ = Q′ and φ = ψ then (1.7) is a group homomorphism from

Left(P ′) to Left(P ).

EXERCISE 1.25. Let P , P ′ be principal spaces with structural groups G and
H respectively. Let φ : P ′ → P be a morphism of principal spaces with subjacent
group homomorphism φ0 : H → G. In Exercise 1.24 we have constructed a
group homomorphism Left(P ′) 3 t 7→ t̄ ∈ Left(P ). Given p′ ∈ P ′ and setting
p = φ(p′) ∈ P , show that the following diagram commutes:

Left(P ′) t7→t̄ // Left(P )

H

Ip′ ∼=
OO

φ0

// G

∼= Ip

OO

EXERCISE 1.26. Let P , P ′ be principal spaces with structural groups G and
G′ respectively; let φ : P → P ′ be an isomorphism of principal spaces whose
subjacent group homomorphism is φ0 : G→ G′.

• Show that the map:

Iφ : Left(P ) 3 t 7−→ φ ◦ t ◦ φ−1 ∈ Left(P ′)

is a group isomorphism.
• Given p ∈ P and setting p′ = φ(p) ∈ P ′, show that the following dia-

gram commutes:

(1.8)

Left(P )
Iφ // Left(P ′)

G
φ0

//

Ip

OO

G′

Ip′
OO

• Let Q ⊂ P be a principal subspace; set Q′ = φ(Q), ψ = φ|Q : Q→ Q′.
Show that the diagram:

(1.9)

Left(P )
Iφ // Left(P ′)

Left(Q)

inclusion

OO

Iψ
// Left(Q′)

inclusion

OO

commutes.
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EXERCISE 1.27. Let P be a principal space with structural group G. Show
that, for any g ∈ G, the map γg : P → P is an isomorphism of principal spaces
whose subjacent group homomorphism is Ig−1 : G→ G.

EXERCISE 1.28. Let C be a category, X0, X1, X be isomorphic objects of C
and let i : X1 → X0 be an isomorphism. Show that the map:

γi : Iso(X0,X ) 3 f 7−→ f ◦ i ∈ Iso(X1,X )

is an isomorphism of principal spaces whose subjacent group homomorphism is
I−1

i , where:
Ii : Iso(X1) 3 f 7−→ i ◦ f ◦ i−1 ∈ Iso(X0).

EXERCISE 1.29. Let C be a category, X0, X1, X be isomorphic objects of
C and let i : X1 → X0 be an isomorphism. Show that the following diagram
commutes (see Exercises 1.12 and 1.28):

Left
(
Iso(X0,X )

) γi // Left
(
Iso(X1,X )

)

Iso(X)
f7→f∗

∼=
ffMMMMMMMMMM f7→f∗

∼=
88qqqqqqqqqq

Fiber products.

EXERCISE 1.30. Let P , Q be principal spaces with structural groups G and
H respectively; let φ : P → Q be a morphism of principal spaces with subjacent
group homomorphism φ0 : G → H . Let N be an H-space with effective group
Hef ⊂ Bij(N). We regard N also as a G-space by considering the action of G
on N defined by (1.2.20), so that the effective group Gef of the G-space N is a
subgroup of Hef . The fiber product Q×H N is endowed with an Hef -structure and
the fiber product P ×G N is endowed with a Gef -structure; such Gef -structure can
be weakened into an Hef -structure. Show that the induced map φ̂ : P ×G N →
Q×H N is Hef -structure preserving.

EXERCISE 1.31 (the functor • ×G N ). Let P , Q be principal spaces with
the same structural group G and let N be a G-space. Given a left translation
t : P → Q then, since t is a morphism of principal spaces whose subjacent group
homomorphism is the identity (Example 1.2.23), we have an induced map:

t̂ : P ×G N −→ Q×G N,
which is Gef -structure preserving (Exercise 1.30). Show that:

(a) the rule P 7→ P ×GN , t 7→ t̂ defines a functor from the category of prin-
cipal spaces with structural group G and left translations to the category
of sets endowed with Gef -structures and Gef -structure preserving maps;

(b) the functor • ×G N defined in item (a) is full, i.e., given principal spaces
P , Q with structural group G, the map:

(1.10) Left(P,Q) 3 t 7−→ t̂ ∈ IsoGef
(P ×G N,Q×G N)

is surjective;
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(c) if the action of G on N is effective then the functor • ×G N is faithful,
i.e., given principal spaces P , Q with structural group G, the map (1.10)
is injective.

EXERCISE 1.32 (the functor • ×G G is naturally isomorphic to the identity).
Let G be a group and let us regard G as a G-space by letting G act on itself by left
translations; then Gef = Left(G). Given a principal space P with structural group
G, show that the map:

(1.11) P 3 p 7−→ [p, 1] ∈ P ×G G
is Left(G)-structure preserving, where P is endowed with the Left(G)-structure
Left(G,P ) (recall Exercise 1.13). Show that (1.11) gives a natural isomorphism
from the identity functor to the functor • ×G G; more explicitly, given principal
spaces P , Q with structural group G and a left translation t : P → Q, show that
the diagram:

P
(1.11) //

t
��

P ×G G

t̂
��

Q
(1.11)

// Q×G G

commutes.

EXERCISE 1.33. Let G be a group and let us regard G as a G-space by letting
G act on itself on the left by conjugation; then Gef =

{
Ig : g ∈ G

}
is the group

of all inner automorphisms of G, which is a subgroup of Aut(G), the group of all
group automorphisms of G. Let P be a principal space with structural group G.
The fiber product P ×G G is endowed with a Gef -structure (the reader should be
aware that this fiber product is not the same considered in Exercise 1.32) that can
be weakened to an Aut(G)-structure. We can therefore regard P ×G G as a group
(recall Exercise 1.4). Show that the map:

(1.12) P ×G G 3 [p, g] 7−→ Ip(g) ∈ Left(P )

is a well-defined group isomorphism. Show that this isomorphism is natural, i.e.,
given principal spaces P and Q with structural group G and given a left translation
t : P → Q then the following diagram commutes:

(1.13)

P ×G G
(1.12) //

t̂

��

Left(P )

It
��

Q×G G (1.12)
// Left(Q)

where It : Left(P )→ Left(Q) is defined by It(s) = t ◦ s ◦ t−1.

EXERCISE 1.34. Generalize the naturality property described by the commu-
tative diagram (1.13) to the following context: let P , Q be principal spaces with
structural groups G and H , respectively. Let φ : P → Q be a morphism of princi-
pal spaces with subjacent group homomorphism φ0 : G → H . Let us regard G as
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a G-space (resp., H as an H-space) by letting G (resp., H) act on itself on the left
by conjugation. Show that the following map is well-defined:

(1.14) P ×G G 3 [p, g] 7−→ [φ(p), φ0(g)] ∈ Q×H H.

Show also that the following diagram commutes:

P ×G G
(1.12) //

(1.14)

��

Left(P )

t7→t̄
��

Q×H H
(1.12)

// Left(Q)

where the map t 7→ t̄ is defined in Exercise 1.24.

EXERCISE 1.35. Let G be a group and let N and N ′ be G-spaces. A map
κ : N → N ′ is called G-equivariant if κ(g · n) = g · κ(n), for all g ∈ G and all
n ∈ N . For a fixed group G, show that:

• G-spaces and G-equivariant maps constitute a category;
• if κ : N → N ′ is a bijective G-equivariant map then κ−1 : N ′ → N is

also G-equivariant.

EXERCISE 1.36 (the functor P ×G •). Let G be a group, N , N ′ be G-spaces
and κ : N → N ′ be a G-equivariant map. Consider the induced map:

Id×∼ κ : P ×G N 3 [p, n] 7−→ [p, κ(n)] ∈ P ×G N ′.

Show that the rule:
N 7−→ P ×G N, κ 7−→ Id×∼ κ

defines a functor from the category of G-spaces and G-equivariant maps to the
category of sets and maps.

EXERCISE 1.37 (the functor G ×G • is naturally isomorphic to the identity).
Let G be a group and N be a G-space with effective group Gef . We regard G as
a principal space with structural group G (recall Example 1.2.2) and the set N to
be endowed with its canonical Gef -structure (recall Example 1.1.5). Show that the
map:

(1.15) N 3 n 7−→ [1, n] ∈ G×G N

is Gef -structure preserving. Show also that the map (1.15) is natural in the follow-
ing sense: given G-spaces N , N ′ and a G-equivariant map κ : N → N ′ then the
diagram

N
(1.15) //

κ

��

G×G N
Id×∼κ
��

N ′ (1.15)
// G×G N ′

commutes.
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EXERCISE 1.38. Let P be a principal space with structural group G and let
N be a G-space. Show that if N is identified with the fiber product G ×G N by
(1.15) then, for all p ∈ P , the map p̂ : N → P ×G N is identified with the map
β̂p : G×G N → P ×G N (recall Example 1.2.11 and Exercise 1.31).

EXERCISE 1.39. Let C be a category as in the statement of Exercise 1.7 and
let X0 be a fixed object of C; set G = Iso(X0). Let F be a functor from C to
the category of sets and maps and set X0 = F(X0). The functor F induces a
homomorphism from G = Iso(X0) to Bij(X0) and therefore we get a left action
of G on X0 that makes the set X0 into a G-space with effective group Gef . Recall
that in Exercise 1.7 we have constructed a functor F• from C to the category of sets
endowed with Gef -structures and Gef -structure preserving maps. Show that:

• for each object X of C the map:

(1.16) Iso(X0,X )×G X0 3 [p, n] 7−→ F(p)(n) ∈ F•(X )

is Gef -structure preserving;
• (1.16) defines a natural isomorphism from the composition of the func-

tors Iso(X0, ·) and • ×G X0 to the functor F•, i.e., for every morphism
f : X → Y of C, the following diagram commutes:

Iso(X0,X )×G X0
(1.16) //

f̂∗
��

F(X )

F(f)

��
Iso(X0,Y)×G X0 (1.16)

// F(Y)

• obtain Lemma 1.2.29 as a consequence of the previous items.

EXERCISE 1.40. The goal of this exercise is to prove a naturality property
for the map (1.2.18). Let P , Q be principal spaces with structural groups G, H
respectively and let φ : P → Q be a morphism of principal spaces with subjacent
group homomorphism φ0 : G → H . Let N be an H-space; we regard N as a
G-space by considering the action of G on N defined by g · n = φ0(g) · n, for all
g ∈ G and all n ∈ N . Consider the induced map φ̂ : P ×G N → Q ×H N and
let (φ̂)∗ : Bij(N,P ×G N)→ Bij(N,Q×H N) be the map given by composition
with φ̂ on the left. Show that the following diagram commutes:

P
φ //

p7→p̂

xxrrrrrrrrrrrr Q
q 7→q̂

&&LLLLLLLLLLLL

Bij(N,P ×G N)
(φ̂)∗

// Bij(N,Q×H N)

Principal fiber bundles.
EXERCISE 1.41. Let M be a differentiable manifold, G be a Lie group, P be

a set and let Π : P → M be a map. Assume that for each x ∈ M we are given a
right action of G on the fiber Px that makes it into a principal space with structural
group G. Let A be an atlas of local sections of Π. Show that:
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(a) if two local sections s1 : U1 → P , s2 : U2 → P of Π are compatible
with every local section that belongs to A then s1 and s2 are compatible
with each other;

(b) the set Amax of all local sections of Π that are compatible with every
local section that belongs to A is the largest atlas of local sections of Π
containing A, i.e., Amax is an atlas of local sections of Π containing A
and Amax contains every atlas of local sections of Π that contains A;

(c) the set Amax define on item (b) is a maximal atlas of local sections of Π
in the sense that it is not properly contained in any atlas of local sections
of Π.

EXERCISE 1.42. Let Π : P →M be a G-principal bundle. Show that:

dΠp·g(ζ · g) = dΠp(ζ),

for all p ∈ P , ζ ∈ TpP and all g ∈ G.

EXERCISE 1.43. Let P , Q, R be principal bundles over a differentiable man-
ifold M with structural groups G, H and K, respectively. Let φ : P → Q,
ψ : Q → R be morphisms of principal bundles with subjacent Lie group ho-
momorphisms φ0 : G → H and ψ0 : H → K respectively. Show that the
composition ψ ◦φ : P → R is a morphism of principal bundles with subjacent Lie
group homomorphism ψ0 ◦ φ0 : G→ K.

EXERCISE 1.44. Let Π : P →M be aG-principal bundle. Show that for every
g ∈ G, the map γg : P → P is an isomorphism of principal bundles whose subja-
cent Lie group homomorphism is Ig−1 : G→ G (compare with Exercise 1.27).

EXERCISE 1.45. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be a
fiber-preserving map and let φ0 : G → H be a Lie group homomorphism such
that for every x ∈ M , φ|Px : Px → Qx is a morphism of principal spaces with
subjacent group homomorphism φ0. Show that if there exists an atlasA of smooth
sections of P such that φ ◦ s is smooth for all s in A then φ is a morphism of
principal bundles with subjacent Lie group homomorphism φ0.

EXERCISE 1.46. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be a
morphism of principal bundles and let φ0 : G → H be the Lie group homomor-
phism subjacent to φ. Show that:

• φ is injective (resp., surjective) if and only if φ0 is injective (resp., surjec-
tive);
• φ0 is injective (resp., surjective) if and only if φ is an immersion (resp., a

submersion);
• φ is a map of constant rank (the rank of φ is equal to the dimension of M

plus the rank of φ0);
• if φ0 is bijective then φ : P → Q is a smooth diffeomorphism and the

map φ−1 : Q → P is a morphism of principal bundles whose subjacent
Lie group homomorphism is φ−1

0 : H → G.
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EXERCISE 1.47. Let P , Q be principal bundles over the same differentiable
manifold M with structural groups G and H , respectively. Let φ : P → Q be
a morphism of principal bundles and let φ0 : G → H be its subjacent Lie group
homomorphism. Given a principal subbundle P ′ of P with structural group G′,
show that φ(P ′) is a principal subbundle of Q with structural group φ0(G′).

EXERCISE 1.48. Let Π : P → M be a G-principal bundle and let K be a
closed normal subgroup of G. Let P/K denote the quotient set of P consisting of
all K-orbits. We have a map:

Π : P/K 3 pK 7−→ Π(p) ∈M

such that for each x ∈ M the fiber (P/K)x is equal to the quotient Px/K of
the principal space Px by the action of the normal subgroup K of G; the quotient
Px/K is itself a principal space with structural group G/K (recall Exercise 1.21)
and the quotient group G/K is a Lie group. Denote by q : P → P/K the
quotient map. Show that there exists a unique maximal atlas of local sections of
Π : P/K → M that makes P/K a (G/K)-principal bundle and the quotient map
q a morphism of principal bundles whose subjacent Lie group homomorphism is
the quotient map G→ G/K. We call P/K the quotient of the principal bundle P
by the action of the closed normal subgroup K of G.

EXERCISE 1.49 (reduction of counter-domain). Let P ,Q′,Q be principal bun-
dles over a differentiable manifold M with structural groups G, H ′ and H , respec-
tively. Let φ : P → Q, ι : Q′ → Q be morphisms of principal bundles with
subjacent Lie group homomorphisms φ0 : G → H and ι0 : H ′ → H respec-
tively. Assume that ι0 is injective and that φ(P ) ⊂ ι(Q′). Show that there exists
a unique map φ′ : P → Q′ such that diagram (1.3) commutes; moreover, show
that φ0(G) ⊂ ι0(H ′) and that φ′ is a morphism of principal bundles whose sub-
jacent Lie group homomorphism is the unique map φ′0 for which diagram (1.4)
commutes.

EXERCISE 1.50 (passing to the quotient). Let P , P and Q be principal bun-
dles over the same differentiable manifold M with structural groups G, G and H ,
respectively. Let q : P → P , φ : P → Q be morphisms of principal bundles with
subjacent Lie group homomorphisms q0 : G → G and φ0 : G → H respectively.
Assume that q0 is surjective and that its kernel is contained in the kernel of φ0.
Show that:

• there exists a unique map φ̄ : P → Q for which diagram (1.5) commutes;
• the map φ̄ is a morphism of principal bundles whose subjacent Lie group

homomorphism φ̄0 : G → H is the unique map for which diagram (1.6)
commutes:
• set K = Ker(φ0), P = P/K, G = G/K and take q : P → P/K to be

the quotient map. Conclude that φ̄ : P/K → φ(P ) is an isomorphism of
principal bundles whose subjacent Lie group homomorphism is the Lie
group isomorphism φ̄0 : G/K → H .
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EXERCISE 1.51. Let M , E , E0 be differentiable manifolds and let π : E →M
be a smooth map. We call the quadruple (M, E , π, E0) a fiber bundle if every
point of M has an open neighborhood U ⊂ M for which there exists a smooth
diffeomorphism α : π−1(U)→ U × E0 such that the diagram:

π−1(U) α //

π
!!D

DD
DD

DD
D

U × E0

first projection}}{{
{{

{{
{{

U

commutes. Such a map α is called a local trivialization of the fiber bundle. We
call M the base space, E the total space, π the projection and E0 the typical fiber.
For each x ∈ M , the set Ex = π−1(x) is called the fiber over x. Show that the
projection π is a surjective submersion and that for each x ∈ M the fiber Ex is a
smooth submanifold of E diffeomorphic to E0.

EXERCISE 1.52. Let Π : P → M be a principal fiber bundle with structural
group G. Show that P is a fiber bundle over M with typical fiber G.

Pull-back of principal bundles.
EXERCISE 1.53. Let C be an arbitrary category,M,M′ and S be objects of C

and f :M′ →M, π : S → M be morphisms of C. A pull-back of the quintuple
(f, π,M,M′,S) is a triple (f∗S, π1, f̄) such that:

• f∗S is an object of C, π1 : f∗S → M′, f̄ : f∗S → S are morphisms of C
and π ◦ f̄ = f ◦ π1;
• given an object X of C and morphisms τ1 : X → M′, τ2 : X → S with
π ◦ τ2 = f ◦ τ1 then there exists a unique morphism τ : X → f∗S of C
such that π1 ◦ τ = τ1 and f̄ ◦ τ = τ2.

The notion of pull-back is illustrated by the following commutative diagram:

(1.17)

X τ2

��

τ1

!!

τ

  
f∗S

f̄
//

π1

��

S

π

��
M′

f
//M

The morphism f̄ is called the canonical map of the pull-back f∗S. Show that a quin-
tuple (f, π,M,M′,S) has at most one pull-back up to isomorphism; this means
that if (f∗S, π1, f̄) and

(
(f∗S)′, π′1, f̄

′) are both pull-backs of (f, π,M,M′,S) then
there exists a unique isomorphism φ : f∗S → (f∗S)′ of C such that π′1 ◦ φ = π1

and f̄′ ◦ φ = f̄.

EXERCISE 1.54. Let M , M ′, S be sets and f : M ′ → M , π : S → M be
maps. Let f∗S denote the subset of the cartesian product M ′ × S defined by:

(1.18) f∗S =
{
(y, p) ∈M ′ × S : f(y) = π(p)

}
.
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Denote by π1 : f∗S →M ′, f̄ : f∗S → S the restrictions to f∗S of the projections
ofM ′×S. Show that (f∗S, π1, f̄) is a pull-back of (f, π,M,M ′, S) in the category
of sets and maps.

EXERCISE 1.55. Let M , M ′, S be differentiable manifolds and f : M ′ →M ,
π : S →M be smooth maps such that at least one of them is a submersion9. Show
that:

• the set (1.18) is a smooth submanifold of the cartesian product M ′ × S;
• for all (y, p) ∈ f∗S, the tangent space T(y,p)(f∗S) is given by:

(1.19) T(y,p)(f
∗S) =

{
(v, ζ) ∈ TyM ′ ⊕ TζS : dfy(v) = dπp(ζ)

}
;

• if π1 : f∗S →M ′, f̄ : f∗S → S denote the restrictions of the projections
of M ′ × S then the triple (f∗S, π1, f̄) is a pull-back of (f, π,M,M ′, S)
in the category of differentiable manifolds and smooth maps.

The fiberwise product of principal bundles.

EXERCISE 1.56. Let M be a differentiable manifold and let P0, Q0 be prin-
cipal spaces whose structural groups are Lie groups; consider the trivial principal
bundles P = M × P0 and Q = M × Q0 (see Example 1.3.2). The fiberwise
product P ? Q can be naturally identified as a set with M × (P0 × Q0). Show
that P ? Q is also a trivial principal bundle, i.e., if M × (P0 ×Q0) is regarded as
a trivial principal bundle then the identification of P ? Q with M × (P0 × Q0) is
an isomorphism of principal bundles whose subjacent Lie group homomorphism
is the identity (recall from Example 1.2.7 that P0 × Q0 is also a principal space
whose structural group is a Lie group).

EXERCISE 1.57. Let Π : P → M , Π′ : Q → M be G-principal bundles.
Consider the pull-back Π1 : Π∗Q → P of the principal bundle Q by the map Π
and the fiberwise product Π ? Π′ : P ? Q → M . Show that there exists a unique
map Υ : Π∗Q→ P ? Q such that the diagram:

P

Π∗Q

Π1

33ggggggggggggggggggggggggggg
Υ //

Π
++VVVVVVVVVVVVVVVVVVVVVVVVVVV P ? Q

pr1

;;vvvvvvvvv

pr2

##G
GGGGGGGG

Q

9In fact, the following weaker hypothesis also works: for every y ∈ M ′, p ∈ S with f(y) =
π(p), the tangent space Tf(y)(M) equals the sum of the images of the linear maps df(y) and dπ(p).
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commutes. Moreover, show that Υ is a smooth diffeomorphism and that the dia-
gram:

P ? Q pr2

!!

pr1

$$

Υ−1

##
Π∗Q

Π

//

Π1

��

Q

P

commutes as well.

Associated bundles.

EXERCISE 1.58. Let Π : P → M be a G-principal bundle and consider the
action of G on itself by left translations. Show that the map:

P 3 p 7−→ [p, 1] ∈ P ×G G
is a smooth fiber-preserving diffeomorphism.

EXERCISE 1.59. Let Π : P → M be a G-principal bundle and N be a differ-
entiable G-space. For each x ∈ M , we have an action of Left(Px) on Px ×G N
given by:

(1.20) Left(Px)×(Px×GN) 3
(
t, [p, n]

)
7−→ t̂

(
[p, n]

)
= [t(p), n] ∈ Px×GN.

This action is effective if the action of G on N is effective (see Exercise 1.31).
Show that, for fixed p ∈ Px, if we identify Left(Px) with G via Ip and Px ×G N
with N via p̂ then the action (1.20) is identified with the action of G on N ; more
precisely, show that the diagram:

Left(Px)× (Px ×G N)
(1.20) // Px ×G N

G×N

Ip×p̂ ∼=

OO

action
// N

∼= p̂

OO

commutes. Conclude that the action (1.20) is smooth.

EXERCISE 1.60. Let Π : P → M be a G-principal bundle and consider the
union:

Left(P ) =
⋃
x∈M

Left(Px).

Let G act on itself on the left by conjugation. The result of Exercise 1.33 implies
that the map:

(1.21) P ×G G 3 [p, g] 7−→ Ip(g) ∈ Left(P )

is a fiber-preserving bijection. We endow Left(P ) with the unique differential
structure that makes (1.21) a smooth diffeomorphism. Show that:

• Left(P ) is a fiber bundle over M with typical fiber G;
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• the map Left(P ) ? P 3 (t, p) 7→ t(p) ∈ P is smooth;
• ifN is a differentiable manifold and (g, n) 7→ g ·n is a smooth left action

of G on N then the map:

Left(P ) ? (P ×G N) 3
(
t, [p, n]

)
7−→ [t(p), n] ∈ P ×G N

is smooth.

Vector bundles.

EXERCISE 1.61 (change of typical fiber). Let π : E → M be a vector bundle
with typical fiber E0, let E1 be a real vector space and let i : E1 → E0 be a linear
isomorphism. Consider the map:

γi : FRE0(E) 3 p 7−→ p ◦ i ∈ FRE1(E).

• Use Lemma 1.3.11 to show that there exists a unique maximal atlas of
local sections of FRE1(E) → M that makes γi into an isomorphism
of principal bundles whose subjacent Lie group homomorphism is I−1

i ,
where:

Ii : GL(E1) 3 T 7−→ i ◦ T ◦ i−1 ∈ GL(E0).

• Show that the maximal atlas of local sections of FRE1(E) → M that
makes γi into an isomorphism of principal bundles does not depend on
the choice of the linear isomorphism i : E1 → E0.
• The construction above allows us to regard π : E → M as a vector

bundle with typical fiber E1. Show that the differential structure on the
total space E does not change when the typical fiber is changed from E0

to E1.

EXERCISE 1.62. Let π : E → M be a vector bundle over a differentiable
manifold M and let ε : U → E be a smooth local section. Given x ∈ U , and
an open neighborhood V of x in M with V ⊂ U , show that there exists a smooth
global section ε̄ ∈ Γ(E) such that ε̄|V = ε|V .

EXERCISE 1.63. Let π : E → M , π′ : F → M be vector bundles over a
differentiable manifold M and let L : Γ(E) → Γ(F ) be a C∞(M)-linear map.
Given x ∈ M show that there exists a linear map Lx : Ex → Fx such that
L(ε)(x) = Lx

(
ε(x)

)
, for all ε ∈ Γ(E).

More generally, given vector bundles πi : Ei → M , i = 1, . . . , n and a
C∞(M)-multilinear map B : Γ(E1)× · · · ×Γ(En)→ Γ(F ), show that for every
x ∈ M there exists a multilinear map Bx : E1

x × · · · × Enx → Fx such that
B(ε1, . . . , εn)(x) = Bx

(
ε1(x), . . . , εn(x)

)
, for all εi ∈ Γ(Ei), i = 1, . . . , n.

REMARK. The result of Exercise 1.63 does not hold for infinite-dimensional
Hilbert vector bundles. See [2] for a counter-example.

EXERCISE 1.64. Let E , M be differentiable manifolds and π : E → M be a
smooth submersion. Show that:⋃

e∈E
Ker

(
dπ(e)

)
⊂ TE
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is a smooth distribution on E .

Pull-back of vector bundles.

EXERCISE 1.65. Let π : E →M be a vector bundle with typical fiber E0 and
let E1 be a real vector space isomorphic to E0. As we have seen in Exercise 1.61,
the vector bundle E can also be regarded as a vector bundle with typical fiber E1;
denote such vector bundle with changed typical fiber by E. Given a smooth map
f : M ′ → M defined in a differentiable manifold M ′, show that the pull-backs
f∗E and f∗E differ only by their typical fibers.

Functorial constructions with vector bundles.

EXERCISE 1.66. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Given objects (V1, . . . , Vn), (W1, . . . ,Wn) of Vecn, show that the map:

Iso(V1,W1)× · · · × Iso(Vn,Wn)

F

��
Iso

(
F(V1, . . . , Vn),F(W1, . . . ,Wn)

)
is smooth.

EXERCISE 1.67. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Given an isomorphism (T1, . . . , Tn) from an object (V1, . . . , Vn) of Vecn

to an object (W1, . . . ,Wn) of Vecn, show that the following diagram commutes:

gl(V1)⊕ · · · ⊕ gl(Vn)
f

//

IT1
⊕···⊕ITn

��

gl
(
F(V1, . . . , Vn)

)
IF(T1,...,Tn)

��
gl(W1)⊕ · · · ⊕ gl(Wn)

f
// gl

(
F(W1, . . . ,Wn)

)
where IT denotes conjugation by an isomorphism T .

EXERCISE 1.68. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, . . . , En be vector bundles over a differentiable manifold M with
typical fibers E1

0 , . . . , En0 , respectively. For each i = 1, . . . , n, let E i
0 be a real

vector space isomorphic toEi0. As we have seen in Exercise 1.61, the vector bundle
Ei can also be regarded as a vector bundle with typical fiber E i

0; denote such
vector bundle with changed typical fiber by E

i. Show that the vector bundles
F(E1, . . . , En) and F(E 1

, . . . , E
n) differ only by their typical fibers.

EXERCISE 1.69. Let k ≥ 1 be fixed and letZ be a fixed real finite-dimensional
vector space. Consider the smooth functors F : Veck → Vec, G : Veck+1 → Vec
defined by:

F(V1, . . . , Vk) = Lin(V1, . . . , Vk;Z),

G(V1, . . . , Vk,W ) = Lin(V1, . . . , Vk;W );
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the definitions of F and G on morphisms are as in Example 1.6.13. Given vector
bundles E1, . . . , Ek over a differentiable manifold M , show that:

F(E1, . . . , Ek) = G(E1, . . . , Ek,M × Z).

EXERCISE 1.70. Let E1, E2, F be vector bundles over a differentiable man-
ifold M and denote by pri : E1 ⊕ E2 → Ei, ιi : Ei → E1 ⊕ E2, i = 1, 2, the
projections and the inclusion maps, respectively.

(a) Given morphisms of vector bundles Li : F → Ei, i = 1, 2, show that
there exists a unique morphism of vector bundles L : F → E such that
pri ◦ L = Li, for i = 1, 2.

(b) Given morphisms of vector bundles Li : Ei → F , i = 1, 2, show that
there exists a unique morphism of vector bundles L : E → F such that
L ◦ ιi = Li, for i = 1, 2.

EXERCISE 1.71. Let E1, E2 be vector bundles over a differentiable manifold
M . Show that the natural inclusion map from the Whitney sum E1 ⊕ E2 to the
cartesian product E1 × E2 is a smooth embedding. Prove analogues of Corollar-
ies 1.3.26 and 1.3.27 to Whitney sums.

EXERCISE 1.72. Under the conditions of Exercise 1.63, show that the map
x 7→ Bx is a smooth section of the vector bundle Lin(E1, . . . , En;F ).

G-structures on vector bundles.

EXERCISE 1.73. Let A be a Lie group and M be a differentiable A-space. We
define a smooth left action of A on FR(TM) by setting:

g · p = dγg(x) ◦ p,

for all x ∈ M , p ∈ FR(TxM) and all g ∈ A. Let x0 ∈ M be fixed and consider
the isotropic representation ρx0 of Ax0 on Tx0M defined by:

ρx0 : Ax0 3 g 7−→ dγg(x0) ∈ GL(Tx0M).

Let p0 ∈ FR(Tx0M) be fixed and consider the group isomorphism

Ip0 : GL(Rn) −→ GL(Tx0M)

defined by Ip0(T ) = p0◦T ◦p−1
0 , for all T ∈ GL(Rn). SetG = I−1

p0

(
ρx0(Ax0)

)
⊂

GL(Rn). If the action of A on M is transitive, show that the A-orbit of p0 in
FR(TM) is a G-structure on M .

EXERCISE 1.74. Let M , M ′ be n-dimensional differentiable manifolds, f :
M → M ′ be a smooth diffeomorphism, G be a Lie subgroup of GL(Rn) and P
be a G-structure on M . Show that:

P ′ =
{
df ◦ p : p ∈ P

}
is the unique G-structure on M ′ that makes f into a G-structure preserving map.
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EXERCISE 1.75. Let π : E → M be a vector bundle endowed with a semi-
Riemannian structure g and let E′ be a vector subbundle of E. The orthogonal
subbundle of E′ in E is defined by:

(E′)⊥ =
⋃
x∈M

{
e ∈ Ex : gx(e, e′) = 0, for all e′ ∈ E′x

}
.

(a) Show that (E′)⊥ is a vector subbundle of E.
(b) If E′ is nondegenerate for g in the sense that the restriction of gx to E′x×

E′x is a nondegenerate symmetric bilinear form on E′x, for all x ∈ M ,
show that E = E′ ⊕ (E′)⊥.



CHAPTER 2

The theory of connections

2.1. The general concept of connection

Let π : E →M be a vector bundle with typical fiber E0 and let ε ∈ Γ(E) be a
smooth section of E. If E = M × E0 is the trivial vector bundle over M then ε is
of the form ε(x) =

(
x, ε̃(x)

)
, where ε̃ : M → E0 is a smooth map; let us identity

the smooth section ε of E = M × E0 with the smooth map ε̃ : M → E0. Given
a point x ∈ M and a tangent vector v ∈ TxM , we can consider the directional
derivative dε̃(x) · v of ε̃ at the point x, in the direction of v. In general, if E is
an arbitrary vector bundle, what sense can be made of the directional derivative
of a smooth section ε ∈ Γ(E) at a point x ∈ M , in the direction of a vector
v ∈ TxM? Let us first approach the problem by considering a smooth local E0-
frame s : U → FRE0(E) with x ∈ U . Let ε̃ : U → E0 denote the representation
of ε|U with respect to s. The directional derivative dε̃(x) · v is an element of the
typical fiber E0 and it corresponds via the isomorphism s(x) : E0 → Ex to a
vector of the fiber Ex; an apparently reasonable attempt at defining the directional
derivative of ε at the point x in the direction of v is:

directional derivative of ε at the point x in the direction of v

= s(x)
(
dε̃(x) · v

)
.

Of course, in order to check that such definition makes sense, one has to look at
what happens when another smooth local E0-frame s′ : V → FRE0(E) with
x ∈ V is chosen. Let g : U ∩ V → GL(E0) denote the transition map from s′ to
s, so that s(y) = s′(y) ◦ g(y), for all y ∈ U ∩ V ; then:

ε(y) = s(y) · ε̃(y) = s′(y) ·
(
g(y) · ε̃(y)

)
,

for all y ∈ U ∩ V , so that the representation ε̃′ of ε|V with respect to s′ satisfies:

ε̃′(y) = g(y) · ε̃(y),
for all y ∈ U ∩ V . Then:

dε̃′(x) · v =
(
dg(x) · v

)
· ε̃(x) + g(x) ·

(
dε̃(x) · v

)
,

and:

s′(x)
(
dε̃′(x) · v

)
= s(x)

(
g(x)−1

[(
dg(x) · v

)
· ε̃(x)

])
+ s(x)

(
dε̃(x) · v

)
.

The presence of the first term in the righthand side of the equality above shows
that our plan for defining the directional derivative of a smooth section ε didn’t
work. Let us look at the problem from a different angle. If ε : M → E is a

96
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smooth section of E then for every x ∈ M we can consider the differential dε(x),
which is a linear map from TxM to Tε(x)E; for every v ∈ TxM , we have therefore
dε(x) · v ∈ Tε(x)E. In the case that E = M ×E0 is the trivial bundle over M then
ε is of the form ε(x) =

(
x, ε̃(x)

)
and:

dε(x) · v =
(
v,dε̃(x) · v

)
∈ Tε(x)E = TxM ⊕ E0.

Hence, in the case of the trivial bundle, the object that we wish to call the direc-
tional derivative of ε at the point x in the direction of v is the second coordinate of
the vector dε(x) · v. If π : E →M is a general vector bundle then dε(x) · v is just
an element of Tε(x)E and it makes no sense to talk about the “second coordinate”
of dε(x) · v. Notice that, since π ◦ ε is the identity map of M , we have:

dπε(x)
(
dε(x) · v

)
= v,

so that, just in the case of the trivial bundle, the vector dε(x) ·v contains v as one of
its components. The difficulty here is that there is no canonical way of extracting
the “other component” from dε(x) · v. More precisely, the difficulty is that we
don’t have a direct sum decomposition TxM ⊕ E0 of Tε(x)E just like we had in
the case of the trivial bundle M × E0. We have a canonical subspace Verε(x)E of
Tε(x)E (recall Definition 1.5.6) but such subspace has no canonical complement in
the case of a general vector bundle E.

The problems we have encountered in the attempts to define a notion of di-
rectional derivative for sections of an arbitrary vector bundle indicate that indeed
no canonical notion of directional derivative for sections of general vector bundles
exists. In order to define such a notion, the vector bundleE has to be endowed with
some additional structure. The additional structure onE that will allow us to define
a notion of directional derivative for smooth sections of E is what we shall call a
connection on E. In order to make this definition precise, we start by considering
the problem of lack of a natural complement for the vertical space Vere(E) in the
tangent space to the total space TeE. Let us give some definitions.

DEFINITION 2.1.1. Let E , M be differentiable manifolds and let π : E → M
be a smooth submersion. Given e ∈ E then the space Ker

(
dπ(e)

)
is called the

vertical subspace of TeE at the point e with respect to the submersion π; assuming
that the submersion π is fixed by the context, we denote the vertical subspace by
Vere(E). A subspace H of TeE is called horizontal with respect to π if it is a
complement of Vere(E) in TeE , i.e., if:

TeE = H ⊕Vere(E).

A distributionH on the manifold E is called horizontal with respect to π ifHe is a
horizontal subspace of TeE for every e ∈ E . A smooth horizontal distribution on E
will also be called a generalized connection on E (with respect to π).

Notice that for all x ∈M , π−1(x) is a smooth submanifold of E and for every
e ∈ π−1(x) we have:

Vere(E) = Te
(
π−1(x)

)
.
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We set:
Ver(E) =

⋃
e∈E

Vere(E) ⊂ TE .

The result of Exercise 1.64 says that Ver(E) is a smooth distribution on E . We call
it the vertical distribution on E or also the vertical bundle of E determined by π.

Notice that a subspace H of TeE is horizontal with respect to π if and only if
the restriction of dπ(e) to H is an isomorphism onto Tπ(e)M (see Exercise 2.1).

When a horizontal distribution on E is fixed by the context we will usually
denote it by Hor(E); then:

(2.1.1) TeE = Hore(E)⊕Vere(E),
for all e ∈ E . We denote by pver : TE → Ver(E) (resp., phor : TE → Hor(E)) the
map whose restriction to TeE is equal to the projection onto the second coordinate
(resp., the first coordinate) corresponding to the direct sum decomposition (2.1.1),
for all e ∈ E . We call pver (resp., phor) the vertical projection (resp., the horizontal
projection) determined by the horizontal distribution Hor(E). Notice that if Hor(E)
is a smooth distribution then the projections pver and phor are morphisms of vector
bundles; in this case, we also call Hor(E) the horizontal bundle of E .

DEFINITION 2.1.2. Let E , M be differentiable manifolds and let π : E → M
be a smooth submersion. By a local section of π we mean a map ε : U → E defined
on an open subset U of M such that π ◦ ε is the inclusion map of U in M . Let
Hor(E) be a generalized connection on E . If ε : U → E is a smooth local section
of π then, given x ∈ U , v ∈ TxM , the covariant derivative of ε at the point x in
the direction of v with respect to the generalized connection Hor(E) is denoted by
∇vε and it is defined by:

(2.1.2) ∇vε = pver

(
dε(x) · v

)
∈ Verε(x)(E);

we call ∇ the covariant derivative operator associated to the generalized connec-
tion Hor(E). Given x ∈ U , if ∇vε = 0, for all v ∈ TxM then the local section ε is
said to be parallel at x with respect to Hor(E); if ε is parallel at every x ∈ U we
say simply that ε is parallel with respect to Hor(E).

Clearly the covariant derivative ∇vε is linear in v. Moreover, ε is parallel at x
with respect to Hor(E) if and only if:

dεx(TxM) = Horε(x)E .

DEFINITION 2.1.3. Let π : E → M , π′ : E ′ → M be smooth submersions; a
map φ : E → E ′ is said to be fiber preserving if:

π′ ◦ φ = π.

Let Hor(E), Hor(E ′) be generalized connections on E and E ′ respectively. A
smooth map φ : E → E ′ is said to be connection preserving if it is fiber preserving
and:

(2.1.3) dφe
(
Hore(E)

)
= Horφ(e)(E ′),

for all e ∈ E .
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Clearly the composition of fiber preserving (resp., connection preserving) maps
is also fiber preserving (resp., connection preserving). Moreover, the inverse of a
bijective fiber preserving map (resp., of a smooth connection preserving diffeomor-
phism) is also fiber preserving (resp., connection preserving).

Observe that if φ : E → E ′ is fiber preserving and if ε : U → E is a local
section of π then φ ◦ ε : U → E ′ is a local section of π′. If φ : E → E ′ is a smooth
fiber preserving map then for all x ∈M and all e ∈ π−1(x) the following diagram
commutes:

(2.1.4)

TeE
dφe //

dπe ""E
EE

EE
EE

EE
Tφ(e)E ′

dπ′
φ(e)zzvvv

vv
vv

vv

TxM

In particular, we have:

(2.1.5) dφe
(
Vere(E)

)
⊂ Verφ(e)(E ′).

DEFINITION 2.1.4. A smooth submersion π : E → M is said to have the
global extension property if for every smooth local section ε : U → E of π and
every x ∈ U there exists a smooth global section ε̄ : M → E such that ε and ε̄ are
equal on some neighborhood of x contained in U .

The result of Exercise 1.62 shows that the projection of a vector bundle has the
global extension property.

LEMMA 2.1.5. Let π : E → M , π′ : E ′ → M be smooth submersions and let
Hor(E), Hor(E ′) be generalized connections on E and E ′ respectively. Denote by
∇ and∇′ respectively the covariant derivative operators corresponding to Hor(E)
and Hor(E ′). Given a smooth fiber preserving map φ : E → E ′ then the following
conditions are equivalent:

(a) φ is connection preserving;
(b) dφe

(
Hore(E)

)
⊂ Horφ(e)(E ′), for all e ∈ E;

(c) for any smooth local section ε : U → E of π, it is:

(2.1.6) ∇′v(φ ◦ ε) = dφε(x)(∇vε),

for all x ∈ U and all v ∈ TxM .
If π : E → M has the global extension property then conditions (a), (b) and (c)
are also equivalent to:

(d) for any smooth global section ε : M → E of π, equality (2.1.6) holds, for
all x ∈M and all v ∈ TxM .

PROOF. The equivalence between (a) and (b) follows from the commutativity
of diagram (2.1.4), applying the results of Exercises 2.2 and 2.3. Now assume (a)
and let us prove (c). Denote by pver and p′ver the vertical projections determined by
Hor(E) and by Hor(E ′), respectively. From (2.1.3) and (2.1.5) we get that:

p′ver

(
dφe(ζ)

)
= dφe

(
pver(ζ)

)
,
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for all e ∈ E and all ζ ∈ TeE . Thus, given a smooth local section ε : U → E of π,
we have:

∇′v(φ ◦ ε) = p′ver

[
dφε(x)

(
dεx(v)

)]
= dφε(x)

[
pver

(
dεx(v)

)]
= dφε(x)(∇vε),

for all x ∈ U and all v ∈ TxM . This proves (c). Conversely, assume (c) and let
us prove (a). Let e ∈ E be fixed and set π(e) = x ∈ M . Choose an arbitrary
submanifold S of E with e ∈ S and TeS = Hore(E). Since:

d(π|S)e = dπe|TeS : TeS −→ TxM

is an isomorphism then, possibly taking a smaller S, we may assume that π|S is a
smooth diffeomorphism onto an open neighborhood U of x in M . Then:

ε = (π|S)−1 : U −→ E

is a smooth local section of π, ε(x) = e and ε is parallel at x with respect to
Hor(E). Now (2.1.6) implies that φ ◦ ε is parallel at x with respect to Hor(E ′) and
hence:

dφe
(
Hore(E)

)
= (dφe ◦ dεx)(TxM) = d(φ ◦ ε)x(TxM) = Horφ(e)(E ′),

proving (a). Finally, assume that π : E → M has the global extension property
and let us prove that (a), (b) and (c) are all equivalent to (d). It is obvious that (c)
implies (d). The proof of the fact that (d) implies (a) can be done by repeating the
same steps of our proof that (c) implies (a), keeping in mind that the smooth local
section ε : U → E of π constructed in that proof can be replaced by a smooth
global section ε̄ : M → E . �

COROLLARY 2.1.6. Let π : E → M be a smooth submersion endowed with
generalized connections Hor(E) and Hor′(E); denote by ∇ and ∇′ respectively
the covariant derivative operators corresponding to Hor(E) and Hor′(E). If:

(2.1.7) ∇vε = ∇′vε,

for every smooth local section ε : U → E of π and for every v ∈ TM |U then
Hor(E) = Hor′(E). Moreover, if π has the global extension property and if (2.1.7)
holds for every smooth global section ε : M → E of π and for every v ∈ TM then
Hor(E) = Hor′(E).

PROOF. Apply Lemma 2.1.5 with φ the identity map of E . �

Let us go back to our discussion about directional derivatives of smooth sec-
tions of a vector bundle π : E → M . The projection π of the vector bundle is
a smooth submersion and the notions of vertical space and local section given in
Definitions 2.1.1 and 2.1.2 are consistent with the ones given in Section 1.5. If
Hor(E) is a generalized connection on E then for every smooth section ε ∈ Γ(E),
every point x ∈ M and every vector v ∈ TxM , the covariant derivative ∇vε is
an element of the vertical space Verε(x)E, which is identified with the fiber Ex.
Although the covariant derivative ∇vε is linear in v, it doesn’t have in general the
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other “nice” properties that one would expect from a notion of directional deriva-
tive; for instance, the covariant derivative ∇vε is not in general linear in ε. It turns
out that for some generalized connections Hor(E), the corresponding notion of co-
variant derivative of smooth sections of E satisfies all the desirable properties. The
difficulty is that it is not so easy to give a direct description of the properties that
the generalized connection Hor(E) should satisfy in order that the corresponding
covariant derivative ∇ satisfies all the desirable properties.

Our plan for developing the theory of connections is the following: we first
study the notion of connection on principal bundles. A principal connection on a
principal bundle is just a generalized connection on the total space that is invariant
under the action of the structural group. We show how a principal connection on a
principal bundle induces a generalized connection in any of its associated bundles.
In particular, if E is a vector bundle, a principal connection on the principal bun-
dle of frames FRE0(E) induces a generalized connection Hor(E) on E (recall the
isomorphism given by the contraction map (1.5.1)). Looking at the situation from
a different perspective, we will define the notion of linear connection on a vector
bundle E simply by stating that a linear connection on E is the same as a covari-
ant derivative operator ∇ satisfying some natural properties. It will be seen that
the covariant derivative operator determined by a generalized connection Hor(E)
induced from a principal connection on FRE0(E) is indeed a linear connection on
E; moreover, there is a one to one correspondence between the principal connec-
tions on the principal bundle FRE0(E) and the linear connections∇ on the vector
bundle E.

2.1.1. Pull-back of generalized connections and submersions.

DEFINITION 2.1.7. Let E , M , M ′ be differentiable manifolds, π : E →M be
a smooth submersion and let f : M ′ → M be a smooth map. By a local section
of π along f we mean a map ε : U ′ → E with π ◦ ε = f |U ′ , where U ′ is an open
subset of M ′. If Hor(E) is a generalized connection on E with respect to π and if
ε : U ′ → E is a smooth local section of π along f then we set:

∇vε = pver

(
dε(y) · v

)
∈ Verε(y)(E),

for all y ∈ U ′, v ∈ TyM ′ and we call∇vε the covariant derivative of ε at the point
y in the direction of v. Given y ∈ U ′, if ∇vε = 0, for all v ∈ TyM ′ then the local
section ε is said to be parallel at y with respect to Hor(E); if ε is parallel at every
y ∈ U ′ we say simply that ε is parallel with respect to Hor(E).

Clearly the covariant derivative ∇vε is linear in v. Moreover, ε is parallel at y
with respect to Hor(E) if and only if:

dεy(TyM ′) ⊂ Horε(y)E .

If π : E → M , π′ : E ′ → M are smooth submersions, φ : E → E ′ is fiber
preserving and if ε : U ′ → E is a local section of π along a map f : M ′ →M then
obviously φ ◦ ε : U → E ′ is a local section of π′ along f . We have the following
analogue of (2.1.6):
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LEMMA 2.1.8. Let π : E →M , π′ : E ′ →M be smooth submersions endowed
with generalized connections Hor(E), Hor(E ′), respectively,M ′ be a differentiable
manifold, f : M ′ → M be a smooth map, φ : E → E ′ be a smooth connection
preserving map and ε : U ′ → E be a local section of π along f . Then:

∇′v(φ ◦ ε) = dφε(y)(∇vε),

for all y ∈ U ′, v ∈ TyM ′, where∇,∇′ denote respectively the covariant derivative
operators with respect to Hor(E) and Hor(E ′).

PROOF. It is analogous to the proof of (2.1.6) in Lemma 2.1.5. �

Let E ,M ,M ′ be differentiable manifolds, π : E →M be a smooth submersion
and let f : M ′ →M be a smooth map. We set:

f∗E =
{
(y, e) ∈M ′ × E : f(y) = π(e)

}
and we denote by π1 : f∗E →M ′, f̄ : f∗E → E respectively the restriction to f∗E
of the first and of the second projection of the cartesian product M ′×E . Since π is
a submersion, the result of Exercise 1.55 says that f∗E is a smooth submanifold of
M ′ × E and that the triple (f∗E , π1, f̄) is the pull-back of (f, π,M,M ′, E) in the
category of differentiable manifolds and smooth maps. Since π is a submersion, it
follows easily from (1.19) that also π1 : f∗E → M ′ is a submersion. We call the
submersion π1 : f∗E →M ′ the pull-back of the submersion π : E →M by f and
we call f̄ : f∗E → E the canonical map of the pull-back f∗E .

REMARK 2.1.9. Given y ∈M ′ then:

π−1
1 (y) = {y} × π−1

(
f(y)

)
;

we thus identify π−1
1 (y) with π−1

(
f(y)

)
in the obvious way. Under such identi-

fication, the restriction to π−1
1 (y) of the canonical map f̄ is the identity map of

π−1
(
f(y)

)
. In particular, for all e ∈ f∗E , we identify the vertical space Vere(f∗E)

with the vertical space Verf̄(e)(E) and the restriction to Vere(f∗E) of the differen-
tial df̄e with the identity map of Verf̄(e)(E).

Clearly the composition on the left with f̄ of a (smooth) local section of the
submersion π1 : f∗E → M ′ is a (smooth) local section of π : E → M along f .
Conversely, using the property of pull-backs described in diagram (1.17), we see
that if ε : U ′ → E is a (smooth) local section of π : E → M along f then there
exists a unique (smooth) local section←−ε : U ′ → f∗E of π1 : f∗E →M ′ such that
f̄ ◦←−ε = ε. The situation is illustrated by the following commutative diagram:

f∗E
f̄ // E

π

��
U ′

←−ε

OO

ε

=={{{{{{{{{

f
// M
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LEMMA 2.1.10. Let π : E → M be a smooth submersion, M ′ be a differen-
tiable manifold and f : M ′ → M be a smooth map. If Hor(E) is a generalized
connection on E with respect to π : E →M then:

(2.1.8) Hore(f∗E) = df̄−1
e

(
Horf(e)(E)

)
⊂ Te(f∗E), e ∈ f∗E ,

is a generalized connection on f∗E with respect to π1 : f∗E →M ′.

PROOF. Keeping in mind Remark 2.1.9, it follows from the result of Exer-
cise 2.4 that (2.1.8) defines an horizontal distribution on f∗E with respect to π1. It
is easy to see that Hor(f∗E) is indeed a smooth distribution on f∗E . �

DEFINITION 2.1.11. The generalized connection Hor(f∗E) defined in (2.1.8)
is called the pull-back of the generalized connection Hor(E) by f .

LEMMA 2.1.12. Let π : E → M be a smooth submersion endowed with a
generalized connection Hor(E), M ′ be a differentiable manifold and f : M ′ →M
be a smooth map; assume that π1 : f∗E → M ′ is endowed with the generalized
connection Hor(f∗E) obtained from Hor(E) by pull-back. Then, given a smooth
local section ε : U ′ → E of π along f , we have:

∇v←−ε = ∇vε,
for all v ∈ TM ′|U ′ . In particular, ε is parallel at a point y ∈ U ′ if and only if←−ε
is parallel at y.

PROOF. It follows easily from the observation that, for all e ∈ f∗E , the differ-
ential df̄e maps Hore(f∗E) to Horf̄(e)(E) and from the observation that df̄e is the
identity on the vertical space Verf̄(e)(E) (see Remark 2.1.9). �

2.2. Connections on principal fiber bundles

Let Π : P →M be a G-principal bundle over a differentiable manifold M .

DEFINITION 2.2.1. A principal connection on P is a generalized connection
Hor(P ) on P that is G-invariant, i.e.:

dγg
(
Horp(P )

)
= Horp·g(P ),

for all p ∈ P and all g ∈ G, where γg : P → P denotes the diffeomorphism given
by the action of g on P .

Recall from (1.3.4) that the vertical distribution Ver(P ) is also G-invariant.
From now on, by a connection on a principal bundle we will mean implicitly a

principal connection.
Let Hor(P ) be a horizontal distribution on P . The existence of a canoni-

cal isomorphism between the vertical space Verp(P ) and the Lie algebra g of the
structural group (recall (1.3.3)) allows us to canonically associate to the distribu-
tion Hor(P ) a g-valued 1-form ω on P such that Ker(ωp) = Horp(P ), for all
p ∈ P . Namely, we define ω by setting:

(2.2.1) ωp(ζ) =

{(
dβp(1)

)−1(ζ) ∈ g, if ζ ∈ Verp(P ),
0 ∈ g, if ζ ∈ Horp(P ),
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for all p ∈ P , where
(
dβp(1)

)−1 : Verp(P ) → g is the inverse of the linear
isomorphism (1.3.3).

LEMMA 2.2.2. Let Hor(P ) be a horizontal distribution on P and let ω be the
g-valued 1-form on P defined by (2.2.1). Then Hor(P ) is smooth if and only if ω
is smooth.

PROOF. Consider the map Lω : TP → P × g whose restriction to TpP is
given by ζ 7→

(
p, ωp(ζ)

)
, for all p ∈ P . If ω is smooth then Lω is smooth and

therefore it is a morphism of vector bundles from the tangent bundle TP to the
trivial vector bundle P × g. Since Lω is surjective, its kernel Ker(Lω) = Hor(P )
is a vector subbundle of TP , by Proposition 1.5.31; thus, Hor(P ) is a smooth
distribution on P . Conversely, assume that the horizontal distribution Hor(P ) is
smooth. Consider the map Lβ : P × g→ Ver(P ) defined by

Lβ(p,X) = dβp(1) ·X,

for all p ∈ P and all X ∈ g. The map Lβ is smooth, since it is the restriction
to P × g ⊂ TP × TG of the differential of the right action P × G → P of G
on P . Thus Lβ is an isomorphism of vector bundles. Since Hor(P ) is smooth,
the vertical projection pver : TP → Ver(P ) is a morphism of vector bundles and
therefore Lω = L−1

β ◦ pver : TP → P × g is also a morphism of vector bundles. It
follows that ω is smooth. �

Let us determine what conditions on the g-valued 1-form ω defined by (2.2.1)
correspond to the G-invariance of the horizontal distribution Hor(P ). Assume that
Hor(P ) is G-invariant. From the commutativity of diagram (1.3.5), it follows that
the diagram:

(2.2.2)

TpP
ωp //

dγg(p)

��

g

Adg−1

��
Tp·gP ωp·g

// g

commutes, for all p ∈ P and all g ∈ G; namely, simply check that Adg−1 ◦ωp and
ωp·g ◦ dγg(p) coincide both on Horp(P ) and on Verp(P ). The commutativity of
diagram (2.2.2) for all p ∈ P , g ∈ G is equivalent to the requirement that:

(2.2.3) γ∗g ω = Adg−1 ◦ ω,

for all g ∈ G. Motivated by this, we give the following:

DEFINITION 2.2.3. Let V be a real finite-dimensional vector space and let
ρ : G → GL(V ) be a smooth representation of G on V . A V -valued differential
form λ on the total space P is said to be ρ-pseudo G-invariant (or pseudo G-
invariant with respect to ρ) if:

γ∗g λ = ρ(g)−1 ◦ λ,

for all g ∈ G.
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Equality (2.2.3) says that ω is pseudo G-invariant with respect to the adjoint
representation Ad : G→ GL(g) of the Lie group G on its Lie algebra g.

LEMMA 2.2.4. Let Hor(P ) be a horizontal distribution on P and let ω be the
g-valued 1-form on P defined by (2.2.1). Then Hor(P ) is G-invariant if and only
if ω is Ad-pseudo G-invariant.

PROOF. We have already shown that if Hor(P ) is G-invariant then ω is Ad-
pseudoG-invariant. Conversely, if ω is Ad-pseudoG-invariant then diagram (2.2.2)
commutes for all p ∈ P , g ∈ G and therefore:

(2.2.4) dγg
(
Horp(P )

)
⊂ Horp·g(P ),

for all p ∈ P , g ∈ G. Replacing p with p · g and g with g−1 in (2.2.4) we
get the opposite inclusion Horp·g(P ) ⊂ dγg

(
Horp(P )

)
and hence Hor(P ) is G-

invariant. �

DEFINITION 2.2.5. Let Π : P → M be a G-principal bundle and for each
p ∈ P denote by

(
dβp(1)

)−1 : Verp(P )→ g the inverse of the linear isomorphism
(1.3.3). A smooth g-valued Ad-pseudo G-invariant 1-form ω on P satisfying the
condition:

(2.2.5) ωp|Verp(P ) =
(
dβp(1)

)−1

for all p ∈ P is called a connection form on P .

If ω is a g-valued 1-form on P satisfying condition (2.2.5) for all p ∈ P then
the distribution Hor(P ) defined by:

(2.2.6) Horp(P ) = Ker(ωp),

for all p ∈ P is horizontal (see Exercise 2.1). If ω is a connection form on P then
Lemmas 2.2.2 and 2.2.4 imply that the horizontal distribution Hor(P ) defined by
(2.2.6) is a connection on P . Conversely, if Hor(P ) is a connection on P then the
g-valued 1-form ω on P defined by (2.2.1) is a connection form on P . Thus, we
have the following:

THEOREM 2.2.6. Let Π : P → M be a principal bundle. Equality (2.2.6) de-
fines a one-to-one correspondence between connections Hor(P ) on P and smooth
connection forms ω on P . �

EXAMPLE 2.2.7. Let M be a differentiable manifold and let P0 be a principal
space whose structural group is a Lie group G. There is a canonical connection on
the trivial principal bundle P = M × P0 defined by:

Hor(x,p)(P ) = TxM ⊕ {0} ⊂ TxM ⊕ TpP0 = T(x,p)P,

for all x ∈ M , p ∈ P0. If ω is the connection form associated to such connection
then for all (x, p) ∈ P , ω(x,p) : TxM ⊕ TpP0 → g is the composition of the

projection TxM ⊕ TpP0 → TpP0 with
(
dβp(1)

)−1 : TpP0 → g.
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EXAMPLE 2.2.8. Let Π : P → M be a G-principal bundle and let Hor(P )
be a connection on P . If U is an open subset of M then clearly the intersection
Hor(P ) ∩ T (P |U ) is a connection on the restricted principal bundle P |U . Obvi-
ously the connection form associated to Hor(P ) ∩ T (P |U ) is just the restriction
of the connection form associated to Hor(P ). In Exercise 2.6 we ask the reader
to show that a connection on P is determined by a family of pairwise compatible
connections on restrictions of P to open subsets of M .

EXAMPLE 2.2.9. Let us understand better the notion of connection form by
considering a trivial principal bundle P = M × G. Let ω be a g-valued 1-form
on P . By differentiating the action of G on itself by right translations we obtain a
right action of G on its own tangent bundle TG given by:

Xg = dRg(X),

for all g ∈ G and all X ∈ TG (recall (1.1.2)). The right action of G on TP
obtained by differentiating the right action of G on P is therefore given by:

(v,X) · g def= dγg(v,X) = (v,Xg),

for all v ∈ TM , X ∈ TG and all g ∈ G. Let us take a closer look at the condition
of Ad-pseudo G-invariance. By the result of Exercise 2.7, ω is Ad-pseudo G-
invariant if and only if the equality (2.2.3) holds at the point of M ×{1} ⊂ P , i.e.,
if and only if:

(2.2.7) ω(x,g)(v,Xg) = Adg−1

(
ω(x,1)(v,X)

)
,

for all x ∈ M , v ∈ TxM , g ∈ G and all X ∈ g. Let ω̄ be the g-valued 1-form on
M which is the pull-back of ω by the local section s1 : M 3 x 7→ (x, 1) ∈ P of
P . The equality (s1)∗ω = ω̄ means that:

(2.2.8) ω(x,1)(v, 0) = ω̄x(v),

for all x ∈ M and all v ∈ TxM . Now let us consider condition (2.2.5). By
the result of Exercise 2.9, under the assumption that ω is Ad-pseudo G-invariant,
condition (2.2.5) holds for all p ∈ P if and only if it holds for all p ∈M×{1} ⊂ P ,
i.e., if and only if:

(2.2.9) ω(x,1)(0, X) = X,

for all x ∈ M and all X ∈ g. Conditions (2.2.7), (2.2.8) and (2.2.9) together are
equivalent to:

(2.2.10) ω(x,g)(v,Xg) = Adg−1

(
ω̄x(v) +X

)
,

for all x ∈ M , v ∈ TxM , g ∈ G and all X ∈ g. We have shown that given
a g-valued 1-form ω̄ on M then there exists a unique Ad-pseudo G-invariant g-
valued 1-form ω on P = M × G satisfying condition (2.2.5) for all p ∈ P with
(s1)∗ω = ω̄; the 1-form ω is given by (2.2.10). Notice that equality (2.2.10) implies
that ω is smooth if and only if ω̄ is smooth.
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LEMMA 2.2.10. Let Π : P → M be a G-principal bundle and let s : U → P
be a smooth local section of P . If ω̄ is a g-valued 1-form on U then there exists
a unique Ad-pseudo G-invariant g-valued 1-form ω on the principal bundle P |U
satisfying condition (2.2.5) for all p ∈ P |U with s∗ω = ω̄. Moreover, ω is smooth
if and only if ω̄ is smooth.

PROOF. The discussion presented in Example 2.2.9 shows that the lemma
holds in the case that P = M × G is the trivial bundle and the local section s
is equal to s1 : M 3 x 7→ (x, 1) ∈ P . To prove the general case, consider the
following commutative diagram (recall (1.3.2)):

U ×G
βs
∼=

// P |U

U
s1

__???????? s

AA�������

The map βs is an isomorphism from the trivial principal bundle U × G to P |U
whose subjacent Lie group homomorphism is the identity map of G (recall Exam-
ple 1.3.10). Given a g-valued 1-form ω on P |U then the result of Exercises 2.11 and
2.12 imply that ω is Ad-pseudo G-invariant and satisfies (2.2.5) for all p ∈ P |U if
and only if β∗sω is Ad-pseudo G-invariant and satisfies (2.2.5) for all p ∈ U × G.
Moreover, s∗ω = ω̄ if and only if (s1)∗(β∗sω) = ω̄. The conclusion follows. �

If ω is a connection form on P and s : U → P is a smooth local section then
the smooth g-valued 1-form ω̄ = s∗ω on U is called the representation of ω with
respect to the smooth local section s. Lemma 2.2.10 states that a connection form
ω on P |U is uniquely determined by its representation ω̄ with respect to a given
smooth local section s : U → P .

Let us now discuss the notion of connection preserving maps in the context of
principal bundles (recall Definition 2.1.3).

LEMMA 2.2.11. Let Π : P → M , Π′ : Q → M be principal bundles with
structural groups G and H , respectively; denote by g and h the Lie algebras of G
andH respectively. Let φ : P → Q be a morphism of principal bundles with subja-
cent Lie group homomorphism φ0 : G→ H; denote by φ̄0 : g→ h the differential
of φ0 at the identity. Let Hor(P ), Hor(Q) be respectively a G-invariant horizontal
distribution on P and an H-invariant horizontal distribution on Q. Denote by ωP ,
ωQ respectively the g-valued 1-form on P associated to Hor(P ) and the h-valued
1-form on Q associated to Hor(Q), defined as in (2.2.1). The following conditions
are equivalent:

(a) for every x ∈M there exists p ∈ Px such that

(2.2.11) dφp
(
Horp(P )

)
⊂ Horφ(p)(Q);

(b) φ is connection preserving;
(c) φ∗ωQ = φ̄0 ◦ ωP ;
(d) every point of M is in the domain of a smooth local section s : U → P

of P such that (φ ◦ s)∗ωQ = φ̄0 ◦ (s∗ωP ).
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PROOF. Assume (a) and let us prove (b). Given g ∈ G, h ∈ H , denote by
γPg : P → P and γQh : Q → Q respectively the diffeomorphism given by the
action of g on P and the diffeomorphism given by the action of h on Q. Since
φ0 is the Lie group homomorphism subjacent to φ, setting h = φ0(g), then the
following diagram commutes:

P
φ //

γPg
��

Q

γQh
��

P
φ
// Q

by differentiation, we get another commutative diagram:

(2.2.12)

TpP
dφ(p) //

dγPg (p)

��

Tφ(p)Q

dγQh (φ(p))
��

Tp·gP
dφ(p·g)

// Tφ(p·g)Q

Observing dγPg (p) maps the space Horp(P ) to the space Horp·g(P ) and dγQh
(
φ(p)

)
maps the space Horφ(p)(Q) to the space Horφ(p·g)(Q), the commutativity of dia-
gram (2.2.12) and (2.2.11) imply that:

dφp·g
(
Horp·g(P )

)
⊂ Horφ(p·g)(Q),

for all g ∈ G. Thus (2.2.11) holds for all p ∈ P . Now (b) follows directly from
Lemma 2.1.5. Now assume (b) and let us prove (c). Given p ∈ P then the linear
maps (φ∗ωQ)p = ωQφ(p) ◦ dφp and φ̄0 ◦ ωPp are both zero on Horp(P ) and they
coincide on Verp(P ), by the result of Exercise 2.11. Therefore (c) holds. To prove
that (c) implies (d), simply observe that the equality in (d) is equivalent to:

(2.2.13) s∗(φ∗ωQ) = s∗(φ̄0 ◦ ωP ).

Finally, assume (d) and let us prove (a). Let x ∈ M be fixed and choose a smooth
local section s : U → P of P with x ∈ U such that (2.2.13) holds. Set p = s(x)
and let us show that (2.2.11) holds. Equality (2.2.13) implies that the linear maps
(φ∗ωQ)p and φ̄0 ◦ωPp coincide on the image of dsx; by the result of Exercise 2.11,
they also coincide on Verp(P ). Since TpP = dsx(TxM) ⊕ Verp(P ), it follows
that:

ωQφ(p) ◦ dφp = (φ∗ωQ)p = φ̄0 ◦ ωPp .

Hence dφp maps the kernel of ωPp into the kernel of ωQφ(p), proving (2.2.11). �

EXAMPLE 2.2.12. The morphism of principal bundle Id×φ of Example 1.3.9
is obviously connection preserving if the trivial principal bundles M × P0 and
M ×Q0 are endowed with their canonical connections (see Example 2.2.7).
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PROPOSITION 2.2.13. Let P , Q be principal bundles over the same differen-
tiable manifold M and let φ : P → Q be a morphism of principal bundles. Given
a connection Hor(P ) on P then there exists a unique connection Hor(Q) on Q for
which φ is connection preserving.

PROOF. LetG, H denote respectively the structural groups of P andQ and let
φ0 : G → H denote the Lie group homomorphism subjacent to φ. Let ωP be the
connection form corresponding to Hor(P ). We first prove the proposition under
the assumption that P admits a globally defined smooth local section s : M → P .
Let ω̄ = s∗ωP denote the representation of ωP with respect to s. A connection
Hor(Q) onQmakes φ connection preserving if and only if its connection form ωQ

satisfies:

(2.2.14) (φ ◦ s)∗ωQ = φ̄0 ◦ ω̄,

where φ̄0 denotes the differential of φ0 at the identity (see item (d) on the statement
of Lemma 2.2.11). Since φ◦s : M → Q is a smooth globally defined local section
of Q, Lemma 2.2.10 implies that there exists a unique connection form ωQ on Q
such that (2.2.14) holds. This completes the proof in the case where P admits a
globally defined smooth local section. To prove the general case, let M =

⋃
i∈I Ui

be an open cover of M such that Ui is the domain of some smooth local section
of P , for all i ∈ I . The case already proven therefore applies to the restriction
of φ to P |Ui . The conclusion is now easily obtained by applying the result of
Exercise 2.6. �

DEFINITION 2.2.14. If φ : P → Q is a morphism of principal bundles and
Hor(P ) is a connection on P then the unique connection Hor(Q) on Q that makes
φ connection preserving is called the push-forward of Hor(P ) by φ.

In analogy with Corollary 1.3.12, we have the following:

COROLLARY 2.2.15. Let P , P ′, Q be principal bundles over a differentiable
manifold M and let φ : P → Q, ψ : P → P ′, φ′ : P ′ → Q be morphisms of
principal bundles such that the diagram:

P
φ

  @
@@

@@
@@

@

ψ

��
P ′

φ′
// Q

commutes. Given connections Hor(P ), Hor(P ′), Hor(Q) on P , P ′ and Q respec-
tively such that both φ and ψ are connection preserving then also φ′ is connection
preserving.

PROOF. Let Hor′(Q) be the push-forward of Hor(P ′) by φ′. Both connections
Hor(Q) and Hor′(Q) make φ = φ′ ◦ ψ connection preserving. By the uniqueness
part of Proposition 2.2.13, we have Hor(Q) = Hor′(Q). This concludes the proof.

�
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2.2.1. The connection on the fiberwise product. Given connections on prin-
cipal bundles P , Q over M then we have a naturally induced connection on the
fiberwise product P ? Q.

PROPOSITION 2.2.16. Let P , Q be principal bundles over the same differen-
tiable manifold M , with structural groups G and H , respectively; denote by g, h
respectively the Lie algebras of G and H . If Hor(P ) is a connection on P and
Hor(Q) is a connection on Q then there exists a unique connection Hor(P ? Q)
on P ? Q such that Hor(P ) is the push-forward of Hor(P ? Q) by the projection
pr1 : P ? Q → P and such that Hor(Q) is the push-forward of Hor(P ? Q) by
the projection pr2 : P ? Q → Q. Moreover, if ωP is the g-valued connection
form associated to Hor(P ) and ωQ is the h-valued connection form associated to
Hor(Q) then (pr∗1 ω

P ,pr∗2 ω
Q) is the (g ⊕ h)-valued connection form associated

to Hor(P ? Q).

PROOF. The maps pr1 and pr2 are both connection preserving if and only if the
connection form associated to the connection on P ?Q is equal to (pr∗1 ω

P ,pr∗2 ω
Q)

(see item (c) on Lemma 2.2.11). To conclude the proof, we just have to show that
ω = (pr∗1 ω

P ,pr∗2 ω
Q) is indeed a connection form on P ? Q. Clearly, ω is a

smooth (g ⊕ h)-valued 1-form on P ? Q. Given (p, q) ∈ P ? Q, the fact that the
restriction of ω(p,q) to Ver(p,q)(P ? Q) is equal to

(
dβ(p,q)(1)

)−1 follows from the
result of Exercise 2.11 applied to the morphisms pr1 and pr2. Finally, the Ad-
pseudo (G × H)-invariance of ω follows from the result of Exercise 2.12, also
applied to the morphisms pr1 and pr2. �

DEFINITION 2.2.17. Let P , Q be principal bundles over the same differen-
tiable manifold M . Given connections Hor(P ) and Hor(Q) on P and Q respec-
tively then the unique connection Hor(P ?Q) on P ?Q that makes the projections
pr1 : P ? Q→ P , pr2 : P ? Q→ Q connection preserving is called the fiberwise
product connection of Hor(P ) by Hor(Q).

EXAMPLE 2.2.18. Let M be a differentiable manifold and P0, Q0 be principal
spaces whose structural groups are Lie groups; consider the trivial principal bun-
dles P = M × P0 and Q = M × Q0. In Exercise 1.56 we asked the reader to
show that the fiberwise product P ?Q is identified with the trivial principal bundle
M × (P0 × Q0). We claim that the canonical connection of the trivial principal
bundle P ? Q is equal to the fiberwise product of the canonical connections of
the trivial principal bundles P and Q (see Example 2.2.7). Namely, if P ? Q is
endowed with its canonical connection then the projections pr1 : P ? Q → P ,
pr2 : P ? Q → Q are connection preserving, which follows from what has been
observed in Example 2.2.12.

LEMMA 2.2.19. Let P , P ′, Q be principal bundles over a differentiable mani-
foldM endowed with connections Hor(P ), Hor(P ′) and Hor(Q), respectively. Let
P ? P ′ be endowed with the fiberwise product connection of Hor(P ) by Hor(P ′).
Denote by pr1 : P ? P ′ → P , pr2 : P ? P ′ → P ′ the projections. A morphism
of principal bundles φ : Q → P ? P ′ is connection preserving if and only if both
pr1 ◦ φ and pr2 ◦ φ are connection preserving.
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PROOF. Obviously pr1 ◦ φ and pr2 ◦ φ are connection preserving if φ is con-
nection preserving. Conversely, assume that both pr1◦φ and pr2◦φ are connection
preserving. Denote by Hor(P ? P ′) the push-forward of Hor(Q) by φ. The proof
will be concluded if we show that Hor(P ?P ′) is the fiberwise product connection
of Hor(P ) by Hor(P ′); to this aim, it suffices to verify that both pr1 and pr2 are
connection preserving when P ? P ′ is endowed with the connection Hor(P ? P ′).
This follows by applying Corollary 2.2.15 to the diagrams:

Q
pr1◦φ

$$J
JJJJJJJJJJ

φ

��
P ? P ′ pr1

// P

Q
pr2◦φ

%%JJJJJJJJJJJ

φ

��
P ? P ′ pr2

// P ′

�

COROLLARY 2.2.20. Let P , P ′, Q, Q′ be principal bundles over a differen-
tiable manifold M endowed with connections and let φ : P → P ′, ψ : Q → Q′

be connection preserving morphisms of principal bundles. The morphism of prin-
cipal bundles φ ? ψ : P ? Q → P ′ ? Q′ (see Example 1.3.28) is also connection
preserving. �

2.2.2. Pull-back of connections. Let Π : P → M be a G-principal bundle
over a differentiable manifold M and let f : M ′ → M be a smooth map defined
in a differentiable manifold M ′. We will now show how a connection Hor(P ) on
P induces a connection on the pull-back bundle f∗P .

LEMMA 2.2.21. Let Π : P →M be aG-principal bundle over a differentiable
manifold M and let f : M ′ → M be a smooth map defined in a differentiable
manifold M ′; denote by f̄ : f∗P → P the canonical map of the pull-back f∗P . If
ω is a connection form on P then f̄∗ω is a connection form on f∗P .

PROOF. We have to check the Ad-pseudo G-invariance of f̄∗ω and the equal-
ity:

(2.2.15) (f̄∗ω)p|Verp(f∗P ) =
(
dβp(1)

)−1
,

for all p ∈ f∗P . Equality (2.2.15) follows from (2.2.5), observing that, for all
y ∈M ′, the restriction of f̄ to the fiber (f∗P )y = Pf(y) is just the identity map of
Pf(y). Let us check the Ad-pseudo G-invariant of f̄∗ω. For each g ∈ G, denote by
γPg : P → P and by γf

∗P
g : f∗P → f∗P respectively the map given by the action

of g on P and the map given by the action of g on f∗P . Clearly, γPg ◦ f̄ = f̄ ◦γf
∗P

g ,
for all g ∈ G. We compute:

(γf
∗P

g )∗(f̄∗ω) =
(
f̄ ◦ γf∗Pg

)∗
ω = (γPg ◦ f̄)∗ω = f̄∗

(
(γPg )∗ω

)
= f̄∗(Adg−1 ◦ ω) = Adg−1 ◦ (f̄∗ω).

This concludes the proof. �

Recalling from Theorem 2.2.6 that we have a one-to-one correspondence be-
tween smooth connection forms and connection on a principal bundle, we can give
the following:
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DEFINITION 2.2.22. Let Π : P →M be a principal bundle and f : M ′ →M
be a smooth map defined on a differentiable manifold M ′. Given a connection
Hor(P ) on P then the pull-back of Hor(P ) by f is the connection Hor(f∗P ) on
f∗P corresponding to the connection form f̄∗ω, where ω is the connection form
on P corresponding to Hor(P ).

EXAMPLE 2.2.23. Let Π : P → M be a principal bundle and U be an open
subset of M . In Example 1.3.17 we have identified the restriction P |U with the
pull-back i∗P , where i : U → M denotes the inclusion map. If Hor(P ) is a con-
nection on P then clearly the pull-back of Hor(P ) by i is equal to the connection
Hor(P ) ∩ T (P |U ) on P |U (see Example 2.2.8).

EXAMPLE 2.2.24. Let Π : P → M be a principal bundle and f : M ′ → M ,
g : M ′′ → M ′ be smooth maps, where M ′, M ′′ are differentiable manifolds. Let
Hor(P ) be a connection on P . In Example 1.3.24 we have identified the principal
bundles g∗f∗P and (f ◦ g)∗P . Using such identification, we have f̄ ◦ ḡ = f ◦ g.
We claim that the pull-back of Hor(P ) by f ◦g is equal to the pull-back by g of the
pull-back by f of Hor(P ). Namely, if ω denotes the connection form of Hor(P )
then:

(f ◦ g)∗ω = (f̄ ◦ ḡ)∗ω = ḡ∗(f̄∗ω).

LEMMA 2.2.25. Let Π : P →M be a principal bundle and f : M ′ →M be a
smooth map defined on a differentiable manifold M ′. Let Hor(P ) be a connection
on P and let Hor(f∗P ) denote the pull-back of Hor(P ) by f . If f̄ : f∗P → P
denotes the map defined in Subsection 1.3.1 then:

Horp(f∗P ) = df̄−1
p

(
Horf̄(p)(P )

)
,

for all p ∈ f∗P .

PROOF. Since f̄∗ω is the connection form corresponding to the connection
Hor(f∗P ), then:

Horp(f∗P ) = Ker
(
(f̄∗ω)p

)
= Ker(ωf̄(p) ◦ df̄p)

= df̄−1
p

(
Ker(ωf̄(p))

)
= df̄−1

p

(
Horf̄(p)(P )

)
,

for all p ∈ f∗P . �

LEMMA 2.2.26. Let P , Q be principal bundles over a differentiable manifold
M endowed with connections Hor(P ), Hor(Q), respectively and let φ : P → Q
be a connection preserving morphism of principal bundles. If f : M ′ → M is a
smooth map defined on a differentiable manifold M ′ and f∗P , f∗Q are endowed
respectively with the pull-back of Hor(P ), Hor(Q) by f then the morphism of
principal bundles f∗φ : f∗P → f∗Q (recall Example 1.3.23) is also connection
preserving.

PROOF. If ωP , ωQ denote respectively the connection forms associated to
Hor(P ) and Hor(Q) then the connection form on f∗P is (f̄P )∗ωP and the con-
nection form on f∗Q is (f̄Q)∗ωQ. Denote by φ0 the subjacent Lie group homo-
morphism of φ and by φ̄0 its differential at the identity. Since φ is connection
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preserving, φ∗ωQ = φ̄0 ◦ ωP (recall part (c) of Lemma 2.2.11). Hence:

(f∗φ)∗
(
(f̄Q)∗ωQ

) (1.3.12)= (f̄P )∗(φ∗ωQ) = (f̄P )∗(φ̄0 ◦ ωP )

= φ̄0 ◦
(
(f̄P )∗ωP

)
. �

LEMMA 2.2.27. Let P , Q be principal bundles over a differentiable mani-
fold M endowed with connections Hor(P ), Hor(Q), respectively and denote by
Hor(P ? Q) the fiberwise product connection. Let f : M ′ → M be a smooth
map defined on a differentiable manifold M ′ and let f∗P , f∗Q, f∗(P ? Q) be en-
dowed respectively with the pull-back of Hor(P ), Hor(Q), Hor(P ? Q) by f . If
(f∗P ) ? (f∗Q) is endowed with the fiberwise product connection then the isomor-
phism of principal bundles (1.3.15) from f∗(P ?Q) to (f∗P )?(f∗Q) is connection
preserving.

PROOF. Let λ : f∗(P ? Q) → (f∗P ) ? (f∗Q) denote the isomorphism of
principal bundles (1.3.15) and:

pr1 : P ? Q −→ P, pr2 : P ? Q −→ Q,

prf1 : (f∗P ) ? (f∗Q) −→ f∗P, prf2 : (f∗P ) ? (f∗Q) −→ f∗Q,

denote the projections. If ωP , ωQ denote respectively the connection form as-
sociated to Hor(P ), Hor(Q) then the connection form of f∗(P ? Q) is (recall
Proposition 2.2.16):

(f̄P?Q)∗(pr∗1ω
P ,pr∗2ω

Q)

and the connection form of (f∗P ) ? (f∗Q) is:(
(prf1)∗

(
(f̄P )∗ωP

)
, (prf2)∗

(
(f̄Q)∗ωQ

))
.

Since λ is an isomorphism of principal bundles whose subjacent Lie group homo-
morphism is the identity, the conclusion will follow if we show that (recall part (c)
of Lemma 2.2.11):
(2.2.16)

λ∗
(
(prf1)∗

(
(f̄P )∗ωP

)
, (prf2)∗

(
(f̄Q)∗ωQ

))
= (f̄P?Q)∗(pr∗1ω

P ,pr∗2ω
Q).

But (2.2.16) follows directly from the equalities:

f̄P ◦ prf1 ◦ λ = pr1 ◦ f̄P?Q, f̄Q ◦ prf2 ◦ λ = pr2 ◦ f̄P?Q.

This conclude the proof. �

2.2.3. Parallel transport. Let Π : P →M be a G-principal bundle endowed
with a connection Hor(P ). Given a smooth curve γ : I → M then by a parallel
lifting of γ we mean a smooth curve γ̃ : I → P with Π ◦ γ̃ = γ such that
γ̃′(t) ∈ Horγ̃(t)(P ), for all t ∈ I . Recall from Definition 2.1.7 that γ̃ is a parallel
lifting of γ if and only if γ̃ is a parallel section of Π : P → M along γ. In the
terminology of Definition A.5.1, we say that γ̃ is a horizontal lifting of γ.

We have the following:
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PROPOSITION 2.2.28. Let Π : P →M be aG-principal bundle endowed with
a connection Hor(P ). Given a smooth curve γ : I → M , t0 ∈ I and p ∈ Pγ(t0)

then there exists a unique parallel lifting γ̃ : I → P of γ with γ̃(t0) = p.

PROOF. We have to show that M has the horizontal lifting property for paths
(see Definition A.5.5); by Lemma A.5.6, it is sufficient to show that for every
smooth local section s : U → P , the open set U has the horizontal lifting property
for paths. To this aim, it is enough to show that for every smooth curve γ : I → U ,
every t0 ∈ I and every g0 ∈ G, there exists a parallel lifting (γ, g) : I → U ×G of
γ with g(t0) = g0, where the trivial principal bundle U × G is endowed with the
connection that makes the isomorphism of principal bundles βs : U × G → P |U
connection preserving (recall Example 1.3.10). Let ω denote the connection form
of U ×G and let ω̄ be the g-valued 1-form on U that is equal to the pull-back of ω
by the section U 3 x 7→ (x, 1) ∈ U ×G; then (recall (2.2.10)):

ω(x,g)(v,Xg) = Adg−1

(
ω̄x(v) +X

)
,

for all x ∈ U , g ∈ G, v ∈ TxM and all X ∈ g. The curve (γ, g) is horizontal if
and only if:

ω(γ(t),g(t))

(
γ′(t), g′(t)

)
= 0,

for all t ∈ I; this is equivalent to:

g′(t) = −ω̄γ(t)
(
γ′(t)

)
g(t),

for all t ∈ I . The conclusion now follows from Corollary A.2.15 by settingX(t) =
−ω̄γ(t)

(
γ′(t)

)
∈ g. �

DEFINITION 2.2.29. Let Π : P →M be aG-principal bundle endowed with a
connection Hor(P ). Given a smooth curve γ : [a, b]→M and a point p ∈ Pγ(a), if
γ̃ : [a, b]→ P denotes the unique parallel lifting of γ with γ̃(a) = p then γ̃(b) ∈ P
is called the parallel transport of p along γ.

We now prove (for later use) a result concerning the existence of local sections
of a principal bundle that are parallel along “radial curves” issuing from a fixed
point. More precisely, we have the following:

LEMMA 2.2.30. Let Π : P → M be a G-principal bundle endowed with a
connection Hor(P ), Z be a real finite-dimensional vector space, U0 be an open
subset of Z which is star-shaped at the origin1, U be an open subset of M and
f : U0 → U be a smooth diffeomorphism. Then, for all p ∈ Pf(0) there exists a
smooth local section s : U → P such that s

(
f(0)

)
= p and for all z ∈ Z the

curve: {
t ∈ R : tz ∈ U0

}
3 t 7−→ s

(
f(tz)

)
∈ P

is a parallel lifting of the “radial curve” t 7→ f(tz).

1This means that 0 ∈ U0 and tz ∈ U0, for all z ∈ U0 and all t ∈ [0, 1].
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PROOF. The map:

H :
{
(z, t) ∈ Z ×R : tz ∈ U0

}
3 (z, t) 7−→ f(tz) ∈M

is a smooth Z-parametric family of curves (see Definition A.5.7). For each z ∈ U0,
let: {

t ∈ R : tz ∈ U0

}
3 t 7→ H̃(z, t) ∈ P

be the parallel lifting of t 7→ H(z, t) with H̃(z, 0) = p, whose existence is guaran-
teed by Proposition 2.2.28. By Proposition A.5.9, the map H̃ is smooth. We claim
that:

(2.2.17) H̃(ct, z) = H̃(t, cz),

for all t ∈ R, c ∈ R, z ∈ Z with ctz ∈ U0. Namely, for fixed c ∈ R and z ∈ Z,
both curves:

t 7−→ H̃(ct, z), t 7−→ H̃(t, cz)

are parallel liftings of t 7→ f(ctz) ∈M and they assume the same value p at t = 0.
The claim follows from the uniqueness part of Proposition 2.2.28. Now the desired
smooth local section s : U → P is defined by:

s(x) = H̃
(
1, f−1(x)

)
,

for all x ∈ U . We have:

Π
(
s(x)

)
= H

(
1, f−1(x)

)
= f

(
f−1(x)

)
= x,

and, for all z ∈ Z, the curve:

t 7−→ s
(
f(tz)

)
= H̃(1, tz) (2.2.17)= H̃(t, z) ∈ P

is a parallel lifting of t 7→ f(tz). This concludes the proof. �

2.3. The generalized connection on the associated bundle

A connection on a principal bundle P induces a generalized connection on all
the associated bundles of P . More precisely, we have the following:

LEMMA 2.3.1. Let Π : P → M be a G-principal bundle and let N be a
differentiable G-space. Consider the associated bundle P ×G N and denote by
q : P ×N → P ×G N the quotient map. Given a connection Hor(P ) on P then
there is a unique distribution Hor(P ×G N) on P ×G N such that:

(2.3.1) Hor[p,n](P ×G N) = dq(p,n)

(
Horp(P )⊕ {0}

)
,

for all p ∈ P , n ∈ N . Moreover, the distribution Hor(P ×G N) is smooth and
horizontal with respect to the projection π : P ×G N →M , i.e., Hor(P ×G N) is
a generalized connection on P ×G N .

PROOF. Given g ∈ G, denote by γPg : P → P and by γNg : N → N the
diffeomorphisms given by the action of g on P and on N , respectively. The action
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of g on the product P × N (recall (1.2.14)) is given by γPg−1 × γNg . We have a
commutative diagram:

(2.3.2)

P ×N
q

&&MMMMMM

γP
g−1×γNg

��

P ×G N

P ×N
q

88qqqqqq

Given p ∈ P , n ∈ N , then the differential of γPg−1 takes Horp(P ) to Horp·g−1(P )
and thus the differential of γPg−1 ×γNg takes Horp(P )⊕{0} to Horp·g−1(P )⊕{0}.
Differentiating diagram (2.3.2) we therefore obtain:

dq(p,n)

(
Horp(P )⊕ {0}

)
= dq(p·g−1,g·n)

(
Horp·g−1(P )⊕ {0}

)
,

proving that Hor(P ×G N) is well-defined by equality (2.3.1). The uniqueness
of the distribution Hor(P ×G N) satisfying (2.3.1) is obvious. The fact that the
distribution Hor(P ×GN) is horizontal follows from the result of Exercise 2.2 and
from the commutativity of diagram (1.4.7). Finally, let us prove that Hor(P ×GN)
is smooth. Consider the morphism of vector bundles:

dq : T (P ×N) −→ q∗T (P ×G N),

defined as in Example 1.5.27. Notice that the result of Exercise 2.2 also says
that the restriction of dq to the vector subbundle Hor(P ) ⊕ {0} of T (P × N)
is injective; thus, by Proposition 1.5.31, dq

(
Hor(P )⊕ {0}

)
is a vector subbundle

of q∗T (P ×GN). Let f : A→ P ×N be a smooth local section of the submersion
q, where A is an open subset of P ×G N . Since q ◦ f is the identity map of A, we
can identify T (P ×G N)|A with the pull-back f∗q∗T (P ×G N). Then:

Hor(P ×G N) ∩ T (P ×G N)|A = f∗dq
(
Hor(P )⊕ {0}

)
and hence Hor(P ×G N) is a subbundle of T (P ×G N). �

DEFINITION 2.3.2. The generalized connection Hor(P ×G N) whose exis-
tence is given by Lemma 2.3.1 is called the generalized connection associated to
the principal connection Hor(P ) on P .

LEMMA 2.3.3. Under the conditions of Lemma 1.4.11, assume that P , Q are
endowed with connections Hor(P ) and Hor(Q), respectively and that the associ-
ated bundles P ×G N , Q ×H N ′ are endowed with the corresponding associated
connections. If φ is connection preserving then also φ ×∼ κ is connection preserv-
ing; conversely, if φ×∼ κ is connection preserving and if the action of H is effective
on κ(N) then also φ is connection preserving.

PROOF. Denote by q : P×N → P×GN , q′ : Q×N ′ → Q×HN ′ the quotient
maps. Let p ∈ P , n ∈ N be fixed and set q = φ(p), n′ = κ(n). Differentiating
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(1.4.10), we obtain a commutative diagram:

(2.3.3)

TpP ⊕ TnN
dφp⊕dκn //

dq(p,n)
��

TqQ⊕ Tn′N ′

dq′(q,n′)
��

T[p,n](P ×G N)
d(φ×∼κ)([p,n])

// T[q,n′](Q×H N ′)

If φ is connection preserving then the top arrow of (2.3.3) carries the space Horp(P )⊕
{0} to Horq(Q)⊕{0}, so that the bottom arrow of (2.3.3) carries the space Hor[p,n](P×G
N) to Hor[q,n′](Q ×H N ′); thus, φ ×∼ κ is connection preserving. Conversely, as-
sume that φ×∼ κ is connection preserving and that the action ofH onN ′ is effective
on κ(N). Let p ∈ P be fixed and set q = φ(p). The commutativity of diagram
(2.3.3) and the fact that φ×∼ κ is connection preserving imply that:

dq′[q,n′]
[
dφp

(
Horp(P )

)
⊕ {0}

]
= dq′[q,n′]

(
Horq(Q)⊕ {0}

)
,

for all n ∈ N , where n′ = κ(n). This is equivalent to (see Exercise 2.13):

(2.3.4)
(
dφp

(
Horp(P )

)
⊕ {0}

)
+ Ker

(
dq′(q, n′)

)
=

(
Horq(Q)⊕ {0}

)
+ Ker

(
dq′(q, n′)

)
.

Recall from Corollary 1.4.8 that:

(2.3.5) Ker
(
dq′(q, n′)

)
=

{(
XQ(q),−XN ′(n′)

)
: X ∈ h

}
.

Choose any ζ ∈ dφp
(
Horp(P )

)
and let us show that ζ is in Horq(Q). Write

ζ = ζh + ζv, with ζh ∈ Horq(Q) and ζv ∈ Verq(Q); let X ∈ h be such that
ζv = XQ(q). We have to show that X = 0. Given n ∈ N then (ζ, 0) belongs to
the lefthand side of (2.3.4) and thus it belongs also to the righthand side (2.3.4);
thus, by (2.3.5), there exists ζ ′ ∈ Horq(Q) and Y ∈ h with:

(ζ, 0) = (ζ ′, 0) +
(
Y Q(q),−Y N ′(n′)

)
,

so that:
ζ = ζh +XQ(q) = ζ ′ + Y Q(q) and Y N ′(n′) = 0.

Since ζh, ζ ′ ∈ Horq(Q) and XQ(q), Y Q(q) ∈ Verq(Q), we have XQ(q) = Y Q(q)
and therefore X = Y ; thus:

XN ′(n′) = XN ′
(
κ(n)

)
= 0,

for all n ∈ N . It now follows from Lemma A.2.4 that X = 0. �

COROLLARY 2.3.4. Under the conditions of Lemma 1.4.10, assume that P , Q
are endowed with connections Hor(P ) and Hor(Q), respectively and that the as-
sociated bundles P×GN ,Q×HN are endowed with the corresponding associated
connections. If φ is connection preserving then also φ̂ is connection preserving;
conversely, if the action of H on N is effective then if φ̂ is connection preserving
then also φ is connection preserving.

PROOF. Apply Lemma 2.3.3 to the case where κ is the identity map ofN . �
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COROLLARY 2.3.5. Let P be a G-principal bundle endowed with connections
Hor(P ), Hor′(P ) and let N be a differentiable G-space; assume that the action
of G on N is effective. If both connections Hor(P ) and Hor′(P ) are associated to
the same connection on P ×G N then Hor(P ) = Hor′(P ).

PROOF. Apply Corollary 2.3.4 with φ the identity map of P . �

Let us show how the covariant derivative of a local section of P ×G N can
be computed using its representation with respect to a local section of P (recall
(1.4.6)).

LEMMA 2.3.6. Let Π : P → M be a G-principal bundle with connection
Hor(P ); denote by ω its connection form. Let N be a differentiable G-space
and P ×G N be the corresponding associated bundle of P , endowed with the
generalized connection associated to Hor(P ). Let s : U → P , ε : U → P ×G N
be smooth local sections; denote by ε̃ and ω̄ respectively the representations of ε
and of ω with respect to s. Given x ∈ U , v ∈ TxM and setting p = s(x), n = ε̃(x)
then the covariant derivative ∇vε is given by (recall Definition A.2.3):

∇vε = dp̂n
[
dε̃x(v) +

(
ω̄x(v)

)N (n)
]
∈ Ver[p,n](P ×G N).

PROOF. Since ε = q ◦ (s, ε̃), we have:

dεx(v) = dq(p,n)

(
dsx(v),dε̃x(v)

)
;

writing dsx(v) = ζhor + ζver with ζhor ∈ Horp(P ) and ζver ∈ Verp(P ) then:

(2.3.6) dεx(v) = dq(p,n)(ζhor, 0) + dq(p,n)

(
ζver,dε̃x(v)

)
,

and dq(p,n)(ζhor, 0) ∈ Hor[p,n](P ×G N). Lemma 1.4.7 then implies that the
second term on the righthand side of (2.3.6) is equal to pver

(
dεx(v)

)
and that:

dq(p,n)

(
ζver,dε̃x(v)

)
= dp̂n

[
dε̃x(v) +XN (n)

]
,

where X ∈ g satisfies ζver = dβp(1) ·X . Clearly, X = ωp
(
dsx(v)

)
= ω̄x(v). The

conclusion follows. �

COROLLARY 2.3.7. Let Π : P →M be a G-principal bundle with connection
Hor(P ) and denote by ω its connection form. Let E0 be a real finite-dimensional
vector space and let ρ : G → GL(E0) be a smooth representation of G on E0;
consider the corresponding associated bundle P ×G E0, endowed with the gener-
alized connection associated to Hor(P ). Let s : U → P , ε : U → P ×G E0 be
smooth local sections and denote by ε̃ and ω̄ respectively the representations of ε
and of ω with respect to s. Given x ∈ U , v ∈ TxM and setting p = s(x), then the
covariant derivative ∇vε is given by:

∇vε = p̂
[
dε̃x(v) + ρ̄

(
ω̄x(v)

)
· ε̃(x)

]
=

[
p,dε̃x(v) + ρ̄

(
ω̄x(v)

)
· ε̃(x)

]
,

where ρ̄ = dρ(1) : g → gl(E0). In particular, if G is a Lie subgroup of GL(E0)
and ρ is the inclusion then:

(2.3.7) ∇vε = p̂
[
dε̃x(v) + ω̄x(v) · ε̃(x)

]
= [p,dε̃x(v) + ω̄x(v) · ε̃(x)].
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PROOF. Follows directly from Lemma 2.3.6 (recall also (1.4.5) and Exam-
ple 1.4.9). �

2.4. Connections on vector bundles

Let π : E → M be a vector bundle with typical fiber E0. Recall (see Subsec-
tion 1.5.1) that the set Γ(E) of all smooth sections of E is a real vector space and
also a module over the ring C∞(M) of all smooth real-valued functions on M .

LetX ∈ Γ(TM) be a smooth vector field onM and f ∈ C∞(M) be a smooth
real valued function onM (or, more generally, f can be a smooth map onM taking
values on a fixed real finite-dimensional vector space). We denote byX(f) the map
defined by X(f)(x) = df(x) ·X(x), for all x ∈M .

DEFINITION 2.4.1. A connection on the vector bundle E is anR-bilinear map

∇ : Γ(TM)× Γ(E) 3 (X, ε) 7−→ ∇Xε ∈ Γ(E)

that is C∞(M)-linear in X and satisfies the Leibnitz rule:

(2.4.1) ∇X(fε) = X(f)ε+ f∇Xε,
for all X ∈ Γ(TM), ε ∈ Γ(E) and all f ∈ C∞(M).

Given ε ∈ Γ(E), it follows from the C∞(M)-linearity of the map X 7→ ∇Xε
(see Exercise 1.63) that for each x ∈M there exists a linear map:

TxM 3 v 7−→ ∇vε ∈ Ex
such that:

∇vε = (∇Xε)(x),
for all X ∈ Γ(TM) with X(x) = v. Notice that (2.4.1) implies:

(2.4.2) ∇v(fε) = dfx(v)ε(x) + f(x)∇vε,
for all ε ∈ Γ(E), f ∈ C∞(M), x ∈M and all v ∈ TxM .

REMARK 2.4.2. If for every x ∈M we are given an R-bilinear map:

TxM × Γ(E) 3 (v, ε) 7−→ ∇vε ∈ Ex
such that (2.4.2) holds for all ε ∈ Γ(E), f ∈ C∞(M), x ∈M , v ∈ TxM and such
that for all X ∈ Γ(TM), ε ∈ Γ(E) the map:

M 3 x 7−→ ∇X(x)ε ∈ E
is smooth then clearly there exists a unique connection ∇ on E such that:

(∇Xε)(x) = ∇X(x)ε,

for all X ∈ Γ(TM), ε ∈ Γ(E) and all x ∈M .

Using the result of Exercise 1.72 we can give the following:

DEFINITION 2.4.3. Given a vector bundle π : E → M endowed with a con-
nection ∇ and a smooth section ε ∈ Γ(E) we define the covariant derivative of
ε to be the smooth section ∇ε of the vector bundle Lin(TM,E) that carries each
x ∈M to the linear map TxM 3 v 7→ ∇vε ∈ Ex.
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A connection on a vector bundle E induces a connection on every restriction
of E to open subsets of the base space. This is the content of the following:

LEMMA 2.4.4. Let π : E → M be a vector bundle and ∇ be a connection on
E. Given an open subset U of M then there exists a unique connection ∇U on the
restricted vector bundle E|U such that:

(2.4.3) ∇Uv (ε|U ) = ∇vε,

for all ε ∈ Γ(E) and all v ∈ TM |U .

PROOF. Let ε′ ∈ Γ(E|U ), x ∈ U be given and choose ε ∈ Γ(E) such that ε
and ε′ are equal on an open neighborhood of x in U (for instance, multiply ε′ by a
smooth real-valued map on M with support contained in U and that is equal to 1
in a neighborhood of x). If ∇U is a connection on E|U satisfying (2.4.3) then the
result of Exercise 2.14 implies that:

(2.4.4) ∇Uv ε′ = ∇vε, v ∈ TxM ;

this proves the uniqueness of ∇U . Notice that the result of Exercise 2.14 also
implies that the righthand side of (2.4.4) does not depend on the choice of the
smooth section ε ∈ Γ(E) that is equal to ε′ on a open neighborhood of x in U .
Thus, we can use (2.4.4) as a definition for ∇Uv ε′. It is easily checked that ∇U is
indeed a connection on E|U (see Remark 2.4.2). �

From now on, we make the convention of denoting the connection ∇U defined
by Lemma 2.4.4 by the same symbol ∇ used to denote the connection of E, unless
an explicit reference to the open subset U is needed.

EXAMPLE 2.4.5. Let M be a differentiable manifold, E0 be a real finite-
dimensional vector space. In the trivial vector bundle M × E0 there exists a
canonically defined connection that will be denoted by the symbol dI; namely,
identifying Γ(M × E0) with the space of E0-valued smooth maps on M then
dI : Γ(TM)× Γ(M × E0)→ Γ(M × E0) is defined by:

(dIXε)(x) = dε(x) ·X(x),

for all x ∈M , all X ∈ Γ(TM) and every smooth map ε : M → E0.

EXAMPLE 2.4.6. Let π : E →M be a vector bundle with typical fiber E0 and
let s : U → FRE0(E) be a smooth local E0-frame of E. We define a connection
dIs associated to s on the vector bundle E|U by setting:

(2.4.5) (dIsXε)(x) = s(x)
[
dε̃x

(
X(x)

)]
,

for all ε ∈ Γ(E|U ), X ∈ Γ(TM |U ) and all x ∈ U , where ε̃ : U → E0 denotes
the representation of ε with respect to s. The connection dIs on E|U is related by
the vector bundle isomorphism š : U × E0 → E|U to the canonical connection
dI on the trivial principal bundle U × E0 (this will be formalized later on, see
Example 2.5.11).
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REMARK 2.4.7. Given connections∇ and∇′ on the vector bundle E then the
map t : Γ(TM)× Γ(E)→ Γ(E) defined by:

t(X, ε) = ∇Xε−∇′Xε ∈ Γ(E),

for all X ∈ Γ(TM), ε ∈ Γ(E) is C∞(M)-bilinear. Thus, for each x ∈ M there
exists a bilinear map tx : TxM × Ex → Ex such that:

tx
(
X(x), ε(x)

)
= t(X, ε)(x),

for all X ∈ Γ(TM), ε ∈ Γ(E) (see Exercise 1.63); in view of Example 1.6.31 we
can identify t with the smooth section x 7→ tx of the vector bundle Lin(TM,E;E).
Recall from Example 1.6.33 that the vector bundle Lin(TM,E;E) is identified
with Lin

(
TM,Lin(E)

)
and therefore t is identified with a smooth Lin(E)-valued

covariant 1-tensor field on M . Notice that if∇ is an arbitrary connection on E and
t : Γ(TM) × Γ(E) → Γ(E) is an arbitrary C∞(M)-bilinear map then ∇ + t is
also a connection on E.

DEFINITION 2.4.8. Let ∇ be a connection on E and let s : U → FRE0(E)
be a smooth local E0-frame of E. The Christoffel tensor of the connection∇ with
respect to s is the C∞(M)-bilinear map

Γ : Γ(TM |U )× Γ(E|U ) −→ Γ(E|U )

defined by Γ = ∇− dIs (recall (2.4.5)).

As in Remark 2.4.7, we can identify the Christoffel tensor Γ with a smooth sec-
tion of the vector bundle Lin(TM |U , E|U ;E|U ) or with a smooth Lin(E)-valued
covariant 1-tensor field on U ⊂M .

Let us make more explicit the meaning of the Christoffel tensor Γ of the con-
nection ∇ with respect to a smooth local E0-frame s : U → FRE0(E). For all
ε ∈ Γ(E|U ), x ∈ U and all v ∈ TxM , we have:

(2.4.6) ∇vε = s(x)
(
dε̃x(v)

)
+ Γx

(
v, ε(x)

)
,

where ε̃ : U → E0 denotes the representation of ε with respect to s.

DEFINITION 2.4.9. The curvature tensor of a connection ∇ is the map

R : Γ(TM)× Γ(TM)× Γ(E) −→ Γ(E)

defined by:
R(X,Y )ε = ∇X∇Y ε−∇Y∇Xε−∇[X,Y ]ε,

for all X,Y ∈ Γ(TM), ε ∈ Γ(E), where [X,Y ] ∈ Γ(TM) denotes the Lie
bracket of X and Y .

It is easy to check that the curvature tensor R is C∞(M)-trilinear and thus,
for each x ∈ M , it defines a trilinear map Rx : TxM × TxM × Ex → Ex (see
Exercise 1.63). Obviously the curvature tensor is anti-symmetric with respect to
its two first variables.
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DEFINITION 2.4.10. Given a connection ∇ on the tangent bundle TM , the
torsion tensor of ∇ is the map T : Γ(TM)× Γ(TM)→ Γ(TM) defined by:

T (X,Y ) = ∇XY −∇YX − [X,Y ],

for allX,Y ∈ Γ(TM). More generally, if∇ is a connection on an arbitrary vector
bundle π : E → M and if ι : TM → E is a vector bundle morphism then the
ι-torsion tensor of ∇ is the map T ι : Γ(TM)× Γ(TM)→ Γ(E) defined by:

T ι(X,Y ) = ∇X
(
ι(Y )

)
−∇Y

(
ι(X)

)
− ι

(
[X,Y ]

)
,

for all X,Y ∈ Γ(TM). A connection ∇ on TM whose torsion tensor T is identi-
cally zero is said to be symmetric.

Clearly, ifE = TM and ι : TM → TM is the identity then T ι = T . It is easy
to check that the ι-torsion tensor T ι is C∞(M)-bilinear and thus, for each x ∈M ,
it defines a bilinear map T ιx : TxM × TxM → Ex (see Exercise 1.63). Obviously
the ι-torsion tensor is anti-symmetric.

2.5. Relating linear connections with principal connections

Let π : E → M be a vector bundle over a differentiable manifold M with
typical fiber E0 and let Hor

(
FRE0(E)

)
be a principal connection on the frame

bundle FRE0(E). Such principal connection induces an associated connection
Hor

(
FRE0(E)×∼ E0

)
on the associated bundle FRE0(E)×∼ E0 (see Section 2.3).

The contraction map CE (recall (1.5.1)) carries Hor
(
FRE0(E)×∼ E0

)
to a general-

ized connection Hor(E) on E, i.e., Hor(E) is the unique generalized connection
on E that makes the smooth diffeomorphism CE connection preserving. More
explicitly, Hor(E) is defined by:

(2.5.1) Horp(e0)(E) = dCE[p,e0]

[
Hor[p,e0]

(
FRE0(E)×∼ E0

)]
,

for all [p, e0] ∈ FRE0(E)×∼ E0.

DEFINITION 2.5.1. Let π : E → M be a vector bundle over a differentiable
manifoldM with typical fiberE0 and let Hor

(
FRE0(E)

)
be a principal connection

on the frame bundle FRE0(E). The generalized connection Hor(E) on E defined
by (2.5.1) is called the generalized connection induced by Hor

(
FRE0(E)

)
.

The generalized connections on the vector bundleE and on the associated bun-
dle FRE0(E)×∼ E0 define covariant derivative operators for smooth local sections
of E and of FRE0(E) ×∼ E0, respectively; let us use the symbol ∇ to denote both
of them. Since CE is connection preserving, by Lemma 2.1.5 we have:

∇vε = dCE
[
∇v

(
(CE)−1 ◦ ε

)]
,

for every smooth local section ε : U → E and for all v ∈ TM |U . Since CE is linear
on the fibers, its differential restricted to a vertical space is just the restriction of
the contraction map CE itself; thus:

(2.5.2) ∇vε = CE
[
∇v

(
(CE)−1 ◦ ε

)]
,

for all v ∈ TM |U and all ε ∈ Γ(E|U ).
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Now let s : U → FRE0(E) be a smooth localE0-frame of the vector bundleE
and let ε̃ : U → E0 denote the representation of a smooth local section ε : U → E
of E with respect to s; then:

(CE)−1 ◦ ε = q ◦ (s, ε̃),

where q : FRE0(E) × E0 → FRE0(E) ×∼ E0 denotes the quotient map. The
representation of (CE)−1◦εwith respect to s is also equal to ε̃ (see Example 1.5.10).
Using equality (2.3.7) we obtain:

(2.5.3) ∇v
(
(CE)−1 ◦ ε

)
= [s(x),dε̃x(v) + ω̄x(v) · ε̃(x)],

for all x ∈ U and all v ∈ TxM , where ω̄ denotes the representation with respect
to s of the connection form ω corresponding to Hor

(
FRE0(E)

)
. From (2.5.2) and

(2.5.3) we get:

(2.5.4) ∇vε = s(x)
[
dε̃x(v) + ω̄x(v) · ε̃(x)

]
,

for all ε ∈ Γ(E|U ), all x ∈ U and all v ∈ TxM . If we set:

(2.5.5) Γx(v) = Is(x)
(
ω̄x(v)

)
= s(x) ◦ ω̄x(v) ◦ s(x)−1 ∈ gl(Ex),

for all x ∈ U , v ∈ TxM , then formula (2.5.4) becomes (recall (2.4.5)):

∇vε = dIsvε+ Γx(v) · ε(x).

If follows that ∇ is indeed a connection on the vector bundle E and that the
Christoffel tensor Γ of ∇ with respect to the smooth local E0-frame s is given
by (2.5.5). We have proven:

PROPOSITION 2.5.2. Let π : E →M be a vector bundle over a differentiable
manifold M with typical fiber E0 and let Hor

(
FRE0(E)

)
be a principal connec-

tion on the frame bundle FRE0(E); denote by Hor(E) the induced generalized
connection on E. The covariant derivative operator ∇ corresponding to Hor(E)
is a linear connection on the vector bundle E; moreover, if s : U → FRE0(E) is
a smooth local E0-frame of E then the Christoffel tensor of ∇ with respect to the
smooth local E0-frame s and the representation ω̄ = s∗ω of the connection form
ω of Hor

(
FRE0(E)

)
with respect to s are related by equality (2.5.5). �

As a converse to Proposition 2.5.2, we will now show that every linear connec-
tion∇ on E is induced by a unique principal connection on the principal bundle of
frames of E.

REMARK 2.5.3. If U is an open subset of M and Hor
(
FRE0(E)

)
is a con-

nection on FRE0(E) then we have a corresponding connection Hor
(
FRE0(E)|U

)
on FRE0(E)|U = FRE0(E|U ) (see Example 2.2.8). Clearly, if ∇ is the connec-
tion on E associated to Hor

(
FRE0(E)

)
then the connection on E|U associated to

Hor
(
FRE0(E)|U

)
is just ∇U (recall Lemma 2.4.4).

PROPOSITION 2.5.4. Let π : E → M be a vector bundle with typical fiber
E0. For every linear connection ∇ on the vector bundle E there exists a unique
principal connection Hor

(
FRE0(E)

)
on the principal bundle of frames FRE0(E)
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such that∇ is the covariant derivative operator corresponding to the induced gen-
eralized connection Hor(E) on E.

PROOF. Using the results of Exercises 2.6, 2.15 and Remark 2.5.3, it is easy
to see that it suffices to prove the proposition in the case where the frame bundle
FRE0(E) admits a globally defined smooth local section s : M → FRE0(E).
Let us therefore assume that such globally defined smooth local section s exists.
Let Γ denote the Christoffel tensor of ∇ with respect to s. Given a connection
Hor

(
FRE0(E)

)
on FRE0(E) with connection form ω, let us denote by ω̄ the rep-

resentation of ω with respect to s. Then∇ is associated with Hor
(
FRE0(E)

)
if and

only if (2.5.5) holds, for all x ∈ M . But (2.5.5) defines a unique smooth gl(E0)-
valued 1-form on M and Lemma 2.2.10 says that there exists a unique connection
form ω on FRE0(E) with ω̄ = s∗ω. The conclusion follows. �

COROLLARY 2.5.5. Let π : E → M be a vector bundle with typical fiber
E0. Given a linear connection ∇ on E then there exists a unique generalized
connection Hor(E) on E whose covariant derivative operator is∇.

PROOF. The existence follows from Proposition 2.5.4 and the uniqueness fol-
lows from Corollary 2.1.6, keeping in mind the fact that the submersion π has the
global extension property (see Exercise 1.62). �

COROLLARY 2.5.6. Let π : E →M be a vector bundle with typical fiber E0.
If Hor(E) is a generalized connection on E whose covariant derivative operator
∇ is a linear connection on E then there exists a unique principal connection
Hor

(
FRE0(E)

)
on the principal bundle of frames FRE0(E) such that Hor(E) is

induced by Hor
(
FRE0(E)

)
. �

The result of Propositions 2.5.2, 2.5.4 and of Corollaries 2.5.5 and 2.5.6 can
be summarized as follows: the set of linear connections on a vector bundle E is in
one-to-one correspondence with a subset of the set of all generalized connections
on E. Such subset of the set of generalized connections on E is precisely the set
of generalized connections that are induced by principal connections on FRE0(E).
Moreover, there is also a one-to-one correspondence between the set of principal
connections on FRE0(E) and the set of generalized connections on E whose co-
variant derivative operator is a linear connection; in particular, there is a one-to-one
correspondence between the set of principal connections on FRE0(E) and the set
of linear connections on E. From now on, we use such one-to-one correspondence
to identify the set of linear connections on E with a subset of the set of generalized
connections on E.

EXAMPLE 2.5.7. Let M be a differentiable manifold, E0 be a real finite-
dimensional vector space and consider the trivial vector bundle E = M × E0.
Its principal bundle of E0-frames is the trivial principal bundle:

P = M ×GL(E0).

We claim that the canonical connection dI of E (see Example 2.4.5) is induced
by the canonical connection of P (see Example 2.2.7). To prove the claim, let
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s : M → P be the smooth section defined by s(x) = (x, Id), where Id ∈ GL(E0)
denotes the identity map of E0. Obviously the connection dIs (Example 2.4.6) on
E is the canonical connection of the trivial bundle E. If ∇ is the connection on
E induced by the trivial connection on P then ∇ = dIs + Γ, where Γ denotes
the Christoffel tensor of ∇ with respect to s. We have to check that Γ = 0. If
ω is the connection form of the trivial connection of P then it is easy to see that
ω̄ = s∗ω = 0 and hence Γ = 0, by formula (2.5.5).

LEMMA 2.5.8. Let π : E → M be a vector bundle with typical fiber E0, ∇,
∇′ be connections on E and ω, ω′ respectively be the connections forms of the
corresponding connections on the principal bundle FRE0(E). Set t = ∇−∇′. If
s : U → FRE0(E) is a smooth local section then the diagram:

gl(Ex)

TxM

tx
::vvvvvvvvv

(s∗(ω−ω′))x $$H
HH

HH
HH

HH

gl(E0)

Is(x)

OO

commutes, for all x ∈ U , where tx : TxM → gl(Ex) denotes the map v 7→ tx(v, ·)
and Is(x) denotes conjugation by the linear isomorphism s(x) : E0 → Ex.

PROOF. Let Γ, Γ′ denote the Christoffel tensors with respect to s of∇ and∇′,
respectively. Clearly, t = Γ − Γ′. The conclusion is obtained immediately using
(2.5.5). �

EXAMPLE 2.5.9 (linear connection induced on an associated vector bundle).
Let Π : P → M be a G-principal bundle, E0 be a real finite-dimensional vec-
tor space and ρ : G → GL(E0) be a smooth representation of G on E0, so
that the associated bundle P ×G E0 is a vector bundle (recall Example 1.5.5).
Given a principal connection Hor(P ) on the principal bundle P , we obtain a prin-
cipal connection Hor

(
FRE0(P ×G E0)

)
on FRE0(P ×G E0) by taking the push-

forward (recall Definition 2.2.14) of Hor(P ) by the morphism of principal bun-
dles H : P → FRE0(P ×G E0) defined in (1.5.3). The principal connection
Hor

(
FRE0(P ×GE0)

)
therefore induces a linear connection∇ on the vector bun-

dle P ×G E0.
Notice that the principal connection Hor(P ) of P induces an associated gener-

alized connection Hor(P ×G E0) on the associated bundle P ×G E0 as explained
in Section 2.3. We claim that ∇ is precisely the covariant derivative operator
of such generalized connection. To prove the claim, we have to check that if
FRE0(P ×G E0) ×∼ E0 is endowed with the generalized connection associated
to Hor

(
FRE0(P ×G E0)

)
and if P ×G E0 is endowed with the generalized con-

nection associated to Hor(P ) then the contraction map (1.5.4) is connection pre-
serving. But this follows from the observation that the contraction map (1.5.4) is
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the inverse of the induced map Ĥ (recall Example 1.5.5) and from the fact that Ĥ is
connection preserving (recall Corollary 2.3.4).

2.5.1. Connection preserving morphisms of vector bundles. Since linear
connections on vector bundles are particular cases of generalized connections then
it makes sense to talk about connection preserving maps between vector bundles
endowed with linear connections (recall Definition 2.1.3).

LEMMA 2.5.10. Let E, E′ be vector bundles endowed with linear connections
∇ and ∇′, respectively. Let L : E → E′ be a morphism of vector bundles. The
following conditions are equivalent:

(a) L is connection preserving;
(b) ∇′v(L ◦ ε) = L(∇vε), for all v ∈ TM and all ε ∈ Γ(E).

Moreover, if E and E′ have the same typical fiber E0 and if L is an isomorphism
of vector bundles then (a), (b) are also equivalent to:

(c) the morphism of principal bundles L∗ : FRE0(E) → FRE0(E
′) is con-

nection preserving, where FRE0(E) and FRE0(E
′) are endowed with the

unique principal connections that induces the linear connections ∇ and
∇′, respectively.

PROOF. The equivalence between (a) and (b) follows from the equivalence
between (a) and (d) in Lemma 2.1.5, by observing that the projection of a vector
bundle has the global extension property (see Exercise 1.62). To prove the equiv-
alence between (a) and (c), consider the commutative diagram (1.5.6). Since the
contraction maps CE and CE′ are connection preserving diffeomorphisms, it fol-
lows that L is connection preserving if and only if L̂∗ is. Finally, since the action
of GL(E0) on E0 is effective, it follows from Corollary 2.3.4 that L̂∗ is connection
preserving if and only if L∗ is. �

EXAMPLE 2.5.11. Let π : E → M be a vector bundle with typical fiber E0

and s : U → FRE0(E) be a smooth local E0-frame of E. The corresponding trivi-
alization š : U ×E0 → E|U is a vector bundle isomorphism (see Example 1.5.13);
if the trivial vector bundle U ×E0 is endowed with its canonical connection dI (see
Example 2.4.5) and E|U is endowed with the connection dIs (see Example 2.4.6)
then š is connection preserving.

EXAMPLE 2.5.12. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇ and let s : U → FRE0(E) be a smooth local E0-
frame of E. Denote by ω the connection form of the connection on FRE0(E)
associated to ∇ and set ω̄ = s∗ω. Then ω̄ is a smooth Lin(E0)-valued covari-
ant 1-tensor field on U that can be identified with a C∞(U)-bilinear map from
Γ(TM |U )×Γ(U×E0) to Γ(U×E0) (recall Examples 1.6.31 and 1.6.33). If E|U
is endowed with the connection∇U and the trivial vector bundleU×E0 is endowed
with the connection dI + ω̄ then it follows from (2.5.4) that the local trivialization
š : U × E0 → E|U is a connection preserving vector bundle isomorphism.

EXAMPLE 2.5.13. Let π : E → M be a vector bundle with typical fiber
E0 endowed with a linear connection ∇; denote by Hor

(
FRE0(E)

)
the principal
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connection on the frame bundle FRE0(E) that induces ∇. As explained in Exam-
ple 2.5.9, the principal connection Hor

(
FRE0(E)

)
induces a linear connection on

the fiber product FRE0(E)×∼E0; moreover, such linear connection is the covariant
derivative operator of the generalized connection induced by Hor

(
FRE0(E)

)
on

the fiber product FRE0(E) ×∼ E0 (as explained in Section 2.3). The contraction
map CE : FRE0(E)×∼ E0 → E is therefore a connection preserving isomorphism
of vector bundles (by the very definition of the relation between Hor

(
FRE0(E)

)
and ∇).

EXAMPLE 2.5.14. Let P be a G-principal bundle over a differentiable man-
ifold M , E0 be a real finite-dimensional vector space, ρ : G → GL(E0) be a
smooth representation, E be a vector bundle over M with typical fiber E0 and
φ : P → FRE0(E) be a morphism of principal bundles whose subjacent Lie group
homomorphism is the representation ρ. If P is endowed with a principal connec-
tion Hor(P ), FRE0(E) is endowed with the principal connection Hor

(
FRE0(E)

)
obtained by push-forward of Hor(P ) by φ, E is endowed with the linear connec-
tion induced by Hor

(
FRE0(E)

)
and if P ×G E0 is endowed with the linear con-

nection induced by Hor(P ) (as explained in Example 2.5.9) then the φ-contraction
map Cφ : P ×G E0 → E (see Definition 1.5.17) is a connection preserving iso-
morphism of principal bundles. Namely, Cφ is the composition of φ̂ and CE and
both of them are connection preserving isomorphisms of vector bundles (see Corol-
lary 2.3.4 and Example 2.5.13).

2.6. Pull-back of connections on vector bundles

Let π : E → M be a vector bundle with typical fiber E0. Let f : M ′ → M
be a smooth map defined in a differentiable manifold M ′. Given a connection ∇
on E, then the pull-back of ∇ by f is a connection f∗∇ on the pull-back vec-
tor bundle f∗E defined as follows; let Hor

(
FRE0(E)

)
be the connection on the

principal bundle of E0-frames of E associated to ∇ (Proposition 2.5.4). Consider
the pull-back Hor

(
f∗FRE0(E)

)
of the connection Hor

(
FRE0(E)

)
by f (recall

Definition 2.2.22). Since the principal bundles f∗FRE0(E) and FRE0(f
∗E) are

identified with each other, Hor
(
f∗FRE0(E)

)
is a connection on FRE0(f

∗E); the
connection f∗∇ on f∗E is the connection associated to Hor

(
f∗FRE0(E)

)
.

EXAMPLE 2.6.1. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇. If U is an open subset of M and i : U → M
denotes the inclusion map then, identifying i∗E with E|U as in Example 1.5.20,
the pull-back i∗∇ is equal to the connection ∇U (see Lemma 2.4.4). This follows
from Remark 2.5.3 and Example 2.2.23.

EXAMPLE 2.6.2. Let π : E →M be a vector bundle endowed with a connec-
tion ∇ and let f : M ′ → M , g : M ′′ → M ′ be smooth maps, where M ′, M ′′ are
differentiable manifolds. Recall from Example 1.5.21 that we have identified the
vector bundles g∗f∗E and (f ◦g)∗E. It follows directly from Example 2.2.24 that:

(f ◦ g)∗∇ = g∗(f∗∇).
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The connection f∗∇ defines a horizontal distribution Hor(f∗E) on f∗E. The
horizontal distributions Hor(f∗E) and Hor(E) are related by the following:

LEMMA 2.6.3. Let π : E → M be a vector bundle and f : M ′ → M be a
smooth map defined in a differentiable manifold M ′. Let ∇ be a connection on E
and let Hor(E), Hor(f∗E) be the horizontal distributions defined by ∇ and f∗∇
respectively. If f̄ : f∗E → E denotes the map defined in Subsection 1.5.3, then:

Hore(f∗E) = df̄−1
e

(
Horf̄(e)(E)

)
,

for all e ∈ f∗E.

PROOF. Consider the quotient maps:

q : FRE0(E)× E0 −→ FRE0(E)×∼ E0,

qf : FRE0(f
∗E)× E0 −→ FRE0(f

∗E)×∼ E0.

We have a commutative diagram:

(2.6.1)

FRE0(f
∗E)× E0

f̄×Id //

Cf∗E◦qf ''OOOOOOOOOOOO
FRE0(E)× E0

CE◦q
xxrrrrrrrrrrr

f∗E
f̄
// E

where we have denoted by f̄ also the map from:

FRE0(f
∗E) = f∗FRE0(E)

to FRE0(E) defined in Subsection 1.3.1. Let e ∈ f∗E be fixed. Choose a
pair (p, e0) in FRE0(f

∗E) × E0 with (Cf∗E ◦ qf )(p, e0) = e, so that (CE ◦
q)

(
f̄(p), e0

)
= f̄(e). Recall from (2.3.1) and (2.5.1) that:

(2.6.2)
Hore(f∗E) = d(Cf∗E ◦ qf )(p,e0)

(
Horp

(
FRE0(f

∗E)
)
⊕ {0}

)
,

Horf̄(e)(E) = d(CE ◦ q)(f̄(p),e0)

(
Horf̄(p)

(
FRE0(E)

)
⊕ {0}

)
.

Differentiating diagram (2.6.1), we obtain:

(2.6.3)

TpFRE0(f
∗E)⊕ E0

df̄p⊕Id //

d(Cf∗E◦qf )(p,e0)

��

Tf̄(p)FRE0(E)⊕ E0

d(CE◦q)(f̄(p),e0)

��
Te(f∗E)

df̄e

// Tf̄(e)E

By Lemma 2.2.25, we have:

(df̄p ⊕ Id)−1
(
Horf̄(p)

(
FRE0(E)

)
⊕ {0}

)
= Horp

(
FRE0(f

∗E)
)
⊕ {0}.

Applying the result of Exercise 2.18 to diagram (2.6.3), keeping in mind (2.6.2),
we obtain:

Hore(f∗E) ⊂ df̄−1
e

(
Horf̄(e)(E)

)
.
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Since df̄e carries Vere(f∗E) isomorphically onto Verf̄(e)(E), we have:

df̄−1
e

(
Horf̄(e)(E)

)
∩Vere(f∗E) = {0}.

The conclusion now follows from the result of Exercise 2.3. �

COROLLARY 2.6.4. Under the hypotheses of Lemma 2.6.3, let ε : U ′ → E
be a smooth local section of E along f defined in an open subset U ′ of M ′ and
let ε̄ : U ′ → f∗E be the smooth local section of f∗E such that ε = f̄ ◦ ε̄ (recall
diagram (1.5.7)). Then, for every y ∈ U ′, v ∈ TyM ′, we have:

(f∗∇)v ε̄ = pver

(
dε(y) · v

)
∈ Ef(y),

where pver : TE → Ver(E) denotes the vertical projection determined by the
horizontal distribution Hor(E).

PROOF. Let p
f
ver : T (f∗E) → Ver(f∗E) denote the vertical projection deter-

mined by the horizontal distribution Hor(f∗E). We have (recall (2.1.2)):

(f∗∇)v ε̄ = pfver
(
dε̄(y) · v

)
.

Lemma 2.6.3 implies easily that:

df̄ ◦ pfver = pver ◦ df̄ .

The conclusion follows by observing that for all e ∈ (f∗E)y ∼= Ef(y), the restric-
tion to Vere(f∗E) ∼= Ef(y) of df̄e is just the identity map of Ef(y). �

Motivated by Corollary 2.6.4 we give the following:

DEFINITION 2.6.5. Let π : E →M be a vector bundle and f : M ′ →M be a
smooth map defined in a differentiable manifold M ′. Let∇ be a connection on E.
Given a smooth local section ε : U ′ → E of E along f defined in an open subset
U ′ of M ′, we set:

∇vε = pver

(
dε(y) · v

)
∈ Ef(y),

for all y ∈ U ′, v ∈ TyM
′, where pver : TE → Ver(E) denotes the vertical

projection determined by the horizontal distribution defined by ∇.

Corollary 2.6.4 says that if ε̄ : U ′ → f∗E is the smooth local section of f∗E
such that f̄ ◦ ε̄ = ε then:

∇vε = (f∗∇)v ε̄,
for all v ∈ TM ′|U ′ .

LEMMA 2.6.6. Let π : E → M be a vector bundle and f : M ′ → M be a
smooth map defined in a differentiable manifold M ′. Let ε : U → E be a smooth
local section of E defined in an open subset U of M and consider the smooth local
section ε ◦ f : f−1(U)→ E of E along f . For all y ∈ f−1(U) and all v ∈ TyM ,
we have:

∇v(ε ◦ f) = ∇dfy(v)ε.

PROOF. We compute:

∇v(ε ◦ f) = pver

(
d(ε ◦ f)(y) · v

)
= pver

(
dε

(
f(y)

)
·
(
dfy(v)

))
= ∇dfy(v)ε. �
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REMARK 2.6.7. Lemma 2.6.6 says that if ε : U → E is a smooth local section
of E and if ε̄ : f−1(U) → f∗E is the smooth local section of f∗E such that
f̄ ◦ ε̄ = ε ◦ f then:

(f∗∇)v ε̄ = ∇dfy(v)ε,

for all y ∈ f−1(U) and all v ∈ TyM
′. Such property actually completely char-

acterizes the connection f∗∇. This follows from the result of Exercise 2.16 by
observing that for all y ∈ M ′ and all e ∈ (f∗E)y there exists smooth local sec-
tions ε : U → E, ε̄ : f−1(U)→ f∗E with f̄ ◦ ε̄ = ε ◦ f and ε̄(y) = e.

2.7. Functorial constructions with connections on vector bundles

Let F : Vecn → Vec be a smooth functor. Let E1, . . . , En be vector bun-
dles over a differentiable manifold M with typical fibers E1

0 , . . . , En0 ; recall from
Section 1.6 that we have defined a vector bundle F(E1, . . . , En) over M with typ-
ical fiber F(E1

0 , . . . , E
n
0 ). Given connections ∇1, . . . , ∇n on E1, . . . , En respec-

tively, we will now define a naturally induced connection ∇ = F(∇1, . . . ,∇n) on
F(E1, . . . , En).

For i = 1, . . . , n, let Hor
(
FREi0

(Ei)
)

be the connection on the principal bun-
dle ofEi0-frames ofEi associated to∇i (Proposition 2.5.4). Consider the fiberwise
product:

(2.7.1) FRE1
0
(E1) ? · · · ? FREn0

(En).

endowed with the fiberwise product of the connections Hor
(
FREi0

(Ei)
)
, i =

1, . . . , n (recall Definition 2.2.17). We define ∇ = F(∇1, . . . ,∇n) to be the
connection on F(E1, . . . , En) induced by the push-forward of the connection on
(2.7.1) by the morphism of principal bundles (1.6.6) (recall Definition 2.2.14). If ωi

is the gl(Ei0)-valued connection form of Hor
(
FREi0

(Ei)
)

and ω is the gl
(
F(E1

0 , . . . , E
n
0 )

)
-

valued connection form of the connection on the principal bundle FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
associated to F(∇1, . . . ,∇n) then:

(2.7.2) F∗ω = f ◦ (pr∗1ω
1, . . . ,pr∗nω

n),

where f denotes the differential of the smooth functor F (recall (1.6.2)), pri, i =
1, . . . , n, denote the projections of the fiberwise product (2.7.1) and the map F that
appears in (2.7.2) is the morphism of principal bundles (1.6.6). Formula (2.7.2)
follows immediately from Lemma 2.2.11 part (c) and from Proposition 2.2.16.

EXAMPLE 2.7.1. Let M be a differentiable manifold and let E1
0 , . . . , En0 be

real finite-dimensional vector spaces; consider the trivial vector bundles:

Ei = M × Ei0, i = 1, . . . , n,

endowed with their canonical connections ∇i (see Example 2.4.5). Let F be a
smooth functor from Vecn to Vec. Recall from Example 1.6.10 that F(E1, . . . , En)
is identified with the trivial vector bundleE = M×F(E1

0 , . . . , E
n
0 ). We claim that

F(∇1, . . . ,∇n) is the canonical connection of the trivial vector bundle E. Namely,
the connection ∇i is associated to the trivial connection on the trivial principal
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bundle FREi0
(Ei) = M × GL(Ei0), i = 1, . . . , n (see Example 2.5.7); also, the

fiberwise product connection on (2.7.1) is the canonical connection of the trivial
principal bundle M ×

(
GL(E1

0) × · · · × GL(En0 )
)

(see Example 2.2.18). The
map (1.6.6) is identified with the product of the identity map of M by the map
(1.6.7); thus, as observed in Example 2.2.12, when M × GL

(
F(E1

0 , . . . , E
n
0 )

)
is

endowed with its canonical connection, the map (1.6.6) is connection preserving.
This proves the claim.

PROPOSITION 2.7.2. Under the hypotheses of Proposition 1.6.16, if the vec-
tor bundles E1, E 1, . . . , En, E n are endowed respectively with connections ∇1,
∇ 1, . . . ,∇n,∇n and if the isomorphisms of vector bundles Li are connection pre-
serving then the isomorphism of vector bundles F(L1, . . . , Ln) is also connection
preserving, when the vector bundles F(E1, . . . , En), F(E 1

, . . . , E
n) are endowed

respectively with the connections F(∇1, . . . ,∇n) and F(∇ 1
, . . . ,∇n).

PROOF. We can assume without loss of generality that Ei0 = E
i
0, for all

i = 1, . . . , n; the formal justification of this claim is obtained from the results
of Exercises 1.61, 1.68 and 2.19. Consider the following commutative diagram:

FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)F(L1,...,Ln)∗

// FRF(E1
0 ,...,E

n
0 )

(
F(E 1

, . . . , E
n)

)

FRE1
0
(E1) ? · · · ? FREn0

(En)

33
F

OO

L1
∗?···?Ln∗

// FRE1
0
(E 1) ? · · · ? FREn0

(E n)

F

OO

The vertical arrows of the diagram are connection preserving, by the definition of
F(∇1, . . . ,∇n) and F(∇ 1

, . . . ,∇n). Since the vector bundle isomorphisms Li

are connection preserving, then also the bottom horizontal arrow of the diagram
is connection preserving, by Lemma 2.5.10 and by Corollary 2.2.20. Then the
dotted arrow is connection preserving and hence, by Corollary 2.2.15, also the top
horizontal arrow is connection preserving. �

COROLLARY 2.7.3. Let n ≥ 1 be fixed and let F : Vecn → Vec be a
smooth functor. Let E1, . . . , En be vector bundles over the differentiable mani-
fold M with typical fibers E1

0 , . . . , En0 . Let s1, . . . , sn be smooth local sections of
FRE1

0
(E1), . . . , FREn0

(En) respectively, defined in an open subset U of M . If, for

i = 1, . . . , n,∇si denotes the connection associated to si as in Example 2.4.6 then
F(∇s1 , . . . ,∇sn) is the connection associated to s = F ◦ (s1, . . . , sn).

PROOF. For i = 1, . . . , n, the local trivialization ši : U × Ei0 → Ei|U is a
connection preserving vector bundle isomorphism, when U ×Ei0 is endowed with
its canonical connection and Ei|U is endowed with ∇si (see Example 2.5.11). We
have š = F(š1, . . . , šn) (Example 1.6.17) and thus š is connection preserving when
U × F(E1

0 , . . . , E
n
0 ) is endowed with its canonical connection and:

F(E1, . . . , En)|U = F(E1|U , . . . , En|U )
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is endowed with the connection F(∇s1 , . . . ,∇sn) (see Example 2.7.1 and Proposi-
tion 2.7.2). The conclusion follows. �

PROPOSITION 2.7.4. Under the hypotheses of Proposition 1.6.15, if ∇1, . . . ,
∇m are connections on E1, . . . , Em respectively then:

(G ◦ F)(∇1, . . . ,∇m) = G
(
F1(∇1, . . . ,∇m), . . . ,Fn(∇1, . . . ,∇m)

)
.

PROOF. For i = 1, . . . ,m, let FREi0
(Ei) be endowed with the connection

associated to ∇i and let:

(2.7.3) FRE1
0
(E1) ? · · · ? FREm0

(Em)

be endowed with the fiberwise product connection. As in the proof of Proposi-
tion 1.6.15, we set:

F j = Fj(E1
0 , . . . , E

m
0 ), j = 1, . . . , n, G = G(F 1, . . . , Fn).

If FRF j
(
F(E1

0 , . . . , E
m
0 )

)
is endowed with the connection associated to the con-

nection F(∇1, . . . ,∇m) then the morphism of principal bundles (1.6.10) is con-
nection preserving. Thus, if:

FRF 1

(
F1(E1, . . . , Em)

)
? · · · ? FRFn

(
Fn(E1, . . . , Em)

)
is endowed with the fiberwise product connection then the morphism of principal
bundles:

FRE1
0
(E1) ? · · · ? FREm0

(Em)

F=(F1,...,Fn)

��
FRF 1

(
F1(E1, . . . , Em)

)
? · · · ? FRFn

(
Fn(E1, . . . , Em)

)
is connection preserving, by Lemma 2.2.19. If FRG

(
(G ◦ F)(E1, . . . , Em)

)
is

endowed with the connection associated to:

(2.7.4) G
(
F1(∇1, . . . ,∇m), . . . ,Fn(∇1, . . . ,∇m)

)
then the morphism of principal bundles (1.6.11) is also connection preserving. This
implies that the composition (1.6.12) is connection preserving, which shows that
the connection on FRG

(
(G ◦ F)(E1, . . . , Em)

)
associated to (2.7.4) is the push-

forward by G ◦ F of the connection on (2.7.3). This concludes the proof. �

PROPOSITION 2.7.5. Under the hypotheses of Proposition 1.6.18, let ∇i be a
connection on Ei, i = 1, . . . , n. If f∗F(E1, . . . , En) is endowed with the connec-
tion f∗F(∇1, . . . ,∇n) and F(f∗E1, . . . , f∗En) is endowed with the connection
F(f∗∇1, . . . , f∗∇n) then the vector bundle isomorphism (1.6.13) is connection
preserving.

PROOF. We will show that the arrows F and f∗F in the commutative diagram
(1.6.17) are connection preserving and this will imply (see Corollary 2.2.15) that
also (1.6.14) is connection preserving. By Lemma 2.5.10, (1.6.13) is connection
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preserving if and only if (1.6.14) is connection preserving. The fact that the ar-
row F in (1.6.17) is connection preserving is just the definition of the connec-
tion F(f∗∇1, . . . , f∗∇n). The fact that the arrow f∗F in (1.6.17) is connection
preserving follows from the fact that (1.6.6) is connection preserving and from
Lemma 2.2.26. The reader should observe that in this argument we have implic-
itly used that the identification between the principal bundles (1.6.15) and (1.6.16)
made in the proof of Proposition 1.6.18 is also connection preserving; this is proved
in Lemma 2.2.27. �

COROLLARY 2.7.6. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, . . . , En be vector bundles over the differentiable manifold M
endowed with connections ∇1, . . . , ∇n, respectively. If U is an open subset of M
then (recall Lemma 2.4.4):

F
(
(∇1)U , . . . , (∇n)U

)
= F(∇1, . . . ,∇n)U .

PROOF. Simply apply Proposition 2.7.5 to the inclusion map f : U → M of
U in M . �

PROPOSITION 2.7.7. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, . . . , En be vector bundles over a differentiable manifold M with
typical fibers E1

0 , . . . , En0 . For i = 1, . . . , n, let ∇i, ∇̃i be connections on Ei and
consider the C∞(M)-bilinear map ti = ∇i − ∇̃i : Γ(TM)×Γ(Ei)→ Γ(Ei) as
in Remark 2.4.7. For each i = 1, . . . , n, each x ∈ M and each v ∈ TxM , denote
by tix(v, ·) ∈ gl(Eix) the linear map given by e 7→ tix(v, e). Set:

∇ = F(∇1, . . . ,∇n), ∇̃ = F(∇̃1, . . . , ∇̃n),

and t = ∇− ∇̃. Then:

tx(v, ·) = f
(
t1x(v, ·), . . . , tnx(v, ·)

)
∈ gl

(
F(E1

x, . . . , E
n
x )

)
,

for all x ∈ M and all v ∈ TxM , where f denotes the differential of the smooth
functor F (recall (1.6.2)).

PROOF. Let ωi (resp., ω̃i) denote the connection form of the connection in
FREi0

(Ei) associated to∇i (resp., to ∇̃i), i = 1, . . . , n, and let ω (resp., ω̃) denote
the connection form of the connection in:

(2.7.5) FRF(E1
0 ,...,E

n
0 )

(
F(E1, . . . , En)

)
associated to∇ (resp., to ∇̃). Let x ∈M be fixed and choose smooth local sections
si : U → FREi0

(Ei), i = 1, . . . , n, where U is an open neighborhood of x in M .
Then (s1, . . . , sn) is a smooth local section of (2.7.1) and s = F ◦ (s1, . . . , sn) is a
smooth local section of (2.7.5). Using (2.7.2), we compute:

s∗ω = (s1, . . . , sn)∗(F∗ω) = (s1, . . . , sn)∗
(
f ◦ (pr∗1ω

1, . . . ,pr∗nω
n)

)
= f ◦

(
(s1, . . . , sn)∗(pr∗1ω

1), . . . , (s1, . . . , sn)∗(pr∗nω
n)

)
= f ◦

(
(s1)∗ω1, . . . , (sn)∗ωn

)
;
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similarly:
s∗ω̃ = f ◦

(
(s1)∗ω̃1, . . . , (sn)∗ω̃n

)
,

so that:

(2.7.6) s∗(ω − ω̃) = f ◦
(
(s1)∗(ω1 − ω̃1), . . . , (sn)∗(ωn − ω̃n)

)
.

Lemma 2.5.8 implies that:

(2.7.7) Isi(x)
[(

(si)∗(ωi − ω̃i)
)
x
(v)

]
= tix(v, ·) ∈ gl(Eix),

for all v ∈ TxM , i = 1, . . . , n; similarly:

(2.7.8) Is(x)
[(
s∗(ω − ω̃)

)
x
(v)

]
= tx(v, ·) ∈ gl

(
F(E1

x, . . . , E
n
x )

)
,

for all v ∈ TxM . The conclusion follows from (2.7.6), (2.7.7) and (2.7.8) by
applying the result of Exercise 1.67 to the isomorphisms si(x) : Ei0 → Eix, i =
1, . . . , n. �

COROLLARY 2.7.8. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, . . . , En be vector bundles over the differentiable manifold M with
typical fibers E1

0 , . . . , En0 . Let s1, . . . , sn be smooth local sections of the principal
bundles FRE1

0
(E1), . . . , FREn0

(En) respectively, defined in an open subset U of
M . Let ∇1, . . . , ∇n be connections on E1, . . . , En, respectively and denote by Γi

the Christoffel tensor of∇i with respect to si, i = 1, . . . , n. If s = F ◦ (s1, . . . , sn)
and Γ is the Christoffel tensor of F(∇1, . . . ,∇n) with respect to s then:

Γx(v, ·) = f
(
Γ1
x(v, ·), . . . ,Γnx(v, ·)

)
,

for all x ∈ U and all v ∈ TxM , where f denotes the differential of the smooth
functor F (recall (1.6.2)).

PROOF. Simply observe that Γi = ∇i −∇si , i = 1, . . . , n, and that:

F(∇s1 , . . . ,∇sn) = ∇s,
by Corollary 2.7.3. �

Recall that we have shown in Proposition 1.6.28 that smooth natural transfor-
mations between smooth functors induce smooth fiber-preserving maps between
vector bundles; now we show how to compute the covariant derivative of such
maps.

PROPOSITION 2.7.9. Under the hypotheses of Proposition 1.6.28, let the vec-
tor bundles E1, . . . , En be endowed with connections ∇1, . . . , ∇n; set:

∇ = F(∇1, . . . ,∇n), ∇′ = G(∇1, . . . ,∇n).

If the vector bundles F(E1, . . . , En) and G(E1, . . . , En) are endowed respectively
with the connections∇ and∇′ then the map NE1,...,En is connection preserving. In
particular, by Lemma 2.1.5, given a smooth local section ε : U → F(E1, . . . , En)
with image contained in Dom(NE1,...,En) then for all x ∈ U , v ∈ TxM , we have:

(2.7.9) ∇′v(NE1,...,En ◦ ε) = dNE1
x,...,E

n
x

(
ε(x)

)
· ∇vε.
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Moreover, if N is linear then NE1,...,En is a connection preserving morphism of
vector bundles, i.e.:

∇′v(NE1,...,En ◦ ε) = NE1
x,...,E

n
x
(∇vε),

for all x ∈ U and all v ∈ TxM .

PROOF. Follows directly from the commutativity of diagram (1.6.20), keeping
in mind that CF, CG are connection preserving isomorphisms of vector bundles (Ex-
ample 2.5.14) and that IdP ×∼ NE1

0 ,...,E
n
0

is connection preserving (Lemma 2.3.3).
�

EXAMPLE 2.7.10. Let E1, E2 be vector bundles over a differentiable mani-
fold M endowed with connections ∇1, ∇2. If F denotes the functor defined in
Example 1.6.11 then F(E1, E2) = E1 ⊕ E2 and

∇ = ∇1 ⊕∇2 def= F(∇1,∇2)

is a connection on E1 ⊕ E2 called the direct sum of the connections ∇1 and ∇2.
Given a smooth local section:

ε = (ε1, ε2) : U −→ E1 ⊕ E2

then:
∇vε = (∇1

vε1,∇2
vε2),

for all v ∈ TM . Namely, by applying Proposition 2.7.9 to the linear smooth
natural transformations N1, N2 defined in Example 1.6.20 we conclude that the
projections E1 ⊕ E2 → Ei, i = 1, 2 are connection preserving vector bundle
morphisms; thus, the i-th coordinate of ∇vε is equal to ∇ivεi.

EXAMPLE 2.7.11. Let E, E′ be vector bundles endowed with connections ∇,
∇′ and consider the connections Link(∇,∇′) and Lins

k(∇,∇′) induced respec-
tively on the vector bundles Link(E,E′), Lins

k(E,E
′). If B is a smooth local sec-

tion of Lins
k(E,E

′) then the covariant derivatives ofB with respect to Link(∇,∇′)
and Lins

k(∇,∇′) coincide. Namely, the inclusion map:

Lins
k(V, V

′) −→ Link(V, V ′)

is a linear smooth natural transformation and thus, by Proposition 2.7.9, the inclu-
sion map of Link(E,E′) into Lins

k(E,E
′) is a connection preserving vector bundle

morphism. A similar statement holds with Lins
k replaced with Lina

k.

EXAMPLE 2.7.12. Let E1, . . . , Ek, F be vector bundles over a differentiable
manifold M endowed with connections ∇1, . . . , ∇k, ∇F , respectively. Consider
the induced connection:

∇ = Lin(∇1, . . . ,∇k;∇F )

on the vector bundle Lin(E1, . . . , Ek;F ). Given a smooth section B of the vector
bundle Lin(E1, . . . , Ek;F ) and a smooth section εi of the vector bundle Ei for
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i = 1, . . . , k then:

(2.7.10) ∇Fv
(
B(ε1, . . . , εk)

)
= (∇vB)(ε1, . . . , εk)

+B(∇1
vε

1, . . . , εk) + · · ·+B(ε1, . . . ,∇kvεk),
for all v ∈ TM . Namely, consider the natural transformation N defined in Exam-
ple 1.6.31; we have:

B(ε1, . . . , εk) = NE1,...,Ek,F ◦ (B, ε1, . . . , εk),

and therefore, using Proposition 2.7.9 we get:

∇Fv
(
B(ε1, . . . , εk)

)
= ∇Fv

(
NE1,...,Ek,F ◦ (B, ε1, . . . , εk)

)
= dNE1

x,...,E
k
x ,Fx

(
B(x), ε1(x), . . . , εk(x)

)
· (∇vB,∇1

vε
1, . . . ,∇kvεk)

= (∇vB)(ε1, . . . , εk) +B(∇1
vε

1, . . . , εk) + · · ·+B(ε1, . . . ,∇kvεk).
Observe that (2.7.10) can be used as a formula to compute ∇vB.

REMARK 2.7.13. LetE, F be vector bundles over a differentiable manifoldM
endowed with connections ∇E , ∇F , respectively. If L is identified with a smooth
section of Lin(E,F ) then it follows directly from formula (2.7.10) that:

(2.7.11) (∇XL)(ε) = ∇FX
(
L(ε)

)
− L(∇EXε),

for all X ∈ Γ(TM), ε ∈ Γ(E), where ∇ = Lin(∇E ,∇F ). It follows that L is
connection preserving if and only if the section x 7→ Lx of Lin(E,F ) is parallel.

REMARK 2.7.14. Let E be a vector bundle over a differentiable manifold M
and let ∇1, ∇2 be connections on E with ∇2 − ∇1 = t. If L : E → E is
the identity map and ∇ = Lin(∇1,∇2) then formula (2.7.11) implies that the
covariant derivative of L (seen as a section of Lin(E)) is given by:

∇L = t.

EXAMPLE 2.7.15. Let E1, . . . , Ek, F , F ′ be vector bundles over a differen-
tiable manifold M endowed with connections ∇1, . . . , ∇k, ∇F and ∇F ′ respec-
tively. Consider the induced connections:

∇ = Lin(∇1, . . . ,∇k;∇F ), ∇′ = Lin(∇1, . . . ,∇k;∇F ′),

∇′′ = Lin(∇F ,∇F ′),

on Lin(E1, . . . , Ek;F ), Lin(E1, . . . , Ek;F ′) and Lin(F, F ′) respectively. Given
a smooth section B : M → Lin(E1, . . . , Ek;F ) and a vector bundle morphism
L : F → F ′ then:

∇′v(L ◦B) = (∇′′vL) ◦B(x) + Lx ◦ ∇vB,
for all x ∈ M , v ∈ TxM , where, as usual, L is identified with the smooth section
x 7→ Lx of Lin(F, F ′). Namely, consider the natural transformation N defined in
Example 1.6.32; we have:

L ◦B = NE1,...,Ek,F,F ′ ◦ (L,B),
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and therefore, using Proposition 2.7.9 we get:

∇′v(L ◦B) = ∇′v
(
NE1,...,Ek,F,F ′ ◦ (L,B)

)
= dNE1

x,...,E
k
x ,Fx,F

′
x

(
Lx, B(x)

)
· (∇′′vL,∇vB)

= (∇′′vL) ◦B(x) + Lx ◦ ∇vB,
for all x ∈M and all v ∈ TxM .

REMARK 2.7.16. In Example 2.7.15, if the vector bundle morphism L is con-
nection preserving then:

∇′v(L ◦B) = Lx ◦ ∇vB,
for all x ∈M and all v ∈ TxM (see Remark 2.7.13).

2.7.1. Covariant exterior differentiation of vector bundle valued forms. If
E1, . . . , Ek, F are vector bundles over a differentiable manifold M endowed with
connections and if B is a smooth section of the vector bundle Lin(E1, . . . , Ek;F )
then the covariant derivative ∇B is a smooth section of the vector bundle:

(2.7.12) Lin
(
TM,Lin(E1, . . . , Ek;F )

)
.

Recall from Example 1.6.33 that we identify the vector bundle (2.7.12) with the
vector bundle Lin(TM,E1, . . . , Ek;F ). Notice that, given a smooth section B of
Lin(E1, . . . , Ek;F ) then:

∇B(X, ε1, . . . , εk) = (∇XB)(ε1, . . . , εk),

for all X ∈ Γ(TM), ε1 ∈ Γ(E1), . . . , εk ∈ Γ(Ek). In particular, if E is a vector
bundle overM and if bothE and TM are endowed with connections then for every
smooth E-valued covariant k-tensor field B on M the covariant derivative ∇B is
a smooth E-valued covariant (k + 1)-tensor field on M .

LEMMA 2.7.17. Let π : E → M be a vector bundle endowed with a connec-
tion∇E and let∇,∇′ be symmetric connections on TM ; we also denote by∇ and
∇′ the induced connections on the vector bundle Lina

k(TM,E). Given a smooth
E-valued k-form ` on M then:

Alt
(
(∇`)(x)

)
= Alt

(
(∇′`)(x)

)
,

for all x ∈M .

PROOF. Set t = ∇ − ∇′; since both ∇ and ∇′ are symmetric, then also t
is symmetric. Using Proposition 2.7.7 and the computation of f done in Exam-
ple 1.6.14, we obtain:

(∇v`−∇′v`)(v1, . . . , vk) =
[
f
(
t(v, ·), 0

)
· `x

]
(v1, . . . , vk)

= −`x
(
t(v, v1), v2, . . . , vk

)
− · · · − `x

(
v1, v2, . . . , t(v, vk)

)
,(2.7.13)

for all v, v1, . . . , vk ∈ TxM and all x ∈ M . Since the i-th summand in (2.7.13) is
symmetric in v and vi, its alternator vanishes (see Remark A.3.2). The conclusion
follows. �

In view of Lemma 2.7.17, we can give the following:
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DEFINITION 2.7.18. Let π : E → M be a vector bundle endowed with a
connection and let ` be a smooth E-valued k-form on M with values on E. The
covariant exterior differential of ` is the smooth E-valued (k + 1)-form on M
defined by:

(D`)(x) = 1
k! Alt

(
(∇`)(x)

)
,

for all x ∈ M , where ∇ denotes the connection induced on Lina
k(TM,E) by the

given connection on E and by an arbitrarily chosen symmetric connection on TM .

EXAMPLE 2.7.19. Let M be a differentiable manifold and E0 be a real finite-
dimensional vector space. A (smooth) k-form on M taking values in the trivial
vector bundle M × E0 is the same as a (smooth) E0-valued k-form on M . If
M × E0 is endowed with the canonical connection dI then the exterior covariant
derivative of a smooth k-form on M taking values in M × E0 coincides with its
standard exterior derivative.

PROPOSITION 2.7.20. Let E, F be vector bundles over a differentiable mani-
fold M endowed with connections, L : E → F be a vector bundle morphism and
` be a smooth E-valued k-form on M . Then:

D(L ◦ `) = ∇L ∧ `+ L ◦D`,

where ∇L is seen as a Lin(E,F )-valued 1-form on M and the wedge product
∇L ∧ ` is taken with respect to the obvious bilinear pairing:

Lin(Ex, Fx)× Ex −→ Fx.

In particular, if L is connection preserving then (see Remark 2.7.13):

D(L ◦ `) = L ◦D`.

PROOF. We compute (see Example 2.7.15):(
∇v1(L ◦ `)

)
(v2, . . . , vk+1)

= (∇v1L) ◦ `x(v2, . . . , vk+1) + Lx ◦ (∇v1`)(v2, . . . , vk+1),

for all x ∈ M and all v1, . . . , vk+1 ∈ TxM . The conclusion follows by taking
alternators on both sides of the above equality. �

COROLLARY 2.7.21. Let E be a vector bundle over a differentiable manifold
M endowed with connections∇1,∇2; set t = ∇2−∇1. Given a smoothE-valued
k-form ` on M , we denote by Di` the exterior covariant derivative of ` associated
to ∇i, i = 1, 2. Then:

D2` = D1`+ t ∧ `,
where t is seen as a Lin(E)-valued 1-form.

PROOF. Apply Proposition 2.7.20 with L the identity morphism ofE, keeping
in mind Remark 2.7.14. �

EXAMPLE 2.7.22. Let π : E → M be a vector bundle with typical fiber E0

and let ι : TM → E be a morphism of vector bundles. We identify ι with a
smooth section of Lin(TM,E), which is a smooth E-valued 1-form on M . Given
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a connection ∇E on E and an arbitrary connection ∇M on TM then, by (2.7.11),
we have:

(∇ι)(X,Y ) = (∇Xι)(Y ) = ∇EX
(
ι(Y )

)
− ι(∇MX Y ).

If ∇M is symmetric then:

Dι(X,Y ) = (∇ι)(X,Y )− (∇ι)(Y,X)

= ∇EX
(
ι(Y )

)
−∇EY

(
ι(X)

)
− ι(∇MX Y −∇MY X)

= ∇EX
(
ι(Y )

)
−∇EY

(
ι(X)

)
− ι

(
[X,Y ]

)
,

proving that the covariant exterior differential Dι is the ι-torsion tensor of ∇.

DEFINITION 2.7.23. Let π : E →M be a vector bundle and ` be an E-valued
k-form onM . Given a differentiable manifoldM ′ and a smooth map f : M ′ →M
then the pull-back of ` by f , denoted by f∗`, is the f∗E-valued k-form on M ′

defined by:
(f∗`)y = df∗y `f(y),

for all y ∈M ′.

More explicitly, f∗` is given by:

(f∗`)y(v1, . . . , vk) = `f(y)

(
dfy(v1), . . . ,dfy(vk)

)
∈ Ef(y) = (f∗E)y,

for all y ∈M and all v1, . . . , vk ∈ TyM ′.
Clearly f∗` is smooth if ` is smooth.
We have the following:

LEMMA 2.7.24. Let π : E → M be a vector bundle endowed with a connec-
tion ∇ and ` be an E-valued k-form on M . Let f : M ′ → M be a smooth map
defined in a differentiable manifold M ′ and let the vector bundle f∗E be endowed
with the pull-back connection f∗∇. Then:

D(f∗`) = f∗D`.

PROOF. �

COROLLARY 2.7.25. Let π : E → M be a vector bundle endowed with a
connection ∇, ι : TM → E be a vector bundle morphism, M ′ be a differen-
tiable manifold and f : M ′ → M be a smooth map. Consider the vector bundle
morphism ι′ : TM ′ → f∗E defined by:

ι′ =
←−−−
ι ◦ df = (f∗ι) ◦

←−
df.

If T ι denotes the ι-torsion of the connection ∇ and if T ι
′

denotes the ι′-torsion of
the connection f∗∇ then:

T ι
′
y = df∗yT

ι
f(y),

for all y ∈M ′; more explicitly:

T ι
′
y (v, w) = T ιf(y)

(
dfy(v),dfy(w)

)
∈ Ef(y) = (f∗E)y,

for all y ∈M ′ and all v, w ∈ TyM ′.
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PROOF. If the vector bundle morphism is identified with a E-valued 1-form
on M and the vector bundle morphism ι′ is identified with a f∗E-valued 1-form
on M ′ then:

ι′ = f∗ι.

The conclusion follows from Lemma 2.7.24 and from Example 2.7.22. �

2.8. The components of a linear connection

Let π : E → M be a vector bundle and let E1, E2 be vector subbundles
of E such that E = E1 ⊕ E2 (see Remark 1.6.30); denote by pr1 : E → E1,
pr2 : E → E2 the corresponding projections. If ∇1, ∇2 are connections on E1

and E2 respectively then the direct sum of ∇1 and ∇2 (recall Example 2.7.10) is
the unique connection ∇ on E such that:

(2.8.1) ∇Xε = ∇1
X(pr1 ◦ ε) +∇2

X(pr2 ◦ ε),

for all X ∈ Γ(TM) and all ε ∈ Γ(E). Not every connection ∇ on E is a direct
sum of connections on E1 and E2. Given a connection ∇ on E, we set:

(2.8.2)

∇1
Xε1 = pr1 ◦ ∇Xε1 ∈ Γ(E1),

∇2
Xε2 = pr2 ◦ ∇Xε2 ∈ Γ(E2),

α1(X, ε2) = pr1 ◦ ∇Xε2 ∈ Γ(E1),

α2(X, ε1) = pr2 ◦ ∇Xε1 ∈ Γ(E2),

for all X ∈ Γ(TM) and all ε1 ∈ Γ(E1), ε2 ∈ Γ(E2). Clearly ∇1 and ∇2 are
connections on E1 and E2, respectively. Moreover, α1, α2 are C∞(M)-bilinear
and therefore (see Exercises 1.63 and 1.72) they can be identified respectively with
smooth sections:

α1 ∈ Γ
(
Lin(TM,E2;E1)

)
, α2 ∈ Γ

(
Lin(TM,E1;E2)

)
.

The maps∇1,∇2, α1, α2 defined in (2.8.2) are collectively called the components
of the connection∇ relatively to the direct sum decompositionE = E1⊕E2. Con-
versely, given connections ∇1, ∇2 respectively on E1 and E2 and given smooth
sections α1 ∈ Γ

(
Lin(TM,E2;E1)

)
, α2 ∈ Γ

(
Lin(TM,E1;E2)

)
then there ex-

ists a unique connection ∇ on E whose components are ∇1, ∇2, α1 and α2;
namely, ∇ is given by:

(2.8.3) ∇Xε = ∇1
Xε1 + α1(X, ε2) +∇2

Xε2 + α2(X, ε1),

for all X ∈ Γ(TM), ε ∈ Γ(E), where ε1 = pr1 ◦ ε and ε2 = pr2 ◦ ε.

PROPOSITION 2.8.1 (generalized Gauss, Codazzi, Ricci equations). Let π :
E →M be a vector bundle, E1, E2 be vector subbundles of E with E = E1⊕E2

and ∇ be a connection on E; denote by ∇1, ∇2, α1 and α2 the components of ∇.
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If R, R1, R2 denote respectively the curvature tensors of ∇, ∇1 and ∇2 then:

pr1
(
Rx(v, w)e1

)
= R1

x(v, w)e1 + α1
x

(
v, α2

x(w, e1)
)
− α1

x

(
w,α2

x(v, e1)
)
,

(2.8.4)

pr2
(
Rx(v, w)e2

)
= R2

x(v, w)e2 + α2
x

(
v, α1

x(w, e2)
)
− α2

x

(
w,α1

x(v, e2)
)
,

(2.8.5)

for all x ∈M , e1 ∈ E1
x, e2 ∈ E2

x and all v, w ∈ TxM . Moreover, given a connec-
tion ∇M on TM with torsion T and denoting by ∇⊗ the induced connections on
Lin(TM,E2;E1) and on Lin(TM,E1;E2) then:

pr2
(
Rx(v, w)e1

)
= (∇⊗α2)x(v, w, e1)− (∇⊗α2)x(w, v, e1)

+ α2
x

(
Tx(v, w), e1

)
,

(2.8.6)

pr1
(
Rx(v, w)e2

)
= (∇⊗α1)x(v, w, e2)− (∇⊗α1)x(w, v, e2)

+ α1
x

(
Tx(v, w), e2

)
,

(2.8.7)

for all x ∈M , e1 ∈ E1
x, e2 ∈ E2

x and all v, w ∈ TxM .

PROOF. A straightforward computation. �

Equation (2.8.4) is called the generalized Gauss equation, (2.8.5) is the gener-
alized Ricci equation and (2.8.6) and (2.8.7) are the generalized Codazzi equations.

EXAMPLE 2.8.2. Let π : E → M be a vector bundle, E1, E2 be vector
subbundles of E with E = E1 ⊕ E2 and ∇ be a connection on E; denote by ∇1,
∇2, α1 and α2 the components of ∇. Assume that we are given a vector bundle
morphism ι1 : TM → E1 and denote by ι : TM → E the composition of ι1 with
the inclusion map of E1 in E. The ι-torsion T ι of ∇ is easily computed as:

(2.8.8) T ιx(v, w) = T ι1x (v, w) + α2
x

(
v, ι1(w)

)
− α2

x

(
w, ι1(v)

)
,

for all x ∈ M , v, w ∈ TxM , where T ι1 denotes the ι1-torsion of ∇1. Notice that
T ι = 0 if and only if T ι1 = 0 and for all x ∈ M , the E2

x-valued bilinear map
α2
x(·, ι1·) on TxM is symmetric.

EXAMPLE 2.8.3. Let π : E →M be a vector bundle and consider the Whitney
sum Ê = TM ⊕ E. Let ∇̂ be a connection on Ê with components ∇M , ∇E , α ∈
Γ

(
Lin(TM,TM ;E)

)
, α′ ∈ Γ

(
Lin(TM,E;TM)

)
, where ∇M is a connection

on TM and ∇E is a connection on E. Denoting by ι : TM → Ê the inclusion
map, formula (2.8.8) becomes:

T ιx(v, w) =
(
TMx (v, w), αx(v, w)− αx(w, v)

)
,

for all x ∈M , v, w ∈ TxM , where T ι denotes the ι-torsion of ∇̂ and TM denotes
the torsion of ∇M . Notice that T ι = 0 if and only if both the connection ∇M and
α are symmetric.
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2.8.1. Connections compatible with a semi-Riemannian structure. Let π :
E → M be a vector bundle endowed with a semi-Riemannian structure g ∈
Γ

(
Lins

2(E,R)
)
. A connection ∇ on E is said to be compatible with g if ∇g = 0.

Using (2.7.10) the condition ∇g = 0 is equivalent to:

(2.8.9) X
(
g(ε1, ε2)

)
= g(∇Xε1, ε2) + g(ε1,∇Xε2),

for all X ∈ Γ(TM) and all ε1, ε2 ∈ Γ(E).
If g is a semi-Riemannian structure on a vector bundle E then two subbundles

E1, E2 of E are said to be orthogonal with respect to g if gx(e1, e2) = 0, for all
x ∈M , e1 ∈ E1

x, e2 ∈ E2
x. Observe that if E = E1 ⊕E2 with E1, E2 orthogonal

subbundles of E then, for i = 1, 2, the restriction of g to Ei is a semi-Riemannian
structure on Ei.

LEMMA 2.8.4. Let π : E → M be a vector bundle endowed with a semi-
Riemannian structure g, E1, E2 be orthogonal vector subbundles of E with E =
E1 ⊕ E2 and ∇ be a connection on E; denote by ∇1, ∇2, α1 and α2 the compo-
nents of ∇. Then ∇ is compatible with g if and only if the following conditions
hold:

(1) ∇i is compatible with gi, i = 1, 2, where gi denotes the semi-Riemannian
structure on Ei obtained by restriction of g;

(2) gx
(
α2
x(v, e1), e2

)
+ gx

(
e1, α

1
x(v, e2)

)
= 0, for all x ∈ M , v ∈ TxM ,

e1 ∈ E1
x, e2 ∈ E2

x.

PROOF. It is a straightforward computation using (2.8.9), (2.8.2) and (2.8.3).
�

Condition (2) on the statement of Lemma 2.8.4 can be written as:

(2.8.10) α1
x(v) = −α2

x(v)
∗,

for all x ∈ M , v ∈ TxM , where α1
x(v) ∈ Lin(E2

x, E
1
x) is the linear map e2 7→

α1
x(v, e2), α

2
x(v) ∈ Lin(E1

x, E
2
x) is the linear map e1 7→ α2

x(v, e1) and the star
denotes transposition with respect to the nondegenerate bilinear forms g1

x and g2
x.

Thus, if E = E1⊕E2 is a g-orthogonal direct sum decomposition, in order to
describe the components of a connection ∇ on E which is compatible with g, one
has only to specify connections ∇1, ∇2 on E1, E2 respectively compatible with
g1, g2 and a smooth section α2 of Lin(TM,E1;E2). The components α1 of ∇
is then obtained by (2.8.10). Thus, when dealing with a connection ∇ compatible
with a semi-Riemannian structure, we call ∇1, ∇2 and α2 the components of ∇
with respect to the decomposition E = E1 ⊕ E2.

Let us take a look at the generalized Gauss, Codazzi and Ricci equations for a
connection ∇ compatible with a semi-Riemannian structure g. First, we observe
that the Codazzi equations (2.8.6) and (2.8.7) are equivalent to each other. Namely,
by the result of Exercise 2.21, for all x ∈ M , v, w ∈ TxM , the linear operator
Rx(v, w) on Ex is anti-symmetric; thus, the linear map:

pr2
(
Rx(v, w)|E1

x

)
: E1

x −→ E2
x
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is equal to minus the transpose of the linear map:

pr1
(
Rx(v, w)|E2

x

)
: E2

x −→ E1
x.

Moreover, using (2.8.10), it follows that for all x ∈ M , v, w ∈ TxM , the linear
map:

(∇⊗α1)x(v, w) : E2
x −→ E1

x

is equal to minus the transpose of the linear map:

(∇⊗α2)x(v, w) : E1
x −→ E2

x.

Thus equation (2.8.7) is obtained from (2.8.6) by taking transpositions on both
sides. Observe also that the generalized Ricci equation (2.8.5) can be rewritten as:

(2.8.11) pr2 ◦Rx(v, w)|E2
x

= R2
x(v, w) + α2

(
w)α2(v)∗ − α2(v)α2(w)∗.

Notice that both sides of (2.8.11) are anti-symmetric linear operators on E2
x. Thus,

if the fibers of E2 are one-dimensional, it follows that the generalized Ricci equa-
tion is trivial in the case of connections compatible with a semi-Riemannian metric.

DEFINITION 2.8.5. Let (M, g), (M, ḡ) be semi-Riemannian manifolds. By an
isometric immersion of (M, g) into (M, ḡ) we mean a smooth map f : M → M
such that:

(2.8.12) ḡf(x)

(
dfx(v),dfx(w)

)
= gx(v, w),

for all x ∈M , v, w ∈ TxM .

Clearly every isometric immersion is a smooth immersion.

EXAMPLE 2.8.6. Let (M, g), (M, ḡ) be semi-Riemannian manifolds and f :
M →M be an isometric immersion. The map

←−
df : TM → f∗TM is an injective

morphism of vector bundles and therefore its image
←−
df(TM) is a vector subbundle

of f∗TM that is isomorphic to TM . We denote by f⊥ the orthogonal subbundle
of
←−
df(TM) in f∗TM (see Exercise 1.75) and we call it the normal bundle of the

isometric immersion f . It follows from (2.8.12) that
←−
df(TM) is nondegenerate for

ḡ and therefore:

(2.8.13) f∗TM =
←−
df(TM)⊕ f⊥.

Let ∇ denote the Levi-Civita connection of (M, ḡ) (see Exercise 2.22) and con-
sider the pull-back connection f∗∇. The components of f∗∇ relatively to the
direct sum decomposition (2.8.13) are denoted by ∇, ∇⊥, α, where ∇ is a con-
nection on

←−
df(TM), ∇⊥ is a connection on f⊥ and α is a smooth section of

Lin(TM,
←−
df(TM); f⊥). By Lemma 2.8.4,∇ is compatible with the semi-Riemannian

structure of
←−
df(TM) obtained by restricting ḡ; moreover, setting ι1 =

←−
df :

TM →
←−
df(TM), ι =

←−
df : TM → f∗TM then, since the ι-torsion of f∗∇

is zero (Corollary 2.7.25), it follows from Example 2.8.2 that the ι1-torsion of∇ is
zero. Thus, using ι1 to identify TM with

←−
df(TM), it follows that ∇ is precisely

the Levi-Civita connection of (M, g); namely,∇ is symmetric and compatible with
g. Again using ι1 to identify TM with

←−
df(TM), we see that the component α of
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f∗∇ is identified with a smooth section of Lin2(TM, f⊥). Since the ι-torsion of
f∗∇ is zero, it follows from Example 2.8.2 that α is actually a smooth section
of Lins

2(TM, f⊥), i.e., for every x ∈ M , αx : TxM × TxM → f⊥x is a sym-
metric bilinear form. We call α the second fundamental form and ∇⊥ the normal
connection of the isometric immersion f .

2.9. Differential forms in a principal bundle

Let Π : P →M be a G-principal bundle endowed with a connection Hor(P );
denote by ω the connection form of Hor(P ), which is a 1-form on P taking values
in the Lie algebra g of G. Given a (possibly vector-valued) smooth differential
k-form λ on P , we denote by dλ its (standard) exterior differential, which is a
smooth (k + 1)-form on P (taking values in the same vector space as λ).

DEFINITION 2.9.1. Let λ be a (possibly vector-valued) smooth k-form on P .
The covariant exterior differential of λ is the (k+1)-form Dλ on P (taking values
in the same vector space as λ) defined by:

Dλp(ζ1, . . . , ζk+1) = dλp
(
phor(ζ1), . . . , phor(ζk+1)

)
,

for all p ∈ P and all ζ1, . . . , ζk+1 ∈ TpP .

Clearly the covariant exterior differential of a smooth k-form on P is a smooth
(k + 1)-form on P .

LEMMA 2.9.2. Let P be a G-principal bundle endowed with a connection
Hor(P ), E0 be a real finite-dimensional vector space and ρ : G → GL(E0)
be a smooth representation of G on E0. If λ is a smooth ρ-pseudo G-invariant
differential form on P then its covariant exterior differential Dλ is also ρ-pseudo
G-invariant.

PROOF. Let g ∈ G, p ∈ P and ζ1, . . . , ζk+1 ∈ TpP be fixed. Using the result
of Exercise 2.8, we compute:

(γ∗g Dλ)p(ζ1, . . . ,ζk+1) = Dλp·g(ζ1 · g, . . . , ζk+1 · g)
= dλp·g

(
phor(ζ1 · g), . . . , phor(ζk+1 · g)

)
= dλp·g

(
phor(ζ1) · g, . . . , phor(ζk+1) · g

)
= (γ∗g dλ)p

(
phor(ζ1), . . . , phor(ζk+1)

)
= (dγ∗g λ)p

(
phor(ζ1), . . . , phor(ζk+1)

)
= d

(
ρ(g)−1 ◦ λ

)
p

(
phor(ζ1), . . . , phor(ζk+1)

)
= ρ(g)−1 · dλp

(
phor(ζ1), . . . , phor(ζk+1)

)
= ρ(g)−1 ·Dλp(ζ1, . . . , ζk+1). �

DEFINITION 2.9.3. The curvature form of the connection Hor(P ) is the g-
valued smooth 2-form on P defined by:

Ω = Dω.
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DEFINITION 2.9.4. A (possibly vector-valued) differential k-form λ on P is
said to be horizontal if:

λp(ζ1, . . . , ζk) = 0,
for all p ∈ P , ζ1, . . . , ζk ∈ TpP , provided that at least one of the vectors ζi is in
Verp(P ).

EXAMPLE 2.9.5. The covariant exterior differential of a smooth differential
form λ on P is always horizontal, even if λ is not horizontal. In particular, the
curvature form of a connection is always horizontal.

Given a G-principal bundle Π : P → M then, since we are given a smooth
right action of G on P , one can define for every A in the Lie algebra g the smooth
vector field AP ∈ Γ(TP ) on P induced by A (recall Definition A.2.3). Clearly
APp ∈ Verp(P ) and:

(2.9.1) ωp(APp ) = A,

for all p ∈ P .

LEMMA 2.9.6. Let Π : P → M be a principal bundle endowed with a con-
nection Hor(P ). Given a vector field X on M then for every g ∈ G the horizontal
lift Xhor is γg-related to itself, i.e.:

Xhor(p · g) = Xhor(p) · g,
for all p ∈ P .

PROOF. Since Hor(P ) is G-invariant Xhor(p) · g is in Horp·g(P ); moreover,
the result of Exercise 1.42 implies that:

dΠp·g
(
Xhor(p) · g

)
= dΠp

(
Xhor(p)

)
= X

(
Π(p)

)
.

This proves that Xhor(p · g) = Xhor(p) · g. �

COROLLARY 2.9.7. Let Π : P →M be a G-principal bundle endowed with a
connection Hor(P ). Given a vector field X on M and A ∈ g then:

[AP , Xhor] = 0.

PROOF. The flow of AP at time t is equal to γexp(tA), for all t ∈ R. The
conclusion follows. �

PROPOSITION 2.9.8. The curvature form Ω is given by:

(2.9.2) Ω = dω + 1
2 ω ∧ ω,

where the wedge product is considered with respect to the Lie bracket of g. More
explicitly, (2.9.2) means that:

(2.9.3) Ωp(ζ1, ζ2) = dωp(ζ1, ζ2) + [ωp(ζ1), ωp(ζ2)],

for all p ∈ P and all ζ1, ζ2 ∈ TpP .

PROOF. Since both sides of equality (2.9.3) are bilinear and antisymmetric in
(ζ1, ζ2), it suffices to verify the equality in the cases:



146 2. THE THEORY OF CONNECTIONS

(a) ζ1, ζ2 ∈ Horp(P );
(b) ζ1 ∈ Horp(P ), ζ2 ∈ Verp(P );
(c) ζ1, ζ2 ∈ Verp(P ).

Equality (2.9.3) is obvious in case (a). To prove the equality in case (b), let X
be an arbitrary smooth vector field on M such that X

(
Π(p)

)
= dΠp(ζ1) and set

A = ω(ζ2) ∈ g; clearly Xhor(p) = ζ1 and AP (p) = ζ2. Using Cartan’s formula
for exterior differentiation we compute:

dω(Xhor, AP ) = Xhor
(
ω(AP )

)
−AP

(
ω(Xhor)

)
− ω

(
[Xhor, AP ]

)
.

Since ω(AP ) is a constant map (see (2.9.1)) and ω(Xhor) ≡ 0, then:

dω(Xhor, AP ) = −ω
(
[Xhor, AP ]

)
.

Moreover, by Corollary 2.9.7, [Xhor, AP ] = 0 and thus dωp(ζ1, ζ2) = 0. Clearly
all the other terms in equality (2.9.3) are also equal to zero, proving the equality in
case (b). To prove the equality in case (c), set Ai = ω(ζi) ∈ g, so that APi (p) = ζi,
i = 1, 2. Using again Cartan’s formula for exterior differentiation, we obtain:

dωp(ζ1, ζ2) = −ωp
(
[AP1 , A

P
2 ]p

)
.

By the result of Exercise A.4, [AP1 , A
P
2 ] = [A1, A2]P , so that:

dωp(ζ1, ζ2) = −[A1, A2] = −[ω(ζ1), ω(ζ2)],

proving equality (2.9.3) in case (c). �

Let E0 be a real finite-dimensional vector space and let ρ : G → GL(E0) be
a smooth representation of G on E0. Consider the associated bundle P ×G E0.
Let ` be a k-form on M with values on the vector bundle P ×G E0. We define an
E0-valued k-form λ on P by setting:

(2.9.4) λp(ζ1, . . . , ζk) = p̂−1 · `x
(
dΠp(ζ1), . . . ,dΠp(ζk)

)
∈ E0,

for all x ∈ M and all p ∈ Px. Clearly λ is horizontal and it is smooth if ` is
smooth. We claim that λ is ρ-pseudo G-invariant. Let p ∈ P and g ∈ G be given
and set q = p · g. We compute:

(γ∗g λ)p(ζ1, . . . , ζk) = λq(ζ1 · g, . . . , ζk · g) = q̂−1 · `x(ζ1, . . . , ζk)
= ρ(g)−1 · λp(ζ1, . . . , ζk),

where in the second equality we have used the result of Exercise 1.42 and in the
last equality we have used that q̂ = p̂ ◦ ρ(g) (recall (1.2.17)).

DEFINITION 2.9.9. Let ` be a P ×G E0-valued k-form on M . The E0-valued
k-form λ defined by (2.9.4), for all p ∈ P and all ζ1, . . . , ζk ∈ TpP , is called the
differential form associated to `.

LEMMA 2.9.10. Let Π : P →M be a G-principal bundle, E0 be a real finite-
dimensional vector space and ρ : G → GL(E0) be a smooth representation of G
on E0. Let λ be an E0-valued horizontal ρ-pseudo G-invariant k-form on P . Then
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there exists a unique P ×G E0-valued k-form ` on M such that λ is associated to
`. If s : U → P is a smooth local section then the following equality holds:

(2.9.5) [s(x), (s∗λ)x(v1, . . . , vk)] = `x(v1, . . . , vk),

for all x ∈ U and all v1, . . . , vk ∈ TxM . Moreover, ` is smooth if λ is smooth.

PROOF. Given x ∈M , v1, . . . , vk ∈ TxM , we set:

(2.9.6) `x(v1, . . . , vk) = p̂ · λp(ζ1, . . . , ζk) = [p, λp(ζ1, . . . , ζk)] ∈ Px ×G E0,

where p is arbitrarily chosen in Px and the vectors ζ1, . . . , ζk ∈ TpP are chosen
with dΠp(ζi) = vi, i = 1, . . . , k. We have to check that the righthand side of
(2.9.6) does not depend on the choices of p and ζ1, . . . , ζk. Independence of the
choice of the ζi’s amounts to proving that:

λp(ζ1, . . . , ζk) = λp(ζ1 +A1, . . . , ζk +Ak),

where A1, . . . , Ak ∈ Verp(P ) are vertical; this follows immediately from the mul-
tilinearity of λp and from the horizontality of λ. Once the independence of the
ζi’s has been established, the independence of the p will follow once we prove the
equality:

(2.9.7) q̂ · λq(ζ1 · g, . . . , ζk · g) = p̂ · λp(ζ1, . . . , ζk),

where q = p · g (recall from Exercise 1.42 that dΠq(ζi · g) = dΠp(ζi) = vi,
for i = 1, . . . , k). To prove (2.9.7) we use q̂ = p̂ ◦ ρ(g) (recall (1.2.17)) and the
ρ-pseudo G-invariance of λ as follows:

q̂ · λq(ζ1 · g, . . . , ζk · g) = q̂ · (γ∗g λp)(ζ1, . . . , ζk)
=

(
q̂ ◦ ρ(g)−1

)
· λp(ζ1, . . . , ζk) = p̂ · λp(ζ1, . . . , ζk).

Obviously equality (2.9.6) is equivalent to λ being associated to ` (equality (2.9.4)),
so that ` is indeed the unique P ×G E0-valued k-form on M such that λ is as-
sociated to `. If s : U → P is a smooth local section then equality (2.9.5) is
proven by taking p = s(x) and ζi = dsx(vi), i = 1, . . . , k, in (2.9.6), keeping
in mind that dΠs(x)

(
dsx(vi)

)
= vi. Now assume that λ is smooth. The map

ŝ : U ×E0 → (P |U )×GE0 defined in (1.4.2) is an isomorphism of vector bundles
(see Example 1.5.14) and therefore ` is smooth if and only if ŝ−1 ◦` is smooth (see
Example 1.6.32). The smoothness of ŝ−1 ◦ ` is proven by observing that equality
(2.9.5) is the same as:

ŝ−1 ◦ ` = s∗λ. �

REMARK 2.9.11. Let Π : P → M be a G-principal bundle and ρ : G →
GL(E0) be a smooth representation. Let λ be a horizontal ρ-pseudo G-invariant
k-form on P and ` be a P×GE0-valued k-form onM . If every point ofM is in the
domain of a smooth local section s : U → P such that equality (2.9.5) holds then
` is associated to λ. Namely, if `′ is the P ×G E0-valued k-form on M associated
to λ then equality (2.9.5) holds with ` replaced with `′. Thus, `|U = `′|U .
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LEMMA 2.9.12. Let P be a G-principal bundle endowed with a connection
Hor(P ), E0 be a real finite-dimensional vector space and ρ : G → GL(E0) be
a smooth representation of G on E0. If λ is a smooth horizontal ρ-pseudo G-
invariant differential form on P then its exterior covariant derivative is given by:

(2.9.8) Dλ = dλ+ ω ∧ λ,

where ω denotes the g-valued connection form of Hor(P ) and the wedge product
is taken with respect to the bilinear pairing:

g× E0 3 (X, e) 7−→ ρ̄(X) · e,

and ρ̄ = dρ(1) : g→ gl(E0).

PROOF. Formula (2.9.8) is equivalent to:

(2.9.9) Dλp(ζ0, . . . , ζk) = dλp(ζ0, ζ1, . . . , ζk)

+
1
k!

∑
σ∈Sk+1

sgn(σ) ρ̄
(
ωp(ζσ(0))

)
· λp(ζσ(1), . . . , ζσ(k)),

for all p ∈ P and all ζ0, . . . , ζk ∈ TpP . By multilinearity, it suffices to prove
formula (2.9.9) when each ζi is either horizontal or vertical. If all the ζi’s are
horizontal, the equality is obvious. Assume that at least two of the ζi’s are vertical,
say ζ0 and ζ1. Clearly, both the lefthand side and the sum on the righthand side of
(2.9.9) vanish; we have to check that, in this case, also the term with dλ vanishes.
Set Ai = ωp(ζi) ∈ g and Zi = APi , so that Zi(p) = ζi, for i = 0, 1. Choose
arbitrary smooth vector fields Zi on P with Zi(p) = ζi, for i = 2, . . . , k. Using
Cartan’s formula for exterior differentiation (A.3.2), it is clear that dλ(Z0, . . . , Zk)
vanishes; namely, since Z0, Z1 and [Z0, Z1] are vertical and λ is horizontal, all the
terms in the righthand side of Cartan’s formula vanish. Now assume that exactly
one of the ζi’s is vertical; by antisymmetry, we may assume that ζ0 is vertical. Set
A0 = ωp(ζ0) ∈ g, Z0 = AP0 ; for i = 1, . . . , k, let Xi be a smooth vector field
on M with Xi

(
Π(p)

)
= dΠp(ζi) and set Zi = Xhor

i . Then Zi(p) = ζi, for all
i = 0, . . . , k. Using again Cartan’s formula for exterior differentiation, keeping in
mind Corollary 2.9.7 and the fact that λ is horizontal, we obtain:

dλ(Z0, . . . , Zk) = Z0

(
λ(Z1, . . . , Zk)

)
.

Since Z0 is vertical, in order to compute Z0

(
λ(Z1, . . . , Zk)

)
(p), it suffices to con-

sider the restriction of λ(Z1, . . . , Zk) to the fiber Px, where x = Π(p). Denoting
by f : Px → E0 such restriction, we obtain:

dλp(ζ0, . . . , ζk) = dfp(ζ0) = dfp
(
dβp(1) ·A0

)
= d(f ◦ βp)(1) ·A0.
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But:

(f ◦ βp)(g) = f(p · g) = λp·g(Xhor
1 (p · g), . . . , Xhor

k (p · g)
)

= λp·g(Xhor
1 (p) · g, . . . ,Xhor

k (p) · g
)

= λp·g(ζ1 · g, . . . , ζk · g)
= (γ∗g λ)p(ζ1, . . . , ζk)

= ρ(g)−1 · λp(ζ1, . . . , ζk),
for all g ∈ G; therefore:

(2.9.10) dλp(ζ0, . . . , ζk) = d(f ◦ βp)(1) ·A0 = −ρ̄(A0) · λp(ζ1, . . . , ζk).
Now let us compute the sum on the righthand side of (2.9.9); clearly, all the terms
of that sum vanish, except for those with σ(0) = 0. Such terms are all equal to
ρ̄(A0) ·λp(ζ1, . . . , ζk) and therefore their sum is equal to k!ρ̄(A0) ·λp(ζ1, . . . , ζk).
Using (2.9.10), we conclude that the righthand side of (2.9.9) vanishes. Obviously
also the lefthand side of (2.9.9) vanishes and the proof is complete. �

REMARK 2.9.13. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇ and let Hor
(
FRE0(E)

)
be the corresponding con-

nection on the principal bundle of frames FRE0(E). Let ρ : GL(E0) → GL(E0)
be the identity map. A horizontal ρ-pseudo GL(E0)-invariant differential form
λ on FRE0(E) is associated to a unique differential form ` on M with values in
FRE0(E)×∼ E0. By composing ` with the contraction map CE , we obtain a differ-
ential form CE ◦ ` on M with values on E. In this situation, we will also say that
λ and CE ◦ ` are associated.

More generally, let P be a G-principal bundle over a differentiable manifold
M , let E0 be a real finite-dimensional vector space, let ρ : G → GL(E0) be a
smooth representation and let φ : P → FRE0(E) be a morphism of principal bun-
dles whose subjacent Lie group homomorphism is the representation ρ. We have
then an isomorphism of vector bundles (recall Definition 1.5.17) Cφ from P ×GE0

to E. A horizontal ρ-pseudo invariant differential form λ on P is associated to a
unique differential form ` on M with values in P ×GE0. By composing ` with the
φ-contraction map Cφ, we obtain a differential form Cφ ◦ ` on M with values on E.
In this situation, we will also say that λ and Cφ ◦ ` are associated. A few particular
situations where this occurs are presented in Remarks 1.6.1 and 1.6.9.

DEFINITION 2.9.14. Let M be a differentiable manifold and consider the
GL(Rn)-principal bundle FR(TM) of frames of TM . The identity map of TM
can be identified with a TM -valued smooth 1-form on M ; the canonical form θ
of FR(TM) is the Rn-valued smooth 1-form on FR(TM) that is associated to
the identity map of TM . More generally, let π : E → M be a vector bundle
with typical fiber E0 and let ι : TM → E be a morphism of vector bundles. We
can identify ι with a smooth E-valued 1-form on M . The ι-canonical form θι of
FRE0(E) is the E0-valued smooth 1-form on FRE0(E) that is associated to ι.

More explicitly, we have:

(2.9.11) θp(ζ) = p−1
(
dΠp(ζ)

)
∈ Rn,



150 2. THE THEORY OF CONNECTIONS

for all p ∈ FR(TM), ζ ∈ TpFR(TM) and, more generally:

θιp(ζ) = p−1
(
ιx · dΠp(ζ)

)
∈ E0,

for all x ∈M , p ∈ FRE0(Ex), ζ ∈ TpFRE0(E). Notice that if s : U → FRE0(E)
is a smooth local section then:

(2.9.12) (s∗θι)x = s(x)−1 ◦ ιx : TxM −→ E0,

for all x ∈ U ; namely, if Π : FRE0(E) → M denotes the projection then the
composition dΠs(x) ◦ dsx is the identity map of TxM .

DEFINITION 2.9.15. Let M be a differentiable manifold and consider the
GL(Rn)-principal bundle FR(TM) of frames of TM . The torsion form Θ of
FR(TM) is defined by:

Θ = Dθ.
More generally, let π : E → M be a vector bundle with typical fiber E0 and let
ι : TM → E be a morphism of vector bundles. The ι-torsion form Θι of FRE0(E)
is defined by:

Θι = Dθι.

Observe that by (2.9.8) we have:

(2.9.13) Θι = dθι + ω ∧ θι,
where the wedge product is taken with respect to the obvious bilinear pairing of
gl(E0) and E0.

The curvature tensor R of a connection ∇ on a vector bundle π : E →M can
be identified with a smooth gl(E)-valued 2-form on M . We have the following:

LEMMA 2.9.16. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇. The curvature form Ω corresponding to the con-
nection on the principal bundle of frames FRE0(E) is associated to the curvature
tensor R; more explicitly:

(2.9.14) p ◦ Ωp(ζ1, ζ2) ◦ p−1 = Rx
(
dΠp(ζ1),dΠp(ζ2)

)
∈ Lin(Ex),

for all x ∈M , p ∈ FRE0(Ex), ζ1, ζ2 ∈ TpFRE0(E), where

Π : FRE0(E) −→M

denotes the projection.

PROOF. Let s : U → FRE0(E) be a smooth local section and set ω̄ = s∗ω,
Ω = s∗Ω. Keeping in mind equality (2.9.5) and Remark 2.9.13, we see that the
proof will be concluded once we show that:

s(x) ◦
(
Ωx(v, w)

)
◦ s(x)−1 = Rx(v, w),

for all x ∈ U and all v, w ∈ TxM . Let X,Y ∈ Γ(TM |U ) and ε ∈ Γ(E|U ) be
fixed; denote by ε̃ : U → E0 the representation of ε with respect to s. We have to
show that:

s(x)
[
Ωx

(
X(x), Y (x)

)
· ε̃(x)

]
= Rx

(
X(x), Y (x)

)
ε(x),
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for all x ∈ U . We compute R(X,Y )ε using (2.5.4) as follows; the representation
of ∇Y ε with respect to s is given by:

Y (ε̃) + ω̄(Y ) · ε̃.
Therefore, the representation of ∇X∇Y ε with respect to s is equal to:

(2.9.15) X
(
Y

(
ε̃)

)
+X

(
ω̄(Y )

)
·ε̃+ω̄(Y )·X(ε̃)+ω̄(X)·Y (ε̃)+

(
ω̄(X)◦ω̄(Y )

)
·ε̃.

Similarly the representation of ∇Y∇Xε with respect to s is equal to:

(2.9.16) Y
(
X

(
ε̃)

)
+Y

(
ω̄(X)

)
·ε̃+ω̄(X)·Y (ε̃)+ω̄(Y )·X(ε̃)+

(
ω̄(Y )◦ω̄(X)

)
·ε̃,

and the representation of ∇[X,Y ]ε with respect to s is equal to:

(2.9.17) [X,Y ](ε̃) + ω̄
(
[X,Y ]

)
· ε̃.

Hence, using (2.9.15), (2.9.16), (2.9.17) and Cartan’s formula for exterior differ-
entiation (A.3.3), we obtain that the representation of R(X,Y )ε with respect to s
is equal to:

dω̄(X,Y ) · ε̃+ [ω̄(X), ω̄(Y )]ε̃ = Ω(X,Y ) · ε̃.
The conclusion follows. �

PROPOSITION 2.9.17. Let Π : P →M be aG-principal bundle endowed with
a connection, E0 be a real finite-dimensional vector space and ρ : G → GL(E0)
be a smooth representation of G on E0. Assume that the vector bundle P ×G E0

is endowed with connection defined in Example 2.5.9. If ` is a smooth P ×G E0-
valued k-form on M and λ is the associated E0-valued k-form on P then the
covariant exterior differential Dλ is associated to the covariant exterior differential
D`.

PROOF. Let s : U → P be a smooth local section. Then, equality (2.9.5)
holds. We have to prove that (see Remark 2.9.11):

(2.9.18) [s(x), (s∗Dλ)x(v1, . . . , vk+1)] = D`x(v1, . . . , vk+1),

for all x ∈ U and all v1, . . . , vk+1 ∈ TxM . Define H : P → FRE0(P ×G E0)
as in (1.5.3) and set s1 = H ◦ s, so that ŝ = š1 (see (1.5.5)). Let ω denote the g-
valued connection form of the connection of P and let ω′ denote the gl(E0)-valued
connection form of the connection of FRE0(P ×G E0). Since H is connection
preserving, we have:

H∗ω′ = ρ̄ ◦ ω,
where ρ̄ = dρ(1) : g→ gl(E0) (see (c) of Lemma 2.2.11). Setting ω̄ = s∗ω then:

s∗1ω
′ = s∗H∗ω′ = s∗(ρ̄ ◦ ω) = ρ̄ ◦ ω̄.

By Example 2.5.12, the vector bundle isomorphism:

š1 : U × E0 −→ (P |U )×G E0

is connection preserving if the trivial vector bundle U × E0 is endowed with the
connection dI + s∗1ω

′ = dI + ρ̄ ◦ ω̄, where the gl(E0)-valued 1-form ρ̄ ◦ ω̄ on U is
identified with the C∞(U)-bilinear map:

Γ(TM |U )× Γ(U × E0) 3 (X, ε) 7−→
(
ρ̄ ◦ ω̄(X)

)
(ε) ∈ Γ(U × E0).
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Set ˜̀ = š−1
1 ◦ ` = ŝ−1 ◦ `; by (2.9.5), we have ˜̀ = s∗λ. Denote by D˜̀ the

exterior covariant derivative of theE0-valued k-form ˜̀associated to the connection
dI + ρ̄ ◦ ω̄ on the trivial bundle U × E0; since š1 is connection preserving, by
Proposition 2.7.20, we have:

(2.9.19) ŝ ◦D˜̀= š1 ◦D˜̀= D`.

Moreover, by Corollary 2.7.21 and Example 2.7.19:

D˜̀= d˜̀+ (ρ̄ ◦ ω̄) ∧ ˜̀,

where the wedge product is taken with respect to the obvious bilinear pairing of
gl(E0) with E0. If we consider the bilinear pairing of g with E0 given by:

g× E0 3 (A, e) 7−→ ρ̄(A) · e ∈ E0

then (ρ̄ ◦ ω̄) ∧ ˜̀= ω̄ ∧ ˜̀, so that:

D˜̀= d˜̀+ ω̄ ∧ ˜̀.

Taking the pull-back by s on both sides of (2.9.8) and using that s∗λ = ˜̀we obtain:

s∗Dλ = d˜̀+ ω̄ ∧ ˜̀,

so that:
s∗Dλ = D˜̀,

and, by (2.9.19):
ŝ ◦ s∗Dλ = D`,

proving (2.9.18). This concludes the proof. �

COROLLARY 2.9.18. The ι-torsion form Θι is associated to the ι-torsion ten-
sor T ι; more explicitly:

(2.9.20) p
(
Θι
p(ζ1, ζ2)

)
= Tx

(
dΠp(ζ1),dΠp(ζ2)

)
∈ Ex,

for all x ∈M , p ∈ FRE0(Ex), ζ1, ζ2 ∈ TpFRE0(E), where

Π : FRE0(E) −→M

denotes the projection.

PROOF. Follows immediately from Proposition 2.9.17 and from Example 2.7.22.
�

2.10. Relating connections with principal subbundles

Let Π : P →M be a G-principal bundle endowed with a connection Hor(P ).
Let H be a Lie subgroup of G and let Q ⊂ P be an H-principal subbundle of P . It
may be the case that the distribution Hor(P ) is tangent to the submanifold Q of P ;
in this case (and only in this case), the restriction of Hor(P ) to Q is a connection
on theH-principal bundleQ. If Hor(P ) is tangent toQ, we say that the connection
Hor(P ) is compatible with the subbundle Q. Let us take a look at the general case.
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Denote by ω the connection form of Hor(P ). For each x ∈ M and each p ∈ Px,
the map:

(2.10.1) (dΠp, ωp) : TpP 3 ζ
∼=−−→

(
dΠp(ζ), ωp(ζ)

)
∈ TxM ⊕ g

is an isomorphism; namely we have a direct sum decomposition

TpP = Horp(P )⊕Verp(P ),

the map dΠp sends Horp(P ) isomorphically onto TxM and the map ωp sends
Verp(P ) isomorphically onto g (recall that the restriction of ωp to Verp(P ) is the
inverse of the canonical isomorphism (1.3.3)). If the connection Hor(P ) is com-
patible with subbundle Q then, for all p ∈ Qx, the space TpQ corresponds via
(2.10.1) to the space TxM ⊕ h (see Exercise 2.23). In the general case, we wish to
define a tensor that measures how much (dΠp, ωp)(TpQ) deviates from TxM ⊕ h.
We have the following:

LEMMA 2.10.1. Let Π : P → M be a G-principal bundle endowed with
a connection Hor(P ), H be a Lie subgroup of G and Q ⊂ P an H-principal
subbundle of P . Given x ∈ M , p ∈ Qx, then there exists a unique linear map
L : TxM → g/h such that the image of TpQ under the isomorphism (2.10.1) is
equal to: {

(v,X) ∈ TxM ⊕ g : L(v) = X + h
}
.

Moreover, if s : U → Q is a smooth local section of Q with s(x) = p and ω̄ = s∗ω
is the representation of the connection form ω with respect to s, then L is given by
the composition of ω̄x : TxM → g with the canonical quotient map g→ g/h.

PROOF. Let S ⊂ TxM ⊕ g denote the image of TpQ under the isomorphism
(2.10.1). The existence and uniqueness of the desired map L is obtained by an ele-
mentary linear algebra argument, from the following two facts, that will be proven
below:

(a) the restriction to S of the first projection TxM ⊕ g→ TxM is surjective;
(b) S ∩ (0⊕ g) = 0⊕ h.

Assertion (a) follows from the fact that the restriction of dΠp : TpP → TxM to
TpQ is surjective and from the commutativity of the following diagram:

TpP
(2.10.1)
∼=

//

dΠp ��<
<<

<<
<<

TxM ⊕ g

first projection||zz
zz

zz
zz

TxM

To prove (b), we observe first that TpQ ∩Verp(P ) = Verp(Q); namely:

TpQ ∩Verp(P ) = Ker
(
dΠp|TpQ

)
= Ker

(
d(Π|Q)p

)
= Verp(Q).

Since the isomorphism (2.10.1) carries Verp(P ) to 0 ⊕ g, we have to show that
(2.10.1) carries Verp(Q) to 0⊕ h. This follows by differentiating the commutative
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diagram below:

Qx
inclusion // Px

H
inclusion //

βp ∼=

OO

G

βp∼=

OO

Let now s : U → Q be a smooth local section of Q with s(x) = p and set
ω̄ = s∗ω. Clearly, the image of dsx is contained in TpQ. Given v ∈ TxM then
dsx(v) is in TpQ and the image of dsx(v) under (2.10.1) is equal to:(

v, ωp(dsx(v))
)

=
(
v, ω̄x(v)

)
.

Hence the graph of ω̄x : TxM → g is contained in S and the conclusion follows.
�

REMARK 2.10.2. From Lemma 2.10.1 it follows in particular that, although
the linear map ω̄x : TxM → g depends on the choice of the section s of Q with
s(x) = p, the composite map TxM

ω̄x−−−→ g −→ g/h only depends on the choice
of p ∈ Qx.

Given x ∈ M , recall that we have identified the Lie group Left(Qx) of left
translations of the fiber Qx with a Lie subgroup of the Lie group Left(Px) of left
translations of the fiber Px; we have also identified the Lie algebra left(Qx) of
Left(Qx) with a Lie subalgebra of the Lie algebra left(Px) of Left(Px). Given
p ∈ Qx we have a Lie algebra isomorphism Adp : g→ left(Px) that carries h onto
left(Qx) (recall (1.7.3)); therefore, we have an induced isomorphism Adp : g/h→
left(Px)/left(Qx).

LEMMA 2.10.3. Let Π : P → M be a G-principal bundle endowed with a
connection whose connection form is ω and Q be a principal subbundle of P with
structural group H . Let s : U → Q be a smooth local section of Q, x ∈ U and set
p = s(x) and ω̄ = s∗ω. The map I

Q
x : TxM → left(Px)/left(Qx) defined by the

diagram:

(2.10.2) TxM

IQx

44
ω̄x // g

quotient // g/h
Adp // left(Px)/left(Qx)

does not depend on the choice of the local section s.

PROOF. We observe first that the composition of ω̄x with the quotient map
g→ g/h depends only on p, by Remark 2.10.2; in particular, I

Q
x depends only on

p. Let p, p′ ∈ Qx be fixed. Write p′ = p · h, with h ∈ H . Denote by γh : P → P
the diffeomorphism given by the action of h on P and consider the local section
s′ = γh ◦s : U → Q ofQ; obviously, s′(x) = p′. Setting ω̄′ = s′∗ω then it follows
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from (2.2.3) that ω̄′ = Adh−1 ◦ ω̄. We have the following commutative diagram:

g

Adh−1

��

quotient // g/h

Adh−1

��

Adp
++WWWWWWWWWWWWW

TxM

ω̄x
55jjjjjjjjjjjj

ω̄′x ))TTTTTTTTTTTT left(Px)/left(Qx)

g
quotient

// g/h Adp′

33ggggggggggggg

where Adh−1 is obtained from Adh−1 by passing to the quotient. The commuta-
tivity of the rightmost triangle on the diagram above follows from (1.7.1). This
concludes the proof. �

DEFINITION 2.10.4. The linear map I
Q
x : TxM → left(Px)/left(Qx) defined

by diagram (2.10.2) is called the covariant derivative of the subbundle Q at the
point x ∈M .

REMARK 2.10.5. It follows directly from Lemma 2.10.1 and from the defi-
nition of I

Q
x that if Π : P → M is a G-principal bundle, Q is an H-principal

subbundle of P and p ∈ Q then the image of TpQ under the isomorphism (2.10.1)
is the subspace of TxM ⊕ g given by:{

(v,X) ∈ TxM ⊕ g :
(
(Adp)−1 ◦ IQx

)
(v) = X + h

}
.

Let P , P ′ be principal bundles over the same differentiable manifold M and
let φ : P → P ′ be an isomorphism of principal bundles. For each x ∈ M , the
isomorphism of principal spaces φx : Px → P ′x induces a group isomorphism
Iφx : Left(Px) → Left(P ′x) (see Exercise 1.26); the commutativity of diagram
(1.8) implies that Iφx is in fact a Lie group isomorphism and therefore we may
consider its differential at the identity, which we denote by:

Adφx = dIφx(1) : left(Px) −→ left(P ′x).

Let Q ⊂ P be a principal subbundle and set Q′ = φ(Q). By the commutativity of
diagram (1.9), Adφx carries left(Qx) onto left(Q′x) and therefore we get an induced
map:

(2.10.3) Adφx : left(Px)/left(Qx) −→ left(P ′x)/left(Q
′
x)

by passing to the quotient.

LEMMA 2.10.6. Let P , P ′ be principal bundles over the same differentiable
manifold M endowed with connections. Let φ : P → P ′ be a connection preserv-
ing isomorphism of principal bundles. Let Q ⊂ P be a principal subbundle and
set Q′ = φ(Q). Then, for all x ∈M :

IQ
′

x = Adφx ◦ IQx ,

where Adφx is defined in (2.10.3).
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PROOF. Let G, G′, H , H ′ denote the structural groups of P , P ′, Q and Q′

respectively and let φ0 : G→ G′ denote the Lie group homomorphism subjacent to
φ. Let x ∈M be fixed and choose a smooth local section s : U → Q; set p = s(x)
and p′ = φ(p). By differentiating diagram (1.8), we get another commutative
diagram:

left(P )
Adφ // left(P ′)

g
φ̄0

//

Adp

OO

g′

Adp′

OO

By passing to the quotient, we obtain another commutative diagram:

(2.10.4)

left(P )/left(Q)
Adφ // left(P ′)/left(Q′)

g/h
φ̃0

//

Adp

OO

g′/h′

Adp′

OO

where φ̃0 : g/h→ g′/h′ is obtained from φ̄0 by passing to the quotient.
Let ω, ω′ denote the connection forms of the connections of P and P ′ respec-

tively; since the map φ is connection preserving, we have (see (c) of Lemma 2.2.11):

φ∗ω′ = φ̄0 ◦ ω,

where φ̄0 = dφ0(1). We compute I
Q
x using the smooth local section s of Q and

I
Q′
x using the smooth local section φ ◦ s of Q′; set ω̄ = s∗ω and ω̄′ = (φ ◦ s)∗ω′,

so that:

(2.10.5) ω̄′x = φ̄0 ◦ ω̄x.

The conclusion is now obtained from (2.10.4) and (2.10.5) observing that the fol-
lowing diagram:

left(Px)/left(Qx)
Adφx // left(P ′x)/left(Q

′
x)

g/h

Adp

OO

φ̃0 // g′/h′

Adp′

OO

g

quotient

OO

φ̄0 // g′

quotient

OO

TxM

IQx

CC

IQ
′

x

[[

ω̄x

eeLLLLLLLLLLLL ω̄′x

99rrrrrrrrrrr

commutes. �
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2.11. The inner torsion of a G-structure

Let π : E →M be a vector bundle with typical fiber E0 endowed with a con-
nection∇, letG be a Lie subgroup of GL(E0) and P ⊂ FRE0(E) be aG-structure
on E. The connection ∇ is associated to a unique connection Hor

(
FRE0(E)

)
on

the GL(E0)-principal bundle FRE0(E) (recall Proposition 2.5.4). We may there-
fore consider the covariant derivative IPx : TxM → gl(Ex)/gx of the G-principal
subbundle P of FRE0(E) at a point x ∈M (recall the notation introduced in Sec-
tion 1.8). We call IPx the inner torsion of the G-structure P at the point x with
respect to the connection ∇. The following lemma gives a simple way of comput-
ing IPx .

LEMMA 2.11.1. Let π : E → M be a vector bundle with typical fiber E0,
let G be a Lie subgroup of GL(E0) and let P ⊂ FRE0(E) be a G-structure on
E; assume that a connection ∇ on E is given. If s : U → P is a smooth local
E0-frame of E compatible with P then the inner torsion IPx : TxM → gl(Ex)/gx
of the G-structure P at the point x is given by the composition of the Christoffel
tensor Γx : TxM → gl(Ex) of the connection∇ with respect to s and the quotient
map gl(Ex)→ gl(Ex)/gx.

PROOF. Let ω denote the connection form of Hor
(
FRE0(E)

)
and set ω̄ =

s∗ω. From (2.5.5) and (1.7.2) we get Γx = Adp ◦ ω̄x, where p = s(x). The
conclusion follows from the commutativity of the following diagram:

TxM ω̄x
//

IPx
++

Γx &&MMMMMMMMMM gl(E0) quotient
//

Adp
��

gl(E0)/g
Adp

// gl(Ex)/gx

gl(Ex)
quotient

77
�

EXAMPLE 2.11.2. Let π : E → M be a vector bundle with typical fiber E0

and let s : M → FRE0(E) be a global smooth section. Then P = s(M) is a
G-structure on E with G = {IdE0}. For each x ∈ M , we have Gx = {IdEx} and
gx = {0}. If ∇ is a connection in E then IPx : TxM → gl(Ex) is equal to the
Christoffel tensor Γx : TxM → gl(Ex) corresponding to s.

EXAMPLE 2.11.3. Let π : E → M be a vector bundle with typical fiber
E0 endowed with a semi-Riemannian structure g of index r and let 〈·, ·〉E0 be
an indefinite inner product of index r on E0. Then (recall Example 1.8.4) P =
FRo

E0
(E) is a G-structure on E with G = O(E0). If ∇ is a connection on E, let

us compute the inner torsion of P with respect to ∇. Let x ∈ M be fixed. The
inner torsion IPx is a linear map from TxM to the quotient gl(Ex)/gx. Clearly, Gx
is the group of linear isometries of Ex (with respect to gx) and gx is the Lie algebra
of linear endomorphisms of Ex that are anti-symmetric (with respect to gx). We
identify gl(Ex)/gx with the space sym(Ex) of all linear endomorphisms ofEx that
are symmetric (with respect to gx) via the map:

(2.11.1) gl(Ex)/gx 3 T + gx 7−→ 1
2(T + T ∗) ∈ sym(Ex),
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where T ∗ : Ex → Ex denotes the transpose of T with respect to gx, i.e., the unique
linear endomorphism of Ex such that:

gx
(
T (e), e′

)
= gx

(
e, T ∗(e′)

)
,

for all e, e′ ∈ Ex. Thus, the inner torsion IPx is identified with a linear map from
TxM to sym(Ex). Let s : U → P be a smooth local section with x ∈ U and let
e, e′ ∈ Ex be fixed; consider the local sections ε, ε′ : U → E defined by:

ε(y) =
(
s(y) ◦ s(x)−1

)
· e,(2.11.2)

ε′(y) =
(
s(y) ◦ s(x)−1

)
· e′,

for all y ∈ U . Since the representations of ε and ε′ with respect to s are constant,
we have:

∇vε = dIsvε+ Γx(v) · ε(x) = Γx(v) · ε(x),(2.11.3)

∇vε′ = dIsvε
′ + Γx(v) · ε′(x) = Γx(v) · ε′(x),

for all v ∈ TxM . Since s is a local section of FRo
E0

(E), it follows that:

gy
(
ε(y), ε′(y)

)
= 〈s(x)−1 · e, s(x)−1 · e′〉E0 ,

for all y ∈ U , so that the real-valued map g(ε, ε′) is constant. Thus:

0 = v
(
g(ε, ε′)

)
= (∇vg)(e, e′) + gx(∇vε, e′) + gx(e,∇vε′)

= (∇vg)(e, e′) + gx
(
Γx(v) · e, e′

)
+ gx

(
e,Γx(v) · e′

)
,

for all v ∈ TxM . Then:

gx
[(

Γx(v) + Γx(v)∗
)
· e, e′

]
= −(∇vg)(e, e′)

and (Lemma 2.11.1 and (2.11.1)):

gx
(
IPx (v), ·

)
= 1

2gx
[(

Γx(v) + Γx(v)∗
)
, ·

]
= −1

2∇vg,
for all x ∈ M , v ∈ TxM . Identifying ∇vg : Ex × Ex → R with a linear
endomorphism of Ex, we obtain:

IPx (v) = −1
2∇vg.

Thus, the inner torsion of P is essentially the covariant derivative of the semi-
Riemannian structure g. In particular, IP = 0 if and only if ∇g = 0, i.e., ∇ is
compatible with the semi-Riemannian structure g.

EXAMPLE 2.11.4. Let π : E → M be a vector bundle with typical fiber
E0 and F be a vector subbundle of E. If F0 is a subspace of E0 such that
dim(F0) = dim(Fx) for all x ∈ M then the set P = FRE0(E;F0, F ) of all
E0-frames of E adapted to (F0, F ) is a G-structure on E with G = GL(E0;F0)
(Example 1.8.5). Let ∇ be a connection on E and let us compute the inner torsion
IP . Let x ∈ M be fixed. Clearly Gx = GL(Ex;Fx) and gx is the Lie algebra of
linear endomorphisms T : Ex → Ex with T (Fx) ⊂ Fx. We identify the quotient
gl(Ex)/gx with the space Lin(Fx, Ex/Fx) via the map:

gl(Ex)/gx 3 T + gx 7−→ q ◦ T |Fx ∈ Lin(Fx, Ex/Fx),
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where q : Ex → Ex/Fx denotes the quotient map. Thus, the inner torsion IPx
is identified with a linear map from TxM to Lin(Fx, Ex/Fx). Let s : U → P
be a smooth local section with x ∈ U . Given e ∈ Fx, we define a local sec-
tion ε : U → E as in (2.11.2). Then the representation of ε with respect to s is
constant and (2.11.3) holds, for all v ∈ TxM . Moreover, since s takes values in
FRE0(E;F0, F ), we have ε(U) ⊂ F . Thus:

∇vε+ Fx = αFx (v, e) ∈ Ex/Fx,
where αF denotes the second fundamental form of the vector subbundle F (Exer-
cise 2.20). Then:

Γx(v) · e+ Fx = αFx (v, e)
and:

IPx (v) = αFx (v, ·) ∈ Lin(Fx, Ex/Fx),
for all x ∈ M , v ∈ TxM . In particular, IP = 0 if and only if αF = 0, i.e., if and
only if the covariant derivative of any smooth section of F is a smooth section of
F .

EXAMPLE 2.11.5. Let π : E → M , F , E0, F0 be as in Example 2.11.4.
Let g be a semi-Riemannian structure on E, 〈·, ·〉E0 be an indefinite inner prod-
uct on E0 and assume that FRo

E0
(Ex;F0, Fx) 6= ∅, for all x ∈ M . Then P =

FRo
E0

(E;F0, F ) is a G-structure on E with G = O(E0;F0) (Example 1.8.5). For
simplicity, we assume that the restriction of gx to Fx × Fx is nondegenerate, for
all x ∈ M ; thus, E = F ⊕ F⊥. Denote by q : E → F⊥ the projection. Let
∇ be a connection on E and let x ∈ M be fixed. We compute IPx . We have
Gx = O(Ex;Fx) and gx is the Lie algebra of linear endomorphisms T : Ex → Ex
that are anti-symmetric (with respect to gx) and satisfy T (Fx) ⊂ Fx. We have an
isomorphism:

gl(Ex)/gx −→ sym(Ex)⊕ Lin(Fx, F⊥x )

T + gx 7−→
(

1
2(T + T ∗), 1

2qx ◦ (T − T ∗)|Fx
)
,

so that we identify IPx with a linear map from TxM to the space sym(Ex) ⊕
Lin(Fx, F⊥x ). Consider the component:

α ∈ Γ
(
Lin(TM,F ;F⊥)

)
of∇ with respect to the decomposition E = F ⊕F⊥. Let s : U → P be a smooth
local section with x ∈ U . As in Example 2.11.3, we have:

1
2

(
Γx(v) + Γx(v)∗

)
= −1

2∇vg,
for all v ∈ TxM . Moreover, arguing as in Example 2.11.4, we obtain:

q
(
Γx(v) · e

)
= αx(v, e),

for all v ∈ TxM , e ∈ Ex. Then:

(2.11.4) 1
2

(
Γx(v)− Γx(v)∗

)
= Γx(v)− 1

2

(
Γx(v) + Γx(v)∗

)
= Γx(v) + 1

2∇vg,
and:

IPx (v) =
(
− 1

2∇vg, αx(v, ·) + 1
2q ◦ ∇vg|Fx

)
,
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for all x ∈ M , v ∈ TxM , where ∇vg is identified with a linear endomorphism of
Ex. In particular, IP = 0 if and only if ∇g = 0 and α = 0, i.e., if and only if ∇
is compatible with g and the covariant derivative of any smooth section of F is a
smooth section of F .

EXAMPLE 2.11.6. Let π : E → M be a vector bundle with typical fiber
E0 and ε ∈ Γ(E) be a smooth section of E with ε(x) 6= 0, for all x ∈ M . If
e0 ∈ E0 is a nonzero vector then P = FRE0(E; e0, ε) is a G-structure on E with
G = GL(E0; e0) (Example 1.8.6). Let∇ be a connection on E and let us compute
IP . Let x ∈ M be fixed. Then Gx = GL

(
Ex; ε(x)

)
and gx is the Lie algebra

of linear endomorphisms T : Ex → Ex such that T
(
ε(x)

)
= 0. We identify the

quotient gl(Ex)/gx with Ex via the map:

gl(Ex)/gx 3 T + gx 7−→ T
(
ε(x)

)
∈ Ex.

Let s : U → P be a smooth local section with x ∈ U . Then IPx is identified with a
linear map from TxM to Ex. Since s takes values in FRE0(E; e0, ε), we have:

ε(y) = s(y) · e0,
so that the representation of ε with respect to s is constant and:

(2.11.5) ∇vε = Γx(v) · ε(x),
for all v ∈ TxM . Then:

IPx (v) = ∇vε,
for all v ∈ TxM and:

IPx = (∇ε)(x),
for all x ∈ M . In particular, IP = 0 if and only if the section ε is parallel.
Assume now that g is a semi-Riemannian structure on E, 〈·, ·〉E0 is an indefinite
inner product on E0 and that FRo

E0

(
Ex; e0, ε(x)

)
6= ∅, for all x ∈ M . Then

P = FRo
E0

(E; e0, ε) is a G-structure on E with G = O(E0; e0). Let us compute
IP . Let x ∈ M be fixed. Then Gx = O

(
Ex; ε(x)

)
and gx is the Lie algebra of

anti-symmetric linear endomorphisms T of Ex such that T
(
ε(x)

)
= 0. We have

the following linear isomorphism:

gl(Ex)/gx 3 T + gx 7−→
(

1
2(T + T ∗), 1

2(T − T ∗) · ε(x)
)
∈sym(Ex)⊕ ε(x)⊥

where ε(x)⊥ denotes the kernel of gx
(
ε(x), ·

)
. Let s : U → P be a smooth local

section with x ∈ U . As in Example 2.11.3, we have:
1
2

(
Γx(v) + Γx(v)∗

)
= −1

2∇vg,
and, as in (2.11.4):

1
2

(
Γx(v)− Γx(v)∗

)
= Γx(v) + 1

2∇vg,
for all v ∈ TxM . Moreover, (2.11.5) holds. Then:

1
2

(
Γx(v)− Γx(v)∗

)
· ε(x) = ∇vε+ 1

2(∇vg)
(
ε(x)

)
.

Hence:
IPx (v) =

(
− 1

2∇vg,∇vε+ 1
2(∇vg)

(
ε(x)

))
,
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for all x ∈M , v ∈ TxM . In particular, IP = 0 if and only if∇ is compatible with
g and ε is parallel.

EXAMPLE 2.11.7. Let π : E → M be a vector bundle with typical fiber E0,
J be an almost complex structure on E and J0 be a complex structure on E0. The
set P = FRc

E0
(E) is a G-structure on E with G = GL(E0, J0) (Example 1.8.7).

Let ∇ be a connection on E and let us compute IP . Let x ∈ M be fixed. Then
Gx = GL(Ex, Jx) and gx is the Lie algebra of linear endomorphisms T : Ex →
Ex such that T ◦ Jx = Jx ◦ T . We have an isomorphism:

gl(Ex)/gx 3 T + gx 7−→ [T, Jx] ∈ Lin(Ex, Jx),

where [T, Jx] = T ◦Jx−Jx ◦T and Lin(Ex, Jx) denotes the space of linear maps
T : Ex → Ex such that T ◦ Jx + Jx ◦ T = 0. Let s : U → P be a smooth local
section with x ∈ U and let e ∈ Ex be fixed. We define a local section ε : U → E as
in (2.11.2). Then ε(x) = e and the representation of ε with respect to s is constant;
moreover, since s takes values in FRc

E0
(E), also the representation of J(ε) with

respect to s is constant. Then:

∇vε = Γx(v, e), ∇v
(
J(ε)

)
= Γx

(
v, Jx(e)

)
,

and:
∇v

(
J(ε)

)
= (∇vJ)(e) + Jx(∇vε),

for all v ∈ TxM . We therefore obtain:

Γx(v) ◦ Jx = ∇vJ + Jx ◦ Γx(v).

Hence:
IPx (v) = ∇vJ,

for all x ∈M and all v ∈ TxM . In particular, IP = 0 if and only if J is parallel.

EXAMPLE 2.11.8. Let π : E → M be a vector bundle with typical fiber E0,
J be an almost complex structure on E, g be a semi-Riemannian structure on E,
J0 be a complex structure on E0 and 〈·, ·〉E0 be an indefinite inner product on E0.
Assume that Jx is anti-symmetric with respect to gx for all x ∈M , that J0 is anti-
symmetric with respect to 〈·, ·〉E0 and that gx has the same index as 〈·, ·〉E0 , for
all x ∈ M . Then the set P = FRu

E0
(E) is a G-structure on E with G = U(E0)

(Example 1.8.7). Let∇ be a connection onE and let us compute IP . Let x ∈M be
fixed. We haveGx = U(Ex) and gx is the Lie algebra of linear maps T : Ex → Ex
such that T ◦ Jx = Jx ◦ T and such that T is anti-symmetric with respect to gx.
We have a linear isomorphism:

gl(Ex)/gx −→ sym(Ex)⊕ Lina(Ex, Jx)

T + gx 7−→
(

1
2(T + T ∗), 1

2 [T − T ∗, Jx]
)
,

where Lina(Ex, Jx) denotes the space of linear maps T : Ex → Ex that are anti-
symmetric with respect to gx and such that T ◦ Jx + Jx ◦ T = 0. Let s : U → P
be a smooth local section with x ∈ U . As in Example 2.11.3, we have:

1
2

(
Γx(v) + Γx(v)∗

)
= −1

2∇vg,
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for all v ∈ TxM . Moreover, as in Example 2.11.7, we have:

[Γx(v), Jx] = ∇vJ,

for all v ∈ TxM . Then:
1
2

(
Γx(v)− Γx(v)∗

)
= Γx(v)−∇vg,

and:
1
2 [Γx(v)− Γx(v)∗, Jx] = ∇vJ − [∇vg, Jx].

Hence:
IPx (v) =

(
− 1

2∇vg,∇vJ − [∇vg, Jx]
)
,

for all x ∈ M and all v ∈ TxM . In particular, IP = 0 if and only if ∇ is
compatible with g and J is parallel.

REMARK 2.11.9. LetM be an n-dimensional differentiable manifold endowed
with a connection ∇, G be a Lie subgroup of GL(Rn) and P ⊂ FR(TM) be a
G-structure on TM . We denote by Hor

(
FR(TM)

)
the connection on FR(TM)

associated to ∇ and by ω the corresponding connection form. Given x ∈ M ,
p ∈ Px, we have a linear isomorphism:

(2.11.6) (dΠp, ωp) : TpFR(TM) −→ TxM ⊕ gl(Rn)

as in (2.10.1). We have seen in Remark 2.10.5 that the image of TpP under the
isomorphism (2.11.6) is equal to:{

(v,X) ∈ TxM ⊕ gl(Rn) :
(
(Adp)−1 ◦ IPx

)
(v) = X + g

}
.

Since p is an isomorphism fromRn to TxM , by composing (2.11.6) with p−1⊕ Id
we obtain another linear isomorphism (recall (2.9.11)):

(2.11.7) (θp, ωp) : TpFR(TM)
∼=−−→ Rn ⊕ gl(Rn).

The image of TpP under (2.11.7) is obviously equal to:{
(u,X) ∈ Rn ⊕ gl(Rn) :

(
(Adp)−1 ◦ IPx ◦ p

)
(u) = X + g

}
.

If IP = 0, i.e., if ∇ is compatible with P and if p : I → FR(E) is a smooth
horizontal curve such that p(t0) ∈ P for some t0 ∈ I then p(t) ∈ P for all t ∈ I .
We now generalize this property to the case where IP is not necessarily zero.

PROPOSITION 2.11.10. Let E be a vector bundle of rank k over a manifold
M , ∇ be a connection on E, G be a Lie subgroup of GL(Rk) and P ⊂ FR(E)
be a G-structure on E. Let p : I → E be a smooth curve and set γ = Π ◦ p,
where Π : FR(E)→ M denotes the projection. Assume that p(I) ∩ P 6= ∅. Then
p(I) ⊂ P if and only if:

(2.11.8) IPγ(t)
(
γ′(t)

)
= (∇1p)(t) ◦ p(t)−1 + gγ(t),

for all t ∈ I .
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PROOF. Since TP is invariant by the action of G in T
(
FR(E)

)
, there exists a

GL(Rk)-invariant smooth distribution D on the manifold FR(E) such that Dp =
TpP , for all p ∈ P . Such distribution is integrable because P · g is an integral
submanifold of D, for all g ∈ GL(Rk). For all x ∈ M and all p ∈ FR(Ex), we
define Lp : TxM → gl(Rk)/g by setting Lp = Ad−1

p ◦ IPx and we define Vp by
setting:

(2.11.9) Vp =
{
(v,X) ∈ TxM ⊕ gl(Rk) : Lp(v) = X + g

}
.

Clearly:

Lp◦g = Adg−1 ◦ Lp,

and therefore:

(2.11.10) (Id⊕Adg−1)(Vp) = Vp◦g,

for all p ∈ FR(E) and all g ∈ GL(Rk).
We claim that (dΠp, ωp)(Dp) = Vp, for all p ∈ FR(E). Namely, by the defini-

tion of inner torsion, such equality holds for p ∈ P . The fact that the equality holds
for any p ∈ FR(E) follows from (2.11.10) and from the fact that the diagram:

Tp◦gFR(E)
(dΠp◦g ,ωp◦g)

∼=
// TxM ⊕ gl(Rk)

TpFR(E)

g

OO

(dΠp,ωp)

∼= // TxM ⊕ gl(Rk)

Id⊕Adg−1

OO

commutes, for all x ∈M , p ∈ FR(Ex) and all g ∈ GL(Rk). Now:

(dΠp(t), ωp(t))
(
p′(t)

)
=

(
γ′(t), p(t)−1 ◦ (∇1p)(t)

)
,

for all t ∈ I and therefore p is tangent to D if and only if (2.11.8) holds. If
p(I) ⊂ P then, since P is an integral submanifold of D, it follows that p is tangent
to D and thus (2.11.8) holds. Conversely, assume that (2.11.8) holds and that
p(I) ∩ P 6= ∅. Since for all g ∈ GL(Rk), P · g is an integral submanifold of
D, it follows that the set p−1(P · g) is open in I; thus p−1(P ) is both open and
closed in I and the conclusion follows. �

Exercises

The general concept of connection.

EXERCISE 2.1. Let V , W be vector spaces and let T : V → W be a linear
map. Given a subspace Z of V , show that V = Z ⊕Ker(T ) if and only if the map
T |Z : Z → T (V ) is an isomorphism.
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EXERCISE 2.2. Let V1, V2, V ′ be vector spaces and assume that we are given
linear maps T1 : V1 → V ′, T2 : V2 → V ′, L : V1 → V2 such that the diagram:

V1
L //

T1   A
AA

AA
AA

A V2

T2~~}}
}}

}}
}}

V ′

commutes and such that T1 and T2 have the same image (this is the case, for in-
stance, if both T1 and T2 are surjective or if L is surjective). Let Z be a subspace
of V1 with V1 = Z ⊕Ker(T1). Show that the restriction of L to Z is injective and
that V2 = L(Z)⊕Ker(T2).

EXERCISE 2.3. Let W be a vector space and W1, W2, W ′2 be subspaces of W
such that W = W1 ⊕W2 and W1 ∩W ′2 = {0}. Show that W2 ⊂ W ′2 if and only
if W2 = W ′2. Conclude that, under the hypotheses and notations of Exercise 2.2,
if Z ′ is a subspace of V2 with V2 = Z ′ ⊕ Ker(T2) then L(Z) ⊂ Z ′ if and only if
L(Z) = Z ′.

EXERCISE 2.4. Let V , W be vector spaces, T : V → W be a linear map and
V0 ⊂ V , W0 ⊂ W be subspaces such that T |V0 : V0 → W0 is an isomorphism. If
H is a subspace of W with W = H ⊕W0, show that:

V = T−1(H)⊕ V0.

EXERCISE 2.5. Let E ,M be differentiable manifolds, π : E →M be a smooth
submersion and ε : U → E be a smooth local section of π. Show that for all x ∈ U ,
the image of dε(x) is a horizontal subspace of Tε(x)E .

Connections on principal fiber bundles.
EXERCISE 2.6. Let Π : P →M be aG-principal bundle and letM =

⋃
i∈I Ui

be an open cover of M . Assume that for every i ∈ I it is given a connection
Hor(P |Ui) on the principal bundle P |Ui and assume that for all i, j ∈ I and all
x ∈ Ui ∩ Uj we have Horx(P |Ui) = Horx(P |Uj ). Show that there exists a unique
connection Hor(P ) on P such that Horx(P ) = Horx(P |Ui), for all i ∈ I and all
x ∈ Ui.

EXERCISE 2.7. Let Π : P → M be a G-principal bundle, V be a real finite-
dimensional vector space and let ρ : G → GL(V ) be a smooth representation of
G on V . Show that a V -valued differential form λ on P is ρ-pseudo G-invariant if
and only if for every x ∈M , there exists a point p ∈ Px such that:

(γ∗g λ)p = ρ(g)−1 ◦ λp,
for all g ∈ G.

EXERCISE 2.8. Let P be a G-principal bundle endowed with a connection
Hor(P ) and denote by pver : TP → Ver(P ), phor : TP → Hor(P ) respectively
the vertical and the horizontal projections determined by the horizontal distribution
Hor(P ). Given g ∈ G, p ∈ P , ζ ∈ TpP , show that:

pver(ζ · g) = pver(ζ) · g, phor(ζ · g) = phor(ζ) · g.
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EXERCISE 2.9. Let Π : P → M be a G-principal bundle and let ω be a Ad-
pseudo G-invariant g-valued 1-form on P . Show that if for every x ∈ M there
exists p ∈ Px such that condition (2.2.5) holds then condition (2.2.5) holds for all
p ∈ P .

EXERCISE 2.10. Let Π : P → M be a G-principal bundle, V be a real finite-
dimensional vector space and ρ : G→ GL(V ) be a smooth representation of G on
V . Let λ1, λ2 be V -valued ρ-pseudo G-invariant k-forms on P and assume that:

λ1
p(ζ1, . . . , ζk) = λ2

p(ζ1, . . . , ζk),

for all p ∈ P , ζ1, . . . , ζk ∈ TpP , provided that at least one of the vectors ζi is in
Verp(P ). Given a smooth local section s : U → P of P , show that if s∗λ1 = s∗λ2

then λ1 and λ2 are equal on P |U .

EXERCISE 2.11. Let P , Q be principal bundles over the same differentiable
manifold M , with structural groups G and H , respectively. Let φ : P → Q be
a morphism of principal bundles whose subjacent Lie group homomorphism is
φ0 : G → H . Denote by g, h the Lie algebras of G and H respectively and by
φ̄0 : g → h the differential of φ0 at the identity. For p ∈ P , q ∈ Q, denote by
βPp : G → P , βQq : H → Q the maps given by action at p and by action at q,
respectively; consider the linear isomorphisms:

dβPp (1) : g −→ Verp(P ), dβQq (1) : h −→ Verq(Q).

Let ω be an h-valued 1-form on Q such that:

ωq|Verq(Q) =
(
dβQq (1)

)−1
,

for all q ∈ Q. Show that:

(φ∗ω)p|Verp(P ) = φ̄0 ◦
(
dβPp (1)

)−1
,

for all p ∈ P .

EXERCISE 2.12. Let P , Q be principal bundles over the same differentiable
manifold M , with structural groups G and H , respectively. Let φ : P → Q be
a morphism of principal bundles and let φ0 : G → H denote its subjacent Lie
group homomorphism. Let V be a real finite-dimensional vector space and let
ρ : H → GL(V ) be a smooth representation of H on V . If λ is a ρ-pseudo H-
invariant differential form on Q, show that φ∗λ is a (ρ ◦ φ0)-pseudo G-invariant
differential form on P .

Connections on vector bundles.

EXERCISE 2.13. Let V , W be vector spaces and T : V →W be a linear map.
Given subspacesZ, Z ′ of V , show that T (Z) = T (Z ′) if and only ifZ+Ker(T ) =
Z ′ + Ker(T ).

EXERCISE 2.14. Let π : E → M be a vector bundle and ∇ be a connection
on E. Given a smooth section ε ∈ Γ(E) of E that vanishes on an open subset U of
M , show that∇vε also vanishes, for all v ∈ TM |U . Conclude that, if ε, ε′ ∈ Γ(E)
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are equal on an open subset U of M then ∇vε and ∇vε′ are also equal, for all
v ∈ TM |U .

EXERCISE 2.15. Let π : E → M be a vector bundle and ∇ be a connection
on E.

• Given open subsets U , V of M with V ⊂ U , consider the connection
∇U induced by ∇ on E|U and the connection (∇U )V induced by ∇U on
(E|U )|V = E|V . Show that (∇U )V is the same as∇V .
• Let ∇′ be another connection on E. If every point of M has an open

neighborhood U in M such that ∇U = ∇′U , show that ∇ = ∇′.

EXERCISE 2.16. Let ∇, ∇′ be connections on a vector bundle π : E → M .
Assume that for all x ∈ M and all e ∈ Ex there exists a smooth local section
ε : U → E of E defined in an open neighborhood U of x in M such that ε(x) = e
and:

∇vε = ∇′vε,
for all v ∈ TxM . Show that ∇ = ∇′.

EXERCISE 2.17. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇ and let E1 be a real vector space isomorphic to E0.
As we have seen in Exercise 1.61, π : E → M can be regarded also as a vector
bundle with typical fiber E1. Since the differential structure of E does not depend
on the typical fiber, the space Γ(E) also doesn’t depend on the typical fiber and
hence ∇ is also a connection on the vector bundle π : E → M with typical fiber
E1. The connection ∇ is associated to connections on both principal bundles of
frames FRE0(E) and FRE1(E). Show that:

• the horizontal distribution on E defined by ∇ does not depend on the
typical fiber;
• for any linear isomorphism i : E1 → E0, the isomorphism of principal

bundles γi defined in Exercise 1.61 is connection preserving.

Pull-back of connections on vector bundles.

EXERCISE 2.18. Assume that we are given a commutative diagram of sets and
maps:

A
f //

φ
��

B

ψ
��

C g
// D

Given a subset S of B, show that φ
(
f−1(S)

)
⊂ g−1

(
ψ(S)

)
.

Functorial constructions with connections on vector bundles.

EXERCISE 2.19. Let n ≥ 1 be fixed and let F : Vecn → Vec be a smooth
functor. Let E1, . . . , En be vector bundles over a differentiable manifold M with
typical fibers E1

0 , . . . , En0 , respectively. For each i = 1, . . . , n, let E i
0 be a real
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vector space isomorphic to Ei0. As we have seen in Exercise 1.61, the vector bun-
dle Ei can also be regarded as a vector bundle with typical fiber E i

0; denote such
vector bundle with changed typical fiber by E i. As we have seen in Exercise 1.68,
the vector bundles F(E1, . . . , En) and F(E 1

, . . . , E
n) differ only by their typical

fibers. For i = 1, . . . , n, let∇i be a connection on Ei; then∇i is also a connection
on E i (recall Exercise 2.17). The reader should observe that the construction of
the connection F(∇1, . . . ,∇n) depends in principle not only on the connections
∇i but also on the typical fibers of the vector bundles. Show that, in fact, the con-
nection F(∇1, . . . ,∇n) does not depend on the typical fibers of the vector bundles
involved.

The components of a linear connection.

EXERCISE 2.20. Let π : E → M be a vector bundle endowed with a connec-
tion ∇ and F be a vector subbundle of E. Denote by q : E → E/F the quotient
map. Show that the map:

Γ(TM)× Γ(F ) 3 (X, ε) 7−→ q ◦ ∇Xε ∈ Γ(E/F )

isC∞(M)-bilinear. Conclude that there exists a smooth sectionαF of Lin(TM,F ;E/F )
such that:

∇vε+ Fx = αFx
(
v, ε(x)

)
∈ Ex/Fx,

for all x ∈M , v ∈ TxM . We call αF the second fundamental form of the subbun-
dle F .

EXERCISE 2.21. Let π : E → M be a vector bundle endowed with a semi-
Riemannian structure g and a connection ∇ compatible with g. If R denotes the
curvature tensor of ∇, show that for all x ∈ M , v, w ∈ TxM , the linear operator
Rx(v, w) : Ex 3 e 7→ Rx(v, w)e ∈ Ex is anti-symmetric with respect to gx, i.e.:

gx
(
Rx(v, w)e, e′

)
= −gx

(
e,Rx(v, w)e′

)
,

for all e, e′ ∈ Ex.

EXERCISE 2.22. Let (M, g) be a semi-Riemannian manifold. Show that there
exists a unique connection ∇ on M which is both symmetric and compatible with
the semi-Riemannian metric g; such connection is defined by the equality:

(2.11) g(∇XY, Z) = 1
2

(
X

(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
− g

(
X, [Y, Z]

)
+ g

(
Y, [Z,X]

)
+ g

(
Z, [X,Y ]

))
,

and is called the Levi-Civita connection of the semi-Riemannian manifold (M, g).
Formula (2.11) is known as Koszul formula.

Relating connections with principal subbundles.

EXERCISE 2.23. Let Π : P → M be a G-principal bundle endowed with a
connection Hor(P ) and let Q be an H-principal subbundle of P ; denote by ω the
connection form of Hor(P ). Show that the following conditions are equivalent:
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• Horp(P ) ⊂ TpQ, for all p ∈ Q;
• TpQ = Horp(P )⊕Verp(Q), for all p ∈ Q;
• the 1-form ω|Q takes values in h, i.e., ωp(TpQ) ⊂ h, for all p ∈ Q;
• there exists a connection on the principal bundleQ such that the inclusion

map Q→ P is connection preserving;
• the isomorphism (2.10.1) carries TpQ onto TxM ⊕ h, for all x ∈ M and

all p ∈ Qx.

The inner torsion of a G-structure.

EXERCISE 2.24. Let π : E → M be a vector bundle with typical fiber E0

endowed with a connection ∇, E1 be a real vector space and i : E1 → E0 be a
linear isomorphism. Let G be a Lie subgroup of GL(E0) and P ⊂ FRE0(E) be
a G-structure on E. Then γi(P ) ⊂ FRE1(E) is a I−1

i (G)-structure on E (see
Exercises 1.61 and 1.47). Show that the inner torsion of P is equal to the inner
torsion of γi(P ).



CHAPTER 3

Immersion theorems

3.1. Affine manifolds

DEFINITION 3.1.1. By a connection on a differentiable manifold M we mean
a connection on its tangent bundle TM . An affine manifold is a pair (M,∇), where
M is a differentiable manifold and ∇ is a connection on M .

Affine geometry is the geometry of affine manifolds. This is a large class of
manifolds containing in particular the class of semi-Riemannian manifolds (see
Exercise 2.22).

DEFINITION 3.1.2. Let (M,∇) be an affine manifold. A geodesic in M is a
smooth curve γ : I →M such that γ′ : I → TM is parallel.

Let G : TM → TTM be the vector field on TM such that for all v ∈ TM ,
G(v) ∈ TvTM is the unique horizontal vector such that dπv

(
G(v)

)
= v. The

vector field G is smooth and it is called the geodesic vector field of (M,∇). Clearly,
a curve γ̃ : I → TM is an integral curve of G if and only if γ = Π◦ γ̃ is a geodesic
and γ̃ = γ′. If:

F G : Dom(F G) ⊂ R× TM −→ TM

denotes the maximal flow of G then the map:

exp :
{
v ∈ TM : (1, v) ∈ Dom(F G)

}
3 v 7−→ π

(
F G(1, v)

)
∈M

is called the exponential map of the affine manifold (M,∇). Clearly the domain
Dom(exp) of exp is an open subset of TM and exp is a smooth map.

PROPOSITION 3.1.3. Let (M,∇) be an affine manifold. Then:

(a) for all t0 ∈ R and all v ∈ TM , the curve:

γ :
{
t ∈ R : (t− t0)v ∈ Dom(exp)

}
3 t 7−→ exp

(
(t− t0)v

)
∈M

is a geodesic with γ′(t0) = v;
(b) if γ : I → M is a geodesic then for all t0 ∈ I , t ∈ I , we have γ(t) =

exp
(
(t− t0)v

)
, where v = γ′(t0) ∈ TM ;

(c) given x ∈ M , if expx : Dom(exp) ∩ TxM → M denotes the restriction
of exp to Dom(exp) ∩ TxM then expx(0) = x and d expx(0) is the
identity map of TxM .

PROOF. �

169
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Observe that item (c) of Proposition 3.1.3 implies that for all x ∈ M , expx
restricts to a smooth diffeomorphism of an open neighborhood of the origin in
TxM onto an open neighborhood of x in M .

DEFINITION 3.1.4. An affine manifold (M,∇) is said to be geodesically com-
plete if the domain of the exponential map is the whole tangent bundle TM , i.e., it
for all v ∈ TM there exists a geodesic γ : R→M with γ′(0) = v.

DEFINITION 3.1.5. Let M ′, M be affine manifolds. An affine map from M ′

to M is a smooth map f : M ′ → M such that the morphism of vector bundles←−
df : TM ′ → f∗TM (recall Example 1.5.27) is connection preserving.

The composition of affine maps is an affine map. If a smooth diffeomorphism
f : M ′ → M is an affine map then also f−1 : M → M ′ is an affine map (see
Exercise 3.1).

3.2. Homogeneous affine manifolds

Let M be an affine manifold. The set Aff(M) of all affine smooth diffeomor-
phisms f : M →M is a subgroup of Diff(M). We have the following:

THEOREM 3.2.1. Let M be an affine manifold with a finite number of con-
nected components. Then the group Aff(M) admits a unique manifold structure
such that Aff(M) is a Lie group and such that the topology of Aff(M) is the
compact-open topology. Moreover, the canonical left action Aff(M) ×M → M
is smooth.

PROOF. See [8]. �

DEFINITION 3.2.2. An affine manifold is said to be homogeneous if the group
Aff(M) acts transitively on M .

LetM be an homogeneous affine manifold having a finite number of connected
components. If A is any Lie subgroup of Aff(M) that acts transitively on M (for
instance, A = Aff(M)) then, given x0 ∈M , we have a smooth diffeomorphism:

(3.2.1) β̄x0 : A/Ax0 3 gAx0 7−→ g(x0) ∈M.

The manifold A/Ax0 can be endowed with a uniquely defined connection that
makes (3.2.1) an affine diffeomorphism (see Exercise 3.2). Obviously such con-
nection on A/Ax0 is A-invariant, i.e., for all g ∈ A, the smooth diffeomorphism:

Lg : A/Ax0 3 hAx0 7−→ (gh)Ax0 ∈ A/Ax0

is affine.
In the remainder of the section we the problem of determining the A-invariant

connections on a manifold A/H , where A is a Lie group and H is a closed sub-
group of A. Denote by a and h, respectively, the Lie algebras of A and H . Let us
fix an arbitrary subspace m of a with a = h ⊕ m and let us denote by ph : a → h,
pm : a → m the projections. Denote by q : A → A/H the quotient map and
set 1̄ = q(1). The restriction of dq1 to m is an isomorphism onto T1̄(A/H); we
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will always identify T1̄(A/H) with m via such isomorphism. For h ∈ H , the lin-
ear isomorphism Adh : a → a carries h to h and therefore we have an induced
isomorphism Adh : m→ m defined by:

Adh = ph ◦Adh|m.

Notice that Ad : H → GL(m) is a smooth representation of H on m; we call Ad
the isotropic representation of H on m. The differential of Ad at the identity will
be denoted by ad : h→ gl(m); we have:

adX(Y ) = pm

(
[X,Y ]

)
,

for all X ∈ h, Y ∈ m. We have a commutative diagram:

A
Ih //

q
��

A

q
��

A/H
Lh

// A/H

By differentiating such diagram we obtain:

(3.2.2) dLh(1̄) = Adh,

for all h ∈ H .
Let T (A/H) be the tangent bundle of A/H and consider the GL(m)-principal

bundle1 FRm

(
T (A/H)

)
. We have a smooth left action of A on FRm

(
T (A/H)

)
defined by:

(3.2.3) g · p = dLg(x) ◦ p,

for all x ∈ A/H , p ∈ FRm

(
Tx(A/H)

)
and all g ∈ A. We can therefore define a

smooth left action of A×GL(m) on FRm

(
T (A/H)

)
by setting:

(3.2.4) (g, τ) · p = (g · p) ◦ τ−1 = g · (p ◦ τ−1),

for all p ∈ FRm

(
T (A/H)

)
, g ∈ A, τ ∈ GL(m). Let:

Idm ∈ FRm

(
T1̄(A/H)

)
denote the identity map of m and S ⊂ A × GL(m) denote the isotropy group
of Idm. Clearly, the action (3.2.4) is transitive and therefore we have a smooth
diffeomorphism:

(3.2.5) Υ :
(
A×GL(m)

)
/S 3 (g, τ)S 7−→ (g, τ) · 1̄

= dLg(1̄) ◦ τ−1 ∈ FRm

(
T (A/H)

)
.

1We may consider as the typical fiber of the tangent bundle T (A/H) the space m rather than
Rn (see Exercise 1.61).
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We have a commutative diagram:

(3.2.6)

(
A×GL(m)

)
/S

Υ
∼=

//

Π′ ''NNNNNNNNNNN
FRm

(
T (A/H)

)
Πxxppppppppppp

A/H

where Π′ is defined by:

(3.2.7) Π′ :
(
A×GL(m)

)
/S 3 (g, τ)S 7−→ gH ∈ A/H.

Using (3.2.2), we get:

S = Gr(Ad) =
{
(h,Adh) : h ∈ H

}
⊂ H ×GL(m).

The Lie algebra of S is therefore given by:

(3.2.8) s = Gr(ad) =
{
(X, adX) : X ∈ h

}
⊂ h⊕ gl(m).

A connection on A/H is uniquely determined by a connection on the principal
bundle FRm

(
T (A/H)

)
, which is determined by a smooth horizontal GL(m)-

invariant distribution Hor
[
FRm

(
T (A/H)

)]
; we denote by D the smooth distri-

bution on the quotient
(
A×GL(m)

)
/S that corresponds to Hor

[
FRm

(
T (A/H)

)]
via the smooth diffeomorphism Υ. A connection on A/H is A-invariant if and
only if the horizontal distribution on FRm

(
T (A/H)

)
is A-invariant (see Exer-

cise 3.3). Hence, the A-invariant connections of A/H are in one to one correspon-
dence with the

(
A × GL(m)

)
-invariant (necessarily smooth) distributions D on(

A×GL(m)
)
/S that are horizontal with respect to Π′.

From equality (3.2.8) it follows that m ⊕ gl(m) is a complement of s in the
space a ⊕ gl(m). Therefore, the differential at the point (1̄, Idm)S of the quotient
map:

A×GL(m) 3 (g, τ) 7−→ (g, τ)S ∈
(
A×GL(m)

)
/S

restricts to an isomorphism from m⊕gl(m) to the tangent space of
(
A×GL(m)

)
/S

at (1̄, Idm)S; we will therefore identify this tangent space with m⊕ gl(m) via such
isomorphism. Consider the isotropic representation

(3.2.9) Ad : S −→ GL
(
m⊕ gl(m)

)
of S on m⊕ gl(m). A

(
A×GL(m)

)
-invariant distribution D on

(
A×GL(m)

)
/S

is uniquely determined by a subspace d = D(1̄,Idm)S of m⊕ gl(m) that is invariant
under the isotropic representation (3.2.9) (see Exercise 3.5). It is easily computed
that the isotropic representation (3.2.9) is given by:

(3.2.10) Ads : (X,κ) 7−→
(
Adh(X),Adh ◦ κ ◦Ad−1

h − adphAdh(X)

)
,

for all X ∈ m, κ ∈ gl(m), h ∈ H , where s = (h,Adh) ∈ S. The differential of
ad : s→ gl

(
m⊕ gl(m)

)
of (3.2.9) is given by:

(3.2.11) adσ : (X,κ) 7−→
(
adY (X), [adY , κ]− adph[Y,X]

)
,



3.2. HOMOGENEOUS AFFINE MANIFOLDS 173

for all X ∈ m, κ ∈ gl(m), Y ∈ h, where σ = (Y, adY ) ∈ s. The differential of Π′

at (1̄, Idm)S is given by (see (3.2.7)):

(3.2.12) dΠ′
(
(1̄, Idm)S

)
: m⊕ gl(m) 3 (X,κ) 7−→ X ∈ m.

Thus, D is horizontal with respect to Π′ if and only if d is a complement of gl(m)
in m⊕ gl(m). We have the following:

PROPOSITION 3.2.3. The A-invariant connections on A/H are in one to one
correspondence with the linear maps λ : m→ gl(m) satisfying the condition:

(3.2.13) Adh ◦ λ(X) ◦Ad−1
h − adphAdh(X) = λ

(
Adh(X)

)
,

for all h ∈ H and all X ∈ m. Condition (3.2.13) implies:

(3.2.14) [adY , λ(X)]− adph[Y,X] = λ
(
adY (X)

)
,

for all X ∈ m and all Y ∈ h. If H is connected then condition (3.2.13) is equiva-
lent to condition (3.2.14).

PROOF. A subspace d of m⊕ gl(m) is a complement of gl(m) if and only if it
is the graph of a linear map λ : m → gl(m). Using (3.2.10), it is easily seen that
Gr(λ) is invariant under the isotropic representation (3.2.9) if and only if condition
(3.2.13) holds. The rest of the statement follows from (3.2.11) and from the result
of Exercise 3.6. �

We will now compute the curvature and the torsion of an A-invariant connec-
tion ∇ on A/H in terms of the corresponding linear map λ. To this aim, recall
that q : A→ A/H is an H-principal bundle (see Example 1.3.4) and consider the
morphism of principal bundles:

(3.2.15) φ : A 3 g 7−→ dLg(1̄) ∈ FRm

(
T (A/H)

)
whose subjacent Lie group homomorphism is the isotropic representation Ad :
H → GL(m). Denote by ω and θ respectively the connection form and the canon-
ical form on FRm

(
T (A/H)

)
. By the result of Exercise 3.4 (with f = Lg), ω

and θ are invariant by the action of A on FRm

(
T (A/H)

)
. It then follows that the

differential forms φ∗ω and φ∗θ on A are left invariant. Clearly:

(3.2.16)

(φ∗Ω)1(X,Y ) = d(φ∗ω)1(X,Y ) + 1
2

(
(φ∗ω)1 ∧ (φ∗ω)1

)
(X,Y )

= −(φ∗ω)1
(
[X,Y ]

)
+ [(φ∗ω)1(X), (φ∗ω)1(Y )],

(φ∗Θ)1(X,Y ) = d(φ∗θ)1(X,Y ) +
(
(φ∗ω)1 ∧ (φ∗θ)1

)
(X,Y )

= −(φ∗θ)1
(
[X,Y ]

)
+ (φ∗ω)1(X) · (φ∗θ)1(Y )

− (φ∗ω)1(Y ) · (φ∗θ)1(X),

for all X,Y ∈ a. Our strategy is to compute φ∗ω, φ∗θ and then use (3.2.16) to
compute φ∗Ω and φ∗Θ. From φ∗Ω and φ∗Θ the curvature and torsion tensor of the
connection ∇ are easily computed. We have the following:
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LEMMA 3.2.4. The left invariant forms φ∗ω and φ∗θ on A are given by:

(φ∗ω)1(X) = λ
(
pm(X)

)
+ adph(X),(3.2.17)

(φ∗θ)1(X) = pm(X),(3.2.18)

for all X ∈ a.

PROOF. We start by computing Υ∗ω and Υ∗θ. Consider the diffeomorphism:

βIdm : GL(m) 3 τ 7−→ τ ∈ FRm

(
T1̄(A/H)

)
given by action at Idm. The differential of βIdm at Idm ∈ GL(m) is an isomor-
phism:

(3.2.19) dβIdm(Idm) : gl(m) −→ VerIdm

[
FRm

(
T1̄(A/H)

)]
.

The restriction of ω to VerIdm

[
FRm

(
T1̄(A/H)

)]
is the inverse of (3.2.19). The

isomorphism:

(3.2.20) dΥ
(
(1, Idm)S

)
: m⊕ gl(m)→ TIdmFRm

(
T1̄(A/H)

)
carries gl(m) (which is the kernel of (3.2.12)) to VerIdm

[
FRm

(
T1̄(A/H)

)]
(see

(3.2.6)). The restriction of Υ∗ω to gl(m) is equal to the composition of the re-
striction of (3.2.20) to gl(m) with the inverse of (3.2.19). Such composition is the
differential at (1, Idm)S of the map:

β−1
Idm
◦Υ : Π′−1(1̄) =

(
H ×GL(m)

)
/S −→ GL(m)

(h, τ)S 7−→ Adh ◦ τ−1.

This is computed easily as:

Υ∗ω(1,Idm)S : gl(m) 3 κ 7−→ −κ ∈ gl(m).

The map (3.2.20) carries Gr(λ) to HorIdm

[
FRm

(
T1̄(A/H)

)]
and therefore Υ∗ω

vanishes on Gr(λ). This yields:

(3.2.21) Υ∗ω(1,Idm)S : m⊕ gl(m) 3 (X,κ) 7−→ λ(X)− κ ∈ gl(m).

As to Υ∗θ, we have:

Υ∗θ(1,Idm)S = dΠIdm ◦ dΥ(1,Idm)S = dΠ′Idm
,

i.e.:

(3.2.22) Υ∗θ(1,Idm)S : m⊕ gl(m) 3 (X,κ) 7−→ X ∈ m.

Let us now compute φ∗ω and φ∗θ. We have:

(3.2.23) φ∗ω = (Υ−1 ◦ φ)∗Υ∗ω, φ∗θ = (Υ−1 ◦ φ)∗Υ∗θ,

where:
Υ−1 ◦ φ : A 3 g 7−→ (g, Idm)S ∈

(
A×GL(m)

)
/S.

The differential of Υ−1 ◦ φ at 1 ∈ A is given by:

(3.2.24) d(Υ−1 ◦ φ)1 : a 3 X 7−→
(
pm(X),−adph(X)

)
∈ m⊕ gl(m).

The conclusion follows from (3.2.21), (3.2.22), (3.2.23) and (3.2.24). �
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COROLLARY 3.2.5. The left invariant forms φ∗Ω and φ∗Θ on A are given by:

(3.2.25) (φ∗Ω)1(X,Y ) = −(λ ◦ pm)
(
[X,Y ]

)
− adph[X,Y ]

+
[
λ
(
pm(X)

)
+ adph(X), λ

(
pm(Y )

)
+ adph(Y )

]
,

(φ∗Θ)1(X,Y ) = −pm

(
[X,Y ]

)
+ λ

(
pm(X)

)
· pm(Y )(3.2.26)

− λ
(
pm(Y )

)
· pm(X)

+ adph(X)

(
pm(Y )

)
− adph(Y )

(
pm(X)

)
,

for all X,Y ∈ a.

PROOF. Follows from Lemma 3.2.4 and from (3.2.16). �

THEOREM 3.2.6. Let A be a Lie group and H be a closed subgroup of A.
Denote by a, h respectively the Lie algebras of A and H; let m be an arbitrary
subspace of a with a = h ⊕ m and denote by ph : a → h, pm : a → m the
projections. Let λ : m → gl(m) be a linear map satisfying condition (3.2.13)
and let the manifold A/H be endowed with the A-invariant connection ∇ whose
horizontal space HorIdm

[
FRm

(
T (A/H)

)]
is the image under dΥ (see (3.2.5)) of

the graph of λ. Then, the curvature and torsion tensors of ∇ at the point 1̄ =
1 ·H ∈ A/H are given by:

R1̄ :m×m 3 (X,Y ) 7−→ [λ(X), λ(Y )]− adph[X,Y ]

− (λ◦pm)
(
[X,Y ]

)
∈gl(m),

T1̄ : m×m 3 (X,Y ) 7−→ −pm

(
[X,Y ]

)
+ λ(X) · Y − λ(Y ) ·X ∈ m,

where we identify m with T1̄(A/H) by the differential of the quotient map A →
A/H .

PROOF. By Lemma 2.9.16 and Corollary 2.9.18, we have:

R1̄(X,Y ) = Ω(ζ1, ζ2), T (X,Y ) = Θ(ζ1, ζ2),

where ζ1, ζ2 ∈ TIdmFRm

(
T1̄(A/H)

)
are chosen with:

(3.2.27) dΠ(ζ1) = X, dΠ(ζ2) = Y.

If φ is defined by (3.2.15) then ζ1 = dφ1(X), ζ2 = dφ1(Y ) satisfy (3.2.27); thus:

R1̄(X,Y ) = (φ∗Ω)1(X,Y ), T1̄(X,Y ) = (φ∗Θ)1(X,Y ),

for all X,Y ∈ m. The conclusion follows from Corollary 3.2.5. �

3.3. Homogeneous affine manifolds with G-structure

DEFINITION 3.3.1. Let M be an n-dimensional differentiable manifold, G be
a Lie subgroup of GL(Rn) and assume thatM is endowed with a connection∇ and
a G-structure P ⊂ FR(TM). The triple (M,∇, P ) is said to be a homogeneous
affine manifold with G-structure if for every x, y ∈ M and every p ∈ Px, q ∈ Py,
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there exists a smooth affine G-structure preserving diffeomorphism f : M → M
such that f(x) = y and df(x) ◦ p = q.

Given an affine manifold M endowed with a G-structure P we denote by
AffG(M) the subgroup of Aff(M) consisting of G-structure preserving affine dif-
feomorphisms of M . We have the following:

PROPOSITION 3.3.2. Let (M,∇) be a connected affine manifold withG-struc-
ture P and assume that (M,∇, P ) is homogeneous. Then AffG(M) is a Lie sub-
group of Aff(M).

PROOF. Since M is connected, the action of Aff(M) on FR(TM) is free;
given p ∈ P , the orbit Aff(M)p ⊂ FR(TM) is an almost embedded submanifold
of FR(TM), since it is an integral submanifold of a smooth involutive distribu-
tion on FR(TM). The assumption that (M,∇, P ) is homogeneous implies that
P = AffG(M)p. Since P is an immersed submanifold of FR(TM) contained in
the almost embedded submanifold Aff(M)p then P is also an immersed subman-
ifold of Aff(M)p. The smooth diffeomorphism βp : Aff(M) → Aff(M)p carries
AffG(M) to P and thus AffG(M) is an immersed submanifold of Aff(M). The
conclusion follows. �

Let (M,∇) be a connected affine manifold with G-structure P and assume
that (M,∇, P ) is homogeneous. Set A = AffG(M), so that A is a Lie group and
the left action of A on M is smooth and transitive. Given a point x0 ∈M , then we
have a smooth diffeomorphism β̄x0 from A/Ax0 to M (see (3.2.1)) and A/Ax0 is
endowed with a unique connection that makes β̄x0 an affine diffeomorphism; such
connection isA-invariant. Moreover,A/Ax0 is endowed with a uniqueG-structure
that makes β̄x0 G-structure preserving (see Exercise 1.74); such G-structure is
given by:

(3.3.1)
{
d(β̄−1

x0
) ◦ p : p ∈ P

}
.

Since (M,∇, P ) is homogeneous, if we fix p0 ∈ Px0 , then:

(3.3.2) P =
{
dγg ◦ p0 : g ∈ A

}
.

Since β̄−1
x0
◦ γg = Lg ◦ β̄−1

x0
, it follows from (3.3.2) that the G-structure (3.3.1) on

A/Ax0 is equal to:

(3.3.3)
{
dLg(1̄) ◦ d(β̄−1

x0
) ◦ p0 : g ∈ A

}
.

Setting i0 = d(β̄−1
x0

) ◦ p0 : Rn → a/ax0 then (3.3.3) is just the orbit of i0 ∈
FR

(
T1̄(A/Ax0)

)
under the action of A.

We now consider the following setup:
• a Lie group A with Lie algebra a;
• a closed Lie subgroup H of A with Lie algebra h;
• a complement m of h on a (as usual, we identify T1̄(A/H) with m);
• an A-invariant connection ∇ on A/H corresponding to a linear map λ :

m→ gl(m) as in Proposition 3.2.3;
• a linear isomorphism i : Rn → m.
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Consider the isotropic representation Ad : H → GL(m), the group isomorphism
Ii : GL(Rn)→ GL(m) defined by Ii(τ) = i ◦ τ ◦ i−1, for all τ ∈ GL(m) and set:

Gi = I−1
i

(
Ad(H)

)
⊂ GL(Rn).

Consider the smooth left action of A on FR
(
T (A/H)

)
defined as in (3.2.3) and

let P i ⊂ FR
(
T (A/H)

)
be the A-orbit of i. Then P i is a Gi-structure on A/H

(see Exercise 1.73). The group Gi
1̄

of all Gi-structure preserving endomorphisms
of T1̄(A/H) = m is just Ad(H); its Lie algebra gi

1̄
is thus equal to ad(h).

We will now determine the inner torsion IP
i

1̄
: m → gl(m)/ad(h) of the Gi-

structure P i on A/H . By the result of Exercise 2.24, we may as well compute the
inner torsion of the G-structure:

(3.3.4) P = γ−1
i (P i) =

{
dLg : g ∈ A

}
⊂ FRm

(
T (A/H)

)
,

where G = Ii(Gi) = Ad(H). Notice that P is just the image of the morphism of
principal spaces φ defined in (3.2.15).

PROPOSITION 3.3.3. Let ∇ be an A-invariant connection on A/H corre-
sponding to a linear map λ, as in Proposition 3.2.3. The inner torsion IP

i

1̄
: m →

gl(m)/ad(h) of the Ad(H)-structure (3.3.4) on A/H is equal to the composition
of λ : m→ gl(m) with the quotient map gl(m)→ gl(m)/ad(h).

PROOF. Let s : U → A be a smooth local section of the quotient map A →
A/H with 1̄ ∈ U , s(1̄) = 1 and ds1̄(m) = m; notice that ds1̄ is just the inclusion
map of m in a. Notice that φ ◦ s is a smooth local section of P → A/H . Set
ω̄ = (φ ◦ s)∗ω, where ω denotes the connection form of ∇. By diagram (2.10.2),
in order to conclude the proof, it suffices to show that ω̄1̄ is equal to λ. We have
ω̄ = s∗(φ∗ω) and therefore:

ω̄1̄ = (φ∗ω)1 ◦ ds1̄.

The conclusion follows directly from (3.2.17). �

3.4. Affine immersions in homogeneous spaces

Let M be an n-dimensional differentiable manifold, G be a Lie subgroup of
GL(Rn) and assume that M is endowed with a connection ∇ and a G-structure
P ⊂ FR(TM). For each x ∈M we denote by Gx the Lie subgroup of GL(TxM)
consisting of G-structure preserving endomorphisms of TxM , by gx ⊂ gl(TxM)
the Lie algebra of Gx and by IPx : TxM → gl(TxM)/gx the inner torsion of the
G-structure P (recall Section 1.8). The triple (M,∇, P ) will be called an affine
manifold with G-structure. Given points x, y ∈ M and a G-structure preserving
map σ : TxM → TyM then the Lie group isomorphism Iσ : GL(TxM) →
GL(TyM) defined by:

Iσ : GL(TxM) 3 T 7−→ σ ◦ T ◦ σ−1 ∈ GL(TyM)
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carries Gx onto Gy. Its differential at the identity Adσ : gl(TxM) → gl(TyM)
carries gx onto gy and therefore it induces a linear isomorphism

Adσ : gl(TxM)/gx −→ gl(TyM)/gy.

DEFINITION 3.4.1. Let V , V ′ be real vector spaces and σ : V → V ′ be a linear
isomorphism. Given a multilinear map B′ ∈ Link(V ′, V ′) then the pull-back of
B′ by σ is the multilinear map σ∗B ∈ Link(V, V ) defined by:

(σ∗B)(v1, . . . , vk) = σ−1
[
B

(
σ(v1), . . . , σ(vk)

)]
,

for all v1, . . . , vk ∈ V . Given multilinear mapsB ∈ Link(V, V ),B′ ∈ Link(V ′, V ′)
and a (not necessarily invertible) linear map σ : V → V ′ then B is said to be σ-
related with B′ if:

(3.4.1) B′
(
σ(v1), . . . , σ(vk)

)
= σ

(
B(v1, . . . , vk)

)
,

for all v1, . . . , vk ∈ V . More generally, if V1, . . . , Vk are subspaces of V and if
B ∈ Lin(V1, . . . , Vk;V ), B′ ∈ Link(V ′, V ′) are multilinear maps then B is said
to be σ-related with B′ if (3.4.1) holds for all v1 ∈ V1, . . . , vk ∈ Vk.

Clearly, if σ : V → V ′ is a linear isomorphism and if B′ ∈ Link(V ′, V ′) then
σ∗B′ is the only multilinear map B in Link(V, V ) that is σ-related with B′.

DEFINITION 3.4.2. LetM be an n-dimensional differentiable manifold, M be
an n̄-dimensional differentiable manifold and let π : E → M be a vector bundle
over M with typical fiber Rk, where n̄ = n + k. Set Ê = TM ⊕ E, so that Ê
is a vector bundle over M with typical fiber Rn̄. Let ∇̂ and ∇ be connections on
Ê and on TM respectively. By an affine immersion of (M,E, ∇̂) into the affine
manifold (M,∇) we mean a pair (f, L), where f : M → M is a smooth map,
L : Ê → f∗TM is a connection preserving vector bundle isomorphism and:

(3.4.2) Lx|TxM = dfx,

for all x ∈ M , where f∗TM is endowed with the connection f∗∇. By a local
affine immersion of (M,E, ∇̂) into (M,∇) we mean an affine immersion (f, L)
of (U,E|U , ∇̂) into (M,∇), whereU is an open subset ofM ; we callU the domain
of the local affine immersion (f, L).

Observe that if (f, L) is a (local) affine immersion, condition (3.4.2) implies
that f is an immersion.

There exists in the literature a notion of affine immersion between affine man-
ifolds (see [11, Definition 1.1, Chapter II]). Using our terminology, such notion of
affine immersion is:

DEFINITION 3.4.3. Given affine manifolds (M,∇), (M,∇) then a smooth
map f : M →M is said to be an affine immersion of (M,∇) into (M,∇) if there
exists a vector bundle π : E →M , a connection ∇̂ on Ê = TM ⊕E and a vector
bundle isomorphism L : Ê → f∗TM such that (f, L) is an affine immersion of
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(M,E, ∇̂) into (M,∇) and such that ∇ is a component of ∇̂ with respect to the
decomposition Ê = TM ⊕ E, i.e.:

∇XY = pr1(∇̂XY ),

for all X,Y ∈ Γ(TM), where pr1 : Ê → TM denotes the first projection.

LEMMA 3.4.4. Fix objects M , M , π : E → M , Ê, ∇̂ and ∇ as in Defini-
tion 3.4.2. Let s : U → FR(Ê) be a smooth local frame of Ê, f : U → M

be a map and L : Ê|U → f∗TM be a bijective fiberwise linear map. Define
F : U → FR(TM) by setting:

(3.4.3) F (x) = Lx ◦ s(x) ∈ FR(Tf(x)M),

for all x ∈ U . Denote by ωM the connection form on FR(TM) corresponding to
the connection Hor

(
FR(TM)

)
associated to ∇ and by ωM the connection form

on FR(Ê) corresponding to the connection Hor
(
FR(Ê)

)
associated to ∇̂. Denote

also by θM the canonical form of FR(TM) and by θM the ι-canonical form of
FR(Ê), where ι : TM → Ê denotes the inclusion map. Then (f, L) is a local
affine immersion with domain U if and only if the map F is smooth and:

F ∗θM = s∗θM ,(3.4.4)

F ∗ωM = s∗ωM .(3.4.5)

PROOF. Denote by L∗ : FR(Ê) → FR(f∗TM) = f∗FR(TM) the map
induced by L and by f̄ : f∗FR(TM) → FR(TM) the canonical map of the
pull-back f∗FR(TM). Clearly:

(3.4.6) F = f̄ ◦ L∗ ◦ s.

We claim that F is smooth if and only if both f and L are smooth. Namely, if both
f and L are smooth then equality (3.4.6) implies that F is smooth. Conversely, if
F is smooth then f is also smooth, since f = Π ◦ F , where Π : FR(TM) → M
denotes the projection. Moreover, F is a local section of FR(TM) along f and:

L∗ ◦ s =
←−
F ,

so that L∗ ◦ s is smooth by Corollary 1.3.19. Since s is an atlas of local sections
for the principal bundle FR(Ê)|U , it follows from the result of Exercise 1.45 that
L∗ : FR(Ê)|U → FR(f∗TM) is a (smooth) isomorphism of principal bundles
whose subjacent Lie group homomorphism is the identity map of GL(Rn). Hence
L is smooth by Lemma 1.5.18.

Now, assuming that F , f and L are smooth, we prove that L is connection
preserving if and only if (3.4.5) holds. Recall from (c) of Lemma 2.5.10 that L is
connection preserving if and only if L∗ : FR(Ê) → FR(f∗TM) is connection
preserving. By definition, the connection form of the pull-back FR(f∗TM) =
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f∗FR(TM) is equal to f̄∗ωM ; thus, by part (d) of Lemma 2.2.11, L∗ is connection
preserving if and only if:

(3.4.7) (L∗ ◦ s)∗(f̄∗ωM ) = s∗ωM .

But (3.4.7) is obviously the same as (3.4.5), by (3.4.6).
Finally, let us prove that Lx|TxM = dfx for all x ∈ U if and only if (3.4.4)

holds. Using (2.9.12), we see that (3.4.4) holds if and only if:

(3.4.8) F (x)−1 ◦ dΠF (x) ◦ dFx = s(x)−1 ◦ ιx,

for all x ∈ U . Since Π ◦ F = f , we see that (3.4.8) holds if and only if:

(3.4.9) F (x)−1 ◦ dfx = s(x)−1|TxM ,
for all x ∈ U . Finally, since F (x) = Lx ◦ s(x), it is clear that (3.4.9) holds if and
only if Lx|TxM = dfx. This concludes the proof. �

COROLLARY 3.4.5 (uniqueness of affine immersions with initial data). Let
M , M , π : E → M , Ê, ∇̂ and ∇ be as in Definition 3.4.2; assume that M
is connected. If (f1, L1), (f2, L2) are both affine immersions of (M,E, ∇̂) into
(M,∇) and if there exists x0 ∈M with:

f1(x0) = f2(x0), L1
x0

= L2
x0
,

then (f1, L1) = (f2, L2).

PROOF. Denote by f̄ i : (f i)∗TM → TM the canonical map of the pull-back
(f i)∗TM , i = 1, 2. Clearly (f1, L1) = (f2, L2) if and only if the maps:

(3.4.10) f̄1 ◦ L1 : M −→ TM, f̄2 ◦ L2 : M −→ TM

are equal. The set of points of M where the maps (3.4.10) coincide is obviously
closed and, by our hypotheses, nonempty. Let us check that such set is also open.
Let x ∈ M be a point at which the maps (3.4.10) coincide. Let s : U → FR(Ê)
be a smooth local frame of Ê where U is a connected open neighborhood of x in
M . For i = 1, 2, define F i : U → FR(TM) by setting F i(y) = Liy ◦ s(y), for all
y ∈ U . Then F 1(x) = F 2(x) and Lemma 3.4.4 implies that F i is a smooth map
satisfying:

(F i)∗(θM , ωM ) = (s∗θM , s∗ωM ),
for i = 1, 2. Since for each p ∈ FR(TM), the linear map:

(θMp , ω
M
p ) : TpFR(TM) −→ Rn̄ ⊕ gl(Rn̄)

is an isomorphism (recall (2.11.7)) then Lemma A.4.9 implies that F 1 = F 2.
Hence the maps (3.4.10) coincide in U and we are done. �

DEFINITION 3.4.6. An affine manifold with G-structure (M,∇, P ) is said to
be infinitesimally homogeneous if for all x, y ∈ M and all G-structure preserving
map σ : TxM → TyM , the following conditions hold:

• Adσ ◦ IPx = IPy ◦ σ;
• Tx is σ-related with Ty;
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• Rx is σ-related with Ry.

The condition of infinitesimal homogeneity means that curvature, torsion and
inner torsion are constant with respect to frames that are in the G-structure. This
statement is made more precise in the following:

LEMMA 3.4.7. Let (M,∇, P ) be an n-dimensional affine manifold with G-
structure, whereG is a Lie subgroup of GL(Rn). Then (M,∇, P ) is infinitesimally
homogeneous if and only if there exists multilinear maps R0 ∈ Lin3(Rn,Rn),
T0 ∈ Lin2(Rn,Rn) and a linear map I0 : Rn → gl(Rn)/g such that:

(3.4.11)
p∗Rx = R0, p∗Tx = T0,

Adp ◦ I0 = IPx ◦ p,
for all x ∈M and all p ∈ Px.

PROOF. Assume the existence of R0, T0, I0 such that (3.4.11) holds for all
x ∈ M and all p ∈ Px. Let x, y ∈ M and a G-structure preserving map σ :
TxM → TyM be fixed. Choose any p ∈ Px and set q = σ ◦ p, so that q ∈ Py.
Then:

p∗Rx = R0 = q∗Ry = p∗σ∗Rx,

and then Rx = σ∗Ry, i.e., Rx is σ-related with Ry. Similarly, Tx is σ-related with
Ty. Moreover Adp ◦ I0 = IPx ◦ p, Adq ◦ I0 = IPy ◦ q and therefore:

IPy ◦ σ ◦ p = IPy ◦ q = Adq ◦ I0 = Adσ ◦Adp ◦ I0 = Adσ ◦ IPx ◦ p,

proving Adσ ◦ IPx = IPy ◦ σ. Conversely, assume that (M,∇, P ) is infinitesimally
homogeneous. Choose any x ∈M and any p ∈ Px and set:

R0 = p∗Rx, T0 = p∗Tx, I0 = (Adp)−1 ◦ IPx ◦ p.
Given any y ∈ M , q ∈ Py then σ = q ◦ p−1 : TxM → TyM is a G-structure
preserving map and therefore σ∗Ry = Rx, σ∗Ty = Tx and Adσ ◦ IPx = IPy ◦ σ.
Then:

q∗Ry = p∗σ∗Ry = p∗Rx = R0, q∗Ty = p∗σ∗Ty = p∗Tx = T0;

moreover:

Adq ◦ I0 = Adq ◦ (Adp)−1 ◦ IPx ◦ p = Adσ ◦ IPx ◦ p = IPy ◦ σ ◦ p = IPy ◦ q.
This concludes the proof. �

Roughly speaking, an affine manifold with G-structure (M,∇, P ) is infinites-
imally homogeneous if one can describe the inner torsion IP , the torsion tensor T
and the curvature tensor R by formulas that involve only the G-structure. A bet-
ter understanding of this statement can be obtained by considering the following
examples.

EXAMPLE 3.4.8. Let (M, g) be an n-dimensional semi-Riemannian manifold
with n−(g) = r having constant sectional curvature c ∈ R. This means that:

gx
(
Rx(v, w)v, w

)
= c

(
gx(v, w)2 − gx(v, v)gx(w,w)

)
,
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for all x ∈ M and all v, w ∈ TxM , where R denotes the curvature tensor of the
Levi-Civita connection ∇ of (M, g). It is well-known (see Exercise 3.8) that if
(M, g) has constant sectional curvature c then the curvature tensor R is given by:

(3.4.12) Rx(v, w)u = c
(
gx(w, u)v − gx(v, u)w

)
,

for all x ∈M and all v, w, u ∈ TxM .
If P = FRo(TM) is the Or(Rn)-structure onM consisting of all orthonormal

frames then the triple (M,∇, P ) is infinitesimally homogeneous. Namely, IP = 0,
T = 0 and formula (3.4.12) says that the curvature tensor R is constant on frames
that belong to the G-structure (the curvature tensor R can be described using only
the G-structure P , that can be identified with the metric tensor g). In this situation,
the multilinear maps R0, T0, I0 of Lemma 3.4.7 are given by T0 = 0, I0 = 0 and:

R0 : Rn ×Rn ×Rn 3 (v, w, u) 7−→ 〈w, u〉v − 〈v, u〉w ∈ Rn,

where 〈·, ·〉 denotes the Minkowski bilinear form of index r in Rn.

EXAMPLE 3.4.9. Let A be an n-dimensional Lie group and∇ be a left invari-
ant connection onA, i.e., the left translations ofA are affine maps. Denote by a the
Lie algebra of A. The connection∇ is determined by a linear map Γ : a→ Lin(a)
and it is given by:

(3.4.13) ∇vX = g
(
dX̃g(v) + Γ(g−1v) · X̃(g)

)
,

for all g ∈ A, v ∈ TgA and all X ∈ Γ(TA), where X̃(g) = g−1X(g). The
curvature tensor of ∇ at 1 ∈ A is easily computed as:

R1(X,Y ) = [Γ(X),Γ(Y )]− Γ
(
[X,Y ]

)
,

for all X,Y ∈ a. Choose any linear isomorphism p0 : Rn → a. Consider the
global smooth section s : A→ FR(TA) defined by:

(3.4.14) s(g) = dLg(1) ◦ p0 ∈ FR(TgA),

for all g ∈ A, where Lg : A → A denotes left translation by g. Then P =
s(A) is a G-structure on A with G = {IdRn}. Since the left translations of A
are affine G-structure preserving diffeomorphisms, it follows that (A,∇, P ) is a
homogeneous (and infinitesimally homogeneous) affine manifold withG-structure.
The Christoffel tensor of ∇ with respect to s is given by:

TgA 3 v 7−→ dLg(1) ◦ Γ(g−1v) ◦ dLg(1)−1 ∈ Lin(TgA)

for all g ∈ A. The inner torsion IP coincides with the Christoffel tensor (Exam-
ple 2.11.2).

EXAMPLE 3.4.10. Let (M1, g
1), (M2, g

2) be semi-Riemannian manifolds with
dim(Mi) = ni, n−(gi) = ri, i = 1, 2. Assume that (Mi, g

i) has constant sectional
curvature ci ∈ R, i = 1, 2. Consider the product M = M1 ×M2 endowed with
the metric g obtained by taking the orthogonal sum of g1 and g2, i.e.:

g(x1,x2)

(
(v1, v2), (w1, w2)

)
= g1

x1
(v1, w1) + g2

x2
(v2, w2),
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for all x1 ∈ M1, x2 ∈ M2, v1, w1 ∈ Tx1M1 and all v2, w2 ∈ Tx2M2. The
curvature tensor R of the Levi-Civita connection ∇ of (M, g) is given by (recall
(3.4.12)):

(3.4.15) R(x1,x2)

(
(v1, v2), (w1, w2)

)
(u1, u2)

= c1
(
g1
x1

(w1, u1)v1 − g1
x1

(v1, u1)w1

)
+ c2

(
g2
x2

(w2, u2)v2 − g2
x2

(v2, u2)w2

)
,

for all x1 ∈M1, x2 ∈M2, u1, v1, w1 ∈ Tx1M1 and all u2, v2, w2 ∈ Tx2M2. Set:

P = FRo
(
TM ;Rn1 ⊕ {0}n2 ,pr∗1(TM1)

)
,

where pr1 : M → M1 denotes the first projection and Rn1+n2 = Rn1 ⊕ Rn2

is endowed with the orthogonal sum of the Minkowski bilinear forms of indexes
r1 and r2. More explicitly, for all (x1, x2) ∈ M , P(x1,x2) is the set of all linear
isometries p : Rn1+n2 → T(x1,x2)M such that p

(
Rn1 ⊕ {0}n2

)
= Tx1M1 ⊕ {0}

and (automatically) p
(
{0}n1 ⊕Rn2

)
= {0}⊕ Tx2M2. Then P is a G-structure on

M with:

G = O
(
Rn1+n2 ;Rn1 ⊕ {0}n2

) ∼= Or1(R
n1)×Or2(R

n2).

We claim that (M,∇, P ) is infinitesimally homogeneous. Since ∇ is compati-
ble with g and the covariant derivative of sections of pr∗1(TM1) are sections of
pr∗1(TM1), it follows from Example 2.11.5 that the inner torsion IP is zero. More-
over, the torsion of ∇ is zero and formula (3.4.15) implies that R is constant on
frames that belong to the G-structure P .

EXAMPLE 3.4.11. Let (M, g) be a semi-Riemannian manifold and let J be an
almost complex structure on M such that Jx is anti-symmetric with respect to gx,
for all x ∈M . Assume that J is parallel with respect to the Levi-Civita connection
∇. Then (M, g, J) is called a semi-Kähler manifold; when g is a Riemannian
metric, we call (M, g, J) a Kähler manifold. We say that (M, g, J) has constant
holomorphic curvature c ∈ R if:

gx
[
Rx

(
v, J(v)

)
v, Jv

]
= −cgx(v, v)2,

for all x ∈ M and all v ∈ TxM . It is well-known (see Exercise 3.9) that if
(M, g, J) has constant holomorphic curvature c then the curvature tensorR is given
by:

(3.4.16) Rx(v, w)u = − c
4

[
gx(v, u)w − gx(w, u)v − gx

(
v, Jx(u)

)
Jx(w)

+ gx
(
w, Jx(u)

)
Jx(v)− 2gx

(
v, Jx(w)

)
Jx(u)

]
,

for all x ∈M and all v, w, u ∈ TxM . If (M, g, J) is a semi-Kähler manifold with
constant holomorphic curvature and if P = FRu(TM) then (M,∇, P ) is infinites-
imally homogeneous. Namely, the inner torsion IP is zero (Example 2.11.8), the
torsion is zero and formula (3.4.16) shows that R is constant in frames that belong
to P .
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EXAMPLE 3.4.12. Let (M, g) be an n-dimensional semi-Riemannian manifold
where g has index r and let ξ ∈ Γ(TM) be a smooth vector field on M with
gx

(
ξ(x), ξ(x)

)
= 1, for all x ∈M . Let us endow Rn with the Minkowski bilinear

form 〈·, ·〉 of index r; denote by e1, . . . , en the canonical basis of Rn. Assume that
there exists a trilinear map R0 : Rn × Rn × Rn → Rn and a linear map L0 :
Rn → Rn such that for every x ∈ M and every linear isometry p : Rn → TxM
with p(e1) = ξ(x), the following conditions holds:

(a) R0 is p-related with Rx;
(b) p ◦ L0 = (∇ξ)x ◦ p.

Set P = FRo(TM ; e1, ξ), so that P is a G-structure on M with G = O(Rn; e1)
(Example 2.11.6). Then (M,∇, P ) is infinitesimally homogeneous. Namely, this
follows from Lemma 3.4.7, keeping in mind that, since ∇ is compatible with g,
the inner torsion IP can be identified with ∇ξ (Example 2.11.6). It will also be
interesting to consider the case whereM is oriented and (a) and (b) above hold only
for orientation preserving linear isometries p : Rn → TxM with p(e1) = ξ(x). In
this case, one considers the open subset of P consisting of orientation preserving
frames, which is a principal bundle with structural group:{

T ∈ O(Rn; e1) : det(T ) = 1
}
.

Interesting examples of Riemannian manifolds satisfying the conditions above are
the homogeneous 3-dimensional Riemannian manifolds with an isometry group of
dimension 4 (see, for instance, [7]).

DEFINITION 3.4.13. Fix objects M , M , π : E → M , Ê, ∇̂ and ∇ as in
Definition 3.4.2. Let G be a Lie subgroup of GL(Rn̄) and assume that Ê and TM
are endowed with G-structures P̂ and P , respectively. A (local) affine immersion
(f, L) of (M,E, ∇̂) into (M,∇) is said to be G-structure preserving if L is a
G-structure preserving isomorphism of vector bundles, where f∗TM is endowed
with the G-structure f∗P (recall Example 1.8.3).

THEOREM 3.4.14. Fix objects M , M , π : E → M , Ê, ∇̂, ∇, G, P̂ and P
as in Definition 3.4.13. Denote by T̂ , R̂, T , R, respectively the ι-torsion of ∇̂, the
curvature of ∇̂, the torsion of ∇ and the curvature of ∇, where ι : TM → Ê
denotes the inclusion map. Assume that (M,∇, P ) is infinitesimally homogeneous
and that for all x ∈ M , y ∈ M and every G-structure preserving map σ : Êx →
TyM , the following conditions hold:

(a) Adσ ◦ IP̂x = IPy ◦ σ|TxM ;
(b) T̂x : TxM × TxM → Êx is σ-related with T y : TyM × TyM → TyM ;
(c) R̂x : TxM × TxM × Êx → Êx is σ-related with Ry : TyM × TyM ×

TyM → TyM .
Then, for all x0 ∈ M , all y0 ∈ M and for every G-structure preserving map
σ0 : Êx0 → Ty0M there exists a G-structure preserving local affine immersion
(f, L) of (M,E, ∇̂) into (M,∇) whose domain is an open neighborhood U of x0

in M and such that f(x0) = y0, Lx0 = σ0.
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PROOF. Denote by ωM the connection form on FR(TM) corresponding to
the connection Hor

(
FR(TM)

)
associated to ∇ and by ωM the connection form

on FR(Ê) corresponding to the connection Hor
(
FR(Ê)

)
associated to ∇̂. Denote

also by θM the canonical form of FR(TM) and by θM the ι-canonical form of
FR(Ê), where ι : TM → Ê denotes the inclusion map. Let s : V → P̂ be a
smooth local section with x0 ∈ V . Denote by λP the 1-form on P obtained by
restricting theRn̄⊕gl(Rn̄)-valued 1-form (θM , ωM ) and by λV theRn̄⊕gl(Rn̄)-
valued 1-form on V defined by:

λV = s∗(θM , ωM ) = (s∗θM , s∗ωM ).

Since (M,∇, P ) is infinitesimally homogeneous, by Lemma 3.4.7, there exists a
linear map I0 : Rn̄ → gl(Rn̄)/g such that:

(3.4.17) Adp̄ ◦ I0 = IPy ◦ p̄,

for all y ∈ M and all p̄ ∈ Py. Let us show that for all x ∈ M and all p ∈ Px we
have:

(3.4.18) (Adp)−1 ◦ IP̂x = I0 ◦ p−1|TxM .

Namely, choose any y ∈ M , p̄ ∈ Py and set σ = p̄ ◦ p−1, so that σ : Êx → TyM
is G-structure preserving (notice that p̄ = σ ◦ p and use Remark 1.1.14). Then:

Adσ ◦ IP̂x = IPy ◦ σ|TxM = IPy ◦ p̄ ◦ p−1|TxM
(3.4.17)= Adp̄ ◦ I0 ◦ p−1|TxM ,

and:
Adσ ◦ IP̂x = Adp̄ ◦ (Adp)−1 ◦ IP̂x ,

so that:
Adp̄ ◦ (Adp)−1 ◦ IP̂x = Adp̄ ◦ I0 ◦ p−1|TxM ,

proving (3.4.18).
We divide the rest of the proof into steps.

Step 1. The thesis of the theorem follows once it is shown the existence of a
smooth map F : U → P defined in an open neighborhood U of x0 in V such
that F ∗λP = λV |U and F (x0) = σ0 ◦ s(x0).

Assume that we are given a smooth map F : U → P defined in an open
neighborhood U of x0 in V such that F ∗λP = λV |U and F (x0) = σ0 ◦ s(x0).
Set f = Π ◦ F : U → M , where Π denotes the projection of the principal
bundle P . We define a fiberwise linear map L : Ê|U → f∗TM by setting:

Lx = F (x) ◦ s(x)−1 : Êx −→ Tf(x)M = (f∗TM)x,

for all x ∈ U ; thus (3.4.3) holds. Clearly f(x0) = y0 and Lx0 = σ0. Since F
is smooth and:

F ∗(θM , ωM ) = λV |U =
(
(s|U )∗θM , (s|U )∗ωM

)
,



186 3. IMMERSION THEOREMS

Lemma 3.4.4 implies that the pair (f, L) is a local affine immersion of (M,E, ∇̂)
into (M,∇) with domain U . Since, for all x ∈ U , s(x) is in P̂x and F (x) is
in Pf(x), equality (3.4.3) implies that L is G-structure preserving (see Re-
mark 1.1.14).

Step 2. For all p ∈ P , the linear map λPp maps TpP isomorphically onto the
space:

(3.4.19)
{
(u,X) ∈ Rn̄ ⊕ gl(Rn̄) : I0(u) = X + g

}
.

Follows directly from Remark 2.11.9 and from equality (3.4.17).

Step 3. The 1-form λV takes values in the space (3.4.19).

Let x ∈ V and v ∈ TxM be fixed. We have:

λVx (v) =
(
(s∗θM )x(v), (s∗ωM )x(v)

) (2.9.12)=
(
s(x)−1 · v, (s∗ωM )x(v)

)
.

We have to check that:

I0

(
s(x)−1 · v

)
= (s∗ωM )x(v) + g.

By the definition of IP̂x , we have:

(Ads(x))
−1

(
IP̂x (v)

)
= (s∗ωM )x(v) + g.

But formula (3.4.18) with p = s(x) gives:

(Ads(x))
−1

(
IP̂x (v)

)
= I0

(
s(x)−1 · v

)
.

Step 4. There exists a smooth map F : U → P as in step 1.

We apply Proposition A.4.7. Observe that, since σ0 is G-structure pre-
serving and s(x0) ∈ P̂ , we have σ0 ◦ s(x0) ∈ P ; thus, once the hypothe-
ses of Proposition A.4.7 have been checked, its thesis will give us a smooth
map F : U → P defined in an open neighborhood U of x0 in V with
F (x0) = σ0 ◦ s(x0) and F ∗λP = λV |U . Let x ∈ V , y ∈ M , p̄ ∈ Py be
fixed. By step 3, the linear map λVx maps TxM to (3.4.19) and by step 2 the
linear map λPp̄ maps Tp̄P isomorphically onto (3.4.19); therefore, we get a
linear map:

τ = (λPp̄ )−1 ◦ λVx : TxM −→ Tp̄P .

In order to apply Proposition A.4.7, we need to check that:

(3.4.20) τ∗dλPp̄ = dλVx .

Obviously (3.4.20) is the same as:

(3.4.21) τ∗dθMp̄ = (s∗dθM )x, τ∗dωMp̄ = (s∗dωM )x.

Clearly:
τ∗θMp̄ = (s∗θM )x, τ∗ωMp̄ = (s∗ωM )x,
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so that (3.4.21) is equivalent to:

(3.4.22)
τ∗(dθM + ωM ∧ θM )p̄ =

(
s∗(dθM + ωM ∧ θM )

)
x
,

τ∗(dωM + 1
2 ω

M ∧ ωM )p̄ =
(
s∗(dωM + 1

2 ω
M ∧ ωM )

)
x
.

But, by (2.9.2) and (2.9.13), (3.4.22) is the same as:

(3.4.23) τ∗ΘM
p̄ = (s∗ΘM )x, τ∗ΩM

p̄ = (s∗ΩM )x,

where ΘM denotes the torsion form of FR(TM), ΩM denotes the curvature
form of the connection of FR(TM), ΘM denotes the ι-torsion form of FR(Ê)
and ΩM denotes the curvature form of the connection of FR(Ê). Equalities
(3.4.23) hold if and only if:

(3.4.24)
ΘM
p̄

(
τ(v), τ(w)

)
= ΘM

s(x)

(
dsx(v),dsx(w)

)
,

ΩM
p̄

(
τ(v), τ(w)

)
= ΩM

s(x)

(
dsx(v),dsx(w)

)
,

for all v, w ∈ TxM . Denote by Π̂ : FR(Ê) → M the projection; using
(2.9.20) and (2.9.14), keeping in mind that dΠ̂s(x) ◦ dsx is the identity of
TxM , we obtain that (3.4.24) is equivalent to:

(3.4.25)
p̄−1

(
T y

(
dΠp̄[τ(v)],dΠp̄[τ(w)]

))
= s(x)−1

(
T̂x(v, w)

)
,

p̄−1 ◦Ry
(
dΠp̄[τ(v)],dΠp̄[τ(w)]

)
◦ p̄ = s(x)−1 ◦ R̂x(v, w) ◦ s(x).

Let us compute dΠp̄ ◦ τ : TxM → TyM . Given u ∈ Rn̄, X ∈ gl(Rn̄) with
(u,X) in (3.4.19) then (λPp̄ )−1(u,X) = ζ, where ζ ∈ Tp̄P satisfies:

θMp̄ (ζ) = p̄−1
(
dΠp̄(ζ)

)
= u;

thus: (
dΠp̄ ◦ (λPp̄ )−1

)
(u,X) = p̄(u).

Given v ∈ TxM then, using (2.9.12), we see that the first component of λVx (v)
is s(x)−1 · v; therefore:

(dΠp̄ ◦ τ)(v) =
(
dΠp̄ ◦ (λPp̄ )−1 ◦ λVx

)
(v) =

(
p̄ ◦ s(x)−1

)
(v).

Setting σ = p̄ ◦ s(x)−1 : Êx → TyM then (3.4.25) is equivalent to:

p̄−1
(
T y

(
σ(v), σ(w)

))
= s(x)−1

(
T̂x(v, w)

)
,

p̄−1 ◦Ry
(
σ(v), σ(w)

)
◦ p̄ = s(x)−1 ◦ R̂x(v, w) ◦ s(x),

which is the same as:

(3.4.26)
T y

(
σ(v), σ(w)

)
= σ

(
T̂x(v, w)

)
,

Ry
(
σ(v), σ(w)

)
= σ ◦ R̂x(v, w) ◦ σ−1.

Finally, since σ is G-structure preserving, our hypotheses say that σ∗T y = T̂x
and σ∗Ry = R̂x, i.e., (3.4.26) holds. This concludes the proof. �
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3.4.1. The global affine immersions theorem.

THEOREM 3.4.15. Under the assumptions of Theorem 3.4.14, if M is simply-
connected and (M,∇) is geodesically complete then, for all x0 in M , all y0 ∈
M and for all G-structure preserving map σ0 : Êx0 → Ty0M there exists a G-
structure preserving affine immersion (f, L) of (M,E, ∇̂) into (M,∇) such that
f(x0) = y0, Lx0 = σ0. Moreover if M is connected then, by Corollary 3.4.5, such
affine immersion (f, L) is unique.

LEMMA 3.4.16. Let (M, ∇̂), (M,∇) be n-dimensional affine manifolds, G be
a Lie subgroup of GL(Rn), P̂ ⊂ FR(TM) be aG-structure onM , P ⊂ FR(TM)
be a G-structure on M and s : V → P̂ be a smooth local section of P̂ . Denote
by θM , ωM , θM , ωM respectively the canonical form of FR(TM), the connection
form of FR(TM), the canonical form of FR(TM) and the connection form of
FR(TM). Set:

λV = (s∗θM , s∗ωM )

and denote by λP the restriction to P of (θM , ωM ). Let γ : I → V , µ : I →M be
geodesics and µ̃ : I → P be a parallel lifting of µ. Assume that s ◦ γ is a parallel
lifting of γ and that:

(3.4.27) s
(
γ(t0)

)−1 · γ′(t0) = µ̃(t0)−1 · µ′(t0),
for some t0 ∈ I . Then:

(3.4.28) λPµ̃(t)

(
µ̃′(t)

)
= λVγ(t)

(
γ′(t)

)
,

for all t ∈ I .

PROOF. Since s ◦ γ and µ̃ are both parallel, we have:

(s∗ωM )γ(t)
(
γ′(t)

)
= ωM(s◦γ)(t)

(
(s ◦ γ)′(t)

)
= 0, ωMµ̃(t)

(
µ̃′(t)

)
= 0,

for all t ∈ I , so that (3.4.28) is equivalent to:

(s∗θM )γ(t)
(
γ′(t)

)
= θMµ̃(t)

(
µ̃′(t)

)
,

for all t ∈ I . By (2.9.12), we have:

(s∗θM )γ(t)
(
γ′(t)

)
= s

(
γ(t)

)−1 · γ′(t),
for all t ∈ I; moreover:

θMµ̃(t)

(
µ̃′(t)

)
= µ̃(t)−1 · µ′(t),

for all t ∈ I . Since γ and µ are geodesics, the curves γ′ : I → TM and µ′ : I →
TM are parallel; since s ◦ γ : I → FR(TM) and µ̃ : I → FR(TM) are also
parallel, the maps:

I 3 t 7−→ s
(
γ(t)

)−1 · γ′(t) ∈ Rn, I 3 t 7−→ µ̃(t)−1 · µ′(t) ∈ Rn

are constant and therefore (3.4.27) implies that:

s
(
γ(t)

)−1 · γ′(t) = µ̃(t)−1 · µ′(t),
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for all t ∈ I . The conclusion follows. �

LEMMA 3.4.17. Let (M, ∇̂), (M,∇) be n-dimensional affine manifolds, G be
a Lie subgroup of GL(Rn), P̂ ⊂ FR(TM) be aG-structure onM , P ⊂ FR(TM)
be a G-structure on M ; assume that (M,∇) is geodesically complete. Denote by
T̂ , R̂, T , R, respectively the torsion of ∇̂, the curvature of ∇̂, the torsion of ∇
and the curvature of ∇. Assume that for all x ∈M , y ∈M and every G-structure
preserving map σ : TxM → TyM , the following conditions hold:

(a) Adσ ◦ IP̂x = IPy ◦ σ;
(b) T̂x : TxM×TxM → TxM is σ-related with T y : TyM×TyM → TyM ;
(c) R̂x : TxM×TxM×TxM → TxM is σ-related withRy : TyM×TyM×

TyM → TyM .

Let x1 ∈ M be fixed and let V0 be an open subset of Tx1M that is star-shaped at
the origin and such that expx1

maps V0 diffeomorphically onto an open subset V
of M . Then, for all x0 ∈ V , all y0 ∈M and for every G-structure preserving map
σ0 : Tx0M → Ty0M there exists a G-structure preserving affine map f : V →M
such that f(x0) = y0, dfx0 = σ0.

REMARK 3.4.18. Observe that, if M is nonempty, conditions (a), (b) and (c)
in the statement of Lemma 3.4.17 imply that (M,∇, P ) is infinitesimally homo-
geneous. A similar observation does not holds in the case of Theorem 3.4.14,
because the relations that appear in conditions (a), (b) and (c) in the statement of
Theorem 3.4.14 involve restrictions of the tensors.

PROOF. By Lemma 2.2.30, there exists a smooth local section s : V → P̂

such that for all v ∈ Tx1M , the curve t 7→ s
(
expx1

(tv)
)
∈ P̂ is a parallel lifting

of the geodesic t 7→ expx1
(tv). Define θM , ωM , θM , ωM , λV and λP as in the

statement of Lemma 3.4.16. Our strategy is to employ Proposition A.4.10 to obtain
a smooth map F : V → P such that F (x0) = σ0 ◦ s(x0) and F ∗λP = λV . Once
this map F is obtained, we set f = Π ◦ F , where Π : P → M denotes the
projection; then, arguing as in step 1 of the proof of Theorem 3.4.14, it will follow
that f is a G-structure preserving affine map such that f(x0) = y0, dfx0 = σ0.
Let us check the validity of the hypotheses of Proposition A.4.10. Hypothesis (a)
is obtained as in the proof of steps 2 and 3 of Theorem 3.4.14 and hypothesis (b)
is obtained as in the proof of step 4 of Theorem 3.4.14. Hypothesis (c) (i.e., the
simply-connectedness of V ) follows from the fact that V is homeomorphic to a
star-shaped open subset of Tx1M . To prove that hypothesis (d) holds, we consider
the set C of all geodesics γ : [0, 1] → V such that s ◦ γ is a parallel lifting of γ.
The fact that C is rich follows by considering the map:

H : [0, 1]× V 3 (t, x) 7−→ expx1

(
t exp−1

x1
(x)

)
∈ V.

Finally, given γ ∈ C and p̄ ∈ P , we have to show that there exists a smooth curve
µ̃ : [0, 1] → P such that µ̃(0) = p̄ and such that (3.4.28) holds, for all t ∈ [0, 1].
Since (M,∇) is geodesically complete, there exists a geodesic µ : [0, 1] → M
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with µ(0) = Π(p̄) and:

µ′(0) =
[
p̄ ◦ s

(
γ(0)

)−1] · γ′(0).

Let µ̃ : [0, 1]→ P be a parallel lifting of µ with µ̃(0) = p̄ (Proposition 2.2.28). By
Lemma 3.4.16, (3.4.28) holds, for all t ∈ [0, 1]. This concludes the proof. �

We can now prove a global version of Theorem 3.4.14 in codimension zero.

PROPOSITION 3.4.19. Under the conditions of Lemma 3.4.17, if M is simply-
connected then for all x0 ∈ M , all y0 ∈ M and for every G-structure preserving
map σ0 : Tx0M → Ty0M there exists a G-structure preserving affine map f :
M → M such that f(x0) = y0 and dfx0 = σ0. If M is connected then such f is
unique, by Corollary 3.4.5.

PROOF. We may assume without loss of generality that M is connected. Our
plan is to use the globalization theory explained in Section B.4. Let us define a
pre-sheaf on M as follows: for every open subset U of M , P(U) is the set of all
G-structure preserving affine maps f : U →M and given open subsets U, V ⊂M
with V ⊂ U , the map PU,V : P(U) → P(V ) is given by f 7→ f |V . The fact
that the pre-sheaf P has the localization property is trivial. The fact that P has the
uniqueness property follows from Corollary 3.4.5. Moreover, given x1 ∈ M , if
V0 is an open subset of Tx1M , star-shaped at the origin, such that expx1

maps
V0 diffeomorphically onto an open subset V of M then it follows easily from
Lemma 3.4.17 that V has the extension property with respect to P. Thus, P has
the extension property. We are therefore under the hypotheses of Corollary B.4.22.
Now, let f̄ : V → M be a G-structure preserving affine map defined on a con-
nected open neighborhood V of x0 with f̄(x0) = y0 and df̄x0 = σ0 (the existence
of f̄ can be obtained either from Lemma 3.4.17 or from Theorem 3.4.14). By
Corollary B.4.22, there exists f ∈ P(X) such that f |V = f̄ . This concludes the
proof. �

REMARK 3.4.20. Under the conditions of Proposition 3.4.19, if in addition
(M,∇) is geodesically complete, M is simply-connected and both M and M are
connected then the map f given by the thesis of the proposition is a smooth diffeo-
morphism. Namely, one can interchange the roles of M and M to obtain a smooth
inverse for the map f .

PROPOSITION 3.4.21. Let (M,∇) be an affine manifold endowed with a G-
structure P . If M is connected and simply-connected, (M,∇) is geodesically
complete and (M,∇, P ) is infinitesimally homogeneous then (M,∇, P ) is a ho-
mogeneous affine manifold with G-structure.

PROOF. Take (M,∇, P ) = (M,∇, P ) in Proposition 3.4.19 and use Re-
mark 3.4.20. �

PROOF OF THEOREM 3.4.15. We can assume without loss of generality that
M is connected. We will first prove the theorem under the additional assump-
tion that M is simply-connected so that, by Proposition 3.4.21, (M,∇, P ) is a
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homogeneous affine manifold with G-structure. We will use the globalization the-
ory explained in Section B.4. Let us define a pre-sheaf on M as follows: for
every open subset U of M , P(U) is the set of all G-structure preserving local
affine immersions (f, L) of (M,E, ∇̂) into (M,∇) with domain U ; given open
subsets U, V ⊂ M with V ⊂ U , the map PU,V : P(U) → P(V ) is given by
(f, L) 7→ (f |V , L|Ê|V ). The fact that the pre-sheaf P has the localization property
is trivial. The fact that P has the uniqueness property follows from Corollary 3.4.5.
Let us now show that every open subset U of M such that P(U) is nonempty has
the extension property with respect to P; since, by Theorem 3.4.14, the set of such
open sets U coverM , it will follow that the pre-sheaf P has the extension property.
Let then U be an open subset of M such that P(U) is nonempty and let (f̂ , L̂) in
P(U) be fixed. Given a nonempty connected open subset V of U and an affine
immersion (f, L) in P(V ), we show that (f, L) admits an extension to U . Choose
any x0 ∈ V ; the linear map:

(3.4.29) Lx0 ◦ L̂−1
x0

: Tf̂(x0)M −→ Tf(x0)M

is G-structure preserving. Thus, by the homogeneity of (M,∇, P ), there exists a
affine G-structure preserving diffeomorphism g : M → M such that g

(
f̂(x0)

)
=

f(x0) and dgx0 is equal to (3.4.29). Then:

(f̄ , L̄) =
(
g ◦ f̂ , (f̂∗

←−
dg) ◦ L̂

)
is in P(U) and f̄(x0) = f(x0), L̄x0 = Lx0 . Since V is connected, by Corol-
lary 3.4.5, the restriction of (f̄ , L̄) to V is equal to (f, L). This concludes the
proof that P has the extension property. We are therefore under the hypotheses of
Corollary B.4.22 which allows us to extend a G-structure preserving local affine
immersion given by Theorem 3.4.14 to the desired G-structure preserving affine
immersion of (M,E, ∇̂) into (M,∇). The general case in whichM is not simply-
connected can be obtained by considering the universal covering of M . �

3.5. Isometric immersions into homogeneous semi-Riemannian manifolds

DEFINITION 3.5.1. Suppose we are given the following data:
• an n̄-dimensional semi-Riemannian manifold (M, ḡ), where the semi-

Riemannian metric ḡ has index r̄;
• an n-dimensional semi-Riemannian manifold (M, g), where the semi-

Riemannian metric g has index r;
• a vector bundle π : E → M with typical fiber Rk endowed with a semi-

Riemannian structure gE of index s, where n̄ = n+ k and r̄ = r + s;
• a connection ∇E on E compatible with gE ;
• a smooth section α0 of Lins

2(TM,E).
By a local solution of the semi-Riemannian isometric immersion problem corre-
sponding to the data above we mean a pair (f, S), where f : U → M is an
isometric immersion defined in an open subset U of M and S : E|U → f⊥ is an
isomorphism of vector bundles such that:
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• ḡf(x)

(
Sx(e), Sx(e′)

)
= gEx (e, e′), for all x ∈ U and all e, e′ ∈ Ex;

• S is connection preserving if E is endowed with ∇E and f⊥ is endowed
with the normal connection ∇⊥;
• S carries α0 to the second fundamental form α of the isometric immer-

sion f , i.e., Sx ◦ α0
x = αx, for all x ∈ U .

We call U the domain of the local solution (f, S). By a solution of the semi-
Riemannian isometric immersion problem we mean a local solution (f, S) whose
domain is M .

Consider the vector bundle Ê = TM ⊕E endowed with the semi-Riemannian
structure ĝ whose restrictions to TM andE are g and gE respectively and such that
TM andE are orthogonal. LetG be a Lie subgroup of Or̄(Rn̄), P̂ be aG-structure
on Ê and P be a G-structure on M such that P̂ ⊂ FRo(Ê) and P ⊂ FRo(TM).
A local solution (f, S) of the semi-Riemannian isometric immersion problem with
domain U ⊂ M is said to be G-structure preserving if for all x ∈ U , the linear
isomorphism:

dfx ⊕ Sx : Êx = TxM ⊕ Ex −→ dfx(TxM)⊕ f⊥x = Tf(x)M

is G-structure preserving.

THEOREM 3.5.2. Suppose we are given data as in Definition 3.5.1; denote
by ∇ the Levi-Civita connection of (M, g) and by ∇ the Levi-Civita connection
of (M, ḡ). Consider the vector bundle Ê = TM ⊕ E endowed with the semi-
Riemannian structure ĝ whose restrictions to TM and E are g and gE respec-
tively and such that TM and E are orthogonal. Let ∇̂ be the connection on Ê
that is compatible with ĝ and whose components are ∇, ∇E and α0 (see Subsec-
tion 2.8.1). Let G be a Lie subgroup of Or̄(Rn̄), P̂ be a G-structure on Ê and P
be a G-structure on M such that P̂ ⊂ FRo(Ê) and P ⊂ FRo(TM). Assume that
(M,∇, P ) is infinitesimally homogeneous and that for all x ∈ M , y ∈ M and
every G-structure preserving map σ : Êx → TyM , the following conditions hold:

(a) σ relates the inner torsion of P̂ with the inner torsion of P , i.e.:

Adσ ◦ IP̂x = IPy ◦ σ;

(b) the Gauss equation holds:

ḡy
[
Ry

(
σ(v), σ(w)

)
σ(u), σ(z)

]
= gx

(
Rx(v, w)u, z

)
− gEx

(
α0
x(w, u), α

0
x(v, z)

)
+ gEx

(
α0
x(v, u), α

0
x(w, z)

)
,

for all u, v, w, z ∈ TxM ;
(c) the Codazzi equation holds:

ḡy
[
Ry

(
σ(v), σ(w)

)
σ(u), σ(e)

]
= gEx

(
(∇⊗α0)x(v, w, u), e

)
− gEx

(
(∇⊗α0)x(w, v, u), e

)
,

for all u, v, w ∈ TxM and all e ∈ Ex, where ∇⊗ denotes the connection
induced by ∇ and ∇E on Lin2(TM,E);
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(d) the Ricci equation holds:

ḡy
[
Ry

(
σ(v), σ(w)

)
σ(e), σ(e′)

]
= gEx

(
REx (v, w)e, e′

)
+ gx

(
α0
x(v)

∗ · e, α0
x(w)∗ · e′

)
− gx

(
α0
x(w)∗ · e, α0

x(v)
∗ · e′

)
,

for all v, w ∈ TxM and all e, e′ ∈ Ex, where RE denotes the curvature
tensor of ∇E .

Then, for all x0 ∈ M , all y0 ∈ M and for every G-structure preserving map
σ0 : Êx0 → Ty0M there exists a G-structure preserving local solution (f, S)
of the semi-Riemannian isometric immersion problem whose domain is an open
neighborhood U of x0 such that f(x0) = y0,

(3.5.1) σ0 = dfx0⊕Sx0 : Êx0 = Tx0M⊕Ex0 −→ dfx0(Tx0M)⊕f⊥x0
= Ty0M.

If M is connected and simply-connected and if (M,∇) is geodesically complete
then one can find a unique G-structure preserving global solution (f, S) of the
semi-Riemannian isometric immersion problem satisfying the initial condition above.

PROOF. This is an application of Theorems 3.4.14 and 3.4.15. First, notice
that if (f, L) is a G-structure preserving local affine immersion of (M,E, ∇̂) into
(M,∇) then, setting S = L|E : E → f⊥, the pair (f, S) is a G-structure pre-
serving local solution of the semi-Riemannian isometric immersion problem; con-
versely, if (f, S) is a G-structure preserving local solution of the semi-Riemannian
isometric immersion problem then, setting L =

←−
df ⊕ S, the pair (f, L) is a G-

structure preserving local affine immersion of (M,E, ∇̂) into (M,∇). Now ob-
serve that:

• hypothesis (a) of Theorem 3.4.14 is the same as hypothesis (a) of this
theorem;
• hypothesis (b) of Theorem 3.4.14 follows from the symmetry of the Levi-

Civita connection ∇ and from the symmetry of α0 (see Example 2.8.3);
• hypothesis (c) of Theorem 3.4.14 follows from the Gauss, Codazzi and

Ricci equations (Proposition 2.8.1).
This concludes the proof. �

Let us see some explicit examples of applications of Theorem 3.5.2, by looking
closer at its hypotheses in particular situations.

EXAMPLE 3.5.3. Assume that (M, ḡ) has constant sectional curvature c ∈ R
(recall Example 3.4.8). Set G = Or̄(Rn̄), P̂ = FRo(Ê) and P = FRo(TM).
Then (M,∇, P ) is infinitesimally homogeneous. We have IP̂ = 0 and IP =
0 because the connections ∇̂ and ∇ are compatible with the semi-Riemannian
structures ĝ and ḡ, respectively (Example 2.11.3). Thus, hypothesis (a) of The-
orem 3.5.2 is automatically satisfied. By (3.4.12), the lefthand side of the Gauss
equation becomes:

c
(
gx(w, u)gx(v, z)− gx(v, u)gx(w, z)

)
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and the lefthand sides of the Codazzi and Ricci equations vanish. Thus, in this case,
Theorem 3.5.2 gives us the classical fundamental theorem of isometric immersions
(see for instance [5]). More explicitly, for all x0 ∈ M , all y0 ∈ M and for every
linear isometry σ0 : Êx0 → Ty0M there exists a local solution (f, S) of the semi-
Riemannian isometric immersion problem whose domain is an open neighborhood
U of x0 such that f(x0) = y0 and (3.5.1) holds.

EXAMPLE 3.5.4. Let (M1, g
1), (M2, g

2) be semi-Riemannian manifolds with
dim(Mi) = ni, n−(gi) = ri, i = 1, 2. Assume that (Mi, g

i) has constant sectional
curvature ci ∈ R, i = 1, 2. Consider the productM = M1×M2 endowed with the
metric ḡ obtained by taking the orthogonal sum of g1 and g2 (as in Example 3.4.10).
Set n̄ = n1 + n2, r̄ = r1 + r2,

P = FRo
(
TM ;Rn1 ⊕ {0}n2 ,pr∗1(TM1)

)
,

where pr1 : M → M1 denotes the first projection and Rn̄ = Rn1 ⊕ Rn2 is
endowed with the orthogonal sum of the Minkowski bilinear forms of indexes r1
and r2. Then P is a G-structure on M with:

G = O
(
Rn̄;Rn1 ⊕ {0}n2

) ∼= Or1(R
n1)×Or2(R

n2)

and (M,∇, P ) is infinitesimally homogeneous. Let F be a vector subbundle of Ê
whose fibers are n1-dimensional and set:

P̂ = FRo(Ê;Rn1 ⊕ {0}n2 , F ).

Let us assume that P̂x is nonempty2 for all x ∈ M , so that P̂ is a G-structure
on Ê (Example 1.8.5). Since IP = 0, hypothesis (a) of Theorem 3.5.2 means
that IP̂ = 0, i.e., the covariant derivative ∇̂ of sections of F are sections of F
(Example 2.11.5). Denote by πF : Ê → F , πF

⊥
: Ê → F⊥ the projections

corresponding to the direct sum decomposition Ê = F ⊕F⊥. The lefthand side of
the Gauss equation becomes (recall (3.4.15)):

c1
[
ĝx

(
πF (w), πF (u)

)
ĝx

(
πF (v), πF (z)

)
− ĝx

(
πF (v), πF (u)

)
ĝx

(
πF (w), πF (z)

)]
+ c2

[
ĝx

(
πF
⊥
(w), πF

⊥
(u)

)
ĝx

(
πF
⊥
(v), πF

⊥
(z)

)
− ĝx

(
πF
⊥
(v), πF

⊥
(u)

)
ĝx

(
πF
⊥
(w), πF

⊥
(z)

)]
.

The lefthand side of the Codazzi and Ricci equations are zero. The thesis of The-
orem 3.5.2 becomes: for all x0 ∈ M , all y0 = (y0

1, y
0
2) ∈ M and for every linear

isometry σ0 : Êx0 → Ty0M with σ0(Fx0) = Ty01M1 ⊕ {0} there exists a local so-
lution (f, S) of the semi-Riemannian isometric immersion problem whose domain
is an open neighborhood U of x0 such that f(x0) = y0, satisfying (3.5.1) and such
that:

(dfx ⊕ Sx)(Fx) = T(pr1◦f)(x)M1 ⊕ {0},

2This is equivalent to a compatibility condition between indexes of suitable restrictions of ĝ. It
holds automatically, for instance, in the Riemannian case.
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for all x ∈ U .

EXAMPLE 3.5.5. Assume thatM = A is a Lie group and that ḡ is a left invari-
ant semi-Riemannian metric on M . Then the connection ∇ is also left invariant
and it is given by (3.4.13), where Γ : a→ Lin(a) is equal to (see (2.11)):

(3.5.2) Γ(X) · Y = [X,Y ]− (adY )∗(X)− (adX)∗(Y ),

for all X,Y ∈ a, where adX(Y ) = [X,Y ]. Choose a linear isometry p0 : Rn̄ → a

and consider the smooth global section s : M → FRo(TM) defined by (3.4.14).
Then P = s(M) is a G-structure on M with G = {IdRn̄} and (M,∇, P ) is
(infinitesimally) homogeneous. Let ŝ : M → FRo(Ê) be a global smooth frame
of Ê, so that P̂ = ŝ(M) is a G-structure on Ê. Hypothesis (a) of Theorem 3.5.2
means that for all x ∈M the diagram:

TxM
Γ̂x //

σ|TxM
��

Lin(Êx)

Adσ
��

a
Γ

// Lin(a)

commutes, where σ = p0 ◦ ŝ(x)−1 : Êx → a, Γ̂ denotes the Christoffel tensor of
∇̂ with respect to ŝ and Γ is given by (3.5.2). In the lefthand side of the Gauss,
Codazzi and Ricci equations, one should replace ḡy by ḡ1, Ry by R1 and σ should
be understood as p0 ◦ ŝ(x)−1; R1 is given by:

R1(X,Y ) = [Γ(X),Γ(Y )]− Γ
(
[X,Y ]

)
,

for all X,Y ∈ a. The thesis of Theorem 3.5.2 becomes: for all x0 ∈ M and
all y0 ∈ M there exists a local solution (f, S) of the semi-Riemannian isometric
immersion problem whose domain is an open neighborhood U of x0 such that
f(x0) = y0 and such that:

(dfx ⊕ Sx) ◦ ŝ(x) = s
(
f(x)

)
,

for all x ∈ U .

EXAMPLE 3.5.6. Assume that M is endowed with an almost complex struc-
ture J such that (M, ḡ, J) is a semi-Kähler manifold with constant holomorphic
curvature c ∈ R (recall Example 3.4.11). Set P = FRu(TM) and G = Ur̄(Rn̄),
so that P is a G-structure on M and (M,∇, P ) is infinitesimally homogeneous.
Let J be an almost complex structure on M and JE be an almost complex struc-
ture on E; we define an almost complex structure Ĵ on Ê by setting Ĵx(v, e) =(
Jx(v), JEx (e)

)
, for all x ∈ M , v ∈ TxM , e ∈ Ex. Assume that, for all x ∈ M ,

Jx and JEx are anti-symmetric with respect to gx and gEx , respectively, so that Ĵx
is anti-symmetric with respect to ĝ. Set P̂ = FRu(Ê), so that P̂ is a G-structure
on Ê. We have IP = 0 because the connection ∇ is compatible with the semi-
Riemannian structure ḡ and J is parallel (Example 2.11.8). Thus, hypothesis (a)
of Theorem 3.5.2 means that Ĵ is parallel with respect to ∇̂. An easy computation
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shows that Ĵ is parallel with respect to ∇̂ if and only if the following conditions
hold:

• J is parallel with respect to∇, i.e., (M, g, J) is Kähler;
• JE is parallel with respect to∇E ;
• α0 is C-bilinear, i.e., α0

x(Jx·, ·) = α0
x(·, Jx·) = JEx ◦ α0, for all x ∈M .

By (3.4.16), the lefthand side of the Gauss equation becomes:

− c
4

[
gx(v, u)gx(w, z)− gx(w, u)gx(v, z)− gx

(
v, Jx(u)

)
gx

(
Jx(w), z

)
+ gx

(
w, Jx(u)

)
gx

(
Jx(v), z

)
− 2gx

(
v, Jx(w)

)
gx

(
Jx(u), z

)]
,

and the lefthand sides of the Codazzi and Ricci equations vanish. Thus, in this
case, Theorem 3.5.2 gives us a fundamental theorem for isometric immersions of
Kähler manifolds. More explicitly, for all x0 ∈ M , all y0 ∈ M and for every
C-linear isometry σ0 : Êx0 → Ty0M (i.e., Jy0 ◦ σ0 = σ0 ◦ Ĵx0) there exists a
local solution (f, S) of the semi-Riemannian isometric immersion problem whose
domain is an open neighborhood U of x0 such that f(x0) = y0, such that (3.5.1)
holds and dfx ⊕ Sx : Êx → Tf(x)M is C-linear, for all x ∈ U .

EXAMPLE 3.5.7. Assume that (M, ḡ) is endowed with a smooth vector field
ξ such that ḡ(ξ, ξ) ≡ 1 and such that the conditions described in Example 3.4.12
hold. Set P = FRo(TM ; e1, ξ), so that P is a G-structure on M with G =
O(Rn̄; e1). Then (M,∇, P ) is infinitesimally homogeneous. Let ε : M → Ê be a
smooth global section of Ê (ε is determined by a smooth vector field on M and by
a smooth global section ofE) and assume that ĝ(ε, ε) ≡ 1. Set P̂ = FRo(Ê; e1, ε),
so that P̂ is a G-structure on Ê. Hypothesis (a) in Theorem 3.5.2 means that for
every x ∈M and every p ∈ P̂x, we have:

p ◦ L0|p−1(TxM) = (∇̂ε)x ◦ p|p−1(TxM).

The lefthand side of the Gauss equation becomes:

〈R0

(
p−1(v), p−1(w)

)
p−1(u), p−1(z)〉,

where p ∈ P̂x is chosen arbitrarily. Similar considerations hold for the Codazzi
and Ricci equations. The thesis of Theorem 3.5.2 becomes: for all x0 ∈ M , all
y0 ∈ M and for every linear isometry σ0 : Êx0 → Ty0M with σ0

(
ε(x0)

)
= ξ(y0)

there exists a local solution (f, S) of the semi-Riemannian isometric immersion
problem whose domain is an open neighborhood U of x0 such that f(x0) = y0,
satisfying (3.5.1) and such that:

(dfx ⊕ Sx)
(
ε(x)

)
= ξ

(
f(x)

)
,

for all x ∈ U . Considering the case where (M, ḡ) is a homogeneous 3-dimensional
Riemannian manifold with an isometry group of dimension 4, we obtain the results
concerning the existence of isometric immersions that appear in [7].
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Exercises

Affine manifolds.

EXERCISE 3.1. Let M ′, M be affine manifolds and f : M ′ →M be a smooth
diffeomorphism. Given a vector field X on M ′, we denote by f∗X the vector field
on M defined by:

f∗X = df ◦X ◦ f−1.

Show that if f is affine if and only if:

f∗(∇XY ) = ∇f∗X(f∗Y ),

for all X,Y ∈ Γ(TM). Conclude that if f is affine then also f−1 is affine.

EXERCISE 3.2. Let M ′, M be differentiable manifolds and f : M ′ → M be
a smooth diffeomorphism. Given a connection ∇′ on M ′, show that there exists a
unique connection ∇ on M such that f is affine.

EXERCISE 3.3. Let M ′, M be affine manifolds and f : M ′ →M be a smooth
local diffeomorphism. Consider the smooth map (df)∗ defined in (1.8.1). Show
that f is affine if and only if:

d
(
(df)∗

)
p

[
Horp

(
FR(TM ′)

)]
= Horq

(
FR(TM)

)
,

for all p ∈ FR(TM ′), where q = (df)∗(p).

EXERCISE 3.4. Let M ′, M be affine manifolds and f : M ′ →M be a smooth
local diffeomorphism. Consider the smooth map (df)∗ defined in (1.8.1). Denote
by ω, ω′ respectively the connection forms on FR(TM) and on FR(TM ′). Denote
also by θ, θ′ respectively the canonical forms of FR(TM) and of FR(TM ′). Show
that:

• the pull-back of θ by (df)∗ is equal to θ′;
• f is affine if and only if the pull-back of ω by (df)∗ is equal to ω′.

Homogeneous affine manifolds.

EXERCISE 3.5. LetG be a Lie group andH be a closed subgroup ofG; denote
by g, h respectively the Lie algebras ofG andH . Let m be a complement of h on g.
We identify the tangent space ofG/H at 1̄ = 1H via the differential of the quotient
mapG→ G/H and we consider the isotropic representation Ad : H → GL(m) of
H on m. Show that ifD is a (necessarily smooth)G-invariant distribution onG/H
then D1̄ ⊂ m is an Ad-invariant subspace of m. Conversely, if d is an Ad-invariant
subspace of m then there exists a unique G-invariant distribution D on G/H with
D1̄ = d.

EXERCISE 3.6. Let G be a Lie group, V be a real finite-dimensional vector
space and ρ : G→ GL(V ) a smooth representation of G on V . Denote by ρ̄ : g→
gl(V ) the differential of ρ at the identity. Given a subspace W of V , show that if
ρ(g)(W ) = W , for all g ∈ G then ρ̄(X)(W ) ⊂ W , for all X ∈ g. Conversely, if
G is connected, show that if ρ̄(X)(W ) ⊂ W , for all X ∈ g then ρ(g)(W ) = W ,
for all g ∈ G.
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Affine immersions in homogeneous spaces.

EXERCISE 3.7. Let V , V ′, V ′′ be real vector spaces and let:

σ : V −→ V ′, σ′ : V ′ −→ V ′′

be linear maps. Given multilinear maps:

B ∈ Link(V, V ), B′ ∈ Link(V ′, V ′), B′′ ∈ Link(V ′′, V ′′),

show that:
• if B is σ-related with B′ and B′ is σ′-related with B′′ then B is (σ′ ◦ σ)-

related with B′′;
• if σ is an isomorphism and B is σ-related with B′ then B′ is σ−1-related

with B.

EXERCISE 3.8. Let V be a real-finite dimensional vector space, g : V × V →
R be a nondegenerate symmetric bilinear form on V and R : V × V × V → V be
a trilinear map such that:

R(v, w)u = −R(w, v)u, g
(
R(v, w)u, z

)
= −g

(
R(v, w)z, u

)
,

R(v, w)u+R(u, v)w +R(w, u)v = 0,

for all v, w, u, z ∈ V . Given c ∈ R, show that the following conditions are equiv-
alent:

• g
(
R(v, w)v, w

)
= c

(
g(v, w)2 − g(v, v)g(w,w)

)
, for all v, w ∈ V ;

• R(v, w)u = c
(
g(w, u)v − g(v, u)w

)
, for all v, w, u ∈ V .

EXERCISE 3.9. Let V be a real-finite dimensional vector space, g : V × V →
R be a nondegenerate symmetric bilinear form on V , J be a g-anti-symmetric
complex structure on V and R : V × V × V → V be a trilinear map such that:

R(v, w)u = −R(w, v)u, g
(
R(v, w)u, z

)
= −g

(
R(v, w)z, u

)
,

R(v, w)u+R(u, v)w +R(w, u)v = 0,

R(v, w)J(u) = J
(
R(v, w)u

)
,

for all v, w, u, z ∈ V . Given c ∈ R, show that the following conditions are equiv-
alent:

• g
[
R

(
v, J(v)

)
v, J(v)

]
= −cg(v, v)2, for all v ∈ V ;

• R(v, w)u = − c
4

[
g(v, u)w − g(w, u)v − g

(
v, J(u)

)
J(w) +

g
(
w, J(u)

)
J(v)− 2g

(
v, J(w)

)
J(u)

]
, for all v, w, u ∈ V .



APPENDIX A

Vector fields and differential forms

A.1. Differentiable manifolds

Basic knowledge of the theory of differentiable manifolds (standard references
for the subject are [1, 3, 9, 12]) is a prerequisite for reading this book. Many au-
thors define differentiable manifold by starting with a topological space and then
introducing a differentiable atlas. In many situations (for instance, Sections 1.3
and 1.4), one does not have a natural topology to star with and thus it is easier to
define differentiable manifolds by starting only with a set and then, later, introduc-
ing a topology that is induced by the atlas. We adopt this point of view and, for
the reader’s convenience, we present here a complete definition of differentiable
manifold.

Let M be a set. By an n-dimensional local chart (or, more simply, a local
chart) on M we mean a bijective map ϕ : U → Ũ where U is an arbitrary subset
ofM and Ũ is an open subset ofRn. Given n-dimensional local charts ϕ : U → Ũ

and ψ : V → Ṽ on M then the transition map from ϕ to ψ is the bijective map:

ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V ).

We say that ϕ and ψ are compatible if ϕ(U ∩ V ) and ψ(U ∩ V ) are both open in
Rn and if the transition map ψ ◦ ϕ−1 is a smooth diffeomorphism (by “smooth”
we will always mean “of class C∞”). Notice that the local charts ϕ and ψ are
compatible when their domains are disjoint. By an n-dimensional atlas (or, more
simply, an atlas) on M we mean a set A of n-dimensional local charts on M such
that:

• the union of the domains of the local charts ϕ ∈ A is M ;
• given ϕ,ψ ∈ A then ϕ and ψ are compatible.

If A is an atlas on M and if two local charts ϕ, ψ on M are compatible with
every local chart that belongs to A then ϕ and ψ are compatible with each other;
thus, every atlas A on M is contained in a unique maximal atlas. Such maximal
atlas consists of all local charts on M that are compatible with every local chart
that belongs toA. A maximal atlas on a setM is also called a differential structure
on M .

If A is an atlas on a set M then there exists a unique topology τ on M such
that for every local chart ϕ : U → Ũ that belongs to A the set U is open in M
and the map ϕ is a homeomorphism; the topology τ consists of all subsets A of M
such that ϕ(U ∩A) is open inRn, for every local chart ϕ : U → Ũ that belongs to

199
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A. We call τ the topology induced by the atlas A. If A, A′ are atlases on M and
A ⊂ A′ then clearly A and A′ induce the same topology on M .

DEFINITION A.1.1. An n-dimensional differentiable manifold (or simply a
differentiable manifold) is a set M endowed with a maximal n-dimensional atlas
A such that the topology induced by A on M is Hausdorff and second countable
(i.e., admits a countable basis of open subsets).

We adopt the following convention: if M is a differentiable manifold with
maximal atlas A then by a “local chart” of M we mean a local chart of M that
belongs to A.

A.1.1. Submanifolds. By “submanifold” we will always mean “embedded
submanifold”, unless otherwise stated. In some occasions, we will also talk about
immersed submanifolds and almost embedded submanifolds. We list the defini-
tions and some basic results (without proof) below.

DEFINITION A.1.2. Let M be an n-dimensional differentiable manifold. A
subset N of M is said to be a smooth submanifold if there exists an integer k,
0 ≤ k ≤ n, such that for all x ∈ N , there exists a local chart ϕ : U → Ũ such that
ϕ(U ∩ N) = Ũ ∩

(
Rk ⊕ {0}n−k

)
and x ∈ U . Such a local chart is said to be a

submanifold chart for N .

If N is a smooth submanifold and we consider the restriction to N of all sub-
manifold charts, we obtain an atlas for N that makes it into a k-dimensional differ-
entiable manifold; moreover, the inclusion map ofN inM is a smooth embedding,
i.e., it is a smooth immersion and a homeomorphism onto its image1. It is well-
known that if N , M are differentiable manifolds and f : N → M is a smooth
embedding then f(N) is a smooth submanifold of M and the map f : N → f(N)
is a smooth diffeomorphism when f(N) is endowed with the atlas obtained by
restriction of the submanifold charts. Thus, smooth submanifolds are also called
embedded submanifolds.

DEFINITION A.1.3. Let M be a differentiable manifold. By an immersed sub-
manifold of M we mean a differentiable manifold N that is contained in M (as a
set) and such that the inclusion map of N in M is a smooth immersion.

The following result is a well-known consequence of the local form of immer-
sions:

PROPOSITION A.1.4. Let P , M be differentiable manifolds and N be an im-
mersed submanifold of M . If f : P → M is a smooth map with f(P ) ⊂ N
and f0 : P → N is obtained from f by restriction of counter-domain then f0 is
smooth if and only if it is continuous. In particular, if N is embedded in M then f
is smooth if and only if f0 is smooth. �

1The condition that the inclusion map of N in M is a homeomorphism onto its image means
that the topology on N induced by the atlas coincides with the topology that N inherits from M .
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The annoying fact about immersed submanifolds is that reduction of counter-
domain does not necessarily maintain smoothness. However, the class of embed-
ded submanifolds is not general enough for us to work with maximal integral sub-
manifolds of involutive distributions and with Lie subgroups. Thus, we have the
following intermediate situation.

DEFINITION A.1.5. LetM be a differentiable manifold andN be an immersed
submanifold ofM . We say thatN is almost embedded if every point x ∈ N has an
open neighborhood U in M such that the connected component containing x with
respect to the topology inherited from M of U ∩ N is an embedded submanifold
of M .

We have the following:

PROPOSITION A.1.6. Let M be a differentiable manifold, N be an almost
embedded submanifold of M and X be a locally connected topological space. If
f : X → M is a continuous map with f(X) ⊂ N and if f0 : X → N is obtained
from f by reduction of counter-domain then f0 is also continuous. In particular,
by Proposition A.1.4, if X is a differentiable manifold and f is smooth then also f0

is smooth. �

It turns out that integral submanifolds of involutive distributions are almost
embedded (see Remark A.4.4). In particular, Lie subgroups of Lie groups are
almost embedded, since they are integral submanifolds of distributions obtained
by left translation of a Lie algebra.

A.1.2. Lie groups. Some basic knowledge of Lie groups is also assumed from
the reader. A standard reference is [12]. We just give here the basic terminology.

A Lie group is a group G endowed with a differentiable structure A such that
the group operations:

G×G 3 (x, y) 7−→ xy ∈ G, G 3 x 7−→ x−1 ∈ G
are smooth and G is a differentiable manifold, i.e., the topology induced fromA is
Hausdorff and second countable2. By a Lie subgroup of G we mean an immersed
submanifold H of G that is also a subgroup of G and such that H is a Lie group
endowed with the multiplication induced from G (actually, it is proven in [12] that
if H is both an immersed submanifold of G and a subgroup of G then H is indeed
a Lie subgroup of G). A Lie subgroup H of G is an embedded submanifold of G
if and only if it is a closed subset of G; moreover, any closed subgroup H of G is
automatically a Lie subgroup.

If G is a Lie group then for all g ∈ G, the left translation Lg : G→ G and the
right translation Rg : G → G are smooth diffeomorphisms. Informally speaking,
any object that lives on G is said to be left (resp., right) invariant if it is preserved
by all left (resp., right) translations. For instance, a vector field X on G is left

2Actually, Hausdorff is automatic because every T1 topological group is automatically Haus-
dorff. Moreover, second countability is equivalent to the assumption that G has a countable number
of connected components; namely, this follows from the observation that if G is connected and U is
a neighborhood of the identity 1 ∈ G then G =

⋃∞
n=1 Un.
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(resp., right) invariant if X is Lg-related (resp., Rg-related) to itself, for all g ∈ G
(see Definition A.2.1). Left (resp., right) invariant vector fields are automatically
smooth. If g denotes the tangent space toG at the unit element 1 ∈ G then the map
X 7→ X(1) gives an isomorphism from the space of left invariant vector fields
onto g. We endow g with the Lie bracket operations by such isomorphism from the
usual Lie bracket of vector fields (Proposition A.2.2 implies that the Lie bracket of
left invariant vector fields is left invariant). The space g endowed with such bracket
operation is called the Lie algebra of g.

We have a natural left (resp., right) action of G on its tangent bundle obtained
by differentiating the left (resp., right) action of G on itself by left (resp., right)
translations; more explicitly, g ∈ G acts on v ∈ TG and gives dLg(v) (resp.,
dRg(v)). We then set:

gv = dLg(v), vg = dRg(v),

for all g ∈ G and all v ∈ TG. Given X ∈ g then the unique left invariant (resp.,
right invariant) vector field on G whose value at 1 is X is denoted by XL (resp.,
XR) and it is given by XL(g) = gX (resp., XR(g) = Xg), for all g ∈ G.

Given Lie groups G, H , then by a Lie group homomorphism from G to H we
mean a group homomorphism f : G→ H which is smooth (actually, a continuous
group homomorphism between Lie groups is automatically smooth). If f is a Lie
group homomorphism then its differential f̄ = df(1) at the identity gives us a Lie
algebra homomorphism3 from the Lie algebra g of G to the Lie algebra h of H .
In particular, if H is a Lie subgroup of G then the inclusion map i : H → G is
a Lie group homomorphism and the differential of i at the identity allows us to
identify h with a Lie subalgebra of g. For every g ∈ G, the inner automorphism
Ig : G→ G is a Lie group isomorphism and its differential at the identity, denoted
by Adg : g→ g is a Lie algebra isomorphism. The map:

Ad : G 3 g 7−→ Adg ∈ GL(g)

is known as the adjoint representation of G in g. Its differential at the identity is a
linear map:

ad : g 3 X 7−→ adX ∈ gl(g)
called the adjoint representation of g on itself. We have:

adX(Y ) = [X,Y ],

for all X,Y ∈ g.
Given X ∈ g then there exists exactly one Lie group homomorphism γ : R→

G with γ′(0) = X . This is called the one-parameter subgroup of G generated
by X . The smooth curve γ is an integral curve of both XL and XR. The map
exp : g 3 X → γ(1) ∈ G is called the exponential map of G. The exponential
map of a Lie group is smooth and for all X ∈ g, the corresponding one-parameter
subgroup is given by t 7→ exp(tX).

A distributionD ⊂ TG in a Lie groupG is said to be left (resp., right) invariant
if dLg(D) = D (resp., dRg(D) = D), for all g ∈ G. A left or right invariant

3A Lie algebra homomorphism is a linear map that preserves Lie brackets.
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distribution D on G is completely determined by the subspace D1 of g; moreover,
left or right invariant distributions on a Lie group are automatically smooth. A left
or right invariant distribution D on G is involutive (Definition A.4.2) if and only
if D1 is a Lie subalgebra of g. If H is a Lie subgroup of G then H is an integral
submanifold (Definition A.4.1) of the involutive left invariant distribution D on G
with D1 = h. In particular (see Remark A.4.4), Lie subgroups are always almost
embedded submanifolds.

A.2. Vector fields and flows

We continue our summary of the basic theory of differentiable manifolds.
Again, more details can be found in [1, 3, 9, 12].

By a vector field on a differentiable manifold M we mean a section X of the
tangent bundle TM , i.e., a mapX : M → TM withX(x) ∈ TxM , for all x ∈M .
In the terminology of Subsection 1.5.1, the space of all smooth vector fields on M
is denoted by Γ(TM).

Given a vector field X in M and a smooth map f : M → R, we denote by
X(f) : M → R the map defined by X(f)(x) = df(x) · X(x), for all x ∈ M .
We use such notation also if f takes values in a fixed real finite-dimensional vector
space.

Given smooth vector fields X,Y ∈ Γ(TM) then there exists a unique vector
field Z on M such that Z(f) = X

(
Y (f)

)
− Y

(
X(f)

)
. The vector field Z is

smooth and it is called the Lie bracket of X and Y . We write Z = [X,Y ].

DEFINITION A.2.1. Let M , N be differentiable manifolds and f : M → N
be a smooth map. We say that two vector fields X ∈ Γ(TM), Y ∈ Γ(TN) are
f -related if:

Y
(
f(x)

)
= dfx

(
X(x)

)
,

for all x ∈M .

We recall the following:

PROPOSITION A.2.2. Let M , N be differentiable manifolds, f : M → N be a
smooth map and X,X ′ ∈ Γ(TM), Y, Y ′ ∈ Γ(TN) be vector fields. Assume that
Y is f -related with X and that Y ′ is f -related with X ′. Then [Y, Y ′] is f -related
with [X,X ′].

PROOF. See [12]. �

Let G be a Lie group and N be a differentiable manifold; assume that we are
given a (left or right) smooth action of G on N .

DEFINITION A.2.3. Given a vector X in the Lie algebra g of G, we denote by
XN the induced vector field on the differentiable manifold N defined by:

XN (n) = dβn(1) ·X ∈ TnN,
for all n ∈ N , where βn : G→ N is the map given by action on the element n.

It can be shown that the induced vector field XN is smooth.
The following result was used in the proof of Lemma 2.3.3.
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LEMMA A.2.4. Let G be a Lie group and N be a differentiable manifold;
assume that we are given a (left or right) smooth action of G on N . Assume that
the action of G is effective on a subset A of N . Then, given X ∈ g, if XN (n) = 0
for all n ∈ A then X = 0.

PROOF. If XN (n) = 0 then exp(tX) is in the isotropy group Gn, for all
t ∈ R. Thus, if XN (n) = 0 for all n ∈ A then exp(tX) ∈

⋂
n∈AGn = {1}, for

all t ∈ R. Hence X = 0. �

DEFINITION A.2.5. Let π : E → M be a smooth submersion and let Hor(E)
be a generalized connection on E with respect to π. Given a vector field X on
M then the horizontal lift of X is the unique vector field Xhor on E such that
Xhor(e) ∈ Hore(E) and:

dπe
(
Xhor(e)

)
= X

(
π(e)

)
,

for all e ∈ E .

It can be shown that if X is smooth then Xhor is also smooth.

DEFINITION A.2.6. Let M be a differentiable manifold and X ∈ Γ(TM) be
a smooth vector field on M . By an integral curve of X we mean a smooth map
γ : I →M defined in an interval I ⊂ R with:

γ′(t) = X
(
γ(t)

)
,

for all t ∈ I . Given x0 ∈ M then a maximal integral curve of X through x0 is an
integral curve γ : I →M of X such that:

• 0 ∈ I and γ(0) = x0;
• if µ : J → M is an integral curve of X with 0 ∈ J and µ(0) = x0 then
J ⊂ I and µ = γ|J .

THEOREM A.2.7 (maximal flow of a vector field). Let M be a differentiable
manifold and X ∈ Γ(TM) be a smooth vector field on M . Then:

• for each x0 ∈ M , there exists a unique maximal integral curve of X
through x0 and its domain is an open interval;
• if γx0 : Ix0 → M denotes the maximal integral curve of X through x0

then the set:⋃
x0∈M

(
{x0} × Ix0

)
=

{
(x0, t) : x0 ∈M, t ∈ Ix0

}
is open in M ×R and the maximal flow of X defined by:

FX :
⋃

x0∈M

(
{x0} × Ix0

)
3 (x0, t) 7−→ γx0(t) ∈M

is a smooth map.

PROOF. See [1]. �

COROLLARY A.2.8. Let M be a differentiable manifold and X ∈ Γ(TM) be
a smooth vector field on M . If γ1 : I →M , γ2 : I →M are integral curves of X
with γ1(t0) = γ2(t0) for some t0 ∈ I then γ1 = γ2.
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PROOF. Observe that both t 7→ γ1(t+ t0) and t 7→ γ2(t+ t0) are restrictions
of the maximal integral curve of X through x0 = γ1(t0). �

DEFINITION A.2.9. Let M be a differentiable manifold. By a time dependent
vector field on M we mean a map X : A → TM such that X(t, x) ∈ TxM , for
all (t, x) ∈ A, where A is an open subset of R×M .

In other words, a time dependent vector field on M , is a local section of TM
along the projection R ×M 3 (t, x) 7→ x ∈ M . We have a version of Defini-
tion A.2.6 for time-dependent vector fields:

DEFINITION A.2.10. Let M be a differentiable manifold and X : A ⊂ R ×
M → TM be a smooth time-dependent vector field on M . By an integral curve
of X we mean a smooth map γ : I → M defined in an interval I ⊂ R with(
t, γ(t)

)
∈ A and:

γ′(t) = X
(
t, γ(t)

)
,

for all t ∈ I . Given (t0, x0) ∈ A then a maximal integral curve of X through
(t0, x0) is an integral curve γ : I →M of X such that:

• t0 ∈ I and γ(t0) = x0;
• if µ : J →M is an integral curve of X with t0 ∈ J and µ(t0) = x0 then
J ⊂ I and µ = γ|J .

Theorem A.2.7 generalizes to time-dependent vector fields, as follows:

THEOREM A.2.11 (maximal flow of a time-dependent vector field). Let M be
a differentiable manifold andX : A ⊂ R×M → TM be a smooth time-dependent
vector field on M . Then:

• for each (t0, x0) ∈ A, there exists a unique maximal integral curve of X
through (t0, x0) and its domain is an open interval;
• if γ(t0,x0) : I(t0,x0) → M denotes the maximal integral curve of X

through (t0, x0) then the set:⋃
(t0,x0)∈A

(
{(t0, x0)} × I(t0,x0)

)
=

{
(t0, x0, t) : (t0, x0) ∈ A, t ∈ I(t0,x0)

}
is open in R×M ×R and the maximal flow of X defined by:

FX :
⋃

(t0,x0)∈A

(
{(t0, x0)} × I(t0,x0)

)
3 (t0, x0, t) 7−→ γ(t0,x0)(t) ∈M

is a smooth map.

PROOF. Follows by applying Theorem A.2.7 to the smooth vector field:

A 3 (t, x) 7−→
(
1, X(t, x)

)
∈ R⊕ TxM ∼= T(1,x)A

on the open set A. �

COROLLARY A.2.12. Let M be a differentiable manifold and X : A ⊂ R ×
M → TM be a smooth time-dependent vector field on M . If γ1 : I → M ,
γ2 : I → M are integral curves of X with γ1(t0) = γ2(t0) for some t0 ∈ I then
γ1 = γ2.
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PROOF. Observe that both γ1 and γ2 are restrictions of the maximal integral
curve of X through (t0, x0), where x0 = γ1(t0) = γ2(t0). �

DEFINITION A.2.13. Let M be a differentiable manifold, I ⊂ R be an open
interval and X : I×M → TM be a time-dependent vector field. We say that X is
spatially homogeneous if for every x, y ∈M there exists a smooth diffeomorphism
f : M →M such that f(x) = y and:

(A.2.1) X
(
t, f(z)

)
= dfz

(
X(t, z)

)
,

for all t ∈ I , z ∈M .

Observe that if a smooth diffeomorphism f : M → M satisfying (A.2.1) for
all t ∈ I , z ∈ M and if γ : J → M is an integral curve of X then f ◦ γ is also an
integral curve of X .

LEMMA A.2.14. Let M be a differentiable manifold, I ⊂ R be an open inter-
val and X : I ×M → TM be a smooth time-dependent spatially homogeneous
vector field. Then the domain of the maximal flow of X is I×M × I , i.e., for every
(t0, x0) ∈ I ×M , the domain of the maximal integral curve of X through (t0, x0)
is I .

PROOF. Let γ : J → M be the maximal integral curve through (t0, x0); then
t0 ∈ J and J is an open interval contained in I . Assume by contradiction that J is
properly contained in I; then, for instance, b = supJ is in I . The triple (b, x0, b)
is obviously in the domain A of the maximal flow of X (recall Theorem A.2.11).
SinceA is open inR×M ×R, there exists ε > 0 such that ]b− ε, b+ ε[×{x0}×
]b− ε, b+ ε[ is contained in A; we can also take ε > 0 sufficiently small so that
b − ε

2 ∈ J . By the definition of A, there exists an integral curve µ of X through(
b− ε

2 , x0

)
defined on the interval ]b− ε, b+ ε[. SinceX is spatially homogeneous,

there exists a smooth diffeomorphism f : M → M such that (A.2.1) holds for all
t ∈ I , z ∈ M and such that f(x0) = γ

(
b − ε

2

)
. Then f ◦ µ is an integral curve

of X with (f ◦ µ)
(
b − ε

2

)
= γ

(
b − ε

2

)
and, therefore, by Corollary A.2.12, γ and

f ◦ µ are equal on the intersection of their domains. We can therefore use f ◦ µ to
extend γ to an integral curve of X defined in J ∪ ]b− ε, b+ ε[, which contradicts
the maximality of γ. This concludes the proof. �

COROLLARY A.2.15. Let G be a Lie group, I ⊂ R be an interval and X :
I → g be a smooth curve in the Lie algebra g of G. Then for every t0 ∈ I and
every g0 ∈ G there exists a smooth curve g : I → G such that g(t0) = g0 and:

(A.2.2) g′(t) = X(t)g(t),

for all t ∈ I .

PROOF. We can assume without loss of generality that I is open; otherwise,
take an arbitrary smooth extension of X to an open interval. Clearly, g satisfies
(A.2.2) if and only if g is an integral curve of the time-dependent vector field given
by:

I ×G 3 (t, h) 7−→ X(t)h ∈ ThG.
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Such vector field is smooth and spatially homogeneous; namely, the smooth dif-
feomorphism f that is required by Definition A.2.13 can be taken to be a right
translation. The conclusion follows from Lemma A.2.14. �

A.3. Differential forms

DEFINITION A.3.1. Let V1, . . . , Vk, V ′1 , . . . , V ′l , W , W ′ be real finite-dimen-
sional vector spaces and let B : V1× · · · ×Vk →W , B′ : V ′1 × · · · ×V ′l →W ′ be
multilinear maps. Suppose that a bilinear map:

(A.3.1) W ×W ′ 3 (w,w′) 7−→ w · w′ ∈W ′′

is fixed, where W ′′ is a real finite-dimensional vector space. We define the ten-
sor product of B by B′ (with respect to the bilinear pairing (A.3.1)) to be the
multilinear map (B ⊗B′) : V1 × · · · × Vk × V ′1 × · · · × V ′l →W ′′ given by:

(B ⊗B′)(v1, . . . , vk, v′1, . . . , v′l) = B(v1, . . . , vk) ·B′(v′1, . . . , v′l),

for all v1 ∈ V1, . . . , vk ∈ Vk, v′1 ∈ V ′1 , . . . , v′l ∈ V ′l .

Denote by Sk the symmetric group on k elements (see Example 1.1.2). Given
σ ∈ Sk and a multilinear mapB ∈ Link(V,W ), we denote by σ ·B the multilinear
map defined by:

(σ ·B)(v0, . . . , vk−1) = B(vσ(0), . . . , vσ(k−1)),

for all v0, . . . , vk−1 ∈ V . The alternator of B is defined by:

Alt(B) =
∑
σ∈Sk

sgn(σ)(σ ·B).

Clearly, Alt(B) is always alternating; moreover, if B is alternating then Alt(B) =
(k!)B.

REMARK A.3.2. Clearly, we have:

Alt(σ ·B) = sgn(σ)Alt(B).

Thus, if there exists an odd permutation σ with σ · B = B then Alt(B) = 0; in
particular, if B is symmetric with respect to some pair of variables then Alt(B) =
0.

Given B ∈ Lina
k(V,W ), B′ ∈ Lina

l (V,W
′), then the tensor product B⊗B′ is

not in general antisymmetric. We give the following:

DEFINITION A.3.3. Let V , W , W ′, W ′′ be real finite-dimensional vector
spaces, B ∈ Lina

k(V,W ), B′ ∈ Lina
l (V,W

′) and assume that we are given a
bilinear pairing (A.3.1). The exterior product (or wedge product) of B by B′ (with
respect to (A.3.1)) is defined by:

B ∧B′ = 1
k! l!

Alt(B ⊗B′) ∈ Lina
k+l(V,W

′′).
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The reader should recall from Example 1.6.7 the notion of (vector valued)
differential forms.

We now recall the definition of exterior differential of a smooth differential
form. We start with the case of open subsets of Rn. A differential k-form on an
open subset U of Rn can be identified with a map ω from U to the vector space
Lina

k(R
n,R). If ω is a smooth differential k-form on U then we can consider the

standard differential of ω at a point x ∈ U , denoted by dIωx, is a linear map from
Rn to Lina

k(R
n,R) that can be identified with the (k + 1)-linear map:

Rn × · · · ×Rn 3 (v0, . . . , vk) 7−→ dIωx(v0) · (v1, . . . , vk) ∈ R.

Thus dIω : x 7→ dIωx is a smooth map from U to Link+1(Rn,R). We set:

dωx =
1
k!

Alt(dIωx),

for all x ∈ U , so that dω is a smooth (k+ 1)-form on U . The following results are
standard:

(a) if ω, λ are respectively a k-form and an l-form on U then d(ωλ) =
(dω)λ + (−1)kω ∧ dλ;

(b) ddω = 0;
(c) if V is an open subset of Rm, U is an open subset of Rn, f : V → U is a

smooth map and ω is a smooth differential k-form on U then d(f∗ω) =
f∗dω.

Property (c) allows us to define the exterior differential of a smooth k-form ω on a
differentiable manifold M so that if ϕ : U → Ũ ⊂ Rn is a local chart of M then
dω|U = ϕ∗d

(
(ϕ−1)∗ω

)
. With such definition, properties (a), (b) and (c) also hold

for the exterior differential of forms on manifolds.
A direct formula for computing the exterior differential of a k-form on a man-

ifold is given by the following:

LEMMA A.3.4 (Cartan’s formula for exterior differential). Let λ be a (possibly
vector valued) smooth k-form on a differentiable manifold M . Given vector fields
X0, . . . , Xk ∈ Γ(TM), then:

(A.3.2) dλ(X0, X1, . . . , Xk) =
k∑
i=0

(−1)iXi

(
λ(X0, . . . , X̂i, . . . , Xk)

)
+

∑
i<j

(−1)i+j λ
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
,

where the hat indicates that the term is omitted in the list.

PROOF. See [12]. �

Cartan’s formula for exterior differentiation becomes:

(A.3.3) dλ(X,Y ) = X
(
λ(Y )

)
− Y

(
λ(X)

)
− λ

(
[X,Y ]

)
.

for 1-forms.
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A.4. The Frobenius theorem

DEFINITION A.4.1. Let M be a differentiable manifold and D ⊂ TM be a
smooth distribution onM . By an integral submanifold ofD we mean an immersed
submanifold S ⊂ M such that TxS = Dx, for all x ∈ S. We say that D is
integrable if for every x ∈ M there exists an integral submanifold S of D with
x ∈ S.

Observe that if D is integral then for every x ∈ M there exists an embedded
integral submanifold S of D with x ∈ S; namely, if S is an immersed integral
submanifold of D with x ∈ S then a sufficiently small open neighborhood of x in
S is an embedded integral submanifold of D.

DEFINITION A.4.2. A smooth distribution D ⊂ TM is said to be involutive if
for all X,Y ∈ Γ(D) the Lie bracket [X,Y ] is in Γ(D).

THEOREM A.4.3 (Frobenius). Let M be a differentiable manifold. A smooth
distribution D ⊂ TM on M is involutive if and only if it is integrable.

PROOF. See [12]. �

REMARK A.4.4. If D is a smooth involutive distribution in a differentiable
manifold M then every integral submanifold S ⊂ M of D is almost embedded in
M .

Let M be a differentiable manifold and D ⊂ TM be a smooth distribution on
M . By a maximal integral submanifold of D we mean a connected immersed in-
tegral submanifold S ⊂M of D which is not properly contained in any connected
immersed integral submanifold of D.

THEOREM A.4.5 (Global Frobenius). Let M be a differentiable manifold and
D ⊂ TM be a smooth involutive distribution on M . Then for every x ∈ M there
exists a unique maximal integral submanifold S ⊂M of D with x ∈ S.

PROOF. See [12]. �

REMARK A.4.6. If D is a smooth involutive distribution in a differentiable
manifoldM and if S ⊂M is a maximal integral submanifold ofD then the follow-
ing condition holds: if γ : [a, b] → M is a smooth curve such that γ′(t) ∈ Dγ(t),
for every t ∈ [a, b] and if γ(t0) ∈ S for some t0 ∈ [a, b] then γ(t) ∈ S, for all
t ∈ [a, b].

Frobenius theorem can be seen as a result concerning the existence of solutions
of a certain class of first order partial differential equations called total PDEs;
informally speaking, a total PDE is an equation (on the unknown f ) of the form
dfx = F

(
x, f(x)

)
. The relation between solutions of total PDEs and integral

submanifolds of distributions is that the graph of a solution of a total PDE is an
integral submanifold of an appropriate distribution. We now study a particular
case of this situation in the language of differential forms.

Let M , N be differentiable manifolds, V be a real finite-dimensional vector
space and λM , λN , be V -valued smooth 1-forms on M and on N respectively;
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assume that λNy : TyN → V is an isomorphism, for all y ∈ N . We are interested
in finding smooth maps f : U → N defined on an open subset U of M with:

(A.4.1) f∗λN = λM |U .
Notice that (A.4.1) is equivalent to:

df(x) = τxf(x), x ∈ U,
where, for x ∈M , y ∈ N , τxy : TxM → TyN denotes the linear map defined by:

(A.4.2) τxy = (λNy )−1 ◦ λMx .
Consider the smooth distribution D on M ×N defined by:

(A.4.3) D(x,y) = Gr(τxy) ⊂ TxM ⊕ TyN ∼= T(x,y)(M ×N),

for all x ∈ M , y ∈ N . Clearly, a smooth map f : U → N defined on an
open subset U of M satisfies (A.4.1) if and only if the graph of f is an integral
submanifold of D. Hence, the existence of a map f satisfying (A.4.1) can be
obtained as an application of the Frobenius theorem.

We have the following:

PROPOSITION A.4.7. LetM ,N be differentiable manifolds, V be a real finite-
dimensional vector space and λM , λN , be V -valued smooth 1-forms on M and on
N respectively; assume that λNy : TyN → V is an isomorphism, for all y ∈ N .
The following conditions are equivalent:

(a) for all x ∈ M , y ∈ N there exists a smooth map f : U → N defined
in an open neighborhood U of x in M with f(x) = y such that (A.4.1)
holds;

(b) for all x ∈M , y ∈ N , τ∗xydλ
N
y = dλMx , where τxy : TxM → TyN is the

linear map defined in (A.4.2).

PROOF. The fact that (a) implies (b) follows by taking the exterior differential
in both sides of (A.4.1). Now assume (b). Consider the smooth V -valued 1-form θ
on M ×N defined by:

θ = pr∗2λ
N − pr∗1λ

M ,

where pr1, pr2 denote the projections of the cartesian product M × N . Clearly,
for all (x, y) ∈ M × N , θ(x,y) : TxM ⊕ TyN → V is surjective and its kernel
equals (A.4.3). By Lemma A.4.8, D is involutive if and only if dθ(x,y) vanishes on
D(x,y) × D(x,y), for all (x, y) ∈ M × N ; but clearly such condition is equivalent
to (b). To conclude the proof, let x ∈ M , y ∈ N be fixed and let S ⊂ M ×
N be an integral submanifold of D with (x, y) ∈ S. Since the first projection
TxM ⊕ TyN → TxM carries D(x,y) isomorphically onto TxM then, by taking S
to be sufficiently small, we may assume that the map pr1|S : S → M is a smooth
diffeomorphism onto an open neighborhood U of x in M . The map f : U → N
defined by:

(A.4.4) f = pr2 ◦ (pr1|S)−1

is therefore smooth and its graph equals S. Hence f satisfies (A.4.1). �
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LEMMA A.4.8. LetQ be a differentiable manifold, V be a real finite-dimensional
vector space and θ be a smooth V -valued 1-form onQ. Assume that θx : TxQ→ V
is surjective, for all x ∈ Q. Then the smooth distribution D = Ker(θ) is involutive
if and only if dθx vanishes on Dx ×Dx, for all x ∈ Q.

PROOF. Follows easily from Cartan’s formula for exterior differentiation (see
(A.3.3)). �

We now wish to prove a global version of Proposition A.4.7. To this aim, we
use the technique of “solving the total PDE (A.4.1) along curves on M”.

If f : U ⊂ M → N is a smooth function satisfying (A.4.1) and if γ : I → U
is an arbitrary smooth curve then the smooth curve µ = f ◦ γ : I → N satisfies:

(A.4.5) λNµ(t)

(
µ′(t)

)
= λMγ(t)

(
γ′(t)

)
,

for all t ∈ I . Clearly (A.4.5) is equivalent to:

(A.4.6) µ′(t) = τγ(t)µ(t)

(
γ′(t)

)
.

Notice that µ : I → N satisfies (A.4.6) for all t ∈ I if and only if µ is an integral
curve of the smooth time-dependent vector field on N defined by4:

(A.4.7) I ×N 3 (t, y) 7−→ τγ(t)y
(
γ′(t)

)
∈ TN.

We can now prove a uniqueness result for solutions of (A.4.1).

LEMMA A.4.9. Let M , N be differentiable manifolds, V be a real finite-
dimensional vector space and λM , λN , be V -valued smooth 1-forms on M and
on N respectively; assume that M is connected and that λNy : TyN → V is an
isomorphism, for all y ∈ N . If f1 : M → N , f2 : M → N are smooth maps
with f∗1λ

N = λM , f∗2λ
N = λM and if f1(x0) = f2(x0) for some x0 ∈ M then

f1 = f2.

PROOF. If γ : I → M is a smooth curve such that f1

(
γ(t0)

)
= f2

(
γ(t0)

)
for some t0 ∈ I then f1 ◦ γ = f2 ◦ γ; namely, both f1 ◦ γ and f2 ◦ γ are integral
curves of the smooth time-dependent vector field (A.4.7) (see Corollary A.2.12).
The conclusion follows from the observation that, sinceM is connected, every two
points of M can be joined by a piecewise smooth curve. �

Finally, we have the following global result:

PROPOSITION A.4.10. Let M , N be differentiable manifolds, V be a real
finite-dimensional vector space and λM , λN , be V -valued smooth 1-forms on M
and on N respectively. Assume that:

(a) λNy : TyN → V is an isomorphism, for all y ∈ N ;
(b) condition (b) in the statement of Proposition A.4.7 holds;
(c) M is simply-connected;

4If the interval I is not open, we can always consider a smooth extension of γ to an open interval
I ′ containing I so that the time-dependent vector field (A.4.7) is defined on the open subset I ′ ×N
ofR×N .
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(d) there exists a rich family C of smooth curves γ : [0, 1]→M such that for
every γ in C and every y ∈ N there exists a smooth curve µ : [0, 1]→ N
such that µ(0) = y and (A.4.5) holds, for all t ∈ [0, 1].

Then, for all x0 ∈ M , y0 ∈ N , there exists a smooth map f : M → N with
f(x0) = y0 such that f∗λN = λM .

PROOF. We may assume without loss of generality that M is connected. Con-
sider the smooth distribution D on M ×N defined by (A.4.3). As in the proof of
Proposition A.4.7, we see that D is involutive. Let x0 ∈ M , y0 ∈ N be fixed and
let S ⊂M×N be a maximal integral submanifold ofD containing (x0, y0). Since
for all (x, y) ∈ S, the first projection TxM⊕TyN → TxM maps T(x,y)S = D(x,y)

isomorphically onto TxM , we have that the map pr1|S : S →M is a smooth local
diffeomorphism, where pr1 : M × N → M denotes the first projection. We will
now use Corollary B.3.13 to establish that pr1|S : S → M is a covering map. To
this aim, we have to check that every γ : [0, 1] → M in C admits liftings with
arbitrary initial conditions with respect to pr1|S . Let γ : [0, 1] → M in C be
fixed and let (x, y) ∈ S be such that pr1(x, y) = x = γ(0). By our hypothe-
ses, there exists a smooth curve µ : [0, 1] → N such that µ(0) = y and (A.4.5)
holds, for all t ∈ [0, 1]. Clearly

(
γ′(t), µ′(t)

)
∈ D(γ(t),µ(t)), for all t ∈ [0, 1] so

that, by Remark A.4.6, the image of the curve (γ, µ) : [0, 1] → M × N is con-
tained in S. Since S is almost embedded in M × N (Remark A.4.4), the curve
(γ, µ) : [0, 1] → S is continuous and it is therefore a lifting of γ with initial
condition (x, y). This concludes the proof that pr1|S : S → M is a covering
map. Since M is connected and simply-connected, Corollary B.3.19 implies that
pr1|S : S → M is a homeomorphism and hence a smooth diffeomorphism. The
conclusion is now obtained by defining f : M → N as in (A.4.4). �

A.5. Horizontal liftings of curves

DEFINITION A.5.1. Let E , M be differentiable manifolds, π : E → M be a
smooth submersion and Hor(E) be a generalized connection on E with respect to
π (recall Definition 2.1.1). A smooth curve γ̃ : I → E is said to be horizontal with
respect to Hor(E) if γ̃′(t) ∈ Horγ̃(t)(E), for all t ∈ I . If γ : I → M is a smooth
curve then a horizontal lifting of γ with respect to π and Hor(E) is a smooth curve
γ̃ : I → E which is horizontal with respect to Hor(E) and satisfies π ◦ γ̃ = γ.

LEMMA A.5.2. Let π : E → M be a smooth submersion and Hor(E) be a
generalized connection on E with respect to π. If γ̃1 : I → E , γ̃2 : I → E are both
horizontal liftings of a smooth curve γ : I → M and if γ̃1(t0) = γ̃2(t0) for some
t0 ∈ I then γ̃1 = γ̃2.

PROOF. If the interval I is not open, we start by considering a smooth exten-
sion of γ to an open interval I ′ containing I; such extension will still be denoted by
γ. Consider the pull-back π1 : γ∗E → I ′ endowed with the generalized connection
Hor(γ∗E) obtained from Hor(E) by pull-back and denote by γ̄ : γ∗E → E the
canonical map. Let X be the vector field on I ′ such that X(t) = 1 ∈ TtI ′ for all
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t ∈ I ′ and let Xhor be the vector field on γ∗E obtained from X by horizontal lift.
Using the property of pull-backs described in diagram (1.17), we obtain smooth
curves (γ̃1)← : I → γ∗E , (γ̃2)← : I → γ∗E , with π1 ◦ (γ̃i)← : I → I ′ the inclu-
sion map of I in I ′ and with γ̄ ◦ (γ̃i)← = γi, i = 1, 2. Since γ̃i is parallel, also
(γ̃i)← is parallel (Lemma 2.1.12); thus, for all t ∈ I ′, we have:

d
dt(γ̃i)

←(t) ∈ Hor(γ∗E), dπ1

(
d
dt(γ̃i)

←(t)
)

= 1 = X(t),

so that:
d
dt(γ̃i)

←(t) = Xhor
(
(γ̃i)←(t)

)
,

and (γ̃i)← is an integral curve of Xhor, i = 1, 2. Since:

(γ̃1)←(t0) =
(
t0, γ̃1(t0)

)
=

(
t0, γ̃2(t0)

)
= (γ̃2)←(t0),

it follows from Corollary A.2.8 that (γ̃1)← = (γ̃2)←. Hence γ̃1 = γ̃2. �

In the terminology introduced in Definition 2.1.7, a smooth curve γ̃ : I → E
is horizontal if and only if it is parallel. If γ̃ is a horizontal lift of γ with γ̃(t0) = e
we say also that γ̃ is the parallel transport of e along γ.

LEMMA A.5.3. Let π : E → M be a smooth submersion and Hor(E) be
a generalized connection on E with respect to π. If γ : I → M is a smooth
curve then for all t0 ∈ I and all e ∈ π−1

(
γ(t0)

)
there exists an open connected

neighborhood J of t0 in I and a horizontal lift γ̃ : J → E of γ|J with γ̃(t0) = e.

PROOF. By considering an extension of γ, we can assume that I is open. De-
fine π1 : γ∗E → I , γ̄ : γ∗E → E , X and Xhor as in the proof of Lemma A.5.2. Let
η : J → γ∗E be an integral curve of Xhor with η(t0) = (t0, e) ∈ γ∗E , where J is
an open interval containing t0. SinceXhor is π1-related withX , we have that π1◦η
is an integral curve of X; thus (π1 ◦ η)(t) = t, for all t ∈ J . It follows that J ⊂ I
and that γ̃ = γ̄ ◦ η is a lifting of γ|J ; moreover, since η is parallel, also γ̃ is parallel
(Lemma 2.1.12). Hence γ̃ is an horizontal lifting of γ|J with γ̃(t0) = e. �

COROLLARY A.5.4. Let π : E → M be a smooth submersion and Hor(E)
be a generalized connection on E with respect to π. Let γ : I → M be a smooth
curve, t0 be an interior point of I and set I1 = I ∩ ]−∞, t0], I2 = I ∩ [t0,+∞[.
If γ̃ : I → E is a map such that γ̃|I1 is a horizontal lifting of γ|I1 and γ̃|I2 is a
horizontal lifting of γ|I2 then γ̃ (is smooth and) it is a horizontal lifting of γ.

PROOF. By Lemma A.5.3, there exists an open subinterval J of I contain-
ing t0 and a horizontal lifting γ̂ : J → E of γ|J such that γ̂(t0) = γ̃(t0). By
Lemma A.5.2, we have:

γ̂|J∩I1 = γ̃|J∩I1 , γ̂|J∩I2 = γ̃|J∩I2 ,
so that γ̂|J = γ̃|J . The conclusion follows. �

DEFINITION A.5.5. Let π : E → M be a smooth submersion endowed with
a generalized connection Hor(E). An open subset U of M is said to have the
horizontal lifting property for paths if for every smooth curve γ : I → U , every
t0 ∈ I and every e ∈ π−1

(
γ(t0)

)
there exists a horizontal lifting γ̃ : I → E of γ

with γ̃(t0) = e.
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LEMMA A.5.6. Let π : E → M be a smooth submersion endowed with a
generalized connection Hor(E). If M can be covered by open sets having the
horizontal lifting property for paths thenM itself has the horizontal lifting property
for paths.

PROOF. Let γ : [a, b] → M be a smooth curve and let e ∈ π−1
(
γ(a)

)
. By

the result of Exercise A.5, it will suffice to prove that γ admits a horizontal lifting
starting at e. The family of all sets of the form γ−1(U), where U runs over the open
subsets of M having the horizontal lifting property for paths, is an open cover of
the compact space [a, b]; let δ > 0 be a Lebesgue number of such open cover, i.e.,
every subset of [a, b] having diameter less than δ is contained in some γ−1(U).
Consider a partition a = t0 < t1 < · · · < tk = b of [a, b] with ti+1 − ti < δ,
for i = 0, 1, . . . , k − 1. Since for each i, γ

(
[ti, ti+1]

)
is contained in an open

subset of M having the horizontal lifting property for paths, we can find horizontal
liftings γ̃i : [ti, ti+1] → E of γ|[ti,ti+1], i = 0, 1, . . . , k − 1, with γ̃0(t0) = e and
γ̃i+1(ti+1) = γ̃i(ti+1), for i = 0, 1, . . . , k − 1. Let γ̃ : [a, b]→ E be the map such
that γ̃|[ti,ti+1] = γ̃i, for all i. It follows from Corollary A.5.4 that γ̃ is a horizontal
lifting of γ. �

DEFINITION A.5.7. Let Λ and M be differentiable manifolds. By a smooth
Λ-parametric family of curves we mean a smooth map H : A→M where A is an
open subset of Λ×R such that for all λ ∈ Λ, the set:

Aλ =
{
t ∈ R : (λ, t) ∈ A

}
is an interval (possibly empty).

EXAMPLE A.5.8. IfX is a smooth vector field on a differentiable manifoldM
then, by Theorem A.2.7, the maximal flow of X is a smooth M -parametric family
of curves on M containing M × {0}.

PROPOSITION A.5.9. Let π : E → M be a smooth submersion endowed
with a generalized connection Hor(E), let Λ be a differentiable manifold and let
H : A→M be a smooth Λ-parametric family of curves in M with Λ× {0} ⊂ A.
If H̃ : A→ E is a map such that:

• for all λ ∈ Λ, the curve Aλ 3 t 7→ H̃(λ, t) is a horizontal lifting of the
curve Aλ 3 t 7→ H(λ, t),
• the map Λ 3 λ 7→ H̃(λ, 0) ∈ E is smooth,

then H̃ is smooth.

PROOF. Consider the pull-back π1 : H∗E → A endowed with the generalized
connection Hor(H∗E) obtained from Hor(E) by pull-back and consider the canon-
ical map H : H∗E → E . Since H̃ is a section of E along H , there exists a unique
section (H̃)← : A→ H∗E of π1 : H∗E → A with H ◦ (H̃)← = H̃ . The property
of pull-backs described in diagram (1.17) implies that the map:

Λ 3 λ 7−→ (H̃)←(λ, 0) ∈ H∗E
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is smooth. To conclude the proof, it suffices to show that the map (H̃)← is smooth.
Consider the smooth vector field X on A defined by:

X(λ, t) = (0, 1) ∈ TλΛ⊕ TtR,
for all (λ, t) ∈ A; denote by Xhor the vector field on H∗E obtained from X by
horizontal lift. Given λ ∈ Λ then, since the curve t 7→ H̃(λ, t) is parallel, also
the curve t 7→ (H̃)←(λ, t) is parallel (Lemma 2.1.12); thus, for all (λ, t) ∈ A, we
have:

d
dt(H̃)←(λ, t) ∈ Hor(H∗E), dπ1

(
d
dt(H̃)←(λ, t)

)
= (0, 1) = X(λ, t),

so that:
d
dt(H̃)←(λ, t) = Xhor

(
(H̃)←(λ, t)

)
,

for all (λ, t) ∈ A. We have proven that t 7→ (H̃)←(λ, t) is an integral curve
of Xhor, for all λ ∈ Λ. Hence, if F denotes the maximal flow of Xhor (see
Theorem A.2.7), then:

(H̃)←(λ, t) = F
(
(H̃)←(λ, 0), t

)
,

for all (λ, t) ∈ A. This concludes the proof. �

Exercises

Differentiable manifolds.

EXERCISE A.1. Let M be a set and let (Ni)i∈I be a family of sets Ni, each
of them endowed with a differential structure. For each i ∈ I let ϕi : Ui → Ni

be a bijective map defined in a subset Ui of M . Assume that M =
⋃
i∈I Ui and

that the maps ϕi are pairwise compatible in the sense that for all i, j ∈ I the set
ϕi(Ui ∩ Uj) is open in Ni, the set ϕj(Ui ∩ Uj) is open in Nj and the transition
map:

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

is smooth. Show that there exists a unique differential structure on the set M such
that for every i ∈ I the set Ui is open in M and the map ϕi : Ui → Ni is a smooth
diffeomorphism.

EXERCISE A.2. Let M , N be differentiable manifolds and let f : M → N be
a map. Show that f is a smooth embedding if and only if for every x ∈ M there
exists an open neighborhood U of f(x) in N such that f−1(U) is open in M and
f |f−1(U) : f−1(U)→ N is a smooth embedding.

Vector fields on manifolds.

EXERCISE A.3. Let G be a Lie group, N be a differentiable manifold and
assume that we are given a smooth left (resp., right) action of G on N . Given
X ∈ g, we denote byXL,XR respectively the left-invariant and the right-invariant
vector fields on G whose value at 1 ∈ G is X . Given a vector field Y on N , show
that the following conditions are equivalent:

• Y = XN ;
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• for all n ∈ N , Y is βn-related with XR (resp., with XL).

EXERCISE A.4. Let G be a Lie group, N be a differentiable manifold and
assume that we are given a smooth left (resp., right) action of G on N . Given
X,Y ∈ g, show that [XN , Y N ] = −[X,Y ]N (resp., [XN , Y N ] = [X,Y ]N ).

Horizontal liftings of curves.

EXERCISE A.5. Let π : E →M be a smooth submersion endowed with a gen-
eralized connection Hor(E). Let U be an open subset of M having the following
property: for every smooth curve γ : [a, b] → U and every e ∈ π−1

(
γ(a)

)
, there

exists a horizontal lifting γ̃ : [a, b] → E of γ with γ̃(a) = e. Show that U has the
horizontal lifting property for paths.



APPENDIX B

Topological tools

B.1. Compact-Open Topology

Let X , Y be topological spaces. Denote by C(X,Y ) the set of continuous
maps f : X → Y . Given a compact subset K ⊂ X and an open subset U ⊂ Y we
set:

V(K;U) =
{
f ∈ C(X,Y ) : f(K) ⊂ U

}
.

The smallest topology on C(X,Y ) containing the sets V(K;U) (with K ⊂ X
compact and U ⊂ Y open) is called the compact-open topology on C(X,Y ). The
collection of all finite intersections:

r⋂
i=1

V(Ki;Ui),

with K1, . . . ,Kr ⊂ X compact, U1, . . . , Ur ⊂ Y open and r a positive integer,
form a basis for the compact-open topology on C(X,Y ); indeed, observe that the
sets V(K;U) cover C(X,Y ) because V(K;U) = C(X,Y ) if K and U are both
empty.

The main properties of the compact-open topology are described by the fol-
lowing two lemmas.

LEMMA B.1.1. Let Λ, X , Y be topological spaces and let f : Λ×X → Y be
a continuous map. Then, if C(X,Y ) is endowed with the compact-open topology,
the map:

f̃ : Λ −→ C(X,Y ),
defined by f̃(λ)(x) = f(λ, x), for all λ ∈ Λ, x ∈ X , is continuous.

PROOF. It is sufficient to prove that the set f̃−1
(
V(K;U)

)
is open in Λ for

every compact set K ⊂ X and every open set U ⊂ Y . Let λ ∈ f̃−1
(
V(K;U)

)
be fixed. The set f−1(U) is open in the product Λ ×X and it contains {λ} ×K;
since K is compact, f−1(U) also contains V ×K for some neighborhood V of λ
in Λ. Hence V ⊂ f̃−1

(
V(K;U)

)
and we are done. �

LEMMA B.1.2. Let Λ, X , Y be topological spaces and let f̃ : Λ → C(X,Y )
be a continuous map, where the space C(X,Y ) is endowed with the compact-open
topology. Assume that X is locally compact1. Then the map f : Λ × X → Y
defined by f(λ, x) = f̃(λ)(x), for all λ ∈ Λ, x ∈ X is continuous.

1This means that any neighborhood of an arbitrary point x ∈ X contains a compact neighbor-
hood of x.

217
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PROOF. Let λ ∈ Λ, x ∈ X be fixed and let U be an open neighborhood of
f(λ, x) in Y . Since the map f̃(λ) : X → Y is continuous, the set f̃(λ)−1(U) is an
open neighborhood of x in X . Let K be a compact neighborhood of x contained
in f̃(λ)−1(U). Then f̃(λ) is in V(K;U) and therefore we can find a neighborhood
V of λ in Λ with f̃(V ) ⊂ V(K;U). Hence V ×K is a neighborhood of (λ, x) in
Λ×X and f(V ×K) ⊂ U . �

We now focus on the space C
(
[a, b], X

)
of continuous curves γ : [a, b] → X

on a fixed topological space X . By a partition of the interval [a, b] we mean a
finite subset P of [a, b] containing a and b; we write P = {t0, . . . , tr} meaning
that a = t0 < t1 < · · · < tr = b. Given a partition P = {t0, . . . , tr} of [a, b] and
a sequence U1, U2, . . . , Ur of open subsets of X , we write:

(B.1.1) V(P ;U1, . . . , Ur)

=
{
γ ∈ C

(
[a, b], X

)
: γ

(
[ti−1, ti]

)
⊂ Ui, i = 1, . . . , r

}
.

Obviously V(P ;U1, . . . , Ur) is an open subset of C
(
[a, b], X

)
with respect to the

compact-open topology. Moreover, we have the following:

LEMMA B.1.3. Let X be a topological space and B be a basis of open subsets
for X . The sets V(P ;U1, . . . , Ur), where P runs over the partitions of [a, b] and
U1, . . . , Ur run over B, form a basis of open subsets for the compact-open topology
on C

(
[a, b], X

)
.

PROOF. Let Z be an open subset of C
(
[a, b], X

)
with respect to the compact-

open topology and let γ ∈ Z be fixed. We’ll find a partition P = {t0, . . . , tr} of
[a, b] and basic open sets U1, . . . , Ur ∈ B such that:

(B.1.2) γ ∈ V(P ;U1, . . . , Ur) ⊂ Z.
By the definition of the compact-open topology, we can find compact subsets
K1, . . . ,Ks ⊂ [a, b] and open subsets V1, . . . , Vs ⊂ X such that:

γ ∈
s⋂
i=1

V(Ki;Vi) ⊂ Z.

Let u ∈ [a, b] be fixed. The set: ⋂
i=1,...,s
u∈Ki

Vi

is an open neighborhood of γ(u) in X and therefore it contains a basic open set
Bu ∈ B such that γ(u) ∈ Bu. Set:

(B.1.3) Iu = γ−1(Bu) ∩
⋂

i=1,...,s
u 6∈Ki

(
[a, b] \Ki

)
.

Then u ∈ Iu and Iu is open in [a, b]. Let δ > 0 be a Lebesgue number for the open
cover

⋃
u∈[a,b] Iu of the compact metric space [a, b]; this means that every subset

of [a, b] having diameter less than δ is contained in some Iu. Let P = {t0, . . . , tr}
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be a partition of [a, b] with tj − tj−1 < δ, for j = 1, . . . , r. For each j = 1, . . . , r
we can find uj ∈ [a, b] with [tj−1, tj ] ⊂ Iuj ; set Uj = Buj . We claim that (B.1.2)
holds.

Since for j = 1, . . . , r, [tj−1, tj ] ⊂ Iuj and γ(Iuj ) ⊂ Buj = Uj , we have
γ ∈ V(P ;U1, . . . , Ur). To complete the proof, choose µ ∈ V(P ;U1, . . . , Ur)
and let us prove that µ ∈

⋂s
i=1 V(Ki;Vi). Let i = 1, . . . , s and t ∈ Ki be fixed.

We have t ∈ [tj−1, tj ], for some j = 1, . . . , r. We claim that uj ∈ Ki; namely,
otherwise Iuj would be contained in [a, b]\Ki (recall (B.1.3)), but t is in Iuj ∩Ki.
But uj ∈ Ki implies Uj = Buj ⊂ Vi. Finally, since µ ∈ V(P ;U1, . . . , Ur), we
have µ(t) ∈ Uj ⊂ Vi. This proves that µ(Ki) ⊂ Vi for i = 1, . . . , s and completes
the prove of the lemma. �

B.2. Liftings

DEFINITION B.2.1. Let X , X̃ , Y be topological spaces and π : X̃ → X ,
f : Y → X be continuous maps. By a lifting of f with respect to π we mean a
continuous map f̃ : Y → X̃ such that π ◦ f̃ = f .

LEMMA B.2.2. Let X , X̃ , Y be topological spaces, f : Y → X be a continu-
ous map, π : X̃ → X be a continuous locally injective map2 and let f̃1 : Y → X̃ ,
f̃2 : Y → X̃ be liftings of f with respect to π. The set:

(B.2.1)
{
y ∈ Y : f̃1(y) = f̃2(y)

}
is open in Y .

PROOF. Let y ∈ Y be fixed with f̃1(y) = f̃2(y). If A is an open neighbor-
hood of f̃1(y) in X̃ such that π|A in injective then f̃−1

1 (A) ∩ f̃−1
2 (A) is an open

neighborhood of y in Y contained in (B.2.1). �

COROLLARY B.2.3. Let X , X̃ , Y be topological spaces, with X̃ Hausdorff
and Y connected. Let f : Y → X be a continuous map, π : X̃ → X be a
continuous locally injective map and let f̃1 : Y → X̃ , f̃2 : Y → X̃ be liftings of f
with respect to π. If f̃1 and f̃2 agree on some point of Y then f̃1 = f̃2.

PROOF. Since X̃ is Hausdorff, the set (B.2.1) is closed in Y and it also open
by Lemma B.2.2. Moreover, it is nonempty, by our hypotheses. The conclusion
follows from the connectedness of Y . �

Let X̃ , X be topological spaces and π : X̃ → X be a local homeomorphism,
i.e., for every x̃ ∈ X̃ there exists an open neighborhoood A of x̃ in X̃ such that
π(A) is open in X and the restriction π|A : A → π(A) is a homeomorphism.
Corollary B.2.3 implies that, if X̃ is Hausdorff and Y is connected then a continu-
ous map f : Y → X admits at most one lifting f̃ : Y → X̃ satisfying a prescribed
condition of the form f(y0) = x̃0.

In what follows we will be mostly concerned with liftings of continuous curves
γ : [a, b]→ X .

2This means that every point of X̃ has a neighborhood in which π is injective.
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LEMMA B.2.4. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism. Denote by L the set of pairs (x̃0, γ) ∈ X̃ × C

(
[a, b], X

)
such

that there exists a unique3 lifting γ̃ : [a, b] → X̃ of γ with respect to π satisfying
the initial condition γ̃(a) = x0. Endow the sets C

(
[a, b], X

)
and C

(
[a, b], X̃

)
with

the compact-open topology. The map:

L : L −→ C
(
[a, b], X̃

)
defined by L(x̃0, γ) = γ̃, where γ̃ : [a, b] → X̃ is the unique lifting of γ such that
γ̃(a) = x̃0, is continuous.

PROOF. Let B denote the collection of all open subsets A of X̃ such that π(A)
is open in X and π|A : A → π(A) is a homeomorphism. Since π is a local
homeomorphism, the set B is a basis of open subsets of X̃ . Let (x̃0, γ) ∈ L be
fixed and set γ̃ = L(x̃0, γ). Let P = {t0, . . . , tr} be a partition of [a, b] and let
A1, . . . , Ar ∈ B be such that (recall (B.1.1)):

γ̃ ∈ V(P ;A1, . . . , Ar).

By Lemma B.1.3, in order to complete the proof, it suffices to find a neighborhood
of (x̃0, γ) in L that is mapped by L into V(P ;A1, . . . , Ar). Let Z denote the set
of pairs (ỹ0, µ) in L such that:

• ỹ0 ∈ A1;
• µ

(
[ti−1, ti]

)
⊂ π(Ai), for i = 1, . . . , r;

• µ(ti) ∈ π(Ai ∩Ai+1), for i = 1, . . . , r − 1.

By definition of the compact-open topology in C
(
[a, b], X

)
, it is immediate that Z

is open inL. Moreover, (x̃0, γ) is inZ . We will show thatL(Z) ⊂ V(P ;A1, . . . , Ar).
Let (ỹ0, µ) ∈ Z be fixed. For i = 1, . . . , r, we consider the continuous curve
µ̃i : [ti−1, ti]→ Ai ⊂ X̃ defined by:

µ̃i = (π|Ai)−1 ◦ µ|[ti−1,ti].

We claim that µ̃i(ti) = µ̃i+1(ti), for i = 1, . . . , r − 1. Namely, since µ(ti) is
in π(Ai ∩ Ai+1), there exists p ∈ Ai ∩ Ai+1 with µ(ti) = π(p). Since π|Ai is
injective, µ̃i(ti) and p are in Ai and π

(
µ̃i(ti)

)
= µ(ti) = π(p), it follows that

µ̃i(ti) = p. Similarly, since π|Ai+1 is injective, µ̃i+1(ti) and p are in Ai+1 and
π
(
µ̃i+1(ti)

)
= µ(ti) = π(p), it follows that µ̃i+1(ti) = p. This proves the claim.

Since µ̃i(ti) = µ̃i+1(ti), for i = 1, . . . , r − 1, we can consider the curve
µ̃ : [a, b] → X̃ such that µ̃|[ti−1,ti] = µ̃i, for i = 1, . . . , r. The curve µ̃ is a lifting
of µ. Moreover, since π|A1 is injective, ỹ0 and µ̃(a) are in A1 and:

π(ỹ0) = µ(a) = π
(
µ̃(a)

)
,

it follows that µ̃(a) = ỹ0. Therefore L(ỹ0, µ) = µ̃. The proof is completed by
observing that µ̃ ∈ V(P ;A1, . . . , Ar). �

3Notice that, by Corollary B.2.3, if X̃ is Hausdorff, the uniqueness of γ̃ is automatic.
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COROLLARY B.2.5. Let X̃ , X , Y be topological spaces, π : X̃ → X be a
local homeomorphism and f : Y × [a, b] → X , f̃0 : Y → X̃ be continuous maps
such that for every y ∈ Y , the curve γy : [a, b] 3 t 7→ f(y, t) ∈ X has a unique
lifting γ̃y : [a, b]→ X̃ satisfying the initial condition γ̃y(a) = f̃0(y). Then f has a
unique lifting f̃ : Y × [a, b]→ X̃ such that:

f̃(y, a) = f̃0(y),

for all y ∈ Y .

PROOF. By Lemma B.1.1, the map:

F : Y 3 y 7−→ γy ∈ C
(
[a, b], X

)
is continuous. By our hypotheses, the continuous map:

(f̃0, F ) : Y −→ X̃ × C
(
[a, b], X̃

)
takes values in L. It is clear that there exists a unique map f̃ : Y × [a, b] → X̃

such that π ◦ f̃ = f and f̃(y, a) = f̃0(y), for all y ∈ Y ; such map is given by:

f̃(y, t) = L
(
f̃0(y), F (y)

)
(t),

for all y ∈ Y , t ∈ [a, b]. It follows from Lemmas B.2.4 and B.1.2 that f̃ is indeed
continuous. �

DEFINITION B.2.6. Let X̃ , X be topological spaces and π : X̃ → X be a
continuous map. We say that π has the unique lifting property for paths if for any
continuous map γ : [a, b] → X and any x̃0 ∈ π−1

(
γ(a)

)
there exists a unique

lifting γ̃ : [a, b]→ X̃ of γ with γ̃(a) = x̃0.

DEFINITION B.2.7. By a loop in a topological space X we mean a continuous
map γ : [a, b]→ X with γ(a) = γ(b). We say that the loop γ is contractible in X
if there exists a continuous map H : [0, 1]× [a, b]→ X such that:

• H(0, t) = γ(t), for all t ∈ [a, b];
• H(s, a) = H(s, b), for all s ∈ [0, 1];
• the map [a, b] 3 t 7→ H(1, t) ∈ X is constant.

We say that X is simply-connected if every loop in X is contractible in X . We say
that X is semi-locally simply-connected if every point of X has a neighborhood V
such that any loop in V is contractible in X .

LEMMA B.2.8. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism. Assume that π has the unique lifting property for paths. Let A
be an arc-connected subset of X̃ such that every loop in π(A) is contractible in X .
Then π|A is injective.

PROOF. Assume that x̃1, x̃2 ∈ A and that π(x̃1) = π(x̃2). Since A is arc-
connected, there exists a continuous map γ̃ : [a, b] → A with γ̃(a) = x̃1 and
γ̃(b) = x̃2. Then γ = π ◦ γ̃ is a loop in π(A); therefore γ is contractible in X ,
i.e., there exists a continuous map H : [0, 1] × [a, b] → X as in Definition B.2.7.
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Since π has the unique lifting property for paths, Corollary B.2.5 gives us a lifting
H̃ : [0, 1]× [a, b]→ X̃ of H such that H̃(0, t) = γ̃(t), for all t ∈ [a, b].

Since the map [a, b] 3 t 7→ H(1, t) ∈ X is constant, the unique lifting property
for paths implies that its lifting [a, b] 3 t 7→ H̃(1, t) ∈ X̃ is also constant. In
particular, H̃(1, a) = H̃(1, b); therefore, the paths:

[0, 1] 3 s 7−→ H̃(1− s, a) ∈ X̃, [0, 1] 3 s 7−→ H̃(1− s, b) ∈ X̃,
are liftings of the same path in X and they agree on s = 0. Again, by the unique
lifting property for paths, it follows that H̃(1−s, a) = H̃(1−s, b), for all s ∈ [0, 1].
In particular:

x̃1 = γ̃(a) = H̃(0, a) = H̃(0, b) = γ̃(b) = x̃2.

This concludes the proof. �

COROLLARY B.2.9. Under the hypotheses of Lemma B.2.8, if in addition the
set A is open in X̃ then π(A) is open in X and π|A : A → π(A) is a homeomor-
phism.

PROOF. Simply observe that, being a local homeomorphism, π is an open
mapping; moreover, if A is open in X̃ and the restriction of π to A is injective
then π|A : A→ π(A) is a continuous, bijective open mapping. �

B.3. Covering Maps

DEFINITION B.3.1. Let X̃ , X be topological spaces and π : X̃ → X be an
arbitrary map. An open subset U ⊂ X is called a fundamental open subset of
X if π−1(U) equals a disjoint union

⋃
i∈I Ui of open subsets Ui of X̃ such that

π|Ui : Ui → U is a homeomorphism for all i ∈ I . We say that π is a covering map
if X can be covered by fundamental open subsets.

Obviously every covering map is a local homeomorphism.

DEFINITION B.3.2. We say that a topological spaceX is locally arc-connected
(resp., locally connected) if every point x ∈ X has a fundamental system of arc-
connected (resp., connected) neighborhoods, i.e., if every neighborhood of x con-
tains a (not necessarily open) arc-connected (resp., connected) neighborhood of
x.

Obviously if X is locally arc-connected (resp., locally connected) then every
open subset of X is also locally arc-connected (resp., locally connected), when
endowed with the topology induced from X .

REMARK B.3.3. If X is locally arc-connected (resp., locally connected) then
every point of X has a fundamental system of open arc-connected (resp., con-
nected) neighborhoods, i.e., for every x ∈ X and every neighborhood V of x,
there exists an arc-connected (resp., a connected) open set C with x ∈ C ⊂ V .
Namely, take C to be the arc-connected component (resp., connected component)
of the interior of V containing x and use the fact that the arc-connected components
(resp., connected components) of an open subset are open (see Exercise B.1).
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LEMMA B.3.4. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism. Assume that π has the unique lifting property for paths and that
X̃ is locally arc-connected. Let U be an arc-connected open subset of X such that
every loop in U is contractible in X . Then U is a fundamental open subset of X .

PROOF. Let (Ui)i∈I denote the arc-connected components of π−1(U). Since
π−1(U) is open in X̃ , each Ui is open in X̃ (see Exercise B.1). Obviously:

π−1(U) =
⋃
i∈I

Ui

and such union is disjoint. Let i ∈ I be fixed and let us show that π|Ui is a
homeomorphism onto U . Obviously π(Ui) ⊂ U . We claim that π(Ui) = U .
Given x ∈ U , choose an arbitrary point x̃0 ∈ Ui and let γ : [a, b] → U be a
continuous map with γ(a) = π(x̃0) and γ(b) = x. By the unique lifting property
for paths, we can find a lifting γ̃ : [a, b] → X̃ of γ such that γ̃(a) = x̃0. Since
γ̃ is a continuous curve in π−1(U) starting at a point of Ui and since Ui is an arc-
connected component of π−1(U), it follows that γ̃ takes values in Ui. In particular
γ̃(b) ∈ Ui and π

(
γ̃(b)

)
= γ(b) = x. Finally, Corollary B.2.9 implies that π|Ui is a

homeomorphism onto π(Ui) = U . �

COROLLARY B.3.5. Let X̃ , X be topological spaces and π : X̃ → X be a
local homeomorphism. Assume that π has the unique lifting property for paths and
that X is locally arc-connected and semi-locally simply-connected. Then π is a
covering map.

PROOF. Observe that, since π is a local homeomorphism and X is locally arc-
connected, it follows that also X̃ is locally arc-connected. The conclusion follows
from Lemma B.3.4 (recall also Remark B.3.3). �

Let X̃ , X be topological spaces and π : X̃ → X be a local homeomorphism;
assume that X̃ is Hausdorff, so that Corollary B.2.3 guarantees the uniqueness of
liftings (with prescribed initial conditions) of curves in X . Now let γ : [a, b]→ X
be a continuous curve and let x̃0 ∈ π−1

(
γ(a)

)
be such that γ does not admit a

lifting γ̃ : [a, b]→ X̃ with γ̃(a) = x̃0. Consider the set:

(B.3.1)
{
t ∈ ]a, b] : γ|[a,t] admits a lifting γ̃ : [a, t]→ X̃ with γ̃(a) = x̃0

}
.

The set (B.3.1) is not empty; namely, if A is an open neighborhood of x̃0 such that
π(A) is open in X and π|A : A → π(A) is a homeomorphism then there exists
ε > 0 with γ

(
[a, a+ ε]

)
⊂ π(A) and therefore γ̃ = (π|A)−1 ◦ γ|[a,a+ε] is a lifting

of γ|[a,a+ε] with γ̃(a) = x̃0.
Obviously if t is in (B.3.1) and t′ is in ]a, t] then also t′ is in (B.3.1). Therefore

(B.3.1) is an interval whose left endpoint is a. Let t0 ∈ ]a, b] be the supremum of
(B.3.1). Then ]a, t0[ is contained in (B.3.1). For each t ∈ ]a, t0[, let γ̃t : [a, t]→ X̃
be a lifting of γ|[a,t] with γ̃t(a) = x̃0. Given t, t′ ∈ ]a, t0[, with t′ < t then γ̃t′
and γ̃t|[a,t′] are both liftings of the same curve having the same initial condition;
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therefore γ̃t′ = γ̃t|[a,t′]. Therefore, there exists a unique curve γ̃ : [a, t0[ → X̃
such that:

γ̃|[a,t] = γ̃t,

for all t ∈ ]a, t0[. The curve γ̃ is continuous, since its restriction to ]a, t] is con-
tinuous for all t ∈ ]a, t0[. Moreover, γ̃ is a lifting of γ|[a,t0[ satisfying the initial
condition γ̃(a) = x̃0. We call γ̃ the maximal partial lifting of γ starting at x̃0.

We have the following:

LEMMA B.3.6. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism; assume that X̃ is Hausdorff. Let γ : [a, b]→ X be a continuous
curve and let x̃0 ∈ π−1

(
γ(a)

)
be such that γ does not admit a lifting starting at

x̃0. Let γ̃ : [a, t0[ → X̃ be the maximal partial lifting of γ starting at x̃0, where
t0 ∈ ]a, b]. Then γ|[a,t0] does not admit a lifting starting at x̃0 (i.e., t0 is not in
(B.3.1)).

PROOF. If t0 = b then γ|[a,t0] = γ and, by our hypotheses, γ does not admit a
lifting starting at x̃0. Assume that t0 < b and assume by contradiction that γ|[a,t0]

admits a lifting γ̃ : [a, t0]→ X̃ with γ̃(a) = x̃0. LetA be an open neighborhood of
γ̃(t0) in X̃ such that π(A) is open inX and π|A : A→ π(A) is a homeomorphism.
Then γ

(
[t0, t0 + ε]

)
is contained in π(A) for some ε > 0. Consider the curve

µ̃ : [t0, t0 + ε] → A defined by µ̃ = (π|A)−1 ◦ γ|[t0,t0+ε]. Then µ̃ is a lifting of
γ|[t0,t0+ε] starting at γ̃(t0). Therefore the concatenation of γ̃ with µ̃ is a lifting of
γ|[a,t0+ε] starting at x̃0. Thus t0 + ε is in (B.3.1), contradicting the fact that t0 is
the supremum of (B.3.1). �

Recall that a point p in a topological space Y is called a limit value of a map
f : [a, b[ → Y at the point b if for any neighborhood V of p and any ε > 0 there
exists t ∈ ]b− ε, b[ with f(t) ∈ V . We have the following:

LEMMA B.3.7. Let X̃ , X be Hausdorff topological spaces and π : X̃ → X
be a local homeomorphism. Let γ : [a, b] → X be a continuous curve and let
x̃0 ∈ π−1

(
γ(a)

)
be such that γ does not admit a lifting starting at x̃0. Denote by

γ̃ : [a, t0[ → X̃ the maximal partial lifting of γ starting at x̃0, where t0 ∈ ]a, b].
Then the map γ̃ has no limit values at the point t0.

PROOF. Assume by contradiction that p ∈ X̃ is a limit value of γ̃ at the point
t0. We claim that π(p) = γ(t0). Otherwise, we could find disjoint open sets
U1, U2 ⊂ X with π(p) ∈ U1 and γ(t0) ∈ U2; then γ

(
]t0 − ε, t0]

)
⊂ U2 for

some ε > 0 and there exists t ∈ ]t0 − ε, t0[ with γ̃(t) ∈ π−1(U1). This implies
γ(t) = π

(
γ̃(t)

)
∈ U1, contradicting U1 ∩ U2 = ∅. The claim is proved.

Let now A be an open neighborhood of p in X̃ such that π(A) is open in X
and π|A : A → π(A) is a homeomorphism. Since γ(t0) = π(p) is in π(A), we
can find ε > 0 with γ

(
]t0 − ε, t0]

)
⊂ π(A). Now there exists t ∈ ]t0 − ε, t0[ with

γ̃(t) ∈ A. define µ̃ : [t, t0]→ A by setting:

µ̃ = (π|A)−1 ◦ γ|[t,t0].
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Then µ̃ is a lifting of γ|[t,t0] starting at γ̃(t); the concatenation of γ̃|[a,t] with µ̃ is
therefore a lifting of γ|[a,t0] starting at x̃0. This contradicts Lemma B.3.6. �

COROLLARY B.3.8. Under the assumptions of Lemma B.3.7, we have:
(a) if (tn)n≥1 is a sequence in [a, t0[ converging to t0 then the sequence(

γ̃(tn)
)
n≥1

has no converging subsequence in X̃;

(b) if K is a compact subset of X̃ then there exists ε > 0 such that:

γ̃
(
]t0 − ε, t0[

)
∩K = ∅.

PROOF. If
(
γ̃(tn)

)
n≥1

had a converging subsequence to a point p ∈ X̃ then
p would be a limit value of γ̃ at the point t0. Thus (a) is proven. Let us prove
(b). For each point p ∈ K, since p is not a limit value of γ̃ at the point t0, we can
find an open neighborhood Up of p in X̃ and a positive number εp > 0 such that
γ̃
(
]t0 − εp, t0[

)
is disjoint from Up. The open cover

⋃
p∈K Up of K has a finite

subcover
⋃r
i=1 Upi . Let ε = minri=1 εpi > 0. Then γ̃

(
]t0 − ε, t0[

)
is disjoint from

K. �

DEFINITION B.3.9. Let X̃ , X be topological spaces and π : X̃ → X be a
continuous map. We will say that a continuous curve γ : [a, b]→ X admits liftings
with arbitrary initial conditions with respect to π if for every x̃0 ∈ π−1

(
γ(a)

)
there exists a lifting γ̃ : [a, b]→ X̃ of γ satisfying the initial condition γ̃(a) = x̃0.

In order to check that a local homeomorphism π : X̃ → X has the unique
lifting property for paths, it suffices to show that a “sufficiently rich” set of curves
in X admits lifting with arbitrary initial conditions. This is made more precise in
the following:

DEFINITION B.3.10. Let X be a topological spaces and let C be a subset of
C
(
[0, 1], X

)
. We say that C is rich in X if for every point p ∈ X there exists a

neighborhood U of p inX , a point p0 ∈ X and a continuous mapH : [0, 1]×U →
X such that the following conditions hold:

• H(0, x) = p0 and H(1, x) = x, for all x ∈ U ;
• for any x ∈ U , the curves:

(B.3.2) [0, 1] 3 t 7−→ H(t, x) ∈ X, [0, 1] 3 t 7−→ H(1− t, x) ∈ X,
are in C.

EXAMPLE B.3.11. If X is a differentiable manifold then the set of all smooth
curves γ : [0, 1]→ X is rich. Moreover, if X is a semi-Riemannian manifold then
the set of all geodesics γ : [0, 1]→ X is rich.

LEMMA B.3.12. Let X̃ , X be topological spaces and π : X̃ → X be a
local homeomorphism; assume that X̃ is Hausdorff. If there exists a rich set C
of continuous curves γ : [0, 1] → X such that every γ ∈ C admits liftings with
arbitrary initial conditions with respect to π then π has the unique lifting property
for paths.
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PROOF. Let γ : [a, b] → X be a continuous curve and let x̃0 ∈ π−1
(
γ(a)

)
be fixed. Assume by contradiction that γ does not admit a lifting starting at x̃0.
Let γ̃ : [a, t0[ → X̃ be the maximal partial lifting of γ starting at x̃0, where
t0 ∈ ]a, b]. Set p = γ(t0) and let U , p0 and H be as in Definition B.3.10. Let
ε > 0 be such that γ

(
[t0 − ε, t0]

)
⊂ U and let µ̃ : [0, 1] → X̃ be a lifting of the

curve [0, 1] 3 t 7→ H
(
1 − t, γ(t0 − ε)

)
∈ X such that µ̃(0) = γ̃(t0 − ε). Then

p̃0 = µ̃(1) is a point in X̃ such that π(p̃0) = p0. Since for every x ∈ U the curve
[0, 1] 3 t 7→ H(t, x) ∈ X admits a lifting starting at p̃0, Corollary B.2.5 gives us a
lifting H̃ : [0, 1]×U → X̃ ofH such that H̃(0, x) = p̃0, for all x ∈ U . The curves
[0, 1] 3 t 7→ µ̃(1 − t) ∈ X̃ and [0, 1] 3 t 7→ H̃

(
t, γ(t0 − ε)

)
∈ X̃ are liftings of

the same curve in X and they both start at the point p̃0; therefore they are equal. In
particular:

µ̃(0) = γ̃(t0 − ε) = H̃
(
1, γ(t0 − ε)

)
.

Therefore [t0 − ε, t0] 3 t 7→ H̃
(
1, γ(t)

)
∈ X̃ is a lifting of γ|[t0−ε,t0] starting at

γ̃(t0 − ε); setting γ̃(t0) = H̃
(
1, γ(t0)

)
we thus obtain a lifting of γ|[a,t0] starting

at x̃0. This contradicts Lemma B.3.6. �

COROLLARY B.3.13. Under the conditions of Lemma B.3.12, if in addition,
X is locally arc-connected and semi-locally simply-connected then π : X̃ → X is
a covering map.

PROOF. Follows readily from Lemma B.3.12 and Corollary B.3.5. �

In next lemma we show that uniqueness of liftings works for covering maps
π : X̃ → X even if the space X̃ is not Hausdorff (compare with Corollary B.2.3).

LEMMA B.3.14. Let X , X̃ , Y be topological spaces, with Y connected. Let
f : Y → X be a continuous map, π : X̃ → X be a covering map and let
f̃1 : Y → X̃ , f̃2 : Y → X̃ be liftings of f with respect to π. If f̃1 and f̃2 agree on
some point of Y then f̃1 = f̃2.

PROOF. Consider the set defined in (B.2.1). Since π is locally injective, (B.2.1)
is open, by Lemma B.2.2; moreover, (B.2.1) is nonempty, by our hypotheses. We
complete the proof by showing that (B.2.1) is closed (without using that X̃ is
Hausdorff). Let y ∈ Y be a point not in (B.2.1), i.e., f̃1(y) 6= f̃2(y). We have
π
(
f̃1(y)

)
= π

(
f̃2(y)

)
= f(y); let U ⊂ X be a fundamental open set containing

f(y). Then π−1(U) =
⋃
i∈I Ui, where (Ui)i∈I is a family of disjoint open subsets

of X̃ and π maps Ui homeomorphically onto U , for all i ∈ I . We have f̃1(y) ∈ Ui
and f̃2(y) ∈ Uj , for some i, j ∈ I . Since π|Ui is injective, it must be i 6= j. Set
V = f̃−1

1 (Ui) ∩ f̃−1
2 (Uj). Then V is an open neighborhood of y in Y . Moreover,

f̃1(V ) ⊂ Ui, f̃2(V ) ⊂ Uj and Ui ∩ Uj = ∅; therefore V is disjoint from (B.2.1).
This completes the proof. �

LEMMA B.3.15. If π : X̃ → X is a covering map then π has the unique lifting
property for paths.
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PROOF. Let γ : [a, b] → X be a continuous map and fix a point x̃0 ∈
π−1

(
γ(a)

)
. We will show that γ has a lifting γ̃ : [a, b] → X̃ with γ̃(a) = x̃0;

by Lemma B.3.14, such lifting is unique.
Let us start with the case where the image of γ is contained in a fundamental

open subset U of X . Write π−1(U) =
⋃
i∈I Ui, where (Ui)i∈I is a family of

disjoint open subsets of X̃ and π maps Ui homeomorphically onto U for all i ∈ I .
Since x̃0 ∈ π−1(U), we have x̃0 ∈ Ui, for some i ∈ I . Then γ̃ = (π|Ui)−1 ◦ γ is a
lifting of γ with γ̃(a) = x̃0.

Let us now go to the general case. Since the fundamental open subsets of
X form an open cover of X , its inverse images by γ form an open cover of the
compact metric space [a, b]; let δ > 0 be a Lebesgue number for this open cover,
i.e., every subset of [a, b] having diameter less than δ is contained in the inverse
image by γ of some fundamental open subset of X . Let P = {t0, . . . , tr} be a
partition of [a, b] with ti − ti−1 < δ, i = 1, . . . , r. Then γ

(
[ti−1, ti]

)
is contained

in a fundamental open subset ofX; by the first part of the proof, the curve γ|[ti−1,ti]

admits liftings with arbitrary initial conditions, for all i = 1, . . . , r. We construct
a lifting γ̃i of γ|[ti−1,ti] by induction on i as follows. Let γ̃1 be a lifting of γ|[t0,t1]

with γ̃1(a) = x̃0. Assuming that γ̃i is constructed for some i < r, we consider the
lifting γ̃i+1 of γ|[ti,ti+1] with γ̃i+1(ti) = γ̃i(ti).

Since the continuous curves γ̃1, . . . , γ̃r satisfy:

γ̃i(ti) = γ̃i+1(ti),

for all i = 1, . . . , r−1, we can define a continuous curve γ̃ : [a, b]→ X̃ by setting
γ̃|[ti−1,ti] = γ̃i, for i = 1, . . . , r. Then γ̃ is a lifting of γ and γ̃(a) = x̃0. This
concludes the proof. �

COROLLARY B.3.16. Assume that π : X̃ → X is a covering map and that X̃
is locally arc-connected. If U is an arc-connected open subset ofX such that every
loop in U is contractible in X (in particular, if U is simply-connected) then U is a
fundamental open subset of X .

PROOF. Follows from Lemmas B.3.15 and B.3.4. �

LEMMA B.3.17. If π : X̃ → X is a covering map then the image of π is closed
in X .

PROOF. Let x ∈ X be a point outside the image of π. Let U be a fundamental
open subset of X containing x. Then π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a

family of disjoint open subsets of X̃ and π maps Ui homeomorphically onto U for
all i ∈ I . We claim that I = ∅; namely, otherwise there would exist some i ∈ I
and U = π(Ui) would be contained in the image of π. Since I = ∅, it follows that
π−1(U) = ∅, i.e., U is disjoint from the image of π. �

COROLLARY B.3.18. If π : X̃ → X is a covering map, X̃ is nonempty and X
is connected then π is surjective.

PROOF. The image of π is nonempty (because X̃ is nonempty), open in X
(because π is a local homeomorphism) and, by Lemma B.3.17, closed in X . �
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COROLLARY B.3.19. Assume that π : X̃ → X is a covering map, X̃ is
nonempty and arc-connected and X is connected and simply-connected. Then π is
a homeomorphism.

PROOF. By Corollary B.3.18, π is surjective and by Lemma B.3.15, π has the
unique lifting property for paths. It follows from Corollary B.2.9 (with A = X̃)
that π is a homeomorphism. �

DEFINITION B.3.20. Let X̃ , X be topological spaces and π : X̃ → X be a
continuous map. By a local section of π we mean a map s : U → X̃ defined on an
open subset U of X such that π ◦ s equals the inclusion map of U in X .

Notice that a continuous local section s : U → X̃ of π is the same as a lifting
with respect to π of the inclusion map U → X of an open subset U of X .

LEMMA B.3.21. Let X̃ , X be topological spaces and π : X̃ → X be a locally
injective continuous map. If s : U → X̃ , s′ : U ′ → X̃ are continuous local
sections of π such that s(x) = s′(x) for some x ∈ U ∩U ′ then there exists an open
neighborhood V of x contained in U ∩ U ′ such that s|V = s′|V .

PROOF. Since s|U∩U ′ and s′|U∩U ′ are both liftings of the inclusion map of
U ∩U ′ into X , it follows from Lemma B.2.2 that the set of points of U ∩U ′ where
s coincides with s′ is open. �

LEMMA B.3.22. Let X̃ , X be topological spaces and π : X̃ → X be a
locally injective continuous map; assume that X̃ is Hausdorff. Let s : U → X̃ ,
s′ : U → X̃ be continuous local sections of π with U connected. If s(x) = s′(x)
for some x ∈ U then s = s′.

PROOF. It follows from Corollary B.2.3, observing that s and s′ are both lift-
ings of the inclusion map of U into X . �

LEMMA B.3.23. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism. If s : U → X̃ is a continuous local section of π then s(U) is
open in X̃ and s : U → s(U) is a homeomorphism.

PROOF. The map s : U → s(U) is continuous, bijective and its inverse, which
is equal to π|s(U) : s(U) → U , is also continuous; thus s : U → s(U) is a
homeomorphism. To complete the proof we show that s(U) is open in X̃ . Given
x ∈ U , we will find a neighborhood of s(x) in X̃ contained in s(U). Let A ⊂ X̃
be an open subset such that s(x) ∈ A, π(A) is open in X and π|A : A → π(A) is
a homeomorphism. Then s′ = (π|A)−1 : π(A)→ X̃ is a continuous local section
of π and s′(x) = s(x). By Lemma B.3.21, there exists an open subset V ofX with
x ∈ V , V ⊂ U ∩ π(A) and s|V = s′|V . Since s′ is a homeomorphism onto an
open subset of X̃ , it follows that s′(V ) is open in X̃; moreover:

s(x) ∈ s′(V ) = s(V ) ⊂ s(U).

Hence s′(V ) is a neighborhood of s(x) contained in s(U). �



B.3. COVERING MAPS 229

DEFINITION B.3.24. Let X̃ , X be topological spaces and π : X̃ → X be
a continuous map. An open subset U of X is said to be quasi-fundamental with
respect to π if for every x ∈ U and every x̃ ∈ π−1(x) there exists a continuous
local section s : U → X̃ of π such that s(x) = x̃.

REMARK B.3.25. Clearly, if U is a fundamental open subset ofX with respect
to a continuous map π : X̃ → X then U is also quasi-fundamental. Namely, write
π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a family of pairwise disjoint open subsets of

X̃ such that π maps Ui homeomorphically onto U for all i ∈ I . Given x ∈ U and
x̃ ∈ π−1(x) then x̃ ∈ Ui for some i ∈ I . Let s = (π|Ui)−1 : U → X̃ . Clearly s is
a continuous local section of π and s(x) = x̃.

LEMMA B.3.26. Let X̃ , X be topological spaces and π : X̃ → X be a
local homeomorphism; assume that X̃ is Hausdorff. If U is a quasi-fundamental
connected open subset of X with respect to π then U is a fundamental open subset
of X with respect to π.

PROOF. Let S be the set of all continuous local sections of π defined in U . We
claim that:

π−1(U) =
⋃
s∈S

s(U).

Indeed, if s ∈ S then obviously s(U) ⊂ π−1(U); moreover, given x̃ ∈ π−1(U)
then x = π(x̃) ∈ U and, since U is quasi-fundamental, there exists s ∈ S
with s(x) = x̃. Thus x̃ ∈ s(U). This proves the claim. Now observe that, by
Lemma B.3.23, s(U) is open in X̃ for all s ∈ S; moreover, π|s(U) : s(U) → U is
a homeomorphism, being the inverse of s : U → s(U). To complete the proof, we
show that the union

⋃
s∈S s(U) is disjoint. Pick s, s′ ∈ S with s(U) ∩ s′(U) 6= ∅.

Then there exists x, y ∈ U with s(x) = s′(y). Observe that:

x = π
(
s(x)

)
= π

(
s′(y)

)
= y,

and thus s(x) = s′(x). SinceU is connected and X̃ is Hausdorff, using Lemma B.3.22
we get that s = s′. �

COROLLARY B.3.27. Let X̃ , X be topological spaces and π : X̃ → X be
a local homeomorphism; assume that X̃ is Hausdorff and that X is locally con-
nected. If X can be covered by quasi-fundamental open sets then π is a covering
map.

PROOF. Given x ∈ X , there exists a quasi-fundamental open subset U of X
containing x. Since X is locally connected, U contains an open connected neigh-
borhood U ′ of x (see Remark B.3.3). Obviously also U ′ is quasi-fundamental.
Thus U ′ is a fundamental open subset of X , by Lemma B.3.26. �

LEMMA B.3.28. Let X̃ , X be topological spaces and π : X̃ → X be a local
homeomorphism. If Y is a subset of X then the map:

π′ = π|π−1(Y ) : π−1(Y ) −→ Y
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is a local homeomorphism; moreover, if U ⊂ X is a fundamental open subset with
respect to π then U ∩ Y is a fundamental open subset of Y with respect to π′.

PROOF. Since π is a local homeomorphism, given x̃ ∈ π−1(Y ) we can find an
open subsetA of X̃ with π(A) open inX and π|A : A→ π(A) a homeomorphism.
NowA∩π−1(Y ) is an open subset of π−1(Y ) containing x̃ and π

(
A∩π−1(Y )

)
=

π(A) ∩ Y is open in Y ; moreover, π maps A ∩ π−1(Y ) homeomorphically onto
π(A) ∩ Y . Thus π′ is a local homeomorphism. Now let us prove that U ∩ Y is
fundamental for π′. Write π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a family of disjoint

open subsets of X̃ and π maps Ui homeomorphically onto U , for all i ∈ I . We
have:

π′−1(U ∩ Y ) = π−1(U) ∩ π−1(Y ) =
⋃
i∈I

(
Ui ∩ π−1(Y )

)
,

and
(
Ui ∩ π−1(Y )

)
i∈I is a family of disjoint open subsets of π−1(Y ). Moreover,

π′ maps Ui ∩ π−1(Y ) homeomorphically onto U ∩ Y , for all i ∈ I . �

COROLLARY B.3.29. If π : X̃ → X is a covering map and Y is a subset of X
then π|π−1(Y ) : π−1(Y )→ Y is also a covering map. �

LEMMA B.3.30. If π : X̃ → X is a covering map, X is locally arc-connected
and Ỹ is an arc-connected component of X̃ then π|

Ỹ
: Ỹ → X is also a covering

map.

PROOF. Let U be a fundamental arc-connected open subset of X (relatively to
π). We will show that U is also fundamental relatively to π|

Ỹ
. Write π−1(U) =⋃

i∈I Ui, where (Ui)i∈I is a family of disjoint open subsets of X̃ and π maps Ui
homeomorphically onto U , for every i ∈ I . Since Ui is homeomorphic to U ,
we have that Ui is arc-connected for every i ∈ I; since Ỹ is an arc-connected
component of X̃ , we have either Ui ⊂ Ỹ or Ui ∩ Ỹ = ∅, for all i ∈ I . Set:

I ′ =
{
i ∈ I : Ui ⊂ Ỹ

}
.

Then (π|
Ỹ

)−1(U) = π−1(U) ∩ Ỹ =
⋃
i∈I′ Ui. This proves that U is fundamental

for π|
Ỹ

. Since π is a covering map and X is locally arc-connected, the result of
Exercise B.2 implies that the fundamental arc-connected open subsets of X form a
covering of X . This concludes the proof. �

COROLLARY B.3.31. Assume that π : X̃ → X is a covering map. Let Y be a
connected, locally arc-connected and simply-connected subset of X and let Ỹ be
an arc-connected component of π−1(Y ). Then π|

Ỹ
: Ỹ → Y is a homeomorphism.

PROOF. By Corollary B.3.29, π|π−1(Y ) : π−1(Y ) → Y is a covering map.
Since Y is locally arc-connected and Ỹ is an arc-connected component of π−1(Y ),
Lemma B.3.30 implies that π|

Ỹ
: Ỹ → Y is also a covering map. The conclusion

follows from Corollary B.3.19. �
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COROLLARY B.3.32. Assume that π : X̃ → X is a covering map and that
X is simply-connected and locally arc-connected. Assume also that the image of
π intersects every connected component of X . Then π admits a continuous global
section, i.e., a continuous local section s : X → X̃ whose domain is X .

PROOF. Write X =
⋃
i∈I Xi, where each Xi is a connected component of

X . Since X is locally arc-connected (and, in particular, locally connected), each
Xi is open in X; thus each Xi is also locally arc-connected. The fact that X is
simply-connected implies that each Xi is also simply-connected. Let X̃i be an arc-
connected component of π−1(Xi); observe that, since the image of π intersects
Xi, the set π−1(Xi) is nonempty and thus such an arc-connected component does
exist. It follows from Corollary B.3.31 that π maps X̃i homeomorphically ontoXi.
Let si : Xi → X̃i be the inverse of the homeomorphism π|

X̃i
: X̃i → Xi. Then

each si is a section of π. The desired global section s : X → X̃ is obtained by
setting s|Xi = si, for every i ∈ I . �

B.4. Sheaves and Pre-Sheaves

DEFINITION B.4.1. Let X be a topological space. A pre-sheaf on X is a map
P that assigns to each open subset U ⊂ X a set P(U) and to each pair of open
subsets U, V ⊂ X with V ⊂ U a map PU,V : P(U) → P(V ) such that the
following properties hold:

• for every open subset U ⊂ X the map PU,U is the identity map of the set
P(U);
• given open sets, U, V,W ⊂ X with W ⊂ V ⊂ U then:

PV,W ◦PU,V = PU,W .

REMARK B.4.2. A pre-sheaf on X is simply a contravariant functor from the
category of open subsets of X to the category of sets and maps. The morphisms
in the category of open subsets of X are defined as follows; if U, V ⊂ X are open
then the set of morphisms from V to U has a single element if V ⊂ U and it is
empty otherwise.

DEFINITION B.4.3. Given a topological space X , a sheaf over X is a pair
(S, π), where S is a topological space and π : S → X is a local homeomorphism.

EXAMPLE B.4.4. If (S, π) is a sheaf over a topological space X then the fol-
lowing pre-sheaf P is naturally associated to (S, π): for every open subset U ⊂ X
let P(U) be the set of continuous local sections of π whose domain is U . Given
open subsets U, V ⊂ X with V ⊂ U then the map PU,V is defined by:

PU,V (s) = s|V ,
for all s ∈ P(U).

Let P be a pre-sheaf over a topological space X . Given a point x ∈ X ,
consider the disjoint union of all sets P(U), where U is an open neighborhood of
x in X . We define an equivalence relation ∼ on such disjoint union as follows;
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given f1 ∈ P(U1), f2 ∈ P(U2), where U1, U2 are open neighborhoods of x in X
then f1 ∼ f2 if and only if there exists an open neighborhood V of x contained in
U1 ∩ U2 such that PU1,V (f1) = PU2,V (f2). If U is an open neighborhood of x in
X and f ∈ P(U) then the equivalence class of f corresponding to the equivalence
relation ∼ will be denoted by [f ]x and will be called the germ of f at the point x.
We set:

Sx =
{
[f ]x : f ∈ P(U), for some open neighborhood U of x in X

}
.

REMARK B.4.5. The set Sx is simply the direct limit of the net U 7→ P(U),
where U runs over the set of open neighborhoods of x ordered by reverse inclusion.

Let S denote the disjoint union of all Sx, with x ∈ X . Let π : S → X denote
the map that carries Sx to the point x. Our goal now is to define a topology on S.
Given an open subset U ⊂ X and an element f ∈ P(U) we set:

V(f) =
{
[f ]x : x ∈ U

}
⊂ S.

Observe that if V is an open subset of U then:

V
(
PU,V (f)

)
=

{
[f ]x : x ∈ V

}
;

namely, we have
[
PU,V (f)

]
x

= [f ]x, for all x ∈ V .

We claim that the set:

(B.4.1)
{
V(f) : f ∈ P(U), U an open subset of X

}
is a basis for a topology on S. First, it is obvious that (B.4.1) is a covering of S.
Second, we have to prove the following property; given open subsets U1, U2 ⊂ X ,
f1 ∈ P(U1), f2 ∈ P(U2) and g ∈ V(f1)∩V(f2), there exists an element of (B.4.1)
containing g and contained in V(f1) ∩ V(f2). Let us find such element of (B.4.1).
Since g ∈ V(f1)∩V(f2) we have g = [f1]x = [f2]x, for some x ∈ U1 ∩U2. Since
[f1]x = [f2]x, there must exist an open neighborhood V of x contained in U1 ∩U2

such that PU1,V (f1) = PU2,V (f2). Now it is easy to see that V
(
PU1,V (f1)

)
is an

element of (B.4.1) containing g and contained in V(f1) ∩ V(f2).
In what follows we consider the set S endowed with the topology having

(B.4.1) as a basis. Our goal is to show that (S, π) is a sheaf over X . We start
with the following:

LEMMA B.4.6. Let U ⊂ X be an open subset. Given x ∈ U and f ∈ P(U)
then the set:

(B.4.2)
{
V

(
PU,V (f)

)
: V an open neighborhood of x contained in U

}
is a fundamental system of open neighborhoods of [f ]x in S (i.e., every neighbor-
hood of [f ]x in S contains an element of (B.4.2)).

PROOF. Let W be a neighborhood of [f ]x in S; since (B.4.1) is a basis of
open subsets for S, we can find an open subset U1 ⊂ X and f1 ∈ P(U1) with
[f ]x ∈ V(f1) ⊂ W . Since [f ]x ∈ V(f1), it must be x ∈ U1 and [f ]x = [f1]x;
thus there exists an open neighborhood V of x contained in U ∩ U1 such that
PU,V (f) = PU1,V (f1). Then V

(
PU1,V (f1)

)
belongs to (B.4.2) and is contained

inW . �
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Given an open subset U ⊂ X and an element f ∈ P(U) we define a map
f̂ : U → S by setting:

f̂(x) = [f ]x,

for all x ∈ U .

LEMMA B.4.7. If U ⊂ X is an open subset and f ∈ P(U) then the map f̂
maps U homeomorphically onto V(f).

PROOF. It is clear hat f̂ : U → V(f) is a bijection. Moreover, if V is open in
U (and hence in X), we have f̂(V ) = V

(
PU,V (f)

)
; thus f̂ is an open mapping.

To complete the proof, we show that f̂ is continuous. Let x ∈ U be fixed and let
V

(
PU,V (f)

)
be an element of the fundamental system of neighborhoods (B.4.2)

of f̂(x) = [f ]x; by V we denote an open neighborhood of x contained in U . Then
f̂(V ) = V

(
PU,V (f)

)
; this proves the continuity of f̂ and completes the proof of

the lemma. �

COROLLARY B.4.8. The map π : S → X is a local homeomorphism. Thus
(S, π) is a sheaf over X .

PROOF. If U ⊂ X is an open subset and f ∈ P(U) then π maps the open set
V(f) homeomorphically onto the open subset U of X; namely, the map:

π|V(f) : V(f) −→ U

is the inverse of the map f̂ : U → V(f). The conclusion follows by observing that
the sets V(f) cover S. �

We call (S, π) the sheaf of germs associated to the pre-sheaf P. Observe that
if U is an open subset of X and f ∈ P(U) then f̂ is a section of the sheaf of germs
defined in U .

DEFINITION B.4.9. We say that the pre-sheaf P has the localization property
if, given a family (Ui)i∈I of open subsets of X and setting U =

⋃
i∈I Ui then the

map:

(B.4.3) P(U) 3 f 7−→
(
PU,Ui(f)

)
i∈I ∈

∏
i∈I

P(Ui)

is injective and its image consists of the families (fi)i∈I in
∏
i∈I P(Ui) such that

PUi,Ui∩Uj (fi) = PUj ,Ui∩Uj (fj), for all i, j ∈ I .

REMARK B.4.10. Observe that if P has the localization property then the set
P(∅) has exactly one element. Namely, consider the empty family (Ui)i∈I , i.e., I
is the empty set. Then U =

⋃
i∈I Ui is the empty set and the image of the map

(B.4.3) has exactly one element (the empty family (fi)i∈I ). Thus P(∅) has exactly
one element as well.

DEFINITION B.4.11. Given pre-sheafs P and P′ over a topological space X
then an isomorphism from P to P′ is a map λ that associates to each open subset
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U ⊂ X a bijection λU : P(U)→ P′(U) such that, given open subsets U, V ⊂ X
with V ⊂ U then the diagram:

(B.4.4)

P(U)
λU //

PU,V

��

P′(U)

P′U,V
��

P(V )
λV

// P′(V )

commutes.

LEMMA B.4.12. If the pre-sheaf P has the localization property then, for
every open subset U ⊂ X , the map f 7→ f̂ gives a bijection between the set P(U)
and the set of continuous local sections of the sheaf of germs defined in U . More
precisely, such bijections give an isomorphism between the pre-sheaf P and the
pre-sheaf naturally associated to the sheaf of germs (S, π) (recall Example B.4.4).

PROOF. We start by observing that, once we prove that the maps f 7→ f̂ are
bijections, it will follow easily that they give an isomorphism of pre-sheaves (i.e.,
diagram (B.4.4) commutes). Namely, given open subsets U, V ⊂ X with V ⊂ U
and given f ∈ P(U), the commutativity of diagram (B.4.4) is equivalent to:

ĝ = f̂ |V ,

where g = PU,V (f).
Let U ⊂ X be an open subset. Let us prove that the map P(U) 3 f 7→ f̂

is injective. Let f1, f2 ∈ P(U) be fixed and assume that f̂1 = f̂2. For every
x ∈ U we have [f1]x = [f2]x and thus there exists an open neighborhood Ux of
x contained in U such that PU,Ux(f1) = PU,Ux(f2). Now U =

⋃
x∈U Ux and

thus the localization property implies that f1 = f2. This proves the injectivity of
f 7→ f̂ .

Now let s : U → S be a continuous local section of π and let us find f ∈ P(U)
with s = f̂ . For every x ∈ U , s(x) is an element of Sx; thus there exists an open
neighborhood Ux of x and an element fx ∈ P(Ux) such that s(x) = [fx]x. Since s
and f̂x are both continuous local sections of π and since s(x) = f̂x(x), there exists
an open neighborhood Vx of x contained in Ux ∩ U such that s|Vx = f̂x|Vx (recall
Lemma B.3.21). Set gx = PUx,Vx(fx), for all x ∈ U ; we claim that there exists
f ∈ P(U) with PU,Vx(f) = gx, for all x ∈ U . Since

⋃
x∈U Vx is an open cover of

U , by the localization property, in order to prove the claim it suffices to show that
for every x, y ∈ U we have:

PVx,Vx∩Vy(gx) = PVy ,Vx∩Vy(gy).

Let x, y ∈ U be fixed and set h1 = PVx,Vx∩Vy(gx), h2 = PVy ,Vx∩Vy(gy). We
have:

ĥ1 = ĝx|Vx∩Vy = f̂x|Vx∩Vy = s|Vx∩Vy = f̂y|Vx∩Vy = ĝy|Vx∩Vy = ĥ2.
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By the first part of the proof, we get h1 = h2. This proves the claim, i.e., there
exists f ∈ P(U) with PU,Vx(f) = gx, for all x ∈ U . This implies:

[f ]x = [gx]x = [fx]x = s(x),

for all x ∈ U . Hence f̂ = s. �

REMARK B.4.13. It is easily seen that the pre-sheaf naturally associated to a
sheaf (recall Example B.4.4) always satisfies the localization property. Thus the
localization property is indeed an essential hypothesis in Lemma B.4.12.

DEFINITION B.4.14. We say that the pre-sheaf P has the uniqueness property
if for every connected open subsetU ⊂ X and every nonempty open subset V ⊂ U
the map PU,V is injective.

LEMMA B.4.15. If the pre-sheaf P has the uniqueness property and if X is
locally connected and Hausdorff then the space S is Hausdorff.

PROOF. Let U1, U2 ⊂ X be open sets, f1 ∈ P(U1), f2 ∈ P(U2), x ∈ U1,
y ∈ U2 be fixed with [f1]x 6= [f2]y. We have to find disjoint open neighborhoods of
[f1]x and [f2]y in S. If x 6= y, we can find disjoint open subsets V1, V2 ⊂ X with
x ∈ V1 and y ∈ V2. Then π−1(V1) and π−1(V2) are disjoint open neighborhoods
of [f1]x and [f2]y, respectively. Assume now that x = y. Let U be a connected
open neighborhood of x contained in U1 ∩ U2. Then V

(
PU1,U (f1)

)
is an open

neighborhood of [f1]x and V
(
PU2,U (f2)

)
is an open neighborhood of [f2]x. We

claim that V
(
PU1,U (f1)

)
and V

(
PU2,U (f2)

)
are disjoint. Otherwise, there would

exist z ∈ U with [f1]z = [f2]z and thus there would exist an open neighborhood V
of z contained in U such that PU1,V (f1) = PU2,V (f2). This implies:

(PU,V ◦PU1,U )(f1) = (PU,V ◦PU2,U )(f2);

by the uniqueness property, PU,V is injective and so

PU1,U (f1) = PU2,U (f2).

In particular, [f1]x = [f2]x, contradicting our hypothesis. �

DEFINITION B.4.16. We say that an open subset U ⊂ X has the extension
property with respect to the pre-sheaf P if for every connected nonempty open
subset V of U the map PU,V is surjective. We say that the pre-sheaf P has the
extension property if X can be covered by open sets having the extension property
with respect to P.

LEMMA B.4.17. Assume thatX is locally connected. If U is an open subset of
X having the extension property with respect to the pre-sheaf P then U is quasi-
fundamental with respect to π : S → X .

PROOF. Let x ∈ U and x̃ ∈ S be fixed, with π(x̃) = x. We have to find
a section s : U → S of π with s(x) = x̃. Since x̃ ∈ Sx, there exists an open
neighborhood W of x and f ∈ P(W ) with x̃ = [f ]x. Let V be a connected open
neighborhood of x contained in U ∩W . Since U has the extension property with
respect to P, we can find g ∈ P(U) with PU,V (g) = PW,V (f). Hence s = ĝ is a
section of π defined in U and s(x) = [g]x = [f ]x = x̃. �
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COROLLARY B.4.18. Assume that X is Hausdorff and locally connected and
that the pre-sheaf P has the uniqueness property. If U is a connected open subset
of X having the extension property with respect to the pre-sheaf P then U is a
fundamental open subset of X with respect to the map π.

PROOF. By Lemma B.4.17, the setU is quasi-fundamental and by Lemma B.4.15
the space S is Hausdorff. The conclusion follows from Lemma B.3.26. �

COROLLARY B.4.19. Assume that X is Hausdorff and locally connected and
that the pre-sheaf P has the uniqueness property and the extension property. Then
the map π : S → X is a covering map.

PROOF. By Lemma B.4.15, S is Hausdorff. The conclusion follows from
Corollary B.3.27. �

The following is a converse of Lemma B.4.17.

LEMMA B.4.20. Assume that the pre-sheaf P has the localization property
and the uniqueness property. If an open subset U ⊂ X is quasi-fundamental with
respect to π : S → X then U has the extension property with respect to the pre-
sheaf P.

PROOF. Let V be a connected nonempty open subset of U . Let f ∈ P(V )
be fixed. We have to find an element g ∈ P(U) with PU,V (g) = f . Choose an
arbitrary point x ∈ V . The germ [f ]x is an element of S with π

(
[f ]x

)
= x. Since

x ∈ U and U is quasi-fundamental, it follows that there exists a continuous local
section s : U → S of π with s(x) = [f ]x. Since P has the localization property,
Lemma B.4.12 gives us an element g ∈ P(U) with s = ĝ. Then [g]x = s(x) =
[f ]x and therefore there exists an open neighborhood W of x contained in V such
that PU,W (g) = PV,W (f); thus:

PV,W

(
PU,V (g)

)
= PV,W (f).

Since P has the uniqueness property and W is a nonempty open subset of the
connected open set V , we have PU,V (g) = f . This concludes the proof. �

Finally, we prove our main results.

LEMMA B.4.21. Assume that X is Hausdorff, locally arc-connected and that
the pre-sheaf P has the localization property, the uniqueness property and the
extension property. If U is an arc-connected open subset of X such that every loop
in U is contractible in X (in particular, if U is simply-connected) then U has the
extension property with respect to P.

PROOF. By Corollary B.4.19, the map π : S → X is a covering map. Ob-
serve that, since X is locally arc-connected and π : S → X is a local homeo-
morphism then S is also locally arc-connected; thus, by Corollary B.3.16, U is a
fundamental open subset of X . By Remark B.3.25, U is quasi-fundamental and
hence Lemma B.4.20 implies that U has the extension property. �
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COROLLARY B.4.22. Assume thatX is Hausdorff, locally arc-connected, arc-
connected, simply-connected and that the pre-sheaf P has the localization prop-
erty, the uniqueness property and the extension property. Then for every connected
nonempty open subset V ⊂ X and every f ∈ P(V ) there exists g ∈ P(X) with
PX,V (g) = f .

PROOF. It follows from Lemma B.4.21 that X itself is an open subset of X
having the extension property. Thus, since V is open, connected and nonempty, it
follows that the map PX,V : P(X)→ P(V ) is surjective. �

LEMMA B.4.23. Assume that X is Hausdorff, locally arc-connected and sim-
ply-connected and that the pre-sheaf P has the localization property, the unique-
ness property and the extension property. Assume also that every connected com-
ponent of X contains a nonempty open set U such that P(U) is nonempty. Then
the set P(X) is nonempty.

PROOF. By Corollary B.4.19, the map π : S → X is a covering map. Since
every connected component of X contains a nonempty set U such that P(U) is
nonempty, it follows that the image of π intersects every connected component
of X . It follows from Corollary B.3.32 that π admits a continuous global section
s : X → S. By Lemma B.4.12, there exists f ∈ P(X) with s = f̂ . Hence P(X)
is nonempty. �

EXAMPLE B.4.24. Let X be simply-connected differentiable manifold and let
θ be a smooth closed 1-form on X . Let us prove that θ is exact. For every open
subset U ⊂ X let P(U) be the set of smooth maps f : U → R with df = θ|U . If
U, V ⊂ X are open subsets with V ⊂ U , define:

PU,V (f) = f |V ,

for all f ∈ P(U). It is immediate that P is a pre-sheaf over X satisfying the
localization property. If U is a connected open subset of X and if f1, f2 ∈ P(U)
are equal at one point ofU then f1 = f2; this implies that P satisfies the uniqueness
property. Assuming the well-known fact that every smooth closed 1-form on an
open ball in Euclidean space is exact, we conclude that for every open subset U
of X that is diffeomorphic to an open ball in Euclidean space the set P(U) is
nonempty; in particular, every connected component of X contains a nonempty
open subset U such that P(U) is nonempty. Finally, let us prove that P has the
extension property. To this aim, we prove that if U is an open subset of X that is
diffeomorphic to an open ball in Euclidean space then U has the extension property
with respect to P. Namely, let V be a connected nonempty open subset of U and
let f ∈ P(V ) be fixed. Since U is diffeomorphic to an open ball in Euclidean
space, there exists a smooth map f1 : U → R with df1 = θ|U . Since V is
connected, f1|V − f is constant and equal to some c ∈ R. Hence f1 − c ∈ P(U)
and (f1 − c)|V = f . This concludes the proof of the extension property. Now
Lemma B.4.23 implies that P(X) is nonempty, i.e., there exists a smooth map
f : X → R with df = θ. Hence θ is exact.
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Exercises

EXERCISE B.1. Let X be a locally arc-connected (resp., locally connected)
topological space and let U be an open subset of X . Show that the arc-connected
components (resp., connected components) of U are open in X .

EXERCISE B.2. Let X̃ , X be topological spaces and π : X̃ → X be an
arbitrary map. If U ⊂ X is a fundamental open subset with respect to π, show that
every open subset V of U is also fundamental.
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