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CMC Clifford tori

1 ≤ j < m, r ∈ ]0,1[

x j ,m
r : Sj × Sm−j −→ Sm+1

(p, q) 7−→
(
r ·p,

√
1− r2·q

)
Constant mean curvature:

H j ,m
r = mr2−j

mr
√

1−r2

r =
√

j
m minimal Clifford torus.

William Kingdon Clifford



The Jacobi operator

J = −∆j ,m
r −m · RicSm+1(~N)−

∥∥∥Aj ,m
r

∥∥∥2

I RicSm+1 (~N) Ricci curvature of Sm+1,
constant ≡ 1

I

∥∥∥Aj,m
r

∥∥∥ norm of the second fundamental form,

constant ≡ j
r2 + m−j

1−r2

I ∆j,m
r Laplacian of Sj (r)× Sm−j

(√
1− r2

)
.

ζ ∈ Σ(∆j,m
r ) ⇐⇒ ζ = σ + ρ, σ ∈ Σ(∆j

r ), ρ ∈ Σ(∆m−j
1−r2 )

multiplicity of ζ = sum of multiplicities of σ and ρ
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Spectrum of J

I Σ(∆j
r ) =

{
σ1 < σ2 < · · · < σi < . . .

}
, σi = (i−1)(j+i−2)

r2

I Σ
(

∆m−j√
1−r2

)
=
{
ρ1 < ρ2 < · · · < ρl < . . .

}
, ρl = (l−1)(m−j+l−2)

1−r2

I 0 ∈ Σ(J) ⇐⇒ σi + ρl −
( j

r2 + m−j
1−r2

)
= 0

σ2 + ρ2 −
( j

r2 + m−j
1−r2

)
= 0, multiplicity = m + 1 + j(m − 1)

Other zeros of Σ(J) are of the form:

σ1 + ρl −
( j

r2 +
m − j
1− r2

)
or σi + ρ1 −

( j
r2 +

m − j
1− r2

)
.

Proposition

There exists two monotone sequences (ri )
∞
i=1 and (sl )

∞
l=1, with

lim
l→∞

sl = 0, and lim
i→∞

= 1,

where the Morse index of the CMC Clifford torus x j,m
r has a jump.
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Constant mean curvature variational problem

I Mm compact oriented manifold

I (Nn,g) oriented Riemannian manifold
I n = m + 1

x : M ↪→ N embedding

I Mean curvature: Hx = tr
(
2nd fund. form

)
Variational principle

x has constant mean curvature (CMC) iff x is a stationary point for
the area functional restricted to embeddings of fixed volume.
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Isometric congruence

Definition
x1, x2 : M −→ N embeddings are congruent (x1 ∼= x2) if there exists
φ ∈ Diff(M) and ψ ∈ Iso(N,g) such that x2 = ψ ◦ x1 ◦ φ−1.

M
x1 //

φ

��

N

ψ

��
M x2

// N

commutes.

If x1 has CMC and x1 ∼= x2, then x2 has CMC!

Group actions:
I Diff(M) acts on the right (free action)
I Iso(N,g) acts on the left (action not free, but group compact)
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Statement of the result

Theorem
x j,m

r : Sj × Sm−j −→ Sm+1 CMC Clifford torus, 1 < j < m, r ∈ ]0,1[.

∃ two sequences (ri )i∈N and (sl )l∈N such that:
I lim

i→∞
ri = 1, lim

l→∞
sl = 0

I the embeddings x j,m
ri

and x j,m
sl

are accumulation of pairwise non
congruent CMC embeddings of Sj × Sm−j into Sm+1, each of
which is not congruent to any CMC Clifford torus.

For all other values of r , the CMC Clifford family is stable, i.e., if
x : Sj × Sm−j −→ Sm+1 is a CMC embedding which is sufficiently close
to some x j,m

r , with r 6= ri and r 6= sl , then x is congruent to some x j,m
r .

Observation. r =
√

j
m (minimal) is not a bifurcation radius!
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CMC tori bifurcation
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Generalities on variational bifurcation

General bifurcation setup:
I M differentiable manifold (possibly dim =∞)

I fλ : M→ R family of smooth functionals, λ ∈ [a,b]

I λ 7→ xλ ∈M smooth curve of critical points: dfλ(xλ) = 0 for all λ.

Definition
Bifurcation at λ0 ∈ ]a,b[ if
∃λn → λ0 and xn → xλ0

as n→∞, with:

(a) dfλn (xn) = 0 for all n;

(b) xn 6= xλn for all n.
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Equivariant bifurcation

Assume:

I G Lie group acting on M

I fλ is G-invariant for all λ

Note: the orbit G · xλ consists of critical points.

Definition
Orbit bifurcation at λ0 ∈ ]a,b[ if ∃λn → λ0 and xn → xλ0 as n→∞,
with:
(a) dfλn (xn) = 0 for all n;
(b) G · xn 6= G · xλn for all n.

Standard bifurcation theory requires a quite involved variational
setup: differentiability, Palais–Smale, Fredholmness...
Bifurcation occurs at degenerate critical points with jumps of the
Morse index. In the equivariant case, bifurcation occurs at
degenerate critical orbits where jumps of the critical groups.
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Bifurcation occurs at degenerate critical points with jumps of the
Morse index. In the equivariant case, bifurcation occurs at
degenerate critical orbits where jumps of the critical groups.



A scheme for the proof of main result

I Introduce a set Emb(M,N) of embeddings M ↪→ N.
(which regularity?)

I Manifold structure on the quotient M = Emb(M,N)/Diff(M).

I Consider the action of the isometry group G = Iso(N,g) on M.

I Volume and area functionals on M (invariant by G).

CMC embeddings
M ↪→ N

! constrained critical points of
Area with fixed Volume.

Accumulation of non
congruent

CMC embeddings
! Constrained critical

G-orbit bifurcation
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A set of axioms for equivariant constrained bifurcation — 1

(A1) M smooth manifold modeled on a separable Banach space X;

(A2) G compact (connected) Lie group actiong continuously on M;

(A3) A : M→ R smooth G-invariant function;

(A4) V : M→ R smooth G-invariant function without critical points;

(A5) orbits of critical points of fλ = A+ λ · V smoooth submanifolds of
M.

In the CMC variational problem:

I M = Emb(M,N)/Diff(M)

I X = space of sections of some vector bundle over M

I G (connected component of 1 of) isometry group of (N,g)

I A = area functional, V = volume functional

I λ = mean curvature (up to a factor)
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A set of axioms for equivariant constrained bifurcation — 2
Hilbertization & Fredholmness A

(HF-A) gradient map for fλ: For all λ0 and all x0 ∈ Crit(fλ0 ), ∃ U
neighborhood of x0, a Banach space Y, a Hilbert space H0,
with continuous dense inclusions:

X ↪→ Y ↪→ H0,

and a map F : ]λ0 − ε, λ0 + ε[× U −→ Y such that:

I dfλ(x)v =
〈
F (λ, x), v

〉
H0

I
∂F
∂x

(λ0, x0) : X −→ Y Fredholm of index 0.

(HF-A) implies:

(a) local Palais–Smale condition for fλ;

(b) manifold structure of critical orbits near nondegenerate ones, via
Implicit Function Theorem.
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A set of axioms for equivariant constrained bifurcation — 2
Hilbertization & Fredholmness A

For the CMC problem:

Separability!!!
�

I X = Ck,α-sections of the normal bundle x⊥0 , k ≥ 2, α ∈ ]0,1[;

I Y = Ck−2,α-sections of x⊥0
I H0 = L2-sections of x⊥0
I F quasi-linear 2nd-order elliptic operator:

div

(
∇u√

1 + ‖∇u‖2

)

I
∂F
∂x

Jacobi operator.

Strong
ellipticity

Schauder’s
estimates

=⇒
Fredholmness
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Regularity of embeddings

I For Morse theoretical and Fredholmness questions it would be
desirable to have a Hilbert manifold structure:

I Sobolev type H1: lacks regularity of weak solutions
of CMC equation

I Sobolev type Hk , k > 1: Hessian not Fredholm (compact!)

I Banach manifold structure:

I C∞: not Banach, only Frechet

I Ck , k ≥ 2: J : Ck → Ck−2 is not Fredholm

I Ck,α, k ≥ 2, α ∈ ]0, 1[: almost fine, but not separable!

fa = |x − a|α,
fb = |x − b|α,
dist0,α(fa, fb) ≥ 2
for all a 6= b.
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I Ck,α, k ≥ 2, α ∈ ]0, 1[: almost fine, but not separable!

fa = |x − a|α,
fb = |x − b|α,
dist0,α(fa, fb) ≥ 2
for all a 6= b.



A set of axioms for equivariant constrained bifurcation — 3
Hilbertization & Fredholmness B

(HF-B) Fredholm Hessian for fλ: For all λ0 and all
x0 ∈ Crit(fλ0 ), ∃ a Hilbert space H1, with
X ⊂ H1 such that d2fλ0 (x0) extends to an
essentially positive bounded symmetric
bilinear form on H1:

d2fλ0 (x0)
(
v1, v2

)
=
〈
Pλ0,x0v1, v2

〉
H1

I Pλ0,x0 : H1 → H1 self-adjoint
I Σess(Pλ0,x0 ) ⊂ ]0,+∞[.

(HF-B) is used:

(a) to compute Morse index of x0
(sum of dimension of negative eigenspaces of
Pλ0,x0 )

(b) to compute local homological invariants of
critical orbits, via Morse Lemma.

D. Hilbert

I. Fredholm
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A set of axioms for equivariant constrained bifurcation — 3
Hilbertization & Fredholmness B

For the CMC problem:

H1 = Sobolev space of H1-sections of the normal bundle x⊥0

d2fλ0 (x0)
(
v1, v2

)
=

∫
M
∇v1 · ∇v2 −

[
m · RicN(~nx0 ) +

∥∥A‖2]v1v2

∫
M
∇v1 · ∇v2 inner product of H1  positive isomorphism.

∫
M

[
m · RicN(~nx0 ) +

∥∥A‖2]v1v2

does not contain derivatives  
compact
operator

positive + compact = essentially positive



Constrained orbit bifurcation theorem

Theorem

In the variational setup (A1)—(A5), satisfying (HF–A) + (HF–B),
assume:

(B) given C1-maps:

(B1) [a, b] 3 r 7→ λr ∈ R, with λ′r > 0;

(B2) [a, b] 3 r 7→ xr ∈M, with dfλr (xr ) = 0 ∀ r .

(C) The connected component of the identity of the stabilizer of xr
does not depend on r .

(D1) For r 6= r̄ , O(xr , fλr ) is a nondegenerate critical orbit.

(D2) For ε > 0 small, Morse index(xr̄−ε) 6= Morse index(xr̄+ε).

Then, critical orbit bifurcation occurs at r = r̄ .
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Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1

I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)

⇐= reduced homology



Area and volume of an embedding

I Mm compact oriented manifold
I (N,g) oriented Riemannian manifold, volg volume form.
I n = m + 1
I x : M → N embedding
I x∗(g) pull-back metric
I vol∗ = vol

(
x∗(g)

)
.

Area(x) =

∫
M

vol∗

Assume x(M) = M0 = ∂Ω,
i.e. N \M0 has 2 connected components.

Volume(x) =

∫
Ω

volg

# of connected components of N \M0

= rank
(
H̃0(N \M0)

)
⇐= reduced homology



Connected components of N \M0

Long exact reduced homology sequence:

onto

��

connected
��

H1(N) // H1(N,N \M0) // H̃0(N \M0) // H̃0(N) = 0

either 0

KS

or onto H1(M0) ∼= Z

KS

free

KS

by excision

Proposition

N \M0 has 2 connected
components

⇐⇒ H1(N) −→ H1(N,N \M0)
is zero
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Connected components of N \M0
the picture

homologically non trivial embedding
its image is not a boundary

homologically trivial
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A generalized volume functional
N non compact =⇒ volg = dη is exact.

Set Volume(x) =
∫

M x∗(η)

Note. If x(M) = ∂Ω, then:

Volume(x) =

∫
M

x∗(η) =

∫
∂Ω

η
by Stokes’ theorem

=

∫
Ω

dη =

∫
Ω

volg = Volume(Ω).

If N is compact, pick p ∈ N \ x(M) and replace N with N \ {p}

Remove
a

point
=⇒

no more compact!
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The geometric structure of Emb(M, N)/Diff(M)

I x : M → N smooth (C∞)
embedding

I x⊥ normal bundle of x
I y : M → N nearby
Ck,α-embedding

I ∃! Vx,y ∈ Γk,α(x⊥) s.t.
y = exp⊥ Vx,y

(up to a reparameterization)

Proposition

I The map Φx : y 7→ Vx,y is a local chart for Emb(M,N)/Diff(M)
with domain a neighborhood of x and taking values in a
neighborhood of the null sections of the Banach space Γk,α(x⊥).

I The above chart are continuously compatible, but not
differentiably.

I If f : Emb(M,N) is a smooth map which is invariant by Diff(M),
then f ◦ Φx is smooth for all x .
Thus, area and volume are smooth in local charts.
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Lack of differentiability of composition functions

A,B,C smooth manifolds, F : B → C map of class Ck .

Ck (A,B)
LF // Ck (A,C)

f // F ◦ f
left composition

dLf = LdF =⇒ if F 6∈ Ck+1, LF not differentiable!

Ck (A,B)× Ck (C,A) // Ck (C,B)

(f1, f2) // f1 ◦ f2

not differentiable!

Diffk (M)
inv // Diffk (M)

φ // φ−1

not differentiable!
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Emb(M,N)/Diff(M) is not a differentiable manifold!

I x1, x2 : M → N
smooth embeddings,
y : M → N
Ck,α embedding

I Ei = x⊥i normal
bundle, πi : Ei → M
projection, i = 1,2

I y = expE1
V1 =

expE2
V2

I ζ = (expE2
)−1 ◦ expE1

is not a vector
bundle morphism!

I V ′2 = ζ ◦ V1 not a
section of E2. Needs
and an adjustment:

hV1 = π2 ◦ ζ ◦ V1,

V2 = ζ ◦ V1 ◦ h−1
V1
← not differentiable if V1 6∈ Ck+1
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Proposition

I Emb(M,N)/Diff(M) does not have a natural differentiable
structure, i.e., such that Emb(M,N)→ Emb(M,N)/Diff(M) is a
smooth surjection.

I The action of G = Iso(N,g) on Emb(M,N)/Diff(M) is continuous.

I The G-orbit of any x smooth (in particular, of any CMC
embedding) is smooth in local charts.
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Stabilizer and orbit of CMC Clifford tori

I x j,m
r
(
Sj × Sm−j

)
= Sj (r)× Sm−j

(√
1− r2

)
⊂ Sm+1(1)

I

(
O(j + 1) 0

0 O(m − j + 1)

)
⊂ stab

(
[x j,m

r ]
)

(may not be equal!)

I

(
SO(j + 1) 0

0 SO(m − j + 1)

)
is a maximal connected subgroup

of SO(m + 2)

Corollary

stab0
(
[x j,m

r ]
)

=

(
SO(j + 1) 0

0 SO(m − j + 1)

)
.

dim
(
O(x j,m

r )
)

= dim
(
SO(m + 2)

)
− dim

(
SO(j + 1)

)
− dim

(
SO(m − j + 1)

)
=

m + 1 + j(m − 1)

RECALL =⇒ nondegenerate critical orbits for r 6= ri , sl
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Local homological invariants

I x0 ∈M critical point of fλ0 , c = fλ0 (x0)
I G · x0 = O(x0) critical orbit
I fcλ0

= f−1
λ0

(
]−∞, c]

)
=
{

x ∈M : fλ0 (x) ≤ c
}

closed sublevel

Definition
k -th critical group Hk

(
O(x0)

)
is the k -th relative homology space

Hk
(
fcλ0
, fcλ0
\ O(x0);F

)
(F coefficient field)

Proposition

Assume:

I O(x0) nondegenerate
I µ = Morse index(x0)

I Axioms (A1)—(A5)
I Axiom (HF–B).

Then:

Hk
(
O(x0),Z2

) ∼= Hk−µ
(
O(x0),Z2

)
(shifted homology)
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Proof of Proposition

I Existence of slice S for the action of G

I x0 nondegenerate (isolated) critical point of
fλ0

∣∣
S

I Chang’s approach to Morse theory on
Banach spaces (Axiom (HF–B)):

Hk
(
fcλ0
∩S, (fcλ0

∩S)\{x0};Z2
)

=

{
Z2 if k = µ

0 if k 6= µ.

I Excision + Leray–Hirsch theorem (homology of fiber bundles):

Hk
(
O(x0),Z2

) ∼=
dimO(x0)⊕

i=0

Hi
(
fcλ0
∩S, (fcλ0

∩S)\{x0};Z2
)
⊗HdimO(x0)−i

(
O(x0);Z2

)
.

Corollary

Jump of the Morse index =⇒ jump of the critical groups.

Proof of main result concluded
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Hk
(
O(x0),Z2

) ∼=
dimO(x0)⊕

i=0

Hi
(
fcλ0
∩S, (fcλ0

∩S)\{x0};Z2
)
⊗HdimO(x0)−i

(
O(x0);Z2

)
.

Corollary

Jump of the Morse index =⇒ jump of the critical groups.

Proof of main result concluded



A few CMC bifurcation problems to think about

I Continuity/smoothness of bifurcating branch.

I Break of symmetry.

I Joint project with Jorge Herbert de Lira and Levi Lopes de Lima:
study bifurcation and symmetry breaking of CMC Clifford tori in
Berger spheres S2n+1

B . (1-parameter family of rotationally
symmetric CMC embeddings S1 × S2n−2 ↪→ S2n+1

B ).
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A fixed boundary CMC bifurcation problem
Work in progress with Miyuki Koiso and Bennet Palmer

I Fix parallel planes π1
and π2 in R3

I C1 ⊂ π1, C2 ⊂ π2
circles with same
radius

I ∃ a 1-parameter
family of nodoids Nt ,
t ∈ R, intercepting πi
on Ci , i = 1,2.

I at a discrete set
(tk )k∈Z of values of
the parameter t , Nt
is tangent to both πi .
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Bifurcation of fixed boundary CMC surfaces

Theorem
At t = tk there is bifurcation of CMC surfaces satisfying the given
boundary condition.

Bifurcating branch consists of non rotationally
symmetric surfaces (break of symmetry).
A similar result hold for a more general variational problem
(Anisotropic CMC).

Proof:

I ~N = ν1 · ~e1 + ν2 · ~e2 + ν3 · ~e3 normal field

I ν1 and ν2 are Jacobi fields
(corresponding to translations in the direction ~ei )

I When Nt is tangent to the planes, then ν1 and ν2 satisfy the
boundary conditions: νi |∂Nt ≡ 0.

I Direct analysis of the spectrum of J, ν1 and ν2 determine a jump
of the Morse index =⇒ bifurcation.

I the only rotationally symmetric solutions are nodoids =⇒ break
of symmetry. QED
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I L. J. ALÍAS, P. PICCIONE, Bifurcation of constant mean curvature
tori in Euclidean spheres, preprint 2009, arXiv:0905.2128.

I M. KILIAN, M. U. SCHMIDT, On the moduli of constant mean
curvature cylinders of finite type in the 3-sphere, preprint 2008,
arXiv:0712.0108v2.

I R. MAZZEO, F. PACARD, Bifurcating nodoids, Contemp. Math.
314 (2002), 169–186.

Special thanks to Renato Ghini Bettiol for helping me with the pictures.

That’s all folks, thanks for the attention!



Essential bibliography
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