81 SIMPLEX THE PROBLEM 1

This CWEB program implements the Simplex algorithm with integer arithmetic. You may also wish to read
the CWEB program GAUSS.

1. The problem. Given a matrix A[l..70][1..7] and vectors b[1..7] and ¢[l..7], we wish to find a
vector z such that
A-z=b, >0, and c-z is minimum

(i.e,, ¢c-z < ¢- & for any & > 0 such that A -% = b). The problem may have no solution for two reasons:
either there is no x > 0 such that A-x = b or there is no such z that will minimize c- z. In the first case we
say that the problem is infeasible; in the second case, we say the problem is unbounded.

2. Tt is convenient to bunch A, b, and ¢ into a single matrix: add ¢ to A as an extra row and add b to A
as an extra column. If the resulting matrix is D[1..m][1..n] then

A=D[1.m-1][1.n-1], b=D[l..m-1]n], and c¢=D[m]l..n-1] (2.1)
(the value of D[m][n] being arbitrary).

3. Simple matrices. In order to solve our problem, we shall transform matrix D until it becomes
“simple”. Our definition of “simple” shall be given through informal pictures, following a few conventions.
In a picture of a matrix E[1..m][1..n], we shall assume that the index of the bottom row is m, while the
indices of the other rows are some unspecified permutation of 1..m—1. Similarly, we shall assume that the
index of the rightmost column is n, while the indices of the other columns are 1..n—1 in some order.

Some entries of E shall be represented by numbers, like 0 and 1; these are to be taken literally. Other entries
may be represented by greek letters; two entries represented by the same greek letter are not necessarily
equal.

There are three kinds of simple matrices. A matrix E is simple solvable if it fits the pattern suggested by
the picture on the left below, where the as stand for arbitrary numbers and the s stand for nonnegative
numbers (8 > 0). We may have any number, including zero, of null rows where our picture shows only one.

1 00 a a a B a o a4 a a a « 100 a a v B
01 0 a a a p Yy v v v v 9 ¢ 01 0 a a v B
001 a o a f a a a a a a «a 001l a a v B
0 00 0 0 0O a o o a a a « 0 00 a a 00
0 00 B8 B B « a a a a a a « 000 a a & «a

A matrix E is simple infeasible if it fits the pattern suggested by middle picture above, where the a s stand
for arbitrary numbers, the s stand for nonpositive numbers (v < 0), and ¢ stands for a positive number
(¢ > 0). The opposite is also acceptable: we can have s standing for nonnegative numbers and ¢ standing
for a negative number. The special row is an infeasibility row.

A matrix E is simple unbounded if it fits the pattern of the right picture above, where the as stand for
arbitrary numbers, the §s stand for nonnegative numbers (8 > 0), the vs stand for nonpositive numbers
(v £ 0), and ¢ stands for a negative number (£ < 0). The column containing the s is an unboundedness
column.

4. Tt is easy to see that if D is simple solvable then the corresponding minimization problem has a solution.
(See future sections for details.) Similarly, is D is simple infeasible then the corresponding problem is
infeasible. And if D is simple unbounded then the corresponding problem is unbounded.
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5. Problem reformulated and restricted to integers. Since we wish to restrict ourselves to integer
data, it is convenient to introduce a slightly more general notion of simplicity: For any nonnull integer d, a
matrix F is d-simple if the matrix E/d is simple.

Now our minimization problem can be reformulated as follows: Given an integer matrix D, we wish to
find an integer matrix E, integer matrices F' and G, and a nonnull integer d such that

E is d-simple (solvable, infeasible, or unbounded),
G-D=E, F-G=d-I, and G[][m]=d-I[][m],

where I denotes the identity matrix and G[ ][m] denotes column m of G. The rows of all the matrices are
indexed by 1..m. The columns of D and FE are indexed by 1..n, while the columns of F', G, and I are
indexed by 1..m. (Incidentally, we assume neither m < n nor m > n.)

(Basic global variables 5) =

matrix D;

int m, n;

long d;

matrix G;

matrix F; > F-G
matrix E; > G-D

See also sections 6 and 59.

I

d-
E
This code is used in section 88.

6. If E turns out to be simple infeasible, the index of an infeasibility row shall be denoted by h. If E turns
out to be simple unbounded, the index of an unboundedness column shall be denoted by k. If E turns out
to be simple solvable, we shall set h = k = 0.

(Basic global variables 5) +=

int h, k;

7. Our vectors and matrices will be allocated dinamically. Since the entries of our vectors will be long, a
vector will be a pointer to long. Similarly, a matrix will be a pointer to a pointer to long. We shall also
need a data types to store vectors with int entries.

(Typedefs 7) =
typedef long xxmatrix;
typedef long xvector;
typedef int xivector;
See also section 32.

This code is used in section 88.
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8. Memory allocation routines. Memory allocation is a rather routine matter. Let’s get it done now,
so we can move on to more interesting stuff. The first thing we need is someone to call when the computer
runs out of memory.
(Memory allocation functions 8) =
void failure(void) {
fprintf (stderr, "\n\n_Out_0f memory: unable to allocate_ vector or matrix\a\n\n");
fprintf (ofile, "\n\n_Out of memory: unable jto,allocate vector or matrix\n\n\n\f\n\n");
exit(1);
}
See also sections 9, 10, and 11.

This code is used in section 88.

9. We shall follow Numerical Recipies (W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
2nd. edition, Cambridge University Press, 1994) in programming the memory allocation of matrices and
vectors. Our first function allocates memory for an int vector whose entries are indexed by 1,...,n. Our
second function allocates a long vector whose entries are indexed by 1,...,n.

(Memory allocation functions 8) +=

ivector allocate_ivector (int n) {
size_t num_bytes;
ivector v;

num_bytes = n * sizeof (int);

v = (ivector) malloc (num_bytes);
if (w=A) failure();

v—=1;

return v;

}

vector allocate_vector (int n) {
size_t num_bytes;
vector v;

num_bytes = n * sizeof (long);

v = (vector) malloc(num_bytes);
if (w=A) failure();

v—=1;

return v;
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The next function allocates a long matrix with rows indexed by 1,...,m and columns indexed by
, M.

(Memory allocation functions 8) +=

matrix allocate_matriz (int m,int n) {

}

11.

size_t num_bytes;

int 4;

matrix A;

num_bytes = m * sizeof (long *);

A = (matrix) malloc(num_bytes);
if (A=A) failure();

A—-=1;

num_bytes = m * n x sizeof (long);
A[l] = (vector) malloc(num_bytes);
if (A[1]1=A) failure();

0,A[l]] —=1;

for (i =2; i <m; ++i) o, A[i] = Ali — 1] +n;
return A;

Sometimes we must undo the memory allocation. First, we undo allocation done by allocate_ivector;
then we undo allocate_vector; finally, we free the space allocated by allocate_matriz. The standard function
free receives only a pointer to the beginning of the block of bytes to be freed; it knows how many bytes must
be freed.

(Memory allocation functions 8) +=

void deallocate_ivector (ivector v) {

free((void *) (v + 1));

void deallocate_vector (vector v) {

free((void x) (v + 1));

void deallocate_matriz (matrix A) {

}

o, free((void ) (A[1] + 1));
free((void %) (A +1));
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12. Counting mems. You must have noticed the little os preceding some expressions in the memory
allocations routines. They are there to count the number of unavoidable accesses to memory executed by the
critical routines of our program (see D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial
Computing, ACM Press and Addison-Wesley, 1993). A long variable mems is used to record this number.
(Unfortunately, if the number of memory accesses turns out to be greater than the capacity of a long variable
then the overflow of mems will go undetected and we shall get a wrong answer.)

Note that the evaluation of an expression like A[i] requires only one unavoidable access to memory: we
pretend that the variables A and i reside in registers and not in memory.
#define o mems++
#define oo mems += 2
#define o000 mems +=3
#define o0ooo mems +=4
( Other global variables 12) =

static long mems = 01;
See also sections 40, 92, 95, and 116.

This code is used in section 88.
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13. The pivoting operation. The heart of all Simplex algorithms is the following “pitoting” operation.
Suppose d is a nonnull integer and let E[1..m][1..n] be an integer matrix. Assuming E[p][k] # 0, a pivot
about row p and column k is the following operation: for each ¢ distinct from p, replace vectors E[i] and G[i]
(i.e., rows ¢ of G and E) by the vectors

Epk - E[i] —Bik-Elpl . Epk-G[il — Bik - Gly]
d d

respectively. Having done this, replace d by Epk.

Here, E[p] denotes row p of E while Epk is our sloppy abbreviation for E[p][k]. Vectors E[p] and G[p]
remain unchanged. Incidentally, we shall have p # m and k # n whenever we use this piece of code in the
future.

When this pivoting is done in proper context, the divisions by d will generate no fractions: for all j, the
value of Ehk - E[i][j] — Eik - E[h][j] will be divisible by d for all j.

(Pivot about row p and column k and update d 13) = {
long t, Epk, Fik;
Epk = Elp][k];
for (i =1; i <m; ++i)
if (i #p) {
Eik = EJi][k];
for (j=1; j <mn; ++j) {
t = Bpk + B[i][j] — Bik + Blp][j;
E[i][j] = t/d;
}
for (j=1; j <m; ++j) {
t = Epk * G[i][§] — Fik = G[p]lj];
Glillj] = t/d;

d = Epk;
}

This code is used in sections 19 and 24.

14. Suppose that, before the pivoting operation, matrix F fits the pattern suggested by the picture on the
left below. Then the matrix that emerges from the pivoting operation will have the pattern suggested by
the picture on the right below. (As usual, the as stand for arbitrary integers, not necessarily all equal; a
similar observation goes for the a's.)

d 0 a a a a « d 0 0 o o o o
0 d a aa a « 0 d 0 o o o o
p 00 a a a a « p 0 0 d o o o o
0 0 a aa a « 0 0 0 o o o o
0 0 a aa a « 0 0 0 o o o o
k k
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15. Here is a fundamental observation about the effect of the pivoting operation on column n of E. We
shall say that a column k is good for row p if k¥ < n and

Epn
— >0 15.1
Epk — ( )

(we assume, of course that Epk # 0). If k is good for p then we shall have Epn/d > 0 after the pivoting
operation. Now let’s ask a similar question of a row i distinct from p. Suppose

Ein/d > 0 (15.2)

before the pivoting. Under what circumstances is it true that Fin/d > 0 after pivoting? In other words,
under what circumstances is it true that

Epk - Ein — Eik - Epn

0
d - Epk -
before the pivoting. Here is the answer: the inequality is true if
FEin Epn
Eik/d < — > —. 15.3
ik/d <0 or Bk > Tk (15.3)

To prove our claim, supose first that Eik/d < 0. Then

Epk - Fin — Fik - Epn _ FEin  Fik Epn

d- Epk = 4 d Epk =

as claimed. Now suppose Eik/d > 0 and the second alternative in (15.3) holds. Then Epk - Ein > FEik - Epn
if Fik and Epk have the same sign and Epk - Fin < Fik - Epn otherwise. In other words,

(Epk - Fin — Fik - Epn) - Eik - Epk > 0.
This inequality is equivalent to

Epk - Ein — Eik - Epn
d - Epk -

since Fik and d have the same sign.
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16. The basic heuristic. The well-known Simplex algorithm solves our problem if we do not insist on
G being integer: upon receiving D, it produces a rational — not necessarily integer — matrix G such that
G- D is simple. In order to solve our problem as stated, we shall resort to a variant of the Simplex algorithm.
I am not sure who is to be credited for this variant; the names of Cramer, Chio, and Edmonds come to mind.
For lack of a better name, we shall call it “Simplex—Chio”.

Actually, our first versions of the precedure will not be true algorithms since they may go into an endless
cycle for some inputs. For this reason, we shall call them heuristics.

17. The function simplex_0 is a naive implementation of the Simplex—Chio heuristic. It receives an integer
matrix D[1..m][1..n] and returns an integer d and an integer matrix G that will solve our problem. However,
the function may not converge and, even if it converges, it may not produce the desired results due to
arithmetic overflowt during the computations.
If all goes well, the function also produces an integer matrix £ and an integer matrix F' such that E equal
toG-Dand F-G=d-1I.
('The basic heuristic 17) =
long simplez_0 (matrix D,int m,int n, matrix F, matrix G, matrix E) {
int h, k, p, i, j;
long d;
for (i =1; i < m; ++i)
for (j =1; j <n; ++j) E[i][j] = Dllljl; > E=D
for (i =1; i <m; ++i)
for (j =1; j <m; ++j) Flillj]=Glilj]=i=j?1:0;, > F=G=1
d=1;
(Phase 1: deal with rows 1..m —1 24)
(Phase 2: deal with row m 19)

}

This code is used in section 88.

18. The heuristic has two phases. Each iteration of phase 1 begins with a matrix E that fits the pattern
suggested by the picture on the left below. In that picture, we assume that the rows are indexed by 1..m
from top to bottom and that the rightmost column has index n. Moreover, the as and s are integer and
B/d > 0 for each 3.

d 0 a a a a f d 00 a a a p
0 d a a a a f 0 d 0O aa a p
h 0 0 a a a a « 0 0 d a a a 8
0 0 o a a a « 000 0 0 0O
0 0 o a a a « 0 00 a a a «

Each iteration of phase 2 begins with a matrix E that fits the pattern suggested by the picture on the right
above, where §/d > 0 for each 3.

T unfortunately, overflows go undetected
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19. Phase 2. At the beginning of each iteration of phase 2 we have F'- G/d = I, G[]|[m]/d = I[ ][m] and
(compare with 15.2)
Einjd > 0 (19.1)

for each ¢ in 1..m—1. The nominal goal of phase 2 is to enforce the inequality Emk/d > 0 for all k in
1..n—1. Phase 2 may not achieve its nominal goal if it runs into an unboundedness column (and also if it
goes into an endless cycle).
(Phase 2: deal with row m 19) =
while (1) {
for (k=1; k <n A Em]k]xd > 0; ++k) ; > 1
if (k<n) { > 2
for (p=1; p<m; ++p) >3
if (E[p][k] *d > 0) break; > 4
if (p<m) { > 5
for (i =p+1; i<m; ++i) > 6
if (E[i][k] xd > 0) > 7
if (E[i][k] * E[p]ln] — E[p][k]  E[i]l[n] >0) p=1i; > 8
(Pivot about row p and column & and update d 13) > 9
for (i =1; i <m; ++i) Fi][p] = D[i][k]; > 10

if (p =m) return d; > 11
}

else return d; > 12

}

This code is used in section 17.

20. Line 1 looks for k in 1..n—1 such that Emk/d > 0. If no such k is found, FE is simple solvable; line 2
sends us to line 12 and there the execution of simplex_0 terminates.

In order to avoid a division operation, we write Emk - d > 0 instead of Emk/d > 0. Actually, the product
Epk - d could be replaced by Epk - s, where s is the sign of d. We shall put this observation to use in our
next implementation.

21. At the beginning of line 3, k is such that Emk/d < 0. To come closer to our nominal goal, we would
like to do a pivoting operation about column k and some row p; after such pivot, we would have Emk/d = 0.

In order to preserve the identity G[ |[m]/d = I[ ][m], we must have p < m. In order to preserve 19.1, p
must satisfy the conditions we learned in 15.3. Lines 3 to 8 try to find p in 1..m—1 satisfying two conditions:
Epk/d >0 and

Epn/Epk < Ein/FEik for each i in 1..m—1 such that FEik/d > 0.

We say that such p is safe in 1..m—1. If there is no safe p (i.e., if p = m at the end of lines 3-4) we stop
striving for our nominal goal: matrix E is simple unbounded. In such case, line 5 sends us to line 11 and
the execution of simplex_0 stops.

(I wrote “if (p = m)” instead of as “else” in line 11 in order to emphasize the formal parallel with line 29
in the code for phase 1.)

The inequalities in the definition of safeness can be restated without divisions. For example, Epk/d > 0
is equivalent to Epk -d > 0. Moreover, if Eik -d > 0 and Epk - d > 0 then Epn/Epk < Ein/Fik is equivalent
to Eik - Epn — Epk - Ein < 0.
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22. Line 9 performs a pivoting operation about p and k. Because of our careful choice of p, 19.1 will remain
true after the pivoting.

The remarkable thing about the pivoting operation is that all the divisions by d are exact: there are no
truncations and no fractions. The reasons for this are well-known but by no means obvious: at the beginning
of each iteration, d and each entry in G and in E is the determinant of some submatrix of D.

23. Line 10 updates column p of matrix F. This update preserves the identity F'-G/d = I at the beginning
of each iteration.

24. Phase 1. The code for phase 1 is surprisingly similar to that of phase 2. At the beginning of each
iteration of phase 1 we have F - G/d = I, G[][m]/d = I| ][m] and (compare with 15.2)

Ein/d > 0 (24.1)

for each 7 in 1.. h—1. The nominal goal of phase 1 is to make this inequality valid also for ¢ = h. But phase 1
may not achieve this goal if it runs into an infeasibility row.

Each iteration in phase 1 deals with a row h; at the end of each iteration, h may be incremented or remain
unchanged.
(Phase 1: deal with rows 1..m —1 24) =

h=1;

while (h < m) {

if (E[h][n] <0) > 13

for (k=1; k<n A E[h][k] > 0; ++k) ; > 14
else if (E[h][n] > 0)

for (k=1; k<n A E[h][k] <0; ++k) ; > 16
else

for (k=1; k<n A E[h][k] =0; ++k) ; > 18

if (k<n) { > 19
for (p=1; p< h; ++p) > 20
if (E[p][k] *d > 0) break; > 21
if (p<h) { > 22
for (i=p+1; i< h; ++i) > 23
if (E[i][k] xd > 0) > 24
if (B[ * Elplln] - Bk « EGlll > 0) p=i5 > 25
if ((E[h][k] * Elp]n] — Ep|[k] * E[h][n]) xd « E[h][k] > 0) p=h; > 26

{Pivot about row p and column k and update d 13) > 27
for (i =1; i <m; ++i) F[i][p] = D[i][k]; > 28
if (p=h) ++h; > 29

}
else if (E[h][n] =0) ++h; > 30

else return d; > 31

}

This code is used in section 17.
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25. Lines 13 to 18 choose a good k, i.e., an index k < n such that Ehk # 0 and Ehn/Ehk > 0. If there
is no good k, row h has one of the following three forms: either Fh[l..n] = 0; or Eh[l..n—1] < 0 and
Ehn > 0; or Eh[l..n—1] > 0 and Ehn < 0. In the first case, there is nothing to be done on row h: lines 19
and 30 send us to the next iteration with A + 1 in place of h. In the two last cases, E is simple infeasible:
lines 19 and 30 send us to line 31 and simplex_0 terminates.

26. At the beginning of line 20, we have a good k. If we pivot about h and k, the inequality 24.1 will
become valid for ¢ = h but may become invalid for some of the other indices in 1.. h—1. Lines 20-26 look
for p in 1.. A such that after a pivot about p and k the inequality 24.1 will remain valid for all ¢ in 1..h—1
and perhaps will become valid for i = h.

Lines 20 to 25 (compare with lines 3 to 8 in the code of phase 2) look for a safe pin 1.. h—1, i.e., an index
p such that Epk/d > 0 and

Epn/Epk < Fin/FEik for each ¢ in 1..h—1 such that Eik/d > 0.

Suppose there is no such p, i.e., suppose p = h at the end of lines 20-21. Then we may pivot (line 27) about
h and k without fear of disturbing 24.1. Now suppose p < h at the end of lines 20-21. Then lines 23-25
finish the job of finding a safe p in 1.. h—1.

27. At the beginning of line 26, p is safe in 1.. h—1. Line 26 checks whether
Epn/Epk > Ehn/Ehk.

Note that this inequality can be restated without divisions: since Epk/d > 0, it is equivalent to (Ehk - Epn —
Epk - Ehn) -d - Ehk > 0.

Suppose the inequality is true. Then it is also true that Ehn/Ehk < Ein/FEik for each i in 1.. h—1 such
that Eik/d > 0. Hence, we can pivot about h and k without disturbing 24.1.

Now suppose the inequality is false. Then we must pivot about p and k and hope that things get better
in the next iteration.

28. If the pivoting operation was done about h (and k), line 29 increments h before starting a new iteration.
Note that p may have become equal to h on two different occasions: either in lines 20-21 or in line 26.

If the pivoting was not done about h, we start a new iteration with the same h as before. Even though h
did not change, our matrix F is somehow “better”. On rare occasions, however, this loop may get forever
stuck with a certain value of h.

29. Line 27 performs a pivoting operation about p and k. As in phase 2, all the divisions by d are exact.
Finally, line 28 updates column p of matrix F. This update preserves the identity F' - G/d = I at the
beginning of each iteration.
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30. Arithmetic overflow. The magnitudef of the numbers generated by the Simplex—Chio procedure
may become very large, even if the magnitudes of the entries in the data matrix D are very small. In
particular, the numbers generated by simplezr_0 may easily exceed the capacity of a long variable. If such
overflow occurs, the results will be corrupted without warning.

31. How can we detect an overflow in an arithmetic operation before it actually happens? Before explaining
the trick, we must understand the range of long integers.

Since sizeof (long) = 4, a long integer has 32 bits. Since our computer uses two’s complement notation,
the range of representable integers goes from —23! to 231—1. (These numbers are called LONG_MIN and
LONG_MAX respectively in the header file 1imits.h.) We shall, however, discard the use of —23! and restrict
ourselves to the interval —23! + 1 .. 231 — 1. In other words, we shall make sure that the magnitude of all
our integers is allways strictly smaller than 23!, Incidentaly, the representation of 23! —1 is 2,147,483,647 in
decimal notation. The hexadecimal representation is given next.

#define TW031M1 #7fffffffy > 231 -1

32. In order to detect an overflow during a long arithmetic operation, we shall use long long variables.
The long long type is not part of the ANSI standard, but is recognized by the GNU C compiler. Since
sizeof (long long) = 8, a long long integer has 64 bits and therefore the range of representable integers
goes from —263 to 2631 (these numbers are called LLONG_MIN and LLONG_MAX respectively in the file
limits.h). Incidentally, the decimal representation of 2631 is 9,223,372,036,854,775,807. The hexadecimal
representation of 23! is given next.

F#define TWO31 #00000000800000007,1, > 231
(Typedefs 7) +=
typedef long long llong;

33. Our computations will be done as follows. Suppose that the magnitudes of the long variables a, =, b
and y are smaller than 23'. Then the evaluation of the expression
(long) a * (llong) z — (llong) b * (llong) y
produces no overflow. This is so because, for any positive integers a and &,
if @ <23 and € < 23! then - & <262, and if @ <252 and ¢ < 292 then o+ ¢ < 293.

Now, if the value of the llong expression is less than TW031, it can be safely stored in a long variable.
Otherwise, there is nothing to do but cry “Overflow!”.

1 magnitude = absolute value
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34. Predicting a bound on all matrix entries. (The next two sections are included just for fun: the
corresponding code will not be actually used in our implementations of the Simplex-Chio algorithm.)

There is a way to predict, before actually running the algorithm, an upper bound on the magnitude of
all matrix entries that will be generated during the execution of the algorithm. We shall denote such upper
bound by w.

All the numbers generated in the course of the Simplex—Chio algorithm (in particular, all entries of G and
E) are determinants of square submatrices of the data matrix Dj; this is a theorem. It is not difficult to see
that the number

w = [T, (14 DLJ[] + - + Dlij[n))

is a bound on the magnitude of any subdeterminant of D. Similarly, the number
wy = [[j=y (1+ DA+ -+ + D[m][j]) -

is a bound on the magnitude of any subdeterminant of D. The upper bound w mentioned above may be
defined as min (w1,w2). Unfortunately, this bound is usually too loose to be useful; only for some rare
matrices w is tight. Hence, we shall compute w just out of curiosity.

35. The function omegal will receive a matrix D[1..m][1l..n] and return the value of its wy. If the
parameter cannot be computed correctly in long arithmetic due to overflow, the function will return
LONG_MIN, which is equal to —23!.

Our function assumes that the magnitude of each entry of D is strictly smaller than 23!. In order to detect
an overflow, we shall do the computations in llong arithmetic.

(Auxiliary functions 35) =

long omegal (matrix D,int m,int n) {
llong term, sum, prod;

int i, j;

prod =1 ;

for (i=1; i <m; ++i) {
sum = 1p;

for (j =1; j <n; ++j) {
term = (llong) D[i][5];
if (term < 01,1) term = —term;
sum += term;
if (sum > TW031) return LONG_MIN; > TW031 = 23!
}
prod x= sum;
if (prod > TW031) return LONG_MIN;

}

return (long) prod;

}

See also sections 36, 118, 121, 122, 123, 124, 125, 127, 130, 133, and 137.

This code is used in section 88.
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36. The function omega2 is similar: it attempts to computes the bound ws.

( Auxiliary functions 35) +=
long omega2 (matrix D,int m,int n) {
llong term, sum, prod;

int i, j;

prod = 11, 1;

for (j =1; j <n; ++j) {
sum = 11,1;

for (i=1; i <m; ++i) {
term = (llong) D[i][5];
if (term < 0p1) term = —term;
sum += term;
if (sum > TW031) return LONG_MIN;
}
prod x= sum;
if (prod > TW031) return LONG_MIN;

}

return (long) prod;

}
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37. First implementation of the heuristic. Our first implementation of the Simplex—Chio heuristic
(simplexz_0 does not really count) makes sure that no overflow will go undetected. (But we shall do nothing,
in this implementation, about the cycling nuisance.)

The function simpler_1 receives matrix D and, if it converges, returns an integer d. It returns d = —23! if
the computations were interrupted due to an imminent overflow; the values of G, E and F' are meaningless
in this case. It returns d # —23! if the computations went through without any overflow; in this case, the
quadruple G, d, E, F is a solution to our problem.

The function assumes that the magnitude of each entry of the data matrix D is strictly smaller than 23!,
If there is no overflow, the magnitude of d and of each entry of G and E will also be smaller than 23!.

(First implementation of the heuristic 37) =
long simpler_1 (matrix D,int m,int n, matrix F, matrix G, matrix E,int *inf, int xunb) {

int h) p’ k’ Z‘) J;
long d, sd, sdE;
vector Di, FEh, Ep, Ei, Gp, Gi, Fi;
long Ehk, Ehn, Epk, Epn, Eik, Ein;
llong t;
(Set E=D,F=G=1,andd=1 39)
(Initialize num_its and mazmag 41)
(Phase 1 of first implementation 42)
(Phase 2 of first implementation 47)

}

This code is used in section 88.

38. In order to indicate the kind of simple matrix it found, the function produces integers xinf and xunb:
if the matrix E turns out to be simple infeasible then xinf is the index of an infeasibility row; and if E turns
out to be unbounded then *unb is the index of an unboundedness column. If xinf = 0 and *unb = 0 then
FE is simple solvable.

39. A note on mems counting: The evaluation of an expression like E[i][j] requires two accesses to memory:
one the get the value of E[i] and the other to get E[i][j] proper. (As usual, we shall pretend that the variables
E, i and j reside in registers and not in memory.) If all entries in row ¢ must be processed, we may reduce the
number of memory accesses by copying E[i] to a register, say Fi, and then writing Ei[j] instead of E[é][7].
(Set E=D,F=G=1,andd=139)=
for (i =1; i <m; ++i) {
oo, Fi = Eli], Di = D[il;
for (j =1; j <n; ++j) oo, Ei[j] = Di[j];
}
for (i=1; i <m; ++i) {
0o, Fi = Fi], Gi = G[i];
for (j =1; j <m; ++j) oo, Fi[jl = Gi[jf]=i=j71L:0y;
}
d=11;

This code is used in section 37.

40. To satisfy the curiosity of the user, we shall keep track of the number of iterations in each phase;
global llong variables num_its_ph1 and num_its_ph2 will be used for this purpose. We shall also keep track
of the largest magnitude among all entries in G and E throughout the computations; a global llong variable
mazrmag will be used to store this value.

( Other global variables 12) +=

Nlong num_its_ph!, num_its_ph2, mazrmag;
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41. The initial value of marmag is the largest magnitude among all entries of matrices D and I, since at
this point £ =D and G = I.
(Initialize num_its and mazmag 41) =
maxmag = 11,1; > largest entry in matrix G
for (i =1; i <m; ++i) {
o, Ei = EJil;
for (k=1; k <n; ++k) {
o, Eik = Eilk];
if (Eik <0y) Eik = —Fik;
if (mazmag < (llong) Eik) maxmag = (llong) Eik;
}
}

num_its_phl = num_its_ph2 = 0, ;
This code is used in sections 37, 63, and 69.

42. The implementation of phase 1 is copied down from the basic version of the heuristic with some stylistic
changes.
(Phase 1 of first implementation 42) =
h=1;
while (h <m) {
++num_its_phl;
(Choose a good column k; set k = n if no such column exists 43 )
if (k<n) {
{Choose safe p in 1 .. h — 1; set p = h if there are no candidates 44)
(Set p = h if pivoting about h and k is ok, after all 45)
{Pivot about p and k and update d 50)
for (i =1; i <m; ++i) oooo, F[i][p] = D[i][k];
if (p=h) +h;

}
else if (0, Eh[n] =0L) ++h;
else (FE is simple infeasible; return 46)

}

This code is used in section 37.

43. Nothing new here, except for mems counting.
(Choose a good column k; set k = n if no such column exists 43) =
o, Eh = E[h];
if (0, Eh[n] < 0r)
for (k=1; k<n A (o,Eh[k] >0L); ++k) ;
else if (o, Eh[n] > 0L)
for (k=1; k<n A (0, Eh[k] <0L); ++k) ;
else
for (k=1; k<n A (0, Eh[k] =0L); ++k) ;

This code is used in sections 42, 65, and 71.
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44. This section and the next use some of our overflow-avoiding tricks. At the end of this piece of code we
have Ep = E[p|, Epk = Eplk], and Epn = Ep|[n].
(Choose safe pin 1 .. h — 1; set p = h if there are no candidates 44) =

sd=d>0p ?7+1g:—-1;
for (p=1; p< h; ++p)
if (oo, E[p][k] * sd > 0,) break;
ovo, Ep = E[p], Epk = Eplk], Epn = Ep[n];
for i=p+1; i<h; ++i) {
ooo, Ei = E[i], Eik = Ei[k], Ein = Ei[n];
if (Eik xsd >01) {
t = (llong) Epk * (llong) Ein — (llong) Eik x (llong) Epn;
if (t<0wn1) p=1i, Ep = Ei, Epk = Eik, Epn = Ein;
}
}

This code is used in sections 42 and 47.

45. We assume that Ep = E[p|, Epk = Ep[k], and Epn = Ep[n] before entering this piece of code. The
first two relations remain true when we leave this piece of code.

(Set p = h if pivoting about h and k is ok, after all 45) =
if (p<h) {
oo, Ehk = Eh[k], Ehn = Eh[n];
t = (llong) Ehk x (1long) Epn — (llong) Epk * (llong) Ehn;
sdE = sd x Ehk >0y, 7 +1 : —1y;
if (t *x (long) sdE > 0y1,) p=h, Ep = Eh, Epk = Ehk;
}

This code is used in sections 42, 65, and 71.

46. (FE is simple infeasible; return 46) = {

00, xinf = h, xunb = 0;
return d;

}

This code is used in sections 42, 65, and 71.
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47. The implementation of phase 2 is the same as in the basic version except for some stylistic changes.
In order to re-use some of the code from phase 1, we shall write h where we should be writing m; of course
h = m throughout phase 2.
(Phase 2 of first implementation 47) =
while (1) { > h=m
+num_its_ph2;
SdZdZOL?+1LZ—1L;

o, Eh = EJh];

for (k=1; k<n A (0, Eh[k] *sd > 0r); ++k) ;

if (k<n) {
{Choose safe p in 1 .. h — 1; set p = h if there are no candidates 44)
if (p<h) {

(Pivot about p and k and update d 50)
for (i =1; i <m; ++i) oooo, F[i][p] = D[i][k];

}

else (E is simple unbounded; return 49)

}

else (E is simple solvable; return 48)

}

This code is used in section 37.

48. (FE is simple solvable; return 48) = {

00, *inf = xunb = 0;
return d;

}

This code is used in sections 47, 67, and 74.

49. (E is simple unbounded; return 49) = {

00, xunb = k, xinf = 0;
return d;

}

This code is used in sections 47, 67, and 74.

50. The pivoting operation depends heavily of our overflow-control tricks. If an overflow occurs, there is
nothing to do but abort the computation. This piece of code assumes that Ep = E[p] and Epk = Eplk].

(Pivot about p and k and update d 50) = {

register llong magt;

0, Gp = Glpl;
for (i =1; i <m; ++i)
if (i #p) {

00, Ei = Eli], Bik = Bik];
(Update row i of E 51)

0, Gi = Gi;

(Update row i of G 52)

d = Epk;
(If verbose, print p, G and E 54)

}

This code is used in sections 42, 47, 65, 67, 71, and 74.
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51. (Updaterow i of E 51) =
for (j=1; j <n; ++j) { > Ep = E[p] and Epk = Eplk]

oo,t = (llong) Epk *x (llong) Ei[j] — (llong) Fik = (llong) Ep|j]; > t is divisible by d
t /= (llong) d;
magt =t <0pr 7 —t:¢
if (magt > TW031) (Imminent overflow! 53)
o, Filj] = (long)
if (mazmag < magt) mazrmag = magt;

}

This code is used in section 50.

52. (Update row ¢ of G 52) =

for (j =1; j <m; ++j) {
oo,t = (llong) Epk x (llong) Gi[j] — (llong) Eik x (llong) Gp|[j]; > ¢ is divisible by d
t /= (llong) d;
magt =t <0pr 7 —t:¢
if (magt > TW031) (Imminent overflow! 53)
0, Gi[j] = (long) t;
if (maxmag < magt) maxmag = magt;

}

This code is used in section 50.

53. (Imminent overflow! 53) = {
if (verbose = on) {
fprintf (ofile, "\n\n_Unable to update E[%d] [%d] or",i,J);
forintf (ofile, " ,G[%d] [%d] without overflow!\n",1,j);

}

return LONG_MIN; > LONG_MIN = —23!

}

This code is used in sections 51 and 52.

54. A printout of G and E at the end of each iteration may help if you are studying the behaviour of the
heuristic.

(If verbose, print p, G and E 54) =

if (verbose = on) {
forintf (ofile, "\n\n G and E_ = ,G*D after pivot on row %d:",p);
printmatrices (G, E,m,n);

This code is used in section 50.
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55. Convergence. Why does our heuristic diverge for some inputs? Let’s begin by reviewing our criteria
for choosing k and p. At the beginning of each iteration of phase 1, index k is chosen in 1..n—1 so that
Emk/d < 0. Then, p is chosen in 1..m—1 so that

Epk/d>0 and
Epn/Epk < Fin/FEik for each i in 1..m—1 such that Eik/d > 0.

At the beginning of each iteration of phase 1, k is chosen in 1..n—1 so that Ehk # 0 and Ehn/Ehk > 0.
Then, p is chosen in 1..h so that

either p = h or Epk/d > 0 and
Epn/Epk < Fin/FEik for each i in 1..m—1 such that Eik/d > 0.

As long as there is only one way to choose k and p, convergence is not under threat (essencially because Ehn
will come stictly closer to zero with each iteration). But if there are ties, i.e., if there is more than one k or
more than one p satisfying the requirements, we may go into an endless cycle, unless the ties are not broken
in a consistent way.

Two tie-breaking rules are known to work: the lexicographic method and Bland’s rule. The latter is named
after R. Bland (New finite pivoting rules for the simplex method, Mathematics of Operations Research, 2
(1977), pp-103-107). We shall implement both rules in future sections. After this is done, we shall feel
entitled to use the term “algorithm” instead of “heuristic”.

In order to implement either of these rules we must have an explicit representation of the row and column
bases of matrix E.
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56. Row and column bases. Before we can tackle the cycling issue, we must introduce the concept
of row and column bases. By doing so, we shall also gain a more formal understanding of the structure of
simple matrices. Consider an integer matrix E[1..m][1..n] and a nonnull integer d. A column basis for the
pair E,d is an array ¢[1..n—1] such that

all entries of ¢ are in 0..m—1,
the nonnull entries of ¢ are pairwise distinct, and

if p[j] # 0 then E[][jl/d = I][¢[j]] -

Here, E[ ][j] stands for E[1..m][j] and I is the identity matrix indexed by 1..m. Given ¢, we shall say that
a column index j is basic if p[j] # 0 and that it is nonbasic otherwise.

It is more conveninent to work with the ‘inverse’ of a column basis, as given by the following definition.
The row basis associated with ¢ is the array [1..m—1] defined by the pair of conditions

if [f] # 0 then Y[o[j]] =j and if [i] # O then p[[i]] =i .

Given 9, we shall say that a row index i is basic if ¢[i] # 0 and that it is nonbasic otherwise.

57. Simple matrices: formal definition. Suppose v is a row basis for a matrix E. Let A’ stand for
the matrix E[1..m—1][1..n—1], let b’ stand for the vector E[1..m—1][n], and let ¢’ stand for the vector
E[m][1..n—1]. Matrix E is d-simple solvable if the following conditions hold: (1) b'/d > 0; (2) ¢[i]] =0
implies A'[¢][] =0 and b'[i]] = 0; and (3) ¢//d > 0.

Matrix E is d-simple unbounded if there exists ¥ < n such that (1) b'/d > 0; (2) A'[ ][k]/d < 0;
(3) d[k]/d < 0; and (4) 9[i] = 0 implies A'[i][k] = V'[i] = 0.

Matrix E is d-simple infeasible if there exists h < m such that either (1) A'[A][] < 0 and ¥'[h] > 0 or
(2) A'[A][]1>0and b'[h] <O .

58. Entering and leaving the basis. Suppose a pivot operation occurs about a row p and a column k in
the middle of some iteration. We shall then set ¢[k] = p and say that k enters the basis. In order to preserve
the proper relation between ¢ and 1 we must also set [p] = k.

Before the pivoting operation, ¢[k] is null but ¢[p] may be nonnull. If ¥[p] # 0 before the pivot operation,
we say then that the column ¢[p] leaves the basis.

59. I will use an ivector psi to represent the basis array 4); it is convenient to make psi indexed by 1..m
with psi[m] permanently set to 0.
(Basic global variables 5) +=

ivector psi; > pst =

60. It is not difficult to find a row basis for E.
( Compute row basis psi of E 60) =
for (i =1; i <m; ++i) psifi| = 0;
for (j =1; j <m; ++j) {
register int 4i;
for (i =1; i <mAE[i][j] =0v; ++i) ;
if (i <mAE[i)[j]=dApsi[i] =0) {
for (i =i+ 1; it <mA E[i][j] =0L; ++ii) ;
if (it > m) psili] = j;
}
}

This code is used in section 104.
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61. Once a basis is known, matrix F' becomes redundant. It can be inferred from v and D at any moment:
if ¥[7] = 0 then F[][{] = I[][¢] else F[][¢] = D[ ][¢[¢]]-
(Compute F from psi and D 61) =
for (j =1; j <m; ++))
if (o, psi[j]) for (i =1; i <m; ++i) oooo, F[i][j] = DIi][psi[5]];
else for (i=1; i <m; ++i) oo, F[i][j]=i=j71p:0r;

This code is used in section 104.
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62. Simplex algorithm with Bland’s rule. In order to avoid cycling, the indices k and p must be
chosen very carefully. Bland has shown that the following rule forces convergence: choose

the smallest possible k and the smallest possible 9[p]
that are consistent with all the other requirements. The proof that the rule avoids cycling is not too easy.

We have already been choosing k according to Bland’s rule anyway. The second part of the rule only
makes a difference when there is a tie between two candidates for the réle of p.

63. Since we keep explicit track of the row basis (vector psi), there no need to compute matrix F. The
argument D will also be eliminated: we shall agree to set £ = D before calling simplez_bland.

(Implementation with Bland’s rule 63) =
long simplez_bland (matrix E,int m,int n, matrix G,ivector psi,int *inf,int xunb) {

int h, p, k, i, j;
long d, sd, sdFE;
vector Fh, Ep, FEi, Gp, Gi;
long Ehk, Ehn, Epk, Epn, Eik, Ein;
(Set G=1,psi =0,and d=1 64)
(Initialize num_its and maxmag 41)
(Phase 1 of second implementation 65 )
(

Phase 2 of second implementation 67)

}

This code is used in section 88.

64. (Set G=1I,psi =0,andd=164) =
for (i=1; i <m; ++i) {
o0, Gi = Gi;
for (j =1; j <m; ++j) 0, Gi[j] =i =771y :0y;
}
for (i = 1; i < m; ++i) o,psili] = 0
d=1y;

This code is used in sections 63 and 69.
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65. The skeleton of phase 1 is the same as that of simplex_1, except that the code for updating the row
and column bases takes the place of the code for updating F'.

At the beginning of each iteration of phase 1 we have Ein/d > 0 for each i in 1.. h—1 (compare with 24.1).
In particular, the inequality holds for each i such that psi[i] # 0, because our implementation of phase 1
examines the rows in increasing order.

(Phase 1 of second implementation 65) =
h=1;
while (h <m) {
llong t;
+num_its_phl;
(Choose a good column k; set k = n if no such column exists 43 ) > Bland’s rule
if (k<n) {
{Choose p in 1 .. h according to Bland’s rule 66)
(Set p = h if pivoting about h and k is ok, after all 45)
(Pivot about p and k and update d 50)

o, psi[p] = k; > k enters the basis
if (p=h) ++h;
}

else if (o, Eh[n] =0r) ++h;
else (E is simple infeasible; return 46)

}

This code is used in section 63.

66. This is the only part of phase 1 affected by Bland’s rule; the effect of the rule appears in the condition
governing a single if.
(Choose p in 1 .. h according to Bland’s rule 66) =
sd=d>0r ?+1g:—-1;
for (p=1; p< h; ++p)
if (oo, E[p][k] * sd > 01,) break;
oo, Ep = E[p], Epk = Ep[k], Epn = Ep[n];
for (i=p+1; i<h; ++i) {
ooo, Ei = E[i], Eik = Ei[k], Ein = Ei[n];
if (Eik xsd >0p) {
t = (llong) Epk * (llong) FEin — (llong) Eik x (llong) Epn;
if (t<0L1 Vv
(t=0L1 A (00, psi[i] < psi[p]))) > Bland's rule
p=1, Ep = Fi, Epk = FEik, Epn = FEin;
}

}

This code is used in sections 65 and 67.
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67. The skeleton of phase 2 is essentially the same as that of simplex_1.
(Phase 2 of second implementation 67) =
while (1) { > h=m
llong t;

+num_its_ph2;
sd =d>0r 7 +1g : —1y;

o, Eh = EJh];
for (k=1; k<n A (o, Eh[k]*sd > 01); ++k) ; > Bland's rule
if (k<n) {
{Choose p in 1 .. h according to Bland’s rule 66)
if (p<h) {
(Pivot about p and k and update d 50)
0, psi[p] = k;
else ( E is simple unbounded; return 49)
}
else (E is simple solvable; return 48)

}

This code is used in section 63.
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68. The lexicographic version of Simplex. The the lexicographic method for forcing the convergence
of Simplex depends on maintaining the set of column indices in a certain order. In other words, it depends
on maintaining a certain permutation ¢y, ca,...,c, of 1,2,...,n. This permutation is not fixed: it must be
readjusted at the end of some iterations. But we shall always have ¢; = n.

The permutation ¢y, ca,...,c, allows us to talk about a lexicographic order among vectors. Suppose z
and y are two distinct vectors indexed by 1..n. We say that z is lexically smaller than y if z[c;] < ylal,
where [ is the smallest index for which z[¢] # y[c].

The lexicographic method establishes a policy for breaking ties during the choice of p in phase 1 or phase 2.
The rule requires that p be chosen so that

the vector E[p]/Epn is lexically smallest.

69. Here is our version of the Simplex—Chio algorithm with the lexicographic rule.
(Implementation with the lexicographic rule 69) =
long simplez_lexicographic (matrix E,int m,int n, matrix G,ivector psi,int *inf, int xunb) {
int h) p’ k’ Z‘J J;
long d, sd, sdFE;
vector Eh, Ep, Fi, Gp, Gi;
long Ehk, Ehn, Epk, Epn, FEik;
llong t;
ivector c;
int [, cl;
(Set G=1,psi =0,and d=1 64)
(Initialize permutation ¢ 70)
(Initialize num-its and maxmag 41)
(Lexicographic implementation of phase 1 71)
(

Lexicographic implementation of phase 2 74)

}

This code is used in section 88.

70. We must set ¢[1] = n. The other entries in ¢ are arbitrary. Actually, a lexicographic comparison never
has to look at nonbasic columns; hence, there is no need to initialize ¢[2 .. n].

(Initialize permutation ¢ 70) =

¢ = allocate_ivector (n);
o,c[1] = n;

This code is used in section 69.
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71. The skeleton of phase 1 is the same as that of our previous implementations of Simplex, except for the
addition of code to update ¢ everytime we pivot about row h. At the beginning of each iteration of phase 1,
our permutation ¢ has the following property for each basic row i:

the vector E[i][1..n]/d is lexically positive. (71.1)

(A vector z[1..n] is lezically positive if x[c;] > 0 for the smallest [ such that z[¢] # 0.) Since ¢; = n, this
property generalizes our invariant 24.1.
(Lexicographic implementation of phase 1 71) =
h=1,
while (h < m) {
+num_its_phl;
(Choose a good column k; set k = n if no such column exists 43 )
if (k<n) {
{Choose p in 1 .. h according to the lexicographic rule 73)
{Set p = h if pivoting about h and k is ok, after all 45)
{Pivot about p and k and update d 50)
o, psi[p] = k;
if (p=h) {
(Update permutation ¢ 72)
++h;
}
}
else if (o, Eh[n] =0L) ++h;
else (E is simple infeasible; return 46)

}

This code is used in section 69.

72. Suppose a pivoting operation was performed about row h and column k. Then h is a new basic row.
Before starting a new iteration, we must update permutation ¢ so that 71.1 remains valid. There is an easy
way to do this: let all basic columns precede all nonbasic columns in ¢g,...,c¢,. Actually, there is no need
to record the nonbasic columns in ¢ because no lexicographic comparison ever looks at nonbasic columns.

(Update permutation ¢ 72) =
for I=i=1; i< h; ++i)
if (o, psili] #0) oo, c[++] = psii];

This code is used in section 71.
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73. The lexicographic search examines rows E[i] and E[p] and stops at the first [ for which

Efi]lei]/ ELi][k] = Elpllc]/Elp][k] # 0. (73.1)

For [ = 1, the left-hand side of 73.1 becomes E[i][n]/E[i][k] — E[p][n]/E[p][k]. So, our lexicographic method
begins with exactly the same test we have been doing since our first outline of Simplex; if this first comparison
is an equality, we proceede with | = 2 and so on. Hence the lexicographic rule is a true generalization of the
Simplex heuristic.
It is not too difficult to show that 73.1 holds for some | < n; in fact, it holds for some [ such that ¢; is a
basic column.
(Choose p in 1 .. h according to the lexicographic rule 73) =
sd =d>01 7+1g:—1;
for (p=1; p< h; ++p)
if (oo, E[p][k] * sd > 01,) break;
0o, Ep = E[p], Epk = Epl[k];
for i=p+1; i< h; ++i) {
oo, Ei = Eli], Eik = Ei[k];
if (Eik xsd >01) {
for 1=1;; ++1) { > lexicographic comparison
o, cl = c[l];
oo,t = (llong) Epk x (llong) FEi[cl] — (llong) Fik = (llong) Ep[cl];
if (t #011) break;

if (t<0LL) p=1i, Ep = Ei, Epk = Eik;
}
}

o, Epn = Ep|n];

This code is used in sections 71 and 74.

74. The skeleton of phase 2 is identical to that of our previous implementations of Simplex. The permuta-
tion ¢ does not change during this phase. At the beginning of each iteration, for each basic row ¢, the vector
ETi][1..n]/d is lexically positive. Since ¢; = n, this property generalizes our invariant 19.1.

(Lexicographic implementation of phase 2 74) =
while (1) { >h=m
+num_its_ph2;
Sd:dZOL?+1L:—1L;

o, Eh = EJh];
for (k=1; k<n A (0, Eh[k] xsd > 0r); ++k) ;
if (k<n) {
{Choose p in 1 .. h according to the lexicographic rule 73)
if (p<h) {
(Pivot about p and k and update d 50)
o, psilp] = k;

else ( E is simple unbounded; return 49)

}

else (E is simple solvable; return 48)

}

This code is used in section 69.
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75. Why does the lexicographic rule rule work? Suppose we are in phase 1 and supppose we are going
through a sequence of iterations in which the size of the basis does not increase (i.e., p < h in each iteration).
Since the vector E[i][1..n]/d is lexically positive for each basic row 4, the value of E[h][n] comes closer to
zero after each pivot operation. This is ends up forcing the convergence.
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76. Back to the minimization problem. Let’s go back now to the basic minimization problem: find
a vector x that minimizes ¢ - x subject to

A-z=b and z >0, (76.1)

where A, b, and c are parts of the matrix D as indicated in 2.1. Suppose that we found a nonnull integer d
and an invertible integer matrix G such that G - D is d-simple and G[|[m] =d - I[][m]. Let E =G - D.

77. Supppose E is d-simple infeasible. Then our minimization problem has no solution. To make this
more evident, we shall exhibit a vector v'[1 .. m—1] such that

either v'-A<0andv'-b>0 or v -A>0andv'-b<0.

We say that such v’ is an “infeasibility vector”. It constitutes a verifiable proof of the nonexistence of a
vector z satisfying 76.1. The function below receives the index h of an infeasibility row in matrix E and
produces an integer infeasibility vector vprime.
(Solution of the minimization problem 77) =
void infeasibility (matrix G,int h,vector vprime) {
int 4;
for (i =1; i <m; ++i) vprime[i] = G[h][i];
}
See also sections 78 and 79.

This code is used in section 88.

78. Now suppose FE is d-simple solvable. It is a trivial job to find a vector z satisfying 76.1. In particular,
there is only one such z satisfying the additional condition z[j] = 0 for every nonbasic j. In order to certify
the minimality of ¢ - z, it is sufficient to exhibit a vector y[1..m—1] such that

y-A<c and c-z=y-b.

We say that such y is a “solution to the dual problem”; it proves the minimality of ¢ - x because ¢- & > 3 - b
for all # satisfying 76.1 and for all §j satisfying §- A < ec.

The function below receives E together with its row basis psi. Rather than producing z and y, it produces
these vectors multiplied by d. We call the resulting vectors u and v:

u = dx and v = dy.
The vectors u and v are integer. If d > 0, then 4 > 0and v- A < dc. f d <0, thenu <O0andv-A >dc. In
either case, A - u = db.
(Solution of the minimization problem 77) +=
void solution(matrix E,ivector psi,vector u, vector v) {

int i, j;

for (j =1; j <m; ++j) ulj] =0u;

for (i =1; i <m; ++i)

if (psili] # 0) ulpsili]] = Elil[n]:
for (i =1; i <m; ++i) v[i] = —G[m][i];

}
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79. Finally, suppose E is d-simple unbounded. In order to show that the minimization problem is
unbounded, it is sufficient to exhibit a vector z satisfying 76.1 and a vector z' such that

A-2'=0, />0, and c-z'<0.
Such a pair z,2' proves the unboundedness of the minimization problem because, for any number \ > 0,
no matter how large, the vector z + Az’ satisfies 76.1 and ¢- (x + A\z') = A(c- z'). We say that z' is an
“unboundedness vector”.

The following function receives the index k of the unboundedness column and a row basis psi. Rather
than producing z and z’, it produces the product of these vectors by d. We call the resulting vectors u
and u':

u = dz and u = di'.
The vectors u and u' are integer. If d > 0, then v > 0, and v’ > 0, and ¢- ' < 0. If d <0, then u < 0, and
u' <0,and ¢c-u' > 0. Argument uprime will play the role of u'.
(Solution of the minimization problem 77) +=
void unboundedness(matrix E,int k,ivector psi,long d, vector u,vector uprime) {
int i, j;
for (j =1; j <n; ++j) ulj] = uprime[j] = 0;
uprime k] = d;
for (i =1; i < m; ++i)
if (psili] #0) {
ulpsili]] = E[i][n];
uprime|[psii]] = —E[i][k];
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80. Printing routines. Unfortunately we must write a lot of code for the rather pedestrian job of
printing our matrices.

81. We like to print our matrices so that each column is just wide enough to accomodate all entries in
that column. The findwidth function receives a matrix B[1..m][1..n] and sets w[j] to the width of column
j of B.

The width of a column is the width of its widest entry. We use sprintf to figure out the width of each
entry. The expression sprintf (buffer,"%1d",b) places output (followed by the null character) in consecutive
bytes starting at buffer and returns the number of characters transmitted (not including the null character).
Since the magnitude of all our numbers is less than 23! = 2,147,483,648, buffer must have at least 1+ 10+1
characters.

There is an exception, however: if the given_width option is nonnull then all entries of w are set to
given_width .

(Printing functions 81) =
void findwidth(matrix B,int m,int n,ivector w) {
int ¢, j, wi;
char buffer[12];
if (given_width)
for (j =1; j <n; ++j) w[j] = given_width;
else
for (j =1; j <n; ++j)
for (w[j]=0,i=1; i <m; ++i) {
wi = sprintf (buffer,"%1d", B[i][j]); > wi is width of Bij
if (w[j] < wi) wlj] = wi;
}
}
See also sections 82, 83, 84, 85, and 86.

This code is used in section 88.

82. The function printmatriz sends matrix A[l..m][1..n] to the output file.
(Printing functions 81) +=
void printmatriz (matrix A,int m,int n) {
int i, j;
ivector w;

w = allocate_tvector (n);
findwidth (A, m,n,w);
fprintf (ofile, "\n");
for (i=1; i <m; ++i) {
forintf (ofile, "\n");
for (j =1; j <n; ++j) fprintf (ofile, " %*1d", w(j], A[i][j]);

}

deallocate_ivector (w);
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83. We often wish to print the pair of matrices G[1..m][1..m] and E[1..m][1..n]. We shall print them
side-by-side if this can be done comfortably; otherwise, E will be printed after G.
(Printing functions 81) +=
void printmatrices(matrix G, matrix E,int m,int n) {
int i, j, totalw;
ivector w@G, wk;

wG = allocate_tvector (m); wE = allocate_ivector (n);
findwidth (G, m,m, wG); findwidth(E, m,n, wE);
totalw = m + n;
for (i =1; i <m; ++i) totalw += wG[i;
for (j=1; j <n; ++j) totalw += wE[j];
forintf (ofile, "\a");
if (totalw < 85) > print G and E side-by-side
for (i=1; i <m; ++i) {
fprintf (ofile, "\n");
for (j =1; j <my ++j) fprintf (ofile, "ui*1d", wG[j], G[d][4]);
forintf (ofile, " uuuuu");
for (j =1; j <n; ++j) forintf (ofile, "Lhk*1d", wE[j], E[i][j]);

else { > print G, then E
for (i=1; i <m; ++i) {
forintf (ofile, "\n");
for (j =1; j <m; ++j) fprintf (ofile, " h*1d", wG j], G[i][4]);

}
forintf (ofile, "\n");
for (i=1; i <mj; ++i) {
forintf (ofile, "\n");
For (j =1 j <n; ++§) forintf (ofie, "stx1a", wE[j], E[llj)):
}
}

deallocate_ivector (w@G); deallocate_ivector (wE);

}

84. The user may wish to print the matrices G/d and E/d in floating point format. The following function
prints E/d. The rows of E are indexed by 1..m and the columns by 1..n.
(Printing functions 81) +=
void printmatriz_float (matrix E,int m,int n,long d) {
int i, j;
forintf (ofile, "\n");
for (i=1; i <m; ++i) {
Jforintf (ofile, "\n");
for (j =1; j <n; ++j) forintf (ofile,"L%9.2e", (float) E[i][j]/(float) d);
}
}
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85. The user may also wish to print the matrix E/d in rational format: given an integer matrix F and a
nonnull integer d, we print, for each row ¢ and column j, a pair z,y of integers such that

z/y = E[illjl/d,

y has no common divisors with z |

y>0.
The number z is the numerator and y is the denominator of entry 4, j.

Before handling the printing, we must write Euclid’s algoritm to find the greatest common divisor of
integers  and y. We assume that x > 0 and y > 0. (If both  and y were 0 then there would be
no maximum common divisor, and our algorithm will go into a loop.) The observation that explains the
workings of Euclid’s algorithm is this: if z > y then ged(x,y) = ged(z % y, ).

(Printing functions 81) +=
long euclid (long z,long y) {

long t;

do {
=T %Y;
t=z,c=y,y=1t

} while (y # 01);

return z;

}
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86. The function printmatriz_rational will print the matrix E/d in rational format. We shall store the
numerators of all entries of E in a matrix X and the denominators in a matrix Y.

We add one more embellishment: For each entry of the form z/y, if = 0 or y = 1, we supress /y and
write only z. If all entries in a column are of this kind, the width of the y-part of the column must be
adjusted.

The function will also compute (just for the record) the largest magnitude, xmX , among all entries of X
and the largest magnitude, *mY , among all entries of Y.

(Printing functions 81) +=

void printmatriz_rational (matrix E,int m,int n,long d,long *mX ,long *xmY) {
matrix X, Y;
ivector wX, wY;
long mazX =01, mazY = 0r;
int ¢, 7;
X = allocate_matriz (m,n); Y = allocate_matriz (m,n);
(Compute matrices X and Y 87)

wX = allocate_ivector (n); wY = allocate_ivector (n);
findwidth (X, m,n,wX); findwidth(Y,m,n,wY);
for (j =1; j <m; ++j)
if (wY (= 1) {
for (i=1; i<mAY[i|jl=1; ++i) ;
if (i >m) wY[j]=0; > adjust wY in case all entries are 1

forintf (ofile, "\n");
for (i=1; i <m; ++i) {
forintf (ofile,"\n");
for (j =1; j <n; ++))
if (X[{[j]=0L VY[i[j] =11) forintf (ofile, " %*1d %-*s", wX [§], X[7][4], wY [j],"");
else fprintf (ofile, " %*1d/%-*1d", wX [§], X[i][4], wY [4], Y [{][4]);
}
deallocate_matriz (X); deallocate_matriz(Y);
deallocate_ivector (wX); deallocate_ivector (wY');
*mX = mazX; *mY = maxY;
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87. (Compute matrices X and Y 87) = {

long sd, magd; > sign of d and magnitude of d
long sEij, magFEij; > sign of Eij and magnitude of Eij
long gcd, Xij, Yij;
sd = 41y, magd = d;
if (magd < 0y) sd = —11, magd = —magd;
for (i=1; i <m; ++i) {
for (j =1; j <n; ++j) {
sBij = +11, magij = Eli][j];
if (magEij < 01) sEij = —sEij, magEij = —magFij;
ged = euclid (magEij , magd);
Xij = magFij [ ged;
if (mazX < Xij) mazX = Xij;
Yij = magd/ged;
if (mazY < Yij) mazY = Yij;
X[i][4] = sd * sEij = Xij;
Y[ills] = Yij;
}
}
}

This code is used in section 86.
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88. MAIN. Our C program has the following structure:

#define PROGRAM "Simplex-Chio-Cramer-Edmonds algorithm"
#define AUTHOR "Paulo Feofiloff"
#define DATE "5/3/98"

(Header files 119)

{Preprocessor definitions )
( Typedefs 7)

{Basic global variables 5)
{ Other global variables 12)
{Memory allocation functions 8)
(Printing functions 81)
( Auxiliary functions 35 )
( The basic heuristic 17)

( First implementation of the heuristic 37)
{Implementation with Bland’s rule 63)
{Implementation with the lexicographic rule 69 )
{Solution of the minimization problem 77)

void main(int argc,char xargv[]) {

(Local variables 90)

(Process command line 89)
(Open input and output files 94)
(Read data 96)

(Run the algorithm 104)

(Print results 109)

( Check results 120)

(Close files 117)

}

89. Command line: name of input file. Our input file must have an “.in” suffix. The corresponding prefix
must be the first argument on the command line. The name of the output file will consist of the same prefix
followed by “.out”. We assume the prefix has no more than 20 characters.
(Process command line 89) =
forintf (stdout, "\n***_%s", PROGRAM);
if (arge >2) {
if (strlen(argv[l]) > 20)
early_quit ("Pre:f ixyofyinput file must have at most 20 characters! ");
sprintf (ifilename, "%s.in", argv[1]);
sprintf (ofilename, "%s .out", argv[1]);
}
See also section 93.

This code is used in section 88.



890  SIMPLEX MAIN 38

)

90. The name of the input file will be at most 24 characters long: 20 for the prefix, 3 more for the “.in”,
plus 1 for the null character. The name of the output file will be at most 25 characters long.
We take this opportunity to declare a few other factotum local variables.

(Local variables 90) =

char ifilename[24];
char ofilename[25];
int i, j;
long t;
See also sections 91, 97, 99, 103, and 111.

This code is used in section 88.

91. Command line: options. The remaining arguments on the command line specify a few options. In
order to choose one of the implementations of the algorithm, the user must say

-b to set implem = bland;

-1 to set implem = lexicographic;
The default value of implem is heuristic. The program interprets implem as follows: if implem = heuristic
then simpler_1 will be executed; if implem = bland then simplex_bland will be executed; if implem =
lexicographic then simplex_lexicographic will be executed.

(Local variables 90) +=

enum {
heuristic, bland , lexicographic
} implem;

92. The other options will give the user control over how matrices are printed. When verbose is on, the
program will print matrices G e E after each pivoting operation. When want_float is on, the program will
print the matrices G/d and E/d in floating point format at the end of the run. When want_rational is on, the
program will print the matrices G/d and E/d in rational format at the end of the run. When given_width # 0,
the program pretends that each entry of each matrix can be printed using at most given_width characters;
if given_width = 0, our program will compute the width of each column of each matrix. The user must say

-v to set verbose = on;

-r to set want_rational = on;

-f to set want_float = on;

-wW to set given_width = W.
(These option variables are global because they must be visible not only to main but also to some of the
other functions.)
( Other global variables 12) +=

enum { off,on } verbose, want_rational, want_float;
int given_width;



893  SIMPLEX MAIN

93. (Process command line 89) +=
if (argc =1) {
fprintf (stderr, "\n\n_Type prefix of, input_ file followed by options:");
fprintf (stderr, "\n,-byy. . . Bland’s rule");
forintf (stderr, "\n,-1,y. . .ulexicographic method");
forintf (stderr, "\n,-vyy. . .uverbose");
forintf (stderr, "\n,-ruy. . .uprint output matrices,in rational format");
forintf (stderr,"\n £,y . . .uprint output matrices,in floating point format");
forintf (stderr,"\n,-wW,. . . on output, assume each entry is W characters wide\n\n");
exit (1);
}
implem = heuristic;
verbose = want_rational = want_float = off;
giwen_width = 0;
while (—arge > 1)
if (sscanf (argv[argc], "-whd", &given_width) = 1) ;

else if (stremp(argv[arge],"-b") = 0) implem = bland;

else if (stremp(argv[arge],"-1") = 0) implem = lexicographic;
else if (stremp(argv[arge],"-v") = 0) verbose = on;

else if (stremp(argv[arge],"-r") = 0) want_rational = on;
else if (stremp(argv[arge],"-£") = 0) want_float = on;

94. Having processed the command line, we are ready to open and prepare the input and output files.

(Open input and output files 94) =
ifile = fopen(ifilename,"x");
if (ifile = A) early_quit("Unable to open the input file!");
ofile = fopen (ofilename, "a");
if (ofile = A) early_quit("Unable to open the output, file!");
forintf (ofile, "\n¥**_%s_ (by %s,%s) ", PROGRAM, AUTHOR, DATE);
forintf (ofile, "\n***_ Given an integer matrix, D,");
forintf (ofile, "\n***_ finds a nonnull, integer d and integer matrices F,and G");
forintf (ofile, "\n***_ such that G*D is d-simple, F*G =_,d*I, and ,G[] [m] = ,d*I[] [m]");
forintf (ofile, "\n***_ A11 matrix entries are smaller jthan;%11d", TW031); > 231

This code is used in section 88.

95. (Other global variables 12) +=

FILE xifile; > input file
FILE xofile; > output file

39
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96. Input file: first line. The first line in the input file contains a sequence of at most 126 arbitrary char-
acters (this is used as a caption for the file); it will be stored in string caption. To avoid problems with a line
longer than 126 characters, we shall read it using the fgets function. The command fgets (caption, k, infile)
copies characters from infile to caption until (1) a >\n’ character is copied, or (2) the end of the file is
reached, or (3) k— 1 characters have been copied before a >\n’ or the end of the file have been found. A null
character is placed in caption after the last character read. If the end of the file is encountered before any
character has been read, the contents of caption is undefined and fgets returns A. Otherwise, fgets returns
caption.
(Read data 96) =

if (fgets(caption, 128, ifile) = A) quit("Input file is empty!");

caption[127] = *\n’;

for (i = 0; caption[i] # ’\n’; ++i) ;

if (i > 127) quit("Something, wrong with first,line of input, file!");

caption[i] = *\0?;

forintf (stdout, "\n\n_Caption of input file:\n,\"%s\"", caption);

forintf (ofile, "\n\n_Caption of input,file:\n, \"%s\"", caption);
See also sections 98, 100, and 101.

This code is used in section 88.

97. (Local variables 90) +=
char caption[128];

98. Input file: second line. The second line of the input file must contain the values of m and n. We
assume each is greater than 0 and less than INT_MAX, which on our system has value 23! —1.

(Read data 96) +=

fscanf (ifile, "%d%d", &m, &n);
forintf (ofile, "\n_%d_ rows and, %d columns\n",m,n);

99. Input file: remaining lines. From the third line on we expect to find a matrix D with rows indexed
by 1..m and columns indexed by 1..n. How are these rows and columns arranged on the lines of the file?
The entries of matrix D could be arranged in the most obvious and natural way: D11, D12, ... on the third
line of the file, D21, D22, ... on the fourth line, and so on, where Dij stands for D[i][j]. We shall, however,
adopt a more elaborate arrangement. Suppose, for example, that m = 3 and n = 4; then the input file will
have the following form from the third line on (with r3 = 3 and ¢4 = 4).

C1 C2 C3 C4
1 DTl C1 DTl C2 DT103 DTl C4
ro Droci Dracs Dracs Dracy

T3 DT3C1 D’I"gCQ D’I“3C3 DT304

(Local variables 90) +=

ivector r, ¢, check;
int ¢j, ri;
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100. First, we read ¢1, ¢2, ..., ¢,. This must be a permutation of 1, ..., n (usually ¢, = n). We assume
each is greater than 0 and less than INT_MAX, which on our system has value 231 —1.

(Read data 96) +=

¢ = allocate_ivector (n);
check = allocate_ivector (n); for (j =1; j <m; ++j) check[j] =0;
for (j =1; j <n; ++j) {
fscanf (ifile, "%hd", &cj);
if (¢j <1V ¢ >n) quit("Bad,column, label.");
if (check[cj] #0) quit("Column labels not,a permutation of,l,..,n.");
check[cj] = 1;
cfjl = o;
¥

deallocate_ivector (check);

101. Now we read the remaining lines. Remember that rq,...,r, must be a permutation of 1,...,m
(usually r,,, = m). We assume each is greater than 0 and less than INT_MAX.

Even though D[m][n] is irrelevant, the input file must supply a value for this entry.
(Read data 96) +=

r = allocate_ivector (m);
check = allocate_ivector(m); for (i =1; i < m; ++i) check[i] = 0;
D = allocate_matriz (m,n);
for (i=1; i <m; ++i) {
fscanf (ifile, "%hd", &ri);
if (ri <1V ri>m) gquit("Bad row,label.");
if (check[ri] # 0) quit("Row,labels not a permutation of,l,..,m.");
check[ri] =1, r[i] = ri;
for (j =1; j <n; ++j) {Read entry of D belonging to row r[i] and column c[j] 102)

}

deallocate_ivector (check);

forintf (ofile, "\n_Order of columns,in, input, file:\n");
for (j =1; j <m; ++j) fprintf (ofile, "u%a", c[4]);

forintf (ofile, "\n_Order of rows, in input,file:\n");
for (i =1; i <m; ++i) fprintf (ofile, "Lu%hd", r[i]);
deallocate_ivector (c); deallocate_ivector (r);
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102. The magnitude of all entries of matrix D must be strictly smaller than 23!, which corresponds to
2,147,483,648 in decimal notation. Hence, any integer with 9 of fewer decimal digits is of the desired kind.
Any such number will fit comfortably in a long variable.

Suppose, for one moment, that one of the entries of D in the input file has more than 9 decimal digits.
If we were to read the input file without any precautions, the most significant digits of that entry would be
truncated, without any warning, during the read operation. To avoid this, we shall read the matrix entries
as strings and convert them to integers after checking that they are not too long. The conversion uses the
standard function atol.

(We could simplify this piece of code by using strtol instead of atol. The manual says that strtol returns
LONG_MAX or LONG_MIN if the input string is too long; but then the manual adds “strtol() no longer accepts
values greater than LONG_MAX as valid input”.)

#define MAX_DIGITS 9
(Read entry of D belonging to row r[i] and column ¢[j] 102) = {
fscanf (ifile, "%s", buffer);
if (strlen(buffer) < MAX_DIGITS V (strlen(buffer) = MAX_DIGITS + 1 A buffer[0] = *-?))
D[r[i))e[s]] = atol(buffer);

else quit ("Theumagnitudeuofusomeuentryu in the data matrix,is tooylarge!" );

}

This code is used in section 101.

103. We shall assume that no entry of D in the input file occupies more than 127 characters.
(Local variables 90) +=
char buffer[128];
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104. Run the algorithm. We allocate space for all our matrices and vectors and then run the implemen-

tation dictated by the variable implem.
(Run the algorithm 104) =

forintf (ofile, "\n\n_Data matrix; D:");

printmatriz(D,m,n);

E = allocate_matriz(m,n);

G = allocate_matriz (m,m);

F = allocate_matriz (m, m);

psi = allocate_ivector (m);

mems = 01,;

switch (implem) {

case heuristic:
forintf (ofile, "\n\n\n_ Running, ,Simplex-Chio HEURISTIC,(no,convergence rule)");
d = simplex_1(D,m,n, F,G, E, &h, &k);
if (d = LONG_MIN) quit("Aborted due to overflow during pivoting!");
( Compute row basis psi of E 60)
break;

case bland:
forintf (ofile, "\n\n\n Running, ,Simplex-Chio algorithm with BLAND’s rule");
(Make E =D 105)
d = simplex_bland (E,m,n, G, psi,&h, &k);
if (d = LONG_MIN) quit("Aborted due to overflow during pivoting!");
(Compute F' from psi and D 61)
break;

case lezicographic:
forintf (ofile, "\n\n\n_ Running, LEXICOGRAPHIC version of Simplex-Chio algorithm");
(Make E =D 105)
d = simplex_lexicographic (E,m,n,G, psi, &h, &k);
if (d = LONG_MIN) quit("Aborted due to overflow during pivoting!");
(Compute F from psi and D 61)

}
{Print mazmag and num_its 106)
(Print mems 107)
(Print omega 108)

This code is used in section 88.

105. (Make E=D 105) =
for (i=1; i <m; ++i) {
register vector Fi, Di;
0o, Ei = E[i], Di = D[i];

for (j =1; j <n; ++j) oo, Ei[j] = Di[j];

}

This code is used in section 104.

106. (Print mazmag and num_its 106) =

forintf (ofile, "\n\n Largest, magnitude among entries of G and E");

forintf (ofile, "\n_ throughout the execution of the algorithm: %11d", marmag);
forintf (ofile, "\n_Number of iterations,in phase 1:,%11d", num_its_phl);

forintf (ofile, "\n_Number of iterations,in phase 2:,%11d", num_its_ph2);

This code is used in section 104.
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107. The Simplex—Chio algorithm executes at most 5m?(m +n) arithmetic operations; I guess the number
of memory accesses in our simplex functions is also in the order of m?(m + n).

(Print mems 107) =
printf (ofile, " \n_Number of mems used by the simplex routine:");
intf (ofile, "\n,_Number of dubyuthe,simpl ine:"
forintf (ofile, " %1d =u%4 . 2f um*m* (m+n) ", mems, (float) mems/(float) (m * m x (m + n)));

This code is used in section 104.

108. To satisfy the curiosity of the user, we print the a priori bounds on the magnitude of the matrix
entries encountered in the course of computations.
(Print omega 108) =

t = omegal (D, m,n);

if (t = LONG_MIN) fprintf (ofile,"\n Curiosity: omegal > LONG_MAX");

else fprintf (ofile, "\n Curiosity: omegal =_%1d",¢t);

t = omega2(D,m,n);

if (¢t = LONG_MIN) fprintf (ofile, " ,and omega2 > LONG_MAX ");

elSe fpmntf (Qﬁle, "uuanduuomega2u=u%ldu" 5 t);

This code is used in section 104.

109. Print results. If the verbose option is on, matrices G and E have already been printed from within
the simplex funcitons, so we don’t print them again.

(Print results 109) =
if (verbose = off ) {
forintf (ofile, "\n\n_Matrices G and E = ,G*D:");
printmatrices (G, E,m,n);

}

else {
forintf (ofile, "\n\n _Matrix F:");
printmatriz (F,m,m);
}
if (want_rational = on) (Print matrices in rational format 110)
if (want_float = on) (Print matrices in floating point format 112)
if (h #0) (Deal with infeasible case 113)
else if (k # 0) (Deal with unbounded case 114)
else (Deal with solvable case 115)

This code is used in section 88.

110. If want_rational is on, we are expected to print the entries of matrices G/d and E/d as explicit
fractions, with relatively prime numerator and denominator.

(Print matrices in rational format 110) = {
forintf (ofile, "\n\n\n_ Matrices G/d and E/d, in rational, format:");
printmatriz_rational (G,m,m,d,&mGX ,&mGY);
printmatriz_rational (E,m,n,d,&mEX ,&mEY);

forintf (ofile, "\n\n_ Largest magnitude of numerators,in, G and E: %1d",
mGX > mEX 7 mGX : mEX);
fprintf (ofile, "\n Largest, magnitude of denominators: Luuuuuuukld",
mGY > mEY ? mGY : mEY);
}

This code is used in section 109.
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111. (Local variables 90) +=
long mGX, mGY, mEX, mEY;

112. If want_float is on, we are expected to print the entries of matrices G/d and E/d in floating point
format.

(Print matrices in floating point format 112) = {

forintf (ofile, "\n\n\n_ Matrices G/d and E/d in floating point, format:");
printmatriz_float (G, m,m, d);
printmatriz_float (E,m,n,d);

}

This code is used in section 109.

113. (Deal with infeasible case 113) = {

forintf (ofile, "\n\n\n_ Matrix E is d-simple infeasible, with,d, =, %1d",d);
forintf (ofile, ", (infeasibility row,is %d)", h);

forintf (ofile, "\n\n_Let A = D[1..%d]1[1..%d] and b =.D[1..%d]1[%d]1",m —1,n—1,m — 1,n);
fprintf (ofile, "\n_and, ,consider the problem of");

forintf (ofile, " minimizing c*x subject to A*xx = b and, x >=,0");

forintf (ofile, "\n_ The_ vector y’ below proves infeasibility,of the problem");
if (E[h][n] > 0w) fprintf (ofile, "\n, (since  y’ *A <=,0u and, y’ *b>,0)");

else fprintf (ofile,"\n,(since,y’ *A,>=0,,and,,,y’ *b <,0)");

vprime = allocate_vector (m — 1);

infeasibility (G, h, vprime);

forintf (ofile, "\n\nLLuouy’ u=u");

for (i =1; i <m; ++i) fprintf (ofile, " %1d", vprimeli]);

}

This code is used in section 109.

114. (Deal with unbounded case 114) = {

forintf (ofile, "\n\n\n_ Matrix E is d-simple unbounded, with d, = %1d",d);

forintf (ofile, ", (unboundedness column, is %d)", k);

forintf (ofile, "\n\n Let A = D[1..%d][1..%d], b,=uD[1..%d] [%d], and,c=.D[%d][1..%d1",
m—1n-1,m—1,n,m,n—1);

forintf (ofile, "\n_ Consider the problem of");

fprintf (ofile, " minimizing, c*x subject to A*x = b and x >=,0");

fprintf (ofile, "\n The vectors x,and, x’ below prove unboundedness");

forintf (ofile, "\n, (since Axx,=_b, L% >=,0, uub*x’ =0, Lux’ L>=10,andc*x’ <L0) ");

u = allocate_vector (n — 1);

uprime = allocate_vector (n — 1);

unboundedness (E, k, psi, d,u, uprime);

forintf (ofile, "\n\nuLLuLud*xu=0");

for (j =1; j <n; ++j) fprintf (ofile, " %1d", u[j]);

forintf (ofile, "\nLuuLLd*x’ L=u");

for (j =1; j <n; ++j) forintf (ofile, "u%1d", uprimel[j]);

}

This code is used in section 109.
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115. (Deal with solvable case 115) = {

forintf (ofile, "\n\n\n_ Matrix E is d-simple solvable, with d,=_,%1d",d);
fprintf (ofile, "\n\n_ Let A = D[1..%d][1..%d], bu=uD[1..%d] [%d] and c,=.D[%d] [1..%d]"
m—1,n-1,m—1,n,m,n—1);
forintf (ofile, "\n_ Consider the problem of");
forintf (ofile, " uminimizing cxx subject to A*x = byand x >=,0");
forintf (ofile, "\n, The vector x below solves the problem");
forintf (ofile, " ,and, y proves, the minimality of c*x");
forintf (ofile, "\n, (since A*x =/ b, LuxL>=10, Ly *AL<=Lc, uuand L c*x =,y *b) ");
u = allocate_vector (n — 1);
v = allocate_vector (m — 1);
solution (E, psi,u,v);
fprintf(oﬁle, "\n\nuuuuud*xu=u")§
for (j =1; j <mn; ++j) forintf (ofile, " %1d", u[j]);
fprintf(oﬁle, "\nuuuuud*Yt_Fu");
for (i =1; i <m; ++i) fprintf (ofile, " %1d",v[i]);

}

This code is used in section 109.

7

116. (Other global variables 12) +=

vector u, v, uprime, vprime;

117. (Close files 117) =
felose (ifile);
forintf (stdout, "\n_ Output_was sent to file %s\n\n", ofilename);
forintf (ofile, "\n\n\f\n\n");
fclose (ofile);
deallocate_matriz

(D);
deallocate_matriz (E);
deallocate_matriz (G);
deallocate_matriz (F)

deallocate_ivector (psi);

This code is used in section 88.

118. The quit and early_quit functions print a message before aborting the program.
(Auxiliary functions 35) +=

void quit(char xmessage) {
fprintf (stderr, "\n\n_%s\a\n\n", message);
forintf (ofile, "\n\n_%s\n\n\n\n\f\n\n", message);
exit(1);
}
void early_guit(char xmessage) {
forintf (stderr, "\n\n_%s\a\n\n", message);
exit(1);

}
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119. We must include stdio.h because we are using stderr, fprintf, sprintf, etc. We must include
stdlib.h bacause we use malloc, free and atol. Our use of LONG_MIN requires the inclusion of limits.h.
Our use of strlen and stremp requires the inclusion of string.h.

Attention! The llabs function (header file stdlib.h) does not seem to work properly. Its prototype
is extern llong llabs(llong); it should return the absolute value of its argument; yet, llabs(211) =
4294967294. Just in case, we also avoid using abs and labs.

(Header files 119) =
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>

This code is used in section 88.
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120. Checking the results. (This part of the code should be deleted after the program has been
properly debugged.) First, we check results of the reformulated problem; a little later, we shall check the
results of the minimization problem.
( Check results 120) =

check_G_-m();

check_F_times_G();

check_G_times_D();

if (h #0) check_inf();

else check_unb_or_solv();
See also section 126.

This code is used in section 88.

121. First, we check the identity G[ ][m] = d - I[ ][m]. The inputs for function check-G-m are the global
variables G, m, and d.

(Auxiliary functions 35) +=

void check-G-m(void) {
int i;
for (i =1; i < m; ++1i)
if (G[i][m] # 0L) goto wrong;
if (G[m][m] # d) goto wrong;
return;
wrong:
forintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR! ,G[] [m],!'=,dI[] [m]\n");
return;

}
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122. Next, we check the identity F'- G = d - I. The inputs for function check_F_times_G are the global
variables F', G, m, n and d. We shall do the calculations in llong arithmetic in order to detect a possible
long overflow. We must remember that the magnitude of each entry of matrix D is strictly smaller than
231, The magnitude of d and each entry of F and G satisfies a similar bound.

#define TW062 #400000000000000071, 1, > 262
(Auxiliary functions 35) +=

void check_F_times_G (void) {
int i, j, k;
llong dd;
llong term, sum;
for (i =1; i <m; ++i)
for (j =1; j <m; ++j) {
sum =0 1;
for (k=1; kK <m; +k) {
term = (llong) F[i][k] * (llong) G[k][j];
sum += term;
if (sum > TW062) goto oflo;

}
if (i =j) dd = (llong) d; else dd =0r;
if (sum # dd) goto wrong;

}

return;
oflo:
forintf (stderr,"\n\n,_Overflow WARNING!\a");
forintf (ofile, "\n\n_ WARNING! Unable to compute F*G_without overflow");
return;
wrong:
fprintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR! |F*G_,!=,d*I\n");
return;

}
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123. Now we check the identity G - D = E. The inputs for function check_-G_times_D are the global

variables G, D, E, m and n.
(Auxiliary functions 35) +=
void check_G_times_D(void) {
int i, j, k;
llong term, sum;
for (i =1; i < m; ++i)
for (j =1; j <n; ++j) {
sum = 0r1;
for (k=1; kK <m; +k) {
term = (llong) G[i][k] * (long) D[k][j];
sum += term;
if (sum > TW062) goto oflo;

if (sum # (llong) E[i][j]) goto wrong;
return;

oflo:
forintf (stderr, "\n\n Overflow WARNING!\a");

forintf (ofile, "\n\n_WARNING! Unable to,compute G*D without overflow");

return;

wrong:
forintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR! ,G*D,!=_E\n");
return;

}

124. If his nonnull then E should be simple infeasible. This is very easy to check. The inputs for function
check_inf are the global variables E, m, n, and h. We assume that 0 < h < m.

(Auxiliary functions 35) +=

void check_inf (void) {
int j;

return;
wrong:
fprintf (stderr, "\n\n_ERROR!\a");

fprintf (ofile, "\n\n_ERROR! Matrix F,is NOT, simple");

return;

}
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We assume here that h =0 and 0 < k < n. If £ # 0 then k should be the index of an unboundedness

column (and therefore E should be simple unbounded); otherwise, E should be simple solvable. The inputs
for function check_unb_or_solv are the global variables E, m, n, d, k, and the row basis vector psi.

(Auxiliary functions 35) +=

void check_unb_or_solv (void) {
int i, j;
long sd;
sd=d>0y?7+1g:—1;
for (i =1; i <m; ++i)
if ((psi[i] =0A E[i][n] #01) V (psi[i] # 0A E[i][n] * sd < 01)) goto wrong;
if (k#0) {
for (i =1; i <m; ++i)
if ((psili] =0A E[i][k] #0L) V (psi[i] # 0A E[i][k] * sd > 0L)) goto wrong;
if (E[m][k] * sd > 01) goto wrong; > bad E[m][k]

for (j =1; j <n; ++j)
if (E[i][j] # 0L) goto wrong; > error on nonbasic row
for (j=1; j <n; ++j)
if (E[m][j]* sd < 0) goto wrong; > error on row m
}
return;
wrong:

forintf (stderr, "\n\n_ERROR!\a");
forintf (ofile, "\n\n_ERROR! Matrix, E,is NOT_ simple");
return;

}

> bad column n

> bad column &
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126. Second checking of the results. (This part of the code should be deleted after the program has
been properly debugged.) Here we shall check the results of the original minimization problem. Given all
the checking we did above, this second checking is an overkill; but we shall do it anyhow.
( Check results 120) +=
if (h #0) check_vprime();
else {
check_u();
if (k #0) check_uprime();
else check_v();

}

127. Suppose our program decided that the minimization problem is infeasible. Then it must have found
a vector v’ such that

v -A<0andv'-b>0 or ¢'-A>0andv -b<0,
where A, b, and ¢ are parts of D as indicated in 2.1. We must check that v' does have this property. The

inputs for function check_vprime are the global variables D, m, n, and vprime. Our error messages say “y'”

where you would expect “v’/d”.
(Auxiliary functions 35) +=

void check_vprime (void) {
int i, j;
llong s, term, summ;
(Let summ = vprime % b; in case of overflow, go to oflo 128)
if (summ =01,1,) goto wrong;
(If vprime x A has wrong sign go to wrong; in case of overflow, go to oflo 129)
return;
oflo:
forintf (stderr, "\n\n Overflow WARNING!\a");
fprintf (ofile, "\n\n_WARNING! Unable to compute vprime*A or vprimexb without overflow");
return;
wrong:
forintf (stderr, "\n\n_ERROR!\a");
forintf (ofile, "\n\n_ERROR! ,y’is not an infeasibility vector");
return;

}

128. (Let summ = vprime x b; in case of overflow, go to oflo 128) =

summ = 01, 1;

for (i=1; i <m; ++i) {
term = (llong) vprime[i] * (llong) D[i][n];
summ —+= term;
if (summ > TW062) goto oflo;

}

This code is used in section 127.
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129. (If vprime x A has wrong sign go to wrong; in case of overflow, go to oflo 129) =
s=summ <01 ? -1y :+1pL;
for (j=1; j <m; ++j) {
summ =0 ;
for (i=1; i <m; ++i) {
term = (llong) vprime[i] * (llong) D[d][j];
summ += term;
if (summ > TW062) goto oflo;
}

if (s * summ > 01, 1,) goto wrong;

}

This code is used in section 127.

130. Suppose our program decided that the minimization problem is not infeasible. Then it must have
found a vector u such that

A-u/d=b and wu/d>0,

where A, b, and ¢ are parts of D as indicated in 2.1. We must check that u does, in fact, possess these

properties. The inputs for function check_u are the global variables D, m, n, d, and u. Our error messages
say “z” where you would expect “u/d”.

( Auxiliary functions 35) +=
void check_u(void) {
int 4, j7;
long sd;
llong term, sum;
sd=d<0y?—-1g:+1;
(If w/d is not > 0 then go to wrong 131)

(If Axu/disnot = b then go to wrong; in case of overflow, go to oflo 132)
return;

oflo:
forintf (stderr, "\n\n Overflow WARNING!\a");
forintf (ofile, "\n\n_WARNING! Unable to compute A*x without overflow");
return;
wrong:
forintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR! ,x,! >=_,0 0T A*x!=b\n");
return;

}

131. (If u/dis not > 0 then go to wrong 131) =
for (j=1; j <n; +j)
if (sd xu[j] <0p) goto wrong;

This code is used in section 130.
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132. (If Axwu/dis not = b then go to wrong; in case of overflow, go to oflo 132) =
for (i =1; i <m; ++i) {
sum =0 ;
for (j=1; j <m; ++j) {
term = (liong) DIi][j] * (long) u[j;
sum += term;
if (sum > TW062) goto oflo;
}
if (sum # (llong) d * (llong) DJ[i][n]) goto wrong;

}

This code is used in section 130.

133. Suppose our program decided that the minimization problem is unbounded. Then it must have found
a vector u' such that

A-v'/d=0, u'/d>0 and c-u'/d<O,
where A, b, and ¢ are parts of D as indicated in 2.1. We must check that u' does, in fact, possess these
properties. The inputs for function check_uprime are the global variables D, m, n, d, and uprime. Our error

messages say “z'” where you would expect “u’/d”.

( Auxiliary functions 35) +=

void check_uprime(void) {
int 7, j;
long sd;
llong term, sum;
sd =d <07 —1g:+1;
(If uprime/d is not > 0 then go to wrong 134)
(If A x uprime/d is not = 0 then go to wrong; in case of overflow, go to oflo 135)

(If ¢ * uprime /d is not < 0 then go to wrong; in case of overflow, go to oflo 136)
return;

oflo:
forintf (stderr, "\n\n, Overflow WARNING!\a");
forintf (ofile, "\n\n_WARNING! Unable to compute A*x or A*x’ or,c*x’ without overflow");
return;
wrong:
forintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR! %’ ,!>=0 0r A*x’!=0 0r c*x’,!<,0\n");
return;

}

134. (If uprime/d is not > 0 then go to wrong 134) =
for (j=1; j <n; +j)
if (sd * uprime[j] < 0p) goto wrong;

This code is used in section 133.
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135. (If A * uprime/dis not = 0 then go to wrong; in case of overflow, go to oflo 135) =
for (i=1; i <m; ++i) {

sum =0 p;

for (j=1; j <m; ++j) {
term = (llong) D[i][j] * (llong) uprime[j];
sum += term;
if (sum > TW062) goto oflo;

}

if (sum # 01 1) goto wrong;

}

This code is used in section 133.

136. (If ¢ * uprime/d is not < 0 then go to wrong; in case of overflow, go to oflo 136) =
sum =0 ;
for (j = 1; j < n; ++j) {
term = (llong) D[m][j] * (llong) uprime[j];
sum += term;
if (sum > TW062) goto oflo;

if (llong) sd * sum > 01, 1) goto wrong;
This code is used in section 133.

137. Suppose our program decided that the minimization problem is solvable. Then it must have found
vectors v and v such that

(v/d)-A<c¢ and c-u=wv-b,
where A, b, and ¢ are parts of D as indicated in 2.1. We must check that u and v do, in fact, possess these
properties. The inputs for function check_v are the global variables D, m, n, d, u, and v. Our error messages

say “z” and “y” where you would expect “u/d” and “v/d”.

( Auxiliary functions 35) +=

void check_v(void) {
int 7, j;
long sd;
llong term, sum, summ;
sd=d<0y?—-1g:+1;
(If (v/d) * A is not < ¢ then go to wrong; in case of overflow, go to oflo 138)
(If ¢ xu/d is not = (v/d) = b then go to wrong; in case of overflow, go to oflo 139)
return;

oflo:
forintf (stderr, "\n\n Overflow WARNING!\a");
forintf (ofile,

"\n\nHWARNING!uUnableutoucomputeuA*xuoruy*Auoruy*buoruC*quithoutuoverflow"ﬁ

return;

wrong:
forintf (stderr, "\n\n_ERROR!\a\n");
forintf (ofile, "\n\n_ERROR!  y*A ! <= c or c*x,! = y*b\n");
return;

}



§138 SIMPLEX SECOND CHECKING OF THE RESULTS 56

138. (If (v/d) x A is not < ¢ then go to wrong; in case of overflow, go to oflo 138) =
for (j =15 j <n; +j) {
summ =0 1;
for (i=1; i <m; ++i) {
term = (llong) v[i] * (llong) D[i][j];
summ += term;
if (summ > TW062) goto oflo;

if ((llong) sd * summ > (llong) sd x (llong) d * (llong) D[m][j]) goto wrong;

}

This code is used in section 137.

139. (If c¢xu/dis not = (v/d) * b then go to wrong; in case of overflow, go to oflo 139) =

sum =0 ;

for (j =1; j <n; ++j) {
term = (llong) D[m][j] * (llong) u[j];
sum += term;
if (sum > TW062) goto oflo;

}

summ = 0 r;

for (i=1; i <m; ++i) {
term = (llong) v[i] * (llong) D[i][n];
summ += term;
if (summ > TW062) goto oflo;

if (sum # summ) goto wrong;

This code is used in section 137.
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140. Index. The index shows the section whre each of the identifiers in this module is defined and used.

A: 10, 11, 82. felose: 117.

abs: 119. fgets:  96.

allocate_ivector: 9,11, 70, 82, 83, 86, 100, 101, 104. Fi: 37, 39.

allocate_matriz: 10, 11, 86, 101, 104. findwidth: 81, 82, 83, 86.

allocate_vector: 9, 11, 113, 114, 115. fopen: 94.

argc: 88, 89, 93. forintf: 8, 53, 54, 82, 83, 84, 86, 89, 93, 94, 96,
argv: 88, 89, 93. 98, 101, 104, 106, 107, 108, 109, 110, 112,
atol: 102, 119. 113, 114, 115, 117, 118, 119, 121, 122, 123,
AUTHOR: 88, 94. 124, 125, 127, 130, 133, 137.

B: 81. free: 11, 119.

Bij: 81. fscanf: 98, 100, 101, 102.

bland: 91, 93, 104. G: 5,17, 37, 63, 69, 77, 83.

buffer: 81, 102, 103. ged: 85, 87.

¢ 69, 99. Gi: 37, 39, 50, 52, 63, 64, 69.

caption: 96, 97. gien_width: 81, 92, 93.

check: 99, 100, 101. Gp: 37, 50, 52, 63, 69.

check_F_times_G: 120, 122. h: 6, 17, 37, 63, 69, 77.

check_G_m: 120, 121. heuristic: 91, 93, 104.

check_G_times_D: 120, 123. i: 10, 17, 35, 36, 37, 63, 69, 77, 78, 79, 81,
check_inf: 120, 124. 82, 83, 84, 86, 90, 121, 122, 123, 125, 127,
check_u: 126, 130. 130, 133, 137.

check_unb_or_solv: 120, 125. identity matrix, I: 5.

check_uprime: 126, 133. ifile: 94, 95, 96, 98, 100, 101, 102, 117.
check_v: 126, 137. ifilename: 89, 90, 94.

check_vprime: 126, 127. #:  60.

¢j: 99, 100. implem: 91, 93, 104.

cl: 69, 73. inf: 37, 38, 46, 48, 49, 63, 69.

D: 5, 17, 35, 36, 37. infeasibility: 77, 113.

d: 5, 17, 37, 63, 69, 79, 84, 86. infile:  96.

DATE: 88, 94. INT_MAX: 81, 98, 100, 101.

dd: 122. ivector: 7.

deallocate_ivector: 11, 82, 83, 86, 100, 101, 117. j: 17, 35, 36, 37, 63, 69, 78, 79, 81, 82, 83, 84, 86,
deallocate_matriz: 11, 86, 117. 90, 122, 123, 124, 125, 127, 130, 133, 137.
deallocate_vector: 11. k: 6, 17, 37, 63, 69, 79, 122, 123.

Di: 37, 39, 105. l: 69.

E: 5,17, 37, 63, 69, 78, 79, 83, 84, 86. labs: 119.

early_quit: 89, 94, 118. lexicographic: 91, 93, 104.

Eh: 37,42, 43, 45, 47, 63, 65, 67, 69, 71, 74. llabs: 119.

Ehk: 37, 45, 63, 69. LLONG_MAX: 32.

Ehn: 37, 45, 63, 69. LLONG_MIN: 32.

Ei: 37, 39, 41, 44, 50, 51, 63, 66, 69, 73, 105. LONG_MAX: 31, 102.

Eij. 87. LONG_MIN: 31, 35, 36, 53, 102, 104, 108, 119.
Eik: 13, 37, 41, 44, 50, 51, 52, 63, 66, 69, 73. m: 5, 10, 17, 35, 36, 37, 63, 69, 81, 82, 83, 84, 86.
Ein: 37, 44, 63, 66. magd: 87.

Ep: 37, 44, 45, 50, 51, 63, 66, 69, 73. magEij: 87.

Epk: 13, 37, 44, 45, 50, 51, 52, 63, 66, 69, 73. magt: 50, 51, 52.

FEpn: 37, 44, 45, 63, 66, 69, 73. main: 88, 92.

euclid: 85, 87. malloc: 9, 10, 119.

exit: 8, 93, 118. matrix: 7.

F: 5, 17, 37. MAX_DIGITS: 102.

failure: 8, 9, 10. mazrmag: 34, 40, 41, 51, 52, 106.
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maxX: 86, 87.
mazxY: 86, 87.
mems: 12, 39, 43, 104, 107.

message: 118.

mEX: 110, 111.

mEY: 110, 111.

mGX: 110, 111.

mGY: 110, 111.

mX: 86.

mY: 86.

n: é; 9; m; ]-_7; &; &; 3_7; @; @; &; Q; &7 8_47 &

num_bytes: 9, 10.

num_its_ph1: 40, 41, 42, 65, 71, 106.

num_its_ph2: 40, 41, 47, 67, 74, 106.

o: 12.

off 92, 93, 109.

ofile: 8, 53, 54, 82, 83, 84, 86, 94, 95, 96, 98,
101, 104, 106, 107, 108, 109, 110, 112, 113,
114, 115, 117, 118, 121, 122, 123, 124, 125,
127, 130, 133, 137.

ofilename: 89, 90, 94, 117.

oflo: 122,123, 127, 128, 129, 130, 132, 133, 135,
136, 137, 138, 139.

omegal: 35, 108.

omega2: 36, 108.

on: 53, 54, 92, 93, 109, 110, 112.

oo: 12, 39, 44, 45, 46, 48, 49, 50, 51, 52, 61,
66, 72, 73, 105.

ooo: 12, 44, 66.

oooo: 12, 42, 47, 61.

b: ]-_73 3_7a @3 @

printmatrices: 54, 83, 109.

printmatriz: 82, 104, 109.

printmatriz_float: 84, 112.

printmatriz_rational: 86, 110.

prod: 35, 36.

PROGRAM: 88, 89, 94.

psi: 59, 60, 61, 63, 64, 65, 66, 67, 69, 71, 72, 74,
78, 79, 104, 114, 115, 117, 125.

quit: 96, 100, 101, 102, 104, 118.

r: 99.
ri: 99, 101.
s: 127.

sd: 37,44, 45, 47, 63, 66, 67, 69, 73, 74, 87, 125,
130, 131, 133, 134, 136, 137, 138.

sdE: 37, 45, 63, 69.

sky:  87.

simplex:

34, 107, 109.
simplex_bland: 63, 91, 104.
simplex_lexicographic: 69, 91, 104.
simplex_0: 17, 20, 21, 25, 30, 37.
simplex_1: 37, 65, 67, 91, 104.
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solution: 78, 115.

sprintf: 81, 89, 119.

sscanf: 93.

stderr: 8,93, 118, 119, 121, 122, 123, 124, 125,
127, 130, 133, 137.

stdout: 89, 96, 117.

stremp: 93, 119.

strlen: 89, 102, 119.

strtol: 102.

sum: 35, 36, 122, 123, 130, 132, 133, 135,
136, 137, 139.

summ: 127, 128, 129, 137, 138, 139.

t: 13, 37, 65, 67, 69, 85, 90.

133, 135, 136, 137, 138, 139.

totalw: 83.

TWO31: 32, 33, 35, 36, 51, 52, 94.

TWO31M1: 31.

TW062: 122,123, 128, 129, 132, 135, 136, 138, 139.
u: 78, 79, 116.

unb: 37, 38, 46, 48, 49, 63, 69.

unboundedness: 79, 114.

uprime: 79, 114, 116, 133, 134, 135, 136.
v: Qa ﬂa Ea m
vector: 7.
verbose: 53, 54, 92, 93, 109.
vprime: 77, 113, 116, 127, 128, 129.
w: 81, 82.
want_float:
want_rational :
wk: 83.
wG:  83.
wi:  81.
wrong: 121,122, 123, 124, 125, 127

132, 133, 134, 135, 136, 137, 138, 139.
wX: 86.
wY: 86.
X: 86.
x: 85.
Xij: 87.
Y: 86.
y: 85.
Yij: 87

92, 93, 109, 112.
92, 93, 109, 110.
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Auxiliary functions 35, 36, 118, 121, 122, 123, 124, 125, 127, 130, 133, 137)  Used in section 88.

Basic global variables 5, 6,59) Used in section 88.

Check results 120, 126)  Used in section 88.

Choose a good column k; set k = n if no such column exists 43) Used in sections 42, 65, and 71.
Choose safe pin 1 .. h — 1; set p = h if there are no candidates 44) Used in sections 42 and 47.
Choose p in 1 .. h according to Bland’s rule 66) Used in sections 65 and 67.

Choose p in 1 .. h according to the lexicographic rule 73) Used in sections 71 and 74.

Close files 117) Used in section 88.

Compute matrices X and Y 87) Used in section 86.

Compute row basis psi of E 60) Used in section 104.

Compute F' from psi and D 61) Used in section 104.

Deal with infeasible case 113) Used in section 109.

Deal with solvable case 115) Used in section 109.

Deal with unbounded case 114) Used in section 109.

First implementation of the heuristic 37) Used in section 88.

Header files 119) Used in section 88.

If (v/d) * A is not < ¢ then go to wrong; in case of overflow, go to oflo 138) Used in section 137.
If Axwu/dis not = b then go to wrong; in case of overflow, go to oflo 132) Used in section 130.
If A x uprime/d is not = 0 then go to wrong; in case of overflow, go to oflo 135) Used in section 133.

If ¢ xu/d is not = (v/d) = b then go to wrong; in case of overflow, go to oflo 139) Used in section 137.
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(If ¢ * uprime /d is not < 0 then go to wrong; in case of overflow, go to oflo 136) Used in section 133.
(If u/d is not > 0 then go to wrong 131) Used in section 130.

(If uprime/d is not > 0 then go to wrong 134) Used in section 133.
(If verbose, print p, G and E 54) Used in section 50.

(If vprime x A has wrong sign go to wrong; in case of overflow, go to oflo 129) Used in section 127.
(Imminent overflow! 53) Used in sections 51 and 52.
(Implementation with Bland’s rule 63) Used in section 88.
(Implementation with the lexicographic rule 69) Used in section 88.
(Initialize permutation ¢ 70) Used in section 69.

(Initialize num_its and maxmag 41) Used in sections 37, 63, and 69.
(Let summ = vprime * b; in case of overflow, go to oflo 128) Used in section 127.
( Lexicographic implementation of phase 1 71) Used in section 69.
(Lexicographic implementation of phase 2 74) Used in section 69.
(Local variables 90, 91, 97, 99, 103, 111)  Used in section 88.

(Make E =D 105) Used in section 104.

(Memory allocation functions 8, 9, 10, 11)  Used in section 88.
(Open input and output files 94) Used in section 88.

(Other global variables 12, 40, 92, 95,116)  Used in section 88.
(Phase 1 of first implementation 42) Used in section 37.

(Phase 1 of second implementation 65) Used in section 63.

(Phase 1: deal with rows 1..m —1 24) Used in section 17.

(Phase 2 of first implementation 47) Used in section 37.

(Phase 2 of second implementation 67) Used in section 63.

(Phase 2: deal with row m 19) Used in section 17.

(Pivot about row p and column % and update d 13) Used in sections 19 and 24.
(Pivot about p and k and update d 50) Used in sections 42, 47, 65, 67, 71, and 74.
(Print matrices in floating point format 112) Used in section 109.
(Print matrices in rational format 110) Used in section 109.

(Print results 109) Used in section 88.

(Print mazmag and num_its 106) Used in section 104.

(Print mems 107) Used in section 104.

(Print omega 108) Used in section 104.
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(Printing functions 81, 82, 83, 84, 85, 86) Used in section 88.

(Process command line 89, 93) Used in section 88.

(Read data 96, 98, 100, 101) Used in section 88.

(Read entry of D belonging to row r[i] and column c[j] 102) Used in section 101.
(Run the algorithm 104) Used in section 88.

(Set E=D,F=G=1,andd=1 39) Used in section 37.

(Set G=1,psi =0,and d=1 64) Used in sections 63 and 69.

(Set p = h if pivoting about h and k is ok, after all 45) Used in sections 42, 65, and 71.
(Solution of the minimization problem 77, 78, 79) Used in section 88.

('The basic heuristic 17) Used in section 88.

(Typedefs 7,32) Used in section 88.

(Update permutation ¢ 72) Used in section 71.

(Update row i of E 51) Used in section 50.

(Update row i of G 52) Used in section 50.

( E is simple infeasible; return 46) Used in sections 42, 65, and 71.

( E is simple solvable; return 48) Used in sections 47, 67, and 74.

( E is simple unbounded; return 49) Used in sections 47, 67, and 74.
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