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Main Goals

Main goals

The main goals of this presentation are

to discuss the classical statistical model and statistical
hypotheses,

to present some limitations of the classical p-value with
numerical examples,

to introduce an alternative measure of evidence, called
s-value, that overcomes some limitations of the p-value.
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The classical statistical model

The classical statistical model
The classical statistical model is:

(Ω,F ,P),

where:

Ω is the space of possible experiment
outcomes,

F is a σ-field of Ω,

P is a family of non-random probability
measures that possibly explain the
experiment outcomes.

P

P1 : F → [0, 1]

P2 : F → [0, 1]

.

.

.

Pj : F → [0, 1]

.

.

.

The quantity of interest is g(P).
For instance:

g(P) = EP (Z),

g(P) = P(Z1 ∈ B|Z2 ∈ A),

etc.

Remark: a random vector Z is a measurable function from (Ω,F)
to (Z,B)
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The classical statistical model

A particular model

Take Z = (X , γ), where X is the observable random vector
and γ is the unobservable one.

Conditional, marginal and joint distributions can be used to
make inferences about γ.

Take P = {P0} and build your joint probability
P0 from:

γ ∼ f0(·) (with no unknown constants),

X |γ ∼ f1(·|γ)

Now, you are ready to be a hard core
Bayesian!
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Hypothesis testing

Classical null hypotheses

Can we reduce the family P to a subfamily P0, where P0 ⊂ P?

The positive claim can be written by means of a null hypothesis:

H0: “at least one measure in P0 could generate the
observed data”

(or simply H0 : “P ∈ P0” )

Under a parametric model, there exists a finite dimensional set
Θ such that:

P ≡ {Pθ : θ ∈ Θ} , where Θ ⊆ Rp , p <∞,

H 0 : θ ∈ Θ0 , where Θ0 ⊂ Θ and P0 ≡ {Pθ : θ ∈ Θ0}.
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Hypothesis testing

Alternative hypotheses

According to Fisher, the negation of H0 cannot be expressed
in terms of probability measures.

The alternative hypothesis H1 makes sense if we are certain

about the family P : H1 : P ∈ (P − P0) .

In the last context, we can choose1 between H0 and H1 —
Neyman and Pearson approach.

1since they would be mutually exclusive and exhaustive
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Hypothesis testing

Bayesian hypotheses

Recall the hard core Bayesian approach, where P = {P0} and
Z = (X , γ).

The general null and alternative hypotheses are:

H0 : “γ ∈ Γ0” and H1 : “γ ∈ (Γ− Γ0)” .

The focus is not on the family of probability measures P , since
P0 is given.

A classical statistician may also test Bayesian hypotheses. Rather
than p-values, they would use estimated conditional probabilities.
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P-value definition and its limitations

P-value definition

The p-value for testing the classical null hypothesis H0 is defined
as follows

p(P0, x ) = sup
P∈P0

P
(
TH0(X ) > TH0(x )

)
where TH0 is a statistic such that the more discrepant is H0

from x , the larger is its observed value.2

p(P0, x ) ≈ 0 indicates that the best case in H0 provides a small
probability to more “extreme events” than the observed one.

2i.e., TH0 could be −2 log of the likelihood-ratio statistic.
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P-value definition and its limitations

P-value limitations

Consider two null hypotheses H0 : “P ∈ P0” and H ′0 : “P ∈ P ′0”
such that H0 =⇒ H ′0. Then, we would expect that:

P ′0

P0

| |
p(P0, x ) p(P ′0, x )

But it is not always the case!

The previous p-value is not monotone over the set of null
hypotheses/Sets.
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P-value definition and its limitations

Example: Bivariate Normal distribution

Let X = (X1, . . . ,Xn) be a sample from a bivariate normal
distribution with mean vector µ = (µ1, µ2)> and identity
variance matrix.

Notice that (−2 log of) the likelihood-ratio statistic
under H0 : µ = 0 is

TH0(X ) = nX̄>X̄ ∼ χ2
2,

under H ′0 : µ1 = µ2 is

TH ′
0
(X ) =

n

2
(X̄1 − X̄2)2 ∼ χ2

1,

where X̄ = (X̄1, X̄2)> is the maximum likelihood estimator for
µ.

Alexandre G. Patriota (patriota@ime.usp.br) On some assumptions of NHST 11 / 40



P-value definition and its limitations

Example: Bivariate Normal distribution

Let X = (X1, . . . ,Xn) be a sample from a bivariate normal
distribution with mean vector µ = (µ1, µ2)> and identity
variance matrix.

Notice that (−2 log of) the likelihood-ratio statistic
under H0 : µ = 0 is

TH0(X ) = nX̄>X̄ ∼ χ2
2,

under H ′0 : µ1 = µ2 is

TH ′
0
(X ) =

n

2
(X̄1 − X̄2)2 ∼ χ2

1,

where X̄ = (X̄1, X̄2)> is the maximum likelihood estimator for
µ.

Alexandre G. Patriota (patriota@ime.usp.br) On some assumptions of NHST 11 / 40



P-value definition and its limitations

Example: Bivariate Normal distribution

Let X = (X1, . . . ,Xn) be a sample from a bivariate normal
distribution with mean vector µ = (µ1, µ2)> and identity
variance matrix.

Notice that (−2 log of) the likelihood-ratio statistic
under H0 : µ = 0 is

TH0(X ) = nX̄>X̄ ∼ χ2
2,

under H ′0 : µ1 = µ2 is

TH ′
0
(X ) =

n

2
(X̄1 − X̄2)2 ∼ χ2

1,

where X̄ = (X̄1, X̄2)> is the maximum likelihood estimator for
µ.

Alexandre G. Patriota (patriota@ime.usp.br) On some assumptions of NHST 11 / 40



P-value definition and its limitations

P-values do not respect monotonicity

Observed sample H0 : µ = 0 H ′0 : µ1 = µ2

(x̄1, x̄2) x̄1 − x̄2 p-value p-value
(0.05,-0.05) 0.1 0.9753 0.8231
(0.09,-0.11) 0.2 0.9039 0.6547
(0.14,-0.16) 0.3 0.7977 0.5023
(0.19,-0.21) 0.4 0.6697 0.3711
(0.23,-0.27) 0.5 0.5331 0.2636
(0.28,-0.32) 0.6 0.4049 0.1797
(0.33,-0.37) 0.7 0.2926 0.1175
(0.37,-0.43) 0.8 0.2001 0.0736
(0.42,-0.48) 0.9 0.1308 0.0442
(0.47,-0.53) 1.0 0.0813 0.0253
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P-value definition and its limitations
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An alternative measure of evidence and some of its properties

An alternative measure of evidence (parametric

case)

In what follows, we present an alternative measure called s-value
to overcome the previous issue (Patriota, 2013, FSS, 233).

The s-value is a function s : 2Θ ×X → [0, 1] such that

s(Θ0, x ) =

{
sup{α ∈ (0, 1) : Λα(x ) ∩Θ0 6= ∅}, if Θ0 6= ∅,
0, if Θ0 = ∅.

where Λα is a confidence set for θ with confidence level 1− α
with some “nice” properties.
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An alternative measure of evidence and some of its properties

Interpretation

Interpretation: s = s(Θ0, x ) is the largest significance level α
(or 1− s is the smallest confidence level 1− α) for which the
confidence set and the set Θ0 have at least one element in
common.

Large values of s indicate that there exists at least one
element in Θ0 close to the center of Λα (e.g., close to the ML
estimate).

Small values of s indicate that ALL elements of Θ0 are far away
from the center of Λα.
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An alternative measure of evidence and some of its properties

Graphical illustration: s1 = s(Θ1, x )
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An alternative measure of evidence and some of its properties

Graphical illustration: s2 = s(Θ2, x )
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An alternative measure of evidence and some of its properties

Properties: the s-value is a possibility measure

1 s(∅, x ) = 0 and s(Θ, x ) = 1,

2 If Θ1 ⊆ Θ2, then s(Θ1, x ) ≤ s(Θ2, x ),

3 For any Θ1,Θ2 ⊆ Θ, s(Θ1 ∪Θ2, x ) = max{s(Θ1, x ), s(Θ2, x )},

4 If Θ1 ⊆ Θ, then s(Θ1, x ) = supθ∈Θ1
s({θ}, x ),

5 s(Θ1, x ) = 1 or s(Θc
1, x ) = 1:

if θ̂ ∈ Θ1 (closure of Θ1), then s(Θ1, x ) = 1,

if θ̂ ∈ Θc
1, then s(Θc

1, x ) = 1.

where θ̂ is an element of the center of Λα, i.e., θ̂ ∈
⋂

α Λα(x ).
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An alternative measure of evidence and some of its properties

Decisions about H0

Let Φ be a function such that:

Φ(Θ0) = 〈s(Θ0), s(Θc
0)〉.

Then,

Φ(Θ0) = 〈a, 1〉 =⇒ rejection of H0 if a is “small” enough,

Φ(Θ0) = 〈1, b〉 =⇒ acceptance of H0 if b is“small”enough.

Φ(Θ0) = 〈1, 1〉 =⇒ total ignorance about H0.
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An alternative measure of evidence and some of its properties

How to find the thresholds for a and b to decide

about H0?

This is still an open problem.

We could try to find those thresholds via loss functions.

or via frequentist criteria by employing the following asymptotic
property:

Property: If the statistical model is regular and the confidence
region is built from a statistics Tθ(X ) that converges in
distribution to χ2

k , then:

sa = 1− Fk(F−1
H0

(1− pa)),

where pa = 1− FH0(t) is the asymptotic p-value to test H0.
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Numerical illustration

Example: Bivariate Normal distribution

Let X = (X1, . . . ,Xn) be a sample from a bivariate normal
distribution with mean vector µ = (µ1, µ2)> and identity
variance matrix.

Notice that (−2 log of) the likelihood-ratio statistic is

Tµ(x ) = n(X̄ − µ)>(X̄ − µ) ∼ χ2
2,

The confidence set Λα is given by

Λα(x ) = {µ ∈ R2 : Tµ(x ) ≤ F−1
2 (1− α)},

where F2 is the cumulative chi-squared distribution with two
degrees of freedom.
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Numerical illustration

Numerical illustration

Observed sample H0 : µ = 0 H ′0 : µ1 = µ2

(x̄1, x̄2) x̄1 − x̄2 p/s-value p-value s-value

(0.05,-0.05) 0.1 0.9753 0.8231 0.9753
(0.09,-0.11) 0.2 0.9039 0.6547 0.9048
(0.14,-0.16) 0.3 0.7977 0.5023 0.7985
(0.19,-0.21) 0.4 0.6697 0.3711 0.6703
(0.23,-0.27) 0.5 0.5331 0.2636 0.5353
(0.28,-0.32) 0.6 0.4049 0.1797 0.4066
(0.33,-0.37) 0.7 0.2926 0.1175 0.2938
(0.37,-0.43) 0.8 0.2001 0.0736 0.2019
(0.42,-0.48) 0.9 0.1308 0.0442 0.1320
(0.47,-0.53) 1.0 0.0813 0.0253 0.0821
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x1) = 0.9753
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x2) = 0.9048
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x3) = 0.7985
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x4) = 0.6703
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x5) = 0.5353

−0.2 0.0 0.2 0.4 0.6 0.8

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

µ1

µ 2

●

●

Alexandre G. Patriota (patriota@ime.usp.br) On some assumptions of NHST 33 / 40



Numerical illustration

Graphical illustration: s({µ1 = µ2}, x6) = 0.4066
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x7) = 0.2938
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x8) = 0.2019
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x9) = 0.1320
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Numerical illustration

Graphical illustration: s({µ1 = µ2}, x10) = 0.0821
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Final remarks

Final remarks

The s-value:

can be applied directly whenever the log-likelihood function is
concave by the formula s = 1− F (FH0(1− p))

is a possibilistic measure and can be studied by means of the
Abstract belief Calculus ABC (Darwiche, Ginsberg, 1992).

can be justified by desiderata (more basic axioms).

avoids the p-value problem of non-monotonicity.

is a classic alternative to the FBST (Pereira, Stern, 1998).
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