On some assumptions of Null Hypothesis Statistical Testing (NHST)

Alexandre Galvão Patriota

Departamento de Estatística Instituto de Matemática e Estatística Universidade de São Paulo

Outline

- 2 The classical statistical model
- 3 Hypothesis testing
- 4 P-value definition and its limitations
- 5 An alternative measure of evidence and some of its properties
- 6 Numerical illustration
 - 7 Final remarks
 - 8 References

The main goals of this presentation are

∃ →

< A

The main goals of this presentation are

• to discuss the classical statistical model and statistical hypotheses,

The main goals of this presentation are

- to discuss the classical statistical model and statistical hypotheses,
- to present some **limitations of the classical p-value** with numerical examples,

The main goals of this presentation are

- to discuss the classical statistical model and statistical hypotheses,
- to present some **limitations of the classical p-value** with numerical examples,
- to introduce **an alternative measure of evidence**, called s-value, that overcomes some limitations of the p-value.

The classical statistical model

The classical statistical model is:

 $(\Omega, \mathcal{F}, \mathcal{P}),$

where:

- Ω is the space of possible experiment outcomes,
- \mathcal{F} is a σ -field of Ω ,
- \mathcal{P} is a family of non-random probability measures that **possibly** explain the experiment outcomes.

Remark: a random vector Z is a measurable function from (Ω, \mathcal{F}) to $(\mathcal{Z}, \mathcal{B})$

The classical statistical model

The classical statistical model is:

 $(\Omega, \mathcal{F}, \mathcal{P}),$

where:

- Ω is the space of possible experiment outcomes,
- \mathcal{F} is a σ -field of Ω ,
- \mathcal{P} is a family of non-random probability measures that **possibly** explain the experiment outcomes.

Remark: a random vector Z is a measurable function from (Ω, \mathcal{F}) to $(\mathcal{Z}, \mathcal{B})$

A particular model

Take $Z = (X, \gamma)$, where X is the **observable** random vector and γ is the **unobservable** one.

A particular model

Take $Z = (X, \gamma)$, where X is the **observable** random vector and γ is the **unobservable** one.

Conditional, **marginal** and **joint** distributions can be used to make inferences about γ .

A particular model

Take $Z = (X, \gamma)$, where X is the **observable** random vector and γ is the **unobservable** one.

Conditional, **marginal** and **joint** distributions can be used to make inferences about γ .

Take $\mathcal{P} = \{P_0\}$ and build your joint probability P_0 from: • $\gamma \sim f_0(\cdot)$ (with no unknown constants), • $X|\gamma \sim f_1(\cdot|\gamma)$ Now, you are ready to be a hard core **Bayesian**!

< ロト < 同ト < ヨト < ヨト

Classical null hypotheses

Can we reduce the family \mathcal{P} to a subfamily \mathcal{P}_0 , where $\mathcal{P}_0 \subset \mathcal{P}$?

Classical null hypotheses

Can we reduce the family \mathcal{P} to a subfamily \mathcal{P}_0 , where $\mathcal{P}_0 \subset \mathcal{P}$?

The positive claim can be written by means of a null hypothesis:

 H_0 : "at least one measure in \mathcal{P}_0 could generate the observed data"

(or simply H_0 : " $P \in \mathcal{P}_0$ ")

Classical null hypotheses

Can we reduce the family \mathcal{P} to a subfamily \mathcal{P}_0 , where $\mathcal{P}_0 \subset \mathcal{P}$?

The positive claim can be written by means of a null hypothesis:

 H_0 : "at least one measure in \mathcal{P}_0 could generate the observed data"

(or simply
$$H_0: "P \in \mathcal{P}_0"$$
)

Under a parametric model, there exists a finite dimensional set $\boldsymbol{\Theta}$ such that:

•
$$\mathcal{P} \equiv \{ \boldsymbol{P}_{\boldsymbol{\theta}} : \ \boldsymbol{\theta} \in \boldsymbol{\Theta} \}$$
, where $\boldsymbol{\Theta} \subseteq \mathbb{R}^p$, $p < \infty$,

• $H_0: \theta \in \Theta_0$, where $\Theta_0 \subset \Theta$ and $\mathcal{P}_0 \equiv \{P_\theta: \ \theta \in \Theta_0\}$.

Alternative hypotheses

According to Fisher, the negation of H_0 cannot be expressed in terms of probability measures.

¹since they would be mutually exclusive and exhaustive $\langle \sigma \rangle \langle z \rangle \langle z \rangle \langle z \rangle$

Alternative hypotheses

According to Fisher, the negation of H_0 cannot be expressed in terms of probability measures.

The alternative hypothesis H_1 makes sense if we are **certain** about the family \mathcal{P} : $H_1 : P \in (\mathcal{P} - \mathcal{P}_0)$.

¹since they would be mutually exclusive and exhaustive $\langle \sigma \rangle \langle z \rangle \langle z \rangle \langle z \rangle$

Alternative hypotheses

According to Fisher, the negation of H_0 cannot be expressed in terms of probability measures.

The alternative hypothesis H_1 makes sense if we are **certain** about the family \mathcal{P} : $H_1 : P \in (\mathcal{P} - \mathcal{P}_0)$.

In the last context, we can **choose**¹ between H_0 and H_1 — Neyman and Pearson approach.

¹since they would be mutually exclusive and exhaustive $\langle \sigma \rangle \langle z \rangle \langle z \rangle \langle z \rangle$

Recall the hard core Bayesian approach, where $\mathcal{P}=\{P_0\}$ and $Z=(X,\gamma).$

イロト イポト イヨト イヨト

Recall the hard core Bayesian approach, where $\mathcal{P}=\{P_0\}$ and $Z=(X,\gamma).$

The general null and alternative hypotheses are:

$$H_0: "\gamma \in \Gamma_0"$$
 and $H_1: "\gamma \in (\Gamma - \Gamma_0)"$

Recall the hard core Bayesian approach, where $\mathcal{P}=\{P_0\}$ and $Z=(X,\gamma).$

The general null and alternative hypotheses are:

$$H_0: "\gamma \in \Gamma_0"$$
 and $H_1: "\gamma \in (\Gamma - \Gamma_0)"$

The focus is not on the family of probability measures \mathcal{P} , since P_0 is given.

Recall the hard core Bayesian approach, where $\mathcal{P}=\{P_0\}$ and $Z=(X,\gamma).$

The general null and alternative hypotheses are:

$$H_0: "\gamma \in \Gamma_0"$$
 and $H_1: "\gamma \in (\Gamma - \Gamma_0)"$

The focus is not on the family of probability measures \mathcal{P} , since P_0 is given.

A classical statistician may also test Bayesian hypotheses. Rather than p-values, they would use estimated conditional probabilities.

P-value definition

The p-value for testing the classical null hypothesis H_0 is defined as follows

$$p(\mathcal{P}_0, x) = \sup_{P \in \mathcal{P}_0} P(T_{H_0}(X) > T_{H_0}(x))$$

where T_{H_0} is a statistic such that the more discrepant is H_0 from x, the larger is its observed value.²

²i.e., T_{H_0} could be $-2\log$ of the likelihood-ratio statistics \rightarrow (2) \rightarrow (2) \rightarrow

P-value definition

The p-value for testing the classical null hypothesis H_0 is defined as follows

$$p(\mathcal{P}_0, x) = \sup_{P \in \mathcal{P}_0} P(T_{H_0}(X) > T_{H_0}(x))$$

where T_{H_0} is a statistic such that the more discrepant is H_0 from x, the larger is its observed value.²

 $p(\mathcal{P}_0, x) \approx 0$ indicates that the best case in H_0 provides a small probability to more "extreme events" than the observed one.

²i.e., T_{H_0} could be $-2\log$ of the likelihood-ratio statistice $(a,b,c) = -2\log (a,b)$

P-value limitations

Consider two null hypotheses H_0 : " $P \in \mathcal{P}_0$ " and H'_0 : " $P \in \mathcal{P}'_0$ " such that $H_0 \implies H'_0$. Then, we would expect that:

P-value limitations

Consider two null hypotheses H_0 : " $P \in \mathcal{P}_0$ " and H'_0 : " $P \in \mathcal{P}'_0$ " such that $H_0 \implies H'_0$. Then, we would expect that:

But it is not always the case!

P-value limitations

Consider two null hypotheses H_0 : " $P \in \mathcal{P}_0$ " and H'_0 : " $P \in \mathcal{P}'_0$ " such that $H_0 \implies H'_0$. Then, we would expect that:

But it is not always the case!

The previous p-value **is not monotone** over the set of null hypotheses/Sets.

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Notice that $(-2 \log \text{ of})$ the likelihood-ratio statistic • under $H_0: \mu = 0$ is

$$T_{H_0}(X) = n\bar{X}^\top \bar{X} \sim \chi_2^2,$$

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Notice that $(-2 \log \text{ of})$ the likelihood-ratio statistic • under $H_0: \mu = 0$ is

$$T_{H_0}(X) = n\bar{X}^\top \bar{X} \sim \chi_2^2,$$

• under
$$H_0': \mu_1 = \mu_2$$
 is

$$T_{H'_0}(X) = \frac{n}{2}(\bar{X}_1 - \bar{X}_2)^2 \sim \chi_1^2,$$

where $\bar{X} = (\bar{X}_1, \bar{X}_2)^{ op}$ is the maximum likelihood estimator for

$$\mu$$
.

_

P-values do not respect monotonicity

Observed sample		$H_0: \boldsymbol{\mu} = \boldsymbol{0}$	$H_0':\mu_1=\mu_2$
(\bar{x}_1, \bar{x}_2)	$\bar{x}_1 - \bar{x}_2$	p-value	p-value
(0.05,-0.05)	0.1	0.9753	0.8231
(0.09,-0.11)	0.2	0.9039	0.6547
(0.14,-0.16)	0.3	0.7977	0.5023
(0.19,-0.21)	0.4	0.6697	0.3711
(0.23,-0.27)	0.5	0.5331	0.2636
(0.28,-0.32)	0.6	0.4049	0.1797
(0.33,-0.37)	0.7	0.2926	0.1175
(0.37,-0.43)	0.8	0.2001	0.0736
(0.42,-0.48)	0.9	0.1308	0.0442
(0.47,-0.53)	1.0	0.0813	0.0253

< 4 P ►

Level curves (contour curves)

Significance level 10%

Level curves (contour curves)

Significance level 10%

Alexandre G. Patriota (patriota@ime.usp.br)

On some assumptions of NHST

Level curves (contour curves)

Significance level 10%

On some assumptions of NHST

Level curves (contour curves)

Significance level 10%

An alternative measure of evidence (parametric case)

In what follows, we present an alternative measure called **s-value** to overcome the previous issue (Patriota, 2013, FSS, 233).

An alternative measure of evidence (parametric case)

In what follows, we present an alternative measure called **s-value** to overcome the previous issue (Patriota, 2013, FSS, 233).

The s-value is a function $s:2^\Theta\times\mathcal{X}\to[0,1]$ such that

$$s(\Theta_0, x) = \begin{cases} \sup\{\alpha \in (0, 1) : \Lambda_{\alpha}(x) \cap \Theta_0 \neq \emptyset\}, & \text{if } \Theta_0 \neq \emptyset, \\ 0, & \text{if } \Theta_0 = \emptyset. \end{cases}$$

where Λ_{α} is a confidence set for θ with confidence level $1-\alpha$ with some "nice" properties.
Interpretation

Interpretation: $s = s(\Theta_0, x)$ is the largest significance level α (or 1 - s is the smallest confidence level $1 - \alpha$) for which the confidence set and the set $\overline{\Theta_0}$ have at least one element in common.

Interpretation

Interpretation: $s = s(\Theta_0, x)$ is the largest significance level α (or 1 - s is the smallest confidence level $1 - \alpha$) for which the confidence set and the set $\overline{\Theta_0}$ have at least one element in common.

Large values of s indicate that **there exists at least one** element in Θ_0 close to the center of Λ_{α} (e.g., close to the ML estimate).

Interpretation

Interpretation: $s = s(\Theta_0, x)$ is the largest significance level α (or 1 - s is the smallest confidence level $1 - \alpha$) for which the confidence set and the set $\overline{\Theta_0}$ have at least one element in common.

Large values of s indicate that **there exists at least one** element in Θ_0 close to the center of Λ_{α} (e.g., close to the ML estimate).

Small values of s indicate that **ALL** elements of Θ_0 are far away from the center of Λ_{α} .

An alternative measure of evidence and some of its properties

Graphical illustration: $s_1 = s(\Theta_1, x)$

Alexandre G. Patriota (patriota@ime.usp.br) Or

An alternative measure of evidence and some of its properties

Graphical illustration: $s_2 = s(\Theta_2, x)$

Alexandre G. Patriota (patriota@ime.usp.br)

$$\ \, \bullet \ \, s(\varnothing,x)=0 \ \, {\rm and} \ \, s(\Theta,x)=1, \ \,$$

$$\ \, {\bf 0} \ \, s(\varnothing,x)=0 \ \, {\rm and} \ \, s(\Theta,x)=1,$$

2 If
$$\Theta_1 \subseteq \Theta_2$$
, then $s(\Theta_1, x) \leq s(\Theta_2, x)$,

$$\ \ \, {\bf 9} \ \ \, s(\varnothing,x)=0 \ \, {\rm and} \ \, s(\Theta,x)=1 {\rm ,} \ \ \,$$

2 If
$$\Theta_1 \subseteq \Theta_2$$
, then $s(\Theta_1, x) \leq s(\Theta_2, x)$,

 $\textbf{ Sor any } \Theta_1, \Theta_2 \subseteq \Theta, \ s(\Theta_1 \cup \Theta_2, x) = \max\{s(\Theta_1, x), s(\Theta_2, x)\},$

イロト イポト イヨト イヨト

$$\ \ \, {\bf 9} \ \ \, s(\varnothing,x)=0 \ \, {\rm and} \ \, s(\Theta,x)=1 {\rm ,} \ \ \,$$

2) If
$$\Theta_1 \subseteq \Theta_2$$
, then $s(\Theta_1, x) \leq s(\Theta_2, x)$,

 $\textbf{ Sor any } \Theta_1, \Theta_2 \subseteq \Theta, \ s(\Theta_1 \cup \Theta_2, x) = \max\{s(\Theta_1, x), s(\Theta_2, x)\},$

$$If \Theta_1 \subseteq \Theta, \text{ then } s(\Theta_1, x) = \sup_{\theta \in \Theta_1} s(\{\theta\}, x),$$

$$\ \ \, {\bf 9} \ \ \, s(\varnothing,x)=0 \ \, {\rm and} \ \, s(\Theta,x)=1 {\rm ,} \ \ \,$$

2) If
$$\Theta_1 \subseteq \Theta_2$$
, then $s(\Theta_1, x) \leq s(\Theta_2, x)$,

 $\textbf{ Sor any } \Theta_1, \Theta_2 \subseteq \Theta, \ s(\Theta_1 \cup \Theta_2, x) = \max\{s(\Theta_1, x), s(\Theta_2, x)\},$

イロトイランス (D・イランス) Alexandre G. Patriota (patriota@ime.usp.br) On some assumptions of NHST

Decisions about H_0

Let Φ be a function such that:

$$\Phi(\Theta_0) = \langle s(\Theta_0), s(\Theta_0^c) \rangle.$$

Then,

 $\Phi(\Theta_0) = \langle a, 1 \rangle \implies$ rejection of H_0 if a is "small" enough,

Decisions about H_0

Let Φ be a function such that:

$$\Phi(\Theta_0) = \langle s(\Theta_0), s(\Theta_0^c) \rangle.$$

Then,

 $\Phi(\Theta_0) = \langle a, 1 \rangle \implies$ rejection of H_0 if a is "small" enough, $\Phi(\Theta_0) = \langle 1, b \rangle \implies$ acceptance of H_0 if b is "small" enough.

Decisions about H_0

Let Φ be a function such that:

$$\Phi(\Theta_0) = \langle s(\Theta_0), s(\Theta_0^c) \rangle.$$

Then,

$$\Phi(\Theta_0) = \langle a, 1 \rangle \implies \text{rejection of } H_0 \text{ if } a \text{ is "small" enough,}$$

$$\Phi(\Theta_0) = \langle 1, b \rangle \implies \text{acceptance of } H_0 \text{ if } b \text{ is "small" enough.}$$

$$\Phi(\Theta_0) = \langle 1, 1 \rangle \implies \text{total ignorance about } H_0.$$

Image: Image:

→ ∢ ∃

An alternative measure of evidence and some of its properties

How to find the thresholds for a and b to decide about H_0 ?

This is still an open problem.

This is still an open problem.

We could try to find those thresholds via loss functions.

This is still an open problem.

We could try to find those thresholds via loss functions.

or *via* frequentist criteria by employing the following asymptotic property:

This is still an open problem.

We could try to find those thresholds via loss functions.

or *via* frequentist criteria by employing the following asymptotic property:

Property: If the statistical model is regular and the confidence region is built from a statistics $T_{\theta}(X)$ that converges in distribution to χ_k^2 , then:

$$s_a = 1 - F_k(F_{H_0}^{-1}(1 - p_a)),$$

where $p_a = 1 - F_{H_0}(t)$ is the asymptotic p-value to test H_0 .

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Notice that $(-2\log of)$ the likelihood-ratio statistic is

$$T_{\boldsymbol{\mu}}(x) = n(\bar{X} - \boldsymbol{\mu})^{\top}(\bar{X} - \boldsymbol{\mu}) \sim \chi_2^2,$$

Example: Bivariate Normal distribution

Let $X = (X_1, \ldots, X_n)$ be a sample from a bivariate normal distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top}$ and identity variance matrix.

Notice that $(-2\log of)$ the likelihood-ratio statistic is

$$T_{\boldsymbol{\mu}}(x) = n(\bar{X} - \boldsymbol{\mu})^{\top} (\bar{X} - \boldsymbol{\mu}) \sim \chi_2^2,$$

The confidence set Λ_{α} is given by

$$\Lambda_{\alpha}(x) = \{ \mu \in \mathbb{R}^2 : \ T_{\mu}(x) \le F_2^{-1}(1-\alpha) \},\$$

where F_2 is the cumulative chi-squared distribution with two degrees of freedom.

Observed sample		$H_0: \boldsymbol{\mu} = \boldsymbol{0}$	$H'_0: \mu_1 = \mu_2$	
(\bar{x}_1, \bar{x}_2)	$\bar{x}_1 - \bar{x}_2$	p/s-value	p-value	s-value
(0.05,-0.05)	0.1	0.9753	0.8231	0.9753
(0.09,-0.11)	0.2	0.9039	0.6547	0.9048
(0.14,-0.16)	0.3	0.7977	0.5023	0.7985
(0.19,-0.21)	0.4	0.6697	0.3711	0.6703
(0.23,-0.27)	0.5	0.5331	0.2636	0.5353
(0.28,-0.32)	0.6	0.4049	0.1797	0.4066
(0.33,-0.37)	0.7	0.2926	0.1175	0.2938
(0.37,-0.43)	0.8	0.2001	0.0736	0.2019
(0.42,-0.48)	0.9	0.1308	0.0442	0.1320
(0.47,-0.53)	1.0	0.0813	0.0253	0.0821

Э

Observed sample		$H_0: \boldsymbol{\mu} = \boldsymbol{0} \qquad H'_0: \boldsymbol{\mu}$		$_{1} = \mu_{2}$
$(ar{x}_1, ar{x}_2)$	$\bar{x}_1 - \bar{x}_2$	p/s-value	p-value	s-value
(0.05,-0.05)	0.1	0.9753	0.8231	0.9753
(0.09,-0.11)	0.2	0.9039	0.6547	0.9048
(0.14,-0.16)	0.3	0.7977	0.5023	0.7985
(0.19,-0.21)	0.4	0.6697	0.3711	0.6703
(0.23,-0.27)	0.5	0.5331	0.2636	0.5353
(0.28,-0.32)	0.6	0.4049	0.1797	0.4066
(0.33,-0.37)	0.7	0.2926	0.1175	0.2938
(0.37,-0.43)	0.8	0.2001	0.0736	0.2019
(0.42,-0.48)	0.9	0.1308	0.0442	0.1320
(0.47,-0.53)	1.0	0.0813	0.0253	0.0821

臣

Observed sample		$H_0: \mu$	= 0	$H_0': \mu_1 = \mu_2$	
(\bar{x}_1, \bar{x}_2)	$\bar{x}_1 - \bar{x}_2$	p/s-value		p-value	s-value
(0.05,-0.05)	0.1	0.	9753	0.8231	0.9753
(0.09,-0.11)	0.2	0.	9039	0.6547	0.9048
(0.14,-0.16)	0.3	0.7	977	0.5023	0.7985
(0.19,-0.21)	0.4	0.	6697	0.3711	0.6703
(0.23,-0.27)	0.5	0.	5331	0.2636	0.5353
(0.28,-0.32)	0.6	0.	4049	0.1797	0.4066
(0.33,-0.37)	0.7	0.	2926	0.1175	0.2938
(0.37,-0.43)	0.8	0.	2001	0.0736	0.2019
(0.42,-0.48)	0.9	0.	1308	0.0442	0.1320
(0.47,-0.53)	1.0	0.	0813	0.0253	0.0821

臣

Observed sample		$H_0: \boldsymbol{\mu} = \boldsymbol{0}$	$H_0':\mu_1=\mu_2$	
$(\bar{x}_1, \ \bar{x}_2)$	$\bar{x}_1 - \bar{x}_2$	p/s-value	p-value	s-value
(0.05,-0.05)	0.1	0.9753	0.8231	0.9753
(0.09,-0.11)	0.2	0.9039	0.6547	0.9048
(0.14,-0.16)	0.3	0.7977	0.5023	0.7985
(0.19,-0.21)	0.4	0.6697	0.3711	0.6703
(0.23,-0.27)	0.5	0.5331	0.2636	0.5353
(0.28,-0.32)	0.6	0.4049	0.1797	0.4066
(0.33,-0.37)	0.7	0.2926	0.1175	0.2938
(0.37,-0.43)	0.8	0.2001	0.0736	0.2019
(0.42,-0.48)	0.9	0.1308	0.0442	0.1320
(0.47,-0.53)	1.0	0.0813	0.0253	0.0821

Э

Graphical illustration: $s({\mu_1 = \mu_2}, x_1) = 0.9753$

Alexandre G. Patriota (patriota@ime.usp.br)

On some assumptions of NHST

Graphical illustration: $s({\mu_1 = \mu_2}, x_2) = 0.9048$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_3) = 0.7985$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_4) = 0.6703$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_5) = 0.5353$

Alexandre G. Patriota (patriota@ime.usp.br) On

Graphical illustration: $s({\mu_1 = \mu_2}, x_6) = 0.4066$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_7) = 0.2938$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_8) = 0.2019$

Alexandre G. Patriota (patriota@ime.usp.br)

Graphical illustration: $s({\mu_1 = \mu_2}, x_9) = 0.1320$

Alexandre G. Patriota (patriota@ime.usp.br)

On some assumptions of NHST

Graphical illustration: $s({\mu_1 = \mu_2}, x_{10}) = 0.0821$

Alexandre G. Patriota (patriota@ime.usp.br)

Final remarks

The s-value:

- can be applied directly whenever the log-likelihood function is concave by the formula $s = 1 F(F_{H_0}(1-p))$
- is a possibilistic measure and can be studied by means of the Abstract belief Calculus ABC (Darwiche, Ginsberg, 1992).
- can be justified by *desiderata* (more basic axioms).
- avoids the p-value problem of non-monotonicity.
- is a classic alternative to the FBST (Pereira, Stern, 1998).
References:

- Darwiche, A.Y., Ginsberg, M.L. (1992). A symbolic generalization of probability theory, AAAI-92, Tenth National Conference on Artificial Intelligence.
- Patriota, AG (2017). On some assumptions of Null Hypothesis Statistical Testing, *Educational and Psychological Measurement*, 77, 507–524.
- Patriota, AG (2013). A classical measure of evidence for general null hypotheses, Fuzzy Sets and Systems, 233, 74-88.
- Pereira, C.A.B., Stern, J.M. (1999). Evidence and credibility: Full Bayesian significance test for precise hypotheses, Entropy, 1, 99–110.