MEDIDA E INTEGRAÇÃO - MAT 5798 - IME 2013 Prof. Oswaldo Rio Branco de Oliveira

LISTA 9 DE EXERCÍCIOS

Dada uma função $F: X \to Y$ entre dois espaços métricos (X, d_X) e (Y, d_Y) , dizemos que F é de **Lipschitz** se existe uma constante M (a constante de **Lipschitz**) tal que

$$d_Y(F(x_1), F(x_2)) \le M d_X(x_1, x_2)$$
, quaisquer que sejam $x_1, x_2 \in X$.

- E1. Geométricamente, $\varphi:(a,b)\to\mathbb{R}$ é **convexa** se restrita a todo $[x_1,x_2]$, seu gráfico está abaixo do segmento (**corda**) unindo $(x_1,\varphi(x_1))$ a $(x_2,\varphi(x_2))$. Para simplificar, fixamos um arbitrário $[x_1,x_2] \subset (a,b)$.
 - (a) São equivalentes as seguintes definições de convexidade para φ :

(i)
$$\varphi(x) \le T(x) = \frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} (x - x_1) + \varphi(x_1)$$
, para todo $x \in [x_1, x_2]$.

(ii)
$$\varphi(\lambda x_1 + (1-\lambda)x_2) \le \lambda \varphi(x_1) + (1-\lambda)\varphi(x_2)$$
 para todo $\lambda \in [0,1]$.

(iii)
$$\frac{\varphi(t) - \varphi(x_1)}{t - x_1} \le \frac{\varphi(x_2) - \varphi(t)}{x_2 - t} \text{ para todo } x_1 < t < x_2.$$

$$\text{(iv)} \ \varphi\left(\frac{x_1}{p_1}+\frac{x_2}{p_2}\right) \leq \frac{\varphi(x_1)}{p_1} + \frac{\varphi(x_2)}{p_2} \ \text{para todos} \ p_1, p_2 > 1 \ \text{com} \ \frac{1}{p_1} + \frac{1}{p_2} = 1.$$

Sugestão: (ii) (a definição usual) é trivialmente equivalente às demais.

(b) φ é convexa em (a,b) se e somente se

$$\frac{\varphi(s) - \varphi(x_1)}{s - x_1} \le \frac{\varphi(x_2) - \varphi(t)}{x_2 - t}, \quad \text{se } s, t \in [x_1, x_2] \text{ com } s \neq x_1 \text{ e } t \neq x_2.$$

Leitura: a corda sobre $[t, x_2]$ têm maior inclinação que a sobre $[x_1, s]$.

(c) **Desigualdade (discreta) de Jensen.** Seja φ convexa em (a,b) e as sequências $\{x_j\}_1^n \subset (a,b)$ e $\{p_j\}_1^n$, com $p_j \geq 0$ e $\Sigma p_j > 0$. Temos,

$$\varphi\left(\frac{\sum p_j x_j}{\sum p_j}\right) \le \frac{\sum p_j \varphi(x_j)}{\sum p_j}.$$

- (d) Se φ é diferenciável então φ é convexa se e somente se φ' é crescente. Dica: (a)(iii).
- (e) Mostre que φ é convexa em (a,b) se e somente se, φ é contínua e

$$\varphi\left(\frac{x_1+x_2}{2}\right) \le \frac{\varphi(x_1)+\varphi(x_2)}{2},$$

quaisquer que sejam $x_1, x_2 \in (a, b)$.

- (f) Seja $\Gamma = \{\varphi : (a,b) \to \mathbb{R}, \text{ tal que } \varphi \text{ \'e convexa} \}$. Então, $\Gamma \text{ \'e um cone}$ (algebricamente fechado para soma e multiplicação por escalar positivo) fechado na topologia da convergência simples. O supremo, se finito, de uma família de funções convexas em (a,b) é uma função convexa. O mínimo de duas funções convexas não é necessariamente convexa.
- (g) Seja φ duas vezes diferenciável. Então φ é convexa se e só se $\varphi'' \ge 0$.
- (h) Verifique se são ou não são convexas as seguintes funções:
 - (i) x^p , onde $p \ge 1$ e $x \in (0, +\infty)$
 - (ii) e^{ax} , onde $x \in (-\infty, +\infty)$
 - (iii) $\ln\left(\frac{1}{x}\right) = -\ln x$, onde $x \in (0, +\infty)$.
- (i) Sejam $a,b\geq 0$ e p,p'>1, com $\frac{1}{p}+\frac{1}{p'}=1,$ então

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}.$$

Mostre que vale a igualdade se e somente se $a^p = b^{p'}$.

(j) Se φ é convexa em (a,b) e ψ é convexa e não decrescente em $\varphi((a,b))$,

$$\psi \circ \varphi$$
 é convexa em (a,b) .

- (k) Se $\varphi > 0$ e log φ é convexa então φ é convexa.
- (l) Se φ é convexa em (a,b),

 $\varphi~$ é de Lipschitz em subintervalos compactos.

Sugestão: Procure um argumento unificado para (d) e a "ida" de (e).

E2. (Desigualdade Integral (simples) de Jensen). Consideremos duas funções $f, p: K \to (a, b)$, com $K \subset \mathbb{R}$ e compacto e $(a, b) \subset \mathbb{R}$, com $p \in fp$ Riemann integráveis, $p \ge 0$ e $\int_K p > 0$. Se φ é convexa em (a, b) então,

$$\varphi\left(\frac{\int_K fp}{\int_K p}\right) \le \frac{\int_K \varphi(f)p}{\int_K p}$$
.

Dica: Fixo $t_0 \in (a, b)$, existe $\alpha \in \mathbb{R}$, com $\varphi(t) - \varphi(t_0) \ge \alpha(t - t_0)$, $\forall t$. Faça

$$t_0 = \frac{\int_K fp}{\int_K p}$$
 e $t = f(x)$

e multiplique por p. Observe que $y(t) = \varphi(t_0) + \alpha(t - t_0)$ é uma reta suporte de gráfico (φ) [o gráfico de φ] no ponto $(t_0, \varphi(t_0))$.

Interpretação fisíca-geométrica: Como $\lambda x_1 + (1-\lambda) x_2$ é o centróide das massas λ e $(1-\lambda)$ localizadas em x_1 e x_2 , a função φ é convexa se seu valor no centróide é menor, ou igual, que a média ponderada dos valores $\varphi(x_1)$ e $\varphi(x_2)$. A desigualdade integral de Jensen generaliza este fato: Se μ é a distribuição de massa, $\mu(E) = \int_E fp$, então $\frac{\int_K fp}{\int_K p}$ é o centróide desta massa e $\frac{\int_K \varphi(f)p}{\int_K p} = \int \varphi(x)d\mu$ é a média ponderada de φ .

E3. Seja $\varphi:(a,b)\to\mathbb{R}$ convexa. Mostre que suas derivadas laterais são finitas em todo ponto e, ainda,

(a)
$$D^+\varphi(x) = \lim_{h\to 0^+} \frac{\varphi(x+h) - \varphi(x)}{h} \le D^-\varphi(x) = \lim_{h\to 0^+} \frac{\varphi(x) - \varphi(x-h)}{h}, \forall x.$$

- (b) $D^+\varphi$ e $D^-\varphi$ são monótonas crescentes.
- (c) $D^+\varphi(x) \le D^-\varphi(y)$, se a < x < y < b.
- (d) $D^+\varphi$ e $D^-\varphi$ são contínuas q.s. e, nos pontos de continuidade,

$$D^+\varphi=D^-\varphi=\varphi'.$$

(e) φ é de Lipschitz em subintervalos compactos.

SEÇÃO 3.5, p. 107-109

- 27. Abaixo, F e G designam funções de \mathbb{R} em \mathbb{R} ou de \mathbb{R} em \mathbb{C} .
 - (a) Se $F: \mathbb{R} \to \mathbb{R}$ é crescente e limitada, então $F \in BV$. Ainda,

$$T_F(x) = F(x) - F(-\infty).$$

- (b) BV é um espaço vetorial complexo.
- (c) Se $F : \mathbb{R} \to \mathbb{C}$ é diferenciável e F' é limitada, então $F \in BV([a,b])$ onde supomos $-\infty < a < b < +\infty$.
- (d) Se $F(x) = \sin x$, então $F \in BV([a,b])$, para $-\infty < a < b < \infty$, e $F \notin BV$.
- (e) A função

$$F(x) = \begin{cases} x \sin \frac{1}{x}, & \text{se } x \neq 0, \\ 0, & \text{se } x = 0, \end{cases}$$

é contínua mas não pertence a BV([0,b]) ou a BV([a,0]), se a < 0 < b.

- 28. Sejam $F \in \text{NBV}$ e $G(x) = |\mu_F|((-\infty, x])$. Prove que $|\mu_F| = \mu_{T_F}$, verificando a identidade $G = T_F$. Como sugestão, use o seguinte roteiro:
 - (a) $T_F \leq G$.
 - (b) $|\mu_F(E)| \leq \mu_{T_F}(E)$ se E for um intervalo e, portanto, se E for um boreliano.
 - (c) $|\mu_F| \leq \mu_{T_F}$, portanto $G \leq T_F$.
- 29. Se $F \in NBV$ assume valores reais, então

$$\mu_F^+ = \mu_P \ \ {\rm e} \ \ \mu_F^- = \mu_N,$$

onde P e N são as variações positiva e negativa de F.

30. Construa uma função crescente $\mathbb{R} \to \mathbb{R}$ descontinuidades somente em \mathbb{Q} .

31. Sejam $F(x) = x^2 \sin(x^{-1}) e G(x) = x^2 \sin(x^{-2})$ para $x \neq 0$, e F(0) = 0 = G(0).

F e G são diferenciáveis em \mathbb{R} .

$$F \in BV([-1,1]), \text{ mas } G \notin BV([-1,1]).$$

- 32. Se $F_1, F_2, \dots, F \in NBV$ e $F_n \to F$ pontualmente, então $T_F \le \liminf T_{F_n}$.
- 33. Se $f: \mathbb{R} \to \mathbb{R}$ é crescente, então

$$f(b) - f(a) \ge \int_a^b f'(t)dt.$$

- 36. Seja $G:[a,b] \to \mathbb{R}$ contínua crescente, G(a)=c e G(b)=d.
 - (a) Se $E \subset [c,d]$ é um boreliano, então

$$m(E) = \mu_G((G^{-1}(E)).$$

Dica: considere primeiro o caso em que E é um intervalo.

(b) Se f é Borel-mensurável e integrável em [c,d], então

$$\int_{C}^{d} f(y)dy = \int_{a}^{b} f(G(x))dG(x).$$

Em particular, $\int_c^d f(y)dy = \int_a^b f(G(x))G'(x)dx$ se G for absolutamente contínua.

- (c) O item (b) não vale, em geral, se G for apenas contínua pela direita.
- 37. Seja $F:[a,b] \to \mathbb{C}$. São equivalentes:
 - (a) F é Lipschitziana com constante de Lipschitz M.
 - (b) F é absolutamente contínua e $|F'| \le M$ q.s.
- 38. Seja $f:[a,b] \to \mathbb{R}$. Considere o gráfico de f como um subconjunto de \mathbb{C} . Isto é, identifique $\mathbb{C} \equiv \mathbb{R}^2$. O comprimento L de tal gráfico é, por definição, o supremo dos comprimentos de todas as poligonais inscritas no mesmo.
 - (a) Seja F(t) = t + if(t). Então L é a variação total de F em [a,b].
 - (b) Se f for absolutamente contínua, então

$$L = \int_{a}^{b} [1 + f'(t)^{2}]^{1/2} dt.$$

42. Uma função $F:(a,b)\to\mathbb{R}$, com $-\infty\leq a< b\leq\infty$, é dita convexa se, quaisquer que sejam $s,t\in(a,b)$ temos

$$F(\lambda s + (1 - \lambda)t) \le \lambda F(s) + (1 - \lambda)F(t)$$
, para todo $\lambda \in (0, 1)$.

Geometricamente, isto significa que quaisquer que sejam $s, t \in (a, b)$, o gráfico de F fica abaixo do segmento que passa por (s, F(s)) e (t, F(t)).

(a) F é convexa se e somente se quaisquer que sejam $s,t,s',t' \in (a,b)$ tais que $s \le s' < t'$ e $s < t \le t'$ temos

$$\frac{F(t) - F(s)}{t - s} \le \frac{F(t') - F(s')}{t' - s'}.$$

- (b) F é convexa se e somente se F é absolutamente contínua em todo subintervalo compacto de (a,b) e F' é crescente (no conjunto onde estiver definida).
- (c) Se F for convexa e $t_0 \in (a,b)$, então existe $\beta \in \mathbb{R}$ tal que para todo $t \in (a,b)$) temos

$$F(t) - F(t_0) \ge \beta(t - t_0).$$

(d) (**Desigualdade de Jensen**). Sejam (X, \mathcal{M}, μ) um espaço de medida com $\mu(X) = 1$, uma função $g: X \to (a, b)$ em $L^1(\mu)$, e uma função F convexa em (a, b). Então,

$$F(\int gd\mu) \leq \int F \circ gd\mu.$$

Sugestão: Ponha $t_0 = \int g d\mu$ e t = g(x) no item anterior e integre.