#### MAT 225 - FUNÇÕES ANALÍTICAS

#### Instituto de Matemática e Estatística da USP

#### Ano 2015

#### Professor Oswaldo R. B. de Oliveira

http://www.ime.usp.br/~oliveira oliveira@ime.usp.br

#### Capítulo 9 - Teorema da Aplicação e Esfera de Riemann e Aplicações Conformes

- 9.1 Conformalidade.
- 9.2 Automorfismos (analíticos) do disco aberto B(01).
- 9.3 Teorema da Aplicação de Riemann.
- 9.4 Esfera de Riemann.
- 9.5 Simplesmente conexos e a esfera de Riemann
- 9.6 Transformações de Möbius.
- 9.7 As bijeções conformes (analíticas) do semi-plano superior em B(0;1).
- 9.8 Automorfismos (analíticos) do semiplano superior.
- 9.9 Outras transformações conformes (analíticas).



# Capítulo 1 NÚMEROS COMPLEXOS

### TOPOLOGIA DO PLANO $\mathbb C$

# Capítulo 3 TEOREMAS POLINOMIAIS

# Capítulo 4 SÉRIES E SOMABILIDADE

## Capítulo 5 SÉRIES DE POTÊNCIAS

# Capítulo 6 FUNÇÕES ANALÍTICAS

## EXPONENCIAL, ÍNDICE, PRINCÍPIO DO ARGUMENTO E TEOREMA DE ROUCHÉ

### TEOREMA DE CAUCHY HOMOTÓPICO E LOGARITMO

### TEOREMA DA APLICAÇÃO E ESFERA DE RIEMANN E APLICAÇÕES CONFORMES

#### 9.1 - Conformalidade

Dados z e w, ambos em  $\mathbb{C}^*$ , o ângulo (orientado) formado pelo par ordenado (z,w) é o número real  $\theta = \arg(w\overline{z})$  [definido módulo  $2\pi\mathbb{Z}$ ] que satisfaz

$$\frac{w\overline{z}}{|w||z|} = e^{i\theta}.$$

Se  $z=|z|e^{i\alpha}$  e  $w=|w|e^{i\beta}$ , então  $\theta=\beta-\alpha$ . Isto é,  $\arg(w\overline{z})=\arg(w)-\arg(z)$ .

No particular caso na figura abaixo, no plano de Argand-Gauss,  $\theta$  é o ângulo do ponto z ao ponto w, medido no sentido anti-horário.

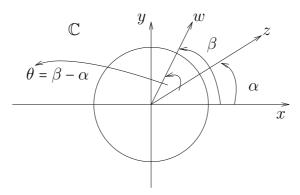


Figura 9.1:  $\theta = \arg(w\overline{z}), \mod 2\pi$ 

#### Comentários.

o Na figura 9.1, orientamos o ângulo de z a w no sentido anti-horário. Também podemos orientar o ângulo de z a w no sentido horário. De fato, pondo  $w = |w|e^{-i(2\pi-\beta)}$  temos

$$\frac{w\overline{z}}{|w||z|} = e^{-i(2\pi-\beta)-i\alpha} = e^{-i[\alpha+(2\pi-\beta)]}$$

que é igual a  $e^{i(\beta-\alpha)} = e^{i\theta}$ .

o Identifiquemos  $w = a + bi \equiv v = (a, b)$  e  $z = c + di \equiv u = (c, d)$ . Indiquemos o produto interno em  $\mathbb{R}^2$  por '·'. Notemos que (vide Corolário 1.9)

$$w\overline{z} = (ac + bd) + i(bc - ad)$$
 e  $v \cdot u = ac + bd$ .

Valem as propriedades abaixo (com  $w \neq 0$  e  $z \neq 0$  se preciso e  $\theta, \beta$  em  $\mathbb{R}$ ).

- $\operatorname{Re}(w\overline{z}) = v \cdot u$ .
- Se  $\frac{w\overline{z}}{|w||z|} = e^{i\theta}$  então  $v \cdot u = |v| |u| \cos \theta$ .
- Suponhamos  $v \cdot u = |v| |u| \cos \beta$ . Segue  $\frac{\text{Re}(w\overline{z})}{|w||z|} = \cos(\beta)$  e notemos que  $\cos(-\beta) = \cos \beta$ . Ainda,  $\frac{\text{Im}(w\overline{z})}{|w||z|}$  é  $\sin \beta$  ou é  $-\sin \beta = \sin(-\beta)$ . Portanto,

$$\frac{w\overline{z}}{|w||z|} \in \left\{ e^{i\beta}, e^{-i\beta} \right\}$$

Seja J=[a,b] um intervalo não degenerado arbitrário em  $\mathbb{R}$ . Uma curva de classe  $C^1$  é uma aplicação  $\gamma:J\to\mathbb{C}$  com derivada  $\gamma':J\to\mathbb{C}$  contínua em J. Notação:  $\gamma\in C^1$ .

A curva  $\gamma$  é dita regular se  $\gamma$  é de classe  $C^1$  e a derivada  $\gamma'$  não se anula. Uma curva regular  $\gamma$  tem em cada ponto  $\gamma(t_0)$  uma reta tangente

$$T: z = \gamma(t_0) + \lambda \gamma'(t_0)$$
, onde  $\lambda$  varia em  $\mathbb{R}$ ,

orientada na direção e sentido do vetor  $\gamma'(t_0)$  em  $\mathbb{C}^*$ . Vide Figura 9.2, a seguir. O vetor  $\gamma'(t_0)$  é referido como direção tangente [à curva  $\gamma$  e no ponto  $\gamma(t_0)$ ]. Podemos descrever tal direção (e sentido) com o vetor tangente unitário

$$\frac{\gamma'(t_0)}{|\gamma'(t_0)|} \in S^1$$

ou, ainda, um ângulo  $\arg[\gamma'(t_0)]$ .

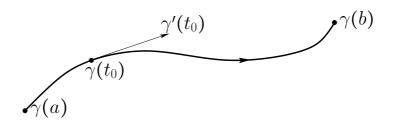


Figura 9.2: Vetor diretor de uma curva

Não é difícil mostrar que toda curva regular é localmente injetora [por favor, cheque]. Entretanto, a análise que segue prescinde de tal propriedade.

9.1 Regra da Cadeia. Sejam  $\gamma: J \to \Omega$  derivável e  $f \in \mathcal{H}(\Omega)$ . Então,

$$f \circ \gamma : J \to \mathbb{C}$$
 é derivável e  $(f \circ \gamma)'(t) = f'(\gamma(t)) \gamma'(t)$ , para todo  $t \in J$ .

#### Prova.

Fixemos  $t \in J$ . Para  $s \neq t$ , seja N(s) o quociente de Newton

$$\frac{f(\gamma(s)) - f(\gamma(t))}{s - t} = \begin{cases} \frac{f(\gamma(s)) - f(\gamma(t))}{\gamma(s) - \gamma(t)} \frac{\gamma(s) - \gamma(t)}{s - t}, & \text{se } \gamma(s) - \gamma(t) \neq 0, \\ 0, & \text{caso contrário.} \end{cases}$$

Seja  $(s_n)$  uma sequência em  $J \setminus \{t\}$  e convergente a t.

- $\diamond$  Suponhamos  $\gamma(s_n) = \gamma(t)$  para todo n. Então temos  $N(s_n) = 0$  para todo n e, é trivial ver,  $\gamma'(t) = 0$ . Logo,  $N(s_n) \to f'(\gamma(t))\gamma'(t)$ .
- ♦ Suponhamos  $\gamma(s_n) \neq \gamma(t)$  para todo n. Então, como  $\gamma$  é contínua, segue que  $N(s_n) \rightarrow f'(\gamma(t))\gamma'(t)$ ♣

Seja  $(\gamma_1, \gamma_2)$  um par ordenado de curvas regulares que se intersectam em um ponto  $z_0$ . Seja  $(t_1, t_2)$  um par de instantes tal que  $\gamma_1(t_1) = \gamma_2(t_2) = z_0$ . Via translações, podemos supor

$$\gamma_1(0) = \gamma_2(0) = z_0.$$

Temos então as definições abaixo.

**9.2 Definição.** Seja  $(\gamma_1, \gamma_2)$  um par ordenado de curvas regulares, com  $\gamma_1(0) = \gamma_2(0) = z_0$ . O ângulo formado por tal par, em  $z_0$ , é o formado pelo par  $(\gamma'_1(0), \gamma'_2(0))$ .



Figura 9.3: Ângulo entre duas curvas

**9.3 Definição.** Seja  $\Omega$  aberto em  $\mathbb{C}$ . Então,  $f:\Omega\to\mathbb{C}$  é conforme no ponto  $z_0$  se f preserva os ângulos formados por pares ordenados de curvas regulares que se intersectam em  $z_0$ .

Vejamos que se f é holomorfa em  $z_0$  e  $f'(z_0) \neq 0$ , então f é conforme em  $z_0$ . Sejam  $\gamma_1$  e  $\gamma_2$  curvas regulares em  $\Omega$  e passando por  $z_0$ . Devido à identidade

$$\frac{(f\circ\gamma_2)'(0)\overline{(f\circ\gamma_1)'(0)}}{|f\circ\gamma_2)'(0)|\,|(f\circ\gamma_1)'(0)|} = \frac{\gamma_2'(0)\overline{\gamma_1'(0)}}{|\gamma_2'(0)|\,|\gamma_1'(0)|},$$

são iguais os ângulos formados por  $(f \circ \gamma_1, f \circ \gamma_2)$  em  $f(z_0)$  e por  $(\gamma_1, \gamma_2)$  em  $z_0$ .

A seguir, provamos o reverso. Notemos que a noção de aplicação conforme se estende naturalmente a funções diferenciáveis F em abertos de  $\mathbb{R}^2$  a valores em  $\mathbb{R}^2$ . Para tal, definimos o ângulo (orientado) formado pelo par ordenado ((a,b);(c,d)) de vetores não nulos em  $\mathbb{R}^2$  como o ângulo formado pelo par ordenado de números complexos (a+bi,c+di) em  $\mathbb{C}^2$ . Dizemos que F preserva ângulos (orientados) se seu diferencial preserva ângulos (orientados) entre duas curvas que se intersectam.

**9.4 Teorema.** Seja  $f: \Omega \to \mathbb{C}$  uma aplicação cujo campo associado F é diferenciável. Suponhamos que F preserva o ângulo (orientado) entre curvas regulares que se intersectam. Então, f é holomorfa e f' não se anula.

#### Prova.

Fixemos  $z_0 = x_0 + iy_0$  em  $\Omega$  e a base canônica ordenada  $\{e_1, e_2\}$  de  $\mathbb{R}^2$ .

Com a notação z = x + iy, escrevemos

$$\begin{cases} f(x+iy) = u(x,y) + iv(x,y) \text{ e} \\ F(x,y) = (u(x,y),v(x,y)). \end{cases}$$

O campo F é diferenciável em  $(x_0, y_0)$  e seu diferencial é a aplicação linear  $T: \mathbb{R}^2 \to \mathbb{R}^2$  associada à matriz jacobiana

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}.$$

Dada uma curva regular  $\gamma(t) = x(t) + iy(t)$  com  $\gamma(0) = z_0$ , identificada à curva regular  $\Gamma(t) = (x(t), y(t))$  que satisfaz  $\Gamma(0) = (x_0, y_0)$ , identificamos

$$(f \circ \gamma)(t)$$
 com  $(F \circ \Gamma)(t)$ .

Então, existe a derivada  $(f \circ \gamma)'(0) \in \mathbb{C}$  que é identificada com o vetor

$$(F \circ \Gamma)'(0) = T(\Gamma'(0)).$$

Façamos duas observações elementares.

- ♦ Temos det  $T \neq 0$ . Caso contrário, Imagem(T) é nula ou uni-dimensional e todos os vetores  $T(\Gamma'(0))$  são paralelos entre si e F não preserva ângulos‡
- $\diamond$  Os vetores  $e_1 + e_2$  e  $e_1 e_2$  são ortogonais e consequentemente os vetores  $T(e_1) + T(e_2)$  e  $T(e_1) T(e_2)$  são ortogonais. Assim, encontramos

$$|T(e_1)| = |T(e_2)|.$$

Por definição temos

$$Te_1 = (a, b)$$
 e  $Te_2 = (c, d)$ 

e então encontramos

$$(9.4.1) a^2 + b^2 = c^2 + d^2.$$

Sejam $\gamma_1$ e $\gamma_2$ curvas regulares e satisfazendo

$$\gamma_1(0) = \gamma_2(0) = z_0, \quad \gamma_1'(0) = 1 \quad \text{e} \quad \gamma_2'(0) = i.$$

[Portanto,  $\Gamma'_1(0) = e_1 \in \Gamma'_2(0) = e_2$ ]. O ângulo formado pelo par ordenado de números complexos  $(1, i) \notin \pi/2 \pmod{2\pi\mathbb{Z}}$ . Por hipótese, o ângulo formado pelo par ordenado de vetores

$$(T(\Gamma'_1(0)), T(\Gamma'_2(0))) = (Te_1, Te_2)$$

é também  $\pi/2 \pmod{2\pi\mathbb{Z}}$ . Assim, por definição temos

$$\frac{c+di}{|c+di|} = e^{i\pi/2} \left( \frac{a+bi}{|a+bi|} \right).$$

Por (9.4.1) encontramos

(para não esquecer  $\rightarrow$ )  $c+di = e^{i\frac{\pi}{2}}(a+bi) = i(a+bi) = -b+ai$ 

e 
$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}$$
.

Pela Proposição 5.11 segue que f é holomorfa e  $f'(z_0) = a + ib \neq 0$  [pois,  $\det T \neq 0$ ].

Destaquemos que

$$\det T = |f'|^2 > 0.$$

Dizemos que T e f preservam orientação.

Pela Definição 9.3, comentários acima e Teorema 9.4, segue que uma função holomorfa é uma aplicação conforme se e somente se a sua derivada não se anula.

As abordagens ao estudo de aplicações conformes são um tanto variadas. Sugiro ao leitor comparar as adotadas em alguns livros. É recomendável a leitura da (famosa) exposição em Ahlfors, Complex Analysis, 3rd. ed., pp. 73-74.

#### 9.2 - Automorfismos (analíticos) do disco aberto B(0;1)

Dois abertos conexos  $\Omega_1$  e  $\Omega_2$  são ditos conformemente equivalentes se existe  $\varphi:\Omega_1\to\Omega_2$  holomorfa e bijetora. No capítulo 6 (teorema 6.18, a versão global do teorema da função inversa) vimos que se tal  $\varphi$  é analítica então  $\varphi$  é isomorfismo analítico (com  $\varphi^{-1}$  analítica) e  $\varphi'$  não se anula.

Se dois abertos  $\Omega_1$  e  $\Omega_2$  são conformemente equivalentes e  $\varphi:\Omega_1\to\Omega_2$  é como acima, então a aplicação

$$f \mapsto \Phi(f) = f \circ \varphi$$

é uma bijeção de  $\mathcal{H}(\Omega_2)$  em  $\mathcal{H}(\Omega_1)$  que preserva somas e produtos. Isto é,  $\Phi$  é um isomorfismo de anéis. Desta forma, problemas sobre  $\mathcal{H}(\Omega_2)$  podem ser transferidos a  $\mathcal{H}(\Omega_1)$  e as soluções transferidas de volta a  $\mathcal{H}(\Omega_2)$ . A situação mais importante conduz ao Teorema da Aplicação de Riemann, que reduz o estudo do anel  $\mathcal{H}(\Omega)$ , onde  $\Omega$  é um aberto simplesmente conexo distinto do plano, ao estudo do anel  $\mathcal{H}(B(0;1))$ . No caso de problemas específicos, é necessário conhecer o isomorfismo  $\varphi$ .

**9.5 Lema.** Seja  $a \in B(0;1)$ . Então, a aplicação

$$\phi_a(z) = \frac{z - a}{1 - \overline{a}z},$$

é um automorfismo (analítico) de B(0;1), com inversa  $\phi_{-a}$ . Ainda, a aplicação  $\phi_a$  é analítica em D(0;1) e  $\phi_a(S^1) = S^1$ .

#### Prova.

A função  $\phi_a$  é não constante e analítica em  $B(0;|a|^{-1}) \supset D(0;1)$  [pois,  $|a|^{-1} > 1$ ]. Pelo teorema da aplicação aberta,  $\phi_a(B(0;1))$  é aberto.

Se |z| = 1, temos  $z\overline{z} = 1$  e

$$|\phi_a(z)| = \left| \frac{z - a}{z(\overline{z} - \overline{a})} \right| = \left| \frac{z - a}{\overline{z} - \overline{a}} \right| = 1.$$

Então, pelo princípio do módulo máximo segue  $\phi_a: B(0;1) \to B(0;1)$ . Analogamente,  $\phi_{-a}: B(0;1) \to B(0;1)$ . Ainda, dado z em B(0;1) temos

$$\phi_a \circ \phi_{-a}(z) = \frac{\phi_{-a}(z) - a}{1 - \overline{a}\phi_{-a}(z)}$$

$$= \frac{\frac{z+a}{1+\overline{a}z} - a}{1 - \overline{a}\frac{z+a}{1+\overline{a}z}}$$

$$= \frac{z+a-a-|a|^2z}{1+\overline{a}z-\overline{a}z-|a|^2}$$

$$= z.$$

Da mesma forma,  $\phi_{-a} \circ \phi_a$  também é a identidade de B(0;1)•

**9.6 Teorema.** A função  $f \in \mathcal{A}(B(0;1))$  é um automorfismo (analítico) de B(0;1) se e somente se existem  $\theta$  em  $\mathbb{R}$  e um ponto a em B(0;1) tais que

$$f(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z} = e^{i\theta} \phi_a(z)$$
, para todo  $z \in B(0; 1)$ .

Prova. Esta prova usa, essencialmente, o Lema de Schwarz (6.16).

- $(\Leftarrow)$  Pelo Lema 9.5 a função  $z \mapsto e^{i\theta} \phi_a(z)$  é automorfismo (analítico) de B(0;1).
- (⇒) Seja b = f(0). Então,  $F = \phi_b \circ f$  é automorfismo (analítico) de B(0;1) e F(0) = 0. Pelo lema de Schwarz,

$$|F(z)| \le |z|$$
, para todo  $z \in B(0;1)$ .

Donde,  $F^{-1}$  é automorfismo de B(0;1) e  $F^{-1}(0)=0$ . Pelo lema de Schwarz,

$$|F^{-1}(z)| \le |z|$$
, para todo  $z \text{ em } B(0;1)$ .

Obtemos então |F(z)| = |z|, para todo  $z \in B(0;1)$ , e concluímos que existe uma constante  $\theta$  tal que  $F(z) = e^{i\theta}z$ , para todo  $z \in B(0;1)$ . Assim,

$$f(z) = \phi_{-b} \circ F(z) = \frac{e^{i\theta}z + b}{1 + \overline{b}e^{i\theta}z} = \frac{e^{i\theta}(z + be^{-i\theta})}{1 + \overline{b}e^{-i\overline{\theta}}z} = e^{i\theta}\phi_{-be^{-i\theta}}(z) + \Phi$$

#### 9.3 - Teorema da Aplicação de Riemann

É claro que todo aberto conformemente equivalente à bola B(0;1) é simplesmente conexo. O reverso foi formulado por G. F. B. Riemann em 1851 e provado em sua generalidade no início do século XX. A prova de Riemann, baseada em teoria do potencial (funções harmônicas) continha uma falha crucial e em parte corrigida por Hilbert (1905). Essencialmente, a ferramenta que faltava para uma prova completa do teorema da aplicação de Riemann era o Critério de Compacidade de Montel, ou um substituto.

Segundo alguns, a primeira prova correta (e que não atraiu muita atenção) do teorema da aplicação de Riemann foi dada em 1900, por W. F. Osgood . Segundo outros, em 1907 por K. Koebe. Poincaré, em 1908 também publicou uma prova de tal teorema. Os métodos então desenvolvidos por Koebe e Carathéodory (1912) evoluiram para uma prova cristalina e elegante que, em seu formato final, se deve a L. Fejér e F. Riesz (1922). Em essência, esta é a prova apresentada nesta notas.

Vide Gray, Jeremy (1994), On the history of the Riemann mapping theorem, Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento (34): 47-94.

Para estudarmos o teorema da aplicação de Riemann, excluímos o caso  $\Omega$  =  $\mathbb C$  pois, pelo Teorema de Liouville, toda função analítica

$$\varphi: \mathbb{C} \to B(0;1)$$

é constante.

Veremos o teorema da aplicação de Riemann como um corolário do Teorema 9.8, a seguir. Esta versão (teorema 9.8) aparentemente mais forte do teorema de Riemann será útil (no capítulo 12) para caracterizarmos abertos simplesmente conexos.

O Teorema 9.8 isola a propriedade essencial à prova do teorema de Riemann: a existência de raiz quadrada para funções  $f \in \mathcal{A}(\Omega)$  que não se anulam [vide Teorema 8.8(b)]. Na prova do teorema 9.8, usamos a aplicação de Koebe.

#### 9.7 Lema (Koebe). Seja $\Omega$ um aberto conexo tal que

$$0 \in \Omega \subset B(0;1)$$
, com  $\Omega \neq B(0;1)$ .

Suponhamos que existe uma  $\sqrt{f}$ , analítica em  $\Omega$ , para toda  $f \in \mathcal{A}(\Omega)$  que não se anula em  $\Omega$ . Então, existe uma aplicação  $\kappa \in \mathcal{A}(\Omega)$  com as seguintes propriedades.

- (a)  $\kappa(0) = 0$   $e \kappa(\Omega) \subset B(0;1)$ .
- (b)  $\kappa: \Omega \to B(0;1)$  é injetora.
- (c)  $|\kappa(z)| > |z|$ , para todo  $z \in \Omega \setminus \{0\}$ .

#### Prova.

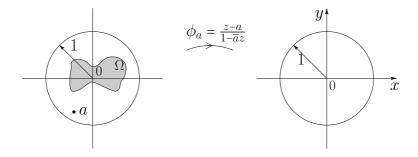


Figura 9.4: A transformação  $\phi_a$  e o Lema de Koebe

♦ Preparação. [Vide Figura 9.4].

Sejam  $a \in B(0;1) \setminus \Omega$  e

$$\phi_a(z) = \frac{z - a}{1 - \overline{a}z}$$
, onde  $z \in \Omega$ .

Pelo Teorema 9.6 temos  $\phi_a:\Omega\to B(0;1)$ , com  $\phi_a$  analítica, injetora e  $\phi_a(z)\neq 0$  para todo z em  $\Omega$ . Por hipótese, existe

$$g \in \mathcal{A}(\Omega)$$
 tal que  $g^2 = \phi_a$ .

É claro que  $g(\Omega) \subset B(0;1)$ . Ainda, a função g é injetora [de fato, se g(z) = g(w) então temos  $\phi_a(z) = g^2(z) = g^2(w) = \phi_a(w)$  e em consequência z = w]. Definamos

$$b = g(0)$$
 e  $\psi(z) = \phi_b(z) = \frac{z - b}{1 - \overline{b}z}$ , para  $z \in B(0; 1)$ , e 
$$\kappa = \psi \circ g \in \mathcal{A}(\Omega).$$

A seguir, completamos as provas das afirmações (a), (b) e (c).

(a) e (b). É trivial ver que

$$\kappa(0) = 0$$
,  $\kappa(\Omega) \subset B(0;1)$  e que  $\kappa$  é injetora,

pois  $g \in \psi$  são injetoras.

(c) Pelo teorema 6.18 da função inversa (global), as aplicações

$$g: \Omega \to g(\Omega)$$
 e  $\psi: g(\Omega) \to \psi(g(\Omega)) = \kappa(\Omega)$ 

são isomorfismos (analíticos) entre abertos e

$$\kappa^{-1} = g^{-1} \circ \psi^{-1} : \kappa(\Omega) \to \Omega$$
 é isomorfismo (analítico).

Notemos que  $\phi_a^{-1} = \phi_{-a}$ . A bijeção  $r(z) = g \circ \phi_{-a}(z)$ , para  $z \in \phi_a(\Omega)$  [logo,  $\phi_{-a}(z) \in \Omega$ ], satisfaz

$$r(z)^2 = g^2(\phi_{-a}(z)) = \phi_a \circ \phi_{-a}(z) = z$$

e é uma raiz quadrada analítica. Donde encontramos

$$r^{-1}(w) = [r(r^{-1}(w))]^2 = w^2.$$

Seguem as identidades

$$g^{-1}(z) = (\phi_{-a} \circ r^{-1})(z) = \phi_{-a}(z^2) = \frac{z^2 + a}{1 + \overline{a}z^2}.$$

Desta forma, a função

$$\kappa^{-1} = g^{-1} \circ \psi^{-1} : \kappa(\Omega) \to \Omega$$

é a restrição de uma função analítica

$$K: B(0;1) \to B(0;1)$$

que não é uma rotação [não é da forma  $z\mapsto \omega z,$  com  $\omega\in S^1].$ 

Temos

$$\psi(b) = \phi_b(b) = 0$$
 e  $g(0) = b$ .

Donde,  $K(0) = g^{-1}(b) = 0$ . Então, pelo Lema de Schwarz [e já que K não é uma rotação] obtemos

$$|K(z)| < |z|$$
, para todo  $z \in B(0;1) \setminus \{0\}$ .

Logo, temos  $|\kappa^{-1}(z)| < |z|$  se  $z \in \kappa(\Omega) \setminus \{0\}$ .

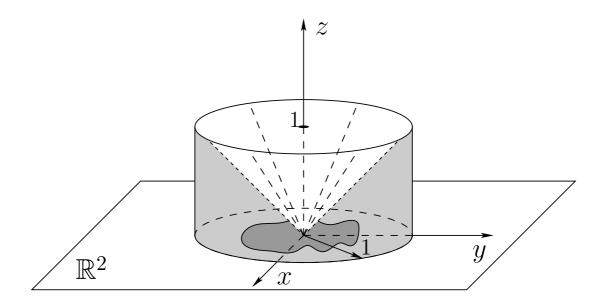


Figura 9.5: A paisagem analítica da aplicação de Koebe  $[\kappa]$  está no cone branco

Então, para  $z = \kappa(w)$  e  $w \neq 0$ ,

$$|w| = |\kappa^{-1} \circ \kappa(w)| < |\kappa(w)| \blacktriangleleft$$

**9.8 Teorema.** Seja  $\Omega$  aberto, conexo e  $\Omega \neq \mathbb{C}$ . Suponha que para toda função  $f \in \mathcal{A}(\Omega)$ , que não se anula em  $\Omega$ , existe  $g \in \mathcal{A}(\Omega)$  tal que  $g^2 = f$ . Então, existe um isomorfismo (analítico) entre  $\Omega$  e B(0;1).

Prova. Dividamos a prova em três partes.

⋄ Existe um isomorfismo analítico  $h_0: \Omega \to \Omega_0$ , onde  $\Omega_0$  é aberto e conexo e  $0 \in \Omega_0 \subset B(0;1)$ . Seja  $a \in \mathbb{C} \setminus \Omega$ . Por hipótese, existe  $g \in \mathcal{A}(\Omega)$  tal que  $g^2(z) = z - a$ , para todo z em  $\Omega$ . Claramente g é injetora. Se  $w \in g(\Omega)$ , então  $-w \notin g(\Omega)$  [caso contrário, se  $g(z_1) = w = -g(z_2)$  então  $z_1 - a = g(z_1)^2 = g(z_2)^2 = z_2 - a$  e obtemos  $z_1 = z_2$  e w = -w; logo, w = 0 e g se anula em  $\Omega^{\sharp}$ ]. Sejam  $w_0 \in g(\Omega)$  e  $B(w_0; r) \subset g(\Omega)$ , com r > 0. Então,  $g(\Omega) \cap B(-w_0; r) = \emptyset$  [pois, se  $z \in B(-w_0; r)$  então  $-z \in B(w_0; r)$ ]. Isto mostra  $|g(z) + w_0| \ge r$ , para todo z em  $\Omega$ . Logo,  $h = 1/(g + w_0): \Omega \to \mathbb{C}$  é analítica, injetora e  $|h| \le 1/r$ . Pelo teorema da função inversa,  $h : \Omega \to h(\Omega)$  é isomorfismo (analítico). Seja

$$h_0(z) = \epsilon [h(z) - h(z_0)], \text{ onde } z_0 \in \Omega \in 0 < \epsilon < \frac{r}{2}.$$

A função  $h_0: \Omega \to \Omega_0 = h_0(\Omega)$  é isomorfismo (analítico) e  $0 \in \Omega_0 \subset B(0;1)$  [pois  $h_0(z_0) = 0$  e  $|h_0(z)| \le \epsilon |h(z)| + \epsilon |h(z_0)| < 1/2 + 1/2 = 1$ ].

- $\diamond$  Para toda função  $f \in \mathcal{A}(\Omega_0)$ , que não se anula, existe uma função  $\sqrt{f} \in \mathcal{A}(\Omega_0)$ . De fato, dada  $\phi \in \mathcal{A}(\Omega)$  tal que  $\phi^2 = f \circ h_0$ , temos  $(\phi \circ h_0^{-1})^2 = f$ .
- $\diamond$  Seja  $\mathcal{F}$  a família das funções  $f \in \mathcal{A}(\Omega_0)$  satisfazendo
  - (i)  $f(\Omega_0) \subset B(0;1)$ .
  - (ii)  $f: \Omega_0 \to B(0;1)$  é injetora.
  - (iii) f(0) = 0.

Tal família é não vazia pois contém a função f(z)=z, onde  $z\in\Omega_0$ . Fixemos um ponto arbitrário  $z_0\in\Omega_0,$  com  $z_0\neq0.$  É trivial ver que

$$\alpha = \sup_{f \in \mathcal{F}} |f(z_0)|$$
 satisfaz  $0 < \alpha \le 1$ .

As afirmações abaixo mostram que  $\Omega_0$  é isomorfo (analiticamente) a B(0;1).

- (a) Existe  $F \in \mathcal{F}$  tal que  $|F(z_0)| = \alpha$ .
- (b)  $F: \Omega_0 \to B(0; 1)$  é isomorfismo (analítico).

#### Prova de (a).

Seja  $(f_n)$  uma sequência em  $\mathcal{F}$  tal que  $|f_n(z_0)| \to \alpha$ . Como temos  $|f_n(z)| < 1$  para todo  $z \in \Omega_0$ , pelo teorema de Montel existe uma subsequência  $(f_{n_k})$  convergindo uniformemente nos compactos de  $\Omega_0$  a uma função  $F \in \mathcal{A}(\Omega_0)$ . É claro que F(0) = 0 e  $|F(z_0)| = \alpha$ . Em particular, F não é constante. Pelo Corolário 6.23 (Hurwitz) a função F é injetora. É claro que  $F(\Omega_0) \subset D(0;1)$  e então, como  $F(\Omega_0)$  é aberto, segue que  $F(\Omega_0) \subset B(0;1)$ . Em suma,

$$F \in \mathcal{F} \ \ \mathrm{e} \ \ |F(z_0)| = \alpha.$$

#### Prova de (b).

Seja  $\Omega_1 = F(\Omega_0) \subset B(0;1)$ . Como  $F:\Omega_0 \to \Omega_1$  é isomorfismo (analítico), basta provar que  $\Omega_1 = B(0;1)$ . Suponhamos, por contradição, que  $\Omega_1 \neq B(0;1)$ . Então, pela segunda parte da prova deste teorema e pelo Lema 9.7 (Koebe) existe uma função  $\kappa \in \mathcal{A}(\Omega_1)$  tal que  $\kappa(0) = 0$ , com  $\kappa:\Omega_1 \to B(0;1)$  injetora e  $|\kappa(w)| > |w|$  em todo ponto  $w \in \Omega_1 \setminus \{0\}$ . Donde segue

$$f = \kappa \circ F \in \mathcal{F}$$
 e também  $|f(z_0)| > |F(z_0)| = \alpha \mathcal{I}$ 

9.9 Teorema da Aplicação de Riemann. Seja  $\Omega$  um aberto simplesmente conexo que não o plano. Então,  $\Omega$  é conformemente equivalente a B(0;1).

#### Prova.

Pelo Teorema 8.8(b) toda função analítica em  $\Omega$ , que não se anula, tem raiz quadrada analítica. Então, pelo Teorema 9.8 segue que  $\Omega$  é isomorfo (analiticamente) a B(0;1) e, portanto, conformemente equivalente a B(0;1).

#### 9.4 - Esfera de Riemann

Para analisar uma função f = f(z) no infinito é frutífero estudar  $z \mapsto f(1/z)$  em uma vizinhança de 0. Torna-se então razoável tratar "o infinito" como mais um ponto. Vejamos algumas maneiras, equivalentes, de proceder.

Consideremos  $\mathbb{C}$  com sua topologia usual e um elemento  $\infty \notin \mathbb{C}$ .

#### O espaço $\mathbb{P}^1$ .

Consideremos o conjunto  $\mathbb{C} \cup \{\infty\}$ . Um subconjunto O de  $\mathbb{C} \cup \{\infty\}$  é aberto se

- (1)  $O \cap \mathbb{C}$  é aberto em  $\mathbb{C}$  e
- (2) se  $\infty \in O$  então, para algum r > 0, o conjunto  $\{z \in \mathbb{C} : |z| > r\}$  está contido em O.

Assim, escolhemos como sistema fundamental de vizinhanças de  $\infty$  os conjuntos

$$B(\infty; r) = \{z \in \mathbb{C} : |z| > r\} \cup \{\infty\}, \text{ onde } r > 0.$$

Notemos que os conjuntos

$$D(\infty;r)=\{z\in\mathbb{C}:|z|\geq r\}\cup\{\infty\}$$

são vizinhanças compactas de  $\infty$  [por favor, cheque].

Com as notações

$$\frac{1}{\infty} = 0 \quad e \quad \frac{1}{0} = \infty,$$

segue que O é aberto em  $\mathbb{C} \cup \{\infty\}$  se e somente se

$$\left\{ \frac{1}{z} : z \in O \right\}$$

é aberto em  $\mathbb{C} \cup \{\infty\}$ .

Portanto, a função bijetora

$$\operatorname{Inv}: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}, \text{ onde } \operatorname{Inv}(z) = \frac{1}{z} \text{ para cada } z \in \mathbb{C} \cup \{\infty\},$$

é um homeomorfismo.

Consideremos agora os seguintes abertos de  $\mathbb{C} \cup \{\infty\}$ ,

$$O_1 = \mathbb{C} \quad \text{e} \quad O_2 = (\mathbb{C} \setminus \{0\}) \cup \{\infty\}.$$

Notemos  $O_1 \cup O_2 = \mathbb{C} \cup \{\infty\}$  e  $O_1 \cap O_2 = \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ . Consideremos as aplicações

$$\phi_1: O_1 \to \mathbb{C}$$
, onde  $\phi_1(z) = z$  para cada  $z \in O_1$ , e

$$\phi_2: O_2 \to \mathbb{C}$$
, onde  $\phi_2(z) = \frac{1}{z}$  para cada  $z \in O_2$ .

Então,  $\phi_1$  e  $\phi_2$  são homeomorfismos e a aplicação

$$\phi_1 \circ \phi_2^{-1}: \ \phi_2(O_1 \cap O_2) \to \phi_1(O_1 \cap O_2)$$

é a bijeção

$$z \mapsto \frac{1}{z}$$
 de  $\mathbb{C}^*$  em  $\mathbb{C}^*$ .

O conjunto  $\mathbb{C} \cup \{\infty\}$  com esta estrutura complexa [isto é, a topologia e as cartas  $\phi_1$  e  $\phi_2$ ] é a reta projetiva complexa, denotada  $\mathbb{P}^1$ .

Uma função  $f:\mathbb{P}^1\to\mathbb{C}$  é holomorfa se as seguintes aplicações são holomorfas:

$$f\circ\phi_1^{-1}:\mathbb{C}\to\mathbb{C}\ \ \mathrm{e}\ \ f\circ\phi_2^{-1}:\mathbb{C}\to\mathbb{C}.$$

#### A construção de Riemann.

Consideremos a esfera unitária de  $\mathbb{R}^3$  centrada na origem

$$S^2=\big\{p=\big(\xi,\eta,\zeta\big)\in\mathbb{R}^3:\xi^2+\eta^2+\zeta^2=1\big\},$$

com a métrica induzida por  $\mathbb{R}^3$ .

Claramente, a esfera  $S^2$  é compacta, conexa por caminhos e conexa.

Na construção de Riemann, o ponto  $\infty$  de  $\mathbb{C} \cup \{\infty\}$  é identificado com o "polo" (0,0,1) [mas, poderia ser qualquer outro ponto e tal observação é importante]. Vide figura 9.6, a seguir.

A topologia em  $\mathbb{C} \cup \{\infty\}$  é a induzida pela projeção estereográfica

$$\Phi: S^2 \setminus \{(0,0,1)\} \to \mathbb{C}$$

definida por:  $\Phi(\xi, \eta, \zeta)$  é o único ponto z = x + iy em  $\mathbb{C}$  tal que a reta em  $\mathbb{R}^3$  e pelos pontos (0,0,1) e (x,y,0) intersecta  $S^2 \setminus \{(0,0,1)\}$  no ponto  $p = (\xi,\eta,\zeta)$ .

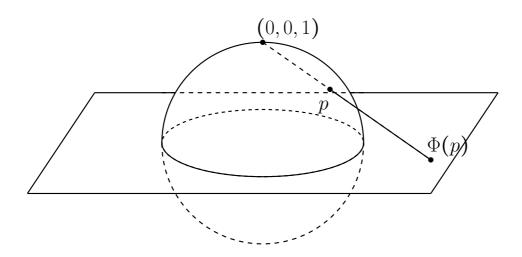


Figura 9.6: Projeção estereográfica

A projeção estereográfica é bijetora e [por favor, cheque]

$$\Phi(\xi, \eta, \zeta) = \frac{\xi + i\eta}{1 - \zeta} = z = x + iy \quad \text{e} \quad \Phi^{-1}(z) = \left(\frac{2x}{1 + |z|^2}, \frac{2y}{1 + |z|^2}, \frac{|z|^2 - 1}{|z|^2 + 1}\right) = (\xi, \eta, \zeta).$$

Evidentemente,  $\Phi:S^2\smallsetminus\{(0,0,1)\}\to\mathbb{C}$ é um homeomorfismo. Ainda,

$$|\Phi(\xi,\eta,\zeta)|^2 = \frac{\xi^2 + \eta^2}{(1-\zeta)^2} = \frac{1-\zeta^2}{(1-\zeta)^2} = \frac{1+\zeta}{1-\zeta} \xrightarrow{(\xi,\eta,\zeta)\to(0,0,1)} \infty \quad \text{e} \quad \Phi^{-1}(z) \xrightarrow{|z|\to\infty} (0,0,1).$$

Através de  $\Phi$ , identificamos  $\mathbb{C}$  com  $S^2 \setminus \{(0,0,1)\}$  e definindo  $\Phi(0,0,1) = \infty$  identificamos o chamado plano complexo estendido  $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$  com a esfera  $S^2$ .

Os abertos de  $\mathbb{P}^1$  e  $\overline{\mathbb{C}}$  são os mesmos. Portanto  $S^2$ ,  $\overline{\mathbb{C}}$  e  $\mathbb{P}^1$  são homeomorfos.

Tanto  $S^2$  como  $\mathbb{P}^1$  e  $\overline{\mathbb{C}}$  são denominadas esferas de Riemann.

Mantenhamos as notações acima para  $S^2$  e a projeção estereográfica  $\Phi$ .

- 9.10 Teorema. Seja  $\Gamma$  um subconjunto não vazio e não unitário de  $S^2$ . Então,  $\Gamma$  é uma circunferência [isto é, a intersecção de  $S^2$  com um plano  $\pi$ :  $a\xi+b\eta+c\zeta=d$ , onde a,b,c e d são constantes reais e (a,b,c) é um vetor não nulo] se e somente se sua projeção estereográfica  $\Phi(\Gamma)$  no plano cartesiano é
- uma reta se  $(0,0,1) \in \Gamma$  uma circunferência (não degenerada) se  $(0,0,1) \notin \Gamma$ .

**Prova.** As coordenadas  $(\xi, \eta, \zeta)$ , em  $S^2$ , e (x, y) no plano  $\mathbb{R}^2$  satisfazem

$$\left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{x^2+y^2-1}{1+x^2+y^2}\right) = (\xi, \eta, \zeta).$$

 $\Gamma$  é a circunferência citado se e só se as coordenadas (x,y) de  $\Phi(\Gamma)$  satisfazem  $2ax+2by+c(x^2+y^2-1)=d(x^2+y^2+1)$  ou, ainda,  $(c-d)(x^2+y^2)+2ax+2by+(-c-d)=0$ , cujas possíveis soluções são (em tese): o vazio, um ponto, uma reta ou um círculo.

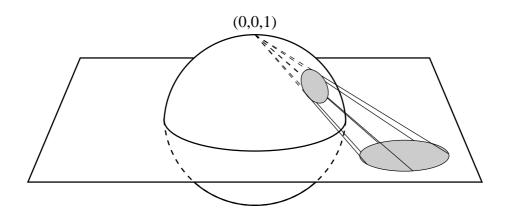


Figura 9.7: Ilustração ao Teorema 9.10

- (⇒) Devido às hipóteses, Γ é uma circunferência não degenerada em S².
   Se Γ contém (0,0,1), então c = d e a projeção é uma reta.
   Se Γ não contém (0,0,1), então c ≠ d e a projeção é uma circunferência.
- (⇐) Por hipótese, a projeção de Γ é uma reta ou uma circunferência (não degenerada). As coordenadas de tal projeção satisfazem uma equação do tipo (c-d)(x² + y²) + 2ax + 2by + (-c-d) = 0, com (c-d)² + a² + b² ≠ 0.
  Donde segue que as coordenadas (ξ, η, ζ) de Γ satisfazem aξ + bη + cζ = d.
  Por fim, temos a² + b² + c² ≠ 0. Caso contrário, segue a = b = c = 0 e d ≠ 0 e então a equação para a projeção é x² + y² + 1 = 0, cuja solução é o vazio ²

#### 9.5 - Simplesmente Conexos e a Esfera de Riemann

Seja (X, d) um espaço métrico. Dizemos que X é:

- localmente compacto se cada ponto de X tem uma vizinhança compacta;
- localmente conexo se cada ponto de X tem um sistema fundamental de vizinhanças abertas e conexas.
- **9.11 Lema.** Seja (X,d) um espaço métrico localmente compacto. Seja K uma componente (conexa) compacta de X. Então, existe um sistema fundamental de vizinhanças de K que são abertas e fechadas em X.

#### Prova.

 $\diamond$  O caso X compacto. Consideremos a família

 $\mathcal{V} = \{V \subset X : \text{ o conjunto } V \text{ \'e aberto e fechado em } X \text{ e, ainda, cont\'em } K\}.$ Temos  $\mathcal{V} \neq \emptyset$ , pois  $X \in \mathcal{V}$ . Seja

$$L = \bigcap_{V \in \mathcal{V}} V.$$

Obviamente,  $K \subset L$ . Ainda, L é uma intersecção de fechados em X. Logo, L é fechado em X. Como X é compacto, segue que L é compacto. Assim,

$$K \subset L$$
 e  $L$  é compacto em  $X$ .

Mostremos que  $\mathcal{V}$  é um sistema fundamental de vizinhanças de L.

Seja O um aberto em X tal que  $L \subset O$ . Temos,

$$X \setminus O \subset X \setminus L$$
.

Como  $X \setminus O$  é compacto [um fechado no compacto X] e valem as relações

$$X \setminus O \subset X \setminus L = \bigcup_{V \in \mathcal{V}} (X \setminus V),$$

segue que existem  $V_1, \ldots, V_n$  em  $\mathcal{V}$  tais que  $X \setminus O \subset (X \setminus V_1) \cup \cdots \cup (X \setminus V_n)$ . Passando ao complementar, segue

$$V_1 \cap \cdots \cap V_n \subset O$$
, com  $L \subset V_1 \cap \cdots \cap V_n \in V_1 \cap \cdots \cap V_n \in \mathcal{V}$ .

Isto mostra que  $\mathcal{V}$  é um sistema fundamental de vizinhanças de L.

Para encerrar tal caso, mostremos que L = K.

Basta vermos que L é conexo, já que K é uma componente conexa e  $K \subset L$ . Supondo por contradição que L não é conexo, consideremos uma cisão

$$(9.11.1) L = A \cup B.$$

Isto é, A e B são abertos e fechados em L, não vazios e disjuntos. Em particular, A e B são fechados em X [pois L é fechado em X]. Temos

 $K = (A \cap K) \cup (B \cap K)$ , com  $A \cap K$  e  $B \cap K$  abertos e fechados em K.

Como K é conexo, temos  $K \subset A$  ou  $K \subset B$ . Suponhamos  $K \subset A$ .

Como A e B são fechados disjuntos no compacto K, então A e B são compactos disjuntos. Logo, existem dois abertos disjuntos  $O_A$  e  $O_B$  satisfazendo

$$A \subset O_A \in B \subset O_B$$
.

Claramente,  $L \subset O_A \cup O_B$ . Já vimos que existe  $V \in \mathcal{V}$  satisfazendo

$$L \subset V \subset O_A \cup O_B$$
.

O conjunto  $V \cap O_A$  é aberto em X [pois  $V \in O_A$  são abertos em X]. Analogamente,  $V \cap O_A = V \cap (X \setminus O_B)$  é fechado em X. Claramente  $K \subset V \cap O_A$  [pois,  $K \subset L \subset V \in K \subset A \subset O_A$ ]. Portanto,  $V \cap O_A \in \mathcal{V}$ . Segue então que

$$L \subset V \cap O_A = V \cap (X \setminus O_B).$$

Donde segue  $L \cap O_B = \emptyset$  e  $L \cap B = \emptyset$ . Logo, devido a (9.11.1) temos  $B = \emptyset$ ?

◇ O caso geral. Seja X<sub>0</sub> uma vizinhança compacta de K [cheque a existência]. Destaquemos que K é uma componente conexa de X<sub>0</sub> [pois conexidade é uma noção absoluta e assim, K é conexo em X<sub>0</sub>; ainda mais, se C é um conexo de X<sub>0</sub> tal que K ⊂ C então C é conexo de X e portanto C = K].

Seja  $O_1$  um aberto arbitrário em X e tal que

$$K \subset O_1$$
.

Então,  $O_1 \cap X_0$  é uma vizinhança em X do conjunto K. Portanto, existe um aberto  $O_2$  em X tal que

$$K \subset O_2 \subset O_1 \cap X_0 \subset X_0$$
.

Assim,  $O_2 = O_2 \cap X_0$  é aberto em  $X_0$ . Pelo caso compacto (já provado), existe um conjunto V, aberto e fechado na topologia de  $X_0$ , tal que

$$K \subset V \subset O_2 \subset X_0$$
.

Como  $X_0$  é fechado em X, segue que V é fechado em X. Ainda mais, já que V é aberto em  $X_0$  e  $V \subset O_2 \subset X_0$ , segue que

$$V = V \cap O_2$$

é aberto em  $O_2$ . Desta forma temos

 $V \subset O_2 \subset X$ , com V aberto em  $O_2$  e  $O_2$  aberto em X.

Logo, V é aberto em X.

Portanto, V é aberto e fechado em X e satisfaz  $K \subset V \subset O_1 \blacktriangleleft$ 

No Capítulo 12 veremos a equivalência das propriedades na proposição abaixo.

- **9.12 Proposição.** Seja  $\Omega$  um aberto conexo no plano  $\mathbb{C}$ . Quanto às afirmações a seguir, temos que (a) implica (b) e (b) implica (c).
  - (a)  $\Omega$  é simplesmente conexo.
  - (b)  $S^2 \setminus \Omega$  é conexo. [Com a identificação  $S^2 \equiv \mathbb{C} \cup \{\infty\}$ ].
  - (c)  $\mathbb{C} \setminus \Omega$  não tem componente (conexa) compacta.

**Prova.** As componentes aqui citadas são todas conexas.

(a) $\Rightarrow$  (b). Se  $\Omega = \mathbb{C}$ , é óbvio que  $S^2 \setminus \Omega = \{\infty\}$  é conexo.

Suponhamos  $\Omega \neq \mathbb{C}$ . Pelo Teorema da aplicação de Riemann existe

 $\phi: B(0;1) \to \Omega$ , um homeomorfismo.

Seja

$$K = \overline{\Omega} \times \Omega$$
.

a fronteira de  $\Omega$  como subconjunto aberto em  $S^2$  [ $\overline{\Omega}$  é o fecho de  $\Omega$  em  $S^2$ ]. Como  $S^2$  é compacto e K é um fechado de  $S^2$ , temos que K é compacto. Consideremos os anéis  $A_n = \left\{z \in \mathbb{C} : 1 - \frac{1}{n} < |z| < 1\right\}$ 

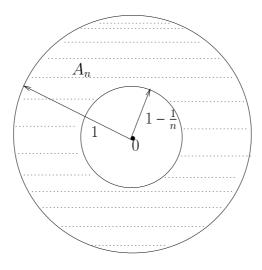


Figura 9.8: Anéis decrescentes:  $A_1 = B(0;1) \setminus \{0\} \supset A_2 \supset A_3 \supset \cdots$ 

e, para cada n, o conjunto

$$K_n = \overline{\phi(A_n)}$$
, o fecho de  $\phi(A_n)$  em  $S^2$ .

Como  $A_n$  é conexo e  $S^2$  é compacto,  $K_n$  é conexo [vide Proposição 2.47(e)] e compacto. Ainda,  $K_1 \supset K_2 \supset K_3 \supset \cdots$ . Seja

$$L = \bigcap_{n>1} K_n$$
.

 $\diamond$  Afirmação: L = K.

Basta provarmos que  $p \in \overline{\Omega} \setminus \Omega$  se e somente se  $p \in \overline{\phi(A_n)}$  para todo n.

- Seja  $p \in \overline{\Omega} \setminus \Omega$ . Então, existe uma sequência  $(z_n) \subset B(0;1)$  tal que  $\lim \phi(z_n) = p$ . Como  $(z_n)$  é limitada, então existe uma subsequência  $(z_{n_k}) = (\zeta_k)$  tal que  $\lim \zeta_k = \zeta \in D(0;1)$ . Se  $\zeta \in B(0;1)$ , então  $\phi(\zeta) = \lim \phi(\zeta_k) = \lim \phi(z_{n_k}) = p$  e então  $p \in \Omega$ ? Portanto,

$$|\zeta_n| \to 1$$
 e  $\lim \phi(\zeta_n) = p$ .

Seja O um aberto contendo p. Então, existe  $n_0$  tal que  $\phi(\zeta_n) \in O$ , para todo  $n \ge n_0$ . Seja N arbitrário em  $\mathbb{N}$ . Então, existe j tal que

$$j \ge n_0 \text{ e } 1 - \frac{1}{N} < |\zeta_j| < 1.$$

Logo,  $\zeta_j \in A_N$  e, ainda,  $\phi(\zeta_j) \in O$ . Portanto,  $p \in \overline{\phi(A_N)}$ .

- Seja p tal que  $p \in \overline{\phi(A_n)}$ , para todo n em  $\mathbb{N}$ . Evidentemente,  $p \in \overline{\Omega}$ . Ainda mais, toda bola aberta centrada em p intersecta  $\phi(A_n)$ , para todo n. Portanto, existe uma sequência  $(z_n)$  tal que

$$z_n \in A_n$$
, para todo  $n$ , e  $\lim \phi(z_n) = p$ .

É trivial ver que  $|z_n| \to 1$  [vide figura 9.8].

Mostremos, por contradição, que  $p \notin \Omega$ . Suponhamos que existe  $z \in B(0;1)$  tal que  $\phi(z) = p$ . Então,  $\phi(z_n) \to \phi(z)$  e, como  $\phi$  é homeomorfismo, concluímos que  $(z_n)$  converge a  $z \in B(0;1)$ ? Mostramos então que  $p \in \overline{\Omega} \setminus \Omega$ , como desejávamos.

⋄ K = L é conexo. Suponhamos que exista uma cisão  $K = A \cup B$  para o compacto K. Então, A e B são compactos disjuntos e não vazios. Sejam U e V abertos disjuntos em  $S^2$  com  $A \subset U$  e  $B \subset V$ . Visto que

$$[S^2 \setminus (U \cup V)] \cap K = \emptyset$$
, que  $S^2 \setminus (U \cup V)$  é compacto e que  $K = \bigcap K_n$ ,

concluímos que temos  $[S^2 \setminus (U \cup V)] \subset (S^2 \setminus K) = \bigcup_{n=1}^{+\infty} (S^2 \setminus K_n)$  e

$$[S^2 \setminus (U \cup V)] \cap \bigcap_{n=1}^m K_n = \emptyset$$
, para algum  $m$ .

Logo,  $K_m \subset U \cup V$ . Porém,  $K_m \cap U \supset A$ ,  $K_m \cap V \supset B$  e  $K_m$  é conexo $\checkmark$   $S^2 \setminus \Omega$  é conexo. Suponhamos existir uma cisão

$$S^2 \setminus \Omega = T_1 \cup T_2.$$

Como  $S^2 \setminus \Omega$  é compacto,  $T_1$  e  $T_2$  são compactos disjuntos e não vazios. Vejamos que toda componente  $\mathcal{C}$  de  $S^2 \setminus \Omega$  intersecta  $K = \overline{\Omega} \setminus \Omega$ . Notemos que

$$\mathcal{C} \cap K = \mathcal{C} \cap \overline{\Omega}$$
.

Suponhamos  $\mathcal{C} \cap \overline{\Omega} = \emptyset$ . Então, como  $S^2$  é localmente conexo, todo ponto de  $\mathcal{C}$  tem uma vizinhança aberta conexa que não intersecta  $\overline{\Omega}$  e portanto  $\mathcal{C}$  é aberta em  $S^2$ . Pela Proposição 2.47(f), a componente  $\mathcal{C}$  é fechada no fechado  $S^2 \setminus \Omega$ . Logo,  $\mathcal{C}$  é fechada em  $S^2$ . Pela conexidade de  $S^2$  segue  $\mathcal{C} = S^2$ 

Assim, temos  $\mathcal{C} \cap K \neq \emptyset$  para toda componente  $\mathcal{C}$  de  $S^2 \setminus \Omega$ . Como  $T_1$  e  $T_2$  são abertos e fechados em  $S^2 \setminus \Omega$  segue que  $T_1$  e  $T_2$  são uniões de componentes de  $S^2 \setminus \Omega$ . Donde segue

$$T_1 \cap K \neq \emptyset$$
 e  $T_2 \cap K \neq \emptyset$ .

Logo,

$$K = (T_1 \cap K) \cup (T_2 \cap K)$$

é uma cisão para K. Isto é, K é desconexo

(b) $\Rightarrow$  (c). Suponhamos, por contradição, que  $\mathbb{C} \times \Omega$  tem uma componente compacta  $\mathcal{C}$  não vazia. Seja O um aberto em  $\mathbb{C} \times \Omega$ , e limitado, satisfazendo

$$\mathcal{C} \subset O \subset \mathbb{C} \setminus \Omega$$

[por exemplo,  $O = B(0; r) \cap (\mathbb{C} \setminus \Omega)$  com r grande o suficiente].

Como  $\mathbb{C} \setminus \Omega$  é fechado no localmente compacto  $\mathbb{C}$ , então  $\mathbb{C} \setminus \Omega$  é localmente compacto. Pelo Lema (9.11), existe uma vizinhança V de  $\mathcal{C}$ , em  $\mathbb{C} \setminus \Omega$ , que é aberta e fechada em  $\mathbb{C} \setminus \Omega$  e

$$C \subset V \subset O \subset \mathbb{C} \setminus \Omega$$
.

Logo, V é limitada. Como V é fechada no fechado  $\mathbb{C} \setminus \Omega$ , segue que V é fechada em  $\mathbb{C}$ . Portanto, V é compacta.

Observemos que

$$\mathbb{C} \smallsetminus \Omega = \left(S^2 \smallsetminus \left\{\infty\right\}\right) \cap \left(S^2 \smallsetminus \Omega\right) \text{ \'e aberto em } S^2 \smallsetminus \Omega.$$

Então, como V é aberta em  $\mathbb{C} \setminus \Omega$  e este é aberto em  $S^2 \setminus \Omega$ , concluímos que V é aberta em  $S^2 \setminus \Omega$ . Ainda, por ser compacta, V é fechada em  $S^2 \setminus \Omega$ .

Como V é aberta e fechada em  $S^2 \setminus \Omega$ , temos

$$V = \emptyset$$
 ou  $V = S^2 \setminus \Omega$ .

A primeira possibilidade é absurda pois V contém  $\mathcal{C} \neq \emptyset$ . A segunda também é absurda, pois  $V \subset \mathbb{C}$  ao passo que o ponto  $\infty$  pertence a  $S^2 \setminus \Omega$ .

#### 9.6 - Transformações de Möbius

Entre as transformações mais elementares no plano complexo temos

- a translação  $T_b(z)$  = z + b, por um b arbitrário em  $\mathbb{C}$ ,
- a inversão  $Inv(z) = \frac{1}{z} e$
- a multiplicação  $M_a(z) = az$ , por um a arbitrário em  $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ .

Escrevendo  $a=re^{i\theta},$  com r>0 e  $\theta$  em  $\mathbb{R},$  a multiplicação  $M_a$  é a composição

- da homotetia  $H_r(z) = rz \text{ com}$
- a rotação  $R_{\theta}(z) = e^{i\theta}z$ .

Cada uma das funções acima é um homeomorfismo de  $S^2$  em  $S^2$ . Temos

$$T_b(\infty) = \infty$$
 [ponto fixo],  $Inv(0) = \infty$  e  $Inv(\infty) = 0$ .

Também temos,

$$H_r(\infty) = R_{\theta}(\infty) = M_a(\infty) = \infty.$$

A seguir, definimos uma importante classe de transformações no plano que engloba a inversão, translações, homotetias, rotações e multiplicações e apresenta belas características geométricas. Logo mais, veremos que toda transformação nesta classe é, de fato, uma composição destas cinco transformações básicas.

Uma função  $\varphi$  é dita uma transformação linear fracionária se é da forma

$$\varphi(z) = \frac{az+b}{cz+d}$$
, com  $a,b,c$  e  $d$  em  $\mathbb{C}$ .

Se temos

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc \neq 0,$$

então  $\varphi$  é denominada uma transformação de Möbius.

9.13 Lema. Consideremos uma transformação de Möbius

$$\varphi(z) = \frac{az+b}{cz+d}.$$

• Se c = 0, então  $\varphi : \mathbb{C} \to \mathbb{C}$  é linear e um isomorfismo analítico. Ainda,

 $|z| \to \infty$  se e somente se  $|\varphi(z)| \to \infty$ .

• Se  $c \neq 0$ , então  $\varphi : \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \{\frac{a}{c}\}$  é bijetora e um isomorfismo analítico. A inversa  $\varphi^{-1}$  é a transformação de Möbius

$$\varphi^{-1}(w) = \frac{dw - b}{-cw + a}.$$

Ainda mais,

$$|z| \to \infty$$
 se e só se  $\varphi(z) \to \frac{a}{c}$  e  $z \to -\frac{d}{c}$  se e só se  $|\varphi(z)| \to \infty$ .

Prova.

- $\diamond$  Se c = 0, temos  $ad\neq 0$ e  $\varphi(z)$  = az/d+b/d. O restante é então trivial.
- $\diamond$  Se  $c \neq 0$ , escrevendo

$$w = \frac{az+b}{cz+d}$$
, para  $z \neq -\frac{d}{c}$ ,

encontramos z(cw - a) = b - dw. Assim, obtemos

$$z = \frac{dw - b}{-cw + a}$$
, para  $w \neq \frac{a}{c}$ .

Logo, a transformação

$$\varphi: \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\} \to \mathbb{C} \setminus \left\{ \frac{a}{c} \right\}$$

é bijetora e com inversa

$$\varphi^{-1}(w) = \frac{dw - b}{-cw + a}.$$

Evidentemente  $\varphi$  e  $\varphi^{-1}$  são analíticas e então isomorfismos (analíticos). Ainda,  $\varphi^{-1}$  é uma transformação de Möbius [pois,  $da-(-b)(-c)=ad-bc\neq 0$ ].

Se 
$$|z| \to \infty$$
, então  $\varphi(z) = \frac{a + \frac{b}{z}}{c + \frac{d}{z}} \to \frac{a}{c}$ .

Se 
$$\varphi(z) = w \to \frac{a}{c}$$
, então  $dw - b \to \frac{ad - bc}{c} \neq 0$  e  $|z| = \frac{|dw - b|}{|-cw + a|} \to \infty$ .

Analogamente,  $|w| \to \infty$  se e somente se  $\varphi^{-1}(w) \to -\frac{d}{c}$ .

Isto é,  $|\varphi(z)| \to \infty$  se e somente se  $z \to -\frac{d}{c} \Phi$ 

Devido ao Lema 9.13, dada uma transformação de Möbius

$$\varphi(z) = \frac{az+b}{cz+d}$$

definimos

$$\begin{cases} \varphi(\infty) = \infty, & \text{se } c = 0, \\ \\ \varphi(-\frac{d}{c}) = \infty & \text{e } \varphi(\infty) = \frac{a}{c}, & \text{se } c \neq 0. \end{cases}$$

Segue então, pelo Lema 9.13, que  $\varphi$  define um auto-homeomorfismo sobre a esfera de Riemann [isto é, um homeomorfismo de  $S^2$  em  $S^2$ ], e escrevemos

$$\varphi: S^2 \to S^2 \text{ ou } \varphi: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$$
 [onde  $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ ].

Destaquemos então que o ponto  $\infty$  é um ponto fixo de  $\varphi$  se e somente se  $\varphi$  é uma bijeção linear no plano, e que isto ocorre se e somente se c = 0.

À transformação de Möbius

$$\varphi:S^2\to S^2$$

associamos a matriz

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

no grupo linear das matrizes inversíveis  $2 \times 2$ , com coeficientes complexos,

$$GL(2;\mathbb{C}).$$

Esta associação não é unívoca pois temos

$$\frac{\lambda az + \lambda b}{\lambda cz + \lambda d} = \frac{az + b}{cz + d}, \quad \text{qualquer que seja } \lambda \in \mathbb{C}^*.$$

Notemos que à transformação de Möbius  $\varphi^{-1}:S^2\to S^2$  associamos a matriz

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

O produto destas duas matrizes (em qualquer ordem) é a matriz (ad-bc)I, onde

$$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

Seja  $M_2(\mathbb{C})$  o espaço vetorial das matrizes  $2 \times 2$ , com coeficientes complexos, sobre o corpo dos números complexos. Analogamente, consideremos  $\mathbb{C}^2$  como um espaço vetorial sobre  $\mathbb{C}$ .

Consideremos duas matrizes  $2 \times 2$  complexas e inversíveis:

(9.7.1) 
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} e A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}.$$

Supondo que as matrizes A e A' nos dão a mesma transformação de Möbius, mostremos que o conjunto

$$\{A, A'\}$$
 é linearmente dependente.

De fato, sob tal hipótese temos a identidade polinomial

$$(9.7.2) (az+b)(c'z+d') = (a'z+b')(cz+d), \text{ para todo } z \in \mathbb{C}.$$

Substituindo z = 0, obtemos bd' - b'd = 0. Donde segue, notando que  $(b, d) \neq (0, 0)$ ,

$$(b',d') = \lambda(b,d)$$
, ou para  $\lambda = \frac{b'}{b}$  ou para  $\lambda = \frac{d'}{d}$ .

Identificando os coeficientes dominantes em (9.7.2) segue que ac' - a'c = 0. Notemos que (a, c) não é nulo. Então, analogamente ao caso anterior temos

$$(a',c')=\mu(a,c)$$
 para algum  $\mu\in\mathbb{C}.$ 

Identificando os coeficientes lineares em (9.7.2) encontramos ad' + bc' = a'd + b'c. Substituindo a', b', c' e d' encontramos

$$a\lambda d + b\mu c = \mu ad + \lambda bc$$
.

Donde segue,  $\lambda(ad-bc) = \mu(ad-bc)$  e então  $\lambda = \mu$ . Isto é,

$$A' = \lambda A$$
.

Tais observações sugerem que o conjunto das transformações de Möbius é um grupo (com a operação de composição) identificável com um grupo quociente.

Escrevemos

$$A' \equiv A$$
 se existe  $\lambda$  em  $\mathbb{C}^*$  tal que  $A' = \lambda A$ .

Evidentemente ≡ é uma relação de equivalência.

Ainda mais, se  $A' \equiv A$  e  $B' \equiv B$ , então  $A'B' \equiv AB$ . Logo,

$$GL(2;\mathbb{C})/\equiv$$

é um grupo (quociente). Desta forma, existe uma "trivial" bijeção do grupo multiplicativo  $GL(2;\mathbb{C})/\equiv$  no conjunto das transformações de Möbius.

Mostremos que o conjunto das transformações de Möbius forma um grupo (com a operação composição).

A composição das transformações  $\varphi_A$  e  $\varphi_{A'}$ , associadas a A e A' é:

$$\varphi_{A} \circ \varphi_{A'} = \frac{a \frac{a'z+b'}{c'z+d'} + b}{c \frac{a'z+b'}{c'z+d'} + d} = \frac{(aa'+bc')z + (ab'+bd')}{(ca'+dc')z + (cb'+dd')} = \varphi_{AA'}.$$

É claro que  $\varphi_I(z) = Id(z) = z$ , para todo z, e  $\varphi_A \circ \varphi_{A^{-1}} = \varphi_I = Id$ . Logo, o conjunto das transformações de Möbius é um grupo identificável a  $GL(2;\mathbb{C})/\equiv$ .

9.14 Proposição. Seja  $\varphi$  uma transformação de Möbius. Então,  $\varphi$  é uma composição de translações, multiplicações e da inversão (não necessariamente todas). Mais especificamente, existem  $\alpha$ ,  $\beta$  e  $\gamma$  em  $\mathbb C$  tais que

$$\varphi = \alpha z + \beta$$
 ou  $\varphi = T_{\gamma} \circ M_{\alpha} \circ Inv \circ T_{\beta}$ .

**Prova.** Mantenhamos as notações até aqui adotadas.

- $\diamond$  O caso c=0. Basta ver que  $\varphi = \frac{a}{d}z + \frac{b}{d}$ .
- $\diamond$  O caso  $c \neq 0$ . Segue de

$$\frac{az+b}{cz+d} = \frac{\frac{a}{c}z+\frac{b}{c}}{z+\frac{d}{c}} = \frac{\frac{a}{c}\left(z+\frac{d}{c}\right)+\frac{b}{c}-\frac{a}{c}\frac{d}{c}}{z+\frac{d}{c}} = \frac{a}{c} + \frac{\frac{b}{c}-\frac{a}{c}\frac{d}{c}}{z+\frac{d}{c}} \blacktriangleleft$$

Vejamos algumas propriedades geométricas de uma transformação de Möbius.

**9.15 Lema.** Exceto a identidade, uma transformação de Möbius  $\varphi: S^2 \to S^2$  tem um ou dois pontos fixos (nem mais, nem menos) na esfera.

**Prova.** Seja  $\varphi(z) = (az + b)/(cz + d)$ , distinta da identidade e com  $ad - bc \neq 0$ . No Lema 9.13 vimos que  $\infty$  é um ponto fixo de  $\varphi$  se e somente se c = 0.

- ♦ Caso c = 0. Então,  $\varphi(\infty) = \infty$ . Ainda mais,  $\varphi(z) = (a/d)z + b/d$  se  $z \in \mathbb{C}$ . Como  $\varphi$  não é a identidade, temos  $a/d \neq 1$  ou  $b/d \neq 0$ . Sendo assim, a equação  $\varphi(z) = (a/d)z + (b/d) = z$  tem no máximo uma solução complexa.
- ♦ Caso  $c \neq 0$ . Então,  $\varphi(\infty) \neq \infty$ . Evidentemente,  $\varphi(z) = (az + b)/(cz + d) = z$  tem no mínimo uma e no máximo duas soluções complexas.

Pelo lema acima concluímos que se duas transformações de Möbius concidem em três pontos distintos então elas são iguais [cheque].

**9.16 Teorema.** Em  $S^2$ , sejam  $z_1$ ,  $z_2$  e  $z_3$  distintos e  $w_1$ ,  $w_2$  e  $w_3$  distintos. Então, existe uma única transformação de Möbius

$$w = \varphi(z)$$
 satisfazendo  $w_j = \varphi(z_j)$ , para  $j = 1, 2, 3$ .

Ainda, as variáveis w e z estão relacionadas pelas fórmulas abaixo.

- Fórmula Fundamental. Se  $z_j$  e  $w_j$  são números, para j = 1, 2, 3, temos (9.16.1)  $\frac{w - w_1}{w - w_2} \frac{w_3 - w_2}{w_3 - w_1} = \frac{z - z_1}{z - z_2} \frac{z_3 - z_2}{z_3 - z_1}.$
- ∘ Se  $w_2 = \infty$  e todos os demais valores são números ("deletamos  $w_2$ "),

$$\frac{w-w_1}{w_3-w_1} = \frac{z-z_1}{z-z_2} \frac{z_3-z_2}{z_3-z_1}$$

 $\circ$  Se  $z_2 = \infty$  e todos os demais valores são números ("deletamos  $z_2$ "),

$$\frac{w-w_1}{w-w_2}\frac{w_3-w_2}{w_3-w_1} = \frac{z-z_1}{z_3-z_1}.$$

 $\circ \ \textit{Se} \ \textit{z}_{2} = \textit{w}_{2} = \infty \ \textit{e} \ \textit{os} \ \textit{demais} \ \textit{valores} \ \textit{s\~ao} \ \textit{n\'umeros} \ (\textit{``deletamos} \ \textit{z}_{2} \ \textit{e} \ \textit{w}_{2} \textit{''}),$ 

$$\frac{w-w_1}{w_3-w_1}=\frac{z-z_1}{z_3-z_1}\quad [linear].$$

 $\circ \ \ Se\ z_2 = \infty\ \ e\ w_3 = \infty\ \ e\ os\ demais\ valores\ s\~ao\ n\'umeros\ (\ "deletamos\ z_2\ e\ w_3\ "),$ 

$$\frac{w - w_1}{w - w_2} = \frac{z - z_1}{z_3 - z_1}.$$

Prova. Trivial

- 9.17 Exemplos. Seguem algumas transformações de Möbius.
  - A transformação que envia 1, i, -1 em i, -1, 1 (ordenadamente) é

$$\frac{w-i}{w+1} \frac{2}{1-i} = \frac{z-1}{z-i} \frac{-1-i}{-2}.$$

Isto é,

$$w = \varphi(z) = \frac{(1+2i)z+1}{z+(1-2i)}$$
 [cheque].

• A transformação que envia -1, -i, 1 em -1, 0, 1 (ordenadamente) é

$$\frac{w+1}{w-0}\frac{1-0}{1+1} = \frac{z+1}{z+i}\frac{1+i}{2}.$$

Isto é,

$$w = \varphi(z) = \frac{z+i}{iz+1}$$
 [cheque].

A seguir, apresentamos uma terminologia apropriada ao estudo das transformações de Möbius.

Devido ao Teorema 9.10, todas as circunferências e retas no plano complexo correspondem a circunferências na esfera de Riemann  $S^2$ .

As circunferências em  $S^2$  e pelo polo (0,0,1) são chamadas retas na esfera de Riemann.

Devido à correspondência citada, as circunferências e retas no plano complexo são chamadas circunferências generalizadas ou, brevemente, circunferências.

Sabidamente três pontos no plano e não colineares determinam uma circunferência no plano complexo. Por outro lado e com esta nova terminologia, três pontos colineares no plano determinam uma circunferência na esfera de Riemann  $S^2$  e pelo "polo norte" (0,0,1).

Consequentemente, quaisquer três pontos no plano (colineares ou não) determinam um circunferência (generalizada) no plano complexo.

**9.18 Teorema.** Uma aplicação de Möbius  $\varphi$ , preserva o conjunto de retas e circunferências do plano (isto é, as circunferências generalizadas no plano). Equivalentemente,  $\varphi$  preserva as retas na esfera de Riemann  $S^2$ .

Prova. Pela Proposição 9.14, basta analisarmos a transformação inversão.

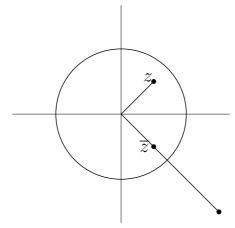


Figura 9.9: Ilustração para a transformação inversão

Sejam

$$z = x + iy$$
 e  $w = \frac{1}{z} = u + iv = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$   $\left[\frac{1}{z} = \frac{\overline{z}}{|z|^2}\right].$ 

Notemos que

$$u^2 + v^2 = \frac{1}{x^2 + y^2}.$$

A equação descrevendo uma reta ou uma circunferência ou um ponto ou o conjunto  $\varnothing$  no plano (x,y) é

$$a(x^2 + y^2) + bx + cy + d = 0$$
, com  $a^2 + b^2 + c^2 \neq 0$ .

Com a mudança de variável w = 1/z obtemos, dividindo por  $x^2 + y^2$ ,

$$a + bu - cv + d(u^2 + v^2) = 0,$$

cujo conjunto solução é uma reta ou circunferência ou um ponto ou  $\varnothing$  em  $\mathbb{R}^2$ .

9.19 Corolário. Sejam  $L_1$  e  $L_2$  circunferências (generalizadas) no plano (estendido). Então, existe uma transformação de Möbius  $\varphi$  tal que  $\varphi(L_1) = L_2$ . Ainda mais, podemos especificar que  $\varphi$  mapeia quaisquer três pontos distintos em  $L_1$  em quaisquer três pontos distintos em  $L_2$ . Com tal especificação,  $\varphi$  é então única.

Prova. Solicito ao leitor.

#### 9.7 - As bijeções conformes (analíticas) do semi-plano superior em B(0;1)

Sejam

$$H^+ = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \text{ e } H^- = \{ \overline{z} : z \in H^+ \}$$

os semi-planos superior e inferior (abertos conexos) e a esfera de Riemann

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$
 homeomorfa a  $S^2$ .

Procuremos uma  $\varphi : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  (de Möbius) satisfazendo  $\varphi(H^+) = B(0; 1)$ . Existe uma que mapeia o "eixo"  $\mathbb{R} \cup \{\infty\}$  no  $S^1$  [vide Corolário 9.19].

Uma fórmula para  $w = \varphi(z)$  que mapeia os pontos 0, 1 e  $\infty$  [determinam a circunferência  $\mathbb{R} \cup \{\infty\}$ ] nos pontos -1, -i e 1 [determinam a circunferência  $S^1$ ], nesta ordem, é dada por

$$\frac{w+1}{w+i} \frac{1+i}{2} = \frac{z-0}{z-1}.$$

Resolvendo para w obtemos

$$(9.20.1) \varphi(z) = \frac{z-i}{z+i}.$$

Vejamos que tal  $\varphi$  nos serve. O Corolário 9.19 mostra  $\varphi(\mathbb{R} \cup \{\infty\}) = S^1$ . Logo,

$$\varphi(H^+) \cup \varphi(H^-) = B(0;1) \cup \{z : |z| > 1\}.$$

Como  $\varphi(i) = 0$ , as conexidades de  $\varphi(H^+)$  e de B(0;1) garantem  $\varphi(H^+) = B(0;1)$ . Segue uma outra finalização (bastante útil).

Argumento cinemático: observemos que a aplicação  $\varphi$  é conforme [cheque] e então preserva orientação [vide o comentário à Definição 9.3 e o Teorema 9.4]. O semi-plano superior  $H^+$  está à esquerda da curva que descreve o movimento sobre o eixo real no sentido dos pontos  $0,1,\infty$ , nesta ordem. Logo,  $\varphi(H^+)$  está à esquerda da curva que descreve o movimento sobre  $S^1$  e no sentido dado pelos pontos -1, -i e 1, nesta ordem [este é o sentido anti-horário].

**9.20 Teorema.** As bijeções conformes  $\psi: H^+ \to B(0;1)$  são da forma

$$\psi(z) = e^{i\theta} \frac{z - \alpha}{z - \overline{\alpha}}, \text{ onde } Im(\alpha) > 0.$$

Prova. [A prova que segue não utiliza o exemplo acima, mas se espelha nele.]

Seja

$$w = f(z) = \frac{z - \alpha}{z - \overline{\alpha}}$$
, com  $\alpha$  tal que  $\text{Im}(\alpha) > 0$ .

Temos  $|x-\alpha| = |x-\overline{\alpha}|$  para todo real x e então  $f = f_{\alpha}$  é bijetora do "eixo real"  $\mathbb{R} \cup \{\infty\}$  na circunferência em  $S^1$ . Como temos  $f(\alpha) = 0$ , por conexidade segue  $f(H^+) = B(0; 1)$  [cheque].

⋄ Seja  $\psi: H^+ \to B(0;1)$  uma bijeção conforme qualquer. Existe  $\alpha$  tal que  $\psi(\alpha) = 0$ . Então,  $\psi \circ f^{-1}$  é um automorfismo de B(0;1) e  $\psi(f^{-1}(0)) = 0$ . Pelo Teorema 9.6 temos  $(\psi \circ f^{-1})(w) = e^{i\theta}w$ , para algum  $\theta$  em  $\mathbb{R}$ . Logo,

$$\psi(z) = e^{i\theta} f(z) +$$

Exercício. Mostre a fórmula no Teorema 9.20 (acima) diretamente.

#### 9.8 - Automorfismos (analíticos) do semi-plano superior

**9.21 Teorema.** Os automorfismos de H<sup>+</sup> são da forma

$$h(z) = \frac{az+b}{cz+d}$$
, onde  $a,b,c$  e  $d$  são reais e  $ad-bc > 0$ .

**Prova.** As transformações de Möbius h (como acima) e  $h^{-1}$  tem a mesma forma.

♦ Seja h com a forma enunciada. Temos que h é uma bijeção do "eixo real"  $\mathbb{R} \cup \{\infty\}$  em  $\mathbb{R} \cup \{\infty\}$  [já vimos que  $h(-d/c) = \infty$  e  $h(\infty) = a/c$ , se  $c \neq 0$ ; vimos que  $h(\infty) = \infty$ , se c = 0]. Ainda,

$$\operatorname{Im}[h(i)] = \frac{ad - bc}{c^2 + d^2} > 0.$$

Isto é, h(i) pertence a  $H^+$ . Então, por conexidade,  $h(H^+) \subset H^+$ . Analogamente,  $h^{-1}(H^+) \subset H^+$ . Donde, h é um automorfismo de  $H^+$ .

♦ Seja  $h: H^+ \to H^+$  um automorfismo arbitrário e a particular bijeção conforme  $\varphi: H^+ \to B(0;1)$ , onde

$$\varphi(z) = \frac{z-i}{z+i}$$
 [vide fórmula 9.20.1],

com inversa

$$\varphi^{-1}(z) = \frac{iz+i}{-z+1}.$$

Consideremos o automorfismo  $\varphi \circ h \circ \varphi^{-1} : B(0;1) \to B(0;1)$ .

Pelo Teorema 9.6 existem  $\theta$  em  $\mathbb{R}$  e  $\alpha \in B(0;1)$  tais que

$$\varphi \circ h \circ \varphi^{-1} = e^{i\theta} \phi_{\alpha}$$
, onde  $\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$ .

Seja  $M_{e^{i\theta}}(z) = e^{i\theta}z$  a multiplicação por  $e^{i\theta}$ . Então temos

$$h = \varphi^{-1} \circ M_{e^{i\theta}} \circ \phi_{\alpha} \circ \varphi.$$

Uma representação matricial com coeficientes reais para h segue do cômputo abaixo. O símbolo " $\equiv$ " no cômputo indica matrizes equivalentes em  $GL(2;\mathbb{C})$ . Na segunda passagem multiplicamos uma das matrizes (é óbvia qual) por

$$ie^{-\frac{i\theta}{2}}$$
.

Efetuemos o cálculo:

$$\begin{pmatrix} i & i \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\alpha \\ -\overline{\alpha} & 1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$$

$$= \begin{pmatrix} ie^{i\theta} & i \\ -e^{i\theta} & 1 \end{pmatrix} \begin{pmatrix} 1 - \alpha & -i(\alpha+1) \\ 1 - \overline{\alpha} & i(\overline{\alpha}+1) \end{pmatrix}$$

$$= \begin{pmatrix} -e^{\frac{i\theta}{2}} & -e^{-\frac{i\theta}{2}} \\ -ie^{\frac{i\theta}{2}} & ie^{-\frac{i\theta}{2}} \end{pmatrix} \begin{pmatrix} 1 - \alpha & -i(\alpha+1) \\ 1 - \overline{\alpha} & i(\overline{\alpha}+1) \end{pmatrix}$$

$$= \begin{pmatrix} (\alpha-1)e^{\frac{i\theta}{2}} + (\overline{\alpha}-1)e^{-\frac{i\theta}{2}} & i(\alpha+1)e^{\frac{i\theta}{2}} - i(\overline{\alpha}+1)e^{-\frac{i\theta}{2}} \\ i(\alpha-1)e^{\frac{i\theta}{2}} - i(\overline{\alpha}-1)e^{-\frac{i\theta}{2}} & -(\alpha+1)e^{\frac{i\theta}{2}} - (\overline{\alpha}+1)e^{-\frac{i\theta}{2}} \end{pmatrix}.$$

As respectivas entradas a, b, c e d são reais e temos

$$h(z) = \frac{az+b}{cz+d}$$

e então

$$0 < \operatorname{Im}[h(i)] = \frac{ad - bc}{c^2 + d^2} \blacktriangleleft$$

#### 9.9 - Outras Transformações Conformes

A função  $w=z^a=e^{a\log z}$ , com a>0, é analítica em todo aberto simplesmente conexo que não contém a origem [Corolário 8.9]. Se escolhermos um ramo de  $\log z$  que é real sobre o eixo positivo então  $w=z^a$  como função de  $(0,+\infty)$  nele próprio é sobrejetora. O ponto  $z=re^{i\theta}$  é mapeado em  $r^ae^{ia\theta}$  e então  $w=z^a$  mapeia o setor angular  $\Theta=\{z:\theta_1<\operatorname{Arg}(z)<\theta_2\}$  no setor angular  $W=\{a\theta_1<\operatorname{Arg}(w)< a\theta_2\}$ . Caso ocorra  $a\theta_2-a\theta_1\leq 2\pi$ , então  $w=z^a$  é bijetora e conforme de  $\Theta$  em W.

A aplicação  $w=z^2$  é bijeção conforme do semi-plano superior e aberto  $H^+$  no complementar de  $[0,+\infty)\times\{0\}$  [tal complementar é um plano fendido].

A aplicação  $w=z^{1/2}$  é uma bijeção conforme do semi-plano à direita e aberto  $\{z: \operatorname{Re}(z)>0\}$  no setor angular  $\{z:-\frac{\pi}{4}<\operatorname{Arg} z<\frac{\pi}{4}\}.$ 

**9.22 Exemplo.** Uma transformação conforme  $\psi$  definida no semi-círculo superior  $B^+(0;1) = \{z \in \mathbb{C} : |z| < 1 \ e \ Im(z) > 0\}$  no semi-plano superior  $H^+$ .

Comecemos mapeando o semi-círculo  $B^+(0;1)$  no primeiro quadrante aberto e  $Q = \{z \in \mathbb{C} : \text{Re}(z) > 0 \text{ e Im}(z) > 0\}$ . Seja  $\varphi$  (de Möbius) tal que

$$-1 \mapsto 0$$
,  $i \to i \in 1 \to \infty$ .

Como  $\varphi$  preserva círculos/retas,  $\varphi$  mapeia a semi-circunferência unitária superior  $S^1_+ = \{z: |z| = 1 \text{ e Im}(z) \geq 0\}$  no semi-eixo imaginário  $\{iy: y \geq 0\}$ . O segmento  $\{z=x: -1 \leq x \leq 1\}$  forma, em z=-1, um ângulo de  $\pi/2$  rad com a semi-circunferência superior  $S^1_+$ . Logo,  $\varphi$  mapeia o eixo real no eixo real. Melhor ainda, como  $-1 \mapsto 0$  e  $1 \mapsto \infty$ , então  $\varphi$  mapeia  $\{z=x: -1 \leq x \leq 1\}$  no semi-eixo real  $\{z=x: x \geq 0\}$ . Ainda,  $\varphi$  preserva orientação e então  $\varphi(B^+(0;1)) = Q$ . Logo,

$$\varphi: B^+(0;1) \to Q$$
 é bijeção conforme.

Portanto,  $\varphi^2: B(0;1)^+ \to H^+$  é bijetora. Quanto à fórmula para  $w=\varphi(z)$ , temos

$$\frac{w-0}{w-i} = \frac{z+1}{z-i} \frac{1-i}{1+1}.$$

Logo, w(2z-2i) = (1-i)(w-i)(z+1). Donde segue  $\varphi(z) = (z+1)/(z-1)$  e

$$\psi(z) = \left(\frac{z+1}{z-1}\right)^2 \clubsuit$$

A função  $w = e^z$ , com z = x + iy, mapeia a faixa horizontal  $\{z : \theta_1 < y < \theta_2\}$  em todo o setor  $\{w : \theta_1 < \operatorname{Arg}(w) < \theta_2\}$ . Se  $\theta_2 - \theta_1 \le 2\pi$ , o mapeamento é bijetivo.