$1^{\underline{\mathbf{a}}}$ PROVA DE FUNÇÕES ANALÍTICAS- IMEUSP - MAT 225

23 de abril, 2015

		1	
		2	
Nome : N ^O USP :	$__GABARITO(parcial)$	3	
		4	
Professor : Oswaldo Rio Branco de Oliveira		5	
1 Totessor . Oswalu	o Nio Branco de Oliveira	6	
		7	
		8	
		Total	

Q

Ν

Evite usar resultados não provados nos capítulos de 1 a 6 (notas do curso).

Evite, em particular, a função exponencial complexa e teoria da integração. As funções nesta prova são analíticas ou inteiras, ambas no sentido de Weierstrass.

Justifique todas as passagens, com uma redação clara e não carregada em simbologia.

Escolha 5 (cinco questões).

BOA SORTE!

- 1. (a) Defina famílias somáveis em \mathbb{R} e defina famílias somáveis em \mathbb{C} .
 - (b) Sejam $(z_j)_J$ e $(w_k)_K$ duas famílias somáveis complexas. Mostre que família $(z_j w_k)_{J \times K}$ é somável e

$$\sum_{J \times K} z_j w_k = \left(\sum_J z_j\right) \left(\sum_K w_k\right).$$

(c) Seja $(z_j)_J$ uma família somável complexa. Mostre que $(\overline{z_j})_J$ é somável e

$$\overline{\sum_{J} z_{j}} = \sum_{J} \overline{z_{j}}.$$

Solução.

- (a) Vide notas de aula.
- (b) Temos $\sum_{J\times K} |z_j| |w_k| \le (\sum |z_j|) (\sum |w_k|)$. Logo, a família $(z_j w_k)_{J\times K}$ é somável. Pela propriedade associativa segue

$$\sum_{J \times K} z_j w_k = \sum_{j \in J} \sum_K z_j w_k = \sum_{j \in J} \left(z_j \sum_K w_k \right) = \left(\sum_K w_k \right) \left(\sum_J z_j \right).$$

(c) Pela definição da soma da família (z_i) e por linearidade, segue

$$\overline{\sum z_j} = \sum \operatorname{Re}(z_j) - i \sum \operatorname{Im}(z_j) = \sum [\operatorname{Re}(z_j) - i \operatorname{Im}(z_j)] = \sum \overline{z_j} \clubsuit$$

- 2. (a) Enuncie o princípio do módulo mínimo para polinômios.
 - (b) Demonstre tal princípio.

3. (a) Defina função analítica (no sentido clássico, de Weierstrass).
Enuncie o Teorema Fundamental da Álgebra (TFA).
Enuncie o Teorema de Liouville para funções analíticas.

(b) Demonstre o TFA utilizando o Teorema de Liouville para funções analíticas.

- 4. (a) Enuncie a desigualdade de Gutzmer-Parseval para séries de potências. Defina função inteira (no sentido de Weierstrass).
 - (b) Considere uma função inteira (no sentido de Weierstrass) f. Sejam m em \mathbb{N} e duas constantes A>0 e B>0 tais que

$$|f(z)| \le A + B|z|^m$$
, para todo $z \in \mathbb{C}$.

Mostre que f=f(z) é um polinômio de grau menor ou igual a m.

5. Defina automorfismo analítico.

Fixemos um ponto $a \in B(0; 1)$.

(a) Mostre que, a aplicação

$$\phi_a(z) = \frac{z - a}{1 - \overline{a}z},$$

satisfaz $\phi_a(B(0;1)) \subset B(0;1)$ e que

$$\phi_a: B(0;1) \to B(0;1)$$

é um automorfismo (analítico) cuja inversa é $\phi_{-a}: B(0;1) \to B(0;1)$.

(b) A aplicação ϕ_a é analítica em um aberto contendo D(0;1) e satisfaz

$$\phi_a(S^1) = S^1.$$

(c) Prove as fórmulas.

$$\phi_a(a) = 0$$
, $\phi_a(0) = -a$, $\phi_a'(0) = 1 - |a|^2$ e $\phi_a'(a) = \frac{1}{1 - |a|^2}$.

6. Seja $(z_j)_J$ uma família somável e complexa. Mostre que

$$\left| \sum_{J} z_j \right| \le \sum_{J} |z_j|.$$

Solução.

Temos

$$\left|\sum z_j\right|^2 = \left(\sum_{j \in J} z_j\right) \left(\overline{\sum_{k \in J} z_k}\right) = \left(\sum z_j\right) \left(\sum \overline{z_k}\right)$$
$$= \sum_{J \times J} z_j \overline{z_k}.$$

Logo, $\sum_{J\times J}(z_j\overline{z_k})$ é um número real e a parte imaginária desta soma é nula. Isto é,

$$\sum_{J \times J} \operatorname{Im}(z_j \overline{z_k}) = 0.$$

Donde segue

$$\left| \sum z_j \right|^2 = \sum_{J \times J} \operatorname{Re}[z_j \overline{z_k}]$$

$$\leq \sum_{J \times J} |\operatorname{Re}[z_j \overline{z_k}]|$$

$$\leq \sum_{J \times J} |z_j| |z_k|$$

$$= \left(\sum |z_j| \right) \left(\sum |z_k| \right)$$

$$= \left(\sum |z_j| \right)^2 \clubsuit$$

7. (a) Expresse

$$f(z) = \frac{1}{(1-z)^3}$$
, onde $|z| < 1$,

como uma série de potências na forma

$$f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + c_4 z^4 + c_5 z^5 + \cdots$$

(b) Desenvolva a função

$$f(z) = \frac{1}{1 - z - 2z^2}$$

em uma série de potências centrada na origem e ache o raio de convergência.

- 8. Seja $f:B(0;1)\to V$ analítica. Suponha que f é uma função bijetora.
 - (a) Justifique que V é um conjunto aberto.
 - (b) Mostre que então a função inversa

$$\varphi = f^{-1}: V \to B(0;1)$$

é contínua.

(c) Mostre que se f' não se anula em nenhum ponto, então φ é complexaderivável (isto é, holomorfa) em todo ponto do aberto V.