DIFERENCIABILIDADE - REGRA DA CADEIA - MATRIZ JACOBIANA - TEOREMA DO VALOR MÉDIO (TVM) e DESIGUALDADE DO VALOR MÉDIO (DVM), EM VÁRIAS VARIÁVEIS

Professor Oswaldo Rio Branco de Oliveira

http://www.ime.usp.br/~oliveira (ano 2018) oliveira@ime.usp.br

1.	Diferenciabilidade e Regra da Cadeia	.2
2.	Matriz Jacobiana	.5
3.	Teorema do Valor Médio (TVM) para campos escalares	.9
4.	$F \in C^1$ implica F diferenciável	.10
5.	TVM (na forma integral) para campos escalares	.11
6.	TVM (na forma integral) para campos vetoriais	.12
7.	Desigualdade do Valor Médio (DVM) para curvas	.14
8.	DVM para campos vetoriais	15
	Referências	16

1. DIFERENCIABILIDADE E REGRA DA CADEIA

Sejam n um número natural e $\{e_1, \ldots, e_n\}$ a base canônica de \mathbb{R}^n . Então, dados $x = (x_1, \ldots, x_n)$ e $y = (y_1, \ldots, y_n)$, ambos em \mathbb{R}^n , seu produto interno é $\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n$, também denotado $x \cdot y$. A norma de x é

$$|x| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Lema 1. Seja $T: \mathbb{R}^n \to R^m$ uma aplicação linear. Vale o que segue.

- (a) Existe uma constante C tal que $|T(\overrightarrow{v})| \leq C|\overrightarrow{v}|$, para todo \overrightarrow{v} em \mathbb{R}^n .
- (b) T é contínua.

Prova.

(a) Dado um vetor $v = v_1 e_1 + \dots + v_n e_n$ em \mathbb{R}^n , com v_1, \dots, v_n em \mathbb{R} , temos

$$T(v) = v_1 T(e_1) + \dots + v_n T(e_n).$$

Seja $M = \max\{|T(e_1)|, \ldots, |T(e_n)|\}$. A desigualdade triangular garante

$$|T(v)| \le |v_1 T(e_1)| + \dots + |v_n T(e_n)|$$

 $= |v_1||T(e_1)| + \dots + |v_n||T(e_n)|$
 $\le |v|M + \dots + |v|M$
 $= nM||v||.$

(b) Fixado um ponto x em \mathbb{R}^n e considerando um vetor h em \mathbb{R}^n temos

$$0 \le |T(x+h) - T(x)| = |T(x) + T(h) - T(x)| = |T(h)| \le nM|h|.$$

Logo $T(x+h) \xrightarrow{h\to 0} T(x)$ e T é contínua em x, para todo x em $\mathbb{R}^n \spadesuit$

Se $T: \mathbb{R}^n \to \mathbb{R}^m$ é linear, escrevemos $T \in L(\mathbb{R}^n, \mathbb{R}^m)$.

A norma (dita norma operador ou norma do sup) de T é definida por

$$||T|| = \sup\{|T(v)| : |v| = 1\}.$$

Pelo lema temos $|T(v)| \le C$, para todo v com |v| = 1. Logo, tal sup é finito. Para uma aplicação linear T e um vetor $v \ne 0$ temos, por definição,

$$\left| T \left(\frac{v}{|v|} \right) \right| \le ||T||.$$

Donde segue

$$|T(v)| \le ||T|| |v|$$
, para todo $v \in \mathbb{R}^n$.

Definição. Uma função $F: \Omega \longrightarrow \mathbb{R}^m$, com Ω um aberto em \mathbb{R}^n , é diferenciável no ponto p em Ω se existe uma aplicação linear $T: \mathbb{R}^n \longrightarrow R^m$ tal que

$$\lim_{h \to 0} \frac{F(p+h) - F(p) - T(h)}{|h|} = 0.$$

Equivalentemente, F é diferenciável em p se existe uma função E definida em uma bola aberta B(0;r), com r > 0, tal que para h em B(0;r) temos

$$F(p+h) = F(p) + T(h) + |h|E(h)$$
, com $E(0) = 0$ e $\lim_{h\to 0} E(h) = 0$.

A aplicação linear T é a diferencial de F em p e é indicada

$$T = DF(p)$$
.

O vetor h é também dito um incremento. A função |h|E(h) é dita função erro.

Proposição 2 (Diferenciabilidade Implica Continuidade). Sejam Ω aberto em \mathbb{R}^n e $F:\Omega \longrightarrow \mathbb{R}^m$ diferenciável em $p \in \Omega$. Então, F é contínua em p. Prova.

Seja T a diferencial de F em p. Como T é contínua na origem (Lema 1), temos

$$F(p+h) - F(p) = \frac{F(p+h) - F(p) - T(h)}{|h|} |h| + T(h) \xrightarrow{h \to 0} 0.0 + T(0) = 0$$

Diferenciabilidade é um conceito local e a seguir simplificamos os domínios.

Teorema 3 (Regra da Cadeia). Sejam uma função $G: \mathbb{R}^m \to \mathbb{R}^p$, diferenciável no ponto x, e uma função $F: \mathbb{R}^p \to \mathbb{R}^n$, diferenciável no ponto y = G(x). Então, a função composta $F \circ G: \mathbb{R}^m \to \mathbb{R}^n$ é diferenciável no ponto x e

$$D(F \circ G)(x) = T \circ S$$
, onde $T = DF(G(x))$ e $S = DG(x)$.

Prova.

Seja $h \in \mathbb{R}^m$, com $h \neq 0$. Notemos que T(0) = 0.

Avaliemos o limite, para $h \to 0$, das duas parcelas no lado direito de

$$\frac{F(G(x+h)) - F(G(x)) - T(S(h))}{|h|} = \frac{F(G(x+h)) - F(G(x)) - T[G(x+h) - G(x)]}{|h|} + T\left(\frac{G(x+h) - G(x) - S(h)}{|h|}\right).$$

Como G é diferenciável em x e T é contínua, a última (i.e., a segunda) parcela tende a zero se $h \to 0$.

Além disso, para $|h| \neq 0$ e pequeno o suficiente segue

$$\left| \frac{G(x+h) - G(x)}{|h|} - S\left(\frac{h}{|h|}\right) \right| \le 1$$

 \mathbf{e}

$$\frac{|G(x+h)-G(x)|}{|h|} \le 1 + \left| S\left(\frac{h}{|h|}\right) \right| \le 1 + \|S\|.$$

Quanto à primeira parcela, escrevendo v = v(h) = G(x + h) - G(x) temos

$$\frac{F(G(x)+v)-F(G(x))-T(v)}{|h|} = \begin{cases} \frac{F(G(x)+v)-F(G(x))-T(v)}{|v|} \frac{|v|}{|h|}, & \text{se } v \neq 0, \\ 0, & \text{caso contrário.} \end{cases}$$

Como G é contínua em x, temos $v(h) \to 0$ se $h \to 0$. Também temos

$$\frac{|v|}{|h|} \le 1 + ||S||$$
 para $|h| \ne 0$ e pequeno o suficiente.

Então, devido à diferenciabilidade de F no ponto G(x), e o Teorema do Confronto, a primeira parcela tende a 0 se $h \to 0$

2. A MATRIZ JACOBIANA

Consideremos uma função $F:\Omega \longrightarrow \mathbb{R}^m$, com Ω um aberto não vazio em \mathbb{R}^n , diferenciável no ponto p pertencente a Ω e um raio r>0 tal que $B(p;r)\subset \Omega$. Seja $T:\mathbb{R}^n\longrightarrow \mathbb{R}^m$ a aplicação linear tal que

$$\begin{cases} F(p+h) = F(p) + T(h) + |h|E(h), \text{ para todo } h \in B(0;r), \text{ com} \\ \lim_{h \to 0} E(h) = E(0) = 0. \end{cases}$$

Proposição 4. Com as hipótese acima, existem as derivadas parciais

$$\frac{\partial F}{\partial x_j}(p) = \frac{\partial F}{\partial \overrightarrow{e_j}}(p), \text{ para todo } j \text{ em } \{1, \dots, n\}, \text{ } e \text{ } T(\overrightarrow{e_j}) = \frac{\partial F}{\partial x_j}(p).$$

Prova.

Fixemos j em $\{1,\ldots,n\}$. Seja $h=te_j$, com t em $(-r,r)\setminus\{0\}$. Temos,

$$F(p+te_j) = F(p) + T(te_j) + |te_j|E(te_j)$$
$$= F(p) + tT(e_j) + |t|E(te_j).$$

Logo,

$$\frac{F(p+te_j)-F(p)}{t} = T(e_j) + \frac{|t|}{t}E(te_j).$$

Como

$$E(te_j) \xrightarrow{t \to 0} 0 \text{ e } \frac{|t|}{t} = \pm 1,$$

concluímos que

$$\frac{\partial F}{\partial x_j}(p) = \lim_{t \to 0} \frac{F(p + te_j) - F(p)}{t}$$
$$= T(e_j) +$$

Notação. No que segue, fixamos $\{e_1, \ldots, e_n\}$ a base canônica ordenada de \mathbb{R}^n e $\{f_1, \ldots, f_m\}$ a base canônica ordenada de \mathbb{R}^m . Dada uma aplicação linear

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
,

escrevemos

$$\begin{cases}
T(\overrightarrow{e_1}) = a_{11}\overrightarrow{f_1} + \dots + a_{m1}\overrightarrow{f_m} \\
\vdots \\
T(\overrightarrow{e_n}) = a_{1n}\overrightarrow{f_1} + \dots + a_{mn}\overrightarrow{f_m},
\end{cases}$$

onde $a_{ij} \in \mathbb{R}$, se $1 \le i \le m$ e $1 \le j \le n$. Ainda mais, associamos à aplicação T a sua matriz [T] de representação em relação às bases canônicas supra citadas:

$$[T] = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}].$$

A matriz [T] pertence ao espaço vetorial das matrizes retangulares com m linhas e n colunas de números reais, denotado $M_{m\times n}(\mathbb{R})$.

A matriz formada pela primeira coluna de [T] é a matriz dos coeficientes de $T(\overrightarrow{e_1})$. Fixado j, com $1 \le j \le n$, temos

$$[T(\overrightarrow{e_j})] = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} \in M_{m \times 1}(\mathbb{R}).$$

Esquematicamente escrevemos

$$[T] = \left[\begin{bmatrix} \vdots \\ T(\overrightarrow{e_1}) \\ \vdots \end{bmatrix} \cdots \begin{bmatrix} \vdots \\ T(\overrightarrow{e_n}) \\ \vdots \end{bmatrix} \right].$$

Definição. A norma (de Hilbert-Schmidt) de T, indicada |T|, é dada por

$$|T|^2 = \sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} |a_{ij}|^2.$$

Comentário. Vale a seguinte relação entre a norma de Hilbert-Schmidt e a norma do sup.

$$||T|| \le |T| \le \sqrt{n} \, ||T||.$$

Verificação. Mostremos duas desigualdades.

 \diamond Seja $v = v_1 e_1 + \dots + v_n e_n$ em \mathbb{R}^n . Pela desigualdade de Cauchy-Schwartz segue

$$|T(v)|^2 = \sum_{i=1}^m |\langle (a_{i1}, \dots, a_{in}), (v_1, \dots, v_n) \rangle|^2 \le \sum_{i=1}^m |(a_{i1}, \dots, a_{in})|^2 |v|^2.$$

Logo, $|T(v)|^2 \le |T|^2|v|^2$. Donde segue

$$||T|| \leq |T|$$
.

 \diamond É trivial ver que $a_{ij} = \langle T(e_j), f_i \rangle$ e também que $|T(e_j)| \leq ||T||$. Logo,

$$|T|^2 = \sum_{j=1}^n \sum_{i=1}^m |\langle T(e_j), f_i \rangle|^2 = \sum_{j=1}^n |T(e_j)|^2 \le n ||T||^2 +$$

A seguir, consideremos uma função $F:\Omega \longrightarrow \mathbb{R}^m$, com Ω um aberto não vazio de \mathbb{R}^n , diferenciável no ponto p pertencente a Ω .

Definição. A matriz jacobiana de F no ponto p, denotada JF(p), \acute{e} a matriz do diferencial $DF(p) \in L(\mathbb{R}^n, \mathbb{R}^m)$, em relação às bases canônicas de \mathbb{R}^n e \mathbb{R}^m .

Indiquemos um ponto x de \mathbb{R}^n por $x = (x_1, \dots, x_n)$ e, analogamente, um ponto y de \mathbb{R}^m por $y = (y_1, \dots, y_m)$. Então, pelo que já vimos na Proposição 4 temos

$$DF(p)(\overrightarrow{e_j}) = \frac{\partial F}{\partial x_j}(p).$$

Escrevendo F segundo suas componentes, temos $F(x) = (F_1(x), \dots, F_m(x))$ e

$$\frac{\partial F}{\partial x_j} = \left(\frac{\partial F_1}{\partial x_j}, \dots, \frac{\partial F_m}{\partial x_j}\right).$$

Logo,

$$\frac{\partial F}{\partial x_i}(p) = \frac{\partial F_1(p)}{\partial x_i} \overrightarrow{f_1} + \dots + \frac{\partial F_m(p)}{\partial x_i} \overrightarrow{f_m}.$$

Pela notação introduzida concluímos que a matriz jacobiana satisfaz

$$JF(p) = [DF(p)] = [a_{ij}] \in M_{m \times n}(\mathbb{R}), \text{ com } a_{ij} = \frac{\partial F_i}{\partial x_j}(p).$$

Isto é,

$$JF(p) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(p) & \cdots & \frac{\partial F_1}{\partial x_n}(p) \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1}(p) & \cdots & \frac{\partial F_m}{\partial x_n}(p) \end{bmatrix}_{m \times n} = \begin{bmatrix} \frac{\partial F_i}{\partial x_j}(p) \end{bmatrix}_{\substack{1 \le i \le m \\ 1 \le j \le n}}.$$

Notando que a *i*-ésima linha de JF(p) é formada pelas coordenadas do vetor gradiente de F_i , onde $1 \le i \le n$, em relação à base canônica, identificamos

$$JF = \begin{bmatrix} \cdots \nabla F_1 \cdots \\ \vdots \\ \cdots \nabla F_m \cdots \end{bmatrix}_{m \times n} = \begin{bmatrix} \vdots & \vdots \\ \frac{\partial F}{\partial x_1} & \cdots & \frac{\partial F}{\partial x_n} \\ \vdots & \vdots & \vdots \end{bmatrix}_{m \times n}.$$

Dado um vetor $h = (h_1, \ldots, h_n)$ em \mathbb{R}^n , temos

$$JF(p)(h) = \begin{bmatrix} \cdots \nabla F_1 \cdots \\ \vdots \\ \cdots \nabla F_m \cdots \end{bmatrix}_{m \times n} \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \nabla F_1(p) \cdot h \\ \vdots \\ \nabla F_m(p) \cdot h \end{bmatrix}_{m \times 1}.$$

As desigualdades

$$|\nabla F_i(p) \cdot h| \leq |\nabla F_i(p)| |h|$$
, para cada $1 \leq i \leq m$,

implicam

$$|JF(p)(h)| \leq |JF(p)||h|.$$

3. TEOREMA DO VALOR MÉDIO (TVM) PARA CAMPOS ESCALARES

Teorema 5 (Teorema do Valor Médio em \mathbb{R}^n). Seja $F: \Omega \to \mathbb{R}$ um campo escalar diferenciável, com Ω um aberto em \mathbb{R}^n . Sejam a e b dois pontos em Ω tais que o segmento linear \overline{ab} está contido em Ω . Então, existe um ponto p em \overline{ab} tal que

$$F(b) - F(a) = \overrightarrow{\nabla} F(p) \cdot (b - a).$$

Prova.

Consideremos, em Ω , a curva

$$\gamma(t) = a + t(b - a)$$
, com $t \in [0, 1]$.

É claro que γ é diferenciável e que $\gamma'(t) = b - a$. Pela regra da cadeia, a função

$$F \circ \gamma : [0,1] \longrightarrow \mathbb{R}$$
,

é derivável e

$$(F \circ \gamma)'(t) = \nabla F(\gamma(t)) \cdot \gamma'(t).$$

Pelo TVM em uma variável temos

$$F(b) - F(a) = (F \circ \gamma)(1) - (F \circ \gamma)(0)$$
$$= (F \circ \gamma)'(t_0)$$
$$= \nabla F(\gamma(t_0)) \cdot \gamma'(t_0),$$

para algum t_0 em [0,1].

Seja $p = \gamma(t_0)$, em \overline{ab} . Concluímos então

$$F(b) - F(a) = \overrightarrow{\nabla} F(p) \cdot (b - a) +$$

4. $F \in C^1$ IMPLICA F DIFERENCIÁVEL

Proposição 6. Sejam $F: \Omega \longrightarrow \mathbb{R}^m$, com Ω um aberto em \mathbb{R}^n , e p em Ω . Suponha que as derivadas parciais de primeira ordem de F existam em todo ponto de uma bola aberta B(p;r), centrada em p e contida em Ω e com r > 0, e que tais derivadas sejam contínuas em p. Então, F é diferenciável no ponto p. Prova.

Escrevamos

$$F(x) = (F_1(x), \dots, F_m(x)), \text{ para } x \text{ em } \Omega.$$

Consideremos um vetor h em \mathbb{R}^n tal que 0 < |h| < r. Seja T a aplicação linear cuja matriz em relação às bases usuais de \mathbb{R}^n e \mathbb{R}^m é JF(p). Logo, T(h) = JF(p)(h) e então

$$F(p+h)-F(p)-T(h) \equiv \begin{bmatrix} F_1(p+h)-F_1(p) \\ \vdots \\ F_m(p+h)-F_m(p) \end{bmatrix}_{m\times 1} - \begin{bmatrix} \nabla F_1(p) \cdot h \\ \vdots \\ \nabla F_m(p) \cdot h \end{bmatrix}_{m\times 1}.$$

Pelo teorema do valor médio, para cada índice i em $\{1, ..., m\}$ existe um ponto $p_i = p_i(h)$, dependendo do vetor h e no segmento que une os pontos p e p + h [o segmento está contido em B(p; r)], tal que

$$F_i(p+h) - F_i(p) = \nabla F_i(p_i) \cdot h.$$

Consequentemente,

$$\frac{F(p+h) - F(p) - T(h)}{|h|} \equiv \begin{bmatrix} \left[\nabla F_1(p_1) - \nabla F_1(p) \right] \cdot \frac{h}{|h|} \\ \vdots \\ \left[\nabla F_m(p_m) - \nabla F_m(p) \right] \cdot \frac{h}{|h|} \end{bmatrix} \xrightarrow{h \longrightarrow 0} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

5. TVM (NA FORMA INTEGRAL) PARA CAMPOS ESCALARES

Definição. Um conjunto $X \subset \mathbb{R}^n$ é convexo se dados quaisquer $a \in X$ e $b \in X$, então o segmento linear $\{a + s(b - a) : 0 \le s \le 1\}$ está contido em X.

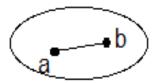


Figura 1: Conjunto convexo.

No que segue, $x = (x_1, ..., x_n)$ é a variável em \mathbb{R}^n .

Teorema 7 (TVM na forma integral, para campos escalares). Seja Ω um aberto convexo em \mathbb{R}^n . Seja $f: \Omega \to \mathbb{R}$ um campo escalar continuamente diferenciável. Dados dois pontos a e b, ambos em Ω , temos

$$f(b) - f(a) = \int_0^1 \left\{ \nabla f(a + s(b - a)) \cdot (b - a) \right\} ds = \left\{ \int_0^1 \nabla f(a + s(b - a)) ds \right\} \cdot (b - a).$$

Prova.

Segue do teorema fundamental do cálculo, da regra da cadeia e do cômputo

$$f(b) - f(a) = \int_{0}^{1} \frac{d}{ds} \{f(a+s(b-a))\} ds$$

$$= \int_{0}^{1} \nabla f(a+s(b-a)) \cdot (b-a) ds$$

$$= \int_{0}^{1} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} (a+s(b-a)) (b_{i}-a_{i}) ds$$

$$= \sum_{i=1}^{n} \int_{0}^{1} \frac{\partial f}{\partial x_{i}} (a+s(b-a)) (b_{i}-a_{i}) ds$$

$$= \left(\int_{0}^{1} \frac{\partial f}{\partial x_{1}} (a+s(b-a)) ds, \dots, \int_{0}^{1} \frac{\partial f}{\partial x_{n}} (a+s(b-a)) ds\right) \cdot (b-a)$$

$$= \int_{0}^{1} \nabla f(a+s(b-a)) ds \cdot (b-a)$$

Mantida a notação acima, notemos que

$$\frac{\partial f}{\partial x_j}(a) = \nabla f(a) \cdot e_k$$
, para quaisquer $a \in \Omega$ e $k = 1, \dots, n$.

6. TVM (NA FORMA INTEGRAL) PARA CAMPOS VETORIAIS

Seja $G: \mathbb{R}^n \to \mathbb{R}^n$ com derivadas parciais contínuas. Pomos $G = (G_1, \dots, G_n)^T$ com G_j a j-ésima componente da função G. A matriz jacobiana de G é

$$JG = \begin{pmatrix} \frac{\partial G_1}{\partial x_1} & \dots & \frac{\partial G_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial G_n}{\partial x_1} & \dots & \frac{\partial G_n}{\partial x_n} \end{pmatrix}.$$

Consideremos dois pontos $a \in \mathbb{R}^n$ e $b \in \mathbb{R}^n$. Temos então

$$G(b) - G(a) = \begin{pmatrix} G_1(b) - G_1(a) \\ \vdots \\ G_n(b) - G_n(a) \end{pmatrix} = \begin{pmatrix} \int_0^1 \frac{d}{ds} \{G_1(a + s(b - a))\} ds \\ \vdots \\ \int_0^1 \frac{d}{ds} \{G_n(a + s(b - a))\} ds \end{pmatrix}$$

$$= \begin{pmatrix} \int_0^1 \nabla G_1(a + s(b - a)) \cdot (b - a) ds \\ \vdots \\ \int_0^1 \nabla G_n(a + s(b - a)) \cdot (b - a) ds \end{pmatrix}$$

$$= \begin{pmatrix} \left\{ \int_0^1 \nabla G_1(a + s(b - a)) \cdot (b - a) ds \right\} \cdot (b - a) \\ \vdots \\ \left\{ \int_0^1 \nabla G_n(a + s(b - a)) ds \right\} \cdot (b - a) \end{pmatrix}$$

$$= \left\{ \int_0^1 JG(a + s(b - a)) ds \right\} (b - a).$$

$$= \int_0^1 JG(a + s(b - a)) \cdot (b - a) ds.$$

Definimos então

$$\widehat{G}(a,b) = \int_{0}^{1} JG(a+s(b-a)) ds.$$

Segue

$$G(b) - G(a) = \widehat{G}(a,b)(b-a).$$

Com as notações acima, temos então o resultado abaixo.

Teorema 8 (TVM na forma integral para campos vetoriais). Consideremos $F = F(x) : \Omega \to \mathbb{R}^n$ diferenciável e Ω um aberto convexo em \mathbb{R}^n . Suponha que a matriz jacobiana

$$DF(x) = \frac{\partial F}{\partial x}(x) = \left(\frac{\partial F_i}{\partial x_j}(x)\right) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}$$

é contínua em Ω . Então, existe uma função

$$\widehat{F}: \Omega \times \Omega \longrightarrow L(\mathbb{R}^n) \equiv M_{n \times n}(\mathbb{R}^n)$$

contínua e satisfazendo as condições abaixo.

$$\widehat{F}(x,x) = DF(x)$$
, para todo $x \in \Omega$.

$$F(b) - F(a) = \widehat{F}(a,b)(b-a)$$
 para quaisquer $a \in \Omega$ e $b \in \Omega$.

Prova.

Seja

$$\widehat{F}(a,b) = \int_{0}^{1} DF(a+s(b-a)) ds.$$

É claro que $\widehat{F}(x,x) = DF(x)$ para todo $x \in \Omega$.

Pelos comentários acima segue

$$F(b) - F(a) = \widehat{F}(a,b)(b-a).$$

Pela continuidade da integral dependente de um parâmetro segue que a aplicação $\widehat{F} = \widehat{F}(a,b)$ é contínua em $\Omega \times \Omega$. [Vide

7. DESIGUALDADE DE VALOR MÉDIO (DVM) PARA CURVAS

Teorema 9 (Desigualdade do valor médio para curvas). $Seja \gamma : [c,d] \to \mathbb{R}^n$ uma curva contínua, diferenciável no intervalo aberto (c,d). Suponhamos que existe uma constante M > 0 tal que temos

$$|\gamma'(t)| \le M$$
 para todo $t \in (c,d)$.

Então temos

$$|\gamma(d) - \gamma(c)| \leq M(d-c).$$

Prova.

Consideremos a função real $\varphi:[c,d] \to \mathbb{R}$ dada por

$$\varphi(t) = \langle \gamma(t), \gamma(d) - \gamma(c) \rangle$$
.

Então, φ é contínua em [c,d] e diferenciável em (c,d). Pelo TVM básico [para funções reais e em uma variável real, vide

https://www.ime.usp.br/~oliveira/ELE-LHospital.pdf] segue

$$\varphi(d) - \varphi(c) = \varphi'(\tau)(d - c)$$
, para algum $\tau \in (c, d)$.

A regra da cadeia assegura

$$\varphi'(\tau) = \langle \gamma'(\tau), \gamma(d) - \gamma(c) \rangle.$$

Donde segue

$$\langle \gamma(d), \gamma(d) - \gamma(c) \rangle - \langle \gamma(c), \gamma(d) - \gamma(c) \rangle = \langle \gamma'(\tau), \gamma(d) - \gamma(c) \rangle (d - c).$$

Isto é,

$$|\gamma(d) - \gamma(c)|^2 = \langle \gamma'(\tau), \gamma(d) - \gamma(c) \rangle (d - c).$$

A desigualdade de Cauchy- Schwarz (para o produto interno) garante

$$|\gamma(d) - \gamma(c)|^2 \le |\gamma'(\tau)| |\gamma(d) - \gamma(c)| (d - c).$$

Gratos à hipótese $|\gamma'(t)| \leq M$ concluímos que

$$|\gamma(d) - \gamma(c)| \le M|(d-c) +$$

8. DVM PARA CAMPOS VETORIAIS

Teorema 10 (Desigualdade do valor médio - DVM - para campos vetoriais). Seja $F: \Omega \to \mathbb{R}^m$ diferenciável no aberto convexo $\Omega \subset \mathbb{R}^n$. Sejam $p \in \Omega$ e $q \in \Omega$. Suponhamos que exista uma constante M > 0 satisfazendo

$$|DF(x)| \le M$$
, para todo x no segmento $\overline{pq} = \{p + t(q - p) : t \in [0, 1]\}.$

Então temos

$$|F(q) - F(p)| \le M|q - p|.$$

Prova.

Consideremos a curva $\gamma:[0,1]\to\mathbb{R}^m$ dada por

$$\gamma(t) = F(p + t(q - p)).$$

Então, γ é contínua em [0,1] e diferenciável em (0,1). Pela regra da cadeia segue

$$\gamma'(t) = DF(p + t(q - p))(q - p).$$

Devido à hipótese $|DF(t)| \leq M$ segue

$$|\gamma'(t)| \le M|q-p|.$$

Pelo DVM para curvas (vide Teorema 9) segue

$$|\gamma(1) - \gamma(0)| \le M|q - p|(1 - 0).$$

Por fim, concluímos

$$|F(q) - F(p)| \le M|q - p| \blacktriangleleft$$

REFERÊNCIAS

- 1. Apostol, T. M., Cálculo, Vol. 2, Editorial Reverté, 1999.
- 2. Fitzpatrick, P. M., Advanced Calculus, 2ª ed., American Math. Soc., 2009.
- 3. Knapp, A. W., Basic Real Analysis, Birkhäuser, 2005.
- 4. Lima, E.. L., Curso de Análise, Vol. 2, IMPA, 2009.
- 5. Spivak, M., O Cálculo em Variedades, Ed. Ciência Moderna, 2003.

Departamento de Matemática Universidade de São Paulo oliveira@ime.usp.br

http://www.ime.usp.br/~oliveira