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A New Proof of Darboux's Theorem 
Lars Olsen 

In this short note we present a (new?) proof of Darboux's theorem, which states that 
any derivative has the intermediate value property. Recall that a real-valued function 
f : I -+ R defined on an interval I is said to have the intermediate value property if 
for all a and b in I with a < b and for each number y between f(a) and f(b) there 
exists a number x in [a, b] such that f (x) = y. 

It is well known, and proved in any course in real analysis, that a continuous func- 
tion defined on an interval has the intermediate value property. It was widely believed 
by many nineteenth-century mathematicians that the intermediate value property was, 
in fact, equivalent to continuity. However, in 1875 the French mathematician Jean Gas- 
ton Darboux (1842-1917) [4] proved that this is not the case. Darboux showed that 
any derivative has the intermediate value property and gave examples of differentiable 
functions with discontinuous derivatives. Because of Darboux's work, the fact that any 
derivative has the intermediate value property is now known as Darboux's theorem. 

Darboux's Theorem. Let I be an open interval, and let f : I -> R be a differentiable 
function. If a and b are points of I with a < b and if y lies between f' (a) and f' (b), 
then there exists a number x in [a, b] such that f'(x) = y. 

Darboux's theorem is sometimes proved in courses in real analysis as an example of 
a nontrivial application of the fact that a continuous function defined on a compact in- 
terval has a maximum. All textbooks, including classical texts such as those by Bartle 
and Sherbert [1, Theorem 6.2.12], Boas [2, p. 122], Hardy [5, sec. 129], Rudin [9, The- 
orem 5.12], Spivak [10, Exercise 39, p. 187] and Stromberg [13, Exercise 17, p. 186], 
in addition to the other text-books ([3, Theorem 3.10], [6, Theorem 7.6], [7, Theo- 
rem 26.9], [8, Theorem 29.8], [11, Theorem 5.2.13], [12, p. 158], [14, Theorem 7.31]) 
in real analysis that I have on the bookshelf next to my desk, present the following 
proof of Darboux's theorem: We may clearly assume that y lies strictly between f'(a) 
and f'(b). Define 

0 
: I -- IR by 

4o(t) 
= f(t) - yt. 

Then p'(a) = f'(a) - y and q?'(b) = f'(b) - y. We therefore conclude that either 
p'(a) > 0 and qp'(b) < 0, or p'(a) < 0 and p'(b) > 0. Without loss of generality we 
may assume that 

0p'(a) 
> 0 and p'(b) < 0. This implies that neither a nor b can be a 

point where 
qo 

attains even a local maximum. Since qo is continuous, it must therefore 
attain its maximum on [a, b] at an interior point x of [a, b]. From this we conclude 
that 0 = p'(x) = f'(x) - y, whence f'(x) = y. 

However, it is my experience that this proof is somewhat unconvincing to many 
beginning undergraduate students in real analysis. In particular, the fact that 

o'/(a) 
> 0 

and ?p'(b) < 0 implies that neither a nor b can be a maximum point of q0 seems to 
cause most problems. Most students typically either think that this is obvious (and that 
the lecturer is being overly pedantic by insisting on a proof), or they see the need for 
a proof but find the e-8-gymnastics in the proof less than convincing. The reader is 
referred to Lemma 6.2.11 in Bartle and Sherbert's textbook [1] for a typical e-8 proof 
of this fact. 
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The proof of Darboux's theorem that follows is based only on the mean value the- 
orem for differentiable functions and the intermediate value theorem for continuous 
functions. It is my experience that this proof is more convincing than the "standard" 
one to beginning undergraduate students in real analysis. 

Proof ofDarboux's theorem. We may clearly assume that y lies strictly between f'(a) 
and f'(b). Define continuous functions fa, fb : I --+ R by 

f'(a) fort = a, 
fa (t) 

= f (a) - f (t) for t a, 
a-t 

and 

f'(b) for t = b, 

fb(t) 
= f (t) - f (b) 

for tb. for- t b. 
t-b 

It follows that fa(a) = f'(a), fa(b) = fb(a), and fb(b) = f'(b). Hence, y lies be- 
tween fa(a) and fa(b), or y lies between fb(a) and fb(b). 

If y lies between fa (a) and fa (b), then (by the continuity of fa) there exists s in 
(a, b] with 

f (s) - f (a) 
s-a 

The mean value theorem ensures that there exists x in [a, s] such that 

f (s) - f(a) 
y -a = f'(x). s-a 

If y lies between fb(a) and fb(b), then an analogous argument (exploiting the con- 
tinuity of fb) shows that there exist s in [a, b) and x in [s, b] such that 

f (b)- f(s) 
y b f'(x). b-s 

This completes the proof. U 
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Tiling Our Universe 

In our infinite universe 
I could talk forever, 
About the tilt of your head 
The shape of your smile- 
Endlessly shifting. 
Were we merely a fiction? 
I used to be amazed 
At how we had found one another, 
From the thousands of others, 
I chose you and you me. 

Yes, I have loved before, of course, 
But we were not a repetition, 
This love was larger 
Of this I am certain, 
A truth of unimaginable scale. 

We fit, our love was concrete, 
As we came together in endless patterns, 
There was the proof- 
Nothing abstract in the way 
We covered our universe. 

And yet, with predictable ease, 
You committed secret treason, 
Shifted, changing shape, 
'Just part of nature' 
You repeated to me, again ... and again. 
We reached an impasse, as I feared we would, 
No rhyme nor reason, 
But even knowing you will repeat, 
Different but the same, 
Still I backtrack 
So we can create our love again... and again. 

- Submitted by Jennifer Granville, Ohio University School 
of Film, Athens, Ohio, and inspired by the writers and 
mathematicians at the BIRS Workshop on Mathematics 
and Creative Writing, April 2004. 
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