MAT 5714 - FUNÇÕES ANALÍTICAS

Instituto de Matemática e Estatística da USP

Ano 2014

Professor Oswaldo R. B. de Oliveira

http://www.ime.usp.br/~oliveira oliveira@ime.usp.br

Capítulo 12 - Runge e Mittag-Leffler

- 12.1 Teoremas de Runge.
- 12.2 Teorema de Mittag-Leffler.
- 12.3 Método de Frações Parciais.
- 12.4 Caracterização de Simplesmente Conexos.

Capítulo 1 NÚMEROS COMPLEXOS

TOPOLOGIA DO PLANO $\mathbb C$

Capítulo 3
POLINÔMIOS

Capítulo 4 SÉRIES E SOMABILIDADE

Capítulo 5 SÉRIES DE POTÊNCIAS

Capítulo 6 FUNÇÕES ANALÍTICAS

EXPONENCIAL, ÍNDICE, PRINCÍPIO DO ARGUMENTO E TEOREMA DE ROUCHÉ

TEOREMA DE CAUCHY HOMOTÓPICO E LOGARITMO

TEOREMA E ESFERA DE RIEMANN E APLICAÇÕES CONFORMES

Capítulo 10 INTEGRAÇÃO COMPLEXA

APLICAÇÕES DA INTEGRAÇÃO COMPLEXA

RUNGE E MITTAG-LEFFLER

12.1 - Teoremas de Runge

Pelo Teorema de Weierstrass, toda função contínua em um intervalo compacto pode ser aproximada uniformemente por polinômios. É então razoável investigarmos resultados análogos em análise complexa. Formulamos então a questão: "quais condições sobre um compacto K garantem que toda função f holomorfa numa vizinhança de K é tal que $f|_K$ é limite uniforme de polinômios?"

Um exemplo é dado pela expansão em séries de potências. Dada $f(z) = \sum a_n z^n$ holomorfa em uma bola aberta B, então $f|_K$ é limite uniforme de polinômios qualquer que seja o compacto K contido em B.

Em geral, entretanto, alguma condição deve ser imposta em K pois a função

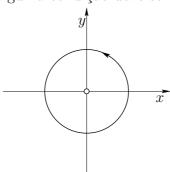


Figura 12.1: Contra-exemplo fundamental ao teorema de Runge

1/z no compacto $K = S^1$ satisfaz

$$\int_{S^1} \frac{1}{z} dz = 2\pi i$$

e todo polinômio p satisfaz

$$\int_{S^1} p(z)dz = 0.$$

Logo, a função

$$\frac{1}{z}$$
 restrita ao S^1

não é limite uniforme de polinômios.

A restrição sobre K que garante a aproximação refere-se à topologia do complementar:

$$K^c = \mathbb{C} \setminus K$$
 tem que ser conexo.

Uma pequena modificação do exemplo

$$f(z) = \frac{1}{z}$$

revela tal necessidade (vide exercício em Stein & Shakarchi p. 69).

Inversamente, existe aproximação uniforme polinomial se o complementar K^c é conexo e este resultado segue de um teorema de Runge que garante que para todo compacto K existe uma aproximação uniforme por funções racionais com "singularidades" (polos) prescritas em um subconjunto arbitrário no complementar de K.

Este teorema de Runge é espetacular pois as funções racionais são globalmente definidas ao passo que a função f é dada apenas na vizinhança de K. Em particular, f poderia ser definida independentemente em diferentes componentes de K, tornando a conclusão do teorema ainda mais surpreendente.

Como intuição geométrica (mínima) para esta seção, e a próxima, é útil ter em mente as seguintes (entre as infinitas) possibilidades para

um aberto O e seu complementar $O^c = \mathbb{C} \setminus O$.

[Em geral, analisaremos o aberto $O = \Omega \setminus K$, com Ω aberto e K um compacto em Ω , ou o fechado $\mathbb{C} \setminus O$, ou mesmo ambos.]

- Uma componente limitada (compacta) de $\mathbb{C} \setminus O$ é um "buraco" em O.
- Se $O = \mathbb{C}$, então O é conexo, sem "buracos", e $\mathbb{C} \times O = \emptyset$ é conexo.
- Se O = B(0;r), então O é conexo, sem buracos, e $\mathbb{C} \setminus O = \{z : |z| \ge r\}$ é conexo, com um "buraco", e tem uma única componente ilimitada.
- Se O é o anel circular

$$O = \{z : r < |z| < R\},\$$

então O é conexo e $\mathbb{C} \times O$ tem duas componentes, uma compacta (um "buraco" em O) e uma ilimitada.

- Se

$$O = \{ z = x + iy \in \mathbb{C} : -1 < x < 1 \}$$

[uma "faixa" vertical ilimitada], então O é conexo e o complementar de O tem duas componentes ilimitadas. Ainda, O não tem "buracos". Ainda mais, $O^c = \mathbb{C} \setminus O$ também não tem "buracos".

- Se

$$O = \{ z = x + iy \in \mathbb{C} : -1 < x < 1 \} \setminus D\left(0; \frac{1}{2}\right),$$

então O é conexo e o complementar de O tem três componentes: duas ilimitadas e uma compacta. Assim, O tem um "buraco". Ainda, seu complementar $O^c = \mathbb{C} \setminus O$ não tem "buracos".

Se O = [B(0;10) ∪ B(100;10)] \ [B(-4;1) ∪ B(0;1) ∪ B(4;1) ∪ B(96;1) ∪ B(100;1) ∪ B(104;1)], então O não é conexo e tem duas componentes.
 Ainda, O tem 6 "buracos". Ainda mais, seu complementar C \ O tem 7 componentes: uma única componente ilimitada e 6 componentes compactas (os denominados "buracos de O].

Solicitamos ao leitor esboçar algumas outras possibilidades.

- 12.1 Lema (Sequência Exaustiva de Compactos). Seja Ω um aberto não vazio de \mathbb{C} . Então, existe uma sequência de compactos (K_n) tal que
 - (a) $K_n \subset int(K_{n+1})$,
 - (b) $\Omega = \bigcup K_n$,
 - (c) Para cada compacto $K \subset \Omega$, existe n tal que $K \subset int(K_n)$,
 - (d) Cada componente limitada de $\mathbb{C} \setminus K_n$ contém uma componente de $\mathbb{C} \setminus \Omega$.
 - (e) Se $\mathbb{C} \setminus \Omega$ não contém componentes limitadas, então $\mathbb{C} \setminus K_n$ é conexo.

Intuitivamente, (d) expressa que os "buracos" de K_n são os que provém de "buracos" de Ω . Já (e), diz que se Ω não tem "buracos" então K_n também não.

Prova. O caso $\Omega = \mathbb{C}$ é trivial. Notemos $X^c = \mathbb{C} \setminus X$, para $X \subset \mathbb{C}$. Seja

$$K_n = \left\{ z \in \mathbb{C} : |z| \le n \text{ e } d(z; \Omega^c) \ge \frac{1}{n} \right\} \subset \Omega, \text{ para } n = 1, 2, 3, \dots$$

Claramente, K_n é limitado e uma intersecção de fechados. Logo, K_n é compacto.

(a) Dados

$$z \text{ em } K_n \text{ e } w \text{ em } B\left(z; \frac{1}{n} - \frac{1}{n+1}\right),$$

encontramos $|w| \le |w - z| + |z| \le 1 + n$. A seguir, utilizando a desigualdade $|d(z; \Omega^c) - d(w; \Omega^c)| \le |z - w|$ [verifique-a] obtemos

$$d(w; \Omega^c) \ge d(z; \Omega^c) - |w - z| \ge \frac{1}{n} - \frac{1}{n} + \frac{1}{n+1} = \frac{1}{n+1}.$$

Logo,

$$B\left(z; \frac{1}{n} - \frac{1}{n+1}\right) \subset K_{n+1}.$$

(b) Dado $z \in \Omega$, existe $n \text{ em } \mathbb{N}^*$ tal que

$$|z| \le n \, e \, d(z; \Omega^c) \ge \frac{1}{n}.$$

Então, $z \in K_n$.

(c) Trivial, pois por (a) e (b) obtemos $\Omega = \bigcup int(K_n)$.

(d) Seja

$$F_n = \left\{ z \in \mathbb{C} : d(z; \Omega^c) \ge \frac{1}{n} \right\}.$$

Então, $K_n = D(0; n) \cap F_n$. Temos [cheque],

$$K_n^c = D(0;n)^c \cup \left\{ z \in \mathbb{C} : d(z;\Omega^c) < \frac{1}{n} \right\} = D(0;n)^c \cup \bigcup_{w \in \Omega^c} B\left(w; \frac{1}{n}\right).$$

Os conjuntos $D(0;n)^c$ e B(w;1/n), onde $w \in \Omega^c$, são conexos.

Seja C uma componente limitada de K_n^c . Como C é a união dos subconjuntos conexos de K_n^c que intersectam C, vemos que C não intersecta $D(0;n)^c$. Ainda mais,

$$C = \bigcup_{w \in \Omega^c} B\left(w; \frac{1}{n}\right) \cap C = \bigcup_{w \in C \cap \Omega^c} B\left(w; \frac{1}{n}\right) \text{ [cheque]}.$$

Em particular, $C \cap \Omega^c \neq \emptyset$. Logo, $C \cap \Omega^c$ intersecta alguma componente (conexo maximal) \mathcal{C} de Ω^c . Donde, \mathcal{C} é um subconjunto conexo de $\Omega^c \subset K_n^c$. Logo, \mathcal{C} é conexo em K_n^c e \mathcal{C} intersecta C (uma componente de K_n^c). Logo,

$$\mathcal{C} \subset C$$
.

(e) Segue de (d), pois K_n^c tem exatamente uma componente ilimitada \bullet

Façamos alguns esclarecimentos sobre a terminologia a seguir.

- Dizemos que um polinômio (não constante) é uma função racional com polo no infinito. Assim, uma função racional pode não ter polos em C.
- A frase "uma função racional R(z) com polos em um conjunto P", significa que os polos de R(z), se existirem, formam um subconjunto de P. Assim, não é necessário que todo ponto de P seja um polo de R(z)

A demonstração do Teorema de Runge Polinomial I, que segue abaixo, apresenta o bastante útil argumento apelidado: "arrastar o polo".

- 12.2 Teorema (Runge). Seja f holomorfa em uma vizinhança aberta Ω de um compacto K. Valem as propriedades a sequir.
 - $(a) \ f\big|_{K} \ \acute{e} \ limite \ uniforme \ de \ funç\~oes \ racionais \ com \ polos \ em \ K^c = \mathbb{C} \smallsetminus K.$
 - (b) (Runge Polinomial I). Se $K^c = \mathbb{C} \setminus K$ é conexo, então

 $f|_{K}$ é limite uniforme de polinômios (restritos a K).

(c) (Runge Polinomial II). Se $\Omega^c = \mathbb{C} \setminus \Omega$ não tem componente limitada, então existe uma sequência de polinômios (P_n) tal que

 P_n converge uniformemente a f nos compactos de Ω .

(d) (Runge Racional I). Seja $P \subset \mathbb{C}$ tal que P intersecta cada componente limitada de $\mathbb{C} \setminus K$. Então,

 $f\big|_{K}$ é limite uniforme de funções racionais com polos somente em P.

(e) (Runge Racional II). Seja $P \subset \mathbb{C}$ tal que P intersecta cada componente limitada de $\mathbb{C} \setminus \Omega$. Então, existe uma sequência (R_n) de funções racionais, com polos somente em P, tal que

 R_n converge uniformemente a f nos compactos de Ω .

Prova.

(a) Seja Ω um aberto contendo K e $\delta > 0$ tal que

$$\delta\sqrt{2} < d(K; \Omega^c).$$

Consideremos no plano uma grade de quadrados convexos e fechados de lados de comprimento δ e paralelos aos eixos coordenados, que cobre o plano. Os quadrados não são degenerados e tem interiores dois a dois disjuntos. Seja

$$\mathcal{Q}$$
 = $\{Q_1,\ldots,Q_m\}$

a coleção finita dos quadrados, na grade, intersectando K.

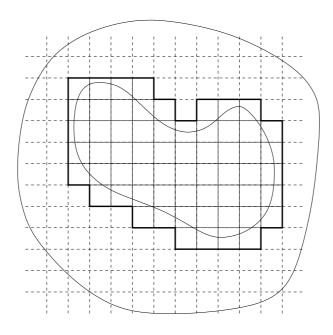


Figura 12.2: A grade e o compacto K.

Devido à escolha de δ , temos [verifique]

$$Q_{\mu} \subset \Omega$$
, para todo $\mu = 1, \dots, m$.

Dado z em $\operatorname{int}(Q_1) \cup \cdots \cup \operatorname{int}(Q_m)$, pelo teorema de Cauchy temos

$$f(z) = \sum_{\mu=1}^{m} \frac{1}{2\pi i} \int_{\partial Q_{\mu}} \frac{f(w)}{w - z} dw.$$

Se Q_{μ} e $Q_{\mu'}$ são adjacentes, as integrais sobre o lado comum a eles tem sentidos opostos e se cancelam. Sejam $\gamma_1, \ldots, \gamma_n$ os lados dos quadrados em \mathcal{Q} que não pertencem a dois quadrados adjacentes [ambos em \mathcal{Q}]. Tais lados não intersectam K [caso contrário, faltaria um quadrado em \mathcal{Q}]. Temos

$$2\pi i f(z) = \sum_{\nu=1}^{n} \int_{\gamma_{\nu}} \frac{f(w)}{w - z} dw, \text{ para todo } z \text{ em } \bigcup_{\mu=1}^{m} \operatorname{int}(Q_{\mu}).$$

Cada função

$$z \mapsto \int_{\gamma_{-}} \frac{f(w)}{w - z} dw$$

é derivável no aberto $\mathbb{C} \setminus (\gamma_1 \cup \cdots \cup \gamma_n)$. Assim, por continuidade segue

$$2\pi i f(z) = \sum_{\nu=1}^{n} \int_{\gamma_{\nu}} \frac{f(w)}{w - z} dw \text{ para todo } z \text{ em } (Q_{1} \cup \dots \cup Q_{m}) \setminus (\gamma_{1} \cup \dots \cup \gamma_{n}).$$

[Note que tal identidade vale em $Q_{\mu} \setminus (\gamma_1 \cup \dots \cup \gamma_n)$ para cada μ = 1, . . . , m.]

Em particular, temos

$$2\pi i f(z) = \sum_{\nu=1}^{n} \int_{\gamma_{\nu}} \frac{f(w)}{w - z} dw \text{ para todo } z \in K.$$

Fixado um arbitrário ν , sejam

$$\gamma = \gamma_{\nu} \quad \text{e} \quad 2r = d(K; \gamma) > 0.$$

A seguir, dividimos γ em sub-segmentos $\sigma_1, \ldots, \sigma_p$ de comprimentos menor que r. Então temos

$$\int_{\gamma} \frac{f(w)}{w - z} dw = \sum_{\rho=1}^{p} \int_{\sigma_{\rho}} \frac{f(w)}{w - z} dw, \text{ para todo } z \text{ em } K.$$

Fixado um arbitrário ρ , sejam $\sigma = \sigma_{\rho}$ e fixemos um arbitrário α em Imagem (σ) . Dado um arbitrário w em Imagem (σ) e um arbitrário z em K temos

$$\frac{1}{w-z} = \frac{1}{w-\alpha+\alpha-z} = \frac{\frac{1}{\alpha-z}}{1-\frac{\alpha-w}{\alpha-z}}, \quad \text{com } \left|\frac{\alpha-w}{\alpha-z}\right| \le \frac{r}{2r} = \frac{1}{2}.$$

Pelo teste-M de Weierstrass, a série (com α fixo) que define a função

$$(w,z) \longmapsto \frac{1}{1 - \frac{\alpha - w}{\alpha - z}} = \sum_{n=0}^{+\infty} \left(\frac{\alpha - w}{\alpha - z}\right)^n$$

converge uniformemente em Imagem $(\sigma) \times K$.

Então, pelo Lema 9.14 concluímos que

$$\int_{\sigma} \frac{f(w)}{w-z} dw = \lim_{N \to +\infty} R_N(z), \text{ onde } R_N(z) = \sum_{n=0}^{N} \frac{\int_{\sigma} f(w)(\alpha - w)^n dw}{(\alpha - z)^{n+1}},$$

converge uniformemente em K [cheque].

Se $f|_K$ não é identicamente nula, então uma subsequência de (R_n) é constituída por funções racionais não nulas e com polos no ponto $\alpha \in K^c$.

Se $f|_K \equiv 0$, aproximamos $g \equiv 1$ em K e uniformemente por funções racionais $S_n(z)$ com polos em K^c . Então, a sequência

$$R_n(z) = S_n(z) - 1$$

cumpre o desejado.

(b) Pelo item anterior, basta mostrar que, dado $\alpha \in K^c$, a função

$$\frac{1}{z-\alpha}$$
restrita a K

é limite uniforme de polinômios.

♦ O argumento "arrastar o polo".

Seja β um ponto no complementar de uma bola aberta B(0; R) contendo o compacto K.

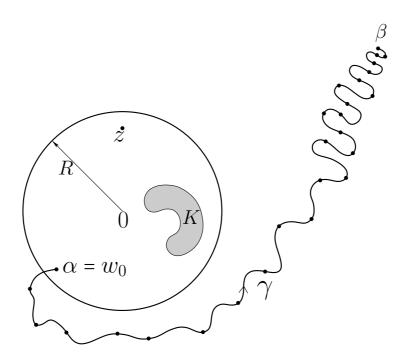


Figura 12.3: Arrastando o polo de α até β .

Então temos

$$\frac{1}{z-\beta} = -\frac{1}{\beta} \frac{1}{1-\frac{z}{\beta}} = -\sum_{n=0}^{+\infty} \frac{z^n}{\beta^{n+1}}, \text{ para todo } z \in B(0; R),$$

com a série convergindo uniformemente em K. As somas parciais desta série são polinômios que convergem uniformemente à função a

$$\frac{1}{z-\beta}$$
 sobre K .

Logo, para todo m = 1, 2, 3, . . ., cada função

$$\frac{1}{(z-\beta)^m}$$
 restrita a K

também é limite uniforme de polinômios.

Donde, resta apenas verificarmos que a função

$$\frac{1}{z-\alpha}$$
, restrita a K , é limite uniforme de polinômios em $\frac{1}{z-\beta}$.

Como o complementar K^c é conexo, existe uma curva γ de classe C^1 por partes e satisfazendo

$$\gamma:[0,1]\to K^c, \text{ com } \gamma(0)=\alpha \in \gamma(1)=\beta.$$

Vide Figura 12.2 na página anterior.

Seja $2r = d(K; \gamma[0,1]) > 0$. Consideremos então $\{t_0 = 0, ..., t_l = 1\}$ uma partição de [0,1] e os pontos

$$w_0 = \gamma(t_0), \ w_1 = \gamma(t_1), \dots, w_l = \gamma(t_l)$$

satisfazendo

$$|w_{\lambda} - w_{\lambda-1}| < r$$
, para cada $\lambda = 1, \dots, l$.

 \diamond Afirmação. Se w e w' estão em Imagem (γ) e |w-w'| < r, então

$$\frac{1}{z-w}$$
 é limite uniforme em K de polinômios em $\frac{1}{z-w'}$.

De fato, isto segue do teste-M aplicado a

$$\frac{1}{z-w} = \frac{1}{z-w'} \frac{1}{\left(1 - \frac{w-w'}{z-w'}\right)}$$
$$= \sum_{n=0}^{+\infty} \frac{(w-w')^n}{(z-w')^{n+1}}.$$

Isto nos permite arrastar o polo desde o ponto α até o ponto β em uma sequência finita de passos e então concluir que

$$\frac{1}{z-\alpha}$$
 restrita a K é limite uniforme de polinômios em $\frac{1}{z-\beta}$.

(c) Seja (K_n) uma sequência de compactos para Ω , como no Lema 12.1.

Como $\Omega^c = \mathbb{C} \setminus \Omega$ não tem componentes limitadas, pelo Lema 12.1(e) segue que o conjunto $K_n^c = \mathbb{C} \setminus K_n$ é conexo. Então, pelo item (b), para cada n existe um polinômio P_n satisfazendo

$$|P_n(z) - f(z)| < \frac{1}{n}$$
, para todo $z \in K_n$.

Então, dado um compacto K arbitrário em Ω e um arbitrário $\epsilon > 0$, seja

$$N \ge 1$$
 tal que $K \subset K_N$ e $\frac{1}{N} < \epsilon$.

Para todo $n \ge N$ temos $K \subset K_N \subset K_n$ e

$$|P_n(z) - f(z)| \le \frac{1}{n} \le \frac{1}{N} < \epsilon$$
, para todo z em K .

(d) Pelo item (a) basta verificar que dado um arbitrário $\alpha \in K^c$, a função

$$\frac{1}{z-\alpha}$$
 restrita a K

é limite uniforme de funções racionais com polos em P. Vejamos dois casos.

 \diamond O ponto α pertence à componente conexa ilimitada de K^c .

Neste caso, arrastando o polo [como em (b)] concluímos que a função

$$\frac{1}{z-\alpha}$$
 restrita a K é limite uniforme de polinômios.

 \diamond O ponto α pertence a uma componente conexa limitada $\mathcal C$ de K^c .

Consideremos um ponto p na intersecção $P \cap C$ e uma curva, dentro de C e de classe C^1 por partes, conectando os pontos α e p. Arrastando o polo em α até o ponto p, analogamente ao item (b),

Figura 12.4: Arrastando o polo de α até p.

concluímos que a função

$$\frac{1}{z-\alpha}$$
 restrita a K é limite uniforme de polinômios em $\frac{1}{z-p}$.

(e) Seja (K_n) uma sequência de compactos para Ω , como no Lema 12.1. Devido às hipóteses e ao Lema 12.1(d), cada componente limitada de $\mathbb{C} \setminus K_n$ contém uma componente limitada de $\mathbb{C} \setminus \Omega$ e então intersecta P. Logo, por (d), para cada n existe uma função racional R_n , com polos apenas em P, satisfazendo

$$|R_n(z) - f(z)| < \frac{1}{n}$$
, para todo $z \in K_n$.

Então, dado um compacto K arbitrário em Ω e um arbitrário $\epsilon > 0$, seja $N \ge 1$ tal que $K \subset K_N$ e $\frac{1}{N} < \epsilon$. Para todo $n \ge N$ temos $K \subset K_N \subset K_n$ e

$$|R_n(z) - f(z)| \le \frac{1}{n} \le \frac{1}{N} < \epsilon$$
, para todo z em $K \clubsuit$

12.2 - Teorema de Mittag-Leffler

Se f é meromorfa e tem um polo de ordem m em z_0 então a parte principal da série de Laurent de f no ponto z_0 é

$$P(z) = \frac{b_m}{(z - z_0)^m} + \frac{b_{m-1}}{(z - z_0)^{m-1}} + \dots + \frac{b_1}{z - z_0},$$

que é um polinômio em

$$\frac{1}{z-z_0}$$
.

Assim, f(z) - P(z) é holomorfa. O Teorema de Mittag-Leffler permite prescrever polos e a parte principal de uma função meromorfa.

12.3 Teorema (Mittag-Leffler). Sejam Ω um aberto conexo e

$$S = \{z_1, z_2, \ldots\}$$

uma sequência de pontos distintos em Ω , sem ponto de acumulação em Ω . Seja P_n um polinômio não nulo e sem termo independente, para cada n. Então, existe uma função meromorfa f = f(z) em Ω cujos polos são os pontos $z_{n's}$ e tal que a parte principal de f no ponto z_n é

$$P_n\left(\frac{1}{z-z_n}\right).$$

Prova. Iniciemos com o caso $\Omega^c \neq \emptyset$.

Sejam K_n , com $n \ge 1$, compactos em Ω como no Lema 12.1. Definimos $S_1 = S \cap K_1$ e $S_n = S \cap (K_{n+1} \setminus K_n)$, para cada $n \ge 1$. Temos $S_n \subset K_{n+1}$ e, por hipótese, S não tem ponto de acumulação em Ω . Logo, S_n é finito. Seja

$$Q_n(z) = \sum_{z_j \in S_n} P_j\left(\frac{1}{z - z_j}\right)$$
, para cada $n \ge 1$.

Os polos de Q_n são os pontos de S_n , todos fora de K_n , e Q_n é holomorfa em K_n . Então, pelo Lema 12.1(d) e o Teorema de Runge Racional I [12.2(d)] aplicados a K_n , à função Q_n [holomorfa em K_n] e ao conjunto $P = \Omega^c$ [notemos que $\Omega^c \subset K_n^c$], existe uma função racional R_n com polos em Ω^c [e então holomorfa em Ω] tal que

(12.3.1)
$$|Q_n(z) - R_n(z)| < \frac{1}{2^n}$$
, para todo $z \text{ em } K_n$.

Mostremos que a seguinte série converge em $\Omega {\smallsetminus} S$ e é uma função como desejamos:

$$f(z) = Q_1(z) + \sum_{n=2}^{+\infty} [Q_n(z) - R_n(z)].$$

Fixemos $N \ge 2$. Dado $n \ge N$, temos $K_N \subset K_n$ com $Q_n - R_n$ holomorfa em K_N . Para tal n também temos

$$|Q_n(z) - R_n(z)| < \frac{1}{2^n}$$
, para todo $z \in K_N$.

Portanto [propositalmente neglicenciemos $Q_N - R_N$],

$$\sum_{n=N+1}^{+\infty} (Q_n - R_n)$$

converge uniformemente sobre K_N a uma função holomorfa em int (K_N) . Então,

$$f - (Q_1 + \dots + Q_N) = -(R_2 + \dots + R_N) + \sum_{n=N+1}^{+\infty} (Q_n - R_n)$$

é holomorfa em int (K_N) . Logo, f tem a parte principal prescrita em cada $z_j \in S$.

Esboçemos o caso $\Omega = \mathbb{C}$. Seja $K_n = D(0; n)$, para $n = 1, 2, \ldots$ Definindo

$$Q_n(z) = \sum_{n < |z_j| \le n+1} P_j\left(\frac{1}{z - z_j}\right),$$

seja $R_n(z)$ um polinômio oriundo da soma parcial da expansão em série de potências de $Q_n(z)$ em torno da origem, com R_n satisfazendo (12.3.1). Então, a construção acima nos oferta uma $g \in \mathcal{M}(\mathbb{C})$. Escolhemos para f a função

$$f(z) = g(z) + \sum_{|z_j| \le 1} P_j\left(\frac{1}{z - z_j}\right)$$
 [tal f nos serve, cheque]

12.3 - Método de Frações Parciais

Exemplo 12.4 Determinemos f meromorfa em \mathbb{C} com polos simples nos pontos

$$1, 2, 3, 4, \dots$$

e com resíduo igual a 1 em cada um destes polos.

Solução. A parte principal de f em cada ponto z_n = n, onde $n \in \mathbb{N}^*$, é

$$p_n(z) = \frac{1}{z - n}.$$

Entretanto, a série

$$g(z) = \sum_{n=1}^{+\infty} \frac{1}{z-n}$$
, para $z \in \mathbb{C} \setminus \{1, 2, 3, ...\}$

não converge. Observemos que o primeiro termo (o termo constante) na expansão em série de potências da função 1/(z-n) em torno da origem é

$$-\frac{1}{n}$$
.

Então, como segunda tentativa definimos

$$f(z) = \sum_{n=1}^{+\infty} \left(\frac{1}{z-n} + \frac{1}{n} \right) = \sum_{n=1}^{+\infty} \frac{z}{n(z-n)}, \text{ para } z \in \mathbb{C} \setminus \{1, 2, 3, \ldots\}.$$

Como a série

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$

é convergente, pelo teste-M segue que a série para f converge uniformemente sobre cada subconjunto compacto de \mathbb{C} . De fato, fixado $m \in \mathbb{N}^*$ e considerando z em D(0; m), para n grande o suficiente [por exemplo, $n \ge 2m$] temos

$$n-m \ge \frac{n}{2}$$
 e então $|n(z-n)| \ge n(n-|z|) \ge n(n-m) \ge \frac{n^2}{2}$,

e desta forma, para cada z em D(0; m) temos

$$\sum_{n\geq 2m} \frac{1}{|z(z-n)|} \leq \sum_{n\geq 2m} \frac{2}{n^2} < \infty.$$

Logo, a série para f converge compactamente a $f \in \mathcal{M}(\mathbb{C})$ e f atende o desejado \bullet

Seja f(z) meromorfa no plano complexo e com polos em pontos indicados por z_n . O conjunto de polos é discreto e então enumerável. Uma decomposição em frações parciais de f é uma expansão em uma série que converge uniformemente sobre os compactos:

$$f(z) = \sum R_n(z),$$

onde cada $R_n(z)$ é uma função racional cujo único polo (finito) ocorre em z_n . Portanto, $R_n(z)$ é a soma da parte principal de f(z) no ponto z_n com um polinômio. Uma decomposição em frações parciais nunca é única pois sempre podemos adicionar qualquer polinômio a uma parcela do somatório e subtrai-lo de outra parcela.

Exemplo 12.5 É válida a decomposição

$$\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n=-\infty}^{+\infty} \frac{1}{(z-n)^2}.$$

Solução. Seja

$$f(z) = \sum_{n=-\infty}^{+\infty} \frac{1}{(z-n)^2}$$
, onde $z \in \mathbb{C} \setminus \{\dots, -2, -1, 0, 1, 2, \dots\}$.

Fixado $m \in \mathbb{N}^*$ e considerando z em D(0; m), para $n \ge 2m$ temos

$$n-m \ge \frac{n}{2}$$
 e então $|z-n|^2 \ge (n-|z|)^2 \ge \frac{n^2}{4}$,

e desta forma, para cada z em D(0; m) encontramos

$$\sum_{n\geq 2m} \frac{1}{|z-n|^2} \leq \sum_{n\geq 2m} \frac{4}{n^2} < \infty.$$

Logo, a série para f converge uniformente a f sobre todo conjunto compacto K, após omitirmos os termos (da série) que em K assumem o valor infinito.

É trivial ver que

$$z = n$$
 é polo duplo da função $\varphi(z) = \frac{\pi^2}{\sin^2 \pi z}$, para cada $n \in \mathbb{Z}$.

Determinemos a parte singular de $\varphi(z)$ em z = 0. Temos

$$\frac{\pi}{\sin \pi z} = \frac{\pi}{\pi z - \pi^3 \frac{z^3}{3!} + \dots} = \frac{1}{z} \frac{1}{[1 - z^2 h(z)]}, \text{ com } h \text{ inteira.}$$

Logo, devido às propriedades operatórias com séries geométricas e de potências [vide propriedades de composição (5.15) e inverso algébrico (5.16), capítulo 5], em alguma bola reduzida $B^*(0;r) = B(0;r) \setminus \{0\}$, com r > 0, temos

$$\frac{\pi}{\sin \pi z} = \frac{1}{z} \left[1 + z^2 h(z) + z^4 h^2(z) + z^6 h^3(z) + \cdots \right] = \frac{1 + z^2 H(z)}{z} = \frac{1}{z} + z H(z)$$

com H holomorfa em B(0;r). Donde segue

$$\varphi(z) = \frac{\pi^2}{\sin^2(\pi z)} = \frac{1}{z^2} + [2H(z) + z^2H^2(z)], \text{ para } z \text{ em } B^*(0; r),$$

com $2H(z) + z^2H^2(z)$ holomorfa em B(0;r). Logo,

a parte principal (singular) de
$$\varphi$$
 em $z = 0$ é $\frac{1}{z^2}$.

Desta forma, como $\sin^2 \pi (z - n) = \sin^2 \pi z$

a parte singular (principal) de
$$\varphi$$
 no ponto $z = n$ é $\frac{1}{(z-n)^2}$.

Portanto, $\varphi(z)$ e f(z) tem mesma parte singular em cada polo z = n e então

$$\Psi(z) = \varphi(z) - f(z) = \frac{\pi^2}{\sin^2(\pi z)} - \sum_{n=-\infty}^{+\infty} \frac{1}{(z-n)^2}$$

é inteira. Mostremos que Ψ é identicamente nula.

Evidentemente, temos f(z+1)=f(z) e $\varphi(z+1)=\varphi(z)$. Logo, Ψ é periódica e tem período 1. Analisemos então $\Psi=\varphi-f$ na faixa (vertical infinita)

$$\mathcal{F} = \{ z = x + iy : \ 0 \le x \le 1 \text{ e } y \in \mathbb{R} \}.$$

 \diamond Primeiro, analisemos f. Notemos a simetria

$$f(\overline{z}) = \overline{f(z)}.$$

Assim, para mostrar que $|f(x+iy)| \to 0$, fixando $x \in [0,1]$ e impondo $|y| \to \infty$, podemos supor sem perda de generalidade $y \ge 1$.

Ainda, dado z não inteiro temos

$$\frac{\frac{1}{n^2}}{\frac{1}{|z-n|^2}} = \left|1 - \frac{z}{n}\right|^2 \xrightarrow{n \to \pm \infty} 1 \text{ sendo que } \sum_{n \in \mathbb{Z}^*} \frac{1}{n^2} < \infty.$$

Então, pelo critério da comparação (no limite) para séries segue

$$\sum_{n=-\infty}^{+\infty} \frac{1}{|z-n|^2} < \infty.$$

A seguir, seja $x \in [0,1]$ e z=x+iy não inteiro. Dado $n=-1,-2,-3,\ldots$ é geometricamente fácil ver que $|z-n| \geq |z-|n|$. Logo,

$$\sum_{n \leq -1} \frac{1}{|z-n|^2} \ \leq \ \sum_{n \leq -1} \frac{1}{|z-|n|\,|^2} \ = \ \sum_{n=1}^{+\infty} \frac{1}{|z-n|^2}.$$

Donde segue

$$|f(z)| \le 2 \sum_{n=0}^{+\infty} \frac{1}{y^2 + (n-x)^2}.$$

Sejam um natural $N \ge 1$ e $y \ge N + x$. Devido à desigualdade elementar

$$(a+b)^2 \le 2(a^2+b^2)$$
, para quaisquer reais $a \in b$,

deduzimos que

$$\sum_{n\geq 0} \frac{1}{y^2 + (n-x)^2} \leq \sum_{n\geq 0} \frac{1}{(N+x)^2 + (n-x)^2}$$

$$\leq \sum_{n\geq 0} \frac{2}{[(N+x) + (n-x)]^2}$$

$$= \sum_{n\geq 0} \frac{2}{(N+n)^2}$$

$$= \sum_{n\geq N} \frac{2}{n^2}.$$

Isto mostra que (para $x \in [0,1]$)

 $f\big(x+iy\big)\to 0 \text{ se } |y|\to +\infty \text{ e } f \text{ \'e limitada em } \big\{z=x+iy: 0\leq x\leq 1 \text{ e } |y|\geq 1\big\}.$

 \diamond Analisemos φ . Pela relação (por favor, cheque-a)

$$|\sin z|^2 = |\sin x|^2 + |\sinh y|^2$$

segue que $|\sin z| \to +\infty$ se $|y| \to +\infty.$ Logo,

$$\varphi(z) = \frac{\pi^2}{\sin^2 \pi z} \to 0 \text{ se } |y| \to +\infty$$

e $\varphi(z)$ é limitada em $\{z = x + iy \in \mathbb{C} : 0 \le x \le 1 \text{ e } |y| \ge 1\}$. Desta forma,

$$\Psi(z) = \varphi(z) - f(z)$$
 é limitada

e tende a zero se $|y|\to\infty.$ Pelo teorema de Liouville temos $\Psi\equiv 0 ~ \clubsuit$

Exemplo 12.6 Vale a fórmula

(12.6.1)
$$\pi \cot \pi z = \frac{1}{z} + \sum_{n>1} \frac{2z}{z^2 - n^2}.$$

Solução. Pelo exemplo anterior temos

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{-\infty}^{+\infty} \frac{1}{(z-n)^2}.$$

Uma primitiva da parcela no lado esquerdo é

$$-\pi \cot \pi z$$
.

Uma primitiva de um particular termo da série no lado direito é

$$\frac{-1}{z-n}$$
.

Como a série de termo geral -1/(z-n) é divergente, subtraímos sua correspondente parte singular (no caso $n \neq 0$) e consideramos a série

(12.6.2)
$$\sum_{n\neq 0} \left(\frac{1}{z-n} + \frac{1}{n} \right) = \sum_{n\neq 0} \frac{z}{n(z-n)}.$$

Esta última série é comparável com $\sum_{n=1}^{+\infty} 1/n^2$ e então converge. Analogamente aos exemplos anteriores, tal série converge uniformemente sobre compactos (ao eliminarmos os termos que assumem o valor infinito no compacto). Assim, a série

$$f(z) = \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)$$

pode ser derivada termo a termo e obtemos

$$-\frac{1}{z^2} + f'(z) = -\frac{1}{z^2} - \sum_{n \neq 0} \frac{1}{(z-n)^2} = -\frac{\pi^2}{\sin^2 \pi z} = \frac{d(\pi \cot \pi z)}{dz}.$$

Logo,

(12.6.3)
$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right) + C$$
, com C uma constante.

A família em (12.6.2) é somável e então podemos associar à vontade em (12.6.3). Associando os termos de ordem n e -n obtemos

(12.6.4)
$$\pi \cot \pi z = \lim_{m \to +\infty} \sum_{n=-m}^{m} \frac{1}{z-n} + C = \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{2z}{z^2 - n^2} + C.$$

As funções nos dois lados da equação acima são ímpares. Logo, $C = 0 \, \bullet$

Exemplo 12.7 É válida a fórmula

$$\frac{\pi}{\sin \pi z} = \lim_{m \to +\infty} \sum_{-m}^{m} \frac{(-1)^n}{z - n} = \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2}.$$

Solução.

É fácil ver que

(12.7.1)
$$\lim_{m \to +\infty} \sum_{-m}^{m} \frac{(-1)^n}{z-n} = \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2},$$

agrupando no lado esquerdo os termos de ordem -n e n.

A série no lado direito de (12.7.1), por ser comparável com a série

$$\sum_{n=1}^{+\infty} \frac{1}{n^2},$$

converge uniformemente e absolutamente sobre cada compacto K (após eliminarmos os termos da série que assumem o valor infinito no compacto K). Assim, a série em (12.7.1) define uma função meromorfa.

Separando os termos de ordem par e ímpar no somatório em (12.7.1) encontramos

$$\sum_{-(2k+1)}^{2k+1} \frac{(-1)^n}{z-n} = \sum_{n=-k}^k \frac{1}{z-2n} - \sum_{n=-k-1}^k \frac{1}{z-1-2n}.$$

Comparando com a fórmula (12.6.4) e impondo o limite da fórmula acima temos

$$\lim_{k \to \infty} \left[\sum_{n=-k}^{k} \frac{1}{z - 2n} - \sum_{n=-k-1}^{k} \frac{1}{z - 1 - 2n} \right] = \frac{\pi}{2} \cot \frac{\pi z}{2} - \frac{\pi}{2} \cot \frac{\pi (z - 1)}{2}.$$

Para finalizar, observemos que

$$\cot \theta - \cot \left(\theta - \frac{\pi}{2}\right) = \frac{2}{\sin 2\theta}$$
 [cheque]

e também que

$$\lim_{m \to +\infty} \sum_{-m}^{m} \frac{(-1)^n}{z-n} = \lim_{k \to +\infty} \sum_{-(2k+1)}^{2k+1} \frac{(-1)^n}{z-n}.$$

Sgue então que

$$\lim_{m \to +\infty} \sum_{-m}^{m} \frac{(-1)^n}{z-n} = \frac{\pi}{\sin \pi z} \, \bullet$$

12.4 - Caracterização de Simplesmente Conexos

A caracterização dos simplesmente conexos é um dos pontos altos em Matemática. Ela afirma que a condição topológica simplesmente conexo é equivalente a determinadas propriedades analíticas (e.g., existência de primitiva, Teorema de Cauchy) assim como condições algébricas (existência de raíz quadrada) e outras condições topológicas. Tais resultados certamente não eram esperados quando da definição de simplesmente conexos. Apesar disso, o valor do teorema é um tanto limitado devido a tantas propriedades. Embora seja prazeroso ter o reverso de tantas implicações, é apenas o fato de que a conexidade de $S^2 \setminus \Omega$ implica que Ω é simplesmente conexo que encontra vasta aplicação. Não é usual verificar as outras propriedades para provar que Ω é simplesmente conexo.

- **12.8 Teorema.** Seja Ω um aberto conexo, não vazio, em \mathbb{C} . São equivalentes.
 - (i) Ω é homeomorfo a B(0;1).
 - (ii) Ω é simplesmente conexo.
- (iii) $S^2 \setminus \Omega$ é conexo.
- (iv) $\mathbb{C} \setminus \Omega$ não tem componente (conexa) compacta.
- (v) Toda $f \in \mathcal{H}(\Omega)$ é limite uniforme de polinômios, sobre os compactos de Ω .
- (vi) $Ind(\gamma; \alpha) = 0$ para toda curva fechada γ , em Ω e C^1 por partes, e $\alpha \in S^2 \setminus \Omega$.
- (vii) Para toda $f \in \mathcal{H}(\Omega)$ e para toda curva fechada γ em Ω e C^1 por partes,

$$\int_{\gamma} f = 0.$$

- (viii) Toda $f \in \mathcal{H}(\Omega)$ admite primitiva.
 - (ix) Se $f \in \mathcal{H}(\Omega)$ e f não se anula, então existe $\varphi \in \mathcal{H}(\Omega)$ tal que

$$f = e^{\varphi}$$
.

(x) Se $f \in \mathcal{H}(\Omega)$ e f não se anula, então existe $\psi \in \mathcal{H}(\Omega)$ tal que

$$f = \psi^2$$
.

Com o teorema da monodromia descreveremos, posteriormente, mais uma propriedade característica dos abertos simplesmente conexos.

Prova.

- (i) ⇒(ii). Solicitamos ao leitor verificar. É trivial.
- (ii) ⇒(iii). Segue da Proposição 9.12.
- (iii) ⇒(iv). Segue da Proposição 9.12.
- (iv) \Rightarrow (v). Segue do Teorema Runge Polinomial II [12.2(c)].
- $(v) \Rightarrow (vi)$. Seja $\alpha \notin \Omega$. Então,

$$f(z) = \frac{1}{z - \alpha}$$

é holomorfa em Ω e Imagem (γ) é compacto em Ω . Por hipótese, f restrita a Imagem (γ) é limite uniforme de polinômios. Como γ é fechada, temos

$$\int_{\gamma} z^n dz = 0 \text{ para todo } n = 0, 1, 2, \dots.$$

Segue então trivialmente que

$$\int_{\gamma} f = 0.$$

(vi) \Rightarrow (vii). Seja γ uma curva fechada em Ω e C^1 por partes. Devido às hipótese, γ é homóloga a 0 em Ω . Pelo Teorema de Cauchy Homológico 10.18 obtemos

$$\int_{\gamma} f = 0.$$

(vii) \Rightarrow (viii). Assumamos (vii). Fixado $z_0 \in \Omega$, definamos

$$F(z) = \int_{\gamma(z)} f$$
, para $z \in \Omega$,

onde $\gamma(z)$ é qualquer curva de classe C^1 por partes em Ω e de z_0 até z. Devido à hipótese, F está bem definida [cheque]. Consideremos uma bola não degenerada $B(z_0;r) \subset \Omega$ e h em \mathbb{C} , com 0 < |h| < r. Então, temos

$$\frac{F(z+h)-F(z)}{h}=\frac{1}{h}\int_{\sigma}f,$$

onde $\sigma(t) = z + th$, com $t \in [0,1]$. Donde segue, devido à continuidade de f,

$$\frac{F(z+h)-F(z)}{h}-f(z)=\int_0^1 [f(z+th)-f(z)]dt \xrightarrow{h\to 0} 0.$$

(viii) \Rightarrow (ix). Por hipótese, existe $g \in \mathcal{H}(\Omega)$ tal que

$$g' = \frac{f'}{f}$$
.

Então $h = e^g$ não se anula e satisfaz

$$\frac{h'}{h} = \frac{f'}{f}.$$

Donde segue f'h - fh' = 0 e

$$\left(\frac{f}{h}\right)' = 0.$$

Logo, existe uma constante não nula e^{w_0} , para algum $w_0 \in \mathbb{C}$, tal que

$$f = e^{w_0}h = e^{g+w_0}.$$

- (ix) \Rightarrow (x). Por (ix), temos $f=e^{\varphi}$. Logo, $\psi=e^{\frac{\varphi}{2}}$ satisfaz $\psi^2=f$.
- (x) \Rightarrow (i). Se $\Omega = \mathbb{C}$, então

$$z\mapsto \frac{z}{1+|z|}$$

é um homeomorfismo de \mathbb{C} em B(0;1).

Se $\Omega \neq \mathbb{C}$, o Teorema 9.8 garante que Ω é analiticamente isomorfo a B(0;1).