
Manifold submetries, and polynomial algebras

Marco Radeschi

Modern Trends in Differential Geometry

Sao Paulo, July 25 2018



Manifold submetries

M Riemannian manifold, X metric space.

Manifold submetry
Continuous map π : M → X such that:

1 π is a submetry: π(Br (p)) = Br (π(p)).
2 For all x ∈ X , π−1(x) is a smooth manifold.

Remarks:
Equivalent to partition of M by equidistant submanifolds.
Fibers can have varying dimension.
Fibers can be disconnected, but different components have
same dimension.

Want to look at local structure of manifolds submetries.
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Manifold submetries

Examples
Riemannian submersions M → N.

G ⊂ Iso(M) closed Lie group ⇒ π : M → M/G .
(M,F) singular Riemannian foliation ⇒ π : M → M/F .

L ⊂ Sn isoparametric hypersurface (Almost classification by
Cartan, Münzner, Cecil, Jensen, Abresch, Dorfmeister-Neher,
Immervoll,. . . )←→ π : Sn → [a, b] manifold submetry.
Related to collapse with lower curvature bounds (Cheeger,
Yamaguchi, Shioya-Yamaguchi, Wilking, . . . ).
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Local model

π : M → X manifold submetry ⇒ X is an Alexandrov space,
stratified by smooth manifolds.

(Lytchak) Manifold submetries are locally modeled around manifold
submetries Sn−1 → X .

Spherical manifold submetry (SMS)

Manifold submetry π : Sn−1 → X .

Question 1
Classify all SMS’s.

Question 2
Find constructions and structure of SMS’s.
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Examples of SMS

Examples

Homogeneous: G ⊆ O(n)⇒ π : Sn−1 → Sn−1/G .

Clifford:

Theorem (R. ’14)

C = {P0, . . .Pm} ⊂ Sym2(n) Clifford system

πC : Sn−1 −→ Dm+1 ⊂ Rm+1

v 7−→ (〈P0v , v〉, . . . 〈Pmv , v〉)

Then πC is a SMS, with Dm+1 equipped with the hemisphere
metric of sec ≡ 4.

All known SMS’s are obtained from Clifford and homogeneous
examples, together with two operations between them (spherical
join, composition).
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Classification, and results

π : Sn−1 → X SMS.

(Grove-Gromoll, Wilking, Lytchak-Wilking): If fibers have
constant dimension, then π is either homogeneous, or
S15 → S8 (Clifford).
(Cartan, Munzner,. . . ): If dimX = 1, π is homogeneous or
FKM (f : Sn−1 → [0, 1], f (x) =

∑
i 〈Pix , x〉2), except possibly

few cases.
(Thorbergsson): If sec(X ) ≡ 1, then π is a join of
homogeneous and FKM.
(R. ’14) if X = 1

2S
m
+ then π is Clifford.

(R. ’12) If fibers have dimension ≤ 3, then π is homogeneous.

(Gorodski-Lytchak): Study of orthogonal representations, from the
point of view of π : Sn−1 → Sn−1/G .
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Algebraic structure

Algebraicity Theorem (Lytchak, R., ’15)

π : Sn−1 → X SMS, A ⊆ R[x1, . . . xn] algebra of homogeneous
π-basic polynomials. Then:

1 A is finitely generated, say by ρ1, . . . ρk .
ρ : (ρ1, . . . ρk) : Sn−1 → X ′ ⊆ Rk .

2 The map ρ descends to a homeomorphism ρ∗ : X → X ′, such
that ρ = ρ∗ ◦ π (we say that π ∼ ρ).

This is a theorem of Hilbert in homogeneous case.
Key point: Averaging operator.
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Two maps

{
SMS

π : Sn−1 → X

}
/ ∼

{
Graded algebras
A ⊂ R[x1, . . . xn]

}
B

B(π) = Algebra of homogeneous π-basic polynomials.

Given A ⊂ R[x1, . . . xn], define:
∼A on Sn−1 by v ∼A w ⇔ P(v) = P(w) ∀P ∈ A.
XA = Sn−1/ ∼A.

Finally, π•(A) = πA : Sn−1 → XA.

π• is not a SMS in general, but π•(B(π)) ∼ π.
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Maximal and Laplacian algebras

Definition
An algebra A ⊆ R[x1, . . . xn] is called:

Laplacian if r2 =
∑

i x
2
i ∈ A and for all P ∈ A, ∆P ∈ A.

Maximal if ∀P /∈ A, there are v ,w ∈ Sn−1 such that v ∼A w
and P(v) 6= P(w).

Theorem (Alexandrino, R.)

For any SMS π : Sn−1 → X , B(π) is maximal and Laplacian.
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and P(v) 6= P(w).

Theorem (Alexandrino, R.)
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Constructing SMS’s

Theorem (Mendes, R. ’18)

Let A ⊂ R[x1, . . . xn] be a Laplacian algebra.

There exists π̂A : Sn−1 → X̂A SMS, such that π̂A ∼ πA on an
open dense set.
If A is also maximal, then π̂A ∼ πA, and B(πA) = A.

Corollary
There is a bijection

{
SMS

π : Sn−1 → X

}
/ ∼


Maximal

Laplacian algebras
A ⊂ R[x1, . . . xn]


B

π•
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From Laplacian algebras to SMS

A Laplacian algebra. Want to construct SMS π̂A : Sn−1 → X̂A.

Step 1: A is finitely generated.
Construct products •d on R[x1, . . . xn]:

f •0 = fg , f •d+1 g = ∆(f •d g)−∆f •d g − f •d ∆g .

Then:
1 •d is (the standard) inner product on R[x1, . . . xn]d .
2 A •d A ⊆ A ∀d .
→ The orthogonal projection [·]A : R[x1, . . . xn]→ A w.r.t. the
metrics •d satisfies [fg ]A = f [g ]A ∀f ∈ A (Reynolds operator)⇒
A finitely generated.
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From Laplacian algebras to SMS

Take ρ1, . . . ρk ∈ A generators.

ρ = (ρ1, . . . ρk) : Sn−1 → XA = Im(ρ) ⊆ Rk

Sn−1reg = {v | rk(dvρ) maximal} X reg
A = ρ(Sn−1reg ) (smooth

manifold).

Step 2: ρreg : Sn−1reg → X reg
A is a Riemannian submersion.

Key point is defining a metric on X reg
A . Induced by

Bij = (ρi •1 ρj)= (〈∇ρi ,∇ρj〉).

X̂A = metric completion of XA.

Step 3: ρreg extends to a manifold submetry π̂ : Sn−1 → X̂A.
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Maximality

A ⊆ R[x1, . . . xn] Laplacian algebra ⇒ π̂A : Sn−1 → A SMS.

Polynomials in A are π̂A-basic (A ⊆ B(π̂A)). Are they all?

1 A might not separate fibers.
2 A might separate fibers, but not contain all the invariants.

Example

O(n)-action on (Rn)p = Rn ⊕ . . .⊕ Rn,
g · (v1, . . . vp) = (g · v1, . . . g · vp). Want to compute invariants.
Define Pij(v1, . . . vp) = 〈vi , vj〉 O(n)-invariant polynomials.

Theorem (First fundamental theorem of O(n), Weyl)

The algebra of O(n)-invariant polynomials is generated by the Pij .
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Maximality

Theorem (Mendes, R., ’18)

If A is maximal, then B(π̂A) = A

Question
Is every Laplacian algebra maximal?

Theorem (Mendes, R., ’16)

YES, in the following situations:
A generated by 2 polynomials.
A is generated by quadratic polynomials.

Obtained via generalization of Weyl’s First Fundamental Theorem,
in the non homogeneous setting.
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An application to (inverse) Invariant theory

Inverse invariant theory
Which algebras occur as algebras of invariant polynomials?

Corollary (Mendes, R.)

Suppose A ⊂ R[x1, . . . xn] is a maximal Laplacian algebra, with
trdeg .K (A) = n (K (A) = field of fractions of A). Then
A = R[x1, . . . xn]Γ for some finite group Γ ⊂ O(n).
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Thank you!
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