The G-invariant spectrum and non-orbifold singularities [1]

Ian Adelstein
Yale University

Objectives

The goal of this project is to study the inaudible properties

 of the G-invariant spectrum. We will:- Define the G-invariant spectrum of the Laplacian on an orbit space M / G
- Generalize the Sunada-Pesce-Sutton technique to the G-invariant setting
Construct pairs of isospectral non-isometric orbit spaces - Study the geometry of these spaces to identify inaudible properties

Introduction
When M is a compact Riemannian manifold one considers the eigenvalues of the Laplace-Beltrami operator Δ, i.e. those real numbers λ for which there exists a solution to the equation

$$
\Delta(f)=\lambda f, \quad f \in C^{\infty}(M) .
$$

These eigenvalues form a discrete sequence of non-negative real numbers which we refer to as the spectrum of M. Given a compact subgroup of the isometry group $G \leq \operatorname{Isom}(M)$ we conpact subgroup of the isometry group $G \leq I$ com
sider the subsequence of eigenvalues that correspond to eigen sider the subsequence of eigenvalues that correspond to eigen-
functions which are constant on the G-orbits, again counting functions which are constant on the G-orbits, again counting
multiplicities. We will refer to this subsequence as the G multiplicities. We will refer to this subsequence as the G -
invariant spectrum of M. Given closed subgroups $H_{i} \leq G$ for invariant spectrum of M. Given closed subgroups $H_{i} \leq G$ for
$i \in\{1,2\}$ we say that the quotient spaces M / H_{1} and M / H_{2} are isospectral if the H_{i}-invariant spectra are equal.
We are interested in the following inverse spectral questions: What information about the singular set of an orbit space M / G is encoded in its G-invariant spectrum? In particular, can one hear the existence of non-orbifold singularities, i.e. whether or not an orbit space is an orbifold? We note that the negative inverse spectral results from the manifold and orbifold settings hold in the more general setting of orbit spaces. It is therefore known that isotropy type [7] and the order of the maximal isotropy groups [6] are inaudible.

Sunada Technique

Negative inverse spectral results are realized by studying pairs of isospectral non-isometric spaces. The celebrated Sunada technique [8] provides a systematic method for producing such pairs. We generalize this technique to the G-invariant setting:

Definition: Two representations $\rho_{1}: G \rightarrow G L\left(V_{1}\right)$ and $\rho_{2}: G \rightarrow G L\left(V_{2}\right)$ of a Lie group G are said to be equivalent if there exists a vector space isomorphism $T: V_{1} \rightarrow V_{2}$ such that $\rho_{2}(g) \circ T=T \circ \rho_{1}(g)$ for every $g \in G$.
Definition: Closed subgroups H_{1}, H_{2} of a compact Lie group G are said to be representation equivalent if the quasi-regular representations $\operatorname{Ind} d_{H_{1}}^{G}\left(1_{H_{1}}\right)$ and $\operatorname{Ind} d_{H_{2}}^{G}\left(1_{H_{2}}\right)$ are equivalent.
Theorem: (G-invariant Sunada-Pesce-Sutton technique) Let M be a compact Riemannian manifold and $G \leq \operatorname{Isom}(M)$ a compact Lie group. Suppose $H_{1}, H_{2} \leq G$ are closed, representation equivalent subgroups. Then the orbit spaces M / H_{1} and M / H_{2} are isospectral in the sense that the H_{i}-invariant spectra of the Laplacian on M are equal.

Proof of Theorem B

We first apply principal isotropy reduction which yields the following smooth SRF isometries (note that these isometries do not preserve the spectra):

$$
\begin{gathered}
O_{1}=S^{11} / U(3)=S^{7} / U(2) \\
O_{2}=S^{11} /(S p(1) \times S O(4))=S^{7} /(S p(1) \times O(2)) .
\end{gathered}
$$

It is shown in [4, Thm 1] that $S^{7} / U(2)$ is isometric to S^{3} / \mathbb{Z}_{2}, the 3-hemisphere of constant sectional curvature 4.
We show that the slice representation of the action is non-polar at points $v=\left(v_{1}, 0,0\right) \in S^{7}$ from row D of Table 2, allowing us at points $v=\left(v_{1}, 0\right) \in S$ from row D of Table 2 , allowing us
to conclude by $[5$, Theorem 1.1] that the image of this stratum is a non-orbifold point. The slice representation of the action at v is polar if and only if its restriction to the connected component of the identity is polar, cf. [4, Section 2.4]. We therefore consider the action of $S p(1) \times S O(2)$ on S^{7} which acts with isotropy $I d \times S O(2)$ at $v=\left(v_{1}, 0,0\right) \in S^{7}$. The orbit through such a point is S^{3} and its normal space is \mathbb{C}^{2}

Main Results

Theorem A: Let the subgroups $H_{1}=U(3)$ and $H_{2}=S p(1) \times S O(4)$ of $U(6) \leq \operatorname{Isom}\left(S^{11}\right)$ act on S^{11} via the embeddings given below. We have that the orbit spaces S^{11} / H_{1} and S^{11} / H_{2} are isospectral yet non-isometric.

Theorem B: The orbit space S^{11} / H_{1} is smoothly SRF isometric to S^{3} / \mathbb{Z}_{2}, a hemisphere of constant sectional curvature, whereas S^{11} / H_{2} admits a non-orbifold point and therefore has unbounded sectional curvature. We conclude that constant sectional curvature and the presence of non-orbifold singularities are inaudible properties of the G-invariant spectrum.

Proof of Theorem A

Fix embeddings where $A \in U(3)$ acts on $\mathbb{C}^{6}=\mathbb{C}^{3} \oplus \mathbb{C}^{3}$ as (A, \bar{A}) and $(B, C) \in S p(1) \times S O(4)$ acts on $\mathbb{C}^{6}=\mathbb{C}^{2} \oplus \mathbb{C}^{4}$ as (B, C). Then [3, Theorem 1.5] shows that H_{1} and H_{2} are representation equivalent as subgroups of $\operatorname{SU}(6) \leq \operatorname{Isom}\left(S^{11}\right)$ Isospectrality then follows immediately from the generalized Sunada technique.

The induced circle action is $z \cdot\left(z_{1}, z_{2}\right)=\left(z z_{1}, z z_{2}\right)$, which has The induced circle action is $z \cdot\left(z_{1}, z_{2}\right)=\left(z z_{1}, z z_{2}\right)$, which has
trivial fixed point set and is therefore not polar [2, Prop 6.8]. Note that the slice representation at points from row B of the $S^{7} / U(2)$ table is a polar action. The orbit of such a point is again S^{3} and the normal space is again a copy of \mathbb{C}^{2}. However now the slice representation is given by $z \cdot\left(z_{1}, z_{2}\right)=\left(z_{1}, z z_{2}\right)$ which has fixed point set $\mathbb{C} \times\{0\}$ and is a polar action.

Table 1: $O_{1}=S^{7} / U(2)$ Row Isotropy qcodim Points

$$
\begin{array}{llll}
\hline A & I d & 0 & v_{1} \neq z \cdot \bar{v}_{2} \\
B & U(1) & 1 & v_{1}=z \cdot \bar{v}_{2} \\
\hline
\end{array}
$$

Table 2: $O_{2}=S^{7} /(S p(1) \times O(2))$
Row Isotropy qcodim Points
$\begin{array}{llll}A & I d \times I d & 0 & v_{1} \neq 0, v_{2} \neq \lambda \cdot v_{3} \\ B & I d \times O(1) & 1\end{array}$
$B \quad I d \times O(1) \quad 1 \quad v_{1} \neq 0, v_{2}=\lambda \cdot v_{3}$
${ }^{C} \quad S p(1) \times I d \quad 1 \quad v_{1}=0, v_{2} \neq \lambda \cdot v_{3}$
$D \quad I d \times O(2) \quad 3 \quad v_{1} \neq 0, v_{2}=v_{3}=0$
$E \quad S p(1) \times O(1) \quad 2 \quad v_{1}=0, v_{2}=\lambda \cdot v_{3}$

Discussion

Although $S^{11} / U(3)$ and S^{3} / \mathbb{Z}_{2} are smoothly SRF isometric, we can not conclude that these spaces are isospectral. Indeed, direct computation demonstrates that the Neumann spectrum on S^{3} / \mathbb{Z}_{2} is distinct from the $U(3)$-invariant spectrum on S^{11}

From the tables we can also conclude that isotropy type, maximal isotropy dimension, and the set of quotient codimensions of the strata are inaudible properties of the G-invariant spectrum.

The fact that constant sectional curvature is not determined by the G-invariant spectrum should be viewed in light of the positive spectral results in the manifold setting, where analysis of the asymptotic expansion of the heat trace has shown that constant sectional curvature is an audible property of the Laplace spectrum for manifolds of dimension less than six.

References
[1] I. Adelstein, M. R. Sandoval. The G-invariant spectrum and non-orbifold singularities, Arch. Math., 109(6), 563-573 (2017).
[2] M. Alexandrino, R. Briquet, D. Toben. Progress in the theory of singula Riemannian foliations. Diff. Geom. Appl. 31, no. 2, 248-267 (2013).
[3] J. An, J.K. Yu, J. Yu. On the dimension datum of a subgroup and its application to isospectral manifolds, J. Diff. Geom., 94(1), 59-85 (2013).
4] C. Gorodski, A. Lytchak. Isometric actions on spheres with an orbifold quotient, Math. Ann., 365, 1041-1067 (2016).
51 A. Lytchak, G. Thorbergsson. Curvature explosion in quotients and A. Lytchak, G. Thorbergsson. Curvature explosio
applications, J. Diff. Geom., 85, 117-139 (2010)
[6] J.P. Rossetti, D. Schueth, M. Weilandt. Isospectral orbifolds with different maximal isotropy orders, Ann. Global Anal. Geom., 34(4), 351-356 (2008).
77] N. Shams, E. Stanhope, D.L. Webb. One cannot hear orbifold isotropy type, Arch. Math., 87(4), 375-385 (2006)
[8] T. Sunada. Riemannian Coverings and Isospectral Manifolds, Ann. of Math., 121(1), 169-186 (1985).

Acknowledgements
The authors would like to thank Carolyn Gordon and David Webb for many helpful conversations, as well as Emilio Lauret for providing valuable DMS-1632786. Finally, we would like to thank the refere for his or her thorough, prompt, and helpful review of the paper.

Contact Information

Web: https://sites.google.com/view/adelstein
 Email: ian.adelstein@yale.edu

Curvature of Reisnerr-Nordström Soliton determined as characteristic value

Musavvir Ali
Department of Mathematics, Aligarh Muslim University, Aligarh -202002(India)
musavvirali.maths@amu.ac.in, musavvir.alig@gmail.com

Abstract

Present research paper focuses on the study of the grav itational field of Reisnerr-Nordström distorted metric. The technique of six dimensional formalism making an eigen equation gives rise to some decisive conclusions for the Gaussian curvature of Reisnerr-Nordström soliton. Further we comparatively analyse the results for two and three dimensional hyper-surfaces.

1. Introduction

We have studied the concept of Ricci Soliton for the spacetime of general relativity due to all important role of Ricc soliton in differential geometry and relativity. Hamilton defines a family $g_{\lambda}=g(\lambda ; x)$ of Riemann metrics on a n dimensional $(n \geq 3)$ smooth manifold M with parameter λ ranging in a time interval $J \subset \mathbb{R}$ including zero is called a Ricci flow if the Hamilton equations $\frac{\partial g_{0}}{\partial 0}=-2 R i c_{0}$ of the Ricci flow (cf. [6], [7]) for $g_{0}=g(0)$ and the Ricci tensor Ric ${ }_{0}$ of the g_{0} are satisfied. Corresponding to self similar solution of above equation, the notion of the Ricci soliton prevails, which is defined as a metric g_{0} satisfying the equation $-2 R i c_{0}=£_{\xi} g_{0}+2 k g_{0}$ for vector field ξ on V_{n} and a constant k. The Ricci soliton is said to be steady (static) if $k=0$, shrinking if $k<0$ and expanding if $k>0$. The metric g_{0} is called a gradient Ricci soliton if $\xi=\nabla \phi$ i.e., gradient of some function ϕ.
For n-dimensional Riemannian manifold we can write general equation showing Ricci Soliton as

$$
\begin{equation*}
R_{i j}-\frac{1}{2} £_{\xi} g_{i j}=k g_{i j} \tag{1}
\end{equation*}
$$

Many applications of Ricci solitons are found in the literature, as one can see that Baleanu et. al. [4] ob tain soliton equation for nonlinear Schrodinger equation (NNLSE). In fact they report the optical soliton solutions of NNLSE with parabolic law nonlinearity and time dependent coefficients which are the terms of velocity dipersion, linear and nonlinear terms and also non-local one M.M. Akbar and E. Woolger [2] developed some exam ples for Ricci soliton. Corresponding to charged black hole metric (Reisnerr-Nordström black hole) Ali and Ahsan [3] developed a function equipped with metric tensor $g_{i j}$ which solves the Einstein-free scalar field system satisfying equation (1). The Reisnerr-Nordström metric $d s^{2}=g_{i j} d x^{i} d x^{j} \equiv d r^{2}+h^{2}(r) d \Omega_{k}^{2}$ using the integrability conditions and taking $f^{\prime}(r)=\frac{B h^{k}}{[h(r)]^{n-1}}$ for $B=$ constant.
The soliton so developed for charged black hole is

$$
\begin{equation*}
d s^{* 2}=d r^{2}+\left(A r^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-A^{\sqrt{2}} d t^{2} \tag{2}
\end{equation*}
$$

while the original metric of a charged black hole (ReisnerrNordström metric) is given by $d s^{* 2}=-A d t^{2}+A^{-1} d r^{2}+$ $r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$ where $A=\left(\left(r^{2}+e^{2}-2 m r\right) / r^{2}\right)$.

In this paper we have worked on the geometry of charged metric and then elaborated the notions for its solitons in detail. By using the 6 -dimensional formalism, the characteristic values of λ-tensor (i.e. $R_{A B}-\lambda g_{A B}$) has been given in this paper and an example of canonical form of the system is shown, also characterization of spacetime due to symmetric tensor $R_{A B}$ is done . Further, the cases of 2 and 3-dimension for Reisnerr-Nordström soliton are discussed, in which Gaussian curvature is calculated and shown its dependence on characteristic value of λ-tensor. (For more see [8], [10])

2. Components of Christoffel symbol and Riemann

 TensorThe non-zero components of the metric tensor, the Christoffel symbol and Riemann Curvature tensor for the metric (2) in spherical coordinates $x^{\alpha} \equiv(r, \theta, \phi, t)$ are given by (for formulas see [1])

$$
\begin{aligned}
& g_{11}=1, g_{44}=-\left(\left(r^{2}+e^{2}-2 m r\right) / r^{2}\right)^{\sqrt{2}}, \\
& g_{22}=r^{2}-2 m r+e^{2}, g_{33}=\left(r^{2}-2 m r+e^{2}\right) \sin ^{2} \theta \\
& \Gamma_{22}^{1}=(m-r), \quad \Gamma_{33}^{1}=(m-r) \sin ^{2} \theta \\
& \Gamma_{44}^{1}=\sqrt{2} \frac{\left(m r-e^{2}\right)}{r^{3}} A^{\sqrt{2}-1}, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{r-m}{A r^{2}} \\
& \Gamma_{33}^{2}=-\sin \theta \cos \theta, \quad \Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{r-m}{A r^{2}} \\
& \Gamma_{23}^{3}=\Gamma_{32}^{3}=\cot \theta, \quad \Gamma_{14}^{4}=\Gamma_{41}^{4}=\frac{\sqrt{2} m}{r^{2}-2 m r}
\end{aligned}
$$

```
\(R_{1212}=\left(m^{2}-e^{2}\right) / A r^{2}, R_{2323}=\left(e^{2}-m^{2}\right) \sin ^{2} \theta\),
\(R_{1414}=\left(A^{\sqrt{2}(1-\sqrt{2})} r^{6}\right)\left[2\left(m r-e^{2}\right)^{2}+\right.\)
    \(\left.\sqrt{2}\left(-2 m r^{3}+\left(6 m^{2}+3 e^{2}\right) r^{2}\right)-4 m r e^{2}+e^{4}\right]\)
\(R_{3131}=\left(\left(m^{2}-e^{2}\right) \sin ^{2} \theta\right) / A r^{2}\)
\(R_{2424}=\left(-\sqrt{2}\left(m r-e^{2}\right)(m-r) A^{\sqrt{2}-1}\right) / r^{2}\)
\(R_{3434}=\left(-\sqrt{2}\left(m r-e^{2}\right)(m-r) \sin ^{2} \theta A^{\sqrt{2}-1}\right) r^{2}\)
```


3. Construction of Eigen Equation

We use the 6-dimensional formalism in the pseudoEuclidean space \mathbb{R}^{6} by making the identification [5]

$$
\begin{array}{cccccc}
i j & 23 & 31 & 12 & 14 & 24 \tag{6}\\
\hline & 3 & 1 & 2 & 3 & 1 \\
5 & 6
\end{array}
$$

We also make use of the identification as

$$
\begin{equation*}
g_{i k} g_{j l}-g_{i l} g_{j k}=g_{i j k l} \rightarrow g_{A B} \tag{7}
\end{equation*}
$$

where $A, B=1,2,3,4,5,6$ and $g_{i j}$ are the components of the metric tensor at an arbitrary point $\left(x^{\alpha}\right)$ of the ReisnerrNordström soliton, whose metric is given by equation (2). The new metric tensor $g_{A B}(A, B=1,2,3,4,5,6)$ is symmetric and non-singular. The non-zero components of the metric tensor $g_{A B}$ for equation (2) in 6-dimensional formalism, by using formulation (7) are

$$
\begin{align*}
& g_{11}\left(x^{\alpha}\right)=\left(A r^{2}\right)^{2} \sin ^{2} \theta, \quad g_{22}\left(x^{\alpha}\right)=\left(A r^{2}\right) \sin ^{2} \theta, \\
& g_{33}\left(x^{\alpha}\right)=\left(A r^{2}\right), g_{44}\left(x^{\alpha}\right)=-A^{\sqrt{2}}, g_{55}\left(x^{\alpha}\right)= \tag{8}\\
& -r^{2} A^{\sqrt{2}+1}, g_{66}\left(x^{\alpha}\right)=-\left(r^{2}-2 m r\right) \sin ^{2} \theta A^{\sqrt{2}}
\end{align*}
$$

Similarly, we can transform the components of the Riemann tensor as $R_{i j k l} \rightarrow R_{A B}$. Thus, for example R_{1212} can be written as R_{33} [using identification (6)]. So now all the nonzero components of the tensor $R_{A B}$ under the identification (6) (associated components in equation (5)) are as

$$
\begin{align*}
& R_{11}\left(x^{\alpha}\right)=R_{2323}, R_{22}\left(x^{\alpha}\right)=R_{3131}, \quad R_{33}\left(x^{\alpha}\right)=R_{1212}, \tag{9}\\
& R_{44}\left(x^{\alpha}\right)=R_{1414}, R_{55}\left(x^{\alpha}\right)=R_{2424}, R_{66}\left(x^{\alpha}\right)=R_{3434}
\end{align*}
$$

Next by using these components calculated above in 6dimensional formalism we find a canonical form of the λ tensor $R_{A B}-\lambda g_{A B}$, also then eigen values for the ReisnerrNordström soliton (2) will be calculated by solving the so constructed characteristic equation $\left|R_{A B}-\lambda g_{A B}\right|=0$. Here, using Equations (8) and (9), the eigen values are as

```
\lambda
\lambda}\mp@subsup{\lambda}{4}{}(r)=\frac{-1}{\mp@subsup{A}{}{2}\mp@subsup{r}{}{6}}[2(mr-\mp@subsup{e}{}{2}\mp@subsup{)}{}{2}
\sqrt{}{2}(-2m\mp@subsup{r}{}{3}+(6m
\[
\lambda_{5}(r)=\left(\sqrt{2}\left(m r-e^{2}\right)(m-r)\right) / A r^{5}=\lambda_{6}(r)
\]
```

Eigenvalues $\lambda_{i}, i=1,2,3,4,5,6$ obtained in equation (10) depend on parameters m and r. In other words, we can say that for these λ_{i}, the determinant of λ-tensor $R_{A B}-\lambda g_{A B}$ vanishes. Further, we can transform the system in canonical form for values of λ_{i} as
$g_{A^{\prime} B^{\prime}}=\operatorname{Diag}(1,1,1,-1-1-1)$ and
$R_{A^{\prime} B^{\prime}}=\operatorname{Diag}\left(\lambda_{1}(r), \lambda_{2}(r), \lambda_{3}(r),-\lambda_{4}(r),-\lambda_{5}(r),-\lambda_{6}(r)\right)$
3.1. Result : The dimension of Jordan blocks in the canonical form of Ricci tensor in Equation(11), shows that for the Reisnerr-Nordström soliton the λ - tensor give rise to segre type $[(11)(11)]$ (cf., [9]) i.e. there are six lineally independent vectors two are corresponding to Jordan block of dimension two and next two are corresponding to next Jordan block of dimension two and respectively these are related to $\lambda_{2}=\lambda_{3}$ and $\lambda_{5}=\lambda_{6}$.

3.1. Example : Two Dimensional Hypersurface

If we take $\theta=0$ or $\theta=\pi$ that is $d \theta=0$, the ReisnerrNordström soliton, given by equation (2), reduces to the form

$$
{ }^{*} d s^{2}=d r^{2}-\left(\left(r^{2}-2 m r+e^{2}\right) / r^{2}\right)^{\sqrt{2}} d t^{2}
$$

equation (12) is a 2 -dimensional surface now. The metric tensor ${ }^{*} g$ in coordinates $x^{\beta} \equiv(r, t)$ is given by

$$
{ }^{*} g_{i j}\left(x^{\beta}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -\left(\left(r^{2}-2 m r+e^{2}\right) / r^{2}\right)^{\sqrt{2}}
\end{array}\right]
$$

(13)
here $i, j=1,4$. Thus, the hypersurface for $\theta=0$ or $\theta=\tau$ (i.e., ${ }^{*} H_{0}$ or ${ }^{*} H_{\pi}$) degenerates to two dimensional surface The non-zero component of Riemann curvature tensor for equation (12) is unique and given by

so the Gaussian curvature ${ }^{*} K$ for surface ${ }^{*} H_{0}$ or ${ }^{*} H_{\pi}$ is

$$
\begin{aligned}
& * K\left(x^{\beta}\right)=\frac{1}{\left(r^{3}-2 m r^{2}+r e^{2}\right)^{2}}\left[2\left(m r-e^{2}\right)^{2}+\right. \\
& \left.\sqrt{2}\left(-2 m r^{3}+\left(6 m^{2}+3 e^{2}\right) r^{2}\right)-4 m r e^{2}+e^{4}\right]
\end{aligned}
$$

3.2. Result : Equations (10) and (14) show that curvature of the 2-dimensional surface of the Reisnerr-Nordström soliton is related to the eigen value $\lambda_{4}(r)$.
3.1. Note: Similar result we have obtained for the case $2 m<r<\infty, 0<\theta<\pi$ and $\phi=0$ in three dimension subspace.
3.3. Result : the curvature of the 3-dimensional space of Reisnerr-Nordström soliton can be expressed in terms of a λ-tensor which happens to be the solutions (eigen-values) of the characteristic equation $\left|R_{A B}-\lambda g_{A B}\right|=0$.

4. Conclusion

In this paper we have worked out on gravitational field of Reisnerr-Nordström soliton by using characteristic of λ tensor $R_{A B}-\lambda g_{A B}$, we have also discussed 2 and 3dimensional cases. It is seen that Reisnerr-Nordström soliton, given by Ali and Ahsan [3] has different geometry as that of Reisnerr-Nordström metric. We see that the gravitational field for Reisnerr-Nordström soliton is of type [(11)(11)] [equation (11)] in Segre symbols. For Reisnerr-Nordström soliton, not only the Gaussian curvature differ with that of Reisnerr-Nordström metric but also the dependence of curvature on eigen values of λ-tensor $R_{A B}-\lambda g_{A B}$ is not similar. Thus, the deformation in metric (along a λ-dependent diffeomorphism) of a spacetime is responsible for change in geometry or gravitational field.

References

[1] Ahsan, Z.: "Tensor analysis with application ", Anshan Pvt. Ltd. Tunbridge Wells, United Kingdom (2008).
[2] Akbar, M.M. and Woolger, E.: "Ricci soliton and Einsteinscalar field theory"., Class. Quan. Grav. 26 (2009) 55015-55029.
[3] Ali, M. and Ahsan, Z.: " Ricci solitons and symmetries of spacetime manifold of general relativity ", Global Journal of Advanced Research on Classical and Modern Geometries. Vol. 1 No. 2 (2012) 76-85.
[4] Baleanu, D., Kilic, B. and Inc, M.: "On optical solitons of the nonlocal NLSE with time dependent coefficients", Optoelectronics and Advanced Materials: Rapid Communications, 10(78):518521, (2016).
[5] Borgiel, W.: "The gravitational field of the Schwarzschild spacetime.", Diff. Geom. and its Application 29 (2011) 5207-5210.
[6] Chow, B., Lu, P. and Ni, L.: "Hamilton's Ricci Flow"Amer. Math. Soc. Province, RI, (2004).
[7]Chow, B. and Knopf, D.: "The Ricci Flow; an Introduc tion" Amer. Math. Soc. Province, RI, (2004).
[8] Marin, M.:A domain of influence theorem for microstretch elastic materials,Nonlinear analysis: RWA, vol.11(5), 34463452,2010
[9] Santos, J. et. al.: "Segre Types of symmetric two tensors in n-dimensional spacetimes" arXiv: gr-qc/9507021v2 12 Jul 1995.
[10] Tchier, F., Inan, I. E., Ugurlu, Y., Inc, M. Baleanu, D. On new traveling wave solutions of potential KdV and $(3+1)$ dimensional Burgers equations, The Journal of Nonlinear Sciences and Applications, 9(7): 5029-5040, 2016".

Boundary value problems for general first-order elliptic operators

Christian Bär and Lashi Bandara
Institute of Mathematics, University of Potsdam, Germany

Setup

- M smooth manifold with smooth compact boundary $\Sigma=\partial M$;
- τ interior co-vectorfield along ∂M;
- μ smooth volume measure on M and ν induced smooth volume measure on Σ;
- $\left(E, h^{E}\right),\left(F, h^{F}\right) \rightarrow M$ Hermitian vector bundles over M;
- D first-order elliptic differential operator from E to F;
- D and D^{*} complete - i.e., $\mathrm{C}_{\mathrm{c}}^{\infty}(E ; F)$ and $\mathrm{C}_{\mathrm{c}}^{\infty}(F ; E)$ dense in $\operatorname{dom}\left(D_{\max }\right)$ and $\operatorname{dom}\left(D_{\max }^{*}\right)$ respectively.

Adapted boundary operator

Principal symbol for D and $D^{*}: \sigma_{D}(x, \xi)$ and $\sigma_{D^{*}}(x, \xi)$, define $\sigma_{0}(x):=\sigma_{D}(x, \tau(x))$.
A and \tilde{A} are adapted boundary operators (to D or D^{*} respectively) on $E_{\Sigma}:=\left.E\right|_{\Sigma}$ and $F_{\Sigma}:=\left.F\right|_{\Sigma}$ respectively if their principal symbols are given by:
$\sigma_{A}(x, \xi)=\sigma_{D}(x, \tau(x))^{-1} \circ \sigma_{D}(x, \xi) \quad$ and $\quad \sigma_{\tilde{A}}(x, \xi)=\sigma_{D^{*}}(x, \tau(x))^{-1} \circ \sigma_{D^{*}}(x, \xi)$.

- Exists and are elliptic differential operators of order 1.
- Unique up to an operator of order zero.
- Discrete spectrum, generally non-orthogonal eigenspaces.
- No additional assumptions on A (i.e., self-adjointness) apart from ellipticity of D :

Admissible cut $r \in \mathbb{R}$: the line $l_{r}:=\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta=r\}$ is not in the spectrum of A (yields $A_{r}:=A-r$ invertible bi-sectorial).

An admissible cut always exists.
$\chi^{ \pm}\left(A_{r}\right): \mathrm{L}^{2}\left(E_{\Sigma}\right) \rightarrow \mathrm{L}^{2}\left(E_{\Sigma}\right)$ spectral projectors to the left and right of l_{r} pseudos of order zero.

- Space: $\quad \check{H}(A):=\chi^{-}\left(A_{r}\right) \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right) \oplus \chi^{+}\left(A_{r}\right) \mathrm{H}^{-\frac{1}{2}}\left(E_{\Sigma}\right)$
- Norm: $\quad\|u\|_{\tilde{H}(A)}^{2}:=\left\|\chi^{-}\left(A_{r}\right) u\right\|_{\mathrm{H}^{\frac{1}{2}}}^{2}+\left\|\chi^{+}\left(A_{r}\right) u\right\|_{\mathrm{H}^{-\frac{1}{2}}}^{2}$.
- Norms corresponding to two different spectral cuts are comparable.

Theorem 1: Maximal domains and $\check{H}(A), \check{H}(\tilde{A})$ spaces

- $\mathrm{C}_{\mathrm{c}}^{\infty}(E)$ is dense in dom $\left(D_{\max }\right)$ and dom $\left(\left(D^{*}\right)_{\max }\right)$ with respect to corresponding graph norms
- The trace maps $\mathrm{C}_{\mathrm{c}}^{\infty}(E) \rightarrow \mathrm{C}_{\mathrm{c}}^{\infty}\left(E_{\Sigma}\right)$ and $\mathrm{C}_{\mathrm{c}}^{\infty}(F) \rightarrow \mathrm{C}_{\mathrm{c}}^{\infty}\left(F_{\Sigma}\right)$ given by $\left.u \mapsto u\right|_{\Sigma}$ extend uniquely to surjective bounded linear maps $\operatorname{dom}\left(D_{\max }\right) \rightarrow \check{H}(A)$ and $\operatorname{dom}\left(\left(D^{*}\right)_{\max }\right) \rightarrow \check{H}(\tilde{A})$.
- The spaces

$$
\begin{aligned}
& \operatorname{dom}\left(D_{\max }\right) \cap \mathrm{H}_{\mathrm{loc}}^{1}\left(E_{\Sigma}\right)=\left\{u \in \operatorname{dom}\left(D_{\max }\right):\left.u\right|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)\right\} \\
& \operatorname{dom}\left(\left(D^{*}\right)_{\max }\right) \cap \mathrm{H}_{\mathrm{loc}}^{1}\left(F_{\Sigma}\right)=\left\{u \in \operatorname{dom}\left(\left(D^{*}\right)_{\max }\right):\left.u\right|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}\left(F_{\Sigma}\right)\right\}
\end{aligned}
$$

- For all $u \in \operatorname{dom}\left(D_{\max }\right)$ and $v \in \operatorname{dom}\left(\left(D^{*}\right)_{\max }\right)$,

$$
\left\langle D_{\max } u, v\right\rangle_{\mathrm{L}^{2}(F)}-\left\langle u,\left(D^{*}\right)_{\max } v\right\rangle_{\mathrm{L}^{2}(E)}=-\left\langle\left.\sigma_{0} u\right|_{\Sigma},\left.v\right|_{\Sigma}\right\rangle_{\mathrm{L}^{2}\left(F_{\Sigma}\right)}
$$

Theorem 2: Higher regularity

$\operatorname{dom}\left(D_{\max }\right) \cap \mathrm{H}_{\text {loc }}^{\mathrm{k}+1}(E)$

$$
=\left\{u \in \operatorname{dom}\left(D_{\max }\right): D u \in \mathrm{H}_{\mathrm{loc}}^{\mathrm{k}}(F) \text { and } \chi^{+}\left(A_{r}\right)\left(\left.u\right|_{\Sigma}\right) \in \mathrm{H}^{\mathrm{k}+\frac{1}{2}}\left(E_{\Sigma}\right)\right\} .
$$

Proof ingredients of Theorems 1 and 2:

- Identification of $\operatorname{dom}\left(A_{r}\right)=\operatorname{dom}\left(A_{r}^{*}\right)$ by elliptic pseudo-differential operator theory.
- H^{∞} functional calculus for the invertible sectorial operator $\left|A_{r}\right|:=A_{r} \operatorname{sgn}\left(A_{r}\right)$.
- Semigroup theory and Kato square root problem methods: ellipticity via equivalent norm for which $\left|A_{r}\right|$ is maximal-accretive.
- Maximal regularity (via H^{∞} functional calculus) for higher regularity.

Boundary conditions and the associated operator

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$
\begin{aligned}
\operatorname{dom}\left(D_{B, \max }\right) & =\left\{u \in \operatorname{dom}\left(D_{\max }\right):\left.u\right|_{\Sigma} \in B\right\} \\
\operatorname{dom}\left(D_{B}\right) & =\left\{u \in \operatorname{dom}\left(D_{\max }\right) \cap \mathrm{H}_{\mathrm{loc}}^{1}\left(E_{\Sigma}\right):\left.u\right|_{\Sigma} \in B\right\},
\end{aligned}
$$

and similarly for the formal adjoint D^{*} with A replaced by \tilde{A}.

- For boundary condition B, the operator D_{B} closed and between $D_{c c}\left(\right.$ on $\left.\mathrm{C}_{\mathrm{cc}}^{\infty}(E)\right)$ and $D_{\text {max }}$.
- D_{c} closed extension of $D_{c c}$, then $B:=\left\{\left.u\right|_{\Sigma}: u \in \operatorname{dom}\left(D_{c}\right)\right\}$ is a boundary condition and $D_{c}=D_{B, \text { max }}$.
- Boundary condition $B \subset \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)$ if and only if $D_{B}=D_{B, \text { max }}$.
- Adjoint boundary condition $B^{\text {ad }}$ so that $D_{B}^{\text {ad }}=D_{B^{\text {ad }}}^{*}$:

$$
B^{\text {ad }}:=\left\{v \in \check{H}(-\tilde{A}):\left\langle\sigma_{0} u, v\right\rangle_{\mathrm{L}^{2}\left(F_{\Sigma}\right)}=0 \quad \forall u \in B\right\}
$$

Elliptic boundary conditions

$B \subset \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)$ boundary condition is called elliptic if there exists an admissible cut $r \in \mathbb{R}$ and:

- $W_{ \pm}, V_{ \pm}$are mutually complementary subspaces such that

$$
V_{ \pm} \oplus W_{ \pm}=\chi^{ \pm}\left(A_{r}\right) \mathrm{L}^{2}\left(E_{\Sigma}\right),
$$

- $W_{ \pm}$are finite dimensional with $W_{ \pm}, W_{ \pm}^{*} \subset \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)$, and
- $g: V_{-} \rightarrow V_{+}$bounded linear map with $g\left(V_{-}^{\frac{1}{2}}\right) \subset V_{+}^{\frac{1}{2}}$ and $g^{*}\left(\left(V_{+}^{*}\right)^{\frac{1}{2}}\right) \subset\left(V_{-}^{*}\right)^{\frac{1}{2}}$ such that

$$
B=W_{+} \oplus\left\{v+g v: v \in V_{-}^{\frac{1}{2}}\right\}
$$

$B \subset \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)$ be a subspace, then the following are equivalent:

- B a boundary condition and $B^{\text {ad }} \subset \mathrm{H}^{\frac{1}{2}}\left(F_{\Sigma}\right)$,
- the definition is satisfied for any admissible spectral cut $r \in \mathbb{R}$,
- B an elliptic boundary condition.

For elliptic boundary condition B, have $B^{\text {ad }}$ elliptic boundary condition for D^{*} and $\sigma_{0}^{*}\left(B^{\text {ad }}\right)=W_{-}^{*} \oplus\left\{u-g^{*} u: u \in\left(V_{+}^{*}\right)^{\frac{1}{2}}\right\}$.

Pseudo-local and local boundary conditions

- For classical pseudo-differential projector P of order zero (not necessarily orthogonal), the space

$$
B=P\left(\mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)\right)
$$

is called a pseudo-local boundary condition.

- Boundary condition $B \subset \mathrm{H}^{\frac{1}{2}}\left(E_{\Sigma}\right)$ a local boundary condition if there exists a sub-bundle $E^{\prime} \subset E_{\Sigma}$ such that

$$
B=\mathrm{H}^{\frac{1}{2}}\left(E^{\prime}\right)
$$

Theorem 3: Characterisation of pseudo-local boundary conditions

Given a pseudo-local boundary condition $B=P\left(H^{\frac{1}{2}}\left(E_{\Sigma}\right)\right)$, the following are equivalent:

- B an elliptic boundary condition,
- for admissible cut $r \in \mathbb{R}$, the operator

$$
P-\chi^{+}\left(A_{r}\right): \mathrm{L}^{2}\left(E_{\Sigma}\right) \rightarrow \mathrm{L}^{2}\left(E_{\Sigma}\right)
$$

is Fredholm,

- for admissible cut $r \in \mathbb{R}$, the operator

$$
P-\chi^{+}\left(A_{r}\right): \mathrm{L}^{2}\left(E_{\Sigma}\right) \rightarrow \mathrm{L}^{2}\left(E_{\Sigma}\right)
$$

is elliptic classical pseudo of order zero.

If B is a pseudo-local boundary condition and $D_{B} u$ is smooth, then u is smooth up to the boundary.

Valter Borges Sampaio Junior ${ }^{a}$
Joint work with Prof. Keti Tenenblat (UnB)
PhD student at Universidade de Brasília. The author has been
supported by Capes and CNPq.

Abstract

It is shown that a gradient Ricci almost soliton on a warped product, ($B^{n} \times_{h} F^{m}, g, f, \lambda$) whose potential func tion f depends on the fiber, is either a Ricci soliton or λ is not constant and the warped product, the base and the fiber are Einstein manifolds, which admit conformal vector fields. Assuming completeness, a classification is provided for the Ricci almost solitons on warped products, whose potentia functions depend on the fiber. An important decomposition property of the potential function in terms of functions which depend either on the base or on the fiber is proven. In the case of a complete Ricci soliton, the potential function depends only on the base.

1. Basic Concepts and Notation

A (gradient) Ricci almost soliton (M, g, f, λ) is a semiRiemannian manifold (M, g) with smooth functions f, λ $M \rightarrow \mathbb{R}$ satisfying the following fundamental equation

$$
\begin{equation*}
R i c+\nabla \nabla f=\lambda g, \tag{1}
\end{equation*}
$$

The function $f: M \rightarrow \mathbb{R}$ is called potential function. This concept was introduced in [5], generalizing the notion of Ricci solitons.

Consider two semi-Riemannian manifolds $\left(B^{n}, g_{B}\right)$ and $\left(F^{m}, g_{F}\right)$. Given a smooth function $h: B \rightarrow(0,+\infty)$, we define the warped product $B \times h F$ with warping function h, as the product manifold $B \times F$ endowed with the metric $g=g_{B}+h^{2} g_{F}$, defined by

$$
\begin{equation*}
g=\pi^{*} g_{B}+(h \circ \pi)^{2} \sigma^{*} g_{F}, \tag{2}
\end{equation*}
$$

where $\pi: B \times F \rightarrow B$ and $\sigma: B \times F \rightarrow F$ are the canonica projections. So $B \times{ }_{h} F=(B \times F, g)$ is a semi-Riemannian manifold of dimension $n+m$.

In what follows we will denote the connection, the Ricc curvature and other tensors defined using the metric g_{B} with a subscript B, as $\nabla_{B}, \operatorname{Ric}_{B}$. Similar notation will be considered for the metric g_{F}.

2. Characterization and Consequences

The theorem bellow says that when the potential function depends on the fiber then the fundamental equation (1) on a warped product reduces to a system of equations on the base and on the fiber, in the following way:
Theorem 1 Let $B^{n} \times_{h} F^{m}$ be a non trivial warped product where the base $\left(B^{n}, g_{B}\right)$ or the fiber $\left(F^{m}, g_{F}\right)$ can be either a Riemannian or a semi-Riemannian manifold. Then $\left(B^{n} \times_{h} F^{m}, g, f, \lambda\right)$ is a Ricci almost soliton, with f non constant on F if, and only if,

$$
\begin{equation*}
f=\beta+h \varphi, \tag{3}
\end{equation*}
$$

where $\varphi: F \rightarrow \mathbb{R}$ is not constant and $\beta: B \rightarrow \mathbb{R}$ are differentiable functions such that

$$
\left\{\begin{array}{l}
\nabla_{B} \nabla_{B} h+a h g_{B}=0, \\
\operatorname{Ric}_{B}+\nabla_{B} \nabla_{B} \beta=\left[h^{-1}\left(\nabla_{B} h\right) \beta-b h^{-1}+(n-1) a\right] g_{B}, \\
\nabla_{F} \nabla_{F} \varphi+(c \varphi+b) g_{F}=0, \\
\operatorname{Ric}_{F}=(m-1) c g_{F},
\end{array}\right.
$$

for some constants $a, b, c \in \mathbb{R}$, the function λ is given by

$$
\begin{equation*}
\lambda=h^{-1}\left(\nabla_{B} h\right) \beta-b h^{-1}+(m+n-1) a-a h \varphi \tag{5}
\end{equation*}
$$

and the constants a and c are related to h by the equation

$$
\begin{equation*}
\left|\nabla_{B} h\right|^{2}+a h^{2}=c . \tag{6}
\end{equation*}
$$

As an application of Theorem 1 we can prove that for a complete warped product Ricci solitons (that is, when λ is a constant) the potential function does not depend on the fiber.
Corollary 1 Let $\left(B \times{ }_{h} F, g, f, \lambda\right)$ be a Ricci soliton on a complete non trivial semi-Riemannian warped product. Then f does not depend on the fiber.
Corollary 1 was considered also in [3] with a different approach. It shows that examples of Ricci solitons on com plete semi-Riemannian warped products occur when the potential function depends only on the base.
Our next result characterizes Ricci almost solitons i.e., equation (1), on warped products, when the potential function depends only on the base.

Theorem 2 Let $B^{n} \times_{h} F^{m}$ be a non trivial warped product where the base $\left(B^{n}, g_{B}\right)$ or the fiber $\left(F^{m}, g_{F}\right)$ can be either a Riemannian or a semi-Riemannian manifold. Then $\left(B^{n} \times{ }_{h} F^{m}, g, f, \lambda\right)$ is a Ricci almost soliton, with f constant on F if, and only if,

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{B}+\nabla_{B} \nabla_{B} f-m h^{-1} \nabla_{B} \nabla_{B} h=\lambda g_{B}, \\
\lambda h^{2}=h\left(\nabla_{B} h\right) f-(m-1)\left|\nabla_{B} h\right|^{2}-h \Delta_{B} h+c(m-1), \\
\operatorname{Ric}_{F}=c(m-1) g_{F},
\end{array}\right.
$$

for some constant $c \in \mathbb{R}$
(7)

Remark 1 The first and third equations in Theorem 1 say that the corresponding gradient fields are conformal vector fields.
Remark 2 The fourth equation of Theorem 1 and the third equation of Theorem 2 show that the fiber is an Eisntein manifold in both cases.

3. Rigidity when f Depends on the Fiber

We say that a semi-Riemannian manifold (M, g) is a Brinkmann space if it admits a parallel light like vector field X, called a Brinkmann field.
We say that a vector field X is improper if there is an open set where X is light like. If there is no such an open set the field is said a proper vector field.
Theorem 3 Let $B^{n} \times_{h} F^{m}, n \geq 2$, be a non trivial warped product where the base $\left(B^{n}, g_{B}\right)$ is a semi-Riemannian manifold and the fiber $\left(F^{m}, g_{F}\right)$ can be either a Riemannian or a semi-Riemannian manifold. Then ($B^{n} \times_{h} F^{m}, g, f, \lambda$) is a Ricci almost soliton, with f non constant on F and $\nabla_{B} h$ an improper vector field on B if, and only if, λ is constant and $f=\beta+h \varphi$, where $\varphi: F \rightarrow \mathbb{R}$ non constant and $\beta: B \rightarrow \mathbb{R}$ are smooth functions satisfying

$$
\begin{aligned}
& g\left(\nabla_{B} h, \nabla_{B} \beta\right)=\lambda h+b, \\
& \operatorname{Ric}_{B}+\nabla_{B} \nabla_{B} \beta=\lambda g_{B}, \\
& \nabla_{F} \nabla_{F} \varphi+b g_{F}=0
\end{aligned}
$$

for a constant $b \in \mathbb{R}, B$ is a Brinkmann space with $\nabla_{B} h$ as a Brinkmann field and F is Ricci flat. If in addition F is complete, then it is isometric to

1. $\pm \mathbb{R} \times \bar{F}^{m-1}$, where \bar{F} is Ricci flat, if $b=0$;
2. $\mathbb{R}_{\epsilon}^{m}$, if $b \neq 0$.

The vector field $\nabla_{B} h$ is non homothetic if its local flow does not act by translations. The next result shows the rigidity of a Ricci almost soliton on a warped product when the potential function depends on the fiber and $\nabla_{B} h$ is a non homothetic vector field.
Theorem 4 Let $B^{n} \times_{h} F^{m}$ be a non trivial warped product where the base $\left(B^{n}, g_{B}\right)$ or the fiber $\left(F^{m}, g_{F}\right)$ can be either a Riemannian or a semi-Riemannian manifold and suppose that ($B^{n} \times_{h} F^{m}, g, f, \lambda$) is a Ricci almost soliton with f non constant on F and $\nabla_{B} h$ a proper vector field. Then

1. If $\nabla_{B} h$ is homothetic, then λ is constant, i.e., it is a Ricci soliton,
2. If $\nabla_{B} h$ is non-homothetic, then λ is not constant, B, F and $B^{n} \times_{h} F^{m}$ are Einstein manifolds such that

$$
\begin{aligned}
& \operatorname{Ric}_{B \times_{h} F}=(n+m-1) a g, \\
& \operatorname{Ric}_{B}=(n-1) a g_{B}, \\
& \operatorname{Ric}_{F}=(m-1) c g_{F},
\end{aligned}
$$

where the constants $a \neq 0$ and c are related to h by $\left|\nabla_{B} h\right|^{2}+a h^{2}=c$. Moreover, ∇f and $\nabla_{B} h$ are conformal gradient fields on $B^{n} \times_{h} F^{m}$ and on B^{n}, respectively, satisfying

$$
\begin{aligned}
& \nabla \nabla f+\left(a f+a_{0}\right) g=0, \\
& \nabla_{B} \nabla_{B} h+a h g_{B}=0, \\
& \lambda=-a f+a(m+n-1)-a_{0},
\end{aligned}
$$

for some constant $a_{0} \in \mathbb{R}$.
A direct corollary of both Theorem 3 and Theorem 4 is the following rigidity result. Other rigidity results can be found in [1], [2] or [5].
Corollary 2 If $\left(B^{n} \times_{h} F^{m}, g\right)$ is a warped product Ricci almost soliton, with f non constant on F, then one of the following holds

1. λ is constant, i.e., it is a Ricci soliton;
2. λ is not constant, $\left(B^{n} \times_{h} F^{m}, g\right)$ is an Einstein manifold, $\nabla_{B} h$ is a proper and non-homothetic vector field and ∇f is conformal.

4. Classification when f Depends on the Fiber

Einstein manifolds carrying conformal vector fields are clas sified and, using this classification, we will give a classifica tion of complete Ricci almost solitons
In order to state our classification result for Ricci almost solitons on complete semi-Riemannian warped products, we consider the following classes of n-dimensional complete semi-Riemannian Einstein manifolds:
Class I

1. $\mathbb{R} \times N^{n-1}$ where $\left(N, g_{N}\right)$ is a complete semi-Riemannian Einstein manifold.
2. A Brinkman space of dimension $n \geq 3$, i.e. a semi Riemannian manifold (M^{n}, g) admitting a parallel light like vector field.

Class II

1. $\mathbb{S}_{\varepsilon}^{n}(1 / \sqrt{c})$, when $0 \leq \varepsilon \leq n-2$; the covering of $\mathbb{S}_{n-1}^{n}(1 / \sqrt{c})$ when $\varepsilon=n-1$ and the upper part of $\mathbb{S}_{n}^{n}(1 / \sqrt{c})$ when $\varepsilon=n$ with $c>0$.
2. $\mathbb{H}_{\varepsilon}^{n}(1 / \sqrt{|c|})$, when $2 \leq \varepsilon \leq n-1$; the covering of $\mathbb{H}_{1}^{n}(1 / \sqrt{|c|})$ when $\varepsilon=1$ and the upper part of $\mathbb{H}_{0}^{n}(1 / \sqrt{|c|})$ when $\varepsilon=0$, with $c<0$.
3. $\left(\mathbb{R} \times N^{n-1}, \pm d t^{2}+\cosh ^{2}(\sqrt{|c|} t) g_{N}\right)$, where $\left(N^{n-1}, g_{N}\right)$ is a semi-Riemannian Einstein manifold.
4. $\left(\mathbb{R} \times N^{n-1}, \pm d t^{2} \pm e^{2 \sqrt{|c|} t} g_{N}\right)$, where $\left(N^{n-1}, g_{N}\right)$ is a Riemannian Einstein manifold,
The following result classifies the complete Ricci almost solitons on warped products, whose potential functions depend on the fiber.
Theorem 5 Let $M^{n+m}=B^{n} \times_{h} F^{m}$ be a non trivial warped product where $\left(B^{n}, g_{B}\right)$ or $\left(F^{m}, g_{F}\right)$ can be either a Riemannian or a semi-Riemannian manifold. Then ($B^{n} \times_{h}$ $\left.F^{m}, g, f, \lambda\right)$ is a complete Ricci almost soliton with f non constant on F if, and only if, there exist constants $a \neq$ $0, a_{0}, c \in \mathbb{R}$ such that $f=a^{-1}\left(-\lambda+a(m+n-1)-a_{0}\right)$ and
5. if $n=1$ then B^{1} is isometric to $\left(\mathbb{R}\right.$, sgn a $\left.d t^{2}\right)$

$$
h= \begin{cases}A e^{\sqrt{|a|}} t & \text { if } c=0, \tag{8}\\ \left.\left.\sqrt{\left|\frac{c}{a}\right|[\cosh (\sqrt{|a|} t}+B\right)\right] & \text { if } c \neq 0\end{cases}
$$

where $A \neq 0$ and $B \in \mathbb{R}$. Moreover, M is an Einstein manifold satisfying $\operatorname{Ric}_{M}=(m+n-1)$ ag and if $m \geq 2, F$ is an Einstein manifold satisfying Ric $_{F}=(m-1) c g_{F}$.
2. If $n \geq 2$ and $m \geq 2$ then

- M^{n+m} is an Eisntein manifold isometric either to a manifold of Class II. 1 (resp. II.2) when $a>0$ (resp. $a<0$) and f has some critical point or it is isometric to a manifold of Class II. 3 or II. 4 if f has no critical points.
- B is a complete Einstein manifold isometric either to a manifold of Class II. 1 (resp. Class II.2) and index $\varepsilon_{B}=n$ (resp. $\varepsilon_{B}=1$) if $a>0$ (resp. $a<0$) and h has critical points or to a manifold of Class II. 3 or II. 4 if h has no critical points.
- F is a complete Einstein manifold isometric to either $\mathbb{R}_{\varepsilon}^{n}$, or to a manifolds of Class I when $c=0$ and it is isometric to a manifold of Class II when $c \neq 0$.

3. Moreover, $F^{m}, m \geq 1$ is positive definite (resp. negative definite) if $B^{n}, n \geq 1$ is positive definite (resp. negative definite).

References

[1] Barros, A.; Batista, R.; Ribeiro Jr, E. Rigidity of gradient almost Ricci solitons. Illinois Journal of Mathematics, v. 56 (2012), n. 4, p. 1267-1279.
[2] Barros, A.; Gomes, J. N.; Ribeiro Jr, E. A note on rigidity of the almost Ricci soliton. Archiv der Mathematik, v. 100 (2013), n. 5, p. 481-490.
[3] de Sousa, M. L.; Pina R.; Gradient Ricci solitons with structure of warped product. Results in Mathematics. Jun 1;71(3-4):825-40, (2017).
[4] Feitosa, F. E. S.; Freitas, A. A.; Gomes, J. N. V.; Pina R. S. On the construction of gradient almost Ricci solion warped product. arXiv preprint arXiv:1507.03038, (2015).
[5] Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A. G. Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. v. 10 n. 4, 757-799, (2011).

CERTAIN SUBMANIFOLDS OF COMPLEX SPACE FORMS
 Mirjana Djorić
 University of Belgrade, Faculty of Mathematics, Belgrade, Serbia
 mdjoric@matf.bg.ac.rs

The study of real hypersurfaces of Kählerian manifolds has been an important subject in geometry of submanifolds, especially when the ambient space is a complex space form. However, for arbitrary codimension, there are only a few recent results (see [2] for more details).

If a complex hypersurface M^{n} of a Kähler manifold \bar{M}^{n+2} satisfies the condition (*), then M^{n} is a totally geodesic submanifold.

Let M be a complete m-dimensional CR submanifold of maximal CR dimension of a complex space form $\bar{M}^{\frac{m+k}{2}}$. If the condition (*) is satisfied, then one of the following three statements holds:
$-M$ is a complete m-dimensional CR submanifold of CR dimension $\frac{m-1}{2}$ of a complex Euclidean space, and then M is isometric to $\mathbb{E}^{m}, \mathbb{S}^{m}$ or $\mathbb{S}^{2 p+1} \times \mathbb{E}^{m-2 p-1}$;
$-M$ is a complete m-dimensional CR submanifold of CR dimension $\frac{m-1}{2}$ of a complex projective space and then M is isometric to $M_{p, q}^{C}$, for some p, q satisfying $2 p+2 q=m-1$;
$-M$ is a complete m-dimensional CR submanifold of CR dimension $\frac{m-1}{2}$ of a complex hyperbolic space and then M is isometric to M_{m}^{*} or $M_{p, q}^{H}(r)$, for some p, q satisfying $2 p+2 q=m-1$.

Let M be a connected submanifold of real codimension two of a complex Euclidean space If M satisfies the condition (*), then M is one of the following:
(1) n-dimensional sphere \mathbf{S}^{n},
(2) n-dimensional Euclidean space \mathbf{E}^{n},
(3) product manifold of an r-dimensional sphere and an $(n-r)$-dimensional Euclidean space $\mathbf{S}^{r} \times$ \mathbf{E}^{n-r}, where r is an even number.
(4) CR submanifold of CR dimension $\frac{n-2}{2}$ with $\lambda=0$.

Let M^{n} be a submanifold of real codimension two of a complex Euclidean space with $\lambda=0$ which satisfies the condition $(*)$.
(I) If there exists a totally geodesic hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$ such that $M \subset M^{\prime}$, then M is one of the following:
(1) n-dimensional hyperplane \mathbf{E}^{n},
(2) product manifold of an odd-dimensional sphere and a Euclidean space: $\mathbf{S}^{2 p+1} \times \mathbf{E}^{n-2 p-1}$.
(II) If there exists a totally umbilical hypersurface M^{\prime} of $\mathbf{C}^{\frac{n+2}{2}}$, such that $M \subset M^{\prime}$, then M is a product of two odd-dimensional spheres.

If for a real submanifold M of a complex manifold (\bar{M}, J), the holomorphic tangent space $H_{x}(M)=$ $J T_{x}(M) \cap T_{x}(M)$ has constant dimension with respect to $x \in M$, the submanifold M is called a CR submanifold and the constant complex dimension is called the CR dimension of M. In [2] we collected the elementary facts about complex manifolds and their submanifolds and introduced the reader to the study of CR submanifolds of complex manifolds, especially complex projective space.

Ne assume that M satisfies the condition

$$
h(F X, Y)+h(X, F Y)=0, \quad \text { for all } X, Y \in T(M) \quad(*) .
$$

h is the second fundamental form of a submanifold and F is the structure tensor induced from the natural almost complex structure of a complex manifold.

In a complex projective space there exists neither totally geodesic nor totally umbilical real hypersurfaces. The surface $M_{p, q}^{C}$, called "generalized equator", is a quotient manifold $\left(\mathbf{S}^{2 p+1} \times \mathbf{S}^{2 q+1}\right) / \mathbf{S}^{1}$. It is real hypersurface of a complex projective space, introduced by Lawson [5].

CR submanifolds M^{m} of maximal $\underset{m+k}{\mathrm{CR}}$ dimension of complex space forms $\bar{M}^{\frac{m+k}{2}}$,i.e. $\operatorname{dim} H_{x}(M)=m-1$:

$$
\begin{aligned}
J \imath X & =\imath F X+u(X) \xi \\
J \xi & =-\imath U \\
J \xi_{a} & =P \xi_{a}, a=1, \ldots, k-1 \\
F^{2} X & =-X+u(X) U .
\end{aligned}
$$

Submanifolds of real codimension two of csf

$$
\begin{aligned}
J \imath X & =\imath F X+u^{1}(X) \xi_{1}+u^{2}(X) \xi_{2} \\
J \xi_{1} & =-\imath U_{1}+\lambda \xi_{2} \\
J \xi_{2} & =-\imath U_{2}-\lambda \xi_{1} \\
F^{2} X & =-X+u^{1}(X) U_{1}+u^{2}(X) U_{2}
\end{aligned}
$$

Let M^{n} be a submanifold of real codimension two of a complex projective space, which is not its totally geodesic complex hypersurface and let M satisfy the condition (*). If there exists a real hypersurface $M_{p, q}^{C}$ such that $M \subset M_{p, q}^{C}$, then M is congruent to $\pi\left(S^{2 p+1} \times S^{2 r+1} \times S^{2 s+1}\right)$, where $p+q+s=\frac{n+1}{2}$.

REFERENCES

[1] M. Djorić, M. Okumura, Certain CR submanifolds of maximal $C R$ dimension of complex space forms, Differential Geom. Appl., 26/2, 208-217, (2008).
[2] M. Djorić, M. Okumura, CR submanifolds of complex projective space, Develop. in Math. 19, Springer, (2009).
[3] M. Djorić, M. Okumura, Real submanifolds of codimension 2 of a complex space form, Differential Geom. Appl., 31, (2013), 17-28.
[4] M. Djorić, M. Okumura, Certain submanifolds of real codimension two of a complex projective space, J. Math. Anal. Appl., 429, (2015), 532-541.
[5] H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4, 349357, (1970).

Generic simplicity of the eigenvalues of the drifting Laplacian on compact Riemannian manifolds

Abraão Mendes ${ }^{1}$
joint work with Marcus Marrocos ${ }^{2}$
${ }^{1}$ Universidade Federal do Amazonas - UFAM Partially supported by CNPq-BR
e-mail: abraaomendes90@gmail.com
${ }^{2}$ Universidade Federal do ABC - UFABC
e-mail: marcus.marrocos@ufabc.edu.br

1 Introduction

In 1976, K. Uhlenbeck showed that for a class of second order elliptic operators L_{b} defined on a compact Riemannian manifold M, the following generic property holds: all eigenvalues are simple, that is, multiplicity 1.
As an application, all eigenvalues of Δ_{g} are simple, for a generic metric g on M.
In this poster, we want to show that this same generic property holds for the operator drifting Laplacian

$$
\begin{equation*}
\Delta+<\nabla \eta, \nabla> \tag{1}
\end{equation*}
$$

for a generic drifting function $\eta \in B=\{\eta$ $M \rightarrow \mathbb{R}, \eta>0\} \subset C^{\infty}(M)$, that is, there exists a residual set $\Gamma \subset B$ such that for $\eta \in \Gamma$ the operator

$$
\begin{equation*}
L_{\eta}=\Delta+<\nabla \eta, \nabla> \tag{2}
\end{equation*}
$$

has all eigenvalues simple, that is, multiplicity equal to 1 also.

2 Preliminaries

Definition 1 A Fredholm operator $F: M \rightarrow N$ is a linear map between Banach spaces with closed image and finite dimensional kernel and cokernel.
Definition 2 The index of a Fredholm operator is the dimension of the kernel minus the cokernel

Definition 3 A Fredholm map is a differentiable map between Banach manifolds which has a Fredholm operator as derivative at every point.
Definition 4 By a residual set we mean a set of second category.

Theorem 1 (Sard-Smale) Let $F: M \rightarrow N$ be a Fredholm map between separable Banach manifolds. If F is C^{r} for $r>$ index F, then the regular values of F form a residual set in N.
Definition 5 (Transversality) A map $f: M \rightarrow$ N is transversal to a submanifold $Z \subset N$, if for all $x \in M$ with $f(x) \in Z$

$$
(d f)_{x}\left(T_{x} M\right)+T_{f(x)} Z=T_{f(x)} N
$$

Abstract

Theorem 2 (Transversality Theorem 1) Let $\varphi: H \times B \rightarrow E$ be a C^{k} map, H, B and E Banach manifolds with H e E separable. If 0 is a regular value of φ and $\varphi_{b}=\varphi(, b)$ is a Fredholm map of index $<k$, then the set $\left\{b \in B: 0\right.$ is a regular value of $\left.\varphi_{b}\right\}$ is residual in B.

3 Basic theory of elliptic operators

It is a result of basic theory of elliptic operators that if the coefficients of an elliptic operator L are C^{k} then:

1. The maps $(L+\lambda I): H_{k}^{p}(M) \cap H_{1,0}^{p}(M) \rightarrow$ $H_{k-2}^{p}(M), k \geq 1$, are Fredholm of index zero;
2. The eigenfunctions of L are solutions $u \in$ $H_{1,0}(M)$ of $(L+\lambda I) u=0$, and by regularity theory they also will be in $H_{k}^{p}(M)$;
3. The eigenspaces are finite dimensional;
4. If L is self-adjoint then the eigenfunctions span $L^{2}(M)$.

4 The drifting Laplacian

Let (M, g) be a connected compact Riemannian manifold, provided with a weighted measure $d m=\epsilon^{-\eta} d M$, where $d M$ is the original volume form of M, that is, $d M$ is the volume form associated to metric g.
The function η belongs to the open set $B=$ $\{\eta: M \rightarrow \mathbb{R}, \eta>0\} \subset C^{\infty}(M)$.
We consider the following second order ellpitic operators:

$$
\begin{equation*}
\eta \rightarrow L_{\eta}=\Delta+<\nabla \eta, \nabla> \tag{3}
\end{equation*}
$$

where $\Delta=\Delta_{g}, \nabla=\nabla^{g} \mathrm{e}<., .>=<., .>_{g}$. L_{η} is called $\eta-$ Laplacian or drifting Laplacian, and η is called drifting function.
We also highlight the following properties of the drifting Laplacian that are of extreme importance for the remainder of this work:
(i) η - Laplacian is formally self-adjoint on Hilbert space $L^{2}(M, d m)$;
(ii) $\eta-$ Laplacian is elliptic.

5 Auxiliary Lemmas

We consider the unitary sphere:
$S_{k}^{p}=\left\{u \in H_{k}^{p}(M) \cap H_{1,0}(M): \int_{M} u^{2} d m=1\right\}$ and the following map $\varphi: S_{k}^{p} \times \mathbb{R} \times B \rightarrow$ $H_{k-2}^{p}(M)$ given by

$$
\varphi(u, \lambda, \eta)=\left(L_{\eta}+\lambda I\right) u
$$

from where we can consider the following map $\varphi_{\eta}=\varphi(., ., \eta)$ where η is fixed.
Lemma $1 \varphi_{\eta}$ is a Fredholm map of index zero.
Lemma $2(u, \lambda, \eta) \in \varphi^{-1}(0)$ if and only if u is an eigenfunction of L_{η} with eigenvalue λ. The u lies in a one dimensional eigenspace if and only if u is a regular point of φ_{η}.
Lemma $3 L_{\eta}$ has one-dimensional eigenspaces if and only if 0 is a regular value of φ_{η}.
Lemma 40 is a regular value of φ.

6 Main Result

Theorem 3 The set $\left\{\eta \in B: L_{\eta}\right.$ has onedimensional eigenspaces $\}$ is residual in B. In other words, the eigenvalues of L_{η} are generically simple.

Proof: By Lemma 1, φ_{η} is Fredholm of index zero and by Lemma 40 is regular value of φ. Then, by Transversality Theorem 1
$\left\{\eta \in B: 0\right.$ é valor regular de $\left.\varphi_{\eta}\right\}$
is residual in B. Since, by Lemma 3, 0 is regular value of φ_{η} if and only if L_{η} has onedimensional eigenspaces, then the set

$$
\begin{aligned}
\{\eta \in B: & L_{\eta} \text { has one-dimensional } \\
& \text { eigenspaces }\}
\end{aligned}
$$

is residual in B.

References

[1]R. Abraham - Transversality in manifolds mappings, Bull. Amer. Math. Soc. 69, (1963).
[2] Daniel Henry - Perturbation of the boundery in boundery-value-problems of partial differential equations, Cambridge University Press, (2005).
[3]K. Uhlenbeck - Generic properties of eigenfunctions, American Journal of Mathematics (1976).
[4] Fernando Manfio - Introducão à Topologia Diferencial, ICMC-USP.
[5] V. Guillemin e A. Polack - Differential Topology, Prentice-Hall, (1974).
[6]S. Smale - An infinite dimensional version of Sard's theorem, American Journal of Mathematics, 7, (1965).
[7] Welington de Melo - Topologia das Variedades, IMPA, (2014).

Eigenstructure of Laplace operator on the equilateral triangle and its relation with hexagonal flat torus

Diego Sousa de Oliveira ${ }^{1}$
under the guidance of professors Dr. Marcus A. M. Marrocos ${ }^{2}$
and Dr. Sinuê D.B. Lodovic
${ }^{1}$ Universidade Federal do ABC - UFABC
e-mail: diego.sousa@aluno.ufabc.edu.br ${ }^{1}$
e-mail: marcusmarrocos@gmail.com² e-mail: sinuedbl@gmail. com^{3}

Abstract
This work is a study of Laplace operator and its eigenstructure over the equilateral triangle under Dirichlet boundary condition. The strategy is to solve the corresponding partial differential equation making a specific change of coordinate system in order to apply the method of separation of variables. It also is made a link between the equilateral triangle and the hexagonal flat torus. We follow closely the Mcartin work [8].

1 Introduction

The study of Laplace operator on manifolds has several applications on physics, engineering and other fields For example, the heat equation, variation rates, informations about the topology of surfaces and others geometric aspects.
Even in 2-dimensional manifolds such as the equilateral triangle, the analysis of the Laplacian spectrum is not simple and it is necessary to developed specific methods to study it.
We consider the following partial differential equation with Dirichlet boundary condition:

$$
\begin{equation*}
\text { (a) } \Delta T+k^{2} T=0, \quad \text { (b) } T 1_{\partial D}=0 \tag{1}
\end{equation*}
$$

where Δ denotes the usual Laplacian of euclidean spaces, the numbers k^{2} are called eigenvalues and the real functions T defined over the equilateral triangle D are called eigenfunctions. D has side h and inner radius r as identified bellow:

2 Discussion and Results

We can relate the Cartesian coordinates $(x, y) \in D$ to triples (u, v, w) given by the relations $u=r-y$, $v=\frac{\sqrt{3}}{2}\left(x-\frac{h}{2}\right)+\frac{1}{2}(y-r)$ and $w=\frac{\sqrt{3}}{2}\left(\frac{h}{2}-x\right)+\frac{1}{2}(y-r)$ in order to obtain a new coordinate system (ξ, η) which has origin at the center of D. We define $\xi=u$ and $\eta=v-w$.
Once we have new coordinates, we can rewrite equation (1)(a) as:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \xi^{2}} T+3 \frac{\partial^{2}}{\partial \eta^{2}} T+k^{2} T=0 \tag{2}
\end{equation*}
$$

We will denote $T(\xi, \eta)$ as the eigenfunction T expressed on the system (ξ, η). Then we claim that $T(\xi, \eta)$ is eigenfunction if and only if $T_{s}(\xi, \eta)=$ $\frac{T(\xi, \eta)+T(\xi,-\eta)}{2}$ and $T_{a}(\xi, \eta)=\frac{T(\xi, \eta)-T(\xi,-\eta)}{2}$ are eigenfunctions (note that $T=T_{s}+T_{a}, T_{s}(\xi, \eta)=T_{s}(\xi,-\eta)$ and $T_{a}(\xi, \eta)=-T_{a}(\xi,-\eta)$). They are symmetric and antisymmetric functions considered over the u axis, respectively. Therefore it is possible to study T_{s} and T_{a} individually. The next step is to apply the separable variables method on T i.e. $T(\xi, \eta)=f(\xi) g(\eta)$. It's the same that
suppose $T_{s}(\xi, \eta)=f(\xi) g_{s}(\eta)$ and $T_{a}(\xi, \eta)=f(\xi) g_{a}(\eta)$, where g_{s} and g_{a} are symmetric and antisymmetric parts of g, respectively. Applying it to the equation (2), we obtain two ODE's. So taking account the Dirichlet boundary condition we get the following solutions T_{s} and T_{a} :

$$
\begin{aligned}
T_{s}^{m, n}(u, v, w) & =\sin \left(\frac{\pi l}{3 r}(u+2 r)\right) \cos \left(\frac{\pi(m-n)}{9 r}(v-w)\right) \\
& +\sin \left(\frac{\pi m}{3 r}(u+2 r)\right) \cos \left(\frac{\pi(n-l)}{9 r}(v-w)\right. \\
& +\sin \left(\frac{\pi n}{3 r}(u+2 r)\right) \cos \left(\frac{\pi(l-m)}{9 r}(v-w)\right) \\
T_{a}^{m, n}(u, v, w) & =\sin \left(\frac{\pi l}{3 r}(u+2 r)\right) \sin \left(\frac{\pi(m-n)}{9 r}(v-w)\right) \\
& +\sin \left(\frac{\pi m}{3 r}(u+2 r)\right) \sin \left(\frac{\pi(n-l)}{9 r}(v-w)\right) \\
& +\sin \left(\frac{\pi n}{3 r}(u+2 r)\right) \sin \left(\frac{\pi(l-m)}{9 r}(v-w)\right)
\end{aligned}
$$

$k_{m, n}^{2}=\frac{2}{27}\left[\frac{\pi}{r}\right]^{2}\left(l^{2}+m^{2}+n^{2}\right)=\frac{4}{27}\left[\frac{\pi}{r}\right]^{2}\left(m^{2}+m n+n^{2}\right)$ for $m, n \in \mathbb{Z}$, satisfying $l+m+n=0 ;|l| \neq|m| \neq$ $|n| \neq|l|$ and in a such way that any eigenfunction is linear combination of those.
Another important result is that if we consider D an equilateral triangle obtained by reflection over one of the sides of D, its eigenfunctions are almost the same. They differ each other only in a change of signal. Then, we can construct rectangles and parallelograms formed by equilateral triangles identifying the changed signals on T_{s} and T_{a}, as in the following pictures:

In the solid lines at the pictures we have the annulment of the eigenfunction while in the dashed lines we have the annulment of its normal derivative (this fact occurs specially on T_{s} eigenfunctions because its normal derivative has a similar behaviour to the T_{a} eigenfunctions).
This is a way to relate the solutions of the triangle to the solutions of a rectangle containing specific inner lines and boundary conditions.
By using the results showed above we can imply that we get a completeness of eigenfunctions at the triangle problem.
If we repeat this reflection process throughout the whole plan, it forms a lattice by parallelograms which are congruent to H (see next picture). So we can extend the eigenfunctions of the triangle to the whole plane as eigenfunctions of the hexagonal torus as we will see in the next

Let $\Gamma:=\mathbb{Z} e_{1}+\mathbb{Z} e_{2}$ an additive group and R the equiv alence relation over \mathbb{R}^{2} : $x R y$ whenever exists $g \in \Gamma$ such that $x=y+g$. Therefore, the eigenfunctions are constant in each equivalence class and the rela tion R identifies all the parallelograms congruent to H as a unique parallelogram. In other words, each parallelogram congruent to H contains one representative element of each equivalence class.
The quotient \mathbb{R}^{2} / Γ formed by this equivalence relation is known as hexagonal flat torus which has structure of a Riemann manifold and is locally isometric to \mathbb{R}^{2}. Hence it is possible to understand the notion of Laplacian, eigenfunctions and eigenvalues on the flat torus in a similar way comparing to euclidean domains.
The link between \mathbb{R}^{2} / Γ and D is that every eigenfunction on D can be reflected throughout the parallelogram H with the same inner line conditions. Therefore they are related to eigenfunctions on \mathbb{R}^{2} / Γ. On the other hand, if we impose on \mathbb{R}^{2} / Γ these inner lines to its corresponding conditions then we obtain eigenfunctions related to eigenfunctions on D. In this sense, we can see that the triangle spectrum is a subset of the spectrum of the torus.

3 Concluding remarks

The main goal of this work was to show a relation between the different settings exploring the symmetries between them. We exhibited a usual constructive process that obtain eigenvalues and eigenfunctions on equilateral triangle, establishing a link to a particular flat torus. We hope to apply similar procedure in noneuclidean manifolds.

References

[1] C. A. J. Arrieta, O laplaciano em variedades e isoespectralidade, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 1993 (Dissertação de Mestrado)
[2] D. Gurarie, Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications, Dover Publications, 2008.
[3] M. A. M. Marrocos, A. L. Pereira, Eigenvalues of the Neumann Laplacian in symmetric regions. J. Math. Phys. 56 (2015) 111502.
[4] A. L. Pereira, Eigenvalues of the Laplacian on symmetric regions. NoDEA- Nonlinear Diferential Equations and Applications (2) (1995) 63-109.
[5] M. A. Pinsky, Completeness of the Eigenfunctions of the Equilateral Triangle, SIAM Journal on Mathematical Analysis, Vol. 16, No. 4 (1985), pp. 848-851.
[6] M. A. Pinsky, The Eigenvalues of an Equilateral Triangle, SIAM Journal on Mathematical Analysis, Vol. 11, No. 5 (1980), pp. 819-827.
[7] W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, 3th edition, 1976.
[8] B. J. M. Cartin, Laplacian Eigenstructure of the equilateral triangle, Hikari Ltd, First published 2011.
[9] W. A. Strauss, Partial Differential Equations: An Introduction, Wiley, New York, NY, 1992.
aProfessor at Instituto Federal de Goiás. The author has been
supported by Capes and CNPq

Hiuri Reis ${ }^{\text {a }}$
Joint work with Prof. Keti Tenenblat (UnB)
hiurifellipe@gmail.com

Goiás

Abstract

It is shown that a hypersurface of a space form is the initial data for a solution to the mean curvature flow by paralle hypersurfaces if, and only if, it is isoparametric. By solving an ordinary differential equation, explicit solutions are given for all isoparametric hypersurfaces of space forms. In particular, for such hypersurfaces of the sphere, the exact collapsing time into a focal submanifold is given in terms of its dimension, the principal curvatures and their multiplicities.

1. Basic Concepts and Notation

In what follows, $\mathbb{M}^{n+1}(\bar{\kappa})$ will be a space form of constant sectional curvature $\bar{\kappa} \in\{-1,0,1\}$, i. e., \mathbb{R}^{n+1} if $\bar{\kappa}=0$, $\mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$ if $\bar{\kappa}=1$ and $\mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$ if $\bar{\kappa}=-1$ where \mathbb{L}^{n+2} is the Lorentzian space. We consider F $M^{n} \rightarrow \mathbb{M}^{n+1}(\bar{\kappa})$ a hypersurface immersed in the space form $\mathbb{M}^{n+1}(\bar{\kappa})$, with the induced metric $g(v, w)=\langle d F(v), d F(w)\rangle$, for all vector fields v, w tangent to M. If $F(M)$ is oriented and N is a unit normal vector field, the second fundamental form of $F(M)$ is given by $h(v, w)=-\langle d N(v), d F(w)\rangle$. Let e_{1}, \ldots, e_{n} be orthonormal vector fields which are principal directions and let $\kappa_{1}, \ldots, \kappa_{n}$, be the principal curvatures of $F(M)$ i.e., $g\left(e_{\imath}, e_{\jmath}\right)=\delta_{\imath \jmath}$ and $h\left(e_{\imath}, e_{\jmath}\right)=\kappa_{\imath} \delta_{\imath \jmath}$, for $1 \leq \imath, \jmath \leq n$. We will denote the mean curvature by $H=\sum_{l=1}^{n} \kappa_{l}$. When the principal curvatures κ_{\imath} of $F(M)$ do not depend on x for all $\imath=1, \ldots, n$, we say that $F(M)$ is an isoparametric hypersurface. From now on, we consider connected hyper surfaces

Let $F: M^{n} \rightarrow \mathbb{M}^{n+1}(\bar{\kappa})$ be an oriented hypersurface with a unit normal vector field N. A one parameter family of hy persurfaces $\widehat{F}: M^{n} \times I \rightarrow \mathbb{M}^{n+1}(\bar{\kappa}), I \subset \mathbb{R}$, is a solution to the mean curvature flow (MCF) with initial condition F, if

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \widehat{F}(x, t)=\widehat{H}(x, t) \widehat{N}(x, t), \tag{1}\\
\widehat{F}(x, 0)=F(x),
\end{array}\right.
$$

where $\widehat{H}^{t}()=.\widehat{H}(., t)=\sum_{i=1}^{n} \widehat{k}_{i}^{t}$ is the mean curvature and $\widehat{N}^{t}()=.\widehat{N}(., t)$ is a unit normal vector field of $\widehat{F}^{t}(M)$. When F is a minimal hypersurface i.e. $H=0$, then the family $\widehat{F}(t, x)=F(x)$ gives a trivial solution to the MCF.

In this paper, we consider a special type of solution to the MCF by imposing that the hypersurfaces \widehat{F}^{t} to be parallel. We first introduce the following notation
$c(\xi)=\left\{\begin{array}{ll}1, & \text { if } \bar{\kappa}=0, \\ \cos (\xi), & \text { if } \bar{\kappa}=1, \\ \cosh (\xi), & \text { if } \bar{\kappa}=-1,\end{array}\right.$ and $s(\xi)= \begin{cases}\xi, & \text { if } \bar{\kappa}=0 \\ \sin (\xi), & \text { if } \bar{\kappa}=1, \\ \sinh (\xi), & \text { if } \bar{\kappa}=-1,\end{cases}$
$=-1$,
Definition 1 Let $\widehat{F}: M^{n} \times I \rightarrow \mathbb{M}^{n+1}(\bar{\kappa})$ be a solution to the mean curvature flow in $\mathbb{M}^{n+1}(\bar{\kappa})$ with initial condition $F: M^{n} \rightarrow$ $\mathbb{M}^{n+1}(\bar{\kappa})$. We say \widehat{F} is a solution to the mean curvature flow by parallel hypersurfaces if there is a function $\xi: I \rightarrow \mathbb{R}$, such that $\xi(0)=0$ and
$\widehat{F}^{t}(x)=c(\xi(t)) F(x)+s(\xi(t)) N(x)$,
for all $t \in I$, where $c: \mathbb{R} \rightarrow \mathbb{R}$ and $s: \mathbb{R} \rightarrow \mathbb{R}$ are the functions defined in (2).

2. Main result

Theorem 1 Let $F: M^{n} \rightarrow \mathbb{M}^{n+1}(\bar{\kappa})$ be a hypersurface in a space form $\mathbb{M}^{n+1}(\bar{\kappa})$. Then $F(M)$ is the initial data of a solution to the MCF by parallel hypersurfaces if, and only if, $F(M)$ is an isoparametric hypersurface.
As a consequence of the proof of this theorem, given in Section 3, one obtains the MCF of the isoparametric hyper surfaces of space forms by solving an ordinary differential equation. Namely, we prove the following
Corollary 1 Let $F: M^{n} \rightarrow \mathbb{M}^{n+1}(\bar{\kappa})$ be an isoparametric hypersurface, with unit normal vector field N and principal curvatures κ_{2}. Then the solution to the MCF with initial data F is given by (3) where s and c are the functions defined in (2) and $\xi(t)$ is the solution of

$$
\xi^{\prime}(t)=\sum_{\imath=1}^{n} \frac{\bar{\kappa} s(\xi(t))+\kappa_{\imath} c(\xi(t))}{c(\xi(t))-\kappa_{\imath} s(\xi(t))},
$$

As an application, of Corollary 1, we obtain explicitly the MCF by parallel hypersurfaces of the isoparametric hyper surfaces of \mathbb{R}^{n+1} and of \mathbb{H}^{n+1} in Propositions 1-3. The MCFs for non minimal hypersurface of \mathbb{S}^{n+1} with g distinc curvatures are given in Propositions 4-8.

We without the result for isoparametric hypersurfaces o the Euclidean space since it is well known.
3. MCF of Isoparametric Hypersurfaces of the Hyperbolic Space

Proposition 1 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$ be the immersion of a horosphere in the hyperbolic space, with unit normal vector field N and all principal curvatures $\kappa= \pm 1$. Then, the solution to the MCF with initial data F is

$$
\begin{equation*}
\widehat{F}^{t}(x)=\cosh (n t) F(x)+\kappa \sinh (n t) N(x) \tag{4}
\end{equation*}
$$

for all $t \in \mathbb{R}$. Moreover, $\widehat{F}^{t}\left(\mathbb{R}^{n}\right)$ is a horosphere for all $t \in \mathbb{R}$. Proposition 2 Let $F: M^{n} \rightarrow \mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$ be the immersion of a totally umbilic hypersurface in the hyperbolic space, with unit normal vector field N and all principal curvatures equal to κ where $\kappa \notin\{0, \pm 1\}$. Then, the solution to the MCF with initial condition $F(M)$ is given by (3) where

$$
\cosh (\xi(t))=\frac{\kappa^{2} e^{-n t}-\sqrt{1-\kappa^{2}+\kappa^{2} e^{-2 n t}}}{\kappa^{2}-1}
$$

and

$$
\sinh \xi(t)=\frac{\kappa e^{-n t}-\kappa \sqrt{1-\kappa^{2}+\kappa^{2} e^{-2 n t}}}{\kappa^{2}-1}
$$

1. If $0<|\kappa|<1$, then \widehat{F}^{t} is defined for $t \in \mathbb{R}$ and it converges to a totally geodesic n-dimensional manifold when $t \rightarrow+\infty$.
2. If $|\kappa|>1$ then \widehat{F}^{t} is defined for $t \in\left(-\infty, t^{*}\right)$, where $t^{*}=\frac{1}{2 n} \ln \left(\frac{\kappa^{2}}{\kappa^{2}-1}\right)$ and it collapses to a point at t^{*}.
Proposition 3 Let $F: \mathbb{S}^{m_{1}} \times \mathbb{H}^{m_{2}} \rightarrow \mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$ be the immersion of a cylinder in the hyperbolic space, with m_{1} principal curvatures equal to $\kappa_{1}>1$ and m_{2} principal curvatures equal to κ_{2}, such that $\kappa_{1} \kappa_{2}=1$. Then the solution to the MCF with initial condition F, is given by (3) where
$\cosh (2 \xi(t))=\frac{a \ell(t)-2 \sqrt{q(t)}}{a^{2}-4}, \quad \sinh (2 \xi(t))=\frac{2 \ell(t)-a \sqrt{q(t)}}{a^{2}-4}$.

$$
q(t)=\ell^{2}(t)-a^{2}+4 ; \quad \ell(t)=(a-b) e^{-2 n t}+b
$$

$$
a=\kappa_{1}+\kappa_{2} \quad \text { and } \quad b=-\frac{m_{1}-m_{2}}{n}\left(\kappa_{1}-\kappa_{2}\right) .
$$

\widehat{F}^{t} is defined for all $t \in\left(-\infty, t^{*}\right)$ where $t^{*}=\frac{1}{2 n} \ln \frac{m_{1} \kappa_{1}^{2}+m_{2}}{m_{1}\left(\kappa^{2}-1\right)}$. and it collapses into an m_{2}-dimensional focal submanifold at t^{*}

Figure 1: MCF of Hyperbolic Cylinder

We will now consider the isoparametric hypersurfaces of the sphere. Munzner [4] showed that the number g of disinct principal curvatures, for an isoparametric hypersurface $M^{n} \subset \mathbb{S}^{n+1}$, is restricted to be $1,2,3,4$ or 6 .
Proposition 4 Let $F: M^{n} \rightarrow \mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$ be the immersion of a totally umbilic hypersurface in \mathbb{S}^{n+1}, with unit normal vector field N and all principal curvatures are equal to $\kappa \neq 0$. Then the solution to the MCF with F as initial data, is given by (3) where

$$
\cos (\xi(t))=\frac{\kappa^{2} e^{n t}+\sqrt{q(t)}}{\kappa^{2}+1}, \quad \sin (\xi(t))=\frac{\kappa e^{n t}-\kappa \sqrt{q(t)}}{\kappa^{2}+1}
$$

and

$$
q(t)=\kappa^{2}+1-\kappa^{2} e^{2 n t} .
$$

\widehat{F}^{t} is defined for all $t \in\left(-\infty, t^{*}\right)$ where $t^{*}=\frac{1}{2 n} \ln \left(\frac{\kappa^{2}+1}{\kappa^{2}}\right)$ and it collapses to a point at t^{*}
Proposition 5 Let $F: \mathbb{S}_{r_{1}}^{l} \times \mathbb{S}_{r_{2}}^{n-l} \rightarrow \mathbb{S}^{n+1} \subset R^{n+2}$ be an isoparametric hypersurface in \mathbb{S}^{n+1}, with two distinct principal curvatures κ_{1} and κ_{2} with multiplicities l and $n-l$ respectively. Then $\kappa_{1} \kappa_{2}=-1$ and assuming the immersion is not minimal, we may consider $\kappa_{1}>\sqrt{(n-l) / l}>1$. The solution to the MCF with initial data F, is \widehat{F}^{t} given by (3) where

$$
\begin{aligned}
\cos (2 \xi(t)) & =\frac{a q(t)+2 \sqrt{a^{2}+4-q^{2}(t)}}{a^{2}+4}, \\
\sin (2 \xi(t)) & =\frac{2 q(t)-a \sqrt{a^{2}+4-q^{2}(t)}}{a^{2}+4}
\end{aligned}
$$

and

$$
a=\kappa_{1}+\kappa_{2}, b=-\frac{n-2 l}{n}\left(\kappa_{1}-\kappa_{2}\right), q(t)=(a+b) e^{2 n t}-b
$$

\widehat{F}^{t} is defined for all $t \in\left[0, t^{*}\right)$, where $t^{*}=\frac{1}{2 n} \ln \left(\frac{l\left(\kappa_{1}^{2}+1\right)}{l\left(\kappa_{1}^{2}+1\right)-n}\right)$ and it collapses into an $(n-l)$-dimensional focal submanifold of F at t^{*}.

Figure 2: MCF of Hopf Torus

Proposition 6 Let $F: M^{n} \rightarrow \mathbb{S}^{n+1} \subset R^{n+2}$ be a non minimal isoparametric hypersurface in \mathbb{S}^{n+1}, with unit nor mal vector field N and three distinct principal curvatures $\kappa_{1}, \kappa_{2}, \kappa_{3}$. Then all the principal curvatures have the same multiplicity m, where $m=1,2$, 4 or 8 , i.e. $n=3 m$. The solution to the MCF with initial data F, is \widehat{F}^{t} given by (3) where
$\cos (3 \xi(t))=\frac{a^{2} e^{9 m t}+3 \sqrt{q(t)}}{a^{2}+9}, \sin (3 \xi(t))=\frac{a\left(3 e^{9 m t}-\sqrt{q(t)}\right)}{a^{2}+9}$ $a=\kappa_{1}+\kappa_{2}+\kappa_{3}=\frac{3 \kappa_{1}\left(\kappa_{1}^{2}-3\right)}{3 \kappa_{1}^{2}-1}, q(t)=a^{2}+9-a^{2} e^{18 m t}$.
\widehat{F}^{t} is defined for all $t \in\left[0, t^{*}\right)$, where $t^{*}=\frac{1}{18 m} \ln \left(1+\frac{9}{a^{2}}\right)$ and it collapses into a $2 m$-dimensional focal submanifold of $F(M)$ at t^{*}.
Proposition 7 Let $F: M^{n} \rightarrow \mathbb{S}^{n+1} \subset R^{n+2}$ be a non min imal isoparametric hypersurface of \mathbb{S}^{n+1}, with unit normal vector field N and four distinct principal curvatures κ_{j}, with multiplicities $m_{j}, j=1,2,3,4$. Then we may consider
$\kappa_{1}>1, \quad \kappa_{2}=\frac{\kappa_{1}-1}{\kappa_{1}+1}, \quad \kappa_{3}=\frac{-1}{\kappa_{1}}, \quad \kappa_{4}=\frac{-\left(\kappa_{1}+1\right)}{\kappa_{1}-1}$,
where the multiplicities m_{j} satisfy $m_{1}=m_{3}$ and $m_{2}=m_{4}$, $n=2\left(m_{1}+m_{2}\right)$. The solution to the MCF with initial data F is \widehat{F}^{t} given by (3) where

$$
\begin{gathered}
\cos (4 \xi(t))=\frac{a q(t)+4 \sqrt{a^{2}+16-q^{2}(t)}}{a^{2}+16}, \\
\sin (4 \xi(t))=\frac{4 q(t)-a \sqrt{a^{2}+16-q^{2}(t)}}{a^{2}+16}, \\
a=\sum_{j=1}^{4} \kappa_{j}=\frac{\kappa_{1}^{4}-6 \kappa_{1}^{2}+1}{\kappa 1\left(\kappa^{2}-1\right)}, b=\frac{2\left(m_{1}-m_{2}\right)\left(\kappa_{1}^{2}+1\right)^{2}}{n \kappa_{1}\left(\kappa_{1}^{2}-1\right)}
\end{gathered}
$$

$$
\text { and } \quad q(t)=(a+b) e^{4 n t}-b .
$$

Moreover, \widehat{F}^{t} is defined for all $t \in\left[0, t^{*}\right)$, where $t^{*}=$ $\frac{1}{4 n} \ln \left(\frac{b+\sqrt{a^{2}+16}}{a+b}\right)$ and it collapses into $\left(m_{1}+2 m_{2}\right)$ dimensional focal submanifold of $F(M)$.
Proposition 8 Let $F: M^{n} \rightarrow \mathbb{S}^{n+1} \subset R^{n+2}$ be a non minimal isoparametric hypersurface in \mathbb{S}^{n+1}, with unit normal vector field N and six distinct principal curvatures κ_{j}, $j=1, \ldots, 6$. Then $n=6 m$, where $m=1,2$, and we may consider $\kappa_{1}>\sqrt{3}$. The solution to the MCF with initial data F, is \widehat{F}^{t} given by (3) where
$\cos (6 \xi(t))=\frac{a^{2} e^{36 m t}+6 \sqrt{q(t)}}{a^{2}+36}, \sin (6 \xi(t))=\frac{a\left(6 e^{36 m t}-\sqrt{q(t)}\right)}{a^{2}+36}$ where

$$
a=\sum_{j=1}^{6} \kappa_{j} \text { and } q(t)=a^{2}+36-a^{2} e^{72 m t} .
$$

which is defined for all $t \in\left[0, t^{*}\right)$, where $t^{*}=$ $\frac{1}{72 m} \ln \left(1+\frac{36}{a^{2}}\right)$. Moreover, the solution collapses into a $5 m$-dimensional focal submanifold of $F(M)$ at t^{*}.

References

[1] Abresch, U., Isoparametric hypersurfaces with four and six distinct principal curvatures . Math. Ann. 264 (1983), 283-302.
[2] Colding, T. H.; Minicozzi II, W. P.; Pedersen, E. K., Mean curvature flow. Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 297-333. MR 3312634
[3] Liu, X.; Terng, C. -L., The mean curvature flow for isoparametric submanifolds, Duke Math. J., 147 (2009), no. 1, 157-179
[4] Münzner, H. F. Isoparametricsche Hyperflächen in Sphären, I and II, Math. Ann. 251 (1980), 57-71 and 256 (1981), 215-232.
[5] Tenenblat, K.; __, The mean curvature flow by par allel hypersurfaces, 2017. arXiv:1710.02122
[6] Wang, X.-J. Convex solutions to the mean curvature flow. Ann. Math. (2) 173 (2011), no 3, 1185-1239. MR 2800714

SOLUTIONS FOR EQUATIONS INVOLVING THE INFINITY-LAPLACIAN

Antonio C. Faleiros ${ }^{1}$, Igor L. Freire ${ }^{1}$, Márcio F. da Silva
1: CMCC-UFABC, Av.dos Estados, 5001. Bairro Santa Terezinha. Santo André - SP - Brasil. CEP 09210-580 antonio.faleiros@ufabc.edu.br, igor.freire@ufabc.edu.br, marcio.silva@ufabc.edu.br

0. ABSTRACT

In this work we study a parabolic equation involving the infinity-Laplacian fom the point of view of Lie symmetries. We consider its radial form and by using the method of separation of variables, we derive another one involving the Aronsson's nonlinear operator. All Lie point symmetries of these equa tions are found and by using the invariance group we are able to find exact solutions for the considered equations, some of them expressed in terms of the hypergeometric function.

INTRODUCTION/MOTIVATION

Let $D \subset \mathbb{R}^{2}$ be a convex region and $u \in C^{1}(D) \cap C^{0}(\bar{D})$. For any $n \in \mathbb{N}$, let

$$
\begin{equation*}
I_{n}(u):=\left(\int_{D}|\nabla u|^{2 n}\right)^{\frac{1}{2 n}}, \tag{1}
\end{equation*}
$$

where $\nabla u:=\left(u_{x}, u_{y}\right)$. By supposing that u is a solution of the problem $\min I_{n}(u)$ then u satisfies the equation
$|\nabla u|^{2(n-2)}\left[\frac{1}{2(n-1)}|\nabla u|^{2}\left(u_{x x}+u_{y y}\right)+u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}^{2} u_{y y}\right]=0$.
If $\nabla u \neq 0$ and n tends to infinity, equation (2) becomes

$$
\begin{equation*}
u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}^{2} u_{y y}=0, \tag{3}
\end{equation*}
$$

which was first derived by Aronsson [2]. Since then, such equation has been subject of intense research, see [3], [4], [11], [12], [15], [16] and references therein.

Some important results of [3]: $A(\Phi)=\Phi_{x}^{2} \Phi_{x x}+2 \Phi_{x} \Phi_{y} \Phi_{x y}+\Phi_{y}^{2} \Phi_{y y}=$ $\frac{1}{2} \operatorname{grad}\left\{(\operatorname{grad} \Phi)^{2}\right\} \cdot \operatorname{grad} \Phi$. The condition $A(\Phi)=0$ means that $|\operatorname{grad} \Phi|$ is constant along every trajectory of the vector field grad Φ (called stream lines). If u is a solution of $A(u)=0$ the curvature of a streamline is $\pm \mid$ grad $(\mid$ grad $u \mid) \mid$
$|\operatorname{grad} u|$
(Lemma 1.) Let $u(x, y)$ satisfy $A(u)=0$ in a domain D and let grad $u \neq 0$ in D. If C is a streamline of u in D, then or the curvature of is $\neq 0$ at all points of C or C is a straight line. Consequently, the streamlines of u are convex curves and straight lines.
(Theorem 3.) Let $\Phi(x, y)$ satisfy $A(\Phi)=0$, and grad $\Phi \neq 0$. Consider the surface $S: z=\Phi(x, y)$ and the projections on this surface of the streamlines of $\Phi(x, y)$. These image curves are both asymptotic curves on S and helices with a common axis. namely the z-axis.

Equation (3) is known as infinity Laplacian equation, Aronsson's Euler equa ion and Aronsson equation. Its left side is commonly written as $\Delta_{\infty} u=$ $u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}^{2} u_{y y}$ and the operator Δ_{∞} is called infinity-Laplacian Some authors have been considering a parabolic equation associated with the infinity-Laplacian. Namely, they have been studying n-dimensional versions of the equation

$$
\begin{equation*}
u_{t}=u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}^{2} u_{y y} \tag{4}
\end{equation*}
$$

see [14] and [20]. In the paper [12] the Lie point symmetries of (3) were studied. In addition, some group invariant solutions to (3) were also obtained. Thus, inspired by the previous work on symmetry analysis of the Eq. (3), in his work we apply the same approach to (4) in order to

- find the Lie point symmetries of (4);
- construct the symmetry Lie algebra associated to the vector fields which generate the Lie point symmetries of (4);
- construct the adjoint representation of the Lie alvebra associated to Ed (4);

2. THEORY

et $x \in M \subseteq \mathbb{R}^{n}, M$ open, $u: M \rightarrow \mathbb{R}$. A Lie point symmetry generator of a PDE $F=F\left(x, u, \partial u, \cdots, \partial^{m} u\right)=0$ of order m is a vector field

$$
X=\xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\eta(x, u) \frac{\partial}{\partial u}
$$

on $M \times \mathbb{R}$ such that $X^{(m)} F=0$ when $F=0$ and
$X^{(m)}:=X+\eta_{i}^{(1)}(x, u, \partial u) \frac{\partial}{\partial u_{i}}+\cdots+\eta_{i_{1} \cdots i_{m}}^{(m)}\left(x, u, \partial u, \cdots, \partial^{m} u\right) \frac{\partial}{\partial u_{i_{1} \cdots i_{m}}}$
$\eta_{i}^{(1)}:=D_{i} \eta-\left(D_{i} \xi^{j}\right) u_{j}$
$\eta_{i_{1} \cdots i_{j}}^{(j)}:=D_{i_{j} j}^{(j-1)} i_{i, \cdots-1}^{(j-1)}-\left(D_{i_{j}} \xi^{l}\right) u_{i_{1} \cdots i_{j-1} l}, 2 \leq j \leq m$,
If $X \in \mathfrak{g}$ (symmetry Lie algebra associated to the vector fields which generate the Lie point symmetries of the equations we are interested) then generates a one-parameter subgroup $\{\exp \epsilon X\}$, whose corresponding vecto field on \mathfrak{g} is ad $X=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} A d(\exp (\epsilon X)) Y, Y \in \mathfrak{g}$, where
$\operatorname{Ad}(\exp \epsilon X)) Y=Y-\epsilon[X, Y]+\epsilon^{2}[X,[X, Y]]+$

. RESULTS

In this sense, we shall proceed in the following way: Firstly we obtain the Lie point symmetries of (4), which are given by the following

Theorem 1: The Lie point symmetries of Eq. (4) are generated by th vector fields

$$
X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=\frac{\partial}{\partial y}, \quad X_{3}=\frac{\partial}{\partial t}, \quad X_{4}=\frac{\partial}{\partial u}, \quad X_{5}=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}
$$

$$
X_{6}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+2 u \frac{\partial}{\partial u}, \quad X_{7}=2 t \frac{\partial}{\partial t}-u \frac{\partial}{\partial u} .
$$

Proof
$X=\xi^{1}(x, y, t, u) \frac{\partial}{\partial x}+\xi^{2}(x, y, t, u) \frac{\partial}{\partial y}+\xi^{3}(x, y, t, u) \frac{\partial}{\partial t}+\eta(x, y, t, u) \frac{\partial}{\partial u}$
$\xi^{3}{ }_{x x}=0, \eta_{x x}=0, \xi^{3}{ }_{x y}=0, \eta_{x y}=0, \xi^{3}{ }_{x u}=0, \xi^{3}{ }_{x}=0, \quad \eta_{x}=0$,
$\xi^{3}{ }_{y y}=0, \eta_{y y}=0, \xi^{3}{ }_{y u}=0, \xi^{3}{ }_{y}=0, \eta_{y}=0, \xi^{2}=0, \xi^{1}{ }_{t}=0, \eta_{t}=0$,
$\xi^{3}{ }_{u u}=0, \xi^{2}{ }_{u u}=0, \xi^{1}{ }_{u u}=0, \xi^{3}{ }_{u}=0, \xi^{2}{ }_{u}=0, \xi^{1}{ }_{u}=0, \xi^{1}{ }_{y u}+\xi^{2}{ }_{x u}=0$, $\xi^{1}{ }_{y}+\xi^{2}{ }_{x}=0,-2 \eta_{x u}+\xi^{1}{ }_{x x}=0,-2 \eta_{y u}+\xi^{2}{ }_{y y}=0$,
$-\eta_{u u}+2 \xi^{1}{ }_{x u}=0,-\eta_{u u}+2 \xi^{2}{ }_{y u}=0,-\eta_{u u}+\xi^{2}{ }_{y u}+\xi^{1}{ }_{x u}=0$,
$-2 \eta_{y u}+2 \xi^{1}{ }_{x y}+\xi^{2}{ }_{x x}=0, \xi^{1}{ }_{y y}-2 \eta_{x u}+2 \xi^{2}{ }_{x y}=0,-2 \eta_{u}-\xi^{3}{ }_{t}+4 \xi^{1}{ }_{x}=0$, $-2 \eta_{u}-\xi^{3}{ }_{t}+4 \xi^{2}{ }_{y}=0,-4 \eta_{u}-2 \xi^{3}{ }_{t}+4\left(\xi^{2}{ }_{y}+\xi^{1}{ }_{x}\right)=0$

So we have the following one parameter groups g_{i} generated by the vector fields X_{i}
$g_{1}:(x, y, t, u) \mapsto(x+\varepsilon, y, t, u), \quad g_{2}:(x, y, t, u) \mapsto(x, y+\varepsilon, t, u)$,
$g_{3}:(x, y, t, u) \mapsto(x, y, t+\varepsilon, u), \quad g_{4}:(x, y, t, u) \mapsto(x, y, t, u+\varepsilon)$,
$g_{5}:(x, y, t, u) \mapsto(x \cos \varepsilon+y \sin \varepsilon,-x \sin \varepsilon+y \cos \varepsilon, t, u)$,
$g_{6}:(x, y, t, u) \mapsto\left(e^{\varepsilon} x, e^{\varepsilon} y, t, e^{2 \varepsilon} u\right), \quad g_{7}:(x, y, t, u) \mapsto\left(x, y, e^{2 \varepsilon} t, e^{-\varepsilon} u\right)$.
Below we determine the symmetry Lie algebra of Eq. (4)

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
X_{1}	0	0	0	0	$-X_{2}$	X_{1}	0
X_{2}	0	0	0	0	X_{1}	X_{2}	0
X_{3}	0	0	0	0	0	0	$2 X_{3}$
X_{4}	0	0	0	0	0	$2 X_{4}$	$-X_{4}$
X_{5}	X_{2}	$-X_{1}$	0	0	0	0	0
X_{6}	$-X_{1}$	$-X_{2}$	0	$-2 X_{4}$	0	0	0
X_{7}	0	0	$-2 X_{3}$	X_{4}	0	0	0

```
u}\mp@subsup{u}{}{(1)}=f(x+\varepsilon,y,t),\quad\mp@subsup{u}{}{(2)}=f(x,y+\varepsilon,t)
    u}\mp@subsup{}{(3)}{=f(x,y,t+\varepsilon),}\mp@subsup{u}{}{(4)}=f(x,y,t)-\varepsilon
    u}\mp@subsup{u}{}{(5)}=f(x\operatorname{cos}\varepsilon+y\operatorname{sin}\varepsilon,-x\operatorname{sin}\varepsilon+y\operatorname{cos}\varepsilon,t)
```

 \(u^{(6)}=e^{-2 \varepsilon} f\left(e^{\varepsilon} x, e^{\varepsilon} y, t\right), u^{(7)}=e^{\varepsilon} f\left(x, y, e^{2 \varepsilon} t\right)\),
 From the generator X_{5} we conclude that the Eq. (4) is invariant under rotations, which allows us to find the radial form of the Eq. (4), that is

$$
u_{t}=u_{r}^{2} u_{r r}
$$

This means that if $u=\phi(r, t)$ is a solution of (5) then

$$
\begin{equation*}
u(x, y, t)=\phi\left(\sqrt{x^{2}+y^{2}}, t\right) \tag{6}
\end{equation*}
$$

is a solution of (4). A natural question is to consider the symmetries of (5). Having this point in mind, our second result can now be announced: Theorem 2: The Lie point symmetries of equation (5) is generated by the vector fields
$R_{1}=\frac{\partial}{\partial t}, R_{2}=\frac{\partial}{\partial r}, R_{3}=\frac{\partial}{\partial u}, R_{4}=r \frac{\partial}{\partial r}+2 u \frac{\partial}{\partial u}, R_{5}=2 t \frac{\partial}{\partial t}-u \frac{\partial}{\partial u} . \quad$. 7)
Our next step is to apply the method of separation of variables to Eq. (4). Then, assume that $u(x, y, t)=T(t) v(x, y)$. By substituting this function into (4), a straightforward calculation shows that the functions v and T satisfy the equations

$$
\begin{gathered}
v_{x}^{2} v_{x x}+2 v_{x} v_{y} v_{x y}+v_{y}^{2} v_{y y}=k v(x, y) ; \\
T^{\prime}(t)=k T(t)^{3},
\end{gathered}
$$

where $k \neq 0$ is a constant. The solution of the last equation is

$$
\begin{equation*}
T(t)= \pm \frac{1}{\sqrt{a-2 k t}}, \tag{9}
\end{equation*}
$$

while our next result is:
Theorem 3: The Lie point symmetries of equation (8) is generated by the vector fields

$$
V_{1}=\frac{\partial}{\partial x}, V_{2}=\frac{\partial}{\partial y}, V_{3}=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, V_{4}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+2 v \frac{\partial}{\partial v} .
$$(10)

4. ACTUAL STATUS OF THE WORK

From the analysis of the symmetry Lie algebra of equations (4), (5) and (9), and the adjoint representation of their Lie algebra, we find a list of simplified generators. For eq. (4) we have
> $X=a_{4} X_{4}+a_{5} X_{5}+\frac{1}{2} X_{6}+X_{7}$,
> $X=a_{5} X_{5}+a_{6} X_{6}+X_{7}$,
> $X=a_{3} X_{3}+a_{5} X_{5}+X_{6}$,
> $X=a_{3} X_{3}+a_{4} X_{4}+X_{5}$,
> $X=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+X_{4}$,
> $X=a_{1} X_{1}+a_{2} X_{2}+X_{3}$,
> $X=a_{1} X_{1}+X_{2}$,
> $X=X_{1}$.

For eq. (5) we have

R	$=a_{3} R_{3}+\frac{1}{2} R_{4}+R_{5}$,		$R=a_{4} R_{4}+R_{5}$,
R	$=a_{1} R_{1}+R_{4}$,	R	$=a_{1} R_{1}+a_{2} R_{2}+R_{3}$,
R	$=a_{1} R_{1}+R_{2}$,	R	$=R_{1}$.

For eq.(9) we have

$$
\begin{array}{ll}
V=a_{2} V_{2}+a_{3} V_{3}+V_{4}, & V=V_{3}, \\
V=a_{1} V_{1}+a_{2} V_{2}+V_{3}, & V=a_{1} V_{1}+V_{2}, \\
V=V_{1} . &
\end{array}
$$

From some of these symmetry generators, we find the following exact solution of equation (4):
$u(x, y, t)=\frac{c_{1}}{4} \arctan \left(\frac{\sqrt{x^{2}+y^{2}}}{\left.\sqrt{c_{1} \sqrt{t}-\left(x^{2}+y^{2}\right)}\right)+\frac{\sqrt{x^{2}+y^{2}}}{4 \sqrt[4]{t}} \sqrt{c_{1}-\frac{x^{2}+y^{2}}{\sqrt{t}}}+c_{2}, \quad, \quad, \quad \text {, } n \text {. }}\right.$
which is a real valued solution on the region $\left\{(x, y, t) ; x^{2}+y^{2} \leq c_{1} \sqrt{t}, t>0\right\}$, where it is assumed that $c_{1}>0$.

References

[1] Abramowitz, M.. Stegun, I.A. (eds.): Handbook of mathematical functions, 10th ed. National Bureau of Standard, Boulder (1972).
[2] Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551-561 (1967).
[3] Aronsson, G.: On the partial differential equation $u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+$ $u_{y}^{2} u_{y y}=0$. Ark. Mat. 7, 395-425 (1968).
[4] Akagi, G., Juutinen, P., Kajikiya, R.:Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian. Math. Ann. 343, 921-953 (2009).
[5] Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002).
[6] Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Applied Mathematical Sciences, vol. 81. Springer, New York (1989).
[7] Dimas, S., Tsoubelis, D.: SYM: a new symmetry-finding package for Mathematica. In: Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 24-30 October 2004, pp. 64-70 (2004).
[8] Dimas, S., Tsoubelis, D.: A new heuristic algorithm for solving overdetermined systems of PDEs in Mathematica. In: 6th International Conference on Symmetry in Nonlinear Mathematical Physics, Kiev, Ukraine, 20-26 June 2005 (2005).
[9] da Silva, M.F., Freire, I.L.: On the Lie point symmetries of an evolution equation involving the infinity Laplacian. In: Proceedings of CNMAC (2012).

10] da Silva, M.F., Freire, I.L.: Solutions for equations involving the infinity Laplacian. Int. J. Appl. Comput. Math 3, 395-410 (2017).
[11] Evans, L.C., Yu, Y.: Various properties of solutions of the infinityLaplacian equation. Commun. Part. Differ. Equ. 30, 1401-1428 (2005).
[12] Freire, I.L., Faleiros, A.C.: Lie point symmetries and some group invariant solutions of the quasilinear equation involving the infinity Laplacian. Nonlinear Anal. Theory Methods Appl. 74, 3478-3486 (2011).
[13] Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics, Translated from the Russian Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1985)
[14] Juutinen, P., Kawohl, B.: On the evolution governed by the infinity Laplacian. Math. Ann. 335, 819-851 (2006).
[15] Lu, G., Wang, P.: Inhomogeneous infinity Laplace equation. Adv. Math. 217, 1838-1868 (2008)
[16] Lu, G., Wang, P.: A PDE perspective of the normalized infinity Laplacian. Commun. Part. Differ. Equ. 33, 1788-1817 (2008).
[17] Olver, P.J.: Applications of Lie groups to differential equations. GMT, vol. 107. Springer, New York (1986).
[18] Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman \& Hall CRC Press, Boca Raton (2003).
[19] Portilheiro, M., Vázquez, J.L.: A porous equation involving the infinityLaplacian. Viscosity solutions and asymptotic behavior, Commun. Partial Diff. Equ., vol. 37, 753-793, (2012) [See also M. Portilheiro and J. L. Vázquez, A porous equation involving the infinity-Laplacian. Viscosity solutions and asymptotic behavior, arXiv:1007.22842v2.
20] Portilheiro, M., Vázquez, J.L.: Degenerate homogeneous parabolic equations associated with the infinity- Laplacian. Calc. Var. Part. Differ. Equ. 46, 705-724 (2013).

Intrinsic and extrinsic geometry of hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$

João Paulo dos Santos
Departamento de Matemática, Universidade de Brasília

j.p.santos@mat.unb.br

The purpose of this poster is to present relations between intrinsic geometric properties of hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ and their extrinsic geometric structures. Geometric characterizations of conformally flat and radially flat hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ are given by means of their extrinsic geometry. Under suitable conditions on the shape operator, we classify conformally flat hypersurfaces in terms of rotation hypersurfaces. In addition, a close relation between radially flat hypersurfaces and semi-parallel hypersurfaces is established. These results lead to geometric descriptions of hypersurfaces with special intrinsic structures, such as Einstein metrics and Ricci solitons. We consider the geometry of Einstein hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ in order to obtain a complete classification for these hypersurfaces. We classify Ricci solitons $M^{n} \subset \mathbb{S}^{n} \times \mathbb{R}$ and $M^{n} \subset \mathbb{H}^{n} \times \mathbb{R}$ when the potential vector field is the projection on the tangent space of M of the unit vector field tangent to the second

1 Introduction

A Riemannian manifold is conformally flat if each point has a neighborhood where the metric is conformal to a flat metric, i.e., a metric with zero sectional curvature. The investigation of conformally flat hypersurfaces in Riemannian manifolds, equipped with the induced metric, has been of interest for some time and the relationship between the intrinsic and extrinsic geometry has been considered by taking into account the geometry of the ambient space. When the ambient manifold is also conformally flat, Nishikawa and Maeda [7] have proved that n-dimensional conformally flat hypersurfaces must be quasi-umbilical, i.e., one of the the principal curvatures has multiplicity at least $(n-1)$. In our case, we will see that rotation hypersurfaces are conformally flat. Conversely, conformally flat hypersurfaces, with additional conditions on the shape operator, are given by rotation hypersurfaces (Theorem 1).
On the other hand, radially flat Riemannian manifolds are the manifolds endowed with a smooth vector field X where the sectional curvatures vanish along planes that contain the vector field X. Radially flat Riemannian manifolds constitute an important class of metrics and were considered, for example, in the context of Ricci solitons [10, 9]. In this case, the vector field considered is the potential vector field of the soliton. It turns out that the radially flat condition can be seen, in some sense, as a weakening of the flatness condition and, consequently, more information about such metrics can be obtained. This situation will be seen in our context as a generalization of a result given in [2] for intrinsically flat rotation hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$. Our main result regarding radially flat hypersurfaces is a close relation between the geometry of radially flat hypersurfaces and the geometry of semi-parallel hypersurfaces in such spaces (Theorem 2).
A Riemannian manifold is said to be Einstein if its Ricci tensor is a multiple of the metric. We classify the hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ with an Einstein structure. They are given by either a hypersurface with constant sectional curvature or a Riemannian product $M^{n-1} \times \mathbb{R}$, where $M^{n-1} \subset \mathbb{H}^{n}$ is a totally umbilical, not totally geodesic, hypersurface (Theorem 3).
A natural generalization of Einstein manifolds are the Ricci solitons. A Riemannian manifold (M, g) endowed with a smooth vector field V is a Ricci soliton if

$$
\begin{equation*}
\operatorname{Ric}+\frac{1}{2} \mathcal{L}_{V} g=c g, \tag{1.1}
\end{equation*}
$$

where c is a real constant and $\mathcal{L}_{V} g$ is the Lie derivative of g with respect to V. The vector field V is called potential vector field. The Ricci soliton is called shrinking when $c>0$, steady when $c=0$, and expanding when $c<0$.
As a consequence of Theorem 2, we will see a relation between semi-parallel hypersurfaces and Ricci solitons. We also classify the Ricci solitons as hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ with potential vector field T. In this case, the hypersurface is either an Einstein manifold (in this case, the Ricci soliton will be called trivial) or an open part of a rotation hypersurface (Theorem 4).

2 Statement of the main results

In order to state our results, let us first establish some notation. Let $Q^{n}(\varepsilon)$ be the unit sphere \mathbb{S}^{n}, if $\varepsilon=1$, or the hyperbolic space and \mathbb{H}^{n} if $\varepsilon=-1$ and consider the manifold $Q^{n}(\varepsilon) \times \mathbb{R}$ given by:
with the metric induced by the ambient space, where \mathbb{E}^{n+2} is the $(n+2)$-dimensional Euclidean space and \mathbb{L}^{n+2} is the $(n+2)$-dimensional Lorentzian space with the canonical metric $d s^{2}=$ $-d x_{1}^{2}+d x_{2}^{2}+\ldots+d x_{n+2}^{2}$
Let M^{n} be a hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$ with unit normal N and let $\partial_{x_{n+2}}$ be the coordinate vector field of the second factor \mathbb{R}. The orthogonal projection of $\partial_{x_{n+2}}$ onto the tangent space of M^{n} will be denoted by T. Also, let θ be the angle function between N and $\partial_{x_{n+2}}$. Then we have the following decomposition

$\partial_{x_{n+2}}=T+\cos \theta N$

Definition 1 ([2]). Consider a three-dimensional subspace P^{3} of \mathbb{E}^{n+2} resp. \mathbb{L}^{n+2}, containing the x_{n+2}-axis. Then $\left(Q(\varepsilon)^{n} \times \mathbb{R}\right) \cap P^{3}=Q^{1}(\varepsilon) \times \mathbb{R}$. Let P^{2} be a two-dimensional subspace of P^{3}, also through the x_{n+2}-axis. Denote by I the group of isometries of \mathbb{E}^{n+2}, resp. \mathbb{L}^{n+2}, which leave $Q(\varepsilon)^{n} \times \mathbb{R}$ globally invariant and which leave P^{2} pointwise fixed. Finally, let α be a curve in $Q(\varepsilon)^{1} \times \mathbb{R}$ which does not intersect P^{2}. The rotation hypersurface M^{n} in $Q(\varepsilon)^{n} \times \mathbb{R}$ with profile curve α and axis P^{2} is defined as the I-orbit of α.

2.1 Conformally flat hypersurfaces

Theorem 1. Let $M^{n}, n>3$, be a hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$. If M^{n} is a rotation hypersurface, then M^{n} is conformally flat. Conversely, if M^{n} is a conformally flat hypersurface, then either M^{n} is a totally umbilical hypersurface or its shape operator has two distinct eigenvalues of multiplicity $n-1$ and 1. In this case, M^{n} is locally congruent to a rotation hypersurface when one of following cases occurs:

i) M^{n} is a totally umbilical hypersurface, which is not totally geodesic;
 ii) the shape operator of M^{n} has two distinct eigenvalues λ and μ, of multiplicity 1 and $n-1$,

 respectively, and the vector field T is a principal direction.Remark 1. The totally geodesic hypersurfaces in $Q^{n}(\varepsilon) \times \mathbb{R}$ are completely classified. They are given as an open part of $N^{n-1}(\varepsilon) \times \mathbb{R}$. with $N^{n-1}(\varepsilon)$ a totally geodesic hypersurface of $Q^{n}(\varepsilon)$, or an open part of $Q^{n}(\varepsilon) \times\left\{t_{0}\right\}$, for $t_{0} \in \mathbb{R}$ (see these results in [12] and [1]). In this case, the totally geodesic hypersurface will be a rotation hypersurface only when $M^{n}=Q^{n-1}(\varepsilon) \times \mathbb{R}$.

2.2 Radially flat hypersurfaces

A hypersurface M^{n} in $Q^{n}(\varepsilon) \times \mathbb{R}$ will be called radially flat if the sectional curvatures along planes containing the vector field T vanish, i.e., $K_{M}(T, X)=0$, for any vector field X. In addition, a hypersurface is said to be semi-parallel if the second fundamental form h and the curvature tensor R satisfy $h(R(X, Y) Z, W)+h(R(X, Y) W, Z)=0$, for every X, Y, Z, W arbitrary vector fields tangent to M^{n}. Our result will provide an important intrinsic characterization for such hypersurfaces that were classified in [12] and [1]:
Theorem 2. Let $M^{n}, n>3$, be a hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$. If M^{n} is radially flat and T is a prin cipal direction, for a principal curvature $\lambda \neq 0$, then M^{n} is a semi-parallel, rotation hypersurface Conversely, if M^{n} is a semi-parallel, not totally umbilical hypersurface, then M^{n} is radially flat.
Remark 2 . When M^{n} is radially flat and T is a principal direction, with principal curvature $\lambda=0$, it follows by Gauss equation that $\cos \theta=0$ and therefore $M^{n}=\bar{M}^{n-1} \times \mathbb{R}$, where \bar{M}^{n-1} is a hypersurface of $Q^{n}(\varepsilon)$. It is no longer true, in general, that M^{n} in this case is semi-parallel. In fact, when M^{n} takes this form, it will be semi-parallel if, and only if, $\bar{M}^{n-1} \subset Q^{n}(\varepsilon)$ is semi-parallel (see [12, Theorem 5] and [1, Theorem 4.2]).
On the other hand, when M^{n} is a semi-parallel, totally umbilical hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$, it does not follow directly that M^{n} is radially flat. In fact, M^{n} will be radially flat when:
a) M^{n} is an open part of the the totally geodesic $\mathbb{S}^{n-1} \times \mathbb{R}$. In fact, we must have the shape operator $S \equiv 0$ and $\cos \theta \equiv 0$
b) M^{n} is a hypersurface in $\mathbb{H}^{n} \times \mathbb{R}$ with $\lambda^{2}=\cos ^{2} \theta$. Particularly, if $\lambda \equiv 0$, then M^{n} is is an open part of a totally geodesic $\mathbb{M}^{n-1} \times \mathbb{R}$, where $\mathbb{M}^{n-1} \subset \mathbb{H}^{n}$ is a totally geodesic hypersurface.
Let (M, g) a Ricci soltion with potential vector field V. If V is the gradient of a smooth function f, (M, g) is called gradient Ricci soliton and the function f is called potential function. Let us observe that the vector field T is actually a gradient vector field. In fact, if we express a point $p \in M^{n}$ as $p=(\varphi, h) \in Q^{n}(\varepsilon) \times \mathbb{R}$, then T is the gradient of the height function h. A gradient Ricci soliton is rigid if it is isometric to a quotient $N \times_{\Gamma} \mathbb{R}^{k}$ where N is an Einstein manifold, $f=\frac{c}{2}|x|^{2}$ on the Euclidean factor and Γ acts freely on N and by orthogonal transformations on $\mathbb{R}^{k}([9,10])$. In [10, Theorem 1.2], Petersen and Wylie proved that a gradient Ricci soliton Ric + Hess $_{f}=c g$ is rigid if, and only if, it has constant scalar curvature and the sectional curvatures $K(X, \nabla f)=0$, for any vector field. As a consequence of Theorem 2, we obtain when a hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$ is a rigid gradient Ricci soliton:
Corollary 1. Let $M^{n}, n>3$, be a Ricci soliton in $Q^{n}(\varepsilon) \times \mathbb{R}$ with potential vector field T and constant scalar curvature. If M^{n} is a rigid gradient Ricci soliton, and T is a principal direction for a principal curvature $\lambda \neq 0$, then M^{n} is a semi-parallel hypersurface. Conversely, If M^{n} is a semi-parallel, not totally umbilical hypersurface, then M^{n} is a rigid gradient Ricci soliton.

2.3 Einstein hypersurfaces and Ricci solitons

Theorem 3. Let $M^{n}, n>3$, be an Einstein hypersurface in $Q^{n}(\varepsilon) \times \mathbb{R}$. Then M^{n} is either a) a manifold with constant sectional curvature;
b) a product $M^{n-1} \times I$, where $M^{n-1} \subset \mathbb{H}^{n}$ is a totally umbilical, not totally geodesic, hypersurface. In [6], hypersurfaces in $Q^{n}(\varepsilon) \times \mathbb{R}, n \geq 3$, with constant sectional curvature were completely classified. Therefore, the classification given by Theorem 3 is complete.

In what follows, a Ricci soliton will be called trivial if it is reduced to an Einstein manifold.
Theorem 4. Let $M^{n}, n>3$, be a Ricci soliton in $Q^{n}(\varepsilon) \times \mathbb{R}$, with potential vector field T. Then M^{n} is either
a) a trivial Ricci soliton
b) an open part of a rotation hypersurface

Theorem 3 supplies a classification for the first case. In the second case, it follows by Theorem 1 that the hypersurface is conformally flat. Since T is the gradient of the height function h, we have a conformally flat gradient Ricci soliton and the classification of such solitons can be found in [3].

Acknowledgements: The author was supported by FAPDF 0193.001346/2016.

References

[1] G. Calvaruso, D. Kowalczyk and J. Van der Veken, On extrinsically symmetric hypersurfaces of $\mathbb{H}^{n} \times \mathbb{R}$, Bull. Aust. Math. Soc. 82 (2010), 390-400.
[2] F. Dillen, J. Fastenakels and J. Van der Veken, Rotation hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, Note Mat. 29 (2009), n. 1, 41-54.
[3] Fernández-López, M. and García-Río, E., A note on locally conformally flat gradient Ricci soli tons. Geometriae Dedicata 168.1 (2014): 1-7.
[4] Fialkow, A., Hypersurfaces of spaces of constant curvature, Ann. Math., 39 (1938), 762-785.
[5] B. Leandro, R. Pina, J. P. dos Santos, Einstein metrics and Ricci solitons on hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, in preparation.
[6] F. Manfio and R. Tojeiro, Hypersurfaces with constant sectional curvature of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$. Illinois J. Math. 55 (2011), no. 1, 397-415 (2012).
[7] S. Nishikawa and Y. Maeda, Conformally flat hypersurfaces in a conformally flat Riemannian manifold, Tohoku Math. Journ. 26(1974), 159-168.
[8] R. Novais and J. P. dos Santos, Intrinsic and extrinsic geometry of hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$. J. Geom. 108 (2017), no. 3, 1115-1127.
[9] P. Petersen and W. Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), n. 6, 2085-2092.
[10] P. Petersen and W. Wylie Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), n. 2 329-345.
[11] R. Tojeiro, On a class of hypersurfaces in $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, Bull. Braz. Math. Soc. (N.S.) 41 (2010), n. 2, 199-209.
[12] J. Van der Veken and L. Vrancken, Parallel and semi-parallel hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$, Bull Braz Math Soc, New Series 39(3), 355-370.

A CHARACTERIZATION OF PSEUDO-PARALLEL SURFACES

Marcos Paulo Tassi ${ }^{1}$, Guillermo Antonio Lobos ${ }^{2}$, Alvaro Julio Yucra Hancco ${ }^{3}$
 ${ }^{1}$ Ph.D. student PPGM-UFSCar - e-mail:mtassi@dm.ufscar.br; ${ }^{2}$ Federal University of São Carlos - e-mail: lobos@dm.ufscar.br; ${ }^{3}$ Federal University of Tocantins - e-mail: alvaroyucra@uft.edu.br ICM2018 Modern Trends in Differential Geometry July 23-27, 2018, Universidade de São Paulo

Abstract

In this work we give a characterization of pseudo-parallel surfaces in $\mathbb{S}_{c}^{n} \times \mathbb{R}$ and $\mathbb{H}_{c}^{n} \times \mathbb{R}$, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when $n=3$, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when $n \geq 4$ we give examples of pseudo-parallel surfaces with non vanishing normal curvature.

Preliminaries

We use \mathbb{Q}_{c}^{n} with $c \neq 0$ to refer the sphere n-space \mathbb{S}_{c}^{n} or the hyperbolic n-space \mathbb{H}_{c}^{n}.
An isometric immersion $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ is said to be:
(i) totally geodesic if $\alpha=0$;
(ii) parallel if $\left(\nabla_{x} \alpha\right)=0$;
(iii) semi-parallel if $\tilde{R}(X, Y) \cdot \alpha=0$;
(iv) pseudo-parallel if $\tilde{R}(X, Y) \cdot \alpha=\Phi X \wedge Y \cdot \alpha$,
for some smooth function Φ in M^{m} and any vector fields X, Y in M^{m}. Here, α denotes the second fundamental form of f and $\tilde{R}=R \oplus R^{\perp}$ denotes the curvature tensor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$. The concept of pseudo-parallel immersions was first introduced by Asperti-Lobos-Mercuri in [1] as a generalization of semi-parallel immersions. Also in [1], authors investigated pseudo-parallel surfaces in space forms. They obtained the following result:

Theorem (Asperti-Lobos-Mercuri [1])

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{4}$ be a surface with $R^{\perp} \neq 0$. Then f is pseudo-parallel if and only if f is superminimal, that is, f is a minimal immersion and is λ-isotropic.

Also, they classified such surfaces of codimension 3 and codimension 4 with constant pseudo-parallelism function.
We recall that an isometric immersion $f: M^{n} \rightarrow \tilde{M}^{m}$ is said to be λ-isotropic if $\left\|\alpha^{f}(X, X)\right\|=\lambda(p), \quad \forall X \in T_{p} M, \quad \forall p \in M^{n}$ with $\|X\|=1$.
On the other hand, M. Sakaki studied surfaces in $\mathbb{S}^{3} \times \mathbb{R}$ and $\mathbb{H}^{3} \times \mathbb{R}$, showing in [4] the following theorem:

Theorem (Sakaki [4])

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{3} \times \mathbb{R}$ a minimal surface with $c \neq 0$. If f is λ-isotropic at any point, then f is a totally geodesic immersion.

By the Fundamental Equations and pseudo-parallelism condition we get the relations:

$$
\begin{align*}
R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{11} & =2(\Phi-K) \alpha_{12} \tag{1}\\
R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{12} & =(K-\Phi)\left(\alpha_{11}-\alpha_{22}\right) \tag{2}\\
R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{22} & =2(K-\Phi) \alpha_{12} \tag{3}\\
K & =c\left(1-\|T\|^{2}\right)+\left\langle\alpha_{11}, \alpha_{22}\right\rangle-\left\|\alpha_{12}\right\|^{2} \tag{4}
\end{align*}
$$

where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal frame of $M^{2}, \alpha_{i j}=\alpha\left(e_{i}, e_{j}\right), K$ is the Gaussian curvature of M^{2} and is the tangent part of $\frac{\partial}{\partial t}$, the canonical unit vector field tangent to the second factor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$.

Proposition 1

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a surface with flat normal bundle. Then f is pseudo-parallel immersion.

Proof

Since f has flat normal bundle, by equations (1) to (3) we conclude that f is ϕ-pseudoparallel by taking $\phi=K$, where K is the Gaussian curvature of M^{2}.

We have two propositions that is useful to construct examples of pseudo-parallel surfaces.

Proposition 2

Let $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n}$ be an isometric immersion and let $j: \mathbb{Q}_{c}^{n} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a totally geodesic immersion. If f is ϕ-pseudo-parallel, then $j \circ f$ is ϕ-pseudo-parallel.

Proposition 3

Let $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be an isometric immersion and let $j: \mathbb{Q}_{c}^{n} \times \mathbb{R} \rightarrow \mathbb{Q}_{c}^{n+1} \times \mathbb{R}$ be a totally geodesic immersion. If f is ϕ-pseudo-parallel, then $j \circ f$ is ϕ-pseudo-parallel.

The Result

Theorem A
Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a pseudo-parallel surface which does not have flat normal bundle on any open subset of M^{2}. Then $n \geq 4, f$ is λ-isotropic and

$$
\begin{align*}
& K>\phi \tag{5}\\
& \lambda^{2}=4 K-3 \phi+c\left(\|T\|^{2}-1\right)>0 \tag{6}\\
& \|H\|^{2}=3 K-2 \phi+c\left(\|T\|^{2}-1\right) \geq 0 \tag{7}
\end{align*}
$$

where K is the Gaussian curvature, λ is a smooth real-valued function on M^{2}, H is the mean curvature vector field of f and T is the tangent part $\frac{\partial}{\partial t}$, the canonic unit vector field tangent to the second factor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$.
Conversely, if f is λ-isotropic then f is pseudo-parallel.

Remark

Theorem A extends for $\mathbb{Q}_{c}^{n} \times \mathbb{R}$ a similar result of pseudo-paralell surfaces into space forms given by Asperti-Lobos-Mercuri in [1].

Some examples

For the parametrizations $f_{i}: \mathbb{R}^{2} \rightarrow \mathbb{Q}_{c}^{3} \times \mathbb{R}$ below, we consider $0<d<1, k>0, a \neq 0$ and $b \in \mathbb{R}$. The first example is a semi-parallel surface in $\mathbb{S}_{c}^{3} \times \mathbb{R}$ which is not parallel. The second and third are pseudo-parallel surfaces in $\mathbb{S}_{c}^{3} \times \mathbb{R}$ and $\mathbb{H}_{c}^{3} \times \mathbb{R}$, respectively, and both are not semi-parallel. In all the cases $0<\|T\|<1$, that is, f is not just an inclusion of a pseudo-parallel surface in \mathbb{Q}_{c}^{3} into $\mathbb{Q}_{c}^{3} \times \mathbb{R}$.

$$
\begin{aligned}
& f_{1}(u, v)=\frac{1}{\sqrt{c}}\left(\sqrt{1-d^{2}} \cos \theta(u), \sqrt{1-d^{2}} \sin \theta(u), d \cos v, d \sin v, k v\right) \\
& f_{2}(u, v)=\frac{1}{\sqrt{c}}\left(d \cos u, d \sin u \cos v, d \sin u \sin v, \sqrt{1-d^{2}}, a u+b\right) \\
& f_{3}(u, v)=\frac{1}{\sqrt{-c}}\left(d \cosh u, d \sinh u \cos v, d \sinh u \sin v, \sqrt{d^{2}-1}, a u+b\right)
\end{aligned}
$$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{S}_{c}^{5}$ be the surface given by (see [2])
$f(x, y)=\frac{2}{\sqrt{6 c}}\left(\cos u \cos v, \cos u \sin v, \frac{\sqrt{2}}{2} \cos (2 u), \sin u \cos v, \sin u \sin v, \frac{\sqrt{2}}{2} \sin (2 u)\right)$, where $u=\sqrt{\frac{c}{2}} x, v=\frac{\sqrt{6 c}}{2} y . f$ is a pseudo-parallel immersion in \mathbb{S}_{c}^{5} with $\phi=\frac{-c}{2}$. Thus, if $i: \mathbb{S}_{c}^{5} \rightarrow \mathbb{S}_{c}^{5} \times \mathbb{R}$ is the totally geodesic inclusion given by $i(x)=(x, 0)$, by Proposition 2 we have that $i \circ f$ is a pseudo-parallel immersion in $\mathbb{S}_{c}^{5} \times \mathbb{R}$ with non vanishing normal curvature.

Question

Are there other examples, up to isometries, of pseudo parallel surfaces in $\mathbb{Q}_{c}^{3} \times \mathbb{R}$ $(c \neq 0)$, which T is not a principal direction?
Is there an isometric immersion of a topological 2-sphere into $\mathbb{S}^{4} \times \mathbb{R}$ that is not included in a slice?

Acknowledgements

The first author is partially supported by CAPES, Brazil. The second author is partially suported by FAPESP, Brasil The third author is partially supported by UFT, Brazil.

References

[1] A.C. Asperti; G.A. Lobos; F. Mercuri, Pseudoparallel hypersurfaces of a space form, Adv. Geom. 2, (2002), 57-71.
[2] K. Sakamoto, Constant isotropic surfaces in 5-dimensional SPACE FORMS, Geometria Dedicata 29 (1989), 293-306.
[3] M. Sakaki, Four classes of surfaces with constant mean CURVATURE IN $\mathbb{S}^{3} \times \mathbb{R}$ and $\mathbb{H}^{3} \times \mathbb{R}$, Results Math. 66 (2014), 343-362.
[4] M. Sakaki, On the curvature ellipse of minimal surfaces in $N^{3}(c) \times \mathbb{R}$, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 165-172.
[5] M.P. Tassi; G.A. Lobos; A. Yucra, Pseudo-parallel surfaces of $\mathbb{S}^{n} \times \mathbb{R}$ AND $\mathbb{H}^{n} \times \mathbb{R}$, Submitted (2018).
[6] M.P. Tassi; G.A. Lobos, A classification of pseudo-parallel HYPERSURFACES OF $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, Submitted (2018).

