
The

Public Csound

Reference Manual

CANONICAL VERSION 4.10

by Barry Vercoe, Media Lab MIT
& contributors

Edited by John ffitch, Richard Boulanger,

Jean Piché, & David Boothe

Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

The Public Csound Reference Manual Version 4.10 Preface Page ii

Copyright Notice

Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, MIT,
Cambridge, Massachusetts, with partial support from the System Development Foundation
and from National Science Foundation Grant # IRI-8704665.

Permission to use, copy, or modify these programs and their documentation for educational
and research purposes only and without fee is hereby granted, provided that this copyright
and permission notice appear on all copies and supporting documentation. For any other
uses of this software, in original or modified form, including but not limited to distribution
in whole or in part, specific prior permission from MIT must be obtained. MIT makes no
representations about the suitability of this software for any purpose. It is provided “as is”
without express or implied warranty

The original Hypertext Edition of the MIT Csound Manual was prepared for the World Wide
Web by Peter J. Nix of the Department of Music at the University of Leeds and Jean Piché
of the Faculté de musique de l’Université de Montréal. This Print Edition, in Adobe Acrobat
format, and the current HTML Edition, are maintained by David M. Boothe of Lakewood
Sound. The editors fully acknowledge the rights of the authors of the original
documentation and programs, as set out above, and further request that this notice appear
wherever this material is held.

The Public Csound Reference Manual Version 4.10 Preface Page iii

Contributors

In addition to the core code developed by Barry Vercoe at MIT, a large part of the Csound
code was modified, developed and extended by an independent group of programmers,
composers and scientists. Copyright to this code is held by the respective authors:

Mike Berry Richard Karpen

Eli Breder Victor Lazzarini

Michael Casey Allan Lee

Michael Clark David Macintyre

Perry Cook Gabriel Maldonado

Sean Costello Max Mathews

Richard Dobson Hans Mikelson

Mark Dolson Peter Neubäcker

Rasmus Ekman Ville Pulkki

Dan Ellis Marc Resibois

Tom Erbe Rob Shaw

John ffitch Paris Smaragdis

Bill Gardner Greg Sullivan

Matt Ingalls Bill Verplank

Robin Whittle

This manual was compiled from the canonical Csound Manual sources maintained by John
ffitch, Richard Boulanger, Jean Piché and David Boothe.

The Acrobat Edition of this manual was redesigned for the Csound version 4.10 release, in
February & March, 2001. It is set in 10 pt. Trebuchet, from Microsoft Corporation. Headings
are set Antique Olive from Hewlett-Packard Corporation. Syntax and code examples are set
in Andale Mono from Monotype Corporation.

The Public Csound Reference Manual Version 4.10 Preface Page iv

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Preface Page v

Table of Contents

COPYRIGHT NOTICE II

CONTRIBUTORS III

TABLE OF CONTENTS V

FINDER XV

1 PREFACE 1–1
1.1 Where to Get Public Csound and the Csound Manual 1–3
1.2 How to Install Csound 1–4
1.3 How to use the Csound Manual 1–8
1.4 The Csound Mailing List 1–9

2 SYNTAX OF THE ORCHESTRA 2-1
2.1 Directories and Files 2-2
2.2 Nomenclature 2-3
2.3 Orchestra Statement Types 2-6
2.4 Constants and Variables 2-7
2.5 Expressions 2-8

3 ORCHESTRA SYNTAX: ORCHESTRA HEADER STATEMENTS 3-1
3.1 sr, kr, ksmps, nchnls 3-1
3.2 strset, pset 3-2
3.3 seed 3-3
3.4 ftgen 3-4
3.5 massign, ctrlinit 3-5

4 ORCHESTRA SYNTAX: INSTRUMENT BLOCK STATEMENTS 4-1
4.1 instr, endin 4-1

5 ORCHESTRA SYNTAX: VARIABLE INITIALIZATION 5-1
5.1 =, init, tival, divz 5-1

6 INSTRUMENT CONTROL: INSTRUMENT INVOCATION 6-1
6.1 schedule, schedwhen 6-1
6.2 schedkwhen 6-3
6.3 turnon 6-4

The Public Csound Reference Manual Version 4.10 Preface Page vi

7 INSTRUMENT CONTROL: DURATION CONTROL STATEMENTS 7-1
7.1 ihold, turnoff 7-1

8 INSTRUMENT CONTROL: REAL-TIME PERFORMANCE CONTROL 8-1
8.1 active 8-1
8.2 cpuprc, maxalloc, prealloc 8-2

9 INSTRUMENT CONTROL: TIME READING 9-1
9.1 timek, times, timeinstk, timeinsts 9-1

10 INSTRUMENT CONTROL: CLOCK CONTROL 10-1
10.1 clockon, clockoff, readclock 10-1

11 INSTRUMENT CONTROL: SENSING AND CONTROL 11-1
11.1 pitch 11-1
11.2 pitchamdf 11-3
11.3 tempest 11-5
11.4 follow 11-7
11.5 trigger 11-8
11.6 peak 11-9
11.7 xyin, tempo 11-10
11.8 follow2 11-11
11.9 setctrl, control 11-12
11.10 button, checkbox 11-13
11.11 sensekey 11-14

12 INSTRUMENT CONTROL: CONDITIONAL VALUES 12-1
12.1 >, <, >=, <=, ==, !=, ? 12-1

13 INSTRUMENT CONTROL: MACROS 13-1
13.1 #define, $NAME, #undef 13-1
13.2 #include 13-3

14 INSTRUMENT CONTROL: PROGRAM FLOW CONTROL 14-1
14.1 igoto, tigoto, kgoto, goto, if, timout 14-1

15 INSTRUMENT CONTROL: REINITIALIZATION 15-1
15.1 reinit, rigoto, rireturn 15-1

16 MATHEMATICAL OPERATIONS: ARITHMETIC AND LOGIC OPERATIONS 16-1
16.1 -, +, &&, ||, *, /, ^, % 16-1

17 MATHEMATICAL OPERATIONS: MATHEMATICAL FUNCTIONS 17-1
17.1 int, frac, i, abs, exp, log, log10, sqrt 17-1
17.2 powoftwo, logbtwo 17-2

The Public Csound Reference Manual Version 4.10 Preface Page vii

18 MATHEMATICAL OPERATIONS: TRIGONOMETRIC FUNCTIONS 18-1
18.1 sin, cos, tan, sininv, cosinv, taninv, sinh, cosh, tanh 18-1

19 MATHEMATICAL OPERATIONS: AMPLITUDE FUNCTIONS 19-1
19.1 dbamp, ampdb dbfsamp, ampdbfs 19-1

20 MATHEMATICAL OPERATIONS: RANDOM FUNCTIONS 20-1
20.1 rnd, birnd 20-1

21 MATHEMATICAL FUNCTIONS: OPCODE EQUIVALENTS OF FUNCTIONS 21-1
21.1 sum 21-1
21.2 product 21-2
21.3 pow 21-3
21.4 taninv2 21-4
21.5 mac, maca 21-5

22 PITCH CONVERTERS: FUNCTIONS 22-1
22.1 octpch, pchoct, cpspch, octcps, cpsoct 22-1

23 PITCH CONVERTERS: TUNING OPCODES 23-1
23.1 cps2pch, cpsxpch 23-1

24 MIDI SUPPORT: CONVERTERS 24-1
24.1 notnum, veloc, cpsmidi, cpsmidib, octmidi, octmidib, pchmidi, pchmidib,

ampmidi, aftouch, pchbend, midictrl 24-1
24.2 cpstmid 24-3

25 MIDI SUPPORT: CONTROLLER INPUT 25-1
25.1 initc7, initc14, initc21 25-1
25.2 midic7, midic14, midic21, ctrl7, ctrl14, ctrl21 25-2
25.3 chanctrl 25-4

26 MIDI SUPPORT: SLIDER BANKS 26-1
26.1 slider8, slider16, slider32, slider64, slider8f, slider16f, slider32f, slider64f,

s16b14, s32b14 26-1

27 MIDI SUPPORT: GENERIC I/O 27-1
27.1 midiin 27-1
27.2 midiout 27-2

28 MIDI SUPPORT: NOTE-ON/NOTE-OFF 28-1
28.1 noteon, noteoff, noteondur, noteondur2 28-1
28.2 moscil, midion 28-3
28.3 midion2 28-4

The Public Csound Reference Manual Version 4.10 Preface Page viii

29 MIDI SUPPORT: MIDI MESSAGE OUTPUT 29-1
29.1 outic, outkc, outic14, outkc14, outipb, outkpb, outiat, outkat, outipc, outkpc,

outipat, outkpat 29-1
29.2 nrpn 29-3
29.3 mdelay 29-4

30 MIDI SUPPORT: REAL-TIME MESSAGES 30-1
30.1 mclock, mrtmsg 30-1

31 MIDI SUPPORT: EVENT EXTENDERS 31-1
31.1 xtratim, release 31-1

32 SIGNAL GENERATORS: LINEAR AND EXPONENTIAL GENERATORS 32-1
32.1 line, expon, linseg, linsegr, expseg, expsegr, expsega 32-1
32.2 adsr, madsr, xadsr, mxadsr 32-3
32.3 transeg 32-4

33 SIGNAL GENERATORS: TABLE ACCESS 33-1
33.1 table, tablei, table3, oscil1, oscil1i, osciln 33-1

34 SIGNAL GENERATORS: PHASORS 34-1
34.1 phasor 34-1
34.2 phasorbnk 34-2

35 SIGNAL GENERATORS: BASIC OSCILLATORS 35-1
35.1 oscil, oscili, oscil3 35-1
35.2 poscil, poscil3 35-2
35.3 lfo 35-3

36 SIGNAL GENERATORS: DYNAMIC SPECTRUM OSCILLATORS 36-1
36.1 buzz, gbuzz 36-1
36.2 vco 36-3
36.3 mpulse 36-5

37 SIGNAL GENERATORS: ADDITIVE SYNTHESIS/RESYNTHESIS 37-1
37.1 adsyn 37-1
37.2 adsynt 37-3
37.3 hsboscil 37-5

38 SIGNAL GENERATORS: FM SYNTHESIS 38-1
38.1 foscil, foscili 38-1
38.2 fmvoice 38-2
38.3 fmbell, fmrhode, fmwurlie, fmmetal, fmb3, fmpercfl 38-3

The Public Csound Reference Manual Version 4.10 Preface Page ix

39 SIGNAL GENERATORS: SAMPLE PLAYBACK 39-1
39.1 loscil, loscil3 39-1
39.2 lposcil, lposcil3 39-3
39.3 sfload, sfplist, sfilist, sfpassign, sfpreset, sfplay, sfplaym, sfinstr, sfinstrm 39-4

40 SIGNAL GENERATORS: GRANULAR SYNTHESIS 40-1
40.1 fof, fof2 40-1
40.2 fog 40-3
40.3 grain 40-5
40.4 granule 40-7
40.5 sndwarp, sndwarpst 40-10

41 SIGNAL GENERATORS: SCANNED SYNTHESIS 41-1
41.1 scanu 41-3
41.2 scans 41-5

42 SIGNAL GENERATORS: WAVEGUIDE PHYSICAL MODELING 42-1
42.1 pluck 42-1
42.2 wgpluck 42-3
42.3 repluck, wgpluck2 42-4
42.4 wgbow 42-5
42.5 wgflute 42-6
42.6 wgbrass 42-7
42.7 wgclar 42-8
42.8 wgbowedbar 42-9

43 SIGNAL GENERATORS: MODELS AND EMULATIONS 43-1
43.1 moog 43-1
43.2 shaker 43-2
43.3 marimba, vibes 43-3
43.4 mandol 43-5
43.5 gogobel 43-6
43.6 voice 43-7
43.7 lorenz 43-8
43.8 planet 43-10
43.9 cabasa, crunch, sekere, sandpaper, stix 43-12
43.10 guiro, tambourine, bamboo, dripwater, sleighbells 43-14

44 SIGNAL GENERATORS: STFT RESYNTHESIS (VOCODING) 44-1
44.1 pvoc, vpvoc 44-1
44.2 pvread, pvbufread, pvinterp, pvcross, tableseg, tablexseg 44-3
44.3 pvadd 44-6

45 SIGNAL GENERATORS: LPC RESYNTHESIS 45-1
45.1 lpread, lpreson, lpfreson 45-1
45.2 lpslot, lpinterp 45-3

The Public Csound Reference Manual Version 4.10 Preface Page x

46 SIGNAL GENERATORS: RANDOM (NOISE) GENERATORS 46-1
46.1 rand, randh, randi 46-1
46.2 x-class noise generators 46-2
46.3 pinkish 46-4
46.4 noise 46-6

47 FUNCTION TABLE CONTROL: TABLE QUERIES 47-1
47.1 ftlen, ftlptim, ftsr, nsamp 47-1
47.2 tableng 47-2

48 FUNCTION TABLE CONTROL: TABLE SELECTION 48-1
48.1 tablekt, tableikt 48-1

49 FUNCTION TABLE CONTROL: READ/WRITE OPERATIONS 49-1
49.1 tableiw, tablew, tablewkt 49-1
49.2 tablegpw, tablemix, tablecopy, tableigpw, tableimix, tableicopy 49-3
49.3 tablera, tablewa 49-5

50 SIGNAL MODIFIERS: STANDARD FILTERS 50-1
50.1 port, portk, tone, tonek, atone, atonek, reson, resonk, areson, aresonk 50-1
50.2 tonex, atonex, resonx 50-3
50.3 resonr, resonz 50-4
50.4 resony 50-7
50.5 lowres, lowresx 50-8
50.6 vlowres 50-9
50.7 lowpass2 50-10
50.8 biquad, rezzy, moogvcf 50-12
50.9 svfilter 50-14
50.10 hilbert 50-16
50.11 butterhp, butterlp, butterbp, butterbr 50-19
50.12 filter2, zfilter2 50-20
50.13 lpf18 50-22
50.14 tbvcf 50-23

51 SIGNAL MODIFIERS: SPECIALIZED FILTERS 51-1
51.1 nlfilt 51-1
51.2 pareq 51-3
51.3 dcblock 51-5

52 SIGNAL MODIFIERS: ENVELOPE MODIFIERS 52-1
52.1 linen, linenr, envlpx, envlpxr 52-1

53 SIGNAL MODIFIERS: AMPLITUDE MODIFIERS 53-1
53.1 rms, gain, balance 53-1
53.2 dam 53-2
53.3 clip 53-3

The Public Csound Reference Manual Version 4.10 Preface Page xi

54 SIGNAL MODIFIERS: SIGNAL LIMITERS 54-1
54.1 limit, mirror, wrap 54-1

55 SIGNAL MODIFIERS: DELAY 55-1
55.1 delayr, delayw, delay, delay1 55-1
55.2 deltap, deltapi, deltapn, deltap3 55-3
55.3 multitap 55-5
55.4 vdelay, vdelay3 55-6

56 SIGNAL MODIFIERS: REVERBERATION 56-1
56.1 comb, alpass, reverb 56-1
56.2 reverb2, nreverb 56-3
56.3 nestedap 56-5
56.4 babo 56-7

57 SIGNAL MODIFIERS: WAVEGUIDES 57-1
57.1 wguide1, wguide2 57-1
57.2 streson 57-3

58 SIGNAL MODIFIERS: SPECIAL EFFECTS 58-1
58.1 harmon 58-1
58.2 flanger 58-3
58.3 distort1 58-4
58.4 phaser1, phaser2 58-6

59 SIGNAL MODIFIERS: CONVOLUTION AND MORPHING 59-1
59.1 convolve 59-1
59.2 cross2 59-4

60 SIGNAL MODIFIERS: PANNING AND SPATIALIZATION 60-1
60.1 pan 60-1
60.2 locsig, locsend 60-3
60.3 space, spsend, spdist 60-5
60.4 hrtfer 60-9
60.5 vbaplsinit, vbap4, vbap8, vbap16, vbap4move, vbap8move, vbap16move,

vbapz, vbapzmove 60-10

61 SIGNAL MODIFIERS: SAMPLE LEVEL OPERATORS 61-1
61.1 samphold, downsamp, upsamp, interp, integ, diff 61-1
61.2 ntrpol 61-3
61.3 fold 61-4

62 ZAK PATCH SYSTEM 62-1
62.1 zakinit 62-2
62.2 ziw, zkw, zaw, ziwm, zkwm, zawm 62-3
62.3 zir, zkr, zar, zarg 62-5
62.4 zkmod, zamod, zkcl, zacl 62-6

The Public Csound Reference Manual Version 4.10 Preface Page xii

63 OPERATIONS USING SPECTRAL DATA TYPES 63-1
63.1 specaddm, specdiff, specscal, spechist, specfilt 63-2
63.2 specptrk 63-3
63.3 specsum, specdisp 63-5
63.4 spectrum 63-6

64 SIGNAL INPUT AND OUTPUT: INPUT 64-1
64.1 in, ins, inq, inh, ino, soundin, diskin 64-1
64.2 inx, in32, inch, inz 64-3

65 SIGNAL INPUT AND OUTPUT: OUTPUT 65-1
65.1 soundout, soundouts, out, outs1, outs2, outs, outq1, outq2, outq3, outq4,

outq, outh, outo 65-1
65.2 outx, out32, outc, outch, outz 65-3

66 SIGNAL INPUT AND OUTPUT: FILE I/O 66-1
66.1 dumpk, dumpk2, dumpk3, dumpk4, readk, readk2, readk3, readk4 66-1
66.2 fout, foutk, fouti, foutir, fiopen 66-3
66.3 fin, fink, fini 66-5
66.4 vincr, clear 66-6

67 SIGNAL INPUT AND OUTPUT: SOUND FILE QUERIES 67-1
67.1 filelen, filesr, filenchnls, filepeak 67-1

68 SIGNAL INPUT AND OUTPUT: PRINTING AND DISPLAY 68-1
68.1 print, display, dispfft 68-1
68.2 printk, printks 68-2
68.3 printk2 68-4

69 THE STANDARD NUMERIC SCORE 69-1
69.1 Preprocessing of Standard Scores 69-1
69.2 Next-P and Previous-P Symbols 69-3
69.3 Ramping 69-4
69.4 Score Macros 69-5
69.5 Multiple File Score 69-7
69.6 Evaluation of Expressions 69-8
69.7 f Statement (or Function Table Statement) 69-9
69.8 i Statement (Instrument or Note Statement) 69-11
69.9 a Statement (or Advance Statement) 69-14
69.10 t Statement (Tempo Statement) 69-15
69.11 b Statement 69-16
69.12 v Statement 69-17
69.13 s Statement 69-18
69.14 e Statement 69-19
69.15 r Statement (Repeat Statement) 69-20
69.16 m Statement (Mark Statement) 69-21
69.17 n Statement 69-22

The Public Csound Reference Manual Version 4.10 Preface Page xiii

70 GEN ROUTINES 70-1
70.1 GEN01 70-2
70.2 GEN02 70-4
70.3 GEN03 70-5
70.4 GEN04 70-6
70.5 GEN05, GEN07 70-7
70.6 GEN06 70-8
70.7 GEN08 70-9
70.8 GEN09, GEN10, GEN19 70-10
70.9 GEN11 70-11
70.10 GEN12 70-12
70.11 GEN13, GEN14 70-13
70.12 GEN15 70-15
70.13 GEN16 70-16
70.14 GEN17 70-17
70.15 GEN20 70-18
70.16 GEN21 70-20
70.17 GEN23 70-21
70.18 GEN25, GEN27 70-22
70.19 GEN28 70-23

71 THE CSOUND COMMAND 71-1
71.1 Order of Precedence 71-1
71.2 Generic Flags 71-1
71.3 PC Windows Specific flags 71-2
71.4 Macintosh Specific Flags 71-4
71.5 Description 71-4

72 UNIFIED FILE FORMAT FOR ORCHESTRAS AND SCORES 72-1
72.1 Description 72-1
72.2 Structured Data File Format 72-1
72.3 Example 72-2
72.4 Command Line Parameter File 72-3

73 SCORE FILE PREPROCESSING 73.1
73.1 The Extract Feature 73.1
73.2 Independent Pre-Processing with Scsort 73.2

74 UTILITY PROGRAMS 74-1
74.1 sndinfo 74-3
74.2 hetro 74-4
74.3 lpanal 74-6
74.4 pvanal 74-8
74.5 cvanal 74-10
74.6 pvlook 74-11
74.7 sdif2ads 74-15

The Public Csound Reference Manual Version 4.10 Preface Page xiv

75 CSCORE 75.1
75.1 Events, Lists, and Operations 75.2
75.2 Writing a Main Program 75.4
75.3 More Advanced Examples 75.9
75.4 Compiling a Cscore Program 75.11

76 ADDING YOUR OWN CMODULES TO CSOUND 76-1

77 APPENDIX A: MISCELLANEOUS INFORMATION 77–1
77.1 Pitch Conversion 77–1
77.2 Sound Intensity Values (for a 1000 Hz tone) 77–3
77.3 Formant Values 77–4
77.4 Window Functions 77–5
77.5 SoundFont2 File Format 77–9
77.6 Print Edition Update Procedure 77–10
77.7 Manual Update History 77–11

The Public Csound Reference Manual Version 4.10 Preface Page xv

Finder

Symbols

- · 16-1
!= · 12-1
#define(orc) · 13-1
#define(sco) · 69-5
#include(orc) · 13-3
#include(sco) · 69-7
#undef(orc) · 13-1
#undef(sco) · 69-5
$NAME(orc) · 13-1
$NAME(sco) · 69-5
% · 16-1
&& · 16-1
(· 69-4
) · 69-4
* · 16-1
/ · 16-1
? · 12-1
@ · 69-8
@@ · 69-8
^ · 16-1
{ · 69-4
|| · 16-1
} · 69-4
~ · 69-4
+(orc) · 16-1
<(orc) · 12-1
<(sco) · 69-4
<= · 12-1
= · 5-1
== · 12-1
>(orc) · 12-1
>= · 12-1

Tags, Files and
Extensions

.csd · 72-1

.csoundrc · 72-3

.orc · 1–1

.sco · 1–1
<CsInstruments> · 72-1
<CsMidifileB> · 72-1
<CsOptions> · 72-1
<CsoundSynthesizer> ·

72-1
<CsSampleB> · 72-2
<CsScore> · 72-1
<CsVersion> · 72-2
csound.txt · 2-2
CSSTRNGS · 2-2
INCDIR · 2-2
SADIR · 2-2
SFDIR · 2-2
SSDIR · 2-2

A

a Statement · 69-14
abs · 17-1
active · 8-1
adsr · 32-3
adsyn · 37-1
adsynt · 37-3
aftouch · 24-1
alpass · 56-1
ampdb · 19-1
ampdbfs · 19-1
ampmidi · 24-1
areson · 50-1
aresonk · 50-1
atone · 50-1
atonek · 50-1
atonex · 50-3

B

b Statement · 69-16
babo · 56-7
balance · 53-1
bamboo · 43-14
betarand · 46-2
bexprnd · 46-2
biquad · 50-12
birnd · 20-1
bug reports, code · 1–9
bug reports,

documentation · 77–
10

butbp · 50-19
butbr · 50-19
buthp · 50-19
butlp · 50-19
butterbp · 50-19
butterbr · 50-19
butterhp · 50-19
butterlp · 50-19
button · 11-13
buzz · 36-1

C

cabasa · 43-12
cauchy · 46-2
chanctrl · 25-4
checkbox · 11-13
clear · 66-6
clip · 53-3
clockoff · 10-1
clockon · 10-1
comb · 56-1
control · 11-12
convle · 59-1

convolve · 59-1
cos · 18-1
cosh · 18-1
cosinv · 18-1
cps2pch · 23-1
cpsmidi · 24-1
cpsmidib · 24-1
cpsoct · 22-1
cpspch · 22-1
cpstmid · 24-3
cpsxpch · 23-1
cpuprc · 8-2
cross2 · 59-4
crunch · 43-12
ctrl14 · 25-2
ctrl21 · 25-2
ctrl7 · 25-2
ctrlinit · 3-5
cvanal · 74-10

D

dam · 53-2
dbamp · 19-1
dbfsamp · 19-1
dcblock · 51-5
delay · 55-1
delay1 · 55-1
delayr · 55-1
delayw · 55-1
deltap · 55-3
deltap3 · 55-3
deltapi · 55-3
deltapn · 55-3
diff · 61-1
diskin · 64-1
dispfft · 68-1
display · 68-1
distort1 · 58-4
divz · 5-1
downsamp · 61-1
dripwater · 43-14
dumpk · 66-1
dumpk2 · 66-1
dumpk3 · 66-1
dumpk4 · 66-1

E

e Statement · 69-19
endin · 4-1
envlpx · 52-1
envlpxr · 52-1
exp · 17-1
expon · 32-1
exprand · 46-2
expseg · 32-1
expsega · 32-1

expsegr · 32-1

F

f Statement · 69-9
filelen · 67-1
filenchnls · 67-1
filepeak · 67-1
filesr · 67-1
filter2 · 50-20
fin · 66-5
fini · 66-5
fink · 66-5
fiopen · 66-3
flanger · 58-3
fmb3 · 38-3
fmbell · 38-3
fmmetal · 38-3
fmpercfl · 38-3
fmrhode · 38-3
fmvoice · 38-2
fmwurlie · 38-3
fof · 40-1
fof2 · 40-1
fog · 40-3
fold · 61-4
follow · 11-7
follow2 · 11-11
foscil · 38-1
foscili · 38-1
fout · 66-3
fouti · 66-3
foutir · 66-3
foutk · 66-3
frac · 17-1
ftgen · 3-4
ftlen · 47-1
ftlptim · 47-1
ftsr · 47-1

G

gain · 53-1
gauss · 46-2
gbuzz · 36-1
GEN01 · 70-2
GEN02 · 70-4
GEN03 · 70-5
GEN04 · 70-6
GEN05 · 70-7
GEN06 · 70-8
GEN07 · 70-7
GEN08 · 70-9
GEN09 · 70-10
GEN10 · 70-10
GEN11 · 70-11
GEN12 · 70-12
GEN13 · 70-13

The Public Csound Reference Manual Version 4.10 Preface Page xvi

GEN14 · 70-13
GEN15 · 70-15
GEN16 · 70-16
GEN17 · 70-17
GEN19 · 70-10
GEN20 · 70-18
GEN21 · 70-20
GEN23 · 70-21
GEN25 · 70-22
GEN27 · 70-22
GEN28 · 70-23
gogobel · 43-6
goto · 14-1
grain · 40-5
granule · 40-7
guiro · 43-14

H

harmon · 58-1
hetro · 74-4
hilbert · 50-16
hrtfer · 60-9
hsboscil · 37-5

I

i · 17-1
i Statement · 69-11
if · 14-1
igoto · 14-1
ihold · 7-1
in · 64-1
in32 · 64-3
inch · 64-3
inh · 64-1
init · 5-1
initc14 · 25-1
initc21 · 25-1
initc7 · 25-1
ino · 64-1
inq · 64-1
ins · 64-1
instr · 4-1
int · 17-1
integ · 61-1
interp · 61-1
inx · 64-3
inz · 64-3

K

kgoto · 14-1
kr · 3-1
ksmps · 3-1

L

lfo · 35-3
limit · 54-1

line · 32-1
linen · 52-1
linenr · 52-1
linrand · 46-2
linseg · 32-1
linsegr · 32-1
locsend · 60-3
locsig · 60-3
log · 17-1
log10 · 17-1
logbtwo · 17-2
lorenz · 43-8
loscil · 39-1
loscil3 · 39-1
lowpass2 · 50-10
lowres · 50-8
lowresx · 50-8
lpanal · 74-6
lpf18 · 50-22
lpfreson · 45-1
lpinterp · 45-3
lposcil · 39-3
lposcil3 · 39-3
lpread · 45-1
lpreson · 45-1
lpslot · 45-3

M

m Statement · 69-21
mac · 21-5
maca · 21-5
macros, orchestra · 13-1
madsr · 32-3
mandol · 43-5
marimba · 43-3
massign · 3-5
maxalloc · 8-2
mclock · 30-1
mdelay · 29-4
MIDI sliders · 26-1
midic14 · 25-2
midic21 · 25-2
midic7 · 25-2
midictrl · 24-1
midiin · 27-1
midion · 28-3
midion2 · 28-4
midiout · 27-2
mirror · 54-1
moog · 43-1
moogvcf · 50-12
moscil · 28-3
mpulse · 36-5
mrtmsg · 30-1
multiple files, orchestra ·

13-3
multiple files, score · 69-

7
multitap · 55-5
mxadsr · 32-3

N

n Statement · 69-22
nchnls · 3-1
nestedap · 56-5
nlfilt · 51-1
noise · 46-6
noteoff · 28-1
noteon · 28-1
noteondur · 28-1
noteondur2 · 28-1
notnum · 24-1
np · 69-4
nreverb · 56-3
nrpn · 29-3
nsamp · 47-1
ntrpol · 61-3

O

octcps · 22-1
octmidi · 24-1
octmidib · 24-1
octpch · 22-1
oscil · 35-1
oscil1 · 33-1
oscil1i · 33-1
oscil3 · 35-1
oscili · 35-1
osciln · 33-1
out · 65-1
out32 · 65-3
outc · 65-3
outch · 65-3
outh · 65-1
outiat · 29-1
outic · 29-1
outic14 · 29-1
outipat · 29-1
outipb · 29-1
outipc · 29-1
outkat · 29-1
outkc · 29-1
outkc14 · 29-1
outkpat · 29-1
outkpb · 29-1
outkpc · 29-1
outo · 65-1
outq · 65-1
outq1 · 65-1
outq2 · 65-1
outq3 · 65-1
outq4 · 65-1
outs · 65-1
outs1 · 65-1
outs2 · 65-1
outx · 65-3
outz · 65-3

P

pan · 60-1
pareq · 51-3

pcauchy · 46-2
pchbend · 24-1
pchmidi · 24-1
pchmidib · 24-1
pchoct · 22-1
peak · 11-9
phaser1 · 58-6
phaser2 · 58-6
phasor · 34-1
pinkish · 46-4
pitch · 11-1
pitchamdf · 11-3
planet · 43-10
pluck · 42-1
poisson · 46-2
port · 50-1
portk · 50-1
poscil · 35-2
poscil3 · 35-2
pow · 21-3
powoftwo · 17-2
pp · 69-4
prealloc · 8-2
print · 68-1
printk · 68-2
printk2 · 68-4
printks · 68-2
product · 21-2
pset · 3-2
pvadd · 44-6
pvanal · 74-8
pvbufread · 44-3
pvcross · 44-3
pvinterp · 44-3
pvlook · 74-11
pvoc · 44-1
pvread · 44-3

R

r Statement · 69-20
rand · 46-1
randh · 46-1
randi · 46-1
readclock · 10-1
readk · 66-1
readk2 · 66-1
readk3 · 66-1
readk4 · 66-1
reinit · 15-1
release · 31-1
repluck · 42-4
reson · 50-1
resonk · 50-1
resonr · 50-4
resonx · 50-3
resony · 50-7
resonz · 50-4
reverb · 56-1
reverb2 · 56-3
rezzy · 50-12
rigoto · 15-1
rireturn · 15-1
rms · 53-1
rnd · 20-1

The Public Csound Reference Manual Version 4.10 Preface Page xvii

S

s Statement · 69-18
s16b14 · 26-1
s32b14 · 26-1
samphold · 61-1
sandpaper · 43-12
scans · 41-5
scanu · 41-3
schedkwhen · 6-3
schedule · 6-1
schedwhen · 6-1
sdif2ads · 74-15
seed · 3-3
sekere · 43-12
sensekey · 11-14
setctrl · 11-12
sfilist · 39-4
sfinstr · 39-4
sfinstrm · 39-4
sfload · 39-4
sfpassign · 39-4
sfplay · 39-4
sfplaym · 39-4
sfplist · 39-4
sfpreset · 39-4
shaker · 43-2
sin · 18-1
sinh · 18-1
sininv · 18-1
sleighbells · 43-14
slider16 · 26-1
slider16f · 26-1
slider32 · 26-1
slider32f · 26-1
slider64 · 26-1
slider64f · 26-1
slider8 · 26-1
slider8f · 26-1
sndinfo · 74-3
sndwarp · 40-10
sndwarpst · 40-10
soundin · 64-1
soundout · 65-1
soundouts · 65-1
space · 60-5
spdist · 60-5

specaddm · 63-2
specdiff · 63-2
specdisp · 63-5
specfilt · 63-2
spechist · 63-2
specptrk · 63-3
specscal · 63-2
specsum · 63-5
spectrum · 63-6
spsend · 60-5
sqrt · 17-1
sr · 3-1
stix · 43-12
streson · 57-3
strset · 3-2
sum · 21-1
svfilter · 50-14

T

t Statement · 69-15
table · 33-1
table3 · 33-1
tablecopy · 49-3
tablegpw · 49-3
tablei · 33-1
tableicopy · 49-3
tableigpw · 49-3
tableikt · 48-1
tableimix · 49-3
tableiw · 49-1
tablekt · 48-1
tablemix · 49-3
tableng · 47-2
tablera · 49-5
tableseg · 44-3
tablew · 49-1
tablewa · 49-5
tablewkt · 49-1
tablexseg · 44-3
tambourine · 43-14
tan · 18-1
tanh · 18-1
taninv · 18-1
taninv2 · 21-4
tbvcf · 50-23
tempest · 11-5

tempo · 11-10
tigoto · 14-1
timeinstk · 9-1
timeinsts · 9-1
timek · 9-1
times · 9-1
timout · 14-1
tival · 5-1
tone · 50-1
tonek · 50-1
tonex · 50-3
transeg · 32-4
trigger · 11-8
trirand · 46-2
turnoff · 7-1
turnon · 6-4

U

unirand · 46-2
upsamp · 61-1

V

v Statement · 69-17
vbap16 · 60-10
vbap16move · 60-10
vbap4 · 60-10
vbap4move · 60-10
vbap8 · 60-10
vbap8move · 60-10
vbaplsinit · 60-10
vbapz · 60-10
vbapzmove · 60-10
vco · 36-3
vdelay · 55-6
vdelay3 · 55-6
veloc · 24-1
vibes · 43-3
vincr · 66-6
vlowres · 50-9
voice · 43-7
vpvoc · 44-1

W

weibull · 46-2
wgbow · 42-5
wgbowedbar · 42-9
wgbrass · 42-7
wgclar · 42-8
wgflute · 42-6
wgpluck · 42-3
wgpluck2 · 42-4
wguide1 · 57-1
wguide2 · 57-1
wrap · 54-1

X

xadsr · 32-3
x-class noise generators

· 46-2
xtratim · 31-1
xyin · 11-10

Z

zacl · 62-6
zakinit · 62-2
zamod · 62-6
zar · 62-5
zarg · 62-5
zaw · 62-3
zawm · 62-3
zfilter2 · 50-20
zir · 62-5
ziw · 62-3
ziwm · 62-3
zkcl · 62-6
zkmod · 62-6
zkr · 62-5
zkw · 62-3
zkwm · 62-3

The Public Csound Reference Manual Version 4.10 Preface Page xviii

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Preface Page 1–1

1 PREFACE

by Barry Vercoe, MIT Media Lab

Realizing music by digital computer involves synthesizing audio signals with discrete points
or samples representative of continuous waveforms. There are many ways to do this, each
affording a different manner of control. Direct synthesis generates waveforms by sampling
a stored function representing a single cycle; additive synthesis generates the many
partials of a complex tone, each with its own loudness envelope; subtractive synthesis
begins with a complex tone and filters it. Non-linear synthesis uses frequency modulation
and waveshaping to give simple signals complex characteristics, while sampling and storage
of a natural sound allows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is
gained in two ways: 1) from the instruments in an orchestra, and 2) from the events within
a score. An orchestra is really a computer program that can produce sound, while a score is
a body of data which that program can react to. Whether a rise-time characteristic is a
fixed constant in an instrument, or a variable of each note in the score, depends on how
the user wants to control it.

The instruments in a Csound orchestra (.orc) are defined in a simple syntax that invokes
complex audio processing routines. A score (.sco) passed to this orchestra contains
numerically coded pitch and control information, in standard numeric score format.
Although many users are content with this format, higher level score processing languages
are often convenient.

The programs making up the Csound system have a long history of development, beginning
with the Music 4 program written at Bell Telephone Laboratories in the early 1960’s by Max
Mathews. That initiated the stored table concept and much of the terminology that has
since enabled computer music researchers to communicate. Valuable additions were made
at Princeton by the late Godfrey Winham in Music 4B; my own Music 360 (1968) was very
indebted to his work. With Music 11 (1973) I took a different tack: the two distinct
networks of control and audio signal processing stemmed from my intensive involvement in
the preceding years in hardware synthesizer concepts and design. This division has been
retained in Csound.

Because it is written entirely in C, Csound is easily installed on any machine running Unix or
C. At MIT it runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI’s under
5.0, on IBM PC’s under DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC
5.0. With this single language for defining the audio signal processing, and portable audio
formats like AIFF and WAV, users can move easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI
converter and control units, enabling Csound to be run from MIDI score-files and external
keyboards. In 1994 the sound analysis programs (lpc, pvoc) were integrated into the main
load module, enabling all Csound processing to be run from a single executable, and Cscore
could pass scores

The Public Csound Reference Manual Version 4.10 Preface Page 1–2

directly to the orchestra for iterative performance. The 1995 release introduced an
expanded MIDI set with MIDI-based linseg, butterworth filters, granular synthesis, and an
improved spectral-based pitch tracker. Of special importance was the addition of run-time
event generating tools (Cscore and MIDI) allowing run-time sensing and response setups
that enable interactive composition and experiment. It appeared that real-time software
synthesis was now showing some real promise.

The Public Csound Reference Manual Version 4.10 Preface Page 1–3

1.1 Where to Get Publ ic Csound and the
Csound Manual

Public Csound is available for download via anonymous ftp from :
• ftp://ftp.maths.bath.ac.uk/pub/dream

or
• ftp://ftp.musique.umontreal.ca/pub/mirrors/dream

The Acrobat Edition and HTML Edition of this manual is available for browser download
from:

• http://www.lakewoodsound.com/csound
or via anonymous ftp from:

• ftp://ftp.csounds.com/manual

The Public Csound Reference Manual Version 4.10 Preface Page 1–4

1.2 How to Instal l Csound

MACINTOSH
Detailed instructions for installing and configuring Csound on Macintosh systems may be
obtained from:

• http://mitpress.mit.edu/e-books/csound/fpage/gs/mac/a/a.html

WINDOWS 95/98
Detailed instructions for installing and configuring Csound on Windows 95 or Windows 98
systems may be obtained from:

• http://mitpress.mit.edu/e-books/csound/fpage/gs/pc/pc.html

MS-DOS AND WINDOWS 3.X
Detailed instructions for installing and configuring Csound on MS-DOS or Windows 3.x
systems may be obtained from:

• http://hem.passagen.se/rasmuse/PCinstal.htm

LINUX (DEVELOPERS’ VERSION)

Introduction to the Developers’ Linux Version
Building Csound for UNIX and Linux machines has been possible thanks to John Fitch’s
Csound.tar.gz source file kept at:

• ftp://ftp.maths.bath.ac.uk/pub/dream/newest

This source tree builds Csound on a variety of UNIX-type systems, including the NeXT, Sun’s
Solaris, SGI machines, and Intel-based Linux. It should be noted that John also maintains a
Linux binary at the Bath repository. That version is built from his canonical sources.

In 1998 a group of developers prepared a new version of Csound for Linux. This version
(often referred to as the "unofficial" distribution) aims to deliver a modern package for
Linux users. It offers a variety of amenities specific to Linux systems, including these items:

• Enhanced makefile system
• ‘autoconf’ and ‘configure’ supported for site-specific build
• Support for Jaroslav Kysela’s ALSA sound drivers
• Support for 64-bit Alpha systems
• Full MIDI and real-time audio support
• Builds shared library (libcsound.so) for greatly reduced memory footprint
• Includes Robin Whittle’s random number generator
• Provided in various popular Linux distribution packaging formats
• Utilizes .csoundrc resource file
• Provides a high-priority scheduler for improved real-time i/o
• Includes support for full-duplex under the OSS/Free and OSS/Linux drivers
• CVS and bug-tracking system established for developers

This distribution’s code base originates with the sources provided by John Fitch at the Bath
site. Every effort is made to ensure compatibility with those sources at the opcode level,
and users should have no trouble running most orc/sco files or .csd files made for Csound
on other operating systems.

The makefile structure has been provided by Nicola Bernardini. He also maintains the CVS
repository. Other features have been added by developers Ed Hall (Alpha port), Fred
Floberg (scheduler), Robin Whittle, and Steve Kersten (full-duplex under OSS driver). RPM
and DEB packages are sporadically available from Damien Miller and Guenter Geiger.

The Public Csound Reference Manual Version 4.10 Preface Page 1–5

Building the developers’ version is quite simple, using the familiar ‘./configure; make
depend; make; make install’ command sequence. Instructions for compiling and installing
Csound are provided with the package, along with other relevant documentation. A mail-
list has been established for developers and users of this package, and a bug-tracking
system has been set up by Damien Miller.

Preparing Linux Audio for Csound
As long as the basic Linux audio system is properly configured and installed, no special
efforts need to be made in order to enjoy audio output from sound. The default real-time
audio output device (devaudio) is defined as /dev/dsp in Csound itself, although other
audio devices (/dev/audio, /dev/dspW) can be specified if so desired.

Using the Developers’ Version
This version is designed to be opcode-compatible with any other version of Csound.
However, some new options have been added which may require clarification.

Real-time audio output can be as simple as this:

csound -o devaudio -V 75 my.orc my.sco

The ‘-V’ flag is a Linux-specific output volume control from Jonathan Mohr. Note that it
will work only with the OSS/Free and OSS/Linux drivers.

Here we get a little more complicated:

csound --sched --ossin=/dev/dsp0 --ossout=/dev/dsp1 my.*

This example invokes Fred Floberg’s high-priority scheduler (which will automatically
disable graphics output) and Steve Kersten’s support for full-duplex using either the
OSS/Free driver included with the Linux kernel or the commercially available OSS/Linux
driver. Linux users can use the asterisk as a wildcard for the orc/sco extensions. However,
if you have my.orc, my.sco, and my.txt within the same directory the compiler will get
confused and the wildcard won’t work.

If more than one soundcard is present in the system, ALSA users have the option of
choosing which card will function for either audio input or output. The command sequence
then appears so:

csound --incard=1 --outcard=2 my.orc your.sco

The standard advice regarding audio buffer settings holds true for Linux as well as for any
other version. If the audio output is choppy you may need to adjust the value for the ‘–b’
flag which controls the sample frame size for the software audio buffer. The best setting
will depend upon various aspects of your machine system, including CPU speed, memory
limits, hard-disk performance, etc.

Supported options for MIDI include the ‘-Q’ (MIDI output device) and ‘-K’ (MIDI input port)
flags from Gabriel Maldonado’s DirectCsound. Here is an example which uses one of
Gabriel’s opcodes, requiring the use of a MIDI output port:

csound -Q0 -n my_moscil.orc my_moscil.sco

The ‘-Q0’ flag selects the first available MIDI output device, ‘-n’ cancels writing the output
to disk.

The Public Csound Reference Manual Version 4.10 Preface Page 1–6

It should be noted that, for Linux at least, in the opcode for this instrument (moscil) the
sample rate determines the tempo of events. Setting the control rate (kr) to equal the
sample rate (sr), sr=kr a higher sample rate will result in a slower performance. When
sr=390000 (yes, you read that correctly, it’s a sample rate of three hundred and ninety
thousand) then the MIDI event performance output is approximately 60 BPM (beats per
minute). At that sample rate a score tempo statement of ‘t 0 60’will actually mean 60
bpm. In essence, the sample rate acts as a restraint or throttle on the tempo of the MIDI
event stream.

Using MIDI for real-time input is simple:

csound --sched -o devaudio -M/dev/midi my_midi_in.*

With correctly written orc/sco files this example will allow real-time control of Csound via
whatever controlling device is hooked up to /dev/midi. If more than one MIDI device is
present in the machine the user can specify which to use:

csound --sched -o devaudio -M/dev/midi01 my_midi_in.*

That sequence will select the second MIDI device for MIDI input.

Here we use a Type 0 standard MIDI file for the controlling input:

csound --sched -o devaudio -T -F/home/midfiles/my_type_0.mid
my_cool.orc my_cool.sco

In these last two examples the score file provides only the necessary function tables and a
place-holder to indicate how long Csound should stay active:

f1 0 8192 10 1 ; a sine wave
f0 240 ; stay active for 240 seconds
e

However, the ‘-T’ flag will halt performance as soon as the end of the MIDI file is reached.

Availability
The Linux developers version of Csound is available in source and binary distributions. The
main distribution sites are at AIMI in Italy:

• http://AIMI.dist.unige.it/AIMICSOUND/AIMICSOUND_home.html
and the ftp server for the Music Technology Department at Bowling Green State University
in the USA:

• ftp://mustec.bgsu.edu/pub/linux

Developer Maurizio Umberto Puxeddu has also established a distribution point, though at
this time it is version-specific and not browsable. For more information regarding his site,
and for more information generally regarding Linux Csound, see this Web page:

• http://www.bright.net/~dlphilp/linux_csound.html

Credits
First thanks go to Barry Vercoe for creating Csound and allowing it to be freely and publicly
distributed and to John Fitch for maintaining the canonical source packages (including his
own build for Linux).

Special thanks go to the following persons for their development assistance and/or spiritual
guidance:

• Paul Barton-Davis
• Nicola Bernardini
• Richard Boulanger
• Fred Floberg
• Ed Hall
• Steve Kersten

The Public Csound Reference Manual Version 4.10 Preface Page 1–7

• Gabriel Maldonado
• Damien Miller
• Maurizio Umberto Puxeddu
• Larry Troxler
• Robin Whittle

My apologies to anyone I’ve left out. Please send corrections and emendations of this
document to me at my email address below.

Dave Phillips
dlphilp@bright.net
September 1999

OTHER PLATFORMS
For information on availability of Csound for other platforms, see The Csound Frontpage:

• http://mitpress.mit.edu/e-books/csound/frontpage.html

The Public Csound Reference Manual Version 4.10 Preface Page 1–8

1.3 How to use the Csound Manual

The Csound Manual is arranged as a Reference manual (not a tutorial), since that is the
form the user will eventually find most helpful when inventing instruments. Csound can be
a demanding experience at first. Hence it is highly advisable to peruse the tutorials
included in the Supplement to this Manual. Once the basic concepts are grasped from the
beginning tutorial, the reader might let himself into the remainder of the text by locating
the information presented in the Reference entries that follow.

The Public Csound Reference Manual Version 4.10 Preface Page 1–9

1.4 The Csound Mai l ing L ist

A Csound Mailing List exists to discuss Csound. It is run by John ffitch of Bath University,
UK.

To have your name put on the mailing list send an empty message to:
csound-subscribe@lists.bath.ac.uk

Posts sent to
csound@lists.bath.ac.uk

go to all subscribed members of the list.

BUG REPORTS
Suspected bugs in the code may be submitted to the list.

The Public Csound Reference Manual Version 4.10 Preface Page 1–10

This page intentionally left blank

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-1

2 SYNTAX OF THE ORCHESTRA

An orchestra statement in Csound has the format:

 label: result opcodeopcodeopcodeopcode argument1, argument2, ...
;comments
The label is optional and identifies the basic statement that follows as the potential target
of a go-to operation (see Program Control Statements). A label has no effect on the
statement per se.

Comments are optional and are for the purpose of letting the user document his orchestra
code. Comments always begin with a semicolon (;) and extend to the end of the line.

The remainder (result, opcode, and arguments) form the basic statement. This also is
optional, i.e. a line may have only a label or comment or be entirely blank. If present, the
basic statement must be complete on one line, and is terminated by a carriage return and
line feed. Occasionally in this manual, a statement is divided between two lines. This is for
printing convenience only, and does not apply to the HTML Edition. In orchestra files,
statements must be complete on one line, without a carriage return or line feed before the
end of the statement.

The opcode determines the operation to be performed; it usually takes some number of
input values (or arguments, with a maximum value of about 800); and it usually has a result
field variable to which it sends output values at some fixed rate. There are four possible
rates:

• once only, at orchestra setup time (effectively a permanent assignment);
• once at the beginning of each note (at initialization (init) time: i-rate);
• once every performance-time control loop (perf-time control rate, or k-rate);
• once each sound sample of every control loop (perf-time audio rate, or a-rate).

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-2

2.1 Directories and Fi les

Many generators and the Csound command itself specify filenames to be read from or
written to. These are optionally full pathnames, whose target directory is fully specified.
When not a full path, filenames are sought in several directories in order, depending on
their type and on the setting of certain environment variables. The latter are optional, but
they can serve to partition and organize the directories so that source files can be shared
rather than duplicated in several user directories. The environment variables can define
directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include
files for orchestra and score files INCDIR.

The search order is:
1. Soundfiles being written are placed in SFDIR (if it exists), else the current

directory.
2. Soundfiles for reading are sought in the current directory, then SSDIR, then SFDIR.
3. Analysis control files for reading are sought in the current directory, then SADIR.
4. Files of code to be included in orchestra and score files (with #include) are sought

first in the current directory, then in the same directory as the orchestra or score
file (as appropriate), then finally INCDIR.

Beginning with Csound version 3.54, the file “csound.txt“ contains the messages (in binary
format) that Csound uses to provide information to the user during performance. This
allows for the messages to be in any language, although the default is English. This file
must be placed in the same directory as the Csound executable. Alternatively, this file may
be stored in SFDIR, SSDIR, or SADIR. Unix users may also keep this file in “usr/local/lib/”.
The environment variable CSSTRNGS may be used to define the directory in which the
database resides. This can be overridden with the -j command line option. (New in version
3.55)

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-3

2.2 Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and
result mnemonics, when mentioned in the text, are given in italics. Argument names are
generally mnemonic (amp, phs), and the result is usually denoted by the letter r. Both are
preceded by a type qualifier i, k, a, or x (e.g. kamp, iphs, ar). The prefix i denotes scalar
values valid at note init time; prefixes k or a denote control (scalar) and audio (vector)
values, modified and referenced continuously throughout performance (i.e. at every
control period while the instrument is active). Arguments are used at the prefix-listed
times; results are created at their listed times, then remain available for use as inputs
elsewhere. With few exceptions, argument rates may not exceed the rate of the result.
The validity of inputs is defined by the following:

• arguments with prefix i must be valid at init time;
• arguments with prefix k can be either control or init values (which remain valid);
• arguments with prefix a must be vector inputs;
• arguments with prefix x may be either vector or scalar (the compiler will

distinguish).
All arguments, unless otherwise stated, can be expressions whose results conform to the
above. Most opcodes (such as linen and oscil) can be used in more than one mode, which
one being determined by the prefix of the result symbol.

Thoughout this manual, the term “opcode” is used to indicate a command that usually
produces an a-, k-, or i-rate output, and always forms the basis of a complete Csound
orchestra statement. Items such as “+” or “sin(x)” or, “(a >= b ? c : d)” are called
“operators.”

In the Csound orchestra, statements fall into twelve major categores, consisting of sixty-
five sub-categories. Each is in a separate chapter of this manual. The categories (and
corresponding chapter numbers) are as follows:

Orchestra Syntax

3: Orchestra Header Statements

4: Instrument Block Statements

5: Variable Initialization

Instrument Control

6: Instrument Invocation

7: Duration Control Statements

8: Real-time Performance Control

9: Time Reading

10: Clock Control

11: Sensing and Control

12: Conditional Values

13: Macros

14: Program Flow Control

15: Reinitialization

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-4

Mathematical Operations
16: Arithmetic and Logic Operations

17: Mathematical Functions

18: Trigonometric Functions

19: Amplitude Functions

20: Random Functions

21: Opcode Equivalents of Functions

Pitch Converters
22: Functions

23: Tuning Opcodes

MIDI Support
24: Converters

25: Controller Input

26: Slider Banks

27: Generic I/O

28: Note-on/Note-off

29: MIDI Message Output

30: Real-time Messages

31: MIDI Event Extenders

Signal Generators
32: Linear and Exponential Generators

33: Table Access

34: Phasors

35: Basic Oscillators

36: Dynamic Spectrum Oscillators

37: Additive Synthesis/Resynthesis

38: FM Synthesis

39: Sample Playback

40: Granular Synthesis

41: Waveguide Physical Modeling

42: Models and Emulations

43: STFT Resynthesis (Vocoding)

44: LPC Resynthesis

45: Random (Noise) Generators

Function Table Control
46: Tables Queries

47: Table Selection

48: Read/Write Operations

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-5

Signal Modifiers
49: Standard Filters

50: Specialized Filters

51: Envelope Modifiers

52: Amplitude Modifiers

53: Signal Limiters

54: Delay

55: Reverberation

56: Waveguides

57: Special Effects

58: Convolution and Morphing

59: Panning and Spatialization

60: Sample Level Operators

Zak Patch System
61: Zak Patch System

Operations Using Spectral Data Types
62: Operations Using Spectral Data Types

Signal Input and Output
63: Input

64: Output

65: File I/O

66: Sound File Queries

67: Printing and Display

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-6

2.3 Orchestra Statement Types

An orchestra program in Csound is comprised of orchestra header statements which set
various global parameters, followed by a number of instrument blocks representing
different instrument types. An instrument block, in turn, is comprised of ordinary
statements that set values, control the logical flow, or invoke the various signal processing
subroutines that lead to audio output.

An orchestra header statement operates once only, at orchestra setup time. It is most
commonly an assignment of some value to a global reserved symbol , e.g. sr = 20000. All
orchestra header statements belong to a pseudo instrument 0, an init pass of which is run
prior to all other instruments at score time 0. Any ordinary statement can serve as an
orchestra header statement, e.g. gifreq = cpspch(8.09) provided it is an init-time only
operation.

An ordinary statement runs at either init time or performance time or both. Operations
which produce a result formally run at the rate of that result (that is, at init time for i-rate
results; at performance time for k- and a-rate results), with the sole exception of the init
opcode. Most generators and modifiers, however, produce signals that depend not only on
the instantaneous value of their arguments but also on some preserved internal state.
These performance-time units therefore have an implicit init-time component to set up
that state. The run time of an operation which produces no result is apparent in the
opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic
expressions composed of constants, variables, reserved symbols, value converters,
arithmetic operations, and conditional values.

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-7

2.4 Constants and Variables

constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available
continuously and do not change in value.

variables are named cells containing numbers. They are available continuously and may be
updated at one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate
variables are scalars (i.e. they take on only one value at any given time) and are primarily
used to store and recall controlling data, that is, data that changes at the note rate (for i-
rate variables) or at the control rate (for k-rate variables). i- and k-variables are therefore
useful for storing note parameter values, pitches, durations, slow-moving frequencies,
vibratos, etc. a-rate variables, on the other hand, are arrays or vectors of information.
Though renewed on the same perf-time control pass as k-rate variables, these array cells
represent a finer resolution of time by dividing the control period into sample periods (see
ksmps). a-rate variables are used to store and recall data changing at the audio sampling
rate (e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private
to a particular instrument, and cannot be read from or written into by any other
instrument. Their values are preserved, and they may carry information from pass to pass
(e.g. from initialization time to performance time) within a single instrument. Local
variable names begin with the letter p, i, k, or a. The same local variable name may
appear in two or more different instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like
local names preceded by the letter g, or are special reserved symbols. Global variables are
used for broadcasting general values, for communicating between instruments
(semaphores), or for sending sound from one instrument to another (e.g. mixing prior to
reverberation).

Given these distinctions, there are eight forms of local and global variables:

Type When Renewable Local Global

reserved symbols permanent -- rrrrsymbol
score parameter fields i-time ppppnumber --
v-set symbols i-time vvvvnumber gvgvgvgvnumber
init variables i-time iiiiname gigigiginame
MIDI controllers any time ccccnumber --
control signals p-time, k-rate kkkkname gkgkgkgkname
audio signals p-time, a-rate aaaaname gagagaganame
spectral data types k-rate wwwwname --

where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer
referring to a score pfield or sequence number, and name is a string of letters and/or digits
with local or global meaning. As might be apparent, score parameters are local i-rate
variables whose values are copied from the invoking score statement just prior to the init
pass through an instrument, while MIDI controllers are variables which can be updated
asynchronously from a MIDI file or MIDI device.

The Public Csound Reference Manual Version 4.10 Syntax of the Orchestra Page 2-8

2.5 Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its
own proper rate. For instance, if the terms within a sub-expression all change at the
control rate or slower, the sub-expression will be evaluated only at the control rate; that
result might then be used in an audio-rate evaluation. For example, in

 k1 + abs(int(p5) + frac(p5) * 100/12 + sqrt(k1))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time,
and the remainder of the expression evaluated every k-period. The whole might occur in a
unit generator argument position, or be part of an assignment statement.

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-1

3 ORCHESTRA SYNTAX: ORCHESTRA
HEADER STATEMENTS

3.1 sr, kr , ksmps, nchnls

sr sr sr sr = iarg
krkrkrkr = iarg
ksmpsksmpsksmpsksmps = iarg
nchnlsnchnlsnchnlsnchnls = iarg

DESCRIPTION
These statements are global value assignments, made at the beginning of an orchestra,
before any instrument block is defined. Their function is to set certain reserved symbol
variables that are required for performance. Once set, these reserved symbols can be used
in expressions anywhere in the orchestra.

sr = (optional) – set sampling rate to iarg samples per second per channel. The default
value is 44100.

kr = (optional) – set control rate to iarg samples per second. The default value is 4410.

ksmps = (optional) – set the number of samples in a control period to. This value must
equal sr/kr. The default value is 10.

nchnls = (optional) – set number of channels of audio output to iarg. (1 = mono, 2 = stereo,
4 = quadraphonic.) The default value is 1 (mono).

In addition, any global variable can be initialized by an init-time assignment anywhere
before the first instr statement. All of the above assignments are run as instrument 0 (i-
pass only) at the start of real performance.

Beginning with Csound version 3.46, either sr, kr, or ksmps may be omitted. Csound will
attempt to calculate the omitted value from the specified values, but it should evaluate to
an integer.

EXAMPLE
srsrsrsr = 10000
krkrkrkr = 500
ksmpsksmpsksmpsksmps = 20
gi1 = = = = sr/2.
ga init init init init 0
itranspose = = = = octpch(.0l)

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-2

3.2 strset, pset

strsetstrsetstrsetstrset iarg, “stringtext”
psetpsetpsetpset con1, con2, con3,...

DESCRIPTION
Allow certain global parameters to be initialized at orchestra load time, rather than
instrument initialization or performance time.

INITIALIZATION
iarg – numeric value to be associated with an alphanumeric string

con1, con2, etc. – preset values for a MIDI instrument

strset (optional) allows a string, such as a filename, to be linked with a numeric value. Its
use is optional.

pset (optional) defines and initializes numeric arrays at orchestra load time. It may be used
as an orchestra header statement (i.e. instrument 0) or within an instrument. When
defined within an instrument, it is not part of its i-time or performance operation, and only
one statement is allowed per instrument. These values are available as i-time defaults.
When an instrument is triggered from MIDI it only gets p1 and p2 from the event, and p3,
p4, etc. will receive the actual preset values.

EXAMPLES
The following statement, used in the orchestra header, will allow the numeric value 10 to
substituted anywhere the soundfile asound.wav is called for.

strsetstrsetstrsetstrset 10, “asound.wav”

The example below illustrates pset as used within an instrument.

instr 1
pset 0,0,3,4,5,6 ; pfield substitutes

a1 oscil 10000, 440, p6

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-3

3.3 seed

seedseedseedseed ival

DESCRIPTION
Sets the global seed value for all x-class noise generators, as well as other opcodes that
use a random call, such as grain. rand, randi, randh, rnd(x), and birnd(x) are not affected
by seed.

INITIALIZATION
ival – value to be used as the random generator(s) seed value

PERFORMANCE
Use of seed will provide predictable results from an orchestra using with random
generators, when required from multiple performances.

When specifying a seed value, ival should be an integer between 0 and 232. If ival = 0, the
value of ival will be derived from the system clock.

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-4

3.4 ftgen

gir ftgenftgenftgenftgen ifn, itime, isize, igen, iarga[, iargb...iargz]

DESCRIPTION
Generate a score function table from within the orchestra.

INITIALIZATION
gir – either a requested or automatically assigned table number above 100. If used within
an instrument, may be local variable ir.

ifn – requested table number If ifn is zero, the number is assigned automatically and the
value placed in gir. Any other value is used as the table number

itime – is ignored, but otherwise corresponds to p2 in the score f statement.

isize – table size. Corresponds to p3 of the score f statement.

igen – function table GEN routine. Corresponds to p4 of the score f statement.

iarga-iargz – function table arguments. Correspond to p5 through pn of the score f
statement.

PERFORMANCE
This is equivalent to table generation in the score with the f statement.

AUTHOR
Barry Vercoe
MIT, Cambridge, Mass
1997

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-5

3.5 massign, ctr l init

massignmassignmassignmassign ichnl, insnum
ctrlinitctrlinitctrlinitctrlinit ichnl, ictlno1, ival1[, ictlno2, ival2 [, ictlno3,

ival3[,..ival32]]

DESCRIPTION
Initialize MIDI controllers for a Csound orchestra.

INITIALIZATION
ichnl – MIDI channel number

insnum – Csound orchestra instrument number

ictlno1, ictlno2, etc. – MIDI contoller numbers

ival1, ival2, etc. – initial value for corresponding MIDI contoller number

PERFORMANCE
massign assigns a MIDI channel number to a Csound instrument

ctrlinit sets initial values for a set of MIDI controllers.

AUTHORS
Barry Vercoe – Mike Berry
MIT, Cambridge, Mass
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Orchestra Header Statements Page 3-6

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Instrument Block Statements Page 4-1

4 ORCHESTRA SYNTAX: INSTRUMENT
BLOCK STATEMENTS

4.1 instr, endin

instrinstrinstrinstr i, j, ...
.
. < body
. of
. instrument
.
endinendinendinendin

DESCRIPTION
These statements delimit an instrument block. They must always occur in pairs.

instr – begin an instrument block defining instruments i, j, ...

i, j, ... must be numbers, not expressions. Any positive integer is legal, and in any order,
but excessively high numbers are best avoided.

endin – end the current instrument block.

Note:

There may be any number of instrument blocks in an orchestra.

Instruments can be defined in any order (but they will always be both initialized and
performed in ascending instrument number order).

Instrument blocks cannot be nested (i.e. one block cannot contain another).

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Instrument Block Statements Page 4-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Variable Initialization Page 5-1

5 ORCHESTRA SYNTAX: VARIABLE
INITIALIZATION

5.1 =, init , t ival , divz

ir ==== iarg
kr ==== karg
ar ==== xarg
kr initinitinitinit iarg
ar initinitinitinit iarg
ir tivaltivaltivaltival
ir divzdivzdivzdivz ia, ib, isubst
kr divzdivzdivzdivz ka, kb, ksubst
ar divzdivzdivzdivz xa, xb, ksubst

DESCRIPTION
= (simple assignment) – Put the value of the expression iarg (karg, xarg) into the named
result. This provides a means of saving an evaluated result for later use.

init – Put the value of the i-time expression iarg into a k- or a-rate variable, i.e., initialize
the result. Note that init provides the only case of an init-time statement being permitted
to write into a perf-time (k- or a-rate) result cell; the statement has no effect at perf-
time.

tival – Put the value of the instrument’s internal “tie-in” flag into the named i-rate
variable. Assigns 1 if this note has been “tied” onto a previously held note (see i
Statement); assigns 0 if no tie actually took place. (see also tigoto)

divz – Whenever b is not zero, set the result to the value a / b; when b is zero, set it to
the value of subst instead.

The Public Csound Reference Manual Version 4.10 Orchestra Syntax: Variable Initialization Page 5-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Instrument Invocation Page 6-1

6 INSTRUMENT CONTROL: INSTRUMENT
INVOCATION

6.1 schedule, schedwhen

scheduleschedulescheduleschedule insnum, iwhen, idur [, p4, p5,…]
schedwhenschedwhenschedwhenschedwhen ktrigger, kinst, kwhen, kdur [, p4, p5,…]

DESCRIPTION
Adds a new score event

INITIALIZATION
insnum – instrument number. Equivalent to p1 in a score i statement.

iwhen – start time of the new event. Equivalent to p2 in a score i statement.

idur – duration of event. Equivalent to p3 in a score i statement.

PERFORMANCE
ktrigger – trigger value for new event

schedule adds a new score event. The arguments, including options, are the same as in a
score. The iwhen time (p2) is measured from the time of this event.

If the duration is zero or negative the new event is of MIDI type, and inherits the release
sub-event from the scheduling instruction.

In the case of schedwhen, the event is only scheduled when the k-rate value ktrigger is
first non-zero.

EXAMPLE

;; Double hit and 1sec separation
instrinstrinstrinstr 1

 scheduleschedulescheduleschedule 2, 1, 0.5, p4, p5
a1 shakershakershakershaker p4, 60, 0.999, 0, 100, 0

 outoutoutout a1
endinendinendinendin

instrinstrinstrinstr 2
a1 marimbamarimbamarimbamarimba p4, cpspch(p5), p6, p7, 2, 6.0, 0.05, 1, 0.1

 outoutoutout a1
endinendinendinendin

instrinstrinstrinstr 3
kr tabletabletabletable kr, 1

 schedwhenschedwhenschedwhenschedwhen kr, 1, 0.25, 1, p4, p5
endinendinendinendin

The Public Csound Reference Manual Version 4.10 Instrument Control: Instrument Invocation Page 6-2

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
November, 1998 (New in Csound version 3.491)
Based on work by Gabriel Maldonado

The Public Csound Reference Manual Version 4.10 Instrument Control: Instrument Invocation Page 6-3

6.2 schedkwhen

schedkwhenschedkwhenschedkwhenschedkwhen ktrigger, kmintim, kmaxnum, kinsnum, kwhen, kdur[, kp4,
kp5, …]

DESCRIPTION
Adds a new score event generated by a k-rate trigger.

PERFORMANCE
ktrigger – triggers a new score event. If ktrigger = 0, no new event is triggered.

kmintim – minimum time between generated events, in seconds. If kmintim <= 0, no time
limit exists. If the kinsnum is negative (to turn off an instrument), this test is bypassed.

kmaxnum – maximum number of simultaneous instances of instrument kinsnum allowed. If
the number of extant instances of kinsnum is >= kmaxnum, no new event is generated. If
kmaxnum is <= 0, it is not used to limit event generation. If the kinsnum is negative (to
turn off an instrument), this test is bypassed.

kinsnum – instrument number. Equivalent to p1 in a score i statement.

kwhen – start time of the new event. Equivalent to p2 in a score i statement. Measured
from the time of the triggering event. kwhen must be >= 0. If kwhen > 0, the instrument
will not be initialized until the actual time when it should start performing.

kdur – duration of event. Equivalent to p3 in a score i statement. If kdur = 0, the
instrument will only do an initialization pass, with no performance. If kdur is negative, a
held note is initiated. (See ihold and i statement.)

kp4, kp5, etc. – Equivalent to p4, p5, etc., in a score i statement.

Note: While waiting for events to be triggered by schedkwhen, the performance must be
kept going, or Csound may quit if no score events are expected. To guarantee continued
performance, an f0 statement may be used in the score.

AUTHOR
Rasmus Ekman
EMS
Stockholm, Sweden
New in Csound version 3.59

The Public Csound Reference Manual Version 4.10 Instrument Control: Instrument Invocation Page 6-4

6.3 turnon

turnonturnonturnonturnon insnum[,itime]

DESCRIPTION
Activate an instrument, for an indefinite time.

 INITIALIZATION
insnum – instrument number to be activated

itime – delay, in seconds, after which instrument insnum will be activated. Default is 0.

PERFORMANCE
turnon activates instrument insnum after a delay of itime seconds, or immediately if itime
is not specified. Instrument is active until explicitly turned off. (See turnoff.)

The Public Csound Reference Manual Version 4.10 Instrument Control: Duration Control Statements Page 7-1

7 INSTRUMENT CONTROL: DURATION
CONTROL STATEMENTS

7.1 ihold, turnoff

iholdiholdiholdihold
turnoffturnoffturnoffturnoff

DESCRIPTION
These statements permit the current note to modify its own duration.

ihold – this i-time statement causes a finite-duration note to become a “held” note. It thus
has the same effect as a negative p3 (see score i Statement), except that p3 here remains
positive and the instrument reclassifies itself to being held indefinitely. The note can be
turned off explicitly with turnoff, or its space taken over by another note of the same
instrument number (i.e. it is tied into that note). Effective at i-time only; no-op during a
reinit pass.

turnoff – this p-time statement enables an instrument to turn itself off. Whether of finite
duration or “held”, the note currently being performed by this instrument is immediately
removed from the active note list. No other notes are affected.

EXAMPLE
The following statements will cause a note to terminate when a control signal passes a
certain threshold (here the Nyquist frequency).

k1 exponexponexponexpon 440, p3/10,880 ; begin gliss and continue
if k1 <<<< srsrsrsr/2 kgotokgotokgotokgoto contin ; until Nyquist detected

turnoffturnoffturnoffturnoff ; then quit
contin:
a1 osciloscilosciloscil a1, k1, 1

The Public Csound Reference Manual Version 4.10 Instrument Control: Duration Control Statements Page 7-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Real-time Performance Control Page 8-1

8 INSTRUMENT CONTROL: REAL-TIME
PERFORMANCE CONTROL

8.1 active

ir activeactiveactiveactive insnum

DESCRIPTION
Returns the number of active instances of an instrument.

INITIALIZATION
insnum – number of the instrument to be reported

PERFORMANCE
active returns the number of active instances of instrument number insnum at the time it
is called.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
July, 1999
New in Csound version 3.57

The Public Csound Reference Manual Version 4.10 Instrument Control: Real-time Performance Control Page 8-2

8.2 cpuprc, maxal loc, preal loc

cpuprccpuprccpuprccpuprc insnum, ipercent
maxallocmaxallocmaxallocmaxalloc insnum, icount
preallocpreallocpreallocprealloc insnum, icount

DESCRIPTION
Control allocation of cpu resources on a per-instrument basis, to optimize real-time output.

INITIALIZATION
insnum – instrument number

ipercent – percent of cpu processing-time to assign. Can also be expressed as a fractional
value.

icount – number of instrument allocations

PERFORMANCE
cpuprc sets the cpu processing-time percent usage of an instrument, in order to avoid
buffer underrun in real-time performances, enabling a sort of polyphony theshold. The user
must set ipercent value for each instrument to be activated in real-time. Assuming that the
total theoretical processing time of the cpu of the computer is 100%, this percent value can
only be defined empirically, because there are too many factors that contribute to limiting
real-time polyphony in different computers.

For example, if ipercent is set to 5% for instrument 1, the maximum number of voices that
can be allocated in real-time, is 20 (5% * 20 = 100%). If the user attempts to play a further
note while the 20 previous notes are still playing, Csound inhibits the allocation of that
note and will display the following warning message:

can’t allocate last note because it exceeds 100% of cpu time
In order to avoid audio buffer underruns, it is suggested to set the maximum number of
voices slightly lower than the real processing power of the computer. Sometimes an
instrument can require more processing time than normal. If, for example, the instrument
contains an oscillator which reads a table that doesn’t fit in cache memory, it will be
slower than normal. In addition, any program running concurrently in multitasking, can
subtract processing power to varying degrees.

At the start, all instruments are set to a default value of ipercent = 0.0% (i.e. zero
processing time or rather infinite cpu processing-speed). This setting is OK for deferred-
time sessions.

maxalloc limits the number of allocations of an instrument. prealloc creates space for
instruments but does not run them.

All instances of cpuprc, maxalloc, and prealloc must be defined in the header section, not
in the instrument body.

The Public Csound Reference Manual Version 4.10 Instrument Control: Real-time Performance Control Page 8-3

EXAMPLE

sr = 44100
kr = 441
ksmps = 100
nchnls = 2
cpuprc 1, 2.5 ; set instr 1 to 2.5% of processor power,

; i.e. maximum 40 voices (2.5% * 40 = 100%)
cpuprc 2, 33.333 ; set instr 2 to 33.333% of processor power,

; i.e. maximum 3 voices (33.333% * 3 = 100%)

instr 1
...body...
endin

instr 2
....body...
endin

AUTHOR
Gabriel Maldonado
Italy
July, 1999
New in Csound version 3.57

The Public Csound Reference Manual Version 4.10 Instrument Control: Real-time Performance Control Page 8-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Time Reading Page 9-1

9 INSTRUMENT CONTROL: TIME
READING

9.1 timek, t imes, t imeinstk, t imeinsts

ir timektimektimektimek
kr timektimektimektimek
ir timestimestimestimes
kr timestimestimestimes
kr timeinstktimeinstktimeinstktimeinstk
kr timeinststimeinststimeinststimeinsts

DESCRIPTION
Opcodes to read absolute time since the start of the performance or of an instance of an
instrument – in two formats.

PERFORMANCE
timek is for time in krate cycles. So with:

srsrsrsr = 44100
krkrkrkr = 6300
ksmpsksmpsksmpsksmps = 7

then after half a second, the timek opcode would report 3150. It will always report an
integer.

Time in seconds is available with times. This would return 0.5 after half a second.

times and timek can also operate only at the start of the instance of the instrument. Both
produce an i-rate variable (starting with i or gi) as their output.

timek and times can both produce a k-rate variable for output.

There are no input parameters.

timeinstk and timeinsts are similar to timek and times, except they return the time since
the start of this instance of the instrument.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Instrument Control: Time Reading Page 9-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Clock Control Page 10-1

10 INSTRUMENT CONTROL: CLOCK
CONTROL

10.1 clockon, c lockoff, readclock

clockonclockonclockonclockon inum
clockoffclockoffclockoffclockoff inum

ir readclockreadclockreadclockreadclock inum

DESCRIPTION
Starts and stops one of a number of internal clocks, and reads the value of a clock.

INITIALIZATION
inum – the number of a clock. There are 32 clocks numbered 0 through 31. All other values
are mapped to clock number 32.

ir – value at i-time, of the clock specified by inum

PERFORMANCE
Between a clockon and a clockoff, the CPU time used, is accumulated in the clock. The
precision is machine dependent, but is the millisecond range on UNIX and Windows
systems.

readclock reads the current value of a clock at initialization time.

Note: there is no way to zero a clock.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
July, 1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Instrument Control: Clock Control Page 10-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-1

11 INSTRUMENT CONTROL: SENSING AND
CONTROL

11.1 pitch
koct, pitchpitchpitchpitch asig, iupdte, ilo, ihi, idbthresh[, ifrqs, iconf,\\
kamp istrt, iocts, iq, inptls, irolloff, iskip]

DESCRIPTION
Using the same techniques as spectrum and specptrk, pitch tracks the pitch of the signal
in octave point decimal form, and amplitude in dB.

INITIALIZATION
iupdte – length of period, in seconds, that outputs are updated

ilo, ihi – range in which pitch is detected, expressed in octave point decimal

idbthresh – amplitude, expressed in decibels, necessary for the pitch to be detected. Once
started it continues until it is 6 dB down.

ifrqs – number of divisions of an octave. Default is 12 and is limited to 120.

iconf – the number of conformations needed for an octave jump. Default is 10.

istrt – starting pitch for tracker. Default value is (ilo + ihi)/2.

iocts – number of octave decimations in spectrum. Default is 6.

iq – Q of analysis filters. Default is 10.

inptls – number of harmonics, used in matching. Computation time increases with the
number of harmonics. Default is 4.

irolloff – amplitude rolloff for the set of filters expressed as fraction per octave. Values
must be positive. Default is 0.6.

iskip – if non-zero, skips initialization

PERFORMANCE
pitch analyzes the input signal, asig, to give a pitch/amplitude pair of outputs, for the
strongest frequency in the signal. The value is updated every iupdte seconds.

The number of partials and rolloff fraction can effect the pitch tracking, so some
experimentation may be necessary. Suggested values are 4 or 5 harmonics, with rolloff 0.6,
up to 10 or 12 harmonics with rolloff 0.75 for complex timbres, with a weak fundamental.

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-2

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
April, 1999
New in Csound version 3.54

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-3

11.2 pitchamdf

kcps, pitchamdfpitchamdfpitchamdfpitchamdf asig, imincps, imaxcps [, icps[, imedi[, idowns[,//
krms iexcps]]]]

DESCRIPTION
Follows the pitch of a signal based on the AMDF method (Average Magnitude Difference
Function). Outputs pitch and amplitude tracking signals. The method is quite fast and
should run in real-time. This technique usually works best for monophonic signals.

INITIALIZATION
imincps – estimated minimum frequency (expressed in Hz) present in the signal

imaxcps – estimated maximum frequency present in the signal

icps – estimated initial frequency of the signal. If 0, icps = (imincps+imaxcps) / 2. The
default is 0.

imedi – size of median filter applied to the output kcps. The size of the filter will be
imedi*2+1. If 0, no median filtering will be applied. The default is 1.

idowns – downsampling factor for asig. Must be an integer. A factor of idowns>1 results in
faster performance, but may result in worse pitch detection. Useful range is 1 – 4. The
default is 1.

iexcps – how frequently pitch analysis is executed, expressed in Hz. If 0, iexcps is set to
imincps. This is usually reasonable, but experimentation with other values may lead to
better results. Default is 0.

PERFORMANCE
kcps – pitch tracking output

krms – amplitude tracking output

pitchamdf usually works best for monophonic signals, and is quite reliable if appropriate
initial values are chosen. Setting imincps and imaxcps as narrow as possible to the range of
the signal’s pitch, results in better detedtion and performance.

Because this process can only detect pitch after an initial delay, setting icps close to the
signal’s real initial pitch prevents spurious data at the beginning.

The median filter prevents kcps from jumping. Experiment to determine the optimum value
for imedi for a given signal.

Other initial values can usually be left at the default settings. Lowpass filtering of asig
before passing it to pitchamdf, can improve preformance, especially with complex
waveforms.

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-4

EXAMPLE

ginput ftgenftgenftgenftgen 1, 0, 0, -1, "input.wav", 0, 4, 0 ; input signal
giwave ftgenftgenftgenftgen 2, 0, 1024, 10, 1, 1, 1, 1 ; synth wave

instrinstrinstrinstr 1
asig loscilloscilloscilloscil 1, 1, ginput, 1 ; get input signal

; with original freq
asig tonetonetonetone asig, 1000 ; lowpass-filter
kcps, krms pitchamdfpitchamdfpitchamdfpitchamdf asig, 150, 500, 200 ; extract pitch

; and envelope
asig1 osciloscilosciloscil krms, kcps, iwave ; "resynthesize"

; with some waveform
outoutoutout asig1
endinendinendinendin

AUTHOR
Peter Neubäcker
Munich, Germany
August, 1999
New in Csound version 3.59

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-5

11.3 tempest

ktemp tempesttempesttempesttempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim,
ixfdbak, istartempo, ifn[, idisprd, itweek]

DESCRIPTION
Estimate the tempo of beat patterns in a control signal.

INITIALIZATION
iprd – period between analyses (in seconds). Typically about .02 seconds.

imindur – minimum duration (in seconds) to serve as a unit of tempo. Typically about .2
seconds.

imemdur – duration (in seconds) of the kin short-term memory buffer which will be
scanned for periodic patterns. Typically about 3 seconds.

ihp – half-power point (in Hz) of a low-pass filter used to smooth input kin prior to other
processing. This will tend to suppress activity that moves much faster. Typically 2 Hz.

ithresh- loudness threshold by which the low-passed kin is center-clipped before being
placed in the short-term buffer as tempo-relevant data. Typically at the noise floor of the
incoming data.

ihtim – half-time (in seconds) of an internal forward-masking filter that masks new kin data
in the presence of recent, louder data. Typically about .005 seconds.

ixfdbak – proportion of this unit’s anticipated value to be mixed with the incoming kin
prior to all processing. Typically about .3.

istartempo – initial tempo (in beats per minute). Typically 60.

ifn – table number of a stored function (drawn left-to-right) by which the short-term
memory data is attenuated over time.

idisprd (optional) – if non-zero, display the short-term past and future buffers every idisprd
seconds (normally a multiple of iprd). The default value is 0 (no display).

itweek (optional) – fine-tune adjust this unit so that it is stable when analyzing events
controlled by its own output. The default value is 1 (no change).

PERFORMANCE
tempest examines kin for amplitude periodicity, and estimates a current tempo. The input
is first low-pass filtered, then center-clipped, and the residue placed in a short-term
memory buffer (attenuated over time) where it is analyzed for periodicity using a form of
autocorrelation. The period, expressed as a tempo in beats per minute, is output as ktemp.
The period is also used internally to make predictions about future amplitude patterns, and
these are placed in a buffer adjacent to that of the input. The two adjacent buffers can be
periodically displayed, and the predicted values optionally mixed with the incoming signal
to simulate expectation.

This unit is useful for sensing the metric implications of any k-signal (e.g.- the RMS of an
audio signal, or the second derivative of a conducting gesture), before sending to a tempo
statement.

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-6

EXAMPLE

ksum specsumspecsumspecsumspecsum wsignal, 1 ; sum the amps of a spectrum
ktemp tempesttempesttempesttempest ksum, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995
 ; and look for beats

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-7

11.4 fol low

ar followfollowfollowfollow asig, idt

DESCRIPTION
Envelope follower unit generator.

INITIALIZATION
idt – This is the period, in seconds, that the average amplitude of asig is reported. If the
frequency of asig is low then idt must be large (more than half the period of asig)

PERFORMANCE
asig – This is the signal from which to extract the envelope.

EXAMPLE
 k1 linelinelineline 0, p3, 30000 ; Make k1 a simple envelope
 a1 osciloscilosciloscil k1, 1000, 1 ; Make a simple signal using k1
 ak1 followfollowfollowfollow a1, .02 ; ak1 is now like k1
 a2 osciloscilosciloscil ak1, 1000, 1 ; Make a simple signal using ak1
 outoutoutout a2 ; Both a1 and a2 are the same

To avoid zipper noise, by discontinuities produced from complex envelope tracking, a
lowpass filter could be used, to smooth the estimated envelope.

AUTHOR
Paris Smaragdis
MIT, Cambridge
1995

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-8

11.5 tr igger

kout triggertriggertriggertrigger ksig, kthreshold, kmode

DESCRIPTION
Informs when a krate signal crosses a threshold.

PERFORMANCE
ksig – input signal

kthreshold – trigger threshold

kmode – can be 0 , 1 or 2

Normally trigger outputs zeroes: only each time ksig crosses kthreshold trigger outputs a 1.
There are three modes of using ktrig:

• kmode = 0 – (down-up) ktrig outputs a 1 when current value of ksig is higher than
kthreshold, while old value of ksig was equal to or lower than kthreshold.

• kmode = 1 – (up-down) ktrig outputs a 1 when current value of ksig is lower than
kthreshold while old value of ksig was equal or higher than kthreshold.

• kmode = 2 – (both) ktrig outputs a 1 in both the two previous cases.

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-9

11.6 peak

kr peakpeakpeakpeak ksig
kr peakpeakpeakpeak asig

DESCRIPTION
These opcodes maintain the output k-rate variable as the peak absolute level so far
received.

PERFORMANCE
kr – Output equal to the highest absolute value received so far. This is effectively an input
to the opcode as well, since it reads kr in order to decide whether to write something
higher into it.

ksig – k-rate input signal.

asig – a-rate input signal.

DEPRECATED NAME
Prior to Csound version 3.63, the k-rate version of peak was called peakk. peak is now
used with either k- or a-rate input.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-10

11.7 xyin, tempo

kx, ky xyinxyinxyinxyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit]
tempotempotempotempo ktempo, istartempo

DESCRIPTION
Sense the cursor position in an output window. Apply tempo control to an uninterpreted
score. When xyin is called the position of the mouse within the output window is used to
reply to the request. This simple mechanism does mean that only one xyin can be used
accurately at once. The position of the mouse is reported in the output window.

INITIALIZATION
iprd- period of cursor sensing (in seconds). Typically .1 seconds.

xmin, xmax, ymin, ymax – edge values for the x-y coordinates of a cursor in the input
window.

ixinit, iyinit (optional) – initial x-y coordinates reported; the default values are 0,0. If
these values are not within the given min-max range, they will be coerced into that range.

istartempo – initial tempo (in beats per minute). Typically 60.

PERFORMANCE
xyin samples the cursor x-y position in an input window every iprd seconds. Output values
are repeated (not interpolated) at the k-rate, and remain fixed until a new change is
registered in the window. There may be any number of input windows. This unit is useful
for real-time control, but continuous motion should be avoided if iprd is unusually small.

tempo allows the performance speed of Csound scored events to be controlled from within
an orchestra. It operates only in the presence of the Csound -t flag. When that flag is set,
scored events will be performed from their uninterpreted p2 and p3 (beat) parameters,
initially at the given command-line tempo. When a tempo statement is activated in any
instrument (ktempo 0.), the operating tempo will be adjusted to ktempo beats per minute.
There may be any number of tempo statements in an orchestra, but coincident activation
is best avoided.

EXAMPLE

kx,ky xyinxyinxyinxyin .05, 30, 0, 120, 0, 75 ; sample the cursor
 tempotempotempotempo kx, 75 ; and control the tempo of performance

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-11

11.8 fol low2

ar follow2follow2follow2follow2 asig, katt, krel

DESCRIPTION
A controllable envelope extractor using the algorithm attributed to Jean-Marc Jot.

PERFORMANCE
asig – the input signal whose envelope is followed

katt – the attack rate (60dB attack time in seconds)

krel – the decay rate (60dB decay time in seconds)

The output tracks the amplitude envelope of the input signal. The rate at which the output
grows to follow the signal is controlled by the katt, and the rate at which it decreases in
response to a lower amplitude, is controlled by the krel. This gives a smoother envelope
than follow.

EXAMPLE

a1 follow2follow2follow2follow2 ain, 0.01, .1

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
February, 2000
New in Csound version 4.03

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-12

11.9 setctr l , control

setctrlsetctrlsetctrlsetctrl inum, kval, itype
kout controlcontrolcontrolcontrol knum

DESCRIPTION
Configurable slider controls for realtime user input. Requires Winsound or TCL/TK.

setctrl sets a slider to a specific value, or sets a minimum or maximum range.

control reads a slider's value.

INITIALIZATION
inum – number of the slider to set

itype – type of value sent to the slider as follows:
• 1 – set the current value. Initial value is 0.
• 2 – set the minimum value. Default is 0.
• 3 – set the maximum value. Default is 127.
• 4 – set the label. (New in Csound version 4.09)

PERFORMANCE
kval – value to be sent to the slider

Calling setctrl or control will create a new slider on the screen. There is no theoretical
limit to the number of sliders. Windows and TCL/TK use only integers for slider values, so
the values may need rescaling. GUIs usually pass values at a fairly slow rate, so it may be
advisable to pass the output of control through port.

EXAMPLE

#define SLIDERNUM # 6 #
instrinstrinstrinstr 1
kgotokgotokgotokgoto continue ; We don't want to configure sliders at k-

 ; rate!

; Set min=10, max=1000, actual=20
 setctrlsetctrlsetctrlsetctrl $SLIDERNUM., 20, 0
 setctrlsetctrlsetctrlsetctrl $SLIDERNUM., 10, 1
 setctrlsetctrlsetctrlsetctrl $SLIDERNUM., 1000, 2
 continue:
kcHz controlcontrolcontrolcontrol $SLIDERNUM. ; Read values with smoothing

 kcHz portportportport kcHz, .02
; ... etc

endinendinendinendin

AUTHOR
John ffitch
University of Bath, Codemist. Ltd.
Bath, UK
July, 2000
New in Csound version 4.06

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-13

11.10 button, checkbox

kr buttonbuttonbuttonbutton inum
kr checkboxcheckboxcheckboxcheckbox inum

DESCRIPTION
Sense on-screen controls. Needs Windows or TCL/TK.

INITIALIZATION
inum – the number of the button or checkbox. If it does not exist, it is made on-screen at
initialization.

PERFORMANCE
If the button has been pushed since the last k-period, then return 1, otherwise return 0. If
the checkbox is set (pushed) then return 1, if not, return 0.

EXAMPLE
 Increase pitch while a checkbox is set, and extend duration for each push of a button.

instrinstrinstrinstr 1
kcps = cpsoct(p5)
k1 checkcheckcheckcheck 1

ifififif (k1 == 1) kcps = kcps * 1.1
a1 osciloscilosciloscil p4, kcps, 1

outoutoutout a1

k2 buttonbuttonbuttonbutton 1
ifififif (k2 == 1) p3 = p3 + 0.1
endinendinendinendin

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
September, 2000
New in Csound version 4.08

The Public Csound Reference Manual Version 4.10 Instrument Control: Sensing and Control Page 11-14

11.11 sensekey

kr sensekeysensekeysensekeysensekey

DESCRIPTION
Returns the ASCII code of a key that has been pressed, or -1 if no key has been pressed.

PERFORMANCE
At release, this has not been properly verified, and seems not to work at all on Windows.

AUTHOR
John ffitch
University of Bath, Codemist. Ltd.
Bath, UK
October, 2000
New in Csound version 4.09

The Public Csound Reference Manual Version 4.10 Instrument Control: Conditional Values Page 12-1

12 INSTRUMENT CONTROL: CONDITIONAL
VALUES

12.1 >, <, >=, <=, ==, !=, ?

(a >>>> b ???? v1 :::: v2)
(a <<<< b ???? v1 :::: v2)
(a >=>=>=>= b ???? v1 :::: v2)
(a <=<=<=<= b ???? v1 :::: v2)
(a ======== b ???? v1 :::: v2)
(a !=!=!=!= b ???? v1 :::: v2)

DESCRIPTION
where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

In the above conditionals, a and b are first compared. If the indicated relation is true (a
greater than b, a less than b, a greater than or equal to b, a less than or equal to b, a
equal to b, a not equal to b), then the conditional expression has the value of v1; if the
relation is false, the expression has the value of v2. (For convenience, a sole “=” will
function as “= =”.)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is
determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<,
etc.), and ?, and :) are weaker than the arithmetic and logical operators (+, -, *, /, &&
and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements,
but do not form complete statements themselves.

EXAMPLE
 k2 = (k1 < p5/2 + p6 ? k1 : p7)

binds the terms p5/2 and p6. It will return the value k1 below this threshold, else the value
p7.

The Public Csound Reference Manual Version 4.10 Instrument Control: Conditional Values Page 12-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Instrument Control: Macros Page 13-1

13 INSTRUMENT CONTROL: MACROS

13.1 #define, $NAME, #undef

#define#define#define#define NAME # replacement text #
#define#define#define#define NAME(a’ b’ c’) # replacement text #
$NAME.$NAME.$NAME.$NAME.
#undef#undef#undef#undef NAME

DESCRIPTION
Macros are textual replacements which are made in the orchestra as it is being read. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and
call macros. This can save typing, and can lead to a coherent structure and consistent
style. This is similar to, but independent of, the macro system in the score language.

#define NAME – defines a simple macro. The name of the macro must begin with a letter
and can consist of any combination of letters and numbers. Case is significant. This form is
limiting, in that the variable names are fixed. More flexibility can be obtained by using a
macro with arguments, described below.

#define NAME(a’ b’ c’) – defines a macro with arguments. This can be used in more
complex situations. The name of the macro must begin with a letter and can consist of any
combination of letters and numbers. Within the replacement text, the arguments can be
substituted by the form: $A. In fact, the implementation defines the arguments as simple
macros. There may be up to 5 arguments, and the names may be any choice of letters.
Remember that case is significant in macro names.

$NAME. – calls a defined macro. To use a macro, the name is used following a $
character. The name is terminated by the first character which is neither a letter nor a
number. If it is necessary for the name not to terminate with a space, a period, which will
be ignored, can be used to terminate the name. The string, $NAME., is replaced by the
replacement text from the definition. The replacement text can also include macro calls.

#undef NAME – undefines a macro name. If a macro is no longer required, it can be
undefined with #undef NAME.

INITIALIZATION
replacement text # – The replacement text is any character string (not containing a #)
and can extend over multiple lines. The replacement text is enclosed within the #
characters, which ensure that additional characters are not inadvertently captured.

PERFORMANCE
Some care is needed with textual replacement macros, as they can sometimes do strange
things. They take no notice of any meaning, so spaces are significant. This is why, unlike
the C programming language, the definition has the replacement text surrounded by #
characters. Used carefully, this simple macro system is a powerful concept, but it can be
abused.

The Public Csound Reference Manual Version 4.10 Instrument Control: Macros Page 13-2

EXAMPLES
Simple Macro

#define#define#define#define REVERB #ga = ga+a1
outoutoutout a1#

instrinstrinstrinstr 1
 a1 osciloscilosciloscil
 $REVERB.

endinendinendinendin

instrinstrinstrinstr 2
 a1 repluckrepluckrepluckrepluck
 $REVERB.

enenenendindindindin

This will get expanded before compilation into:

instrinstrinstrinstr 1
 a1 osciloscilosciloscil
 ga = ga+a1

outoutoutout a1
endinendinendinendin

instrinstrinstrinstr 2
 a1 repluckrepluckrepluckrepluck
 ga = ga+a1

outoutoutout a1
endinendinendinendin

Macro With Arguments

#define REVERB(A) #ga = ga+$A.
out $A.#
instrinstrinstrinstr 1

 a1 osciloscilosciloscil
 $REVERB(a1)

endinendinendinendin

instrinstrinstrinstr 2
 a2 repluckrepluckrepluckrepluck
 $REVERB(a2)

endinendinendinendin

This will get expanded before compilation into:

instrinstrinstrinstr 1
 a1 osciloscilosciloscil
 ga = ga+a1

outoutoutout a1
endinendinendinendin

instrinstrinstrinstr 2
 a2 repluckrepluckrepluckrepluck
 ga = ga+a2

outoutoutout a2
endinendinendinendin

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 Instrument Control: Macros Page 13-3

13.2 #include

#include#include#include#include “filename”

DESCRIPTION:
It is sometimes convenient to have the orchestra arranged in a number of files, for example
with each instrument in a separate file. This style is supported by the #include facility
which is part of the macro system. A line containing the text

#include “filename”
where the character “ can be replaced by any suitable character. For most uses the double
quote symbol will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input.
There is currently a limit of 20 on the depth of included files and macros.

Another suggested use of #include would be to define a set of macros which are part of the
composer’s style.

An extreme form would be to have each instrument defines as a macro, with the
instrument number as a parameter. Then an entire orchestra could be constructed from a
number of #include statements followed by macro calls.

#include#include#include#include “clarinet”
#include#include#include#include “flute”
#include#include#include#include “bassoon”
$CLARINET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so take no cognizance of
any meaning.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 Instrument Control: Macros Page 13-4

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Instrument Control: Program Flow Control Page 14-1

14 INSTRUMENT CONTROL: PROGRAM
FLOW CONTROL

14.1 igoto, t igoto, kgoto, goto, if , t imout

igotoigotoigotoigoto label
tigototigototigototigoto label
kgotokgotokgotokgoto label
gotogotogotogoto label
ifififif ia R ib igotoigotoigotoigoto label
ifififif ka R kb kgotokgotokgotokgoto label
ifififif ia R ib gotogotogotogoto label
timouttimouttimouttimout istrt, idur, label

DESCRIPTION
where label is in the same instrument block and is not an expression, and where R is one of
the Relational operators (<, =, <=, ==, !=) (and = for convenience, see also under
Conditional Values).

These statements are used to control the order in which statements in an instrument block
are to be executed. i-time and p-time passes can be controlled separately as follows:

igoto – During the i-time pass only, unconditionally transfer control to the statement
labeled by label.

tigoto – similar to igoto, but effective only during an i-time pass at which a new note is
being ‘tied’ onto a previously held note (see i Statement); no-op when a tie has not taken
place. Allows an instrument to skip initialization of units according to whether a proposed
tie was in fact successful (see also tival, delay).

kgoto – During the p-time passes only, unconditionally transfer control to the statement
labeled by label.

goto – (combination of igoto and kgoto) Transfer control to label on every pass.

if...igoto – conditional branch at i-time, depending on the truth value of the logical
expression ia R ib. The branch is taken only if the result is true.

if...kgoto – conditional branch during p-time, depending on the truth value of the logical
expression ka R kb. The branch is taken only if the result is true.

if...goto – combination of the above. Condition tested on every pass.

timout – conditional branch during p-time, depending on elapsed note time. istrt and idur
specify time in seconds. The branch to label will become effective at time istrt, and will
remain so for just idur seconds. Note that timout can be reinitialized for multiple
activation within a single note (see example under reinit).

EXAMPLE
ifififif k3 p5 + 10 kgotokgotokgotokgoto next

The Public Csound Reference Manual Version 4.10 Instrument Control: Program Flow Control Page 14-2

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Instrument Control: Reinitialization Page 15-1

15 INSTRUMENT CONTROL:
REINITIALIZATION

15.1 reinit , r igoto, r ireturn

reinitreinitreinitreinit label
rigotorigotorigotorigoto label
rireturnrireturnrireturnrireturn

DESCRIPTION
These statements permit an instrument to reinitialize itself during performance.

reinit – whenever this statement is encountered during a p-time pass, performance is
temporarily suspended while a special Initialization pass, beginning at label and continuing
to rireturn or endin, is executed. Performance will then be resumed from where it left
off.

rigoto – similar to igoto, but effective only during a reinit pass (i.e., no-op at standard i-
time). This statement is useful for bypassing units that are not to be reinitialized.

rireturn – terminates a reinit pass (i.e., no-op at standard i-time). This statement, or an
endin, will cause normal performance to be resumed.

EXAMPLE
The following statements will generate an exponential control signal whose value moves
from 440 to 880 exactly ten times over the duration p3.

reset: timouttimouttimouttimout 0, p3 /10, contin ; after p3/10 seconds,
 reinitreinitreinitreinit reset ; reinit both timout
contin: exponexponexponexpon 440, p3/10,880 ; and expon

rireturnrireturnrireturnrireturn ; then resume perf

The Public Csound Reference Manual Version 4.10 Instrument Control: Reinitialization Page 15-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10Mathematical Operations: Arithmetic and Logic Operations Page 16-1

16 MATHEMATICAL OPERATIONS:
ARITHMETIC AND LOGIC OPERATIONS

16.1 - , +, &&, || , *, / , ^ , %

 ---- a (no rate restriction)
 ++++ a (no rate restriction)
a &&&&&&&& b (logical AND; not audio-rate)
a |||||||| b (logical OR; not audio-rate)
a ++++ b (no rate restriction)
a ---- b (no rate restriction)
a **** b (no rate restriction)
a //// b (no rate restriction)
a ^̂̂̂ b (b not audio-rate)
a %%%% b (no rate restriction)

DESCRIPTION
where the arguments a and b may be further expressions.

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign,
logical AND logical OR, add, subtract, multiply and divide. Note that a value or an
expression may fall between two of these operators, either of which could take it as its left
or right argument, as in

a + b * c.

In such cases three rules apply:

1. * and / bind to their neighbors more strongly than + and -. Thus the above expression is
taken as

a + (b * c)

with * taking b and c and then + taking a and b * c.

2. + and – bind more strongly than &&, which in turn is stronger than ||:

a && b – c || d

is taken as

(a && (b – c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a – b – c

is taken as

(a – b) – c

Parentheses may be used as above to force particular groupings.

The Public Csound Reference Manual Version 4.10Mathematical Operations: Arithmetic and Logic Operations Page 16-2

The operator ^ raises a to the b power. b may not be audio-rate. Use with caution as
precedence may not work correctly. See Section 5.2. New in Csound version 3.493.

The operator % returns the value of a reduced by b, so that the result, in absolute value, is
that of the absolute value of b, by repeated subtraction. This is the same as modulus
function in integers. New in Csound version 3.50.

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Mathematical Functions Page 17-1

17 MATHEMATICAL OPERATIONS:
MATHEMATICAL FUNCTIONS

17.1 int, frac, i , abs, exp, log, log10, sqrt

intintintint(x) (init- or control-rate args only)
fracfracfracfrac(x) (init- or control-rate args only)
iiii(x) (control-rate args only)
absabsabsabs(x) (no rate restriction)
expexpexpexp(x) (no rate restriction)
loglogloglog(x) (no rate restriction)
log10log10log10log10(x) (no rate restriction)
sqrtsqrtsqrtsqrt(x) (no rate restriction)

DESCRIPTION
Where the argument within the parentheses may be an expression. These functions
perform arithmetic translation from units of one kind to units of another. The result can
then be a term in a further expression.

int(x) – returns the integer part of x.

frac(x) – returns the fractional part of x.

i(x) – returns an init-type equivalent of the argument (k-rate)

abs(x) – returns the absolute value of x.

exp(x) – returns e raised to the xth power.

log(x) – returns the natural log of x (x positive only).

log10(x) – returns the base 10 log of x (x positive only).

sqrt(x) – returns the square root of x (x non-negative).

Note that for log, log10, and sqrt the argument value is restricted.

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Mathematical Functions Page 17-2

17.2 powoftwo, logbtwo

powoftwopowoftwopowoftwopowoftwo(x) (init-rate or control-rate args only)
logbtwologbtwologbtwologbtwo(x) (init-rate or control-rate args only)

DESCRIPTION
Power-of-two operations.

PERFORMANCE
powoftwo() function returns 2 ^ x and allows positive and negatives numbers as argument.
The range of values admitted in powoftwo() is -5 to +5 allowing a precision more fine than
one cent in a range of ten octaves. If a greater range of values is required, use the slower
opcode pow.

logbtwo() returns the logarithm base two of x. The range of values admitted as argument is
.25 to 4 (i.e. from -2 octave to +2 octave response). This function is the inverse of
powoftwo().

These functions are fast, because they read values stored in tables. Also they are very
useful when working with tuning ratios. They work at i- and k-rate.

AUTHORS
Gabriel Maldonado
Italy
June, 1998

John ffitch
University of Bath, Codemist, Ltd.
Bath, UK
July, 1999
New in Csound version 3.57

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Trigonometric Functions Page 18-1

18 MATHEMATICAL OPERATIONS:
TRIGONOMETRIC FUNCTIONS

18.1 sin, cos, tan, s ininv, cosinv, taninv,
s inh, cosh, tanh

sinsinsinsin(x) (no rate restriction)
coscoscoscos(x) (no rate restriction)
tantantantan(x) (no rate restriction)
sininvsininvsininvsininv(x) (no rate restriction)
cosinvcosinvcosinvcosinv(x) (no rate restriction)
taninvtaninvtaninvtaninv(x) (no rate restriction)
sinhsinhsinhsinh(x) (no rate restriction)
coshcoshcoshcosh(x) (no rate restriction)
tanhtanhtanhtanh(x) (no rate restriction)

DESCRIPTION
Where the argument within the parentheses may be an expression. These functions
perform trigonometric conversions. The result can then be a term in a further expression.

sin(x) – returns the sine of x (x in radians).

cos(x) – returns the cosine of x (x in radians).

tan (x) – returns the tangent of x.

sininv(x) – returns the arcsine of x.

cosinv(x) – returns the arcosine of x.

taninv(x) – returns the arctangent of x.

sinh(x) – returns the hyperbolic sine of x.

cosh(x) – returns the hyperbolic cosine of x.

tanh (x) – returns the hyperbolic tangent of x .

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Trigonometric Functions Page 18-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Amplitude Functions Page 19-1

19 MATHEMATICAL OPERATIONS:
AMPLITUDE FUNCTIONS

19.1 dbamp, ampdb dbfsamp, ampdbfs

dbampdbampdbampdbamp(x) (init- or control-rate args only)
ampdbampdbampdbampdb(x) (no rate restriction)

dbfsampdbfsampdbfsampdbfsamp(x) (init- or control-rate args only)
ampdbfsampdbfsampdbfsampdbfs(x) (no rate restriction)

DESCRIPTION
Where the argument within the parentheses may be an expression. These functions
perform conversions between raw amplitude values and their decibel equivelents. The
result can then be a term in a further expression.

dbamp(x) – returns the decibel equivalent of the raw amplitude x.

ampdb(x) – returns the amplitude equivalent of the decibel value x. Thus:
 60 dB = 1000
 66 dB = 1995.262
 72 dB = 3891.07
 78 dB = 7943.279
 84 dB = 15848.926
 90 dB = 31622.764

dbfsamp(x) – returns the decibel equivalent, relative to full scale amplitude, of the raw
amplitude x. Full scale is assumed to be 16 bit. New is Csound version 4.10.

ampdbfs(x) – returns the amplitude equivalent of the decibel value x, which is relative to
full scale amplitude. Full scale is assumed to be 16 bit. New is Csound version 4.10.

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Amplitude Functions Page 19-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Random Functions Page 20-1

20 MATHEMATICAL OPERATIONS:
RANDOM FUNCTIONS

20.1 rnd, birnd

rndrndrndrnd(x) (init- or control-rate args only)
birndbirndbirndbirnd(x) (init- or control-rate args only)

DESCRIPTION
Where the argument within the parentheses may be an expression. These value converters
sample a global random sequence, but do not reference seed. The result can be a term in
a further expression.

PERFORMANCE

rnd(x) – returns a random number in the unipolar range 0 to x.

birnd(x) – returns a random number in the bipolar range -x to x. rnd and birnd obtain values
from a global pseudo-random number generator, then scale them into the requested range.
The single global generator will thus distribute its sequence to these units throughout the
performance, in whatever order the requests arrive

AUTHOR
Barry Vercoe
MIT
Cambridge, Massachusetts
1997

The Public Csound Reference Manual Version 4.10 Mathematical Operations: Random Functions Page 20-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-1

21 MATHEMATICAL FUNCTIONS: OPCODE
EQUIVALENTS OF FUNCTIONS

21.1 sum

ar sumsumsumsum asig1, asig2[, asig3...asigN]

DESCRIPTION
Sums any number of a-rate signals.

PERFORMANCE
asig1, etc. – a-rate signals to be summed (mixed or added).

AUTHOR
Gabriel Maldonado
Italy
April, 1999
New in Csound version 3.54

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-2

21.2 product

ar productproductproductproduct asig1, asig2[, asig3...asigN]

DESCRIPTION
Multiplies any number of a-rate signals.

PERFORMANCE
asig1, etc. – a-rate signals to be multiplied.

AUTHOR
Gabriel Maldonado
Italy
April, 1999
New in Csound version 3.54

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-3

21.3 pow

ir powpowpowpow iarg, ipow
ir = iarg ^ ipow
kr powpowpowpow karg, kpow[, inorm]
ar powpowpowpow aarg, kpow[, inorm]

DESCRIPTION
Computes xarg to the power of kpow (or ipow) and scales the result by inorm.

INITIALIZATION
inorm – The number to divide the result (default to 1). This is especially useful if you are
doing powers of a- or k- signals where samples out of range are extremely common!

iarg – i-rate base

ipow – i-rate exponent

PERFORMANCE
karg – k-rate base.

kpow – k-rate exponent

aarg – a-rate base.

EXAMPLES
i2t2 powpowpowpow 2,2 ; Computes 2^2.
kline linelinelineline 0, 1, 4
kexp powpowpowpow kline, 2, 4

This feeds a linear function to pow and scales that to the line’s peak value. The output will
be an exponential curve with the same range as the input line.
iamp powpowpowpow 10, 2
a1 osciloscilosciloscil iamp, 100, 1
a2 powpowpowpow a1, 2, iamp

outoutoutout a2

This will output a sine with its negative part folded over the amplitude axis. The peak
value will be iamp = 10^2 = 100.

The first line could also be written:

i2t2 = = = = 2 ^̂̂̂ 2

Use ^ with caution in arithmetical statements, as the precedence may not be correct. This
operator is new as of Csound version 3.493.

DEPRECATED NAMES
pow was originally three opcodes called ipow, kpow, and apow. As of Csound version 3.48
those names are deprecated, and the three seperate opcodes replaced by pow.

AUTHOR
Paris Smaragdis
MIT, Cambridge
1995

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-4

21.4 taninv2

ir taninv2taninv2taninv2taninv2 ix, iy
kr taninv2taninv2taninv2taninv2 kx, ky
ar taninv2taninv2taninv2taninv2 ax, ay

DESCRIPTION
Returns the arctangent of iy/ix, ky/kx, or ay/ax. If either x or y is zero, taninv2 returns
zero.

INITIALIZATION
ix, iy – values to be converted

PERFORMANCE
kx, ky – control rate signals to be converted

ax, ay – audio rate signals to be converted

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-5

21.5 mac, maca

 ar macmacmacmac asig1, ksig1, asig2[, ksig2, asig3, ...asigN, ksigN]
 ar macamacamacamaca asig1, asig2[, asig3, asig4, asig5, ...asigN]

DESCRIPTION
Multiply and accumulate k- and/or a-rate signals.

PERFORMANCE
ksig1, etc. – k-rate input signals

asig1, etc. – a-rate input signals

mac multiplies and accumulates a- and k-rate signals. It is equivalent to:

 ar = asig1 + ksig1*asig2 + ksig2+asig3 + ...

maca multiplies and accumulates a-rate signals only. It is equivalent to:

 ar = asig1 + asig2*asig3 + asig4+asig5 + ...

AUTHOR
John ffitch
University of Bath, Codemist, Ltd.
Bath, UK
May, 1999
New in Csound version 3.55

The Public Csound Reference Manual Version 4.10Mathematical Functions: Opcode Equivalents of Functions Page 21-6

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Pitch Converters: Functions Page 22-1

22 PITCH CONVERTERS: FUNCTIONS

22.1 octpch, pchoct, cpspch, octcps,
cpsoct
octpchoctpchoctpchoctpch (pch) (init- or control-rate args only)
pchoctpchoctpchoctpchoct (oct) (init- or control-rate args only)
cpspchcpspchcpspchcpspch (pch) (init- or control-rate args only)
octcpsoctcpsoctcpsoctcps (cps) (init- or control-rate args only)
cpsoctcpsoctcpsoctcpsoct (oct) (no rate restriction)

DESCRIPTION
where the argument within the parentheses may be a further expression.

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Name Abbreviation

octave point pitch-class (8ve.pc) pch
octave point decimal oct
cycles per second cps (Hz)

The first two forms consist of a whole number, representing octave registration, followed
by a specially interpreted fractional part. For pch, the fraction is read as two decimal
digits representing the 12 equal-tempered pitch classes from .00 for C to.11 for B. For oct,
the fraction is interpreted as a true decimal fractional part of an octave. The two
fractional forms are thus related by the factor 100/12. In both forms, the fraction is
preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C
above, etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), 8.75 (oct),
or 7.21 (pch), etc. Microtonal divisions of the pch semitone can be encoded by using more
than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms
involved, the second morpheme describing the source and the first morpheme the object
(result). Thus

 cpspchcpspchcpspchcpspch(8.09)

will convert the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of
440. Since the argument is constant over the duration of the note, this conversion will take
place at i-time, before any samples for the current note are produced. By contrast, the
conversion

 cpsoctcpsoctcpsoctcpsoct(8.75 + k1)

which gives the value of A440 transposed by the octave interval k1 will repeat the
calculation every, k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an
exponential process that could be time-consuming when executed repeatedly. Csound now
uses a built-in table lookup to do this efficiently, even at audio rates.

The Public Csound Reference Manual Version 4.10 Pitch Converters: Functions Page 22-2

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Pitch Converters: Tuning Opcodes Page 23-1

23 PITCH CONVERTERS: TUNING
OPCODES

23.1 cps2pch, cpsxpch

icps cps2pchcps2pchcps2pchcps2pch ipch, iequal
icps cpsxpchcpsxpchcpsxpchcpsxpch ipch, iequal, irepeat, ibase

DESCRIPTION
Converts a pitch-class notation into cycles-per-second (Hz) for equal divisions of the octave
(for cps2pch) or for equal divisions of any interval. There is a restriction of no more than
100 equal divisions.

INITIALIZATION
ipch – Input number of the form 8ve.pc, indicating an ‘octave’ and which note in the
octave.

iequal – if positive, the number of equal intervals into which the ‘octave’ is divided. Must
be less than or equal to 100. If negative, is the number of a table of frequency multipliers.

irepeat – Number indicating the interval which is the ‘octave.’ The integer 2 corresponds
to octave divisions, 3 to a twelfth, 4 is two octaves, and so on. This need not be an integer,
but must be positive.

ibase – The frequency which corresponds to pitch 0.0

Note:

The following are essentially the same

ia = cpspchcpspchcpspchcpspch(8.02)
ib cps2pchcps2pchcps2pchcps2pch 8.02, 12
ic cpsxpchcpsxpchcpsxpchcpsxpch 8.02, 12, 2, 1.02197503906

These are opcodes not functions.

Negative values of ipch are allowed, but not negative irepeat, iequal or ibase.

EXAMPLE

inote cps2pchcps2pchcps2pchcps2pch p5, 19 ; convert oct.pch to
; cps in 19ET

inote cpsxpchcpsxpchcpsxpchcpsxpch p5, 12, 3, 261.62561 ; Pierce scale centered
; on middle A

inote cpsxpchcpsxpchcpsxpchcpsxpch p5, 21, 4, 16.35160062496 ; 10.5ET scale
The use of a table allows exotic scales by mapping frequencies in a table. For example
the table:
f2 0 16 -2 1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9

can be used with:
ip cps2pchcps2pchcps2pchcps2pch p4, -2

to get a 10 note scale of unequal divisions.

The Public Csound Reference Manual Version 4.10 Pitch Converters: Tuning Opcodes Page 23-2

AUTHOR
John ffitch
University of Bath/Codemist Ltd. Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)
Bath, UK
1997

The Public Csound Reference Manual Version 4.10 MIDI Support: Converters Page 24-1

24 MIDI SUPPORT: CONVERTERS

24.1 notnum, veloc, cpsmidi , cpsmidib,
octmidi , octmidib, pchmidi , pchmidib,
ampmidi , aftouch, pchbend, midictrl

ival notnumnotnumnotnumnotnum
ival velocvelocvelocveloc [ilow, ihigh]
icps cpsmidicpsmidicpsmidicpsmidi
icps cpsmidibcpsmidibcpsmidibcpsmidib [irange]
kcps cpsmidibcpsmidibcpsmidibcpsmidib [irange]
ioct octmidioctmidioctmidioctmidi
ioct octmidiboctmidiboctmidiboctmidib [irange]
koct octmidiboctmidiboctmidiboctmidib [irange]
ipch pchmidipchmidipchmidipchmidi
ipch pchmidibpchmidibpchmidibpchmidib [irange]
kpch pchmidibpchmidibpchmidibpchmidib [irange]
iamp ampmidiampmidiampmidiampmidi iscal[, ifn]
kaft aftouchaftouchaftouchaftouch [imin[, imax]]
ibend pchbendpchbendpchbendpchbend [imin[, imax]]
kbend pchbendpchbendpchbendpchbend [imin[, imax]]
ival midictrlmidictrlmidictrlmidictrl inum[imin[, imax]]
kval midictrlmidictrlmidictrlmidictrl inum[imin[, imax]]

DESCRIPTION
Get a value from the MIDI event that activated this instrument, or from a continuous MIDI
controller, and convert it to a locally useful format.

INITIALIZATION
iscal – i-time scaling factor.

ifn (optional) – function table number of a normalized translation table, by which the
incoming value is first interpreted. The default value is 0, denoting no translation.

inum, ictlno – MIDI controller number

initial – the initial value of the controller

ilow, ihigh – low and high ranges for mapping

irange – the pitch bend range in semitones

ichnl – the MIDI channel

imin, imax – set minimum and maximum limits on values obtained

The Public Csound Reference Manual Version 4.10 MIDI Support: Converters Page 24-2

PERFORMANCE
notnum, veloc – get the MIDI byte value (0 – 127) denoting the note number or velocity of
the current event.

cpsmidi, octmidi, pchmidi – get the note number of the current MIDI event, expressed in
cps, oct, or pch units for local processing.

cpsmidib, octmidib, pchmidib – get the note number of the current MIDI event, modify it
by the current pitch-bend value, and express the result in cps, oct, or pch units. Available
as an i-time value or as a continuous k-rate value.

ampmidi – get the velocity of the current MIDI event, optionally pass it through a
normalized translation table, and return an amplitude value in the range 0 – iscal.

aftouch, pchbend – get the current after-touch, or pitch-bend value for this channel,
rescaled to the range 0 – iscal. Note that this access to pitch-bend data is independent of
the MIDI pitch, enabling the value here to be used for any arbitrary purpose.

midictrl – get the current value (0 – 127) of a specified MIDI controller.

AUTHOR
Barry Vercoe – Mike Berry
MIT – Mills
May 1997

The Public Csound Reference Manual Version 4.10 MIDI Support: Converters Page 24-3

24.2 cpstmid

icps cpstmidcpstmidcpstmidcpstmid ifn

DESCRIPTION
This unit is similar to cpsmidi, but allows fully customized micro-tuning scales.

INITIALIZATION
ifn – function table containing the parameters (numgrades, interval, basefreq,
basekeymidi) and the tuning ratios.

PERFORMANCE
Init-rate only

cpsmid requires five parameters. The first, ifn, is the function table number of the tuning
ratios, and the other parameters must be stored in the function table itself. The function
table ifn should be generated by GEN2, with normalization inhibited. The first four values
stored in this function are:

1. numgrades – the number of grades of the micro-tuning scale

2. interval – the frequency range covered before repeating the grade ratios,for example 2
for one octave, 1.5 for a fifth etc.

3. basefreq – the base frequency of the scale in Hz

4. basekeymidi – the MIDI note number to which basefreq is assigned unmodified

After these four values, the user can begin to insert the tuning ratios. For example, for a
standard 12 note scale with the base frequency of 261 Hz assigned to the key number 60,
the corresponding f statement in the score to generate the table should be:

; numgrades basefreq tuning-ratios (equal temp)
; interval basekeymidi
f1 0 64 -2 12 2 261 60 1 1.059463094359 1.122462048309
1.189207115003 ..etc...

Another example with a 24 note scale with a base frequency of 440 assigned to the key
number 48, and a repetition interval of 1.5:

; numgrades basefreq tuning-ratios
; interval basekeymidi
f1 0 64 -2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: Converters Page 24-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 MIDI Support: Controller Input Page 25-1

25 MIDI SUPPORT: CONTROLLER INPUT

25.1 initc7, initc14, initc21

initc7initc7initc7initc7 ichan, ictlno, ivalue
initc14initc14initc14initc14 ichan, ictlno1, ictlno2, ivalue
initc21initc21initc21initc21 ichan, ictlno1, ictlno2, ictlno3, ivalue

DESCRIPTION
Initializes MIDI controller ictlno with ivalue

INITIALIZATION
ichan – MIDI channel

ictlno – controller number (initc7)

ictlno1 – most significant byte controller number

ictlno2 – in initc14 least significant byte controller number; in initc21 Medium Significant
Byte controller number

ictlno3 – least significant byte controller number

ivalue – floating point value (must be within 0 to 1)

PERFORMANCE
initc7, initc14, initc21 can be used together with both midicXX and ctrlXX opcodes for
initializing the first controller’s value. ivalue argument must be set with a number within 0
to 1. An error occurs if it is not. Use the following formula to set ivalue according with
midicXX and ctrlXX min and max range:

 ivalue = (initial_value – min) / (max – min)

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 MIDI Support: Controller Input Page 25-2

25.2 midic7, midic14, midic21, ctr l7,
ctr l14, ctr l21

idest midic7midic7midic7midic7 ictlno, imin, imax [, ifn]
kdest midic7midic7midic7midic7 ictlno, kmin, kmax [, ifn]
idest midic14midic14midic14midic14 ictlno1, ictlno2, imin, imax [, ifn]
kdest midic14midic14midic14midic14 ictlno1, ictlno2, kmin, kmax [, ifn]
idest midic21midic21midic21midic21 ictlno1, ictlno2, ictlno3, imin, imax [, ifn]
kdest midic21midic21midic21midic21 ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn]
idest ctrl7ctrl7ctrl7ctrl7 ichan, ictlno, imin, imax [,ifn]
kdest ctrl7ctrl7ctrl7ctrl7 ichan, ictlno, kmin, kmax [,ifn]
idest ctrl14ctrl14ctrl14ctrl14 ichan, ictlno1, ictlno2, imin, imax [,ifn]
kdest ctrl14ctrl14ctrl14ctrl14 ichan, ictlno1, ictlno2, kmin, kmax [,ifn]
idest ctrl21ctrl21ctrl21ctrl21 ichan, ictlno1, ictlno2, ictlno3, imin, imax [,ifn]
kdest ctrl21ctrl21ctrl21ctrl21 ichan, ictlno1, ictlno2, ictlno3, kmin, kmax [,ifn]

DESCRIPTION
Allow precise MIDI input controller signal.

INITIALIZATION
idest – output signal

ictlno – MIDI controller number (1-127)

ictlno1 – most-significant byte controller number (1-127)

ictlno2 – in midic14: least-significant byte controller number (1-127); in midic21: mid-
significant byte controller number (1-127)

ictlno3 – least-significant byte controller number (1-127)

imin – user-defined minimum floating-point value of output

imax – user-defined maximum floating-point value of output

ifn (optional) – table to be read when indexing is required. Table must be normalized.
Output is scaled according to imax and imin val.

PERFORMANCE
kdest – output signal

kmin – user-defined minimum floating-point value of output

kmax – user-defined maximum floating-point value of output

midic7 (i- and k-rate 7 bit MIDI control) allows floating point 7 bit MIDI signal scaled with a
minimum and a maximum range. It also allows optional non-interpolated table indexing. In
midic7 minimum and maximum values can be varied at k-rate. midic14 (i- and k-rate 14
bit MIDI control) do the same as the above with 14 bit precision. midic21 (i- and k-rate 21
bit MIDI control) do the same as the above with 21 bit precision. midic14 and midic21 can
use optional interpolated table indexing. They require two or three MIDI controllers as
input.

The Public Csound Reference Manual Version 4.10 MIDI Support: Controller Input Page 25-3

ctrl7, ctrl14, ctrl21 are very similar to midicXX opcodes the only differences are:

• ctrlXX UGs can be included in score oriented instruments without Csound crashes.
• They need the additional parameter ichan containing the MIDI channel of the

controller. MIDI channel is the same for all the controller used in a single ctrl14 or
ctrl21 opcode.

DEPRECATED NAMES
The opcode names imidic7, imidic14, imidic21, ictrl7, ictrl14, and ictrl21 have been
deprecated in Csound version 3.52. Instead use imidic7, imidic14, imidic21, ictrl7,
ictrl14, and ictrl21, respectively, with i-rate outputs.

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 MIDI Support: Controller Input Page 25-4

25.3 chanctrl

ival chanctrlchanctrlchanctrlchanctrl ichnl, ictlno[,ilow,ihigh]
kval chanctrlchanctrlchanctrlchanctrl ichnl, ictlno[,ilow,ihigh]

DESCRIPTION
Get the current value of a controller and optionally map it onto specified range.

INITIALIZATION
ichnl – the MIDI channel

ictlno – the MIDI controller number

ilow, ihigh – low and high ranges for mapping

AUTHOR
Mike Berry
Mills College
May 1997

The Public Csound Reference Manual Version 4.10 MIDI Support: Slider Banks Page 26-1

26 MIDI SUPPORT: SLIDER BANKS

26.1 s l ider8, s l ider16, s l ider32, s l ider64,
s l ider8f, s l ider16f, s l ider32f,
s l ider64f, s16b14, s32b14

i1, ..., i8 slider8slider8slider8slider8 ichan, ictlnum1, imin1, imax1, ifn1,,\\
ictlnum8, imin8, imax8, ifn8

k1, ..., k8 slider8slider8slider8slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
..., ictlnum8, imin8, imax8, init8, ifn8

i1, ..., i16 slider16slider16slider16slider16 ichan, ictlnum1, imin1, imax1, ifn1,,\\
ictlnum16, imin16, imax16, ifn16

k1, ..., k16 slider16slider16slider16slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
...., ictlnum16, imin16, imax16, init16, ifn16

i1, ..., i32 slider32slider32slider32slider32 ichan, ictlnum1, imin1, imax1, ifn1,,\\
ictlnum32, imin32, imax32, ifn32

k1, ..., k32 slider32slider32slider32slider32 ichan, ictlnum1, imin1, imax1, init1, fn1,\\
...., ictlnum32, imin32, imax32, init32, ifn32

i1, ..., i64 slider64slider64slider64slider64 ichan, ictlnum1, imin1, imax1, ifn1,,\\
ictlnum64, imin64, imax64, ifn64

k1, ..., k64 slider64slider64slider64slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
...., ictlnum64, imin64, imax64, init64, ifn64

k1, ..., k8 slider8fslider8fslider8fslider8f ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
icutoff1,, ictlnum8, imin8, imax8, init8,\\
ifn8, icutoff8

k1, ..., k16 slider16fslider16fslider16fslider16f ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
icutoff1, ,ictlnum16, imin16, imax16,\\
init16, ifn16, icutoff16

k1, ..., k32 slider32fslider32fslider32fslider32f ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
icutoff1, , ictlnum32, imin32, imax32,\\
init32, ifn32, icutoff32

k1, ..., k64 slider64fslider64fslider64fslider64f ichan, ictlnum1, imin1, imax1, init1, ifn1,\\
icutoff1, , ictlnum64, imin64, imax64,\\
init64, ifn64, icutoff64

i1, ..., i16 s16b14s16b14s16b14s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,\\
initvalue1, ifn1,, ictlno_msb16,\\
ictlno_lsb16, imin16, imax16, initvalue16, ifn16

k1, ..., k16 s16b14s16b14s16b14s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,\\
ifn1, ictlno_msb16, ictlno_lsb16, imin16,\\
imax16, ifn16

i1, ..., i32 s32b14s32b14s32b14s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,\\
initvalue1, ifn1,, ictlno_msb32,\\
ictlno_lsb32, imin32, imax32, initvalue32, ifn32

k1, ..., k32 s32b14s32b14s32b14s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,\\
ifn1,, ictlno_msb32, ictlno_lsb32, imin32,\\
imax32, ifn32

DESCRIPTION
MIDI slider control banks

The Public Csound Reference Manual Version 4.10 MIDI Support: Slider Banks Page 26-2

INITIALIZATION
i1 ... i64 – output values

ichan – MIDI channel (1-16)

ictlnum1 ... ictlnum64 – MIDI control number

ictlno_msb1 ictlno_msb32 – MIDI control number (most significant byte)

ictlno_lsb1 ictlno_lsb32 – MIDI control number (least significant byte)

imin1 ... imin64 – minimum values for each controller

imax1 ... imax64 – maximum values for each controller

init1 ... init64 – initial value for each controller

ifn1 ... ifn64 – function table for conversion for each controller

icutoff1 ... icutoff64 – low-pass filter cutoff frequency for each controller

PERFORMANCE
k1 ... k64 – output values

sliderN and sliderNf are banks of MIDI controllers, useful when using MIDI mixer such as
Kawai MM-16 or others for changing whatever sound parameter in real-time. The raw MIDI
control messages at the input port are converted to agree with iminN and imaxN, and an
initial value can be set. Also, an optional non-interpolated function table with a custom
translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a
valid function table number. When table translation is enabled (i.e. setting ifnN value to a
non-zero number referring to an already allocated function table), initN value should be
set equal to iminN or imaxN value, else the initial output value will not be the same as
specified in initN argument.

slider8 allows a bank of 8 different MIDI control message numbers, slider16 does the same
with a bank of 16 controls, and so on.

sliderNf filter the signal before output, for eliminating discontinuities due to the low
resolution of the MIDI (7 bit); the cutoff frequency can be set separately for each controller
(suggested range: .1 to 5 Hz).

As the input and output arguments are many, you can split the line using ‘\’ (backslash)
character (new in 3.47 version) to improve the readability. Using these opcodes is
considerably more efficient than using the separate ones (ctrl7 and tonek) when more
controllers are required.

In the i-rate version of sliderN, there is not an initial value input argument, because the
output is gotten directly from current status of internal controller array of Csound.

sNb14 opcode is the 14-bit version of this bank of controllers.

Warning: sliderNf opcodes do not output the required initial value immediately, but only
after some k-cycles, because the filter slightly delays the output.

The Public Csound Reference Manual Version 4.10 MIDI Support: Slider Banks Page 26-3

DEPRECATED NAMES
The opcode names islider8, islider16, islider32, islider64, is16b14, and is32b14 have
been deprecated as of Csound version 3.52. Use slider8, slider16, slider32, slider64,
s16b14, and s32b14, respectively, for i-rate output.

AUTHOR
Gabriel Maldonado
Italy
December 1998 (New in Csound version 3.50)

The Public Csound Reference Manual Version 4.10 MIDI Support: Slider Banks Page 26-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 MIDI Support: Generic I/O Page 27-1

27 MIDI SUPPORT: GENERIC I/O

27.1 midi in

kstatus, kchan, kdata1, kdata2 midiinmidiinmidiinmidiin

DESCRIPTION
Returns a generic MIDI message received by the MIDI IN port

PERFORMANCE
kstatus – the type of MIDI message. Can be:

• 128 (note off),
• 144 (note on),
• 160 (polyphonic aftertouch),
• 176 (control change),
• 192 (program change),
• 208 (channel aftertouch),
• 224 (pitch bend)
• 0 if no MIDI messages are pending in the MIDI IN buffer.

kchan – MIDI channel (1-16)

kdata1, kdata2 – message-dependent data values

midiin has no input arguments, because it reads at the MIDI in port implicitly. It works at k-
rate. Normally (i.e., when no messages are pending) kstatus is zero, only when MIDI data
are present in the MID IN buffer, is kstatus set to the type of the relevant messages.

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: Generic I/O Page 27-2

27.2 midiout

midioutmidioutmidioutmidiout kstatus, kchan, kdata1, kdata2

DESCRIPTION
Sends a generic MIDI message to the MIDI OUT port

PERFORMANCE
kstatus – the type of MIDI message. Can be:

• 128 (note off),
• 144 (note on),
• 160 (polyphonic aftertouch),
• 176 (control change),
• 192 (program change),
• 208 (channel aftertouch),
• 224 (pitch bend)
• 0 when no MIDI messages must be sent to the MIDI OUT port.

kchan – MIDI channel (1-16)

kdata1, kdata2 – message-dependent data values

midiout has no output arguments, because it sends a message to the MIDI OUT port
implicitly. It works at k-rate. It sends a MIDI message only when kstatus is non-zero.

Warning: Normally kstatus should be set to 0. Only when the user intends to send a MIDI
message, can it be set to the corresponding message type number.

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: Note-on/Note-off Page 28-1

28 MIDI SUPPORT: NOTE-ON/NOTE-OFF

28.1 noteon, noteoff, noteondur,
noteondur2

noteonnoteonnoteonnoteon ichn, inum, ivel
noteoffnoteoffnoteoffnoteoff ichn, inum, ivel
noteondurnoteondurnoteondurnoteondur ichn, inum, ivel, idur
noteondur2noteondur2noteondur2noteondur2 ichn, inum, ivel, idur

DESCRIPTION
Send note-on and note-off messages to the MIDI OUT port.

INITIALIZATION
ichn – MIDI channel number (0-15)

inum – note number (0-127)

ivel – velocity (0-127)

PERFORMANCE
noteon (i-rate note on) and noteoff (i-rate note off) are the simplest MIDI OUT opcodes.
noteon sends a MIDI noteon message to MIDI OUT port, and noteoff sends a noteoff
message. A noteon opcode must always be followed by an noteoff with the same channel
and number inside the same instrument, otherwise the note will play endlessly. These
noteon and noteoff are useful only when introducing a timout statement to play a non-
zero duration MIDI note. For most purposes it is better to use noteondur and noteondur2.

noteondur and noteondur2 (i-rate note on with duration) send a noteon and a noteoff MIDI
message both with the same channel, number and velocity. Noteoff message is sent after
idur seconds are elapsed by the time noteondur was active.

noteondur differs from noteondur2 in that noteondur truncates note duration when
current instrument is deactivated by score or by real-time playing, while noteondur2 will
extend performance time of current instrument until idur seconds have elapsed. In real-
time playing it is suggested to use noteondur also for undefined durations, giving a large
idur value.

Any number of noteondur or noteondur2 opcodes can appear in the same Csound
instrument, allowing chords to be played by a single instrument.

NAME CHANGES
Prior to Csound version 3.52 (February, 1999), these opcodes were called ion, ioff, iondur,
and iodur2. ondur and ondur2 changed to noteondur and noteondur2 in Csound version
3.53.

The Public Csound Reference Manual Version 4.10 MIDI Support: Note-on/Note-off Page 28-2

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 MIDI Support: Note-on/Note-off Page 28-3

28.2 mosci l , midion

moscilmoscilmoscilmoscil kchn, knum, kvel, kdur, kpause
midionmidionmidionmidion kchn, knum, kvel

DESCRIPTION
Send a stream of note-on and note-off messages to the MIDI OUT port.

PERFORMANCE
kchn – MIDI channel number (0-15)

knum – note number (0-127)

kvel – velocity (0-127)

kdur – note duration in seconds

kpause – pause duration after each noteoff and before new note in seconds

moscil and midion are the most powerful MIDI OUT opcodes. moscil (MIDI oscil) plays a
stream of notes of kdur duration. Channel, pitch, velocity, duration and pause can be
controlled at k-rate, allowing very complex algorithmically generated melodic lines. When
current instrument is deactivated, the note played by current instance of moscil is forcedly
truncated.

midion (k-rate note on) plays MIDI notes with current kchn, knum and kvel. These
arguments can be varied at k-rate. Each time the MIDI converted value of any of these
arguments changes, last MIDI note played by current instance of midion is immediately
turned off and a new note with the new argument values is activated. This opcode, as well
as moscil, can generate very complex melodic textures if controlled by complex k-rate
signals.

Any number of moscil or midion opcodes can appear in the same Csound instrument,
allowing a counterpoint-style polyphony within a single instrument.

DEPRECATED NAMES
midion was originally called kon. As of Csound version 3.493, that name is deprecated.
midion should be used instead of kon.

AUTHOR
Gabriel Maldonado
Italy
May 1997 (moscil new in Csound version 3.47)

The Public Csound Reference Manual Version 4.10 MIDI Support: Note-on/Note-off Page 28-4

28.3 midion2

midion2midion2midion2midion2 kchn, knum, kvel, ktrig

DESCRIPTION
Sends noteon and noteoff messages to the MIDI out port when triggered by a value different
than zero.

PERFORMANCE
kchn – MIDI channel

knum – MIDI note number

kvel – note velocity

ktrig – trigger input signal (normally 0)

Similar to midion, this opcode sends noteon and noteoff messages to the MIDI out port, but
only when ktrig is non-zero. This opcode is can work together with the output of the
trigger opcode.

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: MIDI Message Output Page 29-1

29 MIDI SUPPORT: MIDI MESSAGE
OUTPUT

29.1 outic, outkc, outic14, outkc14,
outipb, outkpb, outiat, outkat,
outipc, outkpc, outipat, outkpat

outicouticouticoutic ichn, inum, ivalue, imin, imax
outkcoutkcoutkcoutkc kchn, knum, kvalue, kmin, kmax
outic14outic14outic14outic14 ichn, imsb, ilsb, ivalue, imin, imax
outkc14outkc14outkc14outkc14 kchn, kmsb, klsb, kvalue, kmin, kmax

outipboutipboutipboutipb ichn, ivalue, imin, imax
outkpboutkpboutkpboutkpb kchn, kvalue, kmin, kmax
outiatoutiatoutiatoutiat ichn, ivalue, imin, imax
outkatoutkatoutkatoutkat kchn, kvalue, kmin, kmax
outipcoutipcoutipcoutipc ichn, iprog, imin, imax
outkpcoutkpcoutkpcoutkpc kchn, kprog, kmin, kmax

outipatoutipatoutipatoutipat ichn, inotenum, ivalue, imin, imax
outkpatoutkpatoutkpatoutkpat kchn, knotenum, kvalue, kmin, kmax

DESCRIPTION
Send a single Channel message to the MIDI OUT port.

PERFORMANCE
ichn, kchn – MIDI channel number (0-15)

inum, knum – controller number (0-127 for example 1 = ModWheel; 2 = BreathControl etc.)

ivalue, kvalue – floating point value

imin, kmin – minimum floating point value (converted in MIDI integer value 0)

imax, kmax – maximum floating point value (converted in MIDI integer value 127 (7 bit) or
16383 (14 bit))

imsb, kmsb – most significant byte controller number when using 14 bit parameters

ilsb, klsb – least significant byte controller number when using 14 bit parameters

iprog, kprog – program change number in floating point

inotenum, knotenum – MIDI note number (used in polyphonic aftertouch messages)

outic and outkc (i- and k-rate MIDI controller output) send controller messages to MIDI OUT
device. outic14 and outkc14 (i and k-rate MIDI 14 bit controller output) send a pair of
controller messages. These opcodes can drive 14 bit parameters on MIDI instruments that
recognize them. The first control message contains the most significant byte of i(k)value
argument while the second message contains the less significant byte. i(k)msb and i(k)lsb
are the number of the most and less significant controller.

The Public Csound Reference Manual Version 4.10 MIDI Support: MIDI Message Output Page 29-2

outipb and outkpb (i- and k-rate pitch bend output) send pitch bend messages.

outiat and outkat (i- and k-rate aftertouch output) send aftertouch messages. outiat and
outkat (i- and k-rate aftertouch output) send aftertouch messages.

outipc and outkpc (i- and k-rate program change output) send program change messages.

outipat and outkpat (i- and k-rate polyphonic aftertouch output) send polyphonic
aftertouch messages.

These opcodes can drive a different value of a parameter for each note currently active.
They work only with MIDI instruments which recognize them.

N.B. All these opcodes can scale the i(k)value floating-point argument according with
i(k)max and i(k)min values. For example, setting i(k)min = 1.0 and i(k)max = 2.0, when
i(k)value argument receives a 2.0 value, the opcode will send a 127 value to MIDI OUT
device, while when receiving a 1.0 it will send a 0 value. i-rate opcodes send their message
once during instrument initialization. k-rate opcodes send a message each time the MIDI
converted value of argument i(k)value changes.

DEPRECATED NAMES
Prior to Csound version 3.52, these opcodes were named ioutc, koutc, ioutc14, koutc14,
ioutpb, koutpb, ioutat, koutat, ioutpc, koutpc, ioutpat, and koutpat. The current names
were adopted with version 3.52 (February, 1999) to avoid name space pollution.

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 MIDI Support: MIDI Message Output Page 29-3

29.2 nrpn

nrpnnrpnnrpnnrpn kchan, kparmnum, kparmvalue

DESCRIPTION
Sends a NPRN (Non Registered Parameter Number) message to the MIDI OUT port each time
one of the input arguments changes.

PERFORMANCE
kchan – MIDI channel

kparmnum – number of NRPN parameter

kparmvalue – value of NRPN parameter

This opcode sends new message when the MIDI translated value of one of the input
arguments changes. It operates at k-rate. Useful with the MIDI instruments that recognize
NRPNs (for example with the newest sound-cards with internal MIDI synthesizer such as SB
AWE32, AWE64, GUS etc. in which each patch parameter can be changed during the
performance via NRPN)

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: MIDI Message Output Page 29-4

29.3 mdelay

mdelaymdelaymdelaymdelay kstatus, kchan, kd1, kd2, kdelay

DESCRIPTION
A MIDI delay opcode.

PERFORMANCE
kstatus – status byte of MIDI message to be delayed

kchan – MIDI channel (1-16)

kd1 – first MIDI data byte

kd2 – second MIDI data byte

kdelay – delay time in seconds

Each time that kstatus is other than zero, mdelay outputs a MIDI message to the MIDI out
port after kdelay seconds. This opcode is useful in implementing MIDI delays. Several
instances of mdelay can be present in the same instrument with different argument values,
so complex and colorful MIDI echoes can be implemented. Further, the delay time can be
changed at k-rate.

AUTHOR
Gabriel Maldonado
Italy
November, 1998 (New in Csound version 3.492)

The Public Csound Reference Manual Version 4.10 MIDI Support: Real-time Messages Page 30-1

30 MIDI SUPPORT: REAL-TIME
MESSAGES

30.1 mclock, mrtmsg

mclockmclockmclockmclock ifreq
mrtmsgmrtmsgmrtmsgmrtmsg imsgtype

DESCRIPTION
Send system real-time messages to the MIDI OUT port.

INITIALIZATION
ifreq – clock message frequency rate in Hz

imsgtype – type of real-time message:
• 1 sends a START message (0xFA)
• 2 sends a CONTINUE message (0xFB)
• 0 sends a STOP message (0xFC)
• -1 sends a SYSTEM RESET message (0xFF)
• -2 sends an ACTIVE SENSING message (0xFE)

PERFORMANCE
mclock (MIDI clock) sends a MIDI CLOCK message (0xF8) every 1/ifreq seconds. So ifreq is
the frequency rate of CLOCK message in Hz.

mrtmsg (MIDI real-time message) sends a real-time message once, in init stage of current
instrument. imsgtype parameter is a flag to indicate the message type (see above).

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 MIDI Support: Real-time Messages Page 30-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 MIDI Support: Event Extenders Page 31-1

31 MIDI SUPPORT: EVENT EXTENDERS

31.1 xtratim, release

xtratimxtratimxtratimxtratim iextradur
kflag releasereleasereleaserelease

DESCRIPTION
Extend the duration of real-time generated events and handle their extra life (see also
linenr).

INITIALIZATION
iextradur – additional duration of current instrument instance

PERFORMANCE
xtratim extends current MIDI-activated note duration of iextradur seconds after the
corresponding note-off message has deactivated current note itself. This opcode has no
output arguments.

release outputs current note state. If current note is in the release stage (i.e. if its
duration has been extended with xtratim opcode and if it has only just deactivated), kflag
output argument is set to 1, else (in sustain stage of current note) is set to 0. These two
opcodes are useful for implementing complex release-oriented envelopes.

EXAMPLE

 instrinstrinstrinstr 1 ;allows complex ADSR envelope with MIDI events
 inum notnumnotnumnotnumnotnum
 icps cpsmidicpsmidicpsmidicpsmidi
 iamp ampmidiampmidiampmidiampmidi 4000
 ;
 ;------- complex envelope block ------

xtratimxtratimxtratimxtratim 1 ;extra-time, i.e. release dur
 krel initinitinitinit 0
 krel releasereleasereleaserelease ;outputs release-stage flag (0 or 1 values)
 ifififif (krel .5) kgoto kgoto kgoto kgoto rel ;if in release-stage goto release section
 ;
 ;************ attack and sustain section ***********
 kmp1 linseglinseglinseglinseg 0, .03, 1, .05, 1, .07, 0, .08, .5, 4, 1, 50, 1
 kmp = kmp1*iamp
 kgotokgotokgotokgoto done
 ;
 ;--------- releasereleasereleaserelease section --------
 rel:
 kmp2 linseglinseglinseglinseg 1, .3, .2, .7, 0
 kmp = kmp1*kmp2*iamp
 done:
 ;------
 a1 oscilioscilioscilioscili kmp, icps, 1

outoutoutout a1
 endinendinendinendin

The Public Csound Reference Manual Version 4.10 MIDI Support: Event Extenders Page 31-2

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Linear and Exponential Generators Page 32-1

32 SIGNAL GENERATORS: LINEAR AND
EXPONENTIAL GENERATORS

32.1 l ine, expon, l inseg, l insegr, expseg,
expsegr, expsega

kr linelinelineline ia, idur1, ib
ar linelinelineline ia, idur1, ib
kr exponexponexponexpon ia, idur1, ib
ar exponexponexponexpon ia, idur1, ib
kr linseglinseglinseglinseg ia, idur1, ib[, idur2, ic[...]]
ar linseglinseglinseglinseg ia, idur1, ib[, idur2, icI...]]
kr linsegrlinsegrlinsegrlinsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
ar linsegrlinsegrlinsegrlinsegr ia, idur1, ib[, idur2, icI...]], irel, iz
kr expsegexpsegexpsegexpseg ia, idur1, ib[, idur2, ic[...]]
ar expsegexpsegexpsegexpseg ia, idur1, ib[, idur2, ic[...]]
kr expsegrexpsegrexpsegrexpsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
ar expsegrexpsegrexpsegrexpsegr ia, idur1, ib[, idur2, ic[...]], irel, iz
ar expsegaexpsegaexpsegaexpsega ia, idur1, ib[, idur2, ic[...]]

DESCRIPTION
Output values kr or ar trace a straight line (exponential curve) or a series of line segments
(or exponential segments) between specified points.

INITIALIZATION
ia- starting value. Zero is illegal for exponentials.

ib, ic, etc. – value after dur1 seconds, etc. For exponentials, must be non-zero and must
agree in sign with ia.

idur1 – duration in seconds of first segment. A zero or negative value will cause all
initialization to be skipped.

idur2, idur3, etc. – duration in seconds of subsequent segments. A zero or negative value
will terminate the initialization process with the preceding point, permitting the last-
defined line or curve to be continued indefinitely in performance. The default is zero.

irel, iz – duration in seconds and final value of a note releasing segment.

PERFORMANCE
These units generate control or audio signals whose values can pass through 2 or more
specified points. The sum of dur values may or may not equal the instrument’s
performance time: a shorter performance will truncate the specified pattern, while a
longer one will cause the last-defined segment to continue on in the same direction.

linsegr, expsegr are amongst the Csound “r” units that contain a note-off sensor and
release time extender. When each senses an event termination or MIDI noteoff, it
immediately extends the performance time of the current instrument by irel seconds, and
sets out to reach the value iz by the end of that period (no matter which segment the unit
is in). “r” units can also be modified by MIDI noteoff velocities (see veloffs). For two or
more extenders in an instrument, extension is by the greatest period.

The Public Csound Reference Manual Version 4.10 Signal Generators: Linear and Exponential Generators Page 32-2

expsega is almost identical to expseg, but more precise when defining segments with very
short durations (i.e., in a percussive attack phase) at audio rate. Note that expseg does
not operate correctly at audio rate when segments are shorter than a k-period. In this
situation, expsega should be used instead of expseg.

EXAMPLE

k2 expsegexpsegexpsegexpseg 440, p3/2,880, p3/2,440

This statement creates a control signal which moves exponentially from 440 to 880 and
back, over the duration p3.

AUTHOR
Gabriel Maldonado (expsega)
Italy
June, 1998
New in Csound version 3.57

The Public Csound Reference Manual Version 4.10 Signal Generators: Linear and Exponential Generators Page 32-3

32.2 adsr, madsr, xadsr, mxadsr

kr adsradsradsradsr iatt, idec, islev, irel[, idel]
kr madsrmadsrmadsrmadsr iatt, idec, islev, irel[, idel]
kr xadsrxadsrxadsrxadsr iatt, idec, islev, irel[, idel]
kr mxadsrmxadsrmxadsrmxadsr iatt, idec, islev, irel[, idel]
ar adsradsradsradsr iatt, idec, islev, irel[, idel]
ar madsrmadsrmadsrmadsr iatt, idec, islev, irel[, idel]
ar xadsrxadsrxadsrxadsr iatt, idec, islev, irel[, idel]
ar mxadsrmxadsrmxadsrmxadsr iatt, idec, islev, irel[, idel]

DESCRIPTION
Calculates the classical ADSR envelope

INITIALIZATION
iatt – duration of attack phase

idec – duration of decay

islev – level for sustain phase

irel – duration of release phase

idel – period of zero before the envelope starts

PERFORMANCE
The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be
described as:

The length of the sustain is calculated from the length of the note. This means adsr is not
suitable for use with MIDI events. The opcode madsr uses the linsegr mechanism, and so
can be used in MIDI applications. The opcodes xadsr and mxadsr are identical to adsr and
madsr, respectively, except they use exponential, rather than linear, line segments. adsr
and madsr new in Csound version 3.49. xadsr and mxadsr new in Csound version 3.51.

The Public Csound Reference Manual Version 4.10 Signal Generators: Linear and Exponential Generators Page 32-4

32.3 transeg

kr transegtransegtransegtranseg ibeg, idur, itype, ival
ar transegtransegtransegtranseg ibeg, idur, itype, ival

DESCRIPTION
Constructs a user-definable envelope.

IN iTIALIZATION
ibeg – starting value

ival – value after dur seconds

idur – duration in seconds of segment

itype – if 0, a straight line is produced. If non-zero, then transeg creates the following
curve, for n steps:

 ibeg+(ivalue-ibeg)*(1-exp(i*itype/(n-1)))/(1-exp(itype))

PERFORMANCE
If itype > 0, there is a slowly rising, fast decaying (convex) curve, while if itype < 0, the
curve is fast rising, slowly decaying (concave). See also GEN16.

AUTHOR
John ffitch
University of Bath, Codemist. Ltd.
Bath, UK
October, 2000
New in Csound version 4.09

The Public Csound Reference Manual Version 4.10 Signal Generators: Table Access Page 33-1

33 SIGNAL GENERATORS: TABLE ACCESS

33.1 table, tablei , table3, osci l1, osci l1i ,
osci ln

ir tabletabletabletable indx, ifn[, ixmode[, ixoff[, iwrap]]]
ir tableitableitableitablei indx, ifn[, ixmode[, ixoff[, iwrap]]]
ir table3table3table3table3 indx, ifn[, ixmode[, ixoff[, iwrap]]]
kr tabletabletabletable kndx, ifn[, ixmode[, ixoff[, iwrap]]]
kr tableitableitableitablei kndx, ifn[, ixmode[, ixoff[, iwrap]]]
kr table3table3table3table3 kndx, ifn[, ixmode[, ixoff[, iwrap]]]
ar tabletabletabletable andx, ifn[, ixmode[, ixoff[, iwrap]]]
ar tableitableitableitablei andx, ifn[, ixmode[, ixoff[, iwrap]]]
ar table3table3table3table3 andx, ifn[, ixmode[, ixoff[, iwrap]]]
kr oscil1oscil1oscil1oscil1 idel, kamp, idur, ifn
kr oscil1ioscil1ioscil1ioscil1i idel, kamp, idur, ifn
ar oscilnoscilnoscilnosciln kamp, ifrq, ifn, itimes

DESCRIPTION
Table values are accessed by direct indexing or by incremental sampling.

INITIALIZATION
ifn – function table number. tablei, oscil1i require the extended guard point.

ixmode (optional) – index data mode. The default value is 0.

• 0 = raw index
• 1 = normalized (0 to 1)

ixoff (optional) – amount by which index is to be offset. For a table with origin at center,
use tablesize/2 (raw) or .5 (normalized). The default value is 0.

iwrap (optional) – wraparound index flag. The default value is 0.

• 0 = nowrap (index < 0 treated as index=0; index tablesize sticks at index=size)
• 1 = wraparound

idel – delay in seconds before oscil1 incremental sampling begins.

idur – duration in seconds to sample through the oscil1 table just once. A zero or negative
value will cause all initialization to be skipped.

ifrq, itimes – rate and number of times through the stored table.

PERFORMANCE
table invokes table lookup on behalf of init, control or audio indices. These indices can be
raw entry numbers (0,l,2...size – 1) or scaled values (0 to 1-e). Indices are first modified by
the offset value then checked for range before table lookup (see iwrap). If index is likely to
be full scale, or if interpolation is being used, the table should have an extended guard
point. table indexed by a periodic phasor (see phasor) will simulate an oscillator.

oscil1 accesses values by sampling once through the function table at a rate determined by
idur. For the first idel seconds, the point of scan will reside at the first location of the
table; it will then begin moving through the table at a constant rate, reaching the end in

The Public Csound Reference Manual Version 4.10 Signal Generators: Table Access Page 33-2

another idur seconds; from that time on (i.e. after idel + idur seconds) it will remain
pointing at the last location. Each value obtained from sampling is then multiplied by an
amplitude factor kamp before being written into the result. Because oscil1 is an
interpolating opcode, the table it reads should have a guard point.

osciln will sample several times through the stored table at a rate of ifrq times per second,
after which it will output zeros. Generates audio signals only, with output values scaled by
kamp.

tablei and oscil1i are interpolating units in which the fractional part of index is used to
interpolate between adjacent table entries. The smoothness gained by interpolation is at
some small cost in execution time (see also oscili, etc.), but the interpolating and non-
interpolating units are otherwise interchangeable. Note that when tablei uses a periodic
index whose modulo n is less than the power of 2 table length, the interpolation process
requires that there be an (n+ 1)th table value that is a repeat of the 1st (see f Statement
in score). table3 is experimental, and is identical to tablei, except that it uses cubic
interpolation. (New in Csound version 3.50.)

The Public Csound Reference Manual Version 4.10 Signal Generators: Phasors Page 34-1

34 SIGNAL GENERATORS: PHASORS

34.1 phasor

kr phasorphasorphasorphasor kcps[, iphs]
ar phasorphasorphasorphasor xcps[, iphs]

DESCRIPTION
Produce a normalized moving phase value.

INITIALIZATION
iphs (optional) – initial phase, expressed as a fraction of a cycle (0 to 1). A negative value
will cause phase initialization to he skipped. The default value is zero.

PERFORMANCE
An internal phase is successively accumulated in accordance with the kcps or xcps
frequency to produce a moving phase value, normalized to lie in the range 0. <= phs < 1.

When used as the index to a table unit, this phase (multiplied by the desired function table
length) will cause it to behave like an oscillator.

Note that phasor is a special kind of integrator, accumulating phase increments that
represent frequency settings.

EXAMPLE

 k1 phasorphasorphasorphasor 1 ; cycle once per second
 kpch tabletabletabletable k1 * 12, 1 ; through 12-note pch table
 a1 osciloscilosciloscil p4, cpspch(kpch), 2 ; with continuous sound

The Public Csound Reference Manual Version 4.10 Signal Generators: Phasors Page 34-2

34.2 phasorbnk

 kr phasorbnkphasorbnkphasorbnkphasorbnk kcps, kndx, icnt[, iphs]
 ar phasorbnkphasorbnkphasorbnkphasorbnk xcps, kndx, icnt[, iphs]

DESCRIPTION
Produce an arbitrary number of normalized moving phase values, accessable by an index.

34.2.1 INITIALIZATION
icnt – maximum number of phasors to be used.

iphs – initial phase, expressed as a fraction of a cycle (0 to 1). If -1 initialization is skipped.
If iphas>1 each phasor will be initialized with a random value.

34.2.2 PERFORMANCE
kndx – index value to access individual phasors

For each independent phasor, an internal phase is successively accumulated in accordance
with the kcps or xcps frequency to produce a moving phase value, normalized to lie in the
range 0 <= phs < 1. Each individual phasor is accessed by index kndx.

This phasor bank can be used inside a k-rate loop to generate multiple independent voices,
or together with the adsynt opcode to change parameters in the tables used by adsynt.

34.2.3 EXAMPLE
Generate multiple voices with independent partials. This example is better with adsynt.
See also the example under adsynt, for k-rate use of phasorbnk.

giwave ftgenftgenftgenftgen 1, 0, 1024, 10, 1 ; generate a sinewave table

instrinstrinstrinstr 1
icnt = 10 ; generate 10 voices
asum = 0 ; empty output buffer
kindex = 0 ; reset loop index

loop: ; loop executed every k-cycle

kcps = (kindex+1)*100 + 30 ; non-harmonic partials
aphas phasorbnkphasorbnkphasorbnkphasorbnk kcps, kindex, icnt ; get phase for each voice
asig tabletabletabletable aphas, giwave, 1 ; and read wave from table
asum = asum + asig ; accumulate output

kindex = kindex + 1
ifififif (kindex < icnt) kgotokgotokgotokgoto loop ; do loop

outoutoutout asum*3000
endinendinendinendin

AUTHOR
Peter Neubäcker
Munich, Germany
August, 1999
New in Csound version 3.58

The Public Csound Reference Manual Version 4.10 Signal Generators: Basic Oscillators Page 35-1

35 SIGNAL GENERATORS: BASIC
OSCILLATORS

35.1 osci l , osci l i , osci l3

kr osciloscilosciloscil kamp, kcps, ifn[, iphs]
kr oscilioscilioscilioscili kamp, kcps, ifn[, iphs]
kr oscil3oscil3oscil3oscil3 kamp, kcps, ifn[, iphs]
ar osciloscilosciloscil xamp, xcps, ifn[, iphs]
ar oscilioscilioscilioscili xamp, xcps, ifn[, iphs]
ar oscil3oscil3oscil3oscil3 xamp, xcps, ifn[, iphs]

DESCRIPTION
Table ifn is incrementally sampled modulo the table length and the value obtained is
multiplied by amp.

INITIALIZATION
ifn – function table number. Requires a wrap-around guard point.

iphs (optional) – initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

PERFORMANCE
The oscil units output periodic control (or audio) signals consisting of the value of
kamp(xamp)times the value returned from control rate (audio rate) sampling of a stored
function table. The internal phase is simultaneously advanced in accordance with the kcps
or xcps input value. While the amplitude and frequency inputs to the k-rate oscils are
scalar only, the corresponding inputs to the audio-rate oscils may each be either scalar or
vector, thus permitting amplitude and frequency modulation at either sub-audio or audio
frequencies.

oscili differs from oscil in that the standard procedure of using a truncated phase as a
sampling index is here replaced by a process that interpolates between two successive
lookups. Interpolating generators will produce a noticeably cleaner output signal, but they
may take as much as twice as long to run. Adequate accuracy can also be gained without
the time cost of interpolation by using large stored function tables of 2K, 4K or 8K points if
the space is available. oscil3 is experimental, and is identical to oscili, except that it uses
cubic interpolation. (New in Csound version 3.50.)

EXAMPLE

k1 osciloscilosciloscil 10, 5, 1 ; 5 Hz vibrato
a1 osciloscilosciloscil 5000, 440 + k1, 1 ; around A440 + -10 Hz

The Public Csound Reference Manual Version 4.10 Signal Generators: Basic Oscillators Page 35-2

35.2 posci l , posci l3

ar poscilposcilposcilposcil kamp, kcps, ifn [,iphs]
kr poscilposcilposcilposcil kamp, kcps, ifn [,iphs]
ar poscil3poscil3poscil3poscil3 kamp, kcps, ifn [,iphs]
kr poscil3poscil3poscil3poscil3 kamp, kcps, ifn [,iphs]

DESCRIPTION
High precision oscillators. poscil3 uses cubic interpolation.

INITIALIZATION
ifn – function table number

iphs (optional) – initial phase of sampling, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

PERFORMANCE
ar – output signal

kamp – amplitude

kcps – frequency

poscil (precise oscillator) is the same as oscili, but allows much more precise frequency
control, especially when using long tables and low frequency values. It uses floating-point
table indexing, instead of integer math, like oscil and oscili. It is only a bit slower than
oscili.

AUTHORS
Gabriel Maldonado (poscil)
Italy
1998 (New in Csound version 3.52)

John ffitch (poscil3)
University of Bath/Codemist Ltd.
Bath, UK
February, 1999 (New in Csound version 3.52)

The Public Csound Reference Manual Version 4.10 Signal Generators: Basic Oscillators Page 35-3

35.3 l fo

kr lfolfolfolfo kamp, kcps[, itype]
ar lfolfolfolfo kamp, kcps[, itype]

DESCRIPTION
A low frequency oscillator of various shapes.

INITIALIZATION
itype -- determine the waveform of the oscillator. Default is 0.

• 0: sine
• 1: triangles
• 2: square (bipolar)
• 3: square (unipolar)
• 4: saw-tooth
• 5: saw-tooth(down)

The sine wave is implemented as a 4096 table and linear interpolation. The others are
calculated.

PERFORMANCE
kamp – amplitude of output

kcps – frequency of oscillator

EXAMPLE

instrinstrinstrinstr 1
kp lfolfolfolfo 10, 5, 4
ar osciloscilosciloscil p4, p5+kp, 1

 outoutoutout ar
endinendinendinendin

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
November, 1998 (New in Csound version 3.491)

The Public Csound Reference Manual Version 4.10 Signal Generators: Basic Oscillators Page 35-4

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-1

36 SIGNAL GENERATORS: DYNAMIC
SPECTRUM OSCILLATORS

36.1 buzz, gbuzz

ar buzzbuzzbuzzbuzz xamp, xcps, knh, ifn[, iphs]
ar gbuzzgbuzzgbuzzgbuzz xamp, xcps, knh, klh, kr, ifn[, iphs]

DESCRIPTION
Output is a set of harmonically related cosine partials.

INITIALIZATION
ifn – table number of a stored function containing (for buzz) a sine wave, or (for gbuzz) a
cosine wave. In either case a large table of at least 8192 points is recommended.

iphs (optional) – initial phase of the fundamental frequency, expressed as a fraction of a
cycle (0 to 1). A negative value will cause phase initialization to be skipped. The default
value is zero

PERFORMANCE
The buzz units generate an additive set of harmonically related cosine partials of
fundamental frequency xcps, and whose amplitudes are scaled so their summation peak
equals xamp. The selection and strength of partials is determined by the following control
parameters:

knh – total number of harmonics requested. New in Csound version 3.57, knh defaults to
one. If knh is negative, the absolute value is used.

klh – lowest harmonic present. Can be positive, zero or negative. In gbuzz the set of
partials can begin at any partial number and proceeds upwards; if klh is negative, all
partials below zero will reflect as positive partials without phase change (since cosine is an
even function), and will add constructively to any positive partials in the set.

kr – specifies the multiplier in the series of amplitude coefficients. This is a power series:
if the klhth partial has a strength coefficient of A, the (klh + n)th partial will have a
coefficient of A * (kr ** n), i.e. strength values trace an exponential curve. kr may be
positive, zero or negative, and is not restricted to integers.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a
special case of the more general gbuzz in which klh = kr = 1; it thus produces a set of knh
equal-strength harmonic partials, beginning with the fundamental. (This is a band-limited
pulse train; if the partials extend to the Nyquist, i.e. knh = int (sr / 2 / fundamental freq.),
the result is a real pulse train of amplitude xamp.) Although both knh and klh may be
varied during performance, their internal values are necessarily integer and may cause
“pops” due to discontinuities in the output; kr, however, can be varied during performance
to good effect. Both buzz and gbuzz can be amplitude- and/or frequency-modulated by
either control or audio signals.

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-2

N.B. These two units have their analogs in GEN11, in which the same set of cosines can be
stored in a function table for sampling by an oscillator. Although computationally more
efficient, the stored pulse train has a fixed spectral content, not a time-varying one as
above.

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-3

36.2 vco

ar vcovcovcovco kamp, kfqc[, iwave][, ipw][, ifn][, imaxd]

DESCRIPTION
Implementation of a band limited, analog modeled oscillator, based on integration of band
limited impulses. vco can be used to simulate a variety of analog wave forms. Last four
arguments were made optional in Csound version 4.10.

INITIALIZATION
iwave (optional) – determines the waveform :

• 1: sawtooth
• 2: Square/PWM
• 3: triangle/Saw/Ramp

iwave defaults to 1.

ipw (optional) – determines the pulse width when iwave is set to 2, and determines
Saw/Ramp character when iwave is set to 3. The value of ipw should be between 0 and 1.
A value of .5 will generate a square wave or a triangle wave depending on iwave. Default is
1.

ifn (optional) – the table number of a of a stored sine wave. Default is 1.

imaxd (optional) – is the maximum delay time. A time of 1/ifqc may be required for the
pwm and triangle waveform. To bend the pitch down this value must be as large as
1/(minimum frequency). Default is 1.

PERFORMANCE
kamp – determines the amplitude

kfqc – is the frequency of the wave

EXAMPLE
instrinstrinstrinstr 10

 idur = p3 ; Duration
 iamp = p4 ; Amplitude
 ifqc = cpspchcpspchcpspchcpspch(p5) ; Frequency
 iwave = p6 ; Selected wave form 1=Saw,

 ; 2=Square/PWM, 3=Tri/Saw-Ramp-Mod
 isine = 1
 imaxd = 1/ifqc*2 ; Allows pitch bend down of two octaves
 kpw1 osciloscilosciloscil .25, ifqc/200, 1
 kpw = kpw1 + .5
 asig vcovcovcovco iamp, ifqc, iwave, kpw, 1, imaxd
 outsoutsoutsouts asig, asig ; Output and amplification

endinendinendinendin

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-4

f1 0 65536 10 1

; Sta Dur Amp Pitch Wave
i10 0 2 20000 5.00 1
i10 + . . . 2
i10 3
i10 . 2 20000 7.00 1
i10 2
i10 3
i10 . 2 20000 9.00 1
i10 2
i10 3
i10 . 2 20000 11.00 1
i10 2
i10 3
e

AUTHOR
Hans Mikelson
December, 1998 (New in Csound version 3.50)

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-5

36.3 mpulse

ar mpulse mpulse mpulse mpulse kamp, kfreq[, ioffset]

DESCRIPTION
Generate a set of impulses. of amplitude kamp at frequency kfreq. The first impulse is
after a delay of ioffset seconds. The value of kfreq is read only after an impulse, so it is
the interval to the next impulse at the time of an impulse.

INITIALIZATION
ioffset – the delay before the first impulse. If it is negative, the value is taken as the
number of samples, otherwise it is in seconds. Default is zero.

PERFORMANCE
kamp – amplitude of the impulses generated

kfreq – frequency of the impulse train

After the initial delay, an impulse of kamp amplitude is generated as a single sample.
Immediately after generating the impulse, the time of the next one is calculated. If kfreq
is zero, there is an infinite wait to the next impulse. If kfreq is negative, the frequency is
counted in samples rather than seconds.

EXAMPLE
Generate a set of impulses at 10 a second, after a delay of 0.05s

instrinstrinstrinstr 1
a1 mpulsempulsempulsempulse 32000, 0.1, 0.05

outoutoutout a1
endinendinendinendin

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
September, 2000 (New in Csound version 4.08)

The Public Csound Reference Manual Version 4.10 Signal Generators: Dynamic Spectrum Oscillators Page 36-6

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-1

37 SIGNAL GENERATORS: ADDITIVE
SYNTHESIS/RESYNTHESIS

37.1 adsyn

ar adsynadsynadsynadsyn kamod, kfmod, ksmod, ifilcod

DESCRIPTION
Output is an additive set of individually controlled sinusoids using an oscillator bank.

INITIALIZATION
ifilcod – integer or character-string denoting a control-file derived from analysis of an
audio signal. An integer denotes the suffix of a file adsyn.m; a character-string (in double
quotes) gives a filename, optionally a full pathname. If not fullpath, the file is sought first
in the current directory, then in the one given by the environment variable SADIR (if
defined). adsyn control contains breakpoint amplitude and frequency envelope values
organized for oscillator resynthesis. Memory usage depends on the size of the file involved,
which are read and held entirely in memory during computation but are shared by multiple
calls.

PERFORMANCE
adsyn synthesizes complex time-varying timbres through the method of additive synthesis.
Any number of sinusoids, each individually controlled in frequency and amplitude, can be
summed by high-speed arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency
tracks in millisecond breakpoint fashion. Tracks are defined by sequences of 16-bit binary
integers:

-1, time, amp, time, amp,...
-2, time, freq, time, freq,...

such as from hetrodyne filter analysis of an audio file. (for details see hetro.) The
instantaneous amplitude and frequency values are used by an internal fixed-point oscillator
that adds each active partial into an accumulated output signal. While there is a practical
limit (limit removed in version 3.47) on the number of contributing partials, there is no
restriction on their behavior over time. Any sound that can be described in terms of the
behavior of sinusoids can be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The
signals kamod, kfmod, ksmod will modify the amplitude, frequency, and speed of
contributing partials. These are multiplying factors, with kfmod modifying the frequency
and ksmod modifying the speed with which the millisecond breakpoint line-segments are
traversed. Thus .7, 1.5, and 2 will give rise to a softer sound, a perfect fifth higher, but
only half as long. The values 1,1,1 will leave the sound unmodified. Each of these inputs
can be a control signal.

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-2

kfmod is a control-rate transposition factor: a value of 1 incurs no transposition, 1.5
transposes up a perfect fifth, and .5 down an octave.

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-3

37.2 adsynt

ar adsyntadsyntadsyntadsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt[, iphs]

DESCRIPTION
Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

INITIALIZATION
iwfn – table containing a waveform, usually a sine. Table values are not interpolated for
performance reasons, so larger tables provide better quality.

ifreqfn – table containing frequency values for each partial. ifreqfn may contain beginning
frequency values for each partial, but is usually used for generating parameters at runtime
with tablew. Frequencies must be relative to kcps. Size must be at least icnt.

iampfn – table containing amplitude values for each partial. iampfn may contain beginning
amplitude values for each partial, but is usually used for generating parameters at runtime
with tablew. Amplitudes must be relative to kamp. Size must be at least icnt.

icnt – number of partials to be generated

iphs – initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, all
phases will be initialized with a random value.

PERFORMANCE
kamp – amplitude of note

kcps – base frequency of note. Partial frequencies will be relative to kcps.

Frequency and amplitude of each partial is given in the two tables provided. The purpose
of this opcode is to have an instrument generate synthesis parameters at k-rate and write
them to global parameter tables with the tablew opcode.

EXAMPLES
These two instruments perform additive synthesis. The output of each sounds like a
Tibetan bowl. The first one is static, as parameters are only generated at init-time. In the
second one, parameters are continuously changed.

gifrqs ftgenftgenftgenftgen 2, 0, 32, 7, 0, 32, 0 ; generate two emty tables
; for adsynt

giamps ftgenftgenftgenftgen 3, 0, 32, 7, 0, 32, 0 ; for freqency and amp
; parameters

instrinstrinstrinstr 1 ; generates parameters at init time
icnt = 10 ; generate 10 voices
index = 0 ; init loop index

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-4

loop: ; loop only executed at
; init time

ifreq powpowpowpow index + 1, 1.5 ; define non-harmonic partials
iamp = 1 / (index+1) ; define amplitudes

tabtabtabtableiwleiwleiwleiw ifreq, index, gifrqs ; write to tables
tableiwtableiwtableiwtableiw iamp, index, giamps ; used by adsynt

index = index + 1
ifififif (index < icnt) igotoigotoigotoigoto loop ; do loop

asig adsyntadsyntadsyntadsynt 5000, 150, giwave, gifrqs, giamps, icnt
outoutoutout asig

endinendinendinendin

instrinstrinstrinstr 2 ; generates paramaters
; ; ; ; every k-cycle

icnt = 10 ; generate 10 voices
kindex = 0 ; reset loop index

loop: ; loop executed every
; k-cycle

kspeed powpowpowpow kindex + 1, 1.6 ; generate lfo for
; frequencies

kphas phasorbnk kspeed * 0.7, kindex, icnt ; individual phase for each
voice
klfo tabletabletabletable kphas, giwave, 1
kdepth powpowpowpow 1.4, kindex ; arbitrary parameter twiddling...
kfreq powpowpowpow kindex + 1, 1.5
kfreq = kfreq + klfo*0.006*kdepth

tablewtablewtablewtablew kfreq, kindex, gifrqs ; write freqs to table for
; ; ; ; adsynt

kspeed powpowpowpow kindex + 1, 0.8 ; generate lfo for amplitudes
kphas phasorbnk kspeed*0.13, kindex, icnt, 2 ; individual phase for

; each voice
klfo tabletabletabletable kphas, giwave, 1
kamp powpowpowpow 1 / (kindex + 1), 0.4 ; arbitrary parameter

; twiddling...
kamp = kamp * (0.3+0.35*(klfo+1))

tablewtablewtablewtablew kamp, kindex, giamps ; write amps to table for
; ; ; ; adsyntadsyntadsyntadsynt

kindex = kindex + 1
ifififif (kindex < icnt) kgotokgotokgotokgoto loop ; do loop
giwave ftgenftgenftgenftgen 1, 0, 1024, 10, 1 ; generate a sinewave

; table
asig adsyntadsyntadsyntadsynt 5000, 150, giwave, gifrqs, giamps, icnt

outoutoutout asig
endinendinendinendin

AUTHOR
Peter Neubäcker
Munich, Germany
August, 1999
New in Csound version 3.58

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-5

37.3 hsbosci l

ar hsboscilhsboscilhsboscilhsboscil kamp, ktone, kbrite, ibasfreq, iwfn, ioctfn \\
[, ioctcnt[, iphs]]

DESCRIPTION
An oscillator which takes tonality and brightness as arguments, relative to a base
frequency.

INITIALIZATION
ibasfreq – base frequency to which tonality and brighness are relative

iwfn – function table of the waveform, usually a sine

ioctfn – function table used for weighting the octaves, usually something like:

 f1 0 1024 -19 1 0.5 270 0.5

ioctcnt – number of octaves used for brightness blending. Must be in the range 2 to 10.
Default is 3.

iphs – initial phase of the oscillator. If iphs = -1, initialization is skipped.

PERFORMANCE
kamp – amplitude of note

ktone – cyclic tonality parameter relative to ibasfreq in logarithmic octave, range 0 to 1,
values > 1 can be used, and are internally reduced to frac(ktone).

kbrite – brightness parameter relative to ibasfreq, achieved by weighting ioctcnt octaves.
It is scaled in such a way, that a value of 0 corresponds to the orignal value of ibasfreq, 1
corresponds to one octave above ibasfreq, -2 corresponds to two octaves below ibasfreq,
etc. kbrite may be fractional.

hsboscil takes tonality and brightness as arguments, relative to a base frequency
(ibasfreq). Tonality is a cyclic parameter in the logarithmic octave, brightness is realized
by mixing multiple weighted octaves. It is useful when tone space is understood in a
concept of polar coordinates.

Making ktone a line, and kbrite a constant, produces Risset’s glissando.

Oscillator table iwfn is always read interpolated. Performance time requires about ioctcnt *
oscili.

The Public Csound Reference Manual Version 4.10 Signal Generators: Additive Synthesis/Resynthesis Page 37-6

EXAMPLES

giwave ftgenftgenftgenftgen 1, 0, 1024, 10, 1, 1, 1, 1 ; synth wave
giblend ftgenftgenftgenftgen 2, 0, 1024, -19, 1, 0.5, 270, 0.5 ; blending window

instrinstrinstrinstr 1 ; endless glissando
ktona linelinelineline 0,10,1
asig hsboscilhsboscilhsboscilhsboscil 10000, ktona, 0, 200, giwave, giblend, 5

outoutoutout asig
endinendinendinendin

instrinstrinstrinstr 2 ; MIDI instrument: all octaves sound alike,
itona octmidioctmidioctmidioctmidi ; velocity is mapped to brightness
ibrite ampmidiampmidiampmidiampmidi 3
ibase = cpsoct(6)
kenv exponexponexponexpon 20000, 1, 100
asig hsboscilhsboscilhsboscilhsboscil kenv, itona, ibrite, ibase, giwave, giblend, 5

 outoutoutout asig
endinendinendinendin

AUTHOR
Peter Neubäcker
Munich, Germany
August, 1999
New in Csound version 3.58

The Public Csound Reference Manual Version 4.10 Signal Generators: FM Synthesis Page 38-1

38 SIGNAL GENERATORS: FM SYNTHESIS

38.1 fosci l , fosci l i
ar foscilfoscilfoscilfoscil xamp, kcps, xcar, xmod, kndx, ifn[, iphs]
ar foscilifoscilifoscilifoscili xamp, kcps, xcar, xmod, kndx, ifn[, iphs]

DESCRIPTION
Basic frequency modulated oscillators.

INITIALIZATION
ifn – function table number. Requires a wrap-around guard point.

iphs (optional) – initial phase of waveform in table ifn, expressed as a fraction of a cycle (0
to 1). A negative value will cause phase initialization to be skipped. The default value is 0.

38.1.1 PERFORMANCE
foscil is a composite unit that effectively banks two oscils in the familiar Chowning FM
setup, wherein the audio-rate output of one generator is used to modulate the frequency
input of another (the “carrier”). Effective carrier frequency = kcps * kcar, and modulating
frequency = kcps * xmod. For integral values of xcar and xmod, the perceived fundamental
will be the minimum positive value of kcps * (xcar – n * xmod), n = 1,1,2,... The input kndx
is the index of modulation (usually time-varying and ranging 0 to 4 or so) which determines
the spread of acoustic energy over the partial positions given by n = 0,1,2,.., etc. ifn
should point to a stored sine wave. Previous to version 3.50, xcar and xmod could be k-rate
only.

foscili differs from foscil in that the standard procedure of using a truncated phase as a
sampling index is here replaced by a process that interpolates between two successive
lookups. Interpolating generators will produce a noticeably cleaner output signal, but they
may take as much as twice as long to run. Adequate accuracy can also be gained without
the time cost of interpolation by using large stored function tables of 2K, 4K or 8K points if
the space is available.

The Public Csound Reference Manual Version 4.10 Signal Generators: FM Synthesis Page 38-2

38.2 fmvoice

ar fmvoicefmvoicefmvoicefmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, \\
ifn2, ifn3, ifn4, ivibfn

DESCRIPTION
FM Singing Voice Synthesis

INITIALIZATION
ifn1, ifn2, ifn3,ifn3 -- Tables, usually of sinewaves.

PERFORMANCE

kamp – Amplitude of note.

kfreq – Frequency of note played.

kvowel -- the vowel being sung, in the range 0-64

ktilt -- the spectral tilt of the sound in the range 0 to 99

kvibamt -- Depth of vibrato

kvibrate -- Rate of vibrato

EXAMPLE

k1 linelinelineline 0, p3, 64
a1 fmvoicefmvoicefmvoicefmvoice 31129.60, 110, k1, 0, 0.005, 6, 1,1,1,1,1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: FM Synthesis Page 38-3

38.3 fmbel l , fmrhode, fmwurl ie, fmmetal ,
fmb3, fmpercfl

a1 fmbellfmbellfmbellfmbell kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

a1 fmrhodefmrhodefmrhodefmrhode kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

a1 fmwurliefmwurliefmwurliefmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

a1 fmmetalfmmetalfmmetalfmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

a1 fmb3fmb3fmb3fmb3 kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

a1 fmpercflfmpercflfmpercflfmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,\\
ifn3, ifn4, ivfn

DESCRIPTION
A family of FM sounds, all using 4 basic oscillators and various architectures, as used in the
TX81Z synthesizer.

INITIALIZATION
All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the
last is the low frequency oscillator (LFO) used for vibrato. The last table should usually be
a sine wave.

For the other opcodes the initial waves should be as in the table:

 ifn1 ifn2 ifn3 ifn4

fmbell fmbell fmbell fmbell sinewave sinewave sinewave sinewave
fmrhode fmrhode fmrhode fmrhode sinewave sinewave sinewave fwavblnk
fmwurlie fmwurlie fmwurlie fmwurlie sinewave sinewave sinewave fwavblnk
fmmetal fmmetal fmmetal fmmetal sinewave twopeaks twopeaks sinewave
fmb3 fmb3 fmb3 fmb3 sinewave sinewave sinewave sinewave
fmpercfl fmpercfl fmpercfl fmpercfl sinewave sinewave sinewave sinewave
The sounds produced are then:
fmbellfmbellfmbellfmbell Tubular Bell
fmrhodefmrhodefmrhodefmrhode Fender Rhodes Electric Piano
fmwurliefmwurliefmwurliefmwurlie Wurlitzer Electric Piano
fmmetalfmmetalfmmetalfmmetal “Heavy Metal”
fmb3 fmb3 fmb3 fmb3 Hammond B3 organ
fmpercflfmpercflfmpercflfmpercfl Percussive Flute

PERFORMANCE
kamp – Amplitude of note.

kfreq – Frequency of note played.

The Public Csound Reference Manual Version 4.10 Signal Generators: FM Synthesis Page 38-4

kc1, kc2 -- Controls for the synthesizer, as in the table:

kc1 kc2 Algorithm

fmbellfmbellfmbellfmbell Mod index 1 Crossfade of two outputs 5
fmrhodefmrhodefmrhodefmrhode Mod index 1 Crossfade of two outputs 5
fmwurliefmwurliefmwurliefmwurlie Mod index 1 Crossfade of two outputs 5
fmmetalfmmetalfmmetalfmmetal Total mod index Crossfade of two modulators 3
fmb3 fmb3 fmb3 fmb3 Total mod index Crossfade of two modulators 4
fmpercflfmpercflfmpercflfmpercfl Total mod index Crossfade of two modulators 4

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-1

39 SIGNAL GENERATORS: SAMPLE
PLAYBACK

39.1 losci l , losci l3
ar[,ar2] loscilloscilloscilloscil xamp, kcps, ifn[, ibas[,imod1,ibeg1,iend1 \\

[, imod2,ibeg2,iend2]]]
ar[,ar2] loscil3loscil3loscil3loscil3 xamp, kcps, ifn[, ibas[,imod1,ibeg1,iend1 \\

[, imod2,ibeg2,iend2]]]

DESCRIPTION
Read sampled sound (mono or stereo) from a table, with optional sustain and release
looping.

INITIALIZATION
ifn – function table number, typically denoting an AIFF sampled sound segment with
prescribed looping points. The source file may be mono or stereo.

ibas (optional) – base frequency in Hz of the recorded sound. This optionally overrides the
frequency given in the AIFF file, but is required if the file did not contain one. The default
value is 261.626 Hz, i.e. middle C. (New in Csound 4.03).

imod1, imod2 (optional) – play modes for the sustain and release loops. A value of 1
denotes normal looping, 2 denotes forward & backward looping, 0 denotes no looping. The
default value (-1) will defer to the mode and the looping points given in the source file.

ibeg1, iend1, ibeg2, iend2 (optional, dependent on mod1, mod2) – begin and end points of
the sustain and release loops. These are measured in sample frames from the beginning of
the file, so will look the same whether the sound segment is monaural or stereo.

PERFORMANCE
loscil samples the ftable audio at a-rate determined by kcps, then multiplies the result by
xamp. The sampling increment for kcps is dependent on the table’s base-note frequency
ibas, and is automatically adjusted if the orchestra sr value differs from that at which the
source was recorded. In this unit, ftable is always sampled with interpolation.

If sampling reaches the sustain loop endpoint and looping is in effect, the point of sampling
will be modified and loscil will continue reading from within that loop segment. Once the
instrument has received a turnoff signal (from the score or from a MIDI noteoff event), the
next sustain endpoint encountered will be ignored and sampling will continue towards the
release loop end-point, or towards the last sample (henceforth to zeros).

loscil is the basic unit for building a sampling synthesizer. Given a sufficient set of
recorded piano tones, for example, this unit can resample them to simulate the missing
tones. Locating the sound source nearest a desired pitch can be done via table lookup.
Once a sampling instrument has begun, its turnoff point may be unpredictable and require
an external release envelope; this is often done by gating the sampled audio with linenr,
which will extend the duration of a turned-off instrument by a specific period while it
implements a decay.

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-2

loscil3 is experimental. It is identical to loscil, except that it uses cubic interpolation. New
in Csound version 3.50.

EXAMPLE

inum notnumnotnumnotnumnotnum
icps cpsmidicpsmidicpsmidicpsmidi
iamp ampmidiampmidiampmidiampmidi 3000, 1
ifno tabletabletabletable inum, 2 ;notnum to choose an audio sample
ibas tabletabletabletable inum, 3
kamp linenrlinenrlinenrlinenr iamp, 0, .05, .01 ;at noteoff, extend by 50 ms.
asig loscilloscilloscilloscil kamp, icps, ifno, cpsoct(ibas/12. + 3)

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-3

39.2 lposci l , lposci l3

ar lposcillposcillposcillposcil kamp, kfreqratio, kloop, kend, ifn [,iphs]
ar lposcil3lposcil3lposcil3lposcil3 kamp, kfreqratio, kloop, kend, ifn [,iphs]

DESCRIPTION
Read sampled sound (mono or stereo) from a table, with optional sustain and release
looping, and high precision. lposcil3 uses cubic interpolation.

INITIALIZATION
ifn – function table number

iphs (optional) – initial phase of sampling, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

PERFORMANCE
kamp – amplitude

kfreqratio – multiply factor of table frequency (for example: 1 = original frequency, 1.5 = a
fifth up , .5 = an octave down)

kloop – loop point (in samples)

kend – end loop point (in samples)

lposcil (looping precise oscillator) allows varying at k-rate, the starting and ending point of
a sample contained in a table (GEN01). This can be useful when reading a sampled loop of
a wavetable, where repeat speed can be varied during the performance.

AUTHORS
Gabriel Maldonado (lposcil)
Italy
1998 (New in Csound version 3.52)

John ffitch (lposcil3)
University of Bath/Codemist Ltd.
Bath, UK
February, 1999 (New in Csound version 3.52)

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-4

39.3 sfload, sfpl ist , sf i l ist , sfpassign,
sfpreset, sfplay, sfplaym, sf instr,
sf instrm

ir sfloadsfloadsfloadsfload "filename"
sfpassignsfpassignsfpassignsfpassign istartndx, ifilhandle

ir sfpresetsfpresetsfpresetsfpreset iprog, ibank, ifilhandle, iprendx

sfplistsfplistsfplistsfplist ifilhandle
sfilistsfilistsfilistsfilist ifilhandle

a1, a2 sfplaysfplaysfplaysfplay ivel, inotnum, xamp, xfreq, iprendx [, iflag]
`a1 sfplaymsfplaymsfplaymsfplaym ivel, inotnum, xamp, xfreq, iprendx [, iflag]

a1, a2 sfinstrsfinstrsfinstrsfinstr ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [,
iflag]

a1 sfinstrmsfinstrmsfinstrmsfinstrm ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [,
iflag]

DESCRIPTION
Csound support for the SoundFont2 (SF2) sample file format. These opcodes allow
management the sample-structure of SF2 files. In order to understand the usage of these
opcodes, the user must have some knowledge of the SF2 format, so a brief description of
this format can be found in the Appendix.

Note that sfload, sfpassign, and sfpreset are placed in the header section of a Csound
orchestra.

INITIALIZATION
ir – output to be used by other SF2 opcodes. For sfload, ir is ifilhandle. For sfpreset, ir is
iprendx.

filename – name of the SF2 file, with its complete path. It must be typed within double-
quotes. Use “/” to separate directories. This applies to DOS and Windows as well, where
using a backslash will generate an error.

ifilhandle – unique number generated by sfload opcode to be used as an identifier for a SF2
file. Several SF2 files can be loaded and activated at the same time.

istartndx – starting index preset by the user in bulk preset assignments (see below).

iprendx – preset index

iprog – program number of a bank of presets in a SF2 file

ibank – number of a specific bank of a SF2 file

ivel – velocity value

inotnum – MIDI note number value

iflag – flag regarding the behavior of xfreq and inotnum

instrnum – number of an instrument of a SF2 file.

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-5

PERFORMANCE
xamp – amplitude correction factor

xfreq – frequency value or frequency multiplier, depending by iflag. When iflag = 0, xfreq
is a multiplier of a the default frequency, assigned by SF2 preset to the inotenum value.
When iflag = 1, xfreq is the absolute frequency of the output sound, in Hz. Default is 0.

sfload loads an entire SF2 file into memory. It returns a file handle to be used by other
opcodes. Several instances of sfload can placed in the header section of an orchestra,
allowing use of more than one SF2 file in a single orchestra.

sfplist prints a list of all presets of a previously loaded SF2 file to the console.

sfilist prints a list of all instruments of a previously loaded SF2 file to the console.

sfpassign assigns all presets of a previously loaded SF2 file to a sequence of progressive
index numbers, to be used later with the opcodes sfplay and sfplaym. istartndx specifies
the starting index number. Any number of sfpassign instances can be placed in the header
section of an orchestra, each one assigning presets belonging to different SF2 files. The
user must take care that preset index numbers of different SF2 files do not overlap.

sfpreset assigns an existing preset of a previously loaded SF2 file to an index number, to be
used later with the opcodes sfplay and sfplaym. The user must previously know the
program and the bank numbers of the preset in order to fill the corresponding arguments.
Any number of sfpreset instances can be placed in the header section of an orchestra, each
one assigning a different preset belonging to the same (or different) SF2 file to different
index numbers.

sfplay plays a preset, generating a stereo sound. ivel does not directly affect the
amplitude of the output, but informs sfplay about which sample should be chosen in multi-
sample, velocity-split presets.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note
number used, and xfreq is used as a multiplier. When iflag = 1, the frequency of the
output, is set directly by xfreq. This allows the user to use any kind of micro-tuning based
scales. However, this method is designed to work correctly only with presets tuned to the
default equal temperament. Attempts to use this method with a preset already having non-
standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a
multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments
must use variables of the same rate, or sfplay will not work correctly. iprendx must
contain the number of a previously assigned preset, or Csound will crash.

sfplaym is a mono version of sfplay. It should be used with mono preset, or with the stereo
presets in which stereo output is not required. It is faster than sfplay.

sfinstr plays an SF2 instrument instead of a preset (an SF2 instrument is the base of a
preset layer). instrnum specifies the instrument number, and the user must be sure that
the specified number belongs to an existing instrument of a determinate soundfont bank.
Notice that both xamp and xfreq can operate at k-rate as well as a-rate, but both
arguments must work at the same rate.

sfinstrm plays is a mono version of sfinstr. This is the fastest opcode of the SF2 family.

These opcodes only support the sample structure of SF2 files. The modulator structure of
the SoundFont2 format is not supported in Csound. Any modulation or processing to the
sample data is left to the Csound user, bypassing all restrictions forced by the SF2
standard.

The Public Csound Reference Manual Version 4.10 Signal Generators: Sample Playback Page 39-6

AUTHOR
Gabriel Maldonado
Italy
May, 2000 (New in Csound Version 4.06)

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-1

40 SIGNAL GENERATORS: GRANULAR
SYNTHESIS

40.1 fof, fof2

ar foffoffoffof xamp, xfund, xform, koct, kband, kris, kdur, kdec,\\
iolaps, ifna, ifnb, itotdur[, iphs[, ifmode]]

ar fof2fof2fof2fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec,\\
iolaps, ifna, ifnb, itotdur, kphs, kgliss

DESCRIPTION
Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral
peak at xform. For xfund above 25 Hz these bursts produce a speech-like formant with
spectral characteristics determined by the k-input parameters. For lower fundamentals this
generator provides a special form of granular synthesis.

fof2 implements k-rate incremental indexing into ifna function with each successive burst.

INITIALIZATION
iolaps – number of preallocated spaces needed to hold overlapping burst data. Overlaps are
frequency dependent, and the space required depends on the maximum value of xfund *
kdur. Can be over-estimated at no computation cost. Uses less than 50 bytes of memory
per iolap.

ifna, ifnb- table numbers of two stored functions. The first is a sine table for sineburst
synthesis (size of at least 4096 recommended). The second is a rise shape, used forwards
and backwards to shape the sineburst rise and decay; this may be linear (GEN07) or
perhaps a sigmoid (GEN19).

itotdur – total time during which this fof will be active. Normally set to p3. No new
sineburst is created if it cannot complete its kdur within the remaining itotdur.

iphs (optional) – initial phase of the fundamental, expressed as a fraction of a cycle (0 to
1). The default value is 0.

ifmode (optional) – formant frequency mode. If zero, each sineburst keeps the xform
frequency it was launched with. If non-zero, each is influenced by xform continuously. The
default value is 0.

PERFORMANCE
xamp – peak amplitude of each sineburst, observed at the true end of its rise pattern. The
rise may exceed this value given a large bandwidth (say, Q < 10) and/or when the bursts
are overlapping.

xfund – the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform – the formant frequency, i.e. freq of the sinusoid burst induced by each xfund
impulse. This frequency can be fixed for each burst or can vary continuously (see ifmode).

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-2

koct – octaviation index, normally zero. If greater than zero, lowers the effective xfund
frequency by attenuating odd-numbered sinebursts. Whole numbers are full octaves,
fractions transitional.

kband – the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the
rate of exponential decay throughout the sineburst, before the enveloping described below
is applied.

kris, kdur, kdec – rise, overall duration, and decay times (in seconds) of the sinusoid burst.
These values apply an enveloped duration to each burst, in similar fashion to a Csound
linen generator but with rise and decay shapes derived from the ifnb input. kris inversely
determines the skirtwidth (at -40 dB) of the induced formant region. kdur affects the
density of sineburst overlaps, and thus the speed of computation. Typical values for vocal
imitation are .003,.02,.007.

In the fof2 implementation, kphs allows k-rate indexing of function table ifna with each
successive burst, making it suitable for time-warping applications. Values of for kphs are
normalized from 0 to 1, 1 being the end of the function table ifna. kgliss – sets the end
pitch of each grain relative to the initial pitch, in octaves. Thus kgliss = 2 means that the
grain ends two octaves above its initial pitch, while kgliss = -5/3 has the grain ending a
perfect major sixth below. Note: There are no optional parameters in fof2

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT
program (Xavier Rodet et al.). Each fof produces a single formant, and the output of four
or more of these can be summed to produce a rich vocal imitation. fof synthesis is a special
form of granular synthesis, and this implementation aids transformation between vocal
imitation and granular textures. Computation speed depends on kdur, xfund, and the
density of any overlaps.

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-3

40.2 fog

ar fogfogfogfog xamp, xdens, xtrans, xspd, koct, kband, kris, kdur,\\
kdec, iolaps, ifna, ifnb, itotdur[, iphs[, itmode]]

DESCRIPTION
Audio output is a succession of grains derived from data in a stored function table ifna. The
local envelope of these grains and their timing is based on the model of fof synthesis and
permits detailed control of the granular synthesis.

INITIALIZATION
iolaps – number of pre-located spaces needed to hold overlapping grain data. Overlaps are
density dependent, and the space required depends on the maximum value of xdens* kdur.
Can be over-estimated at no computation cost. Uses less than 50 bytes of memory per
iolaps.

ifna, ifnb – table numbers of two stored functions. The first is the data used for
granulation, usually from a soundfile (GEN01). The second is a rise shape, used forwards
and backwards to shape the grain rise and decay; this is normally a sigmoid (GEN19) but
may be linear (GEN07).

itotdur – total time during which this fog will be active. Normally set to p3. No new grain is
created if it cannot complete its kdur within the remaining itotdur.

iphs (optional) – initial phase of the fundamental, expressed as a fraction of a cycle (0 to
1). The default value is 0.

itmode (optional) – transposition mode. If zero, each grain keeps the xtrans value it was
launched with. if non-zero, each is influenced by xtrans continuously. The default value is
0.

PERFORMANCE
xamp – amplitude factor. Amplitude is also dependent on the number of overlapping
grains, the interaction of the rise shape (ifnb) and the exponential decay (kband), and the
scaling of the grain waveform (ifna). The actual amplitude may therefore exceed xamp.

xdens – density. The frequency of grains per second.

xtrans – transposition factor. The rate at which data from the stored function table ifna is
read within each grain. This has the effect of transposing the original material. A value of 1
produces the original pitch. Higher values transpose upwards, lower values downwards.
Negative values result in the function table being read backwards.

xspd – speed. The rate at which successive grains advance through the stored function
table ifna. xspd is in the form of an index (0 to 1) to ifna. This determines the movement
of a pointer used as the starting point for reading data within each grain. (xtrans
determines the rate at which data is read starting from this pointer.)

koct – octaviation index. The operation of this parameter is identical to that in fof.

kband, kris, kdur, kdec – grain envelope shape. These parameters determine the
exponential decay (kband), and the rise (kris), overall duration (kdur,) and decay (kdec)
times of the grain envelope. Their operation is identical to that of the local envelope
parameters in fof.

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-4

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s
fof algorithm.

EXAMPLE

;p4 = transposition factor
;p5 = speed factor
;p = function table for grain data

;scaling to reflect sample rate and table length
i1 = sr/ftlen(p6)
a1 phasorphasorphasorphasor i1*p5 ;index for speed
a2 fogfogfogfog 5000, 100, p4, a1, 0, 0, , .01, .02, .01, 2, p6, 1, p3, 0, 1

AUTHOR
Michael Clark
Huddersfield
May 1997

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-5

40.3 grain

ar graingraingraingrain xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn,\\

iwfn, imgdur [, igrnd]

DESCRIPTION
Generates granular synthesis textures.

INITIALIZATION
igfn – The ftable number of the grain waveform. This can be just a sine wave or a sampled
sound.

iwfn – Ftable number of the amplitude envelope used for the grains (see also GEN20).

imgdur – Maximum grain duration in seconds. This the biggest value to be assigned to
kgdur.

igrn – (optional) if non-zero, turns off grain offset randomness. This means that all grains
will begin reading from the beginning of the igfn table. If zero (the default), grains will
start reading from random igfn table positions.

PERFORMANCE
xamp – Amplitude of each grain.

xpitch – Grain pitch. To use the original frequency of the input sound, use the formula:
sndsr / ftlen(igfn) where sndsr is the original sample rate of the igfn sound.

xdens – Density of grains measured in grains per second. If this is constant then the output
is synchronous granular synthesis, very similar to fof. If xdens has a random element (like
added noise), then the result is more like asynchronous granular synthesis.

kampoff – Maximum amplitude deviation from kamp. This means that the maximum
amplitude a grain can have is kamp + kampoff and the minimum is kamp. If kampoff is set
to zero then there is no random amplitude for each grain.

kpitchoff – Maximum pitch deviation from kpitch in Hz. Similar to kampoff.

kgdur – Grain duration in seconds. The maximum value for this should be declared in
imgdur. If kgdur at any point becomes greater than imgdur, it will be truncated to imgdur.

The grain generator is based primarily on work and writings of Barry Truax and Curtis
Roads.

EXAMPLE
A texture with gradually shorter grains and wider amp and pitch spread

;;;;;;;;;;;;;;; graintest.orc
instr 1
 insnd = 10
 ibasfrq = 32000 / ftlen(insnd) ; Use original sample rate of insnd file
 kamp expsegexpsegexpsegexpseg 8000, p3/2, 8000, p3/2, 16000
 kpitch linelinelineline ibasfrq, p3, ibasfrq * .8
 kdens linelinelineline 600, p3, 200
 kaoff linelinelineline 0, p3, 5000
 kpoff linelinelineline 0, p3, ibasfrq * .5
 kgdur linelinelineline .4, p3, .1
 imaxgdur = .5

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-6

 ar graingraingraingrain kamp, kpitch, kdens, kaoff, kpoff, kgdur, insnd, 5, imaxgdur, 0.0
 out ar
endin
;;;;;;;;;;;;;;; graintest.sco
f5 0 512 20 2 ; Hanning window
f10 0 65536 1 “Sound.wav” 0 0 0
i1 0 10
e

AUTHOR
Paris Smaragdis
MIT
May 1997

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-7

40.4 granule

asig granulegranulegranulegranule xamp, ivoice, iratio, imode, ithd, ifn, ipshift,\\
igskip, igskip_os, ilength, kgap, igap_os, kgsize,\\
igsize_os, iatt, idec [,iseed[,ipitch1[,ipitch2\\
[,ipitch3[,ipitch4[,ifnenv]]]]]]

DESCRIPTION
The granule unit generator is more complex than grain, but does add new possibilities.

granule is a Csound unit generator which employs a wavetable as input to produce
granularly synthesized audio output. Wavetable data may be generated by any of the GEN
subroutines such as GEN01 which reads an audio data file into a wavetable. This enable a
sampled sound to be used as the source for the grains. Up to 128 voices are implemented
internally. The maximum number of voices can be increased by redefining the variable
MAXVOICE in the grain4.h file. granule has a build-in random number generator to handle
all the random offset parameters. Thresholding is also implemented to scan the source
function table at initialization stage. This facilitates features such as skipping silence
passage between sentences.

The characteristics of the synthesis are controlled by 22 parameters. xamp is the amplitude
of the output and it can be either audio rate or control rate variable.

PERFORMANCE
xamp – amplitude.

ivoice – number of voices.

iratio – ratio of the speed of the gskip pointer relative to output audio sample rate. e.g.
0.5 will be half speed.

imode – +1 grain pointer move forward (same direction of the gskip pointer), -1 backward
(oppose direction to the gskip pointer) or 0 for random.

ithd – threshold, if the sampled signal in the wavetable is smaller then ithd, it will be
skipped.

ifn – function table number of sound source.

ipshift – pitch shift control. If ipshift is 0, pitch will be set randomly up and down an
octave. If ipshift is 1, 2, 3 or 4, up to four different pitches can be set amount the number
of voices defined in ivoice. The optional parameters ipitch1, ipitch2, ipitch3 and ipitch4
are used to quantify the pitch shifts.

igskip – initial skip from the beginning of the function table in sec.

igskip_os – gskip pointer random offset in sec, 0 will be no offset.

ilength – length of the table to be used starting from igskip in sec.

kgap – gap between grains in sec.

igap_os – gap random offset in % of the gap size, 0 gives no offset.

kgsize – grain size in sec.

igsize_os – grain size random offset in % of grain size, 0 gives no offset.

iatt – attack of the grain envelope in % of grain size.

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-8

idec – decade of the grain envelope in % of grain size.

[iseed] – optional, seed for the random number generator, default is 0.5.

[ipitch1], [ipitch2], [ipitch3], [ipitch4]- optional, pitch shift parameter, used when ipshift
is set to 1, 2, 3 or 4. Time scaling technique is used in pitch shift with linear interpolation
between data points. Default value is 1, the original pitch.

EXAMPLE

; Orchestra file:
srsrsrsr = 44100
krkrkrkr = 4410
ksmpsksmpsksmpsksmps = 10
nchnlsnchnlsnchnlsnchnls = 2

instrinstrinstrinstr 1
;
k1 linseglinseglinseglinseg 0,0.5,1,(p3-p2-1),1,0.5,0
a1 granulegranulegranulegranule p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,\

 p16,p17,p18,p19,p20,p21,p22,p23,p24
a2 granulegranulegranulegranule p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,\

 p16,p17,p18,p19, p20+0.17,p21,p22,p23,p24
 outsoutsoutsouts a1,a2

endinendinendinendin

; Score file:
; f statement read sound file sine.aiff in the SFDIR
; directory into f-table 1
f1 0 524288 1 “sine.aiff” 1 0
i1 0 10 2000 64 0.5 0 0 1 4 0 0.005 10 0.01 50 0.02 50 30 30 0.39 \
 1 1.42 0.29 2
e

The above example reads a sound file called sine.aiff into wavetable number 1 with
524,288 samples. It generates 10 seconds of stereo audio output using the wavetable. In
the orchestra file, all parameters required to control the synthesis are passed from the
score file. A linseg function generator is used to generate an envelope with 0.5 second of
linear attack and decay. Stereo effect is generated by using different seeds for the two
granule function calls. In the example, 0.17 is added to p20 before passing into the second
granule call to ensure that all of the random offset events are different from the first one.

In the score file, the parameters are interpreted as:

p5 (ivoice) the number of voices is set to 64
p6 (iratio) is set to 0.5, it scan the wavetable at half of the speed
 of the audio output rate
p7 (imode) is set to 0, the grain pointer only move forward
p8 (ithd) is set to 0, skipping the thresholding process
p9 (ifn) is set to 1, function table number 1 is used
p10 (ipshift) is set to 4, four different pitches are going to be
 generated
p11 (igskip) is set to 0 and p12 (igskip_os) is set to 0.005, no
 skipping into the wavetable and a 5 mSec random offset is used
p13 (ilength) is set to 10, 10 seconds of the wavetable is to be used
p14 (kgap) is set to 0.01 and p15 (igap_os) is set to 50, 10 mSec gap
 with 50% random offset is to be used
p16 (kgsize) is set to 0.02 and p17 (igsize_os) is set to 50, 20 mSec
 grain with 50% random offset is used
p18 (iatt) and p19 (idec) are set to 30, 30% of linear attack and
 decade is applied to the grain
p20 (iseed) seed for the random number generator is set to 0.39
p21 - p 24 are pitches set to 1 which is the original pitch, 1.42
 which is a 5th up, 0.29 which is a 7th down and finally 2 which is
 an octave up.

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-9

AUTHOR
Allan Lee
Belfast
1996

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-10

40.5 sndwarp, sndwarpst

ar[,ac] sndwarp sndwarp sndwarp sndwarp xamp, xtimewarp, xresample, ifn1, ibeg,\\
iwsize, irandw, ioverlap, ifn2, itimemode

ar1,ar2[,ac1,ac2] sndwarpst sndwarpst sndwarpst sndwarpst xamp, xtimewarp, xresample, ifn1, ibeg,\\
iwsize, irandw, ioverlap, ifn2, itimemode

DESCRIPTION
sndwarp reads sound samples from a table and applies time-stretching and/or pitch
modification. Time and frequency modification are independent from one another. For
example, a sound can be stretched in time while raising the pitch! The window size and
overlap arguments are important to the result and should be experimented with. In general
they should be as small as possible. For example, start with iwsize=sr/10 and ioverlap=15.
Try irandw=iwsize*.2. If you can get away with less overlaps, the program will be faster.
But too few may cause an audible flutter in the amplitude. The algorithm reacts differently
depending upon the input sound and there are no fixed rules for the best use in all
circumstances. But with proper tuning, excellent results can be achieved.

INITIALIZATION
ifn1 – the number of the table holding the sound samples which will be subjected to the
sndwarp processing. GEN01 is the appropriate function generator to use to store the sound
samples from a pre-existing soundfile.

ibeg – the time in seconds to begin reading in the table (or soundfile). When itimemode is
non- zero, the value of xtimewarp is offset by ibeg.

iwsize – the window size in samples used in the time scaling algorithm.

irandw – the bandwidth of a random number generator. The random numbers will be added
to iwsize.

ioverlap – determines the density of overlapping windows.

ifn2 – a function used to shape the window. It is usually used to create a ramp of some kind
from zero at the beginning and back down to zero at the end of each window. Try using a
half a sine (i.e.: f1 0 16384 9 .5 1 0) which works quite well. Other shapes can also be
used.

PERFORMANCE
ar – single channel of output from the sndwarp unit generator while ar1 and ar2 are the
stereo (left and right) outputs from sndwarpst. sndwarp assumes that the function table
holding the sampled signal is a mono one while sndwarpst assumes that it is stereo. This
simply means that sndwarp will index the table by single-sample frame increments and
sndwarpst will index the table by a two-sample frame increment. The user must be aware
then that if a mono signal is used with sndwarpst or a stereo one with sndwarp, time and
pitch will be altered accordingly.

ac – in sndwarp and ac1, ac2 in sndwarpst, are single layer (no overlaps), unwindowed
versions of the time and/or pitch altered signal. They are supplied in order to be able to
balance the amplitude of the signal output, which typically contains many overlapping and
windowed versions of the signal, with a clean version of the time-scaled and pitch-shifted
signal. The sndwarp process can cause noticeable changes in amplitude, (up and down),
due to a time differential between the overlaps when time-shifting is being done. When
used with a balance unit, ac, ac1, ac2 can greatly enhance the quality of sound. They are

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-11

optional, but note that in sndwarpst they must both be present in the syntax (use both or
neither). An example of how to use this is given below.

xamp – the value by which to scale the amplitude (see note on the use of this when using
ac, ac1, ac2).

xtimewarp – determines how the input signal will be stretched or shrunk in time. There are
two ways to use this argument depending upon the value given for itimemode. When the
value of itimemode is 0, xitimewarp will scale the time of the sound. For example, a value
of 2 will stretch the sound by 2 times. When itimemode is any non-zero value then
xtimewarp is used as a time pointer in a similar way in which the time pointer works in
lpread and pvoc. An example below illustrates this. In both cases, the pitch will not be
altered by this process. Pitch shifting is done independently using xresample.

xresample – the factor by which to change the pitch of the sound. For example, a value of
2 will produce a sound one octave higher than the original. The timing of the sound,
however, will not be altered.

EXAMPLE
The below example shows a slowing down or stretching of the sound stored in the stored
table (ifn1). Over the duration of the note, the stretching will grow from no change from
the original to a sound which is ten times “slower” than the original. At the same time the
overall pitch will move upward over the duration by an octave.

iwindfun=1
isampfun=2
ibeg=0
iwindsize=2000
iwindrand=400
ioverlap=10
awarp linelinelineline 1, p3, 10
aresamp linelinelineline 1, p3, 2
kenv linelinelineline 1, p3, .1
asig sndwarpsndwarpsndwarpsndwarp kenv,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand, \\
 ioverlap,iwindfun,0

Now, here’s an example using xtimewarp as a time pointer and using stereo:

itimemode ==== 1
atime linelinelineline 0, p3, 10
ar1, ar2 sndwarpstsndwarpstsndwarpstsndwarpst kenv, atime, aresamp, sampfun, ibeg, \\

 iwindsize, iwindrand, ioverlap, \\
 iwindfun, itimemode

In the above, atime advances the time pointer used in the sndwarp from 0 to 10 over the
duration of the note. If p3 is 20 then the sound will be two times slower than the original.
Of course you can use a more complex function than just a single straight line to control
the time factor.

Now the same as above but using the balance function with the optional outputs:

asig,acmp sndwarpsndwarpsndwarpsndwarp 1,awarp,aresamp,isampfun,ibeg,iwindsize,iwindrand,\\
 ioverlap,iwindfun,itimemode
abal balancebalancebalancebalance asig, acmp

asig1,asig2,acmp1,acmp2 sndwarpstsndwarpstsndwarpstsndwarpst 1, atime, aresamp, sampfun,\\
 ibeg, iwindsize, iwindrand, \\
 ioverlap, iwindfun, itimemode
abal1 balancebalancebalancebalance asig1, acmp1
abal2 balancebalancebalancebalance asig2, acmp2

In the above two examples notice the use of the balance unit. The output of balance can
then be scaled, enveloped, sent to an out or outs, and so on. Notice that the amplitude
arguments to sndwarp and sndwarpst are “1” in these examples. By scaling the signal
after the sndwarp process, abal, abal1, and abal2 should contain signals that have nearly

The Public Csound Reference Manual Version 4.10 Signal Generators: Granular Synthesis Page 40-12

the same amplitude as the original input signal to the sndwarp process. This makes it much
easier to predict the levels and avoid samples out of range or sample values that are too
small.

More advice: Only use the stereo version when you really need to be processing a stereo
file. It is somewhat slower than the mono version and if you use the balance function it is
slower again. There is nothing wrong with using a mono sndwarp in a stereo orchestra and
sending the result to one or both channels of the stereo output!

AUTHOR
Richard Karpen
Seattle, Wash
1997

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-1

41 SIGNAL GENERATORS: SCANNED
SYNTHESIS
Scanned synthesis is a variant of physical modeling, where a network of masses connected
by springs is used to generate a dynamic waveform. The opcode scanu defines the
mass/spring network and sets it in motion. The opcode scans follows a predefined path
(trajectory) around the network and outputs the detected waveform. Several scans
instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic
animation via algorithmic processing. They should run in real-time. Thus, the output is
useful either directly as audio, or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this
offers the possibility of reconnecting the masses in different orders, causing the signal to
propagate quite differently. They do not necessarily need to be connected to their direct
neighbors. Essentially, the matrix has the effect of “molding” this surface into a radically
different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we
have the following grid describing the possible connections:

Whenever two masses are connected, the point they define is 1. If two masses are not
connected, then the point they define is 0. For example, a unidirectional string has the
following connections: (1,2), (2,3), (3,4). If it is bidirectional, it also has (2,1), (3,2),
(4,3)). For the unidirectional string, the matrix appears:

The above table format of the connection matrix is for conceptual convenience only. The
actual values shown in te table are obtained by scans from an ASCII file using GEN23. The
actual ASCII file is created from the table model row by row. Therefore the ASCII file for
the example table shown above becomes:

 0100001000010000

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-2

This marix example is very small and simple. In practice, most scanned synthesis
instruments will use many more masses than four, so their matrices will be much larger and
more complex. See the example in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for
masses, centering, and damping can cause the system to “blow up” and the most
interesting sounds to emerge from your loudspeakers!

The supplement to this manual contains a tutorial on scanned synthesis. The tutorial,
examples, and other information on scanned synthesis is available from the Scanned
Synthesis page at cSounds.com (http://www.csounds.com/scanned).

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval
Research between 1998 and 2000.

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-3

41.1 scanu

scanuscanuscanuscanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr,
ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright,
kpos, kstrngth, ain, idisp, id

DESCRIPTION
Compute the waveform and the wavetable for use in scanned synthesis.

INITIALIZATION
init – the initial position of the masses. If this is a negative number, then the absolute of
init signifies the table to use as a hammer shape. If init > 0, the length of it should be the
same as the intended mass number, otherwise it can be anything.

ifnvel – the ftable that contains the initial velocity for each mass. It should have the same
size as the intended mass number.

ifnmass – ftable that contains the mass of each mass. It should have the same size as the
intended mass number.

ifnstif – ftable that contains the spring stiffness of each connection. It should have the
same size as the square of the intended mass number. The data ordering is a row after row
dump of the connection matrix of the system.

ifncentr – ftable that contains the centering force of each mass. It should have the same
size as the intended mass number.

ifndamp – the ftable that contains the damping factor of each mass. It should have the
same size as the intended mass number.

ileft – If init < 0, the position of the left hammer (ileft = 0 is hit at leftmost, ileft = 1 is hit
at rightmost).

iright – If init < 0, the position of the right hammer (iright = 0 is hit at leftmost, iright = 1
is hit at rightmost).

idisp – If 0, no display of the masses is provided.

id – If positive, the ID of the opcode. This will be used to point the scanning opcode to the
proper waveform maker. If this value is negative, the absolute of this value is the
wavetable on which to write the waveshape. That wavetable can be used later from an
other opcode to generate sound. The initial contents of this table will be destroyed.

PERFORMANCE
kmass – scales the masses

kstif – scales the spring stiffness

kcentr – scales the centering force

kdamp – scales the damping

kpos – position of an active hammer along the string (kpos = 0 is leftmost, kpos = 1 is
rightmost). The shape of the hammer is determined by init and the power it pushes with is
kstrngth.

kstrngth – power that the active hammer uses

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-4

ain – audio input that adds to the velocity of the masses. Amplitude should not be too
great.

EXAMPLE
For an example, see the documentation on scans.

AUTHOR
Paris Smaragdis
MIT Media Lab
Boston, Massachussetts USA
March, 2000 (New in Csound version 4.05)

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-5

41.2 scans

ar scansscansscansscans kamp, kfreq, ifn, id[, iorder]

DESCRIPTION
Generate audio output using scanned synthesis.

INITIALIZATION
ifn – ftable containing the scanning trajectory. This is a series of numbers that contains
addresses of masses. The order of these addresses is used as the scan path. It should not
contain values greater than the number of masses, or negative numbers. See the
introduction to the scanned synthesis section.

id – ID number of the scanu opcode's waveform to use

iorder (optional) – order of interpolation used internally. It can take any value in the range
1 to 4, and defaults to 4, which is quartic interpolation. The setting of 2 is quadratic and 1
is linear. The higher numbers are slower, but not necessarily better.

PERFORMANCE
kamp – output amplitude. Note that the resulting amplitude is also dependent on
instantaneous value in the wavetable. This number is effectively the scaling factor of the
wavetable.

kfreq – frequency of the scan rate

EXAMPLE
Here is a simple example of scanned synthesis. The user must supply the matrix file "string-
128". This file, as well as several other matrices, is available in a zipped file from the
Scanned Synthesis page at cSounds.com (http://www.csounds.com/scanned).

;orchestra --
srsrsrsr = 44100
krkrkrkr = 4410
ksmpsksmpsksmpsksmps = 10
nchnlsnchnlsnchnlsnchnls = 1

instrinstrinstrinstr 1
a0 ==== 0

scanuscanuscanuscanu 1,.01, 6, 2, 3, 4, 5, 2, .1, .1, -.01, .1, .5, 0, 0, a0,
1, 2

a1 scansscansscansscans ampdb(p4), cpspch(p5), 7, 2
outoutoutout a1
endinendinendinendin

;score --

; Initial condition
f1 0 128 7 0 64 1 64 0

; Masses
f2 0 128 -7 1 128 1

; Spring matrices
f3 0 16384 -23 "string-128"

; Centering force
f4 0 128 -7 0 128 2

The Public Csound Reference Manual Version 4.10 Signal Generators: Scanned Synthesis Page 41-6

; Damping
f5 0 128 -7 1 128 1

; Initial velocity
f6 0 128 -7 0 128 0

; Trajectories
f7 0 128 -5 .001 128 128

; Note list
i1 0 10 86 6.00
i1 11 14 86 7.00
i1 15 20 86 5.00
e

AUTHOR
Paris Smaragdis
MIT Media Lab
Boston, Massachussetts USA
March, 2000 (New in Csound version 4.05)

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-1

42 SIGNAL GENERATORS: WAVEGUIDE
PHYSICAL MODELING

42.1 pluck

ar pluckpluckpluckpluck kamp, kcps, icps, ifn, imeth [, iparm1, iparm2]

DESCRIPTION
Audio output is a naturally decaying plucked string or drum sound based on the Karplus-
Strong algorithms.

INITIALIZATION
icps – intended pitch value in Hz, used to set up a buffer of 1 cycle of audio samples which
will be smoothed over time by a chosen decay method. icps normally anticipates the value
of kcps, but may be set artificially high or low to influence the size of the sample buffer.

ifn – table number of a stored function used to initialize the cyclic decay buffer. If ifn = 0,
a random sequence will be used instead.

imeth – method of natural decay. There are six, some of which use parameters values that
follow.

• 1. simple averaging. A simple smoothing process, uninfluenced by parameter
values.

• 2. stretched averaging. As above, with smoothing time stretched by a factor of
iparm1 (= 1).

• 3. simple drum. The range from pitch to noise is controlled by a ‘roughness factor’
in iparm1 (0 to 1). Zero gives the plucked string effect, while 1 reverses the
polarity of every sample (octave down, odd harmonics). The setting .5 gives an
optimum snare drum.

• 4. stretched drum. Combines both roughness and stretch factors. iparm1 is
roughness (0 to 1), and iparm2 the stretch factor (= 1).

• 5. weighted averaging. As method 1, with iparm1 weighting the current sample
(the status quo) and iparm2 weighting the previous adjacent one. iparm1 +
iparm2must be <= 1.

• 6. 1st order recursive filter, with coefs .5. Unaffected by parameter values.
• iparm1, iparm2 (optional) – parameter values for use by the smoothing algorithms

(above). The default values are both 0.

PERFORMANCE
An internal audio buffer, filled at i-time according to ifn, is continually resampled with
periodicity kcps and the resulting output is multiplied by kamp. Parallel with the sampling,
the buffer is smoothed to simulate the effect of natural decay.

Plucked strings (1,2,5,6) are best realized by starting with a random noise source, which is
rich in initial harmonics. Drum sounds (methods 3,4) work best with a flat source (wide
pulse), which produces a deep noise attack and sharp decay.

The original Karplus-Strong algorithm used a fixed number of samples per cycle, which
caused serious quantization of the pitches available and their intonation. This

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-2

implementation resamples a buffer at the exact pitch given by kcps, which can be varied
for vibrato and glissando effects. For low values of the orch sampling rate (e.g. sr = 10000),
high frequencies will store only very few samples (sr / icps). Since this may cause
noticeable noise in the resampling process, the internal buffer has a minimum size of 64
samples. This can be further enlarged by setting icps to some artificially lower pitch.

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-3

42.2 wgpluck

ar wgpluckwgpluckwgpluckwgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite

DESCRIPTION
A high fidelity simulation of a plucked string, using interpolating delay-lines.

INITIALIZATION
icps – frequency of plucked string

iamp – amplitude of string pluck

iplk – point along the string, where it is plucked, in the range of 0 to 1. 0 = no pluck

idamp – damping of the note. This controls the overall decay of the string. The greater the
value of idamp1, the faster the decay. Negative values will cause an increase in output
over time.

ifilt – control the attenuation of the filter at the bridge. Higher values cause the higher
harmonics to decay faster.

PERFORMANCE
kpick – proportion of the way along the point to sample the output

axcite – signal which excites the string

A string of frequency icps is plucked with amplitude iamp at point iplk. The decay of the
virtual string is controlled by idamp and ifilt which simulate the bridge. The oscillation is
sampled at the point kpick, and excited by the signal axcite.

EXAMPLES
The following example produces a moderately long note with rapidly decaying upper
partials:

 instrinstrinstrinstr 1
 axcite osciloscilosciloscil 1, 1, 1
 apluck wgpluckwgpluckwgpluckwgpluck 220, 120, .5, 0, 10, 1000, axcite
 outoutoutout apluck

endinendinendinendin
whereas the following produces a shorter, brighter note:
 instrinstrinstrinstr 1

 axcite osciloscilosciloscil 1, 1, 1
 apluck wgpluckwgpluckwgpluckwgpluck 220, 120, .5, 0, 30, 10, axcite
 outoutoutout apluck
 endinendinendinendin

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-4

42.3 repluck, wgpluck2

ar wgpluck2wgpluck2wgpluck2wgpluck2 iplk, xam, icps, kpick, krefl
ar repluckrepluckrepluckrepluck iplk, xam, icps, kpick, krefl, axcite

DESCRIPTION
wgpluck2 is an implementation of the physical model of the plucked string, with control
over the pluck point, the pickup point and the filter. repluck is the same operation, but
with an additional audio signal, axcite, used to excite the ‘string’. Both opcodes are based
on the Karplus-Strong algorithms.

INITIALIZATION
icps – The string plays at icps pitch.

iplck – The point of pluck is iplk, which is a fraction of the way up the string (0 to 1). A
pluck point of zero means no initial pluck.

PERFORMANCE
xamp – Amplitude of note.

kpick – Proportion of the way along the string to sample the output.

kabsp – absorption coefficient at the bridge where 1 means total absorption and 0 is no
absorption.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
1997

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-5

42.4 wgbow

ar wgbowwgbowwgbowwgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn[, iminfreq]

DESCRIPTION
 Audio output is a tone similar to a bowed string, using a physical model developed from
Perry Cook, but re-coded for Csound.

INITIALIZATION
ifn – table of shape of vibrato, usually a sine table, created by a function

iminfreq – lowest frequency at which the instrument will play. If it is omitted it is taken
to be the same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

PERFORMANCE

A note is played on a string-like instrument, with the arguments as below.

kamp – Amplitude of note.

kfreq – Frequency of note played.

kpres – a parameter controlling the pressure of the bow on the string. Values should be
about 3. The useful range is approximately 1 to 5.

krat – the position of the bow along the string. Usual playing is about 0.127236. The
suggested range is 0.025 to 0.23.

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

EXAMPLE

kv linseglinseglinseglinseg 0, 0.5, 0, 1, 1, p3-0.5, 1
a1 wgbowwgbowwgbowwgbow 31129.60, 440, 3.0, 0.127236, 6.12723, kv*0.01, 1

outoutoutout a1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-6

42.5 wgflute

ar wgflutewgflutewgflutewgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp,\\
ifn[, iminfreq[, kjetrf[, kendrf]]]

DESCRIPTION
Audio output is a tone similar to a flute, using a physical model developed from Perry
Cook, but re-coded for Csound.

INITIALIZATION
iatt – time in seconds to reach full blowing pressure. 0.1 seems to correspond to
reasonable playing.

idetk – time in seconds taken to stop blowing. 0.1 is a smooth ending

ifn – table of shape of vibrato, usually a sine table, created by a function

iminfreq – lowest frequency at which the instrument will play. If it is omitted it is taken
to be the same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

PERFORMANCE
kamp – Amplitude of note.

kfreq – Frequency of note played. While it can be varied in performance, I have not tried
it.

kjet – a parameter controlling the air jet. Values should be positive, and about 0.3. The
useful range is approximately 0.08 to 0.56.

kngain – amplitude of the noise component, about 0 to 0.5

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

kjetrf – amount of reflection in the breath jet that powers the flute. Default value is 0.5.

kendrf – reflection coefficient of the breath jet. Default value is 0.5. Both ijetrf and iendrf
are used in the calculation of the pressure differential.

EXAMPLE

a1 wgflutewgflutewgflutewgflute 31129.60, 440, 0.32, 0.1, 0.1, 0.15, 5.925, 0.05, 1
outoutoutout a1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-7

42.6 wgbrass

ar wgbrasswgbrasswgbrasswgbrass kamp, kfreq, ktens, iatt, kvibf, kvamp, ifn[, iminfreq]

DESCRIPTION
Audio output is a tone related to a brass instrument, using a physical model developed
from Perry Cook, but re-coded for Csound. [NOTE: This is rather poor, and at present
uncontrolled. Needs revision, and possibly more parameters].

INITIALIZATION
iatt -- time taken to reach full pressure

ifn – table of shape of vibrato, usually a sine table, created by a function

iminfreq – lowest frequency at which the instrument will play. If it is omitted it is taken
to be the same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

PERFORMANCE

A note is played on a brass-like instrument, with the arguments as below.

kamp – Amplitude of note.

kfreq – Frequency of note played.

ktens – lip tension of the player. Suggested value is about 0.4

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

EXAMPLE

 a1 wgbrasswgbrasswgbrasswgbrass 31129.60, 440, 0.1, 6.137, 0.05, 1
 outoutoutout a1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-8

42.7 wgclar

ar wgclarwgclarwgclarwgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, \\
kvamp, ifn[, iminfreq]

DESCRIPTION
 Audio output is a tone similar to a clarinet, using a physical model developed from Perry
Cook, but re-coded for Csound.

INITIALIZATION
iatt – time in seconds to reach full blowing pressure. 0.1 seems to correspond to
reasonable playing. A longer time gives a definite initial wind sound.

idetk – time in seconds taken to stop blowing. 0.1 is a smooth ending

ifn – table of shape of vibrato, usually a sine table, created by a function

iminfreq – lowest frequency at which the instrument will play. If it is omitted it is taken
to be the same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

PERFORMANCE
A note is played on a clarinet-like instrument, with the arguments as below.

kamp – Amplitude of note.

kfreq – Frequency of note played.

kstiff – a stiffness parameter for the reed. Values should be negative, and about -0.3. The
useful range is approximately -0.44 to -0.18.

kngain – amplitude of the noise component, about 0 to 0.5

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

EXAMPLE

 a1 wgclarwgclarwgclarwgclar 31129.60, 440, -0.3, 0.1, 0.1, 0.2, 5.735, 0.1, 1
 outoutoutout a1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-9

42.8 wgbowedbar

ar wgbowedbarwgbowedbarwgbowedbarwgbowedbar kamp, kfreq, kpos, kbowpres, kgain[, kconst, ktvel,
kbowpos, ilow]

DESCRIPTION
A physical model of a bowed bar, belonging to the Perry Cook family of waveguide
instruments.

INITIALIZATION
ilow (optional) – lowest frequency required

PERFORMANCE
kamp – amplitude of signal

kfreq – frequency of signal

kpos – position of the bow on the bar, in the range 0 to 1

kbowpres – pressure of the bow (as in wgbowed)

kgain – gain of filter. A value of about 0.809 is suggested.

kconst (optional) – an integration constant. Default is zero.

ktvel (optional) – either 0 or 1. When ktvel = 0, the bow velocity follows an ADSR style
trajectory. When ktvel = 1, the value of the bow velocity decays in an exponentially.

kbowpos (optional) – the position on the bow, which affects the bow velocity trajectory.

EXAMPLE

;orchestra ----------------

instrinstrinstrinstr 1
; pos = [0, 1]
; bowpress = [1, 10]
; gain = [0.8, 1]
; intr = [0,1]
; trackvel = [0, 1]
; bowpos = [0, 1]

kb linelinelineline 0.5, p3, 0.1
kp linelinelineline 0.6, p3, 0.7
kc linelinelineline 1, p3, 1

a1 wgbowedbarwgbowedbarwgbowedbarwgbowedbar p4, cpspchcpspchcpspchcpspch(p5), kb, kp, 0.995, p6, 0, kc, 50

outoutoutout a1
endinendinendinendin

;score -------------------

i1 0 3 32000 7.00 0

e

The Public Csound Reference Manual Version 4.10 Signal Generators: Waveguide Physical Modeling Page 42-10

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 4.07

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-1

43 SIGNAL GENERATORS: MODELS AND
EMULATIONS

43.1 moog

a1 moogmoogmoogmoog kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn,\\
iwfn, ivfn

DESCRIPTION
An emulation of a mini-Moog synthesizer.

INITIALIZATION
iafn, iwfn, ivfn – three table numbers containing the attack waveform (unlooped), the
main looping wave form, and the vibrato waveform. The files mandpluk.aiff and
impuls20.aiff are suitable for the first two, and a sine wave for the last.

PERFORMANCE
kamp – Amplitude of note.

kfreq – Frequency of note played.

kfiltq – Q of the filter, in the range 0.8 to 0.9

kfiltrate – rate control for the filter in the range 0 to 0.0002

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-2

43.2 shaker

ar shakershakershakershaker kamp, kfreq, kbeans, kdamp, ktimes[, idecay]

DESCRIPTION
Audio output is a tone related to the shaking of a maraca or similar gourd instrument. The
method is a physically inspired model developed from Perry Cook, but re-coded for Csound.

INITIALIZATION
idecay – If present indicates for how long at the end of the note the shaker is to be
damped. The default value is zero.

PERFORMANCE

A note is played on a maraca-like instrument, with the arguments as below.

kamp – Amplitude of note.

kfreq – Frequency of note played.

kbeans – The number of beans in the gourd. A value of 8 seems suitable,

kdamp -- The damping value of the shaker. Values of 0.98 to 1 seems suitable, with 0.99 a
reasonable default.

ktimes -- Number of times shaken.

The argument knum was redundant, so was removed in version 3.49.

EXAMPLE

a1 shakershakershakershaker 31129.60, 440, 8, 0.999, 100, 0
outsoutsoutsouts a1, a1

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-3

43.3 marimba, vibes

ar marimbamarimbamarimbamarimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, \\
idec[, idoubles[, itriples]]

ar vibesvibesvibesvibes kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, \\
idec

DESCRIPTION
Audio output is a tone related to the striking of a wooden or metal block as found in a
marimba or vibraphone. The method is a physical model developed from Perry Cook, but
re-coded for Csound.

INITIALIZATION
ihrd – the hardness of the stick used in the strike. A range of 0 to 1 is used. 0.5 is a
suitable value.

ipos – where the block is hit, in the range 0 to 1.

imp – a table of the strike impulses. The file “marmstk1.wav” is a suitable function from
measurements, and can be loaded with a GEN01 table.

ivfn – shape of vibrato, usually a sine table, created by a function

idec – time before end of note when damping is introduced

idoubles – percentage of double strikes. Default is 40%.

itriples – percentage of triple strikes. Default is 20%.

PERFORMANCE
kamp – Amplitude of note.

kfreq – Frequency of note played.

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

EXAMPLE

 a1 marimbamarimbamarimbamarimba 31129.60, 440, 0.5, 0.561, 2, 6.0, 0.05, 1, 0.1
 a2 vibesvibesvibesvibes 31129.60, 440, 0.5, 0.561, 2, 4.0, 0.2, 1, 0.1a1
 outsoutsoutsouts a1, a2

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-4

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-5

43.4 mandol

ar mandolmandolmandolmandol kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn\\
[, iminfreq]

DESCRIPTION
An emulation of a mandolin.

INITIALIZATION
ifn -- table number containing the pluck wave form. The file mandpluk.aiff is suitable for
this.

iminfreq -- Lowest frequency to be played on the note. If it is omitted it is taken to be the
same as the initial kfreq.

PERFORMANCE
kamp – Amplitude of note.

kfreq – Frequency of note played.

kpluck – The pluck position, in range 0 to 1. Suggest 0.4.

kgain – the loopgain of the model, in the range 0.97 to 1.

kdetune – The proportional detuning between the two strings. Suggested range 1 and 0.9.

ksize – The size of the body of the mandolin. Range 0 to 2.

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-6

43.5 gogobel

ar gogobelgogobelgogobelgogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn

DESCRIPTION
Audio output is a tone related to the striking of a cow bell or similar. The method is a
physical model developed from Perry Cook, but re-coded for Csound.

INITIALIZATION
ihrd -- the hardness of the stick used in the strike. A range of 0 to 1 is used. 0.5 is a
suitable value.

ipos -- where the block is hit, in the range 0 to 1.

imp – a table of the strike impulses. The file “marmstk1.wav” is a suitable function from
measurements, and can be loaded with a GEN01 table.

ivfn – shape of vibrato, usually a sine table, created by a function.

PERFORMANCE
A note is played on a cowbell-like instrument, with the arguments as below.

kamp – Amplitude of note.

kfreq – Frequency of note played.

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

EXAMPLE

 a1 gogobelgogobelgogobelgogobel 31129.60, 440, p4, 0.561, 3, 6.0, 0.3, 1
 outsoutsoutsouts a1, a2

NAME CHANGE
Prior to Csound version 3.52 (February, 1999), this opcode was called agogobel.

AUTHOR
John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-7

43.6 voice

ar voicevoicevoicevoice kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn

 DESCRIPTION
An emulation of a human voice.

 INITIALIZATION
ifn, ivfn – two table numbers containing the carrier wave form and the vibrato waveform.
The files “impuls20.aiff”, “ahh.aiff”, “eee.aiff”, or “ooo.aiff” are suitable for the first of
these, and a sine wave for the second. These files are available from:

ftp://ftp.maths.bath.ac.uk/pub/dream/documentation/sounds/modelling
/

PERFORMANCE

kamp – Amplitude of note.

kfreq – Frequency of note played. It can be varied in performance.

kphoneme – an integer in the range 0 to 16, which select the formants for the sounds:

 “eee”,”ihh”,”ehh”,”aaa”,
 “ahh”,”aww”,”ohh”,”uhh”,
 “uuu”,”ooo”,”rrr”,”lll”,
 “mmm”,”nnn”,”nng”,”ngg”.

At present the phonemes
 “fff”,”sss”,”thh”,”shh”,
 “xxx”,”hee”,”hoo”,”hah”,
 “bbb”,”ddd”,”jjj”,”ggg”,
 “vvv”,”zzz”,”thz”,”zhh”

are not available (!)

kform – Gain on the phoneme. values 0.0 to 1.2 recommended.

kvibf – frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp – amplitude of the vibrato

AUTHOR

 John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-8

43.7 lorenz

ax, ay, lorenzlorenzlorenzlorenz ks, kr, kb, kh, ix, iy, iz, iskip
az

DESCRIPTION
Implements the Lorenz system of equations. The Lorenz system is a chaotic-dynamic
system which was originally used to simulate the motion of a particle in convection
currents and simplified weather systems. Small differences in initial conditions rapidly lead
to diverging values. This is sometimes expressed as the butterfly effect. If a butterfly flaps
its wings in Australia, it will have an effect on the weather in Alaska. This system is one of
the milestones in the development of chaos theory. It is useful as a chaotic audio source or
as a low frequency modulation source.

INITIALIZATION
ix, iy, iz – the initial coordinates of the particle

iskip – used to skip generated values. If iskip is set to 5, only every fifth value generated is
output. This is useful in generating higher pitched tones.

PERFORMANCE
ksv – the Prandtl number or sigma

krv – the Rayleigh number

kbv – the ratio of the length and width of the box in which the convection currents are
generated

kh – the step size used in approximating the differential equation. This can be used to
control the pitch of the systems. Values of .1-.001 are typical.

The equations are approximated as follows:

x = x + h*(s*(y - x))
y = y + h*(-x*z + r*x - y)
z = z + h*(x*y - b*z)

The historical values of these parameters are:

ks = 10
kr = 28
kb = 8/3

EXAMPLE

 instr instr instr instr 20
ksv = p4
krv = p5
kbv = p6

ax, ay, az lorenzlorenzlorenzlorenz ksv, krv, kbv, .01, .6, .6, .6, 1
 endin endin endin endin

;score
; start dur S R V
i20 5 1 10 28 2.667

e

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-9

AUTHOR
Hans Mikelson
February 1999
(New in Csound version 3.53)

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-10

43.8 planet

ax, ay, az planetplanetplanetplanet kmass1, kmass2, ksep, ix, iy, iz, ivx, \\
ivy, ivz, idelta, ifriction

DESCRIPTION
planet simulates a planet orbiting in a binary star system. The outputs are the x, y and z
coordinates of the orbiting planet. It is possible for the planet to achieve escape velocity
by a close encounter with a star. This makes this system somewhat unstable.

INITIALIZATION
ix, iy, iz – the initial x, y and z coordinates of the planet

ivx, ivy, ivz – the initial velocity vector components for the planet.

idelta – the step size used to approximate the differential equation.

ifriction – a value for friction, which can used to keep the system from blowing up

PERFORMANCE
kmass1 – the mass of the first star

kmass2 – the mass of the second star

ksep – determines the distance between the two stars

ax, ay, az – the output x, y, and z coordinates of the planet

EXAMPLE

instrinstrinstrinstr 1
idur = p3
iamp = p4
km1 = p5
km2 = p6
ksep = p7
ix = p8
iy = p9
iz = p10
ivx = p11
ivy = p12
ivz = p13
ih = p14
ifric = p15

kamp linseglinseglinseglinseg 0, .002, iamp, idur-.004, iamp, .002, 0

ax,ay,az planetplanetplanetplanet km1, km2, ksep, ix, iy, iz, ivx, ivy, ivz, ih, ifric

 outsoutsoutsouts ax*kamp, ay*kamp

 endinendinendinendin

; Sta Dur Amp M1 M2 Sep X Y Z VX VY VZ h Frict
i1 0 1 5000 .5 .35 2.2 0 .1 0 .5 .6 -.1 .5 -0.1
i1 + . . .5 0 0 0 .1 0 .5 .6 -.1 .5 0.1
i1 4 .3 2 0 .1 0 .5 .6 -.1 .5 0.0
i1 3 .3 2 0 .1 0 .5 .6 -.1 .5 0.1
i1 25 .3 2 0 .1 0 .5 .6 -.1 .5 1.0
i1 2 .5 2 0 .1 0 .5 .6 -.1 .1 1.0

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-11

AUTHOR

Hans Mikelson
December 1998
New in Csound version 3.50

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-12

43.9 cabasa, crunch, sekere, sandpaper,
stix

ar cabasacabasacabasacabasa iamp, idettack[, knum, kdamp, kmaxshake]
ar crunchcrunchcrunchcrunch iamp, idettack[, knum, kdamp, kmaxshake]
ar sekeresekeresekeresekere iamp, idettack[, knum, kdamp, kmaxshake]
ar sandpapersandpapersandpapersandpaper iamp, idettack[, knum, kdamp, kmaxshake]
ar stixstixstixstix iamp, idettack[, knum, kdamp, kmaxshake]

DESCRIPTION
Semi-physical models of various percussion sounds.

INITIALIZATION
iamp – Amplitude of output. Note: As these instruments are stochastic, this is only a
approximation.

idettack – period of time over which all sound is stopped

PERFORMANCE
knum – The number of beads, teeth, bells, timbrels, etc. If, zero the default value is:

 cabasacabasacabasacabasa = 512.0000
 crunchcrunchcrunchcrunch = 7.0000
 sekeresekeresekeresekere = 64.0000
 sandpapersandpapersandpapersandpaper = 128.0000

 stixstixstixstix = 30.0000

kdamp – the damping factor of the instrument. The value is used as an adjustment around
the defaults, with 1 being no damping. If zero, the default values are used. The defaults
are:

 cabasacabasacabasacabasa = 0.9970
 crunchcrunchcrunchcrunch = 0.99806
 sekeresekeresekeresekere = 0.9990
 sandpapersandpapersandpapersandpaper = 0.9990
 stixstixstixstix = 0.9980

kmaxshake – amount of energy to add back into the system. The value should be in range 0
to 1.

EXAMPLE

;orchestra ---------------
 srsrsrsr = 44100
 krkrkrkr = 4410
 ksmpsksmpsksmpsksmps = 10
 nchnlsnchnlsnchnlsnchnls = 1
 gknum initinitinitinit 0 ;initialize optional arguments
 gkdamp initinitinitinit 0 ; for use with all instruments
 gkmaxshake initinitinitinit 0
 instrinstrinstrinstr 01 ;an example of a cabasacabasacabasacabasa
 a1 cabasacabasacabasacabasa p4, 0.01, gknum, gkdamp, gkmaxshake
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 02 ;an example of a crunchcrunchcrunchcrunch
 a1 crunchcrunchcrunchcrunch p4, 0.01, gknum, gkdamp, gkmaxshake
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 03 ;an example of a sekeresekeresekeresekere

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-13

 a1 sekeresekeresekeresekere p4, 0.01, gknum, gkdamp, gkmaxshake
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 04 ;an example of sandpapersandpapersandpapersandpaper blocks
 a1 linelinelineline 2, p3, 2 ;preset amplitude increase
 a2 sandpapersandpapersandpapersandpaper p4, 0.01, gknum, gkdamp, gkmaxshake
 a3 productproductproductproduct a1, a2 ;increase amplitude
 outoutoutout a3
 endinendinendinendin
 instrinstrinstrinstr 05 ;an example of stixstixstixstix
 a1 linelinelineline 20, p3, 20 ;preset amplitude increase
 a2 stixstixstixstix p4, 0.01, gknum, gkdamp, gkmaxshake
 a3 productproductproductproduct a1, a2 ;increase amplitude
 outoutoutout a3
 endinendinendinendin
;score -------------------
 i1 0 1 26000
 i2 2 1 26000
 i3 4 1 26000
 i4 6 1 26000
 i5 8 1 26000
 e

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 4.07

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-14

43.10 guiro, tambourine, bamboo,
dripwater, s leighbel ls

ar guiroguiroguiroguiro iamp, idettack[, knum, kdamp, kmaxshake, kfreq, kfreq1]
ar tambourinetambourinetambourinetambourine iamp, idettack[, knum, kdamp, kmaxshake, kfreq, kfreq1,

kfreq2]
ar bamboobamboobamboobamboo iamp, idettack[, knum, kdamp, kmaxshake, kfreq, kfreq1,

kfreq2]
ar dripwaterdripwaterdripwaterdripwater iamp, idettack[, knum, kdamp, kmaxshake, kfreq, kfreq1,

kfreq2]
ar sleighbellssleighbellssleighbellssleighbells iamp, idettack[, knum, kdamp, kmaxshake, kfreq, kfreq1,

kfreq2]

DESCRIPTION
Semi-physical models of various percussion sounds.

INITIALIZATION
iamp – Amplitude of output. Note: As these instruments are stochastic, this is only a
approximation.

idettack – period of time over which all sound is stopped

PERFORMANCE
knum – The number of beads, teeth, bells, timbrels, etc. If, zero the default value is:

guiroguiroguiroguiro = 128.0000
tambourinetambourinetambourinetambourine = 32.0000
bamboobamboobamboobamboo = 1.2500
dripwaterdripwaterdripwaterdripwater = 10.0000
sleighbellssleighbellssleighbellssleighbells = 32.0000

kdamp – the damping factor of the instrument. The value is used as an adjustment around
the defaults, with 1 being no damping. If zero, the default values are used. The defaults
are:

guiroguiroguiroguiro = 1.0000
tambourinetambourinetambourinetambourine = 0.9985
bamboobamboobamboobamboo = 0.9999
dripwaterdripwaterdripwaterdripwater = 0.9950
sleighbellssleighbellssleighbellssleighbells = 0.9994

kmaxshake – amount of energy to add back into the system. The value should be in range 0
to 1.

kfreq – the main resonant frequency. The default values are:

guiroguiroguiroguiro = 2500.0000
tambourinetambourinetambourinetambourine = 2300.0000
bamboobamboobamboobamboo = 2800.0000
dripwaterdripwaterdripwaterdripwater = 450.0000
sleighbellssleighbellssleighbellssleighbells = 2500.0000

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-15

kfreq1 – the first resonant frequency. The default values are:

tambourinetambourinetambourinetambourine = 5600.0000
bamboobamboobamboobamboo = 2240.0000
dripwaterdripwaterdripwaterdripwater = 600.0000
sleighbellssleighbellssleighbellssleighbells = 5300.0000

kfreq2 – the second resonant frequency. The default values are:

tambourinetambourinetambourinetambourine = 8100.0000
bamboobamboobamboobamboo = 3360.0000
dripwaterdripwaterdripwaterdripwater = 750.0000
sleighbellssleighbellssleighbellssleighbells = 6500.0000

EXAMPLE

;orchestra ---------------
 srsrsrsr = 44100
 krkrkrkr = 4410
 ksmpsksmpsksmpsksmps = 10
 nchnlsnchnlsnchnlsnchnls = 1
 instrinstrinstrinstr 01 ;example of a guiroguiroguiroguiro
 a1 guiroguiroguiroguiro p4, 0.01
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 02 ;example of a tambourinetambourinetambourinetambourine
 a1 tambourinetambourinetambourinetambourine p4, 0.01
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 03 ;example of bamboobamboobamboobamboo
 a1 bamboobamboobamboobamboo p4, 0.01
 outoutoutout a1
 endinendinendinendin
 instrinstrinstrinstr 04 ;example of a water drip
 a1 linelinelineline 5, p3, 5 ;preset an amplitude boost
 a2 dripwaterdripwaterdripwaterdripwater p4, 0.01, 0, .9
 a3 productproductproductproduct a1, a2 ;increase amplitude
 outoutoutout a3
 endinendinendinendin
 instrinstrinstrinstr 05 ;an example of sleighbellssleighbellssleighbellssleighbells
 a1 sleighbellssleighbellssleighbellssleighbells p4, 0.01
 outoutoutout a1
 endinendinendinendin
;score -------------------
 i1 0 1 20000
 i2 2 1 20000
 i3 4 1 20000
 i4 6 1 20000
 i5 8 1 20000
 e

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 4.07

The Public Csound Reference Manual Version 4.10 Signal Generators: Models and Emulations Page 43-16

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-1

44 SIGNAL GENERATORS: STFT
RESYNTHESIS (VOCODING)

44.1 pvoc, vpvoc

ar pvocpvocpvocpvoc ktimpnt, kfmod, ifilcod [, ispecwp, iextractmode,\\
ifreqlim, igatefn]

ar vpvocvpvocvpvocvpvoc ktimpnt, kfmod, ifile[, ispecwp[, ifn]]

DESCRIPTION
Output is an additive set of individually controlled sinusoids, using phase vocoder
resynthesis.

INITIALIZATION
ifilcod – integer or character-string denoting a control-file derived from analysis of an
audio signal. An integer denotes the suffix of a file pvoc.m; a character-string (in double
quotes) gives a filename, optionally a full pathname. If not fullpath, the file is sought first
in the current directory, then in the one given by the environment variable SADIR (if
defined).pvoc control contains breakpoint amplitude and frequency envelope values
organized for fft resynthesis. Memory usage depends on the size of the file involved, which
is read and held entirely in memory during computation, but are shared by multiple calls
(see also lpread).

ispecwp (optional) – if non-zero, attempts to preserve the spectral envelope while its
frequency content is varied by kfmod. The default value is zero.

iextractmode (optional) – determines if spectral extraction will be carried out, and if so,
whether components that have changes in frequency below ifreqlim or above ifreqlim will
be discarded. A value for iextractmode of 1 will cause pvadd to synthesize only those
components where the frequency difference between analysis frames is greater than
ifreqlim. A value of 2 for iextractmode will cause pvadd to synthesize only those
components where the frequency difference between frames is less than ifreqlim. The
default values for iextractmode and ifreqlim are 0, in which case a simple resynthesis will
be done. See examples under pvadd for how to use spectral extraction.

igatefn – is the number of a stored function which will be applied to the amplitudes of the
analysis bins before resynthesis takes place. If igatefn is greater than 0, the amplitudes of
each bin will be scaled by igatefn through a simple mapping process. First, the amplitudes
of all of the bins in all of the frames in the entire analysis file are compared to determine
the maximum amplitude value. This value is then used create normalized amplitudes as
indeces into the stored function igatefn. The maximum amplitude will map to the last
point in the function. An amplitude of 0 will map to the first point in the function. Values
between 0 and 1 will map accordingly to points along the function table. See examples
under pvadd for how to use amplitude gating.

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-2

ifn (optional) – optional function table containing control information for vpvoc. If ifn = 0,
control is derived internally from a previous tableseg or tablexseg unit. Default is 0. (New
in Csound version 3.59)

PERFORMANCE
pvoc implements signal reconstruction using an fft-based phase vocoder. The control data
stems from a precomputed analysis file with a known frame rate. The passage of time
through this file is specified by ktimpnt, which represents the time in seconds. ktimpnt
must always be positive, but can move forwards or backwards in time, be stationary or
discontinuous, as a pointer into the analysis file. kfmod is a control-rate transposition
factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down
an octave.

This implementation of pvoc was orignally written by Dan Ellis. It is based in part on the
system of Mark Dolson, but the pre-analysis concept is new. The spectral extraction and
amplitude gating (new in Csound version 3.56) were added by Richard Karpen based on
functions in SoundHack by Tom Erbe.

vpvoc is identical to pvoc except that it takes the result of a previous tableseg, tablexseg
and uses the resulting function table (passed internally to the vpvoc), as an envelope over
the magnitudes of the analysis data channels. Optionally, a table specified by ifn, may be
used. The result is spectral enveloping. The function size used in the tableseg should be
framesize/2, where framesize is the number of bins in the phase vocoder analysis file that
is being used by the vpvoc. Each location in the table will be used to scale a single analysis
bin. By using different functions for ifn1, ifn2, etc.. in the tableseg, the spectral envelope
becomes a dynamically changing one. See also tableseg and tablexseg.

EXAMPLE
The following example using vpvoc, shows the use of functions such as

 ffff 1 0 256 5 .001 128 1 128 .001
 ffff 2 0 256 5 1 128 .001 128 1
 ffff 3 0 256 7 1 256 1

to scale the amplitudes of the separate analysis bins.

ktime linelinelineline 0, p3,3 ; time pointer, in seconds, into file
 tablexsegtablexsegtablexsegtablexseg 1, p3*.5, 2, p3*.5, 3
apv vpvocvpvocvpvocvpvoc ktime,1, “pvoc.file”

The result would be a time-varying “spectral envelope” applied to the phase vocoder
analysis data. Since this amplifies or attenuates the amount of signal at the frequencies
that are paired with the amplitudes which are scaled by these functions, it has the effect
of applying very accurate filters to the signal. In this example the first table would have
the effect of a band- pass filter , gradually be band-rejected over half the note’s duration,
and then go towards no modification of the magnitudes over the second half.

AUTHORS
Dan Ellis (pvoc)

Richard Karpen (vpvoc)
Seattle, Washngton
1997

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-3

44.2 pvread, pvbufread, pvinterp,
pvcross, tableseg, tablexseg

kfr, kamp pvreadpvreadpvreadpvread ktimpnt, ifile, ibin
pvbufreadpvbufreadpvbufreadpvbufread ktimpnt, ifile

ar pvinterppvinterppvinterppvinterp ktimpnt, kfmod, ifile, kfreqscale1, kfreqscale2,\\
kampscale1, kampscale2, kfreqinterp, kampinterp

ar pvcrosspvcrosspvcrosspvcross ktimpnt, kfmod, ifile, kamp1, kamp2[, ispecwp]
tablesegtablesegtablesegtableseg ifn1, idur1, ifn2[, idur2, ifn3[...]]
tablexsegtablexsegtablexsegtablexseg ifn1, idur1, ifn2[, idur2, ifn3[...]]

DESCRIPTION
pvread reads from a pvoc file and returns the frequency and amplitude from a single
analysis channel or bin. The returned values can be used anywhere else in the Csound
instrument. For example, one can use them as arguments to an oscillator to synthesize a
single component from an analyzed signal or a bank of pvreads can be used to resynthesize
the analyzed sound using additive synthesis by passing the frequency and magnitude values
to a bank of oscillators.

pvbufread reads from a pvoc file and makes the retrieved data available to any following
pvinterp and pvcross units that appear in an instrument before a subsequent pvbufread
(just as lpread and lpreson work together). The data is passed internally and the unit has
no output of its own. pvinterp and pvcross allow the interprocessing of two phase vocoder
analysis files prior to the resynthesis which these units do also. Both of these units receive
data from one of the files from a previously called pvbufread unit. The other file is read by
the pvinterp and/or pvcross units. Since each of these units has its own time-pointer the
analysis files can be read at different speeds and directions from one another. pvinterp
does not allow for the use of the ispecwp process as with the pvoc and vpvoc units.

pvinterp interpolates between the amplitudes and frequencies, on a bin by bin basis, of
two phase vocoder analysis files (one from a previously called pvbufread unit and the other
from within its own argument list), allowing for user defined transitions between analyzed
sounds. It also allows for general scaling of the amplitudes and frequencies of each file
separately before the interpolated values are calculated and sent to the resynthesis
routines. The kfmod argument in pvinterp performs its frequency scaling on the frequency
values after their derivation from the separate scaling and subsequent interpolation is
performed so that this acts as an overall scaling value of the new frequency components.

pvcross applies the amplitudes from one phase vocoder analysis file to the data from a
second file and then performs the resynthesis. The data is passed, as described above,
from a previously called pvbufread unit. The two k-rate amplitude arguments are used to
scale the amplitudes of each files separately before they are added together and used in
the resynthesis (see below for further explanation). The frequencies of the first file are not
used at all in this process. This unit simply allows for cross-synthesis through the
application of the amplitudes of the spectra of one signal to the frequencies of a second
signal. Unlike pvinterp, pvcross does allow for the use of the ispecwp as in pvoc and
vpvoc.

tableseg and tablexseg are like linseg and expseg but interpolate between values in a
stored function tables. The result is a new function table passed internally to any following
vpvoc which occurs before a subsequent tableseg or tablexseg (much like lpread/lpreson
pairs work). The uses of these are described below under vpvoc.

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-4

INITIALIZATION
ifile – the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using
pvanal. (See pvoc.)

ibin – the number of the analysis channel from which to return frequency in Hz and
magnitude.

ifn1, ifn2, ifn3, etc. – function table numbers for tableseg and tablexseg. ifn1, ifn2, and
so on, must be the same size.

idur1, idur2, etc. – durations for tableseg and tablexseg, during which interpolation from
one table to the next will take place.

PERFORMANCE
kfreq, kamp – outputs of the pvread unit. These values, retrieved from a phase vocoder
analysis file, represent the values of frequency and amplitude from a single analysis
channel specified in the ibin argument. Interpolation between analysis frames is performed
at k-rate resolution and dependent of course upon the rate and direction of ktimpnt.

ktimpnt, kfmod, ispecwp – used for pvread exactly the same as for pvoc (see above
description of pvinterp for its special use of kfmod).

kfreqscale1, kfreqscale2, kampscale1, kampscale2 – used in pvinterp to scale the
frequencies and amplitudes stored in each frame of the phase vocoder analysis file.
kfreqscale1 and kampscale1 scale the frequencies and amplitudes of the data from the file
read by the previously called pvbufread (this data is passed internally to the pvinterp
unit). kfreqscale2 and kampscale2 scale the frequencies and amplitudes of the file named
by ifile in the pvinterp argument list and read within the pvinterp unit. By using these
arguments it is possible to adjust these values before applying the interpolation. For
example, if file1 is much louder than file2, it might be desirable to scale down the
amplitudes of file1 or scale up those of file2 before interpolating. Likewise one can adjust
the frequencies of each to bring them more in accord with one another (or just the
opposite, of course!) before the interpolation is performed.

kfreqinterp, kampinterp – used in pvinterp to determine the interpolation distance
between the values of one phase vocoder file and the values of a second file. When the
value of kfreqinterp is 0, the frequency values will be entirely those from the first file
(read by the pvbufread), post scaling by the kfreqscale1 argument. When the value of
kfreqinterp is 1 the frequency values will be those of the second file (read by the pvinterp
unit itself), post scaling by kfreqscale2. When kfreqinterp is between 0 and 1 the
frequency values will be calculated, on a bin, by bin basis, as the percentage between each
pair of frequencies (in other words, kfreqinterp=.5 will cause the frequencies values to be
half way between the values in the set of data from the first file and the set of data from
the second file). kampinterp1 and kampinterp2 work in the same way upon the amplitudes
of the two files. Since these are k-rate arguments, the percentages can change over time
making it possible to create many kinds of transitions between sounds.

EXAMPLE
The example below shows the use pvread to synthesize a single component from a phase
vocoder analysis file. It should be noted that the kfreq and kamp outputs can be used for
any kind of synthesis, filtering, processing, and so on.

ktime linelinelineline 0, p3, 3
krefq,kamp pvreadpvreadpvreadpvread ktime, “pvoc.file”, 7 :read data from 7th analysis bin\
asig oscilioscilioscilioscili kamp, kfreq, 1 ; finction 1 is a stored sine

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-5

The example below shows an example using pvbufread with pvinterp to interpolate
between the sound of an oboe and the sound of a clarinet. The value of kinterp returned
by a linseg is used to determine the timing of the transitions between the two sounds. The
interpolation of frequencies and amplitudes are controlled by the same factor in this
example, but for other effects it might be interesting to not have them synchronized in this
way. In this example the sound will begin as a clarinet, transform into the oboe and then
return again to the clarinet sound. The value of kfreqscale2 is 1.065 because the oboe in
this case is a semitone higher in pitch than the clarinet and this brings them approximately
to the same pitch. The value of kampscale2 is .75 because the analyzed clarinet was
somewhat louder than the analyzed oboe. The setting of these two parameters make the
transition quite smooth in this case, but such adjustments are by no means necessary or
even advocated.

ktime1 linelinelineline 0, p3, 3.5 ; used as index in the “oboe.pvoc” file
ktime2 linelinelineline 0, p3, 4.5 ; used as index in the “clar.pvoc” file
kinterp linseglinseglinseglinseg 1, p3*.15, 1, p3*.35, 0, p3*.25, 0, p3*.15, 1, p3*.1, 1
 pvbufreadpvbufreadpvbufreadpvbufread ktime1, “oboe.pvoc”
apv pvinterppvinterppvinterppvinterp ktime2,1,”clar.pvoc”,1,1.065,1,.75,1-kinterp,1-kinterp

Below is an example using pvbufread with pvcross. In this example the amplitudes used in
the resynthesis gradually change from those of the oboe to those of the clarinet. The
frequencies, of course, remain those of the clarinet throughout the process since pvcross
does not use the frequency data from the file read by pvbufread.

ktime1 linelinelineline 0, p3, 3.5 ; used as index in the “oboe.pvoc” file
ktime2 linelinelineline 0, p3, 4.5 ; used as index in the “clar.pvoc” file
kcross exponexponexponexpon .001, p3, 1
 pvbufreadpvbufreadpvbufreadpvbufread ktime1, “oboe.pvoc”
apv pvcrosspvcrosspvcrosspvcross ktime2, 1, “clar.pvoc”, 1-kcross, kcross

AUTHOR
Richard Karpen
Seattle, Wash
1997

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-6

44.3 pvadd
ar pvaddpvaddpvaddpvadd ktimpnt, kfmod, ifilcod, ifn, ibins[, ibinoffset, \\

ibinincr, iextractmode, ifreqlim, igatefn]

DESCRIPTION
pvadd reads from a pvoc file and uses the data to perform additive synthesis using an
internal array of interpolating oscillators. The user supplies the wave table (usually one
period of a sine wave), and can choose which analysis bins will be used in the re-synthesis.

INITIALIZATION
ifilcod – integer or character-string denoting a control-file derived from analysis of an
audio signal. An integer denotes the suffix of a file pvoc.m; a character-string (in double
quotes) gives a filename, optionally a full pathname. If not fullpath, the file is sought first
in the current directory, then in the one given by the environment variable SADIR (if
defined). pvoc control files contain data organized for fft resynthesis. Memory usage
depends on the size of the files involved, which are read and held entirely in memory
during computation but are shared by multiple calls (see also lpread).

ifn – table number of a stored function containing a sine wave

ibins – number of bins that will be used in the resynthesis (each bin counts as one oscillator
in the re-synthesis)

ibinoffset (optional) – is the first bin used (it is optional and defaults to 0).

ibinincr (optional) – sets an increment by which pvadd counts up from ibinoffset for ibins
components in the re-synthesis (see below for a further explanation).

iextractmode (optional) – determines if spectral extraction will be carried out and if so
whether components that have changes in frequency below ifreqlim or above ifreqlim will
be discarded. A value for iextractmode of 1 will cause pvadd to synthesize only those
components where the frequency difference between analysis frames is greater than
ifreqlim. A value of 2 for iextractmode will cause pvadd to synthesize only those
components where the frequency difference between frames is less than ifreqlim. The
default values for iextractmode and ifreqlim are 0, in which case a simple resynthesis will
be done. See examples below.

igatefn (optional) – is the number of a stored function which will be applied to the
amplitudes of the analysis bins before resynthesis takes place. If igatefn is greater than 0
the amplitudes of each bin will be scaled by igatefn through a simple mapping process.
First, the amplitudes of all of the bins in all of the frames in the entire analysis file are
compared to determine the maximum amplitude value. This value is then used create
normalized amplitudes as indeces into the stored function igatefn. The maximum
amplitude will map to the last point in the function. An amplitude of 0 will map to the first
point in the function. Values between 0 and 1 will map accordingly to points along the
function table.This will be made clearer in the examples below.

PERFORMANCE
ktimpnt and kfmod are used in the same way as in pvoc.

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-7

EXAMPLES

ktime linelinelineline 0, p3, p3
asig pvaddpvaddpvaddpvadd ktime, 1, “oboe.pvoc”, 1, 100, 2

In the above, ibins is 100 and ibinoffset is 2. Using these settings the resynthesis will
contain 100 components beginning with bin #2 (bins are counted starting with 0). That is,
resynthesis will be done using bins 2-101 inclusive. It is usually a good idea to begin with
bin 1 or 2 since the 0th and often 1st bin have data that is neither necessary nor even
helpful for creating good clean resynthesis.

ktime linelinelineline 0, p3, p3
asig pvaddpvaddpvaddpvadd ktime, 1, “oboe.pvoc”, 1, 100, 2, 2

The above is the same as the previous example with the addition of the value 2 used for
the optional ibinincr argument. This result will still result in 100 components in the
resynthesis, but pvadd will count through the bins by 2 instead of by 1. It will use bins 2, 4,
6, 8, 10, and so on. For ibins=10, ibinoffset=10, and ibinincr=10, pvadd would use bins 10,
20, 30, 40, up to and including 100.

Below is an example using spectral extraction. In this example iextractmode is one and
ifreqlim is 9. This will cause pvadd to synthesize only those bins where the frequency
deviation, averaged over 6 frames, is greater than 9.

ktime linelinelineline 0, p3, p3
asig pvaddpvaddpvaddpvadd ktime, 1, "oboe.pvoc", 1, 100, 2, 2, 1, 9

If iextractmode were 2 in the above, then only those bins with an average frequency
deviation of less than 9 would be synthesized. If tuned correctly, this technique can be
used to separate the pitched parts of the spectrum from the noisy parts. In practice, this
depends greatly on the type of sound, the quality of the recording and digitization, and
also on the analysis window size and frame increment.

Next is an example using amplitude gating. The last 2 in the argument list stands for f2 in
the score.

asig pvaddpvaddpvaddpvadd ktime, 1, “oboe.pvoc”, 1, 100, 2, 2, 0, 0, 2

Suppose the score for the above were to contain:

f2 0 512 7 0 256 1 256 1

Then those bins with amplitudes of 50% of the maximum or greater would be left
unchanged, while those with amplitudes less than 50% of the maximum would be scaled
down. In this case the lower the amplitude the more severe the scaling down would be. But
suppose the score contains:

f2 0 512 5 1 512 .001

In this case, lower amplitudes will be left unchanged and greater ones will be scaled down,
turning the sound “upside-down” in terms of the amplitude spectrum! Functions can be
arbitrarily complex. Just remember that the normalized amplitude values of the analysis
are themselves the indeces into the function.

Finally, both spectral extraction and amplitude gating can be used together. The example
below will synthesize only those components that with a frequency deviation of less than
5Hz per frame and it will scale the amplitudes according to F2.

asig pvaddpvaddpvaddpvadd ktime, 1, “oboe.pvoc”, 1, 100, 1, 1, 2, 5, 2

The Public Csound Reference Manual Version 4.10 Signal Generators: STFT Resynthesis (Vocoding) Page 44-8

USEFUL HINTS:
 By using several pvadd units together, one can gradually fade in different parts of the
resynthesis, creating various “filtering” effects. The author uses pvadd to synthesis one bin
at a time to have control over each separate component of the re-synthesis.

If any combination of ibins, ibinoffset, and ibinincr, creates a situation where pvadd is
asked to used a bin number greater than the number of bins in the analysis, it will just use
all of the available bins, and give no complaint. So to use every bin just make ibins a big
number (i.e. 2000).

Expect to have to scale up the amplitudes by factors of 10-100, by the way.

AUTHOR
Richard Karpen
Seattle, Wash
1998 (New in Csound version 3.48, additional arguments version 3.56)

The Public Csound Reference Manual Version 4.10 Signal Generators: LPC Resynthesis Page 45-1

45 SIGNAL GENERATORS: LPC
RESYNTHESIS

45.1 lpread, lpreson, lpfreson

krmsr,krmso, lpreadlpreadlpreadlpread ktimpnt, ifilcod[, inpoles[, ifrmrate]]
kerr,kcps
ar lpresonlpresonlpresonlpreson asig
ar lpfresonlpfresonlpfresonlpfreson asig, kfrqratio

DESCRIPTION
These units, used as a read/reson pair, use a control file of time-varying filter coefficients
to dynamically modify the spectrum of an audio signal.

INITIALIZATION
ifilcod – integer or character-string denoting a control-file (reflection coefficients and four
parameter values) derived from n-pole linear predictive spectral analysis of a source audio
signal. An integer denotes the suffix of a file lp.m; a character-string (in double quotes)
gives a filename, optionally a full pathname. If not fullpath, the file is sought first in the
current directory, then in that of the environment variable SADIR (if defined). Memory
usage depends on the size of the file, which is held entirely in memory during computation
but shared by multiple calls (see also adsyn, pvoc).

inpoles, ifrmrate (optional) – number of poles, and frame rate per second in the lpc
analysis. These arguments are required only when the control file does not have a header;
they are ignored when a header is detected. The default value for both is zero.

PERFORMANCE
lpread accesses a control file of time-ordered information frames, each containing n-pole
filter coefficients derived from linear predictive analysis of a source signal at fixed time
intervals (e.g. 1/100 of a second), plus four parameter values:

krmsr - root-mean-square (rms) of the residual of analysis,
krmso - rms of the original signal,
kerr - the normalized error signal,
kcps - pitch in Hz.

lpread gets its values from the control file according to the input value ktimpnt (in
seconds). If ktimpnt proceeds at the analysis rate, time-normal synthesis will result;
proceeding at a faster, slower, or variable rate will result in time-warped synthesis. At
each k-period, lpread interpolates between adjacent frames to more accurately determine
the parameter values (presented as output) and the filter coefficient settings (passed
internally to a subsequent lpreson).

The error signal kerr (between 0 and 1) derived during predictive analysis reflects the
deterministic/random nature of the analyzed source. This will emerge low for pitched
(periodic) material and higher for noisy material. The transition from voiced to unvoiced
speech, for example, produces an error signal value of about .001. During synthesis, the
error signal value can be used to determine the nature of the lpreson driving function: for
example, by arbitrating between pitched and non-pitched input, or even by determining a

The Public Csound Reference Manual Version 4.10 Signal Generators: LPC Resynthesis Page 45-2

mix of the two. In normal speech resynthesis, the pitched input to lpreson is a wideband
periodic signal or pulse train derived from a unit such as buzz, and the non-pitched source
is usually derived from rand. However, any audio signal can be used as the driving
function, the only assumption of the analysis being that it has a flat response.

lpfreson is a formant shifted lpreson, in which kfrqratio is the (Hz) ratio of shifted to
original formant positions. This permits synthesis in which the source object changes its
apparent acoustic size. lpfreson with kfrqratio = 1 is equivalent to lpreson.

Generally, lpreson provides a means whereby the time-varying content and spectral
shaping of a composite audio signal can be controlled by the dynamic spectral content of
another. There can be any number of lpread/lpreson (or lpfreson) pairs in an instrument
or in an orchestra; they can read from the same or different control files independently.

The Public Csound Reference Manual Version 4.10 Signal Generators: LPC Resynthesis Page 45-3

45.2 lps lot, lpinterp

lpslotlpslotlpslotlpslot islot
lpinterpollpinterpollpinterpollpinterpol islot1, islot2, kmix

DESCRIPTION
Interpolate between two lpc analysis files.

INITIALIZATION
islot – number of slot to be selected [0<islot<20]

lpslot selects the slot to be use by further lp opcodes. This is the way to load and
reference several analysis at the same time.

islot1 – slot where the first analysis was stored

islot2 – slot where the second analysis was stored

kmix – mix value between the two analysis. Should be between 0 and 1. 0 means analysis 1
only. 1 means analysis 2 only. Any value in between will produce interpolation between the
filters.

lpinterp computes a new set of poles from the interpolation between two analysis. The
poles will be stored in the current lpslot and used by the next lpreson opcode.

EXAMPLE
Here is a typical orc using the opcodes:

 ipower initinitinitinit 50000 ; Define sound generator
 ifreq initinitinitinit 440
 asrc buzzbuzzbuzzbuzz ipower,ifreq,10,1

 ktime linelinelineline 0,p3,p3 ; Define time lin
 lpslotlpslotlpslotlpslot 0 ; Read square data poles
krmsr,krmso,kerr,kcps lpreadlpreadlpreadlpread ktime,”square.pol”
 lpslotlpslotlpslotlpslot 1 ; Read triangle data poles
krmsr,krmso,kerr,kcps lpreadlpreadlpreadlpread ktime,”triangle.pol”
 kmix linelinelineline 0,p3,1 ; Compute result of mixing
 lpinterplpinterplpinterplpinterp 0,1,kmix ; and balance power
 ares lpresonlpresonlpresonlpreson asrc
 aout balancebalancebalancebalance ares,asrc
 outoutoutout aout

AUTHOR
Mark Resibois
Brussels
1996

The Public Csound Reference Manual Version 4.10 Signal Generators: LPC Resynthesis Page 45-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-1

46 SIGNAL GENERATORS: RANDOM
(NOISE) GENERATORS

46.1 rand, randh, randi

kr randrandrandrand xamp [, iseed[, isize[, ioffset]]]
kr randhrandhrandhrandh kamp, kcps[, iseed[, isize[, ioffset]]]
kr randirandirandirandi kamp, kcps[, iseed[, isize[, ioffset]]]
ar randrandrandrand xamp [, iseed[, isize[, ioffset]]]
ar randhrandhrandhrandh xamp, xcps[, iseed[, isize[, ioffset]]]
ar randirandirandirandi xamp, xcps[, iseed[, isize[, ioffset]]]

DESCRIPTION
Output is a controlled random number series between +amp and -amp

INITIALIZATION
iseed (optional) – seed value for the recursive pseudo-random formula. A value between 0
and +1 will produce an initial output of kamp * iseed. A negative value will cause seed re-
initialization to be skipped. A value greater than 1 will obtain the seed value from the
system clock. (New in Csound version 4.10.) The default seed value is .5.

isize – if zero, a 16 bit number is generated. If non-zero, a 31-bit random number is
generated. Default is 0.

PERFORMANCE
koffset (optional) – a base value added to the random result. New in Csound version 4.03.

The internal pseudo-random formula produces values which are uniformly distributed over
the range kamp to -kamp. rand will thus generate uniform white noise with an RMS value
of kamp / root 2.

The remaining units produce band-limited noise: the cps parameters permit the user to
specify that new random numbers are to be generated at a rate less than the sampling or
control frequencies. randh will hold each new number for the period of the specified
cycle; randi will produce straight-line interpolation between each new number and the
next.

EXAMPLE
 i1 ==== octpch(p5) ; center pitch, to be modified
 k1 randhrandhrandhrandh 1,10 ;10 time/sec by random displacements up to 1 octave
 a1 osciloscilosciloscil 5000, cpsoct(i1+k1), 1

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-2

46.2 x-class noise generators
ir linrandlinrandlinrandlinrand krange
kr linrandlinrandlinrandlinrand krange
ar linrandlinrandlinrandlinrand krange

ir trirandtrirandtrirandtrirand krange
kr trirandtrirandtrirandtrirand krange
ar trirandtrirandtrirandtrirand krange

ir exprandexprandexprandexprand krange
kr exprandexprandexprandexprand krange
ar exprandexprandexprandexprand krange

ir bexprndbexprndbexprndbexprnd krange
kr bexprndbexprndbexprndbexprnd krange
ar bexprndbexprndbexprndbexprnd krange

ir cacacacauchyuchyuchyuchy kalpha
kr cauchycauchycauchycauchy kalpha
ar cauchycauchycauchycauchy kalpha

ir pcauchypcauchypcauchypcauchy kalpha
kr pcauchypcauchypcauchypcauchy kalpha
ar pcauchypcauchypcauchypcauchy kalpha

ir poissonpoissonpoissonpoisson klambda
kr poissonpoissonpoissonpoisson klambda
ar poissonpoissonpoissonpoisson klambda

ir gaussgaussgaussgauss krange
kr gaussgaussgaussgauss krange
ar gaussgaussgaussgauss krange

ir weibullweibullweibullweibull ksigma, ktau
kr weibullweibullweibullweibull ksigma, ktau
ar weibullweibullweibullweibull ksigma, ktau

ir betarandbetarandbetarandbetarand krange, kalpha, kbeta
kr betarandbetarandbetarandbetarand krange, kalpha, kbeta
ar betarandbetarandbetarandbetarand krange, kalpha, kbeta

ir unirandunirandunirandunirand krange
kr unirandunirandunirandunirand krange
ar unirandunirandunirandunirand krange

DESCRIPTION
All of the following opcodes operate in i-, k- and a-rate.

linrand krange – Linear distribution random number generator. krange is the range of the
random numbers (0 – krange). Outputs only positive numbers.

trirand krange – Same as above only outputs both negative and positive numbers.

exprand krange – Exponential distribution random number generator. krange is the range
of the random numbers (0 – krange). Outputs only positive numbers.

bexprnd krange – Same as above, only extends to negative numbers too with an
exponential distribution.

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-3

cauchy kalpha -Cauchy distribution random number generator. kalpha controls the spread
from zero (big kalpha = big spread). Outputs both positive and negative numbers.

pcauchy kalpha – Same as above, outputs positive numbers only.

poisson klambda – Poisson distribution random number generator. klambda is the mean of
the distribution. Outputs only positive numbers.

gauss krange – Gaussian distribution random number generator. krange is the range of the
random numbers (-krange – 0 – krange). Outputs both positive and negative numbers.

weibull ksigma, ktau – Weibull distribution random number generator. ksigma scales the
spread of the distribution and ktau, if greater than one numbers near ksigma are favored,
if smaller than one small values are favored and if t equals 1 the distribution is
exponential. Outputs only positive numbers.

betarand krange, kalpha, kbeta – Beta distribution random number generator. krange is
the range of the random numbers (0 – krange). If kalpha is smaller than one, smaller values
favor values near 0. If kbeta is smaller than one, smaller values favor values near krange. If
both kalpha and kbeta equal one we have uniform distribution. If both kalpha and kbeta
are greater than one we have a sort of Gaussian distribution. Outputs only positive
numbers.

unirand krange – Uniform distribution random number generator. krange is the range of
the random numbers (0 – krange).

For more detailed explanation of these distributions, see:

• C. Dodge – T.A. Jerse 1985. Computer music. Schirmer books. pp.265 – 286
• D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine .

Cambridge, Massachusetts: MIT press, pp. 351 – 379.

EXAMPLE

a1 trirandtrirandtrirandtrirand 32000 ; Audio noise with triangle distribution
k1 cauchycauchycauchycauchy 10000 ; Control noise with Cauchy dist.
i1 betarandbetarandbetarandbetarand 30000, .5, .5 ; i-time random value, beta dist.

DEPRECATED NAMES
These opcode names originally started with i, k, or a to denote the rate at which the
opcode operated. These names are deprecated as of Csound version 3.49. The current form
should now be used; the previous form will not work.

AUTHOR
Paris Smaragdis
MIT, Cambridge
1995

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-4

46.3 pinkish
ar pinkishpinkishpinkishpinkish xin[, imethod, inumbands, iseed, iskip]

DESCRIPTION
Generates approximate pink noise (-3dB/oct response) by one of two different methods:

• a multirate noise generator after Moore, coded by Martin Gardner
• a filter bank designed by Paul Kellet

INITIALIZATION
imethod (optional) – selects filter method:

• 0 = Gardner method (default).
• 1 = Kellet filter bank.
• 2 = A somewhat faster filter bank by Kellet, with less accurate response.

inumbands (optional) – only effective with Gardner method. The number of noise bands to
generate. Maximum is 32, minimum is 4. Higher levels give smoother spectrum, but above
20 bands there will be almost DC-like slow fluctuations. Default value is 20.

iseed (optional) – only effective with Gardner method. If non-zero, seeds the random
generator. If zero, the generator will be seeded from current time. Default is 0.

iskip (optional) – if non-zero, skip (re)initialization of internal state (useful for tied notes).
Default is 0.

PERFORMANCE
xin – for Gardner method: k- or a-rate amplitude. For Kellet filters: normally a-rate
uniform random noise from rand (31-bit) or unirand, but can be any a-rate signal. The
output peak value varies widely (±15%) even over long runs, and will usually be well below
the input amplitude. Peak values may also occasionally overshoot input amplitude or noise.

pinkish attempts to generate pink noise (i.e., noise with equal energy in each octave), by
one of two different methods.

The first method, by Moore & Gardner, adds several (up to 32) signals of white noise,
generated at octave rates (sr, sr/2, sr/4 etc). It obtains pseudo-random values from an
internal 32-bit generator. This random generator is local to each opcode instance and
seedable (similar to rand).

The second method is a lowpass filter with a response approximating -3dB/oct. If the input
is uniform white noise, it outputs pink noise. Any signal may be used as input for this
method. The high quality filter is slower, but has less ripple and a slightly wider operating
frequency range than less computationally intense versions. With the Kellet filters, seeding
is not used.

The Gardner method output has some frequency response anomalies in the low-mid and
high-mid frequency ranges. More low-frequency energy can be generated by increasing the
number of bands. It is also a bit faster. The refined Kellet filter has very smooth spectrum,
but a more limited effective range. The level increases slightly at the high end of the
spectrum.

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-5

EXAMPLE
Kellet-filtered noise for a tied note (iskip is non-zero).

instrinstrinstrinstr 1
awhite unirandunirandunirandunirand 2.0
awhite ==== awhite - 1.0 ; Normalize to +/-1.0
apink pinkishpinkishpinkishpinkish awhite, 1, 0, 0, 1

outoutoutout apink * 30000
endinendinendinendin

AUTHORS
Phil Burke
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
May, 2000 (New in Csound version 4.06)

The Public Csound Reference Manual Version 4.10 Signal Generators: Random (Noise) Generators Page 46-6

46.4 noise

ar noisenoisenoisenoise xamp, kbeta

DESCRIPTION
A white noise generator with an IIR lowpass filter.

PERFORMANCE
xamp – amplitude of final output

kbeta – beta of the lowpass filter. Should be in the range of 0 to 1.

The filter equation is:

y_n = sqrt(1-beta^2) * x_n + beta Y_(n-1)

where x_n is white noise.

AUTHOR
John ffitch
University of Bath, Codemist. Ltd.
Bath, UK
December, 2000
New in Csound version 4.10

The Public Csound Reference Manual Version 4.10 Function Table Control: Table Queries Page 47-1

47 FUNCTION TABLE CONTROL: TABLE
QUERIES

47.1 ft len, ft lptim, ftsr , nsamp

ftlenftlenftlenftlen(x) (init-rate args only)
ftlptimftlptimftlptimftlptim(x) (init-rate args only)
ftsrftsrftsrftsr(x) (init-rate args only)
nsampnsampnsampnsamp(x) (init-rate args only)

DESCRIPTION
Where the argument within the parentheses may be an expression. These value converters
return information about a stored function table. The result can be a term in a further
expression.

PERFORMANCE

ftlen(x) – returns the size (number of points, excluding guard point) of stored function table
number x. While most units referencing a stored table will automatically take its size into
account (so tables can be of arbitrary length), this function reports the actual size, if that is
needed. Note that ftlen will always return a power-of-2 value, i.e. the function table guard
point (see f Statement) is not included. As of Csound version 3.53, ftlen works with deferred
function tables (see GEN01).

ftlptim(x) – returns the loop segment start-time (in seconds) of stored function table
number x. This reports the duration of the direct recorded attack and decay parts of a
sound sample, prior to its looped segment. Returns zero (and a warning message) if the
sample does not contain loop points.

ftsr(x) – returns the sampling-rate of a GEN01 or GEN22 generated table. The sampling-
rate is determined from the header of the original file. If the original file has no header, or
the table was not created by these two GENs ftsr returns 0. New in Csound version 3.49.

nsamp(x) – returns the number of samples loaded into stored function table number x by
GEN01 or GEN23. This is useful when a sample is shorter than the power-of-two function
table that holds it. New in Csound version 3.49.

AUTHORS
Barry Vercoe
MIT
Cambridge, Massachusetts
1997

Gabriel Maldonado (ftsr, nsamp)
Italy
October, 1998

The Public Csound Reference Manual Version 4.10 Function Table Control: Table Queries Page 47-2

47.2 tableng

ir tablengtablengtablengtableng ifn
kr tablengtablengtablengtableng kfn

DESCRIPTION
Interrogates a function table for length.

47.2.1 INITIALIZATION
ifn – Table number to be interrogated

47.2.2 PERFORMANCE
kfn – Table number to be interrogated

tableng returns the length of the specified table. This will be a power of two number in
most circumstances. It will not show whether a table has a guardpoint or not. It seems this
information is not available in the table’s data structure. If the specified table is not
found, then 0 will be returned.

Likely to be useful for setting up code for table manipulation operations, such as tablemix
and tablecopy.

NAME CHANGES
As of Csound version 3.52, the name of the opcode itablegpw has been changed to tableng.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Function Table Control: Table Selection Page 48-1

48 FUNCTION TABLE CONTROL: TABLE
SELECTION

48.1 tablekt, tableikt

kr tablekttablekttablekttablekt kndx, kfn[, ixmode[, ixoff[, iwrap]]]
ar tablekttablekttablekttablekt xndx, kfn[, ixmode[, ixoff[, iwrap]]]
kr tableikttableikttableikttableikt kndx, kfn[, ixmode[, ixoff[, iwrap]]]
ar tableikttableikttableikttableikt xndx, kfn[, ixmode[, ixoff[, iwrap]]]

DESCRIPTION
k-rate control over table numbers.

The standard Csound opcodes table and tablei, when producing a k- or a-rate result, can
only use an init-time variable to select the table number. tablekt and tableikt accept k-
rate control as well as i-time. In all other respects they are similar to the original opcodes.

INITIALIZATION
indx – Index into table, either a positive number range

ifn – Table number. Must be >= 1. Floats are rounded down to an integer. If a table
number does not point to a valid table, or the table has not yet been loaded (GEN01) then
an error will result and the instrument will be de-activated.

ixmode – if 0, xndx and ixoff ranges match the length of the table. if non-zero xndx and
ixoff have a 0 to 1 range. Default is 0

ixoff – if 0, total index is controlled directly by xndx, i.e. the indexing starts from the start
of the table. If non-zero, start indexing from somewhere else in the table. Value must be
positive and less than the table length (ixmode = 0) or less than 1 (ixmode !=0). Default is
0.

iwrap – if iwrap = 0, Limit mode: when total index is below 0, then final index is 0.Total
index above table length results in a final index of the table length – high out of range
total indexes stick at the upper limit of the table. If iwrap !=0, Wrap mode: total index is
wrapped modulo the table length so that all total indexes map into the table. For
instance, in a table of length 8, xndx = 5 and ixoff = 6 gives a total index of 11, which
wraps to a final index of 3. Default is 0.

PERFORMANCE
kndx – Index into table, either a positive number range

xndx – matching the table length (ixmode = 0) or a 0 to 1 range (ixmode != 0)

kfn – Table number. Must be >= 1. Floats are rounded down to an integer. If a table
number does not point to a valid table, or the table has not yet been loaded (GEN01) then
an error will result and the instrument will be de-activated.

The Public Csound Reference Manual Version 4.10 Function Table Control: Table Selection Page 48-2

AUTHOR
Robin Whittle
Australia
1997

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-1

49 FUNCTION TABLE CONTROL:
READ/WRITE OPERATIONS

49.1 tableiw, tablew, tablewkt

tableiwtableiwtableiwtableiw isig, indx, ifn[, ixmode[, ixoff[, iwgmode]]]
tablewtablewtablewtablew ksig, kndx, ifn[, ixmode[, ixoff[, iwgmode]]]
tablewtablewtablewtablew asig, andx, ifn[, ixmode[, ixoff[, iwgmode]]]
tablewkttablewkttablewkttablewkt ksig, kndx, kfn[, ixmode[, ixoff[, iwgmode]]]
tablewkttablewkttablewkttablewkt asig, andx, kfn[, ixmode[, ixoff[, iwgmode]]]

DESCRIPTION
These opcodes operate on existing function tables, changing their contents. tableiw is used
when all inputs are init time variables or constants and you only want to run it at the
initialization of the instrument. tablew is for writing at k- or at a-rates, with the table
number being specified at init time. tablewkt is the same, but uses a k-rate variable for
selecting the table number. The valid combinations of variable types are shown by the first
letter of the variable names.

INITIALIZATION
isig, ksig, asig- The value to be written into the table.

indx, kndx, andx – Index into table, either a positive number range matching the table
length (ixmode = 0) or a 0 to 1 range (ixmode != 0)

ifn, kfn – Table number. Must be = 1. Floats are rounded down to an integer. If a table
number does not point to a valid table, or the table has not yet been loaded (GEN01) then
an error will result and the instrument will be de-activated.

ixmode – Default is 0.
• 0 : xndx and ixoff ranges match the length of the table.
• !=0 : xndx and ixoff have a 0 to 1 range.

ixoff – Default is 0.
• 0: Total index is controlled directly by xndx. i.e. the indexing starts from the start

of the table.
• !=0: Start indexing from somewhere else in the table. Value must be positive and

less than the table length (ixmode = 0) or less than 1 (ixmode !=0).

iwgmode – Default is 0.
• 0: Limit mode
• 1: Wrap mode
• 2: Guardpoint mode.

PERFORMANCE

Limit mode (0)
Limit the total index (ndx + ixoff) to between 0 and the guard point. For a table of length
5, this means that locations 0 to 3 and location 4 (the guard point) can be written. A
negative total index writes to location 0. Total indexes 4 write to location 4.

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-2

Wrap mode (1)
Wrap total index value into locations 0 to E, where E is one less than either the table
length or the factor of 2 number which is one less than the table length. For example, wrap
into a 0 to 3 range – so that total index 6 writes to location 2.

Guardpoint mode (2)
The guardpoint is written at the same time as location 0 is written – with the same value.

This facilitates writing to tables which are intended to be read with interpolation for
producing smooth cyclic waveforms. In addition, before it is used, the total index is
incremented by half the range between one location and the next, before being rounded
down to the integer address of a table location.

Normally (igwmode = 0 or 1) for a table of length 5 – which has locations 0 to 3 as the main
table and location 4 as the guard point, a total index in the range of 0 to 0.999 will write
to location 0. (“0.999” means just less than 1.0.) 1.0 to 1.999 will write to location 1, etc.
A similar pattern holds for all total indexes 0 to 4.999 (igwmode = 0) or to 3.999 (igwmode
= 1). igwmode = 0 enables locations 0 to 4 to be written – with the guardpoint (4) being
written with a potentially different value from location 0.

With a table of length 5 and the iwgmode = 2, then when the total index is in the range 0
to 0.499, it will write to locations 0 and 4. Range 0.5 to 1.499 will write to location 1 etc.
3.5 to 4.0 will also write to locations 0 and 4.

This way, the writing operation most closely approximates the results of interpolated
reading. Guard point mode should only be used with tables that have a guardpoint.

Guardpoint mode is accomplished by adding 0.5 to the total index, rounding to the next
lowest integer, wrapping it modulo the factor of two which is one less than the table
length, writing the table (locations 0 to 3 in our example) and then writing to the guard
point if index == 0.

tablew has no output value. The last three parameters are optional and have default
values of 0.

Caution with k-rate table numbers :
The following notes also apply to the tablekt and tableikt opcodes which can now have
their table number changed at k-rate.

At k-rate or a-rate, if a table number of < 1 is given, or the table number points to a non-
existent table, or to one which has a length of 0 (it is to be loaded from a file later) then
an error will result and the instrument will be deactivated. kfn and afn must be initialized
at the appropriate rate using init. Attempting to load an i-rate value into kfn or afn will
result in an error.

CHANGED NAME
As of Csound version 3.52, the opcode name itablew is changed to tableiw.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-3

49.2 tablegpw, tablemix, tablecopy,
tableigpw, tableimix, tableicopy

tablegpwtablegpwtablegpwtablegpw kfn
tablemixtablemixtablemixtablemix kdft, kdoff, klen, ks1ft, ks1off, ks1g, ks2ft, \\

ks2off, ks2g
tablecopytablecopytablecopytablecopy kdft, ksft
tableigpwtableigpwtableigpwtableigpw ifn
tableimixtableimixtableimixtableimix idft, idoff, ilen, is1ft, is1off, is1g, is2ft, \\

is2off, is2g
tableicopytableicopytableicopytableicopy idft, isft

DESCRIPTION
These opcodes allow tables to be copied and mixed.

INITIALIZATION
ifn – Function table number

PERFORMANCE
kfn – Function table number

kdft – Destination function table number

kdoff – Offset to start writing from. Can be negative.

kdft – Number of destination function table.

ksft – Number of source function table.

klen – Number of write operations to perform. Negative means work backwards.

ks1ft, ks2ft – Source function tables. These can be the same as the destination table, if
care is exercised about direction of copying data.

ks1off, ks2off –Offsets to start reading from in source tables.

ks1g, ks2g – Gains to apply when reading from the source tables. The results are added and
the sum is written to the destination table.

tablgpw – For writing the table’s guard point, with the value which is in location 0. Does
nothing if table does not exist.

Likely to be useful after manipulating a table with tablemix or tablecopy.

tablemix – This opcode mixes from two tables, with separate gains into the destination
table. Writing is done for klen locations, usually stepping forward through the table – if
klen is positive. If it is negative, then the writing and reading order is backwards – towards
lower indexes in the tables. This bi-directional option makes it easy to shift the contents of
a table sideways by reading from it and writing back to it with a different offset.

If klen is 0, no writing occurs. Note that the internal integer value of klen is derived from
the ANSI C floor() function – which returns the next most negative integer. Hence a
fractional negative klen value of -2.3 would create an internal length of 3, and cause the
copying to start from the offset locations and proceed for two locations to the left.

The total index for table reading and writing is calculated from the starting offset for each
table, plus the index value, which starts at 0 and then increments (or decrements) by 1 as
mixing proceeds.

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-4

These total indexes can potentially be very large, since there is no restriction on the offset
or the klen. However each total index for each table is ANDed with a length mask (such as
0000 0111 for a table of length 8) to form a final index which is actually used for reading or
writing. So no reading or writing can occur outside the tables. This is the same as “wrap”
mode in table read and write. These opcodes do not read or write the guardpoint. If a
table has been rewritten with one of these, then if it has a guardpoint which is supposed to
contain the same value as the location 0, then call tablegpw afterwards.

The indexes and offsets are all in table steps – they are not normalized to 0 – 1. So for a
table of length 256, klen should be set to 256 if all the table was to be read or written.

The tables do not need to be the same length – wrapping occurs individually for each table.

tablecopy – Simple, fast table copy opcodes. Takes the table length from the destination
table, and reads from the start of the source table. For speed reasons, does not check the
source length – just copies regardless – in “wrap” mode. This may read through the source
table several times. A source table with length 1 will cause all values in the destination
table to be written to its value.

tablecopy cannot read or write the guardpoint. To read it use table, with ndx = the table
length. Likewise use table write to write it.

To write the guardpoint to the value in location 0, use tablegpw.

This is primarily to change function tables quickly in a real-time situation.

NAME CHANGES
As of Csound version 3.52, the names of the opcodes itablegpw, itablemix, and
itablecopy, have been changed to tableigpw, tableimix, and tableicopy, respectively.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-5

49.3 tablera, tablewa

ar tableratableratableratablera kfn, kstart, koff
kstart tablewatablewatablewatablewa kfn, asig, koff

DESCRIPTION
These opcodes read and write tables in sequential locations to and from an a-rate variable.
Some thought is required before using them. They have at least two major, and quite
different, applications which are discussed below.

INITIALIZATION
ar – a-rate destination for reading ksmps values from a table.

kfn – i- or k-rate number of the table to read or write.

kstart – Where in table to read or write.

asig – a-rate signal to read from when writing to the table.

koff – i- or k-rate offset into table. Range unlimited – see explanation at end of this
section.

PERFORMANCE

In one application, these are intended to be used in pairs, or with several tablera opcodes
before a tablewa – all sharing the same kstart variable.

These read from and write to sequential locations in a table at audio rates, with ksmps
floats being written and read each cycle.

tablera starts reading from location kstart. tablewa starts writing to location kstart, and
then writes to kstart with the number of the location one more than the one it last wrote.
(Note that for tablewa, kstart is both an input and output variable.) If the writing index
reaches the end of the table, then no further writing occurs and zero is written to kstart.

For instance, if the table’s length was 16 (locations 0 to 15), and ksmps was 5. Then the
following steps would occur with repetitive runs of the tablewa opcode, assuming that
kstart started at 0.

Run no. Initial Final locations written
 kstart kstart
1 0 5 0 1 2 3 4
2 5 10 5 6 7 8 9
3 10 15 10 11 12 13 14
4 15 0 15

This is to facilitate processing table data using standard a-rate orchestra code between the
tablera and tablewa opcodes. They allow all Csound k-rate operators to be used (with
caution) on a-rate variables – something that would only be possible otherwise by ksmps =
1, downsamp and upsamp.

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-6

Several cautions:

• The k-rate code in the processing loop is really running at a-rate, so time
dependant functions like port and oscil work faster than normal – their code is
expecting to be running at k-rate.

• This system will produce undesirable results unless the ksmps fits within the table
length. For instance a table of length 16 will accommodate 1 to 16 samples, so this
example will work with ksmps = 1 to 16.

• Both these opcodes generate an error and deactivate the instrument if a table with
length < ksmps is selected. Likewise an error occurs if kstart is below 0 or greater
than the highest entry in the table – if kstart = table length.

• kstart is intended to contain integer values between 0 and (table length – 1).
Fractional values above this should not affect operation but do not achieve
anything useful.

• These opcodes are not interpolating, and the kstart and koff parameters always
have a range of 0 to (table length – 1) – not 0 to 1 as is available in other table
read/write opcodes. koff can be outside this range but it is wrapped around by the
final AND operation.

• These opcodes are permanently in wrap mode. When koff is 0, no wrapping needs
to occur, since the kstart++ index will always be within the table’s normal range.
koff != 0 can lead to wrapping.

• The offset does not affect the number of read/write cycles performed, or the value
written to kstart by tablewa.

• These opcodes cannot read or write the guardpoint. Use tablegpw to write the
guardpoint after manipulations have been done with tablewa.

EXAMPLES

 kstart = 0

 lab1:
 atemp tableratableratableratablera ktabsource, kstart, 0 ; Read 5 values from table into an

; a-rate variable.

 atemp = log(atemp) ; Process the values using a-rate

; code.

 kstart tablewatablewatablewatablewa ktabdest, atemp, 0 ; Write it back to the table

 if ktemp 0 goto lab1 ; Loop until all table locations

; have been processed.

The above example shows a processing loop, which runs every k-cycle, reading each
location in the table ktabsource, and writing the log of those values into the same locations
of table ktabdest.

This enables whole tables, parts of tables (with offsets and different control loops) and
data from several tables at once to be manipulated with a-rate code and written back to
another (or to the same) table. This is a bit of a fudge, but it is faster than doing it with k-
rate table read and write code.

Another application is:

 kzero = 0
 kloop = 0

 kzero tablewatablewatablewatablewa 23, asignal, 0 ; ksmps a-rate samples written

; into locations 0 to (ksmps -1) of table 23.

 lab1: ktemp tabletabletabletable kloop, 23 ; Start a loop which runs ksmps times,

; in which each cycle processes one of
 [Some code to manipulate] ; table 23’s values with k-rate orchestra
 [the value of ktemp.] ; code.

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-7

 tablewtablewtablewtablew ktemp, kloop, 23 ; Write the processed value to the table.

 kloop = kloop + 1 ; Increment the kloop, which is both the

; pointer into the table and the loop
 if kloop < ksmps goto lab1 ; counter. Keep looping until all values

; in the table have been processed.

 asignal tableratableratableratablera 23, 0, 0 ; Copy the table contents back

; to an a-rate variable.

koff – This is an offset which is added to the sum of kstart and the internal index variable
which steps through the table. The result is then ANDed with the lengthmask (000 0111 for
a table of length 8 – or 9 with guardpoint) and that final index is used to read or write to
the table. koff can be any value. It is converted into a long using the ANSI floor() function
so that -4.3 becomes -5. This is what we would want when using offsets which range above
and below zero.

Ideally this would be an optional variable, defaulting to 0, however with the existing
Csound orchestra read code, such default parameters must be init time only. We want k-
rate here, so we cannot have a default.

The Public Csound Reference Manual Version 4.10 Function Table Control: Read/Write Operations Page 49-8

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-1

50 SIGNAL MODIFIERS: STANDARD
FILTERS

50.1 port, portk, tone, tonek, atone,
atonek, reson, resonk, areson,
aresonk

kr portportportport ksig, ihtim[, isig]
kr portkportkportkportk ksig, khtim[, isig]
kr tonektonektonektonek ksig, khp[, iskip]
kr atonekatonekatonekatonek ksig, khp[, iskip]
kr resonkresonkresonkresonk ksig, kcf, kbw[, iscl, iskip]
kr aresonkaresonkaresonkaresonk ksig, kcf, kbw[, iscl, iskip]
ar tonetonetonetone asig, khp[, iskip]
ar atoneatoneatoneatone asig, khp[, iskip]
ar resonresonresonreson asig, kcf, kbw[, iscl, iskip]
ar aresonaresonaresonareson asig, kcf, kbw[, iscl, iskip]

DESCRIPTION
A control or audio signal is modified by a low- or band-pass recursive filter with variable
frequency response.

INITIALIZATION
isig – initial (i.e. previous) value for internal feedback. The default value is 0.

iskip – initial disposition of internal data space. Since filtering incorporates a feedback loop
of previous output, the initial status of the storage space used is significant. A zero value
will clear the space; a non-zero value will allow previous information to remain. The
default value is 0.

iscl – coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1,
i.e. all frequencies other than kcf are attenuated in accordance with the (normalized)
response curve. A value of 2 raises the response factor so that its overall RMS value equals
1. (This intended equalization of input and output power assumes all frequencies are
physically present; hence it is most applicable to white noise.) A zero value signifies no
scaling of the signal, leaving that to some later adjustment (see balance). The default
value is 0.

PERFORMANCE
port applies portamento to a step-valued control signal. At each new step value, ksig is
low-pass filtered to move towards that value at a rate determined by ihtim. ihtim is the
“half-time” of the function (in seconds), during which the curve will traverse half the
distance towards the new value, then half as much again, etc., theoretically never
reaching its asymptote. With portk, the half-time can be varied at the control rate.

tone implements a first-order recursive low-pass filter in which the variable khp (in Hz)
determines the response curve’s half-power point. Half power is defined as peak power /
root 2.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-2

reson is a second-order filter in which kcf controls the center frequency, or frequency
position of the peak response, and kbw controls its bandwidth (the frequency difference
between the upper and lower half-power points).

atone, areson are filters whose transfer functions are the complements of tone and reson.
atone is thus a form of high-pass filter and areson a notch filter whose transfer functions
represent the “filtered out” aspects of their complements. Note, however, that power
scaling is not normalized in atone, areson, but remains the true complement of the
corresponding unit. Thus an audio signal, filtered by parallel matching reson and areson
units, would under addition simply reconstruct the original spectrum. This property is
particularly useful for controlled mixing of different sources (see lpreson). Complex
response curves such as those with multiple peaks can be obtained by using a bank of
suitable filters in series. (The resultant response is the product of the component
responses.) In such cases, the combined attenuation may result in a serious loss of signal
power, but this can be regained by the use of balance.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-3

50.2 tonex, atonex, resonx

ar tonextonextonextonex asig, khp[, inumlayer, iskip]
ar atonexatonexatonexatonex asig, khp[, inumlayer, iskip]
ar resonxresonxresonxresonx asig, kcf, kbw[, inumlayer, iscl, iskip]

DESCRIPTION
tonex, atonex and resonx are equivalent to filters consisting of more layers of tone, atone
and reson, with the same arguments, serially connected. Using a stack of a larger number
of filters allows a sharper cutoff. They are faster than using a larger number instances in
a Csound orchestra of the old opcodes, because only one initialization and ‘k’ cycle are
needed at time, and the audio loop falls entirely inside the cache memory of processor.

INITIALIZATION
inumlayer – number of elements in the filter stack.. Default value is 4.

iskip – initial disposition of internal data space. Since filtering incorporates a feedback loop
of previous output, the initial status of the storage space used is significant. A zero value
will clear the space; a non-zero value will allow previous information to remain. The
default value is 0.

iscl – coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1,
i.e. all frequencies other than kcf are attenuated in accordance with the (normalized)
response curve. A value of 2 raises the response factor so that its overall RMS value equals
1. (This intended equalization of input and output power assumes all frequencies are
physically present; hence it is most applicable to white noise.) A zero value signifies no
scaling of the signal, leaving that to some later adjustment (see balance). The default
value is 0.

PERFORMANCE
asig – input signal

khp – the response curve’s half-power point. Half power is defined as peak power / root 2.

kcf – the center frequency of the filter, or frequency position of the peak response.

kbw – bandwidth of the filter (the Hz difference between the upper and lower half-power
points)

AUTHOR
Gabriel Maldonado (adapted by John ffitch)
Italy
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-4

50.3 resonr, resonz

 ar resonrresonrresonrresonr asig, kcf, kbw[,iscl, iskip]
 ar resonzresonzresonzresonz asig, kcf, kbw[,iscl, iskip]

DESCRIPTION
Implementations of a second-order, two-pole two-zero bandpass filter with variable
frequency response.

INITIALIZATION
The optional initialization variables for resonr and resonz are identical to the i-time
variables for reson.

iskip – initial disposition of internal data space. Since filtering incorporates a feedback loop
of previous output, the initial status of the storage space used is significant. A zero value
will clear the space; a non-zero value will allow previous information to remain. The
default value is 0.

iscl – coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1,
i.e. all frequencies other than kcf are attenuated in accordance with the (normalized)
response curve. A value of 2 raises the response factor so that its overall RMS value equals
1. This intended equalization of input and output power assumes all frequencies are
physically present; hence it is most applicable to white noise. A zero value signifies no
scaling of the signal, leaving that to some later adjustment (see balance). The default
value is 0.

PERFORMANCE
resonr and resonz are variations of the classic two-pole bandpass resonator (reson). Both
filters have two zeroes in their transfer functions, in addition to the two poles. resonz has
its zeroes located at z = 1 and z = -1. resonr has its zeroes located at +sqrt(R) and -sqrt(R),
where R is the radius of the poles in the complex z-plane. The addition of zeroes to resonr
and resonz results in the improved selectivity of the magnitude response of these filters at
cutoff frequencies close to 0, at the expense of less selectivity of frequencies above the
cutoff peak.

resonr and resonz are very close to constant-gain as the center frequency is swept,
resulting in a more efficient control of the magnitude response than with traditional two-
pole resonators such as reson.

resonr and resonz produce a sound that is considerably different from reson, especially
for lower center frequencies; trial and error is the best way of determining which resonator
is best suited for a particular application.

asig – input signal to be filtered

kcf – cutoff or resonant frequency of the filter, measured in Hz

kbw – bandwidth of the filter (the Hz difference between the upper and lower half-power
points)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-5

EXAMPLE

 ; Orchestra file for resonant filter sweep of a sawtooth-like waveform.
 ; The outputs of reson, resonr, and resonz are scaled by coefficients
 ; specified in the score, so that each filter can be heard on its own
 ; from the same instrument.

 srsrsrsr = 44100
 krkrkrkr = 4410
 ksmpsksmpsksmpsksmps = 10
 nchnlsnchnlsnchnlsnchnls = 1

instrinstrinstrinstr 1

 idur = p3
 ibegfreq = p4 ; beginning of sweep frequency
 iendfreq = p5 ; ending of sweep frequency
 ibw = p6 ; bandwidth of filters in Hz
 ifreq = p7 ; frequency of gbuzz that is to be filtered
 iamp = p8 ; amplitude to scale output by
 ires = p9 ; coefficient to scale amount of reson in output
 iresr = p10 ; coefficient to scale amount of resonr in output
 iresz = p11 ; coefficient to scale amount of resonz in output

 ; Frequency envelope for reson cutoff
 kfreq linseglinseglinseglinseg ibegfreq, idur * .5, iendfreq, idur * .5, ibegfreq

 ; Amplitude envelope to prevent clicking
 kenv linseglinseglinseglinseg 0, .1, iamp, idur - .2, iamp, .1, 0

 ; Number of harmonics for gbuzz scaled to avoid aliasing
 iharms = (sr*.4)/ifreq

 asig gbuzzgbuzzgbuzzgbuzz 1, ifreq, iharms, 1, .9, 1 ; “Sawtooth” waveform
 ain = kenv * asig ; output scaled by amp
 ; envelope
 ares resonresonresonreson ain, kfreq, ibw, 1
 aresr resonrresonrresonrresonr ain, kfreq, ibw, 1
 aresz resonzresonzresonzresonz ain, kfreq, ibw, 1

 outoutoutout ares * ires + aresr * iresr + aresz * iresz

endinendinendinendin

 ; Score file for above
 f1 0 8192 9 1 1 .25 ; cosine table for gbuzz generator

 i1 0 10 1 3000 200 100 4000 1 0 0 ; reson output with bw = 200
 i1 10 10 1 3000 200 100 4000 0 1 0 ; resonr output with bw = 200
 i1 20 10 1 3000 200 100 4000 0 0 1 ; resonz output with bw = 200
 i1 30 10 1 3000 50 200 8000 1 0 0 ; reson output with bw = 50
 i1 40 10 1 3000 50 200 8000 0 1 0 ; resonr output with bw = 50
 i1 50 10 1 3000 50 200 8000 0 0 1 ; resonz output with bw = 50
 e

TECHNICAL HISTORY
resonr and resonz were originally described in an article by Julius O. Smith and James B.
Angell [1]. Smith and Angell recommended the resonz form (zeros at +1 and -1) when
computational efficiency was the main concern, as it has one less multiply per sample,
while resonr (zeroes at + and – the square root of the pole radius R) was recommended for
situations when a perfectly constant-gain center peak was required.

Ken Steiglitz, in a later article [2], demonstrated that resonz had constant gain at the true
peak of the filter, as opposed to resonr, which displayed constant gain at the pole angle.
Steiglitz also recommended resonz for its sharper notches in the gain curve at zero and
Nyquist frequency. Steiglitz’s recent book [3] features a thorough technical discussion of
reson and resonz, while Dodge and Jerse’s textbook [4] illustrates the differences in the
response curves of reson and resonz.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-6

REFERENCES
1. 1. Smith, Julius O. and Angell, James B., “A Constant-Gain Resonator Tuned by a Single

Coefficient,” Computer Music Journal, vol. 6, no. 4, pp. 36-39, Winter 1982.

2. 2. Steiglitz, Ken, “A Note on Constant-Gain Digital Resonators,” Computer Music
Journal, vol. 18, no. 4, pp. 8-10, Winter 1994.

3. 3. Ken Steiglitz, A Digital Signal Processing Primer, with Applications to Digital Audio
and Computer Music. Addison-Wesley Publishing Company, Menlo Park, CA, 1996.

4. 4. Dodge, Charles and Jerse, Thomas A., Computer Music: Synthesis, Composition, and
Performance. New York: Schirmer Books, 1997, 2nd edition, pp. 211-214.

AUTHOR
Sean Costello
Seattle, Washington
1999
New in Csound version 3.55

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-7

50.4 resony
ar resonyresonyresonyresony asig, kbf, kbw, inum, ksep[, isepmode, iscl, iskip]

DESCRIPTION
A bank of second-order bandpass filters, connected in parallel.

INITIALIZATION
inum – number of filters

isepmode – if isepmode = 0, the separation of center frequencies of each filter is
generated logarithmically (using octave as unit of measure). If isepmode != 0, the
separation of center frequencies of each filter is generated linearly (using Hertz). Default
value is 0.

iscl – coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1,
i.e. all frequencies other than kcf are attenuated in accordance with the (normalized)
response curve. A value of 2 raises the response factor so that its overall RMS value equals
1. (This intended equalization of input and output power assumes all frequencies are
physically present; hence it is most applicable to white noise.) A zero value signifies no
scaling of the signal, leaving that to some later adjustment (e.g. balance). The default
value is 0.

iskip – initial disposition of internal data space. Since filtering incorporates a feedback loop
of previous output, the initial status of the storage space used is significant. A zero value
will clear the space; a non-zero value will allow previous information to remain. The
default value is 0.

PERFORMANCE
asig – audio input signal

kbf – base frequency, i.e. center frequency of lowest filter in Hz

kbw – bandwidth in Hz

ksep – separation of the center frequency of filters in octaves

resony is a bank of second-order bandpass filters, with k-rate variant frequency
separation, base frequency and bandwidth, connected in parallel (i.e. the resulting signal
is a mix of the output of each filter). The center frequency of each filter depends of kbf
and ksep variables. The maximum number of filters is set to 100.

EXAMPLE
In this example the global variable gk1 modifies kbf, gk2 modifies kbw, gk3 inum, gk4 ksep,
and gk5 the main volume.

instrinstrinstrinstr 1
a1 soundinsoundinsoundinsoundin "myfile.aif"
a2 resonyresonyresonyresony a1, gk1, gk2, i(gk3), gk4, 2

outoutoutout a2 * gk5
endinendinendinendin

AUTHOR
Gabriel Maldonado
Italy
1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-8

50.5 lowres, lowresx

ar lowreslowreslowreslowres asig, kcutoff, kresonance [,iskip]
ar lowresxlowresxlowresxlowresx asig, kcutoff, kresonance [, inumlayer, iskip]

DESCRIPTION
lowres is a resonant lowpass filter. lowresx is equivalent to more layer of lowres, with
the same arguments, serially connected.

INITIALIZATION
inumlayer – number of elements in a lowresx stack. Default value is 4. There is no
maximum.

iskip – initial disposition of internal data space. A zero value will clear the space; a non-
zero value will allow previous information to remain. The default value is 0.

PERFORMANCE
asig – input signal

kcutoff – filter cutoff frequency point

kresonance – resonance amount

lowres is a resonant lowpass filter derived from a Hans Mikelson orchestra. This
implementation is much faster than implementing it in Csound language, and it allows kr
lower than sr. kcutoff is not in Hz and kresonance is not in dB, so experiment for the
finding best results.

lowresx is equivalent to more layer of lowres, with the same arguments, serially
connected. Using a stack of a larger number of filters allows a sharper cutoff. This is faster
than using a larger number of instances of lowres in a Csound orchestra, because only one
initialization and k cycle are needed at time, and the audio loop falls entirely inside the
cache memory of processor. Based on an orchestra by Hans Mikelson.

AUTHOR
Gabriel Maldonado (adapted by John ffitch)
Italy
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-9

50.6 vlowres

ar vlowresvlowresvlowresvlowres asig, kfco, kres, iord, ksep

DESCRIPTION
A bank of filters in which the cutoff frequency can be separated under user control

INITIALIZATION
iord – total number of filters (1 to 10)

PERFORMANCE
asig – input signal

kfco – frequency cutoff (not in Hz)

ksep – frequency cutoff separation for each filter

vlowres (variable resonant lowpass filter) allows a variable response curve in resonant
filters. It can be thought of as a bank of lowpass resonant filters, each with the same
resonance, serially connected. The frequency cutoff of each filter can vary with the kcfo
and ksep parameters.

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-10

50.7 lowpass2

ar lowpass2lowpass2lowpass2lowpass2 asig, kcf, kq[, iskip]

DESCRIPTION
Implementation of resonant second-order lowpass filter.

INITIALIZATION
iskip – initial disposition of internal data space. A zero value will clear the space; a non-
zero value will allow previous information to remain. The default value is 0

PERFORMANCE
asig – input signal to be filtered

kcf – cutoff or resonant frequency of the filter, measured in Hz

kq – Q of the filter, defined, for bandpass filters, as bandwidth/cutoff. kq should be
between 1 and 500

lowpass2 is a second order IIR lowpass filter, with k-rate controls for cutoff frequency (kcf)
and Q (kq). As kq is increased, a resonant peak forms around the cutoff frequency,
transforming the lowpass filter response into a response that is similar to a bandpass filter,
but with more low frequency energy. This corresponds to an increase in the magnitude and
“sharpness” of the resonant peak. For high values of kq, a scaling function such as balance
may be required. In practice, this allows for the simulation of the voltage-controlled filters
of analog synthesizers, or for the creation of a pitch of constant amplitude while filtering
white noise.

EXAMPLE

; Orchestra file for resonant filter sweep of a sawtooth-like waveform.
srsrsrsr = 44100
krkrkrkr = 2205
ksmps ksmps ksmps ksmps = 20
nchnls nchnls nchnls nchnls = 1

instr instr instr instr 1

idur = p3
ifreq = p4
iamp = p5 * .5
iharms = (sr*.4) / ifreq

; Sawtooth-like waveform
asig gbuzzgbuzzgbuzzgbuzz 1, ifreq, iharms, 1, .9, 1

; Envelope to control filter cutoff
kfreq linseglinseglinseglinseg 1, idur * 0.5, 5000, idur * 0.5, 1

afilt lowpass2lowpass2lowpass2lowpass2 asig, kfreq, 30

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-11

; Simple amplitude envelope
kenv linseglinseglinseglinseg 0, .1, iamp, idur -.2, iamp, .1, 0
outoutoutout asig * kenv

endinendinendinendin

; Score file for above
f1 0 8192 9 1 1 .25

i1 0 5 100 1000
i1 5 5 200 1000
e

AUTHOR
Sean Costello
Seattle, Washington
August, 1999
New in Csound version 4.0

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-12

50.8 biquad, rezzy, moogvcf

ar biquadbiquadbiquadbiquad asig, kb0, kb1, kb2, ka0, ka1, ka2[, iskip]

ar rezzyrezzyrezzyrezzy asig, xfco, xres[, imode]

ar moogvcfmoogvcfmoogvcfmoogvcf asig, xfco, xres[, iscale]

DESCRIPTION
Implementation of a sweepable general purpose filter and two sweepable, resonant low-
pass filters.

INITIALIZATION
iskip (optional) – if non-zero, initialization will be skipped. Default value 0. (New in Csound
version 3.50)

imode (optional) – if zero rezzy is low-pass, if nonzero, high-pass. Default value is 0. (New
in Csound version 3.50)

iscale (optional) – internal scaling factor. Use if asig is not in the range +/-1. Input is first
divided by iscale, then output is multiplied iscale. Default value is 1. (New in Csound
version 3.50)

PERFORMANCE
asig – input signal

xfco – filter cut-off frequency in Hz. As of version 3.50, may i-,k-, or a-rate.

xres – amount of resonance. For rezzy, values of 1 to 100 are typical. Resonance should be
one or greater. For moogvcf, self-oscillation occurs when xres is approximately one. As of
version 3.50, may i-,k-, or a-rate.

biquad is a general purpose biquadratic digital filter of the form:

a0*y(n) + a1*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:

 B(Z) b0 + b1*Z-1 + b2*Z-2
H(Z) = ---- = ------------------
 A(Z) a0 + a1*Z-1 + a2*Z-2

This type of filter is often encountered in digital signal processing literature. It allows six
user-defined k-rate coefficients.

rezzy is a resonant low-pass filter created empirically by Hans Mikelson.

moogvcf is a digital emulation of the Moog diode ladder filter configuration. This emulation
is based loosely on the paper “Analyzing the Moog VCF with Considerations for Digital
Implementation” by Stilson and Smith (CCRMA). This version was originally coded in Csound
by Josep Comajuncosas. Some modifications and conversion to C were done by Hans
Mikelson.

Note: This filter requires that the input signal be normalized to one.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-13

EXAMPLES

;biquadbiquadbiquadbiquad example
kfcon = *3.14159265*kfco/sr
kalpha = -2*krez*cos(kfcon)*cos(kfcon)+krez*krez*cos(2*kfcon)
kbeta = *krez*sin(2*kfcon)-2*krez*cos(kfcon)*sin(kfcon)
kgama = +cos(kfcon)
km1 = *kgama+kbeta*sin(kfcon)
km2 = *kgama-kbeta*sin(kfcon)
kden = (km1*km1+km2*km2)
kb0 = .5*(kalpha*kalpha+kbeta*kbeta)/kden
kb1 = kb0
kb2 = 0
ka0 = 1
ka1 = -2*krez*cos(kfcon)
ka2 = krez*krez
ayn biquadbiquadbiquadbiquad axn, kb0, kb1, kb2, ka0, ka1, ka2
outsoutsoutsouts ayn*iamp/2, ayn*iamp/2

; Sta Dur Amp Pitch Fco Rez
i14 8.0 1.0 20000 6.00 1000 .8
i14 + 1.0 20000 6.03 2000 .95

;rezzyrezzyrezzyrezzy example
kfco expsegexpsegexpsegexpseg 100+.01*ifco, .2*idur, ifco+100, .5*idur, ifco*.1+100,
.3*idur, .001*ifco+100
apulse1 buzzbuzzbuzzbuzz 1,ifqc, sr/2/ifqc, 1 ; Avoid aliasing
asaw integinteginteginteg apulse1
axn ==== asaw-.5
ayn rezzyrezzyrezzyrezzy axn, kfco, krez
outsoutsoutsouts ayn*iamp, ayn*iamp

; Sta Dur Amp Pitch Fco Rez
i10 0.0 1.0 20000 6.00 1000 2
i10 + 1.0 20000 6.03 2000 10

;moogvcfmoogvcfmoogvcfmoogvcf example
apulse1 buzzbuzzbuzzbuzz 1,ifqc, sr/2/ifqc, 1 ; Avoid aliasing
asaw integinteginteginteg apulse1
ax = asaw-.5
ayn moogvcfmoogvcfmoogvcfmoogvcf ax, kfco, krez
outsoutsoutsouts ayn*iamp, ayn*iamp

; Sta Dur Amp Pitch Fco Rez
i11 4.0 1.0 20000 6.00 1000 .4
i11 + 1.0 20000 6.03 2000 .7

AUTHOR
Hans Mikelson
October 1998
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-14

50.9 svfi lter

 alow, ahigh, aband svfiltersvfiltersvfiltersvfilter asig, kcf, kq[, iscl]

DESCRIPTION
Implementation of a resonant second order filter, with simultaneous lowpass, highpass and
bandpass outputs.

INITIALIZATION
iscl – coded scaling factor, similar to that in reson. A non-zero value signifies a peak
response factor of 1, i.e. all frequencies other than kcf are attenuated in accordance with
the (normalized) response curve. A zero value signifies no scaling of the signal, leaving that
to some later adjustment (see balance). The default value is 0.

PERFORMANCE
svfilter is a second order state-variable filter, with k-rate controls for cutoff frequency and
Q. As Q is increased, a resonant peak forms around the cutoff frequency. svfilter has
simultaneous lowpass, highpass, and bandpass filter outputs; by mixing the outputs
together, a variety of frequency responses can be generated. The state-variable filter, or
“multimode” filter was a common feature in early analog synthesizers, due to the wide
variety of sounds available from the interaction between cutoff, resonance, and output mix
ratios. svfilter is well suited to the emulation of “analog” sounds, as well as other
applications where resonant filters are called for.

asig – Input signal to be filtered.

kcf – Cutoff or resonant frequency of the filter, measured in Hz.

kq – Q of the filter, which is defined (for bandpass filters) as bandwidth/cutoff. kq should
be in a range between 1 and 500. As kq is increased, the resonance of the filter increases,
which corresponds to an increase in the magnitude and “sharpness” of the resonant peak.
When using svfilter without any scaling of the signal (where iscl is either absent or 0), the
volume of the resonant peak increases as Q increases. For high values of Q, it is
recommended that iscl be set to a non-zero value, or that an external scaling function such
as balance is used.

svfilter is based upon an algorithm in Hal Chamberlin’s Musical Applications of
Microprocessors (Hayden Books, 1985).

EXAMPLE

 ; Orchestra file for resonant filter sweep of a sawtooth-like waveform.
 ; The separate outputs of the filter are scaled by values from the score,
 ; and are mixed together.
 srsrsrsr = 44100
 krkrkrkr = 2205
 ksmpsksmpsksmpsksmps = 20
 nchnlsnchnlsnchnlsnchnls = 1

 instr 1

 idur = p3
 ifreq = p4
 iamp = p5
 ilowamp = p6 ; determines amount of lowpass output in signal
 ihighamp = p7 ; determines amount of highpass output in signal

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-15

 ibandamp = p8 ; determines amount of bandpass output in signal
 iq = p9 ; value of q

 iharms = (sr*.4) / ifreq

 asig gbuzzgbuzzgbuzzgbuzz 1, ifreq, iharms, 1, .9, 1 ; Sawtooth-like
 ; waveform
 kfreq linseglinseglinseglinseg 1, idur * 0.5, 4000, idur * 0.5, 1 ; Envelope to control
 ; filter cutoff

 alow, ahigh, aband svfiltersvfiltersvfiltersvfilter asig, kfreq, iq

 aout1 = alow * ilowamp
 aout2 = ahigh * ihighamp
 aout3 = aband * ibandamp
 asum = aout1 + aout2 + aout3
 kenv linseglinseglinseglinseg 0, .1, iamp, idur -.2, iamp, .1, 0 ; Simple amplitude
 ; envelope
 outoutoutout asum * kenv

endinendinendinendin

 ; Score file for above
 f1 0 8192 9 1 1 .25

 i1 0 5 100 1000 1 0 0 5 ; lowpass sweep
 i1 5 5 200 1000 1 0 0 30 ; lowpass sweep, octave higher, higher q
 i1 10 5 100 1000 0 1 0 5 ; highpass sweep
 i1 15 5 200 1000 0 1 0 30 ; highpass sweep, octave higher, higher q
 i1 20 5 100 1000 0 0 1 5 ; bandpass sweep
 i1 25 5 200 1000 0 0 1 30 ; bandpass sweep, octave higher, higher q
 i1 30 5 200 2000 .4 .6 0 ; notch sweep - notch formed by combining
 ; highpass and lowpass outputs
 e

AUTHOR
Sean Costello
Seattle, Washington
1999
New in Csound version 3.55

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-16

50.10 hi lbert

 ar1, ar2 hilberthilberthilberthilbert asig

DESCRIPTION
An IIR implementation of a Hilbert transformer.

PERFORMANCE
asig – input signal

ar1 – cosine output of asig

ar2 – sine output of asig

hilbert is an IIR filter based implementation of a broad-band 90 degree phase difference
network. The input to hilbert is an audio signal, with a frequency range from 15 Hz to 15
kHz. The outputs of hilbert have an identical frequency response to the input (i.e. they
sound the same), but the two outputs have a constant phase difference of 90 degrees, plus
or minus some small amount of error, throughout the entire frequency range. The outputs
are in quadrature.

hilbert is useful in the implementation of many digital signal processing techniques that
require a signal in phase quadrature. ar1 corresponds to the cosine output of hilbert, while
ar2 corresponds to the sine output. The two outputs have a constant phase difference
throughout the audio range that corresponds to the phase relationship between cosine and
sine waves.

Internally, hilbert is based on two parallel 6th-order allpass filters. Each allpass filter
implements a phase lag that increases with frequency; the difference between the phase
lags of the parallel allpass filters at any given point is approximately 90 degrees.

Unlike an FIR-based Hilbert transformer, the output of hilbert does not have a linear phase
response. However, the IIR structure used in hilbert is far more efficient to compute, and
the nonlinear phase response can be used in the creation of interesting audio effects, as in
the second example below.

EXAMPLES
The first example implements frequency shifting, or single sideband amplitude modulation.
Frequency shifting is similar to ring modulation, except the upper and lower sidebands are
separated into individual outputs. By using only one of the outputs, the input signal can be
“detuned,” where the harmonic components of the signal are shifted out of harmonic
alignment with each other, e.g. a signal with harmonics at 100, 200, 300, 400 and 500 Hz,
shifted up by 50 Hz, will have harmonics at 150, 250, 350, 450, and 550 Hz.

 srsrsrsr = 44100
 krkrkrkr = 4410
 ksmpsksmpsksmpsksmps = 10
 nchnlsnchnlsnchnlsnchnls = 2

 instr instr instr instr 1

 idur = p3
 ibegshift = p4 ; initial amount of frequency shift-
 ; can be positive or negative
 iendshift = p5 ; final amount of frequency shift-
 ; can be positive or negative

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-17

 kfreq linseglinseglinseglinseg ibegshift, idur, iendshift ; A simple envelope
 ; for determining
 ; the amount of
 ; frequency shift.

 ain soundinsoundinsoundinsoundin “supertest.wav” ; Use the sound of your choice.

 areal, aimag hilberthilberthilberthilbert ain ; Phase quadrature output derived from
; input signal.

 asin oscilioscilioscilioscili 1, kfreq, 1 ; Quadrature oscillator.
 acos oscilioscilioscilioscili 1, kfreq, 1, .25

 amod1 = areal * acos ; Trigonometric identity-
 ; see references for further
 ; details.
 amod2 = aimag * asin

 ; Both sum and difference
 ; frequencies can be
 ; output at once.
 aupshift = (amod1 + amod2) * 0.7 ; aupshift corresponds to
 ; the sum frequencies, while
 adownshift = (amod1 - amod2) * 0.7 ; adownshift corresponds to
 ; the difference frequencies.
 ; Notice that the adding of
 ; the two together is
 ; identical to the output of
 ; ring modulation.

 outsoutsoutsouts aupshift, aupshift
 endinendinendinendin

 ; a simple score
 f1 0 16384 10 1 ; sine table for quadrature oscillator
 i1 0 29 0 200 ; starting with no shift, ending with all
 ; frequencies shifted up by 200 Hz.
 i1 30 29 0 -200 ; starting with no shift, ending with all
 ; frequencies shifted up by 200 Hz.
 e

The second example is a variation of the first, but with the output being fed back into the
input. With very small shift amounts (i.e. between 0 and +-6 Hz), the result is a sound that
has been described as a “barberpole phaser” or “Shepard tone phase shifter. Several
notches appear in the spectrum, and are constantly swept in the direction opposite that of
the shift, producing a filtering effect that is reminiscent of Risset’s “endless glissando.”

 srsrsrsr = 44100
 krkrkrkr = 44100 ; kr MUST be set to sr for “barberpole” effect
 ksmpsksmpsksmpsksmps = 1
 nchnlsnchnlsnchnlsnchnls = 2

 instr instr instr instr 2

 afeedback initinitinitinit 0 ; initialization of feedback

 idur = p3
 ibegshift = p4 ; initial amount of frequency shift –
 ; can be positive or negative
 iendshift = p5 ; final amount of frequency shift - can be
 ; positive or negative
 ifeed = p6 ; amount of feedback - the higher the
 ; number, the more pronounced
 ; the effect. Experiment to see at what
 ; point oscillation occurs
 ; (often a factor of 1.4 is the maximum
 ; feedback before oscillation).

 kfreq linseglinseglinseglinseg ibegshift, idur, iendshift

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-18

 ain soundinsoundinsoundinsoundin “supertest.wav”
 areal, aimag hilberthilberthilberthilbert ain + afeedback
 asin oscilioscilioscilioscili 1, kfreq, 1
 acos oscilioscilioscilioscili 1, kfreq, 1, .25

 amod1 = areal * acos
 amod2 = aimag * asin

 aupshift = (amod1 + amod2) * 0.7
 adownshift = (amod1 - amod2) * 0.7

 afeedback = (amod1 - amod2) * .5 * ifeed ; feedback taken from
 ; downshift output

 outsoutsoutsouts aupshift, aupshift

 endin endin endin endin

 ; a simple score
 f1 0 16384 10 1 ; sine table for quadrature oscillator
 i2 0 29 -.3 -.3 1.4 ; upwards sweep, at a rate of .3 times a second,
 ; lots of feedback
 i2 30 30 .1 .1 1.4 ; downwards sweep, .3 times a second,
 ; lots of feedback
 i2 60 29 5 -5 1.4 ; sweep goes from .3 time a second,
 ; descending in pitch,
 ; to .3 times a second ascending in pitch, with a
 ; large amount of feedback.
 e

TECHNICAL HISTORY
The use of phase-difference networks in frequency shifters was pioneered by Harald Bode
[1]. Bode and Bob Moog provide an excellent description of the implementation and use of
a frequency shifter in the analog realm [2]. This would be an excellent first source for
those that wish to explore the possibilities of single sideband modulation. Bernie Hutchins
provides more applications of the frequency shifter, as well as a detailed technical analysis
[3]. A recent paper by Scott Wardle [4] describes a digital implementation of a frequency
shifter, as well as some unique applications.

REFERENCES
1. H. Bode, “Solid State Audio Frequency Spectrum Shifter.” AES Preprint No. 395 (1965).

2. H. Bode and R.A. Moog, “A High-Accuracy Frequency Shfiter for Professional Audio
Applications.” Journal of the Audio Engineering Society, July/August 1972, vol. 20, no.
6, p. 453.

3. B. Hutchins. Musical Engineer’s Handbook (Ithaca, NY: Electronotes, 1975), ch. 6a.

4. S. Wardle, “A Hilbert-Transformer Frequency Shifter for Audio.” Available online at
http://www.iua.upf.es/dafx98/papers/.

AUTHOR
Sean Costello
Seattle, Washington
1999
New in Csound version 3.55

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-19

50.11 butterhp, butterlp, butterbp,
butterbr

ar butterhpbutterhpbutterhpbutterhp asig, kfreq [,iskip]
ar butterlpbutterlpbutterlpbutterlp asig, kfreq [,iskip]
ar butterbpbutterbpbutterbpbutterbp asig, kfreq, kband [,iskip]
ar butterbrbutterbrbutterbrbutterbr asig, kfreq, kband [,iskip]

DESCRIPTION
Implementations of second-order high-pass, low-pass, band-pass and band-reject
Butterworth filters. Note: these opcodes can also be written butlp, buthp, butbp, butbr.

PERFORMANCE
These filters are Butterworth second-order IIR filters. They are slightly slower than the
original filters in Csound, but they offer an almost flat passband and very good precision
and stopband attenuation.

asig – Input signal to be filtered.

kfreq – Cutoff or center frequency for each of the filters. In the case of butterbp and
butterbr, the center kfreq is the intervalic, not the mathematical center.

kband – Bandwidth of the bandpass and bandreject filters.

iskip – Skip initialization if present and non zero

EXAMPLE

asig randrandrandrand 10000 ; White noise signal
alpf butterlpbutterlpbutterlpbutterlp asig, 1000 ; cutting frequencies above1K
ahpf butterhpbutterhpbutterhpbutterhp asig, 500 ; passing frequencies above 500Hz
abpf butterbpbutterbpbutterbpbutterbp asig, 1000, 2000 ; passing 2 octaves: 500 to 2000 Hz
abrf butterbrbutterbrbutterbrbutterbr asig, 200, 150 ; cutting 2 octaves: 50 to 200 Hz

AUTHOR
Paris Smaragdis
MIT, Cambridge
1995

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-20

50.12 f i lter2, zf i lter2

ar filter2filter2filter2filter2 asig, iM,iN,ib0,ib1,..., ibM,ia1,ia2,...,iaN
kr filter2filter2filter2filter2 ksig, iM,iN,ib0,ib1,...,ibM,ia1,ia2,...,iaN
ar zfilter2zfilter2zfilter2zfilter2 asig, kdamp,kfreq,iM,iN,ib0,ib1,...,ibM,ia1,ia2,...,iaN

DESCRIPTION
General purpose custom filter with time-varying pole control. The filter coefficients
implement the following difference equation:

(1)*y(n)=b0*x[n]+b1*x[n-1]+...+bM*x[n-M]-a1*y[n-1]-...-aN*y[n-N]

the system function for which is represented by:

 B(Z) b0 + b1*Z-1 + ... + bM*Z-M
 H(Z) = ---- = ---------------------------------
 A(Z) 1 + a1*Z-1 + ... + aN*Z-N

INITIALIZATION
At initialization the number of zeros and poles of the filter are specified along with the
corresponding zero and pole coefficients. The coefficients must be obtained by an external
filter-design application such as Matlab and specified directly or loaded into a table via
GEN01. With zfilter2, the roots of the characteristic polynomials are solved at
initialization so that the pole-control operations can be implemented efficiently.

PERFORMANCE
The filter2 opcodes perform filtering using a transposed form-II digital filter lattice with no
time-varying control. zfilter2 uses the additional operations of radial pole-shearing and
angular pole-warping in the Z plane.

Pole shearing increases the magnitude of poles along radial lines in the Z-plane. This has
the affect of altering filter ring times. The k-rate variable kdamp is the damping
parameter. Positive values (0.01 to 0.99) increase the ring-time of the filter (hi-Q),
negative values (-0.01 to -0.99) decrease the ring-time of the filter, (lo-Q).

Pole warping changes the frequency of poles by moving them along angular paths in the Z
plane. This operation leaves the shape of the magnitude response unchanged but alters the
frequencies by a constant factor (preserving 0 and p). The k-rate variable kfreq determines
the frequency warp factor. Positive values (0.01 to 0.99) increase frequencies toward p and
negative values (-0.01 to -0.99) decrease frequencies toward 0.

Since filter2 implements generalized recursive filters, it can be used to specify a large
range of general DSP algorithms. For example, a digital waveguide can be implemented for
musical instrument modeling using a pair of delayr and delayw opcodes in conjunction
with the filter2 opcode.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-21

EXAMPLE
A first-order linear-phase lowpass linear-phase FIR filter operating on a k-rate signal:

k1 filter2filter2filter2filter2 ksig, 2, 0, 0.5, 0.5 ;; k-rate FIR filter

A controllable second-order IIR filter operating on an a-rate signal:

; IIR filter
a1 zfilter2zfilter2zfilter2zfilter2 asig, kdamp, kfreq, 1, 2, 1, ia1, ia2 ; controllable a-rate

DEPRECATED NAMES
The k-rate version of filter2 was originally called kfilter2. As of Csound version 3.493, this
name is deprecated. filter2 should be used instead of kfilter2. The opcode determines its
rate from the output argument.

AUTHOR
Michael A. Casey
MIT
Cambridge, Mass.
1997

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-22

50.13 lpf18

ar lpf18lpf18lpf18lpf18 asig, kfco, kres, kdist

DESCRIPTION
Implementation of a 3 pole sweepable resonant lowpass filter.

PERFORMANCE
kfco – the filter cut-off frequency in Hz. Should be in the range 0 to sr/2.

kres – the amount of resonance. Self-oscillation occurs when kres is approximately 1.
Should usually be in the range 0 to 1, however, values slightly greater than 1 are possible
for more sustained oscillation and an "overdrive" effect.

kdist – amount of distortion. kdist = 0 gives a clean output. kdist > 0 adds tanh() distortion
controlled by the filter parameters, in such a way that both low cutoff and high resonance
increase the distortion amount. Some experimentation is encouraged.

lpf18 is a digital emulation of a 3 pole (18 dB/oct.) lowpass filter capable of self-oscillation
with a built-in distortion unit. It is really a 3-pole version of moogvcf, retuned,
recalibrated and with some performance improvements. The tuning and feedback tables
use no more than 6 adds and 6 multiplies per control rate. The distortion unit, itself, is
based on a modified tanh() function driven by the filter controls.

Note: This filter requires that the input signal be normalized to one.

AUTHOR
Josep M Comajuncosas
Spain
December, 2000
New in Csound version 4.10

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-23

50.14 tbvcf

ar tbvcftbvcftbvcftbvcf asig, xfco, xres, kdist, kasym

DESCRIPTION
This opcode attempts to model some of the filter characteristics of a Roland TB303
voltage-controlled filter. Euler's method is used to approximate the system, rather than
traditional filter methods. Cutoff frequency, Q, and distortion are all coupled. Empirical
methods were used to try to unentwine, but frequency is only approximate as a result.
Future fixes for some problems with this opcode may break existing orchestras relying on
this version of tbvcf.

PERFORMANCE
asig – input signal. Should be normalized to ±1.

xfco – filter cutoff frequency. Optimum range is 10,000 to 1500. Values below 1000 may
cause problems.

xres – resonance or Q. Typically in the range 0 to 2.

kdist – amount of distortion. Typical value is 2. Changing kdist significantly from 2 may
cause odd interaction with xfco and xres.

kasym – asymmetry of resonance. Typically in the range 0 to 1.

EXAMPLE
;---
; TBVCF Test
; Coded by Hans Mikelson December, 2000
;---
 srsrsrsr = 44100 ; Sample rate
 krkrkrkr = 4410 ; Kontrol rate
 ksmpsksmpsksmpsksmps = 10 ; Samples/Kontrol period
 nchnlsnchnlsnchnlsnchnls = 2 ; Normal stereo
 zakinitzakinitzakinitzakinit 50, 50

 instrinstrinstrinstr 10

 idur = p3 ; Duration
 iamp = p4 ; Amplitude
 ifqc = cpspch(p5) ; Pitch to frequency
 ipanl = sqrtsqrtsqrtsqrt(p6) ; Pan left
 ipanr = sqrtsqrtsqrtsqrt(1-p6) ; Pan right
 iq = p7
 idist = p8
 iasym = p9

 kdclck linseglinseglinseglinseg 0, .002, 1, idur-.004, 1, .002, 0 ; Declick envelope

 kfco expsegexpsegexpsegexpseg 10000, idur, 1000 ; Frequency envelope

 ax vcovcovcovco 1, ifqc, 2, 1 ; Square wave
 ay tbvcftbvcftbvcftbvcf ax, kfco, iq, idist, iasym ; TB-VCF
 ay buthpbuthpbuthpbuthp ay/1, 100 ; Hi-pass

 outsoutsoutsouts ay*iamp*ipanl*kdclck, ay*iamp*ipanr*kdclck
 endinendinendinendin

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Standard Filters Page 50-24

f1 0 65536 10 1
 ; TeeBee Test
 ; Sta Dur Amp Pitch Pan Q Dist1 Asym
 i10 0 0.2 32767 7.00 .5 0.0 2.0 0.0
 i10 0.3 0.2 32767 7.00 .5 0.8 2.0 0.0
 i10 0.6 0.2 32767 7.00 .5 1.6 2.0 0.0
 i10 0.9 0.2 32767 7.00 .5 2.4 2.0 0.0
 i10 1.2 0.2 32767 7.00 .5 3.2 2.0 0.0
 i10 1.5 0.2 32767 7.00 .5 4.0 2.0 0.0
 i10 1.8 0.2 32767 7.00 .5 0.0 2.0 0.25
 i10 2.1 0.2 32767 7.00 .5 0.8 2.0 0.25
 i10 2.4 0.2 32767 7.00 .5 1.6 2.0 0.25
 i10 2.7 0.2 32767 7.00 .5 2.4 2.0 0.25
 i10 3.0 0.2 32767 7.00 .5 3.2 2.0 0.25
 i10 3.3 0.2 32767 7.00 .5 4.0 2.0 0.25
 i10 3.6 0.2 32767 7.00 .5 0.0 2.0 0.5
 i10 3.9 0.2 32767 7.00 .5 0.8 2.0 0.5
 i10 4.2 0.2 32767 7.00 .5 1.6 2.0 0.5
 i10 4.5 0.2 32767 7.00 .5 2.4 2.0 0.5
 i10 4.8 0.2 32767 7.00 .5 3.2 2.0 0.5
 i10 5.1 0.2 32767 7.00 .5 4.0 2.0 0.5
 i10 5.4 0.2 32767 7.00 .5 0.0 2.0 0.75
 i10 5.7 0.2 32767 7.00 .5 0.8 2.0 0.75
 i10 6.0 0.2 32767 7.00 .5 1.6 2.0 0.75
 i10 6.3 0.2 32767 7.00 .5 2.4 2.0 0.75
 i10 6.6 0.2 32767 7.00 .5 3.2 2.0 0.75
 i10 6.9 0.2 32767 7.00 .5 4.0 2.0 0.75
 i10 7.2 0.2 32767 7.00 .5 0.0 2.0 1.0
 i10 7.5 0.2 32767 7.00 .5 0.8 2.0 1.0
 i10 7.8 0.2 32767 7.00 .5 1.6 2.0 1.0
 i10 8.1 0.2 32767 7.00 .5 2.4 2.0 1.0
 i10 8.4 0.2 32767 7.00 .5 3.2 2.0 1.0
 i10 8.7 0.2 32767 7.00 .5 4.0 2.0 1.0

AUTHOR
Hans Mikelson
December, 2000 – January, 2001
New in Csound 4.10

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-1

51 SIGNAL MODIFIERS: SPECIALIZED
FILTERS

51.1 nlfi lt

ar nlfiltnlfiltnlfiltnlfilt ain, ka, kb, kd, kL, kC

DESCRIPTION
Implements the filter

Y{n} =a Y{n-1} + b Y{n-2} + d Y^2{n-L} + X{n} – C

described in Dobson and Fitch (ICMC’96)

EXAMPLE
Non-linear effect:

a = b = 0
d = 0.8, 0.9, 0.7
C = 0.4, 0.5, 0.6
L = 20

This affects the lower register most but there are audible effects over the whole range. We
suggest that it may be useful for coloring drums, and for adding arbitrary highlights to
notes

Low Pass with non-linear:

a = 0.4
b = 0.2
d = 0.7
C = 0.11
L = 20, ... 200

There are instability problems with this variant but the effect is more pronounced of the
lower register, but is otherwise much like the pure comb. Short values of L can add attack
to a sound.

High Pass with non-linear: The range of parameters are

a = 0.35
b = -0.3
d = 0.95
C = 0,2, ... 0.4
L = 200

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-2

High Pass with non-linear: The range of parameters are

a = 0.7
b = -0.2, ... 0.5
d = 0.9
C = 0.12, ... 0.24
L = 500, 10

The high pass version is less likely to oscillate. It adds scintillation to medium-high
registers. With a large delay L it is a little like a reverberation, while with small values
there appear to be formant-like regions. There are arbitrary color changes and resonances
as the pitch changes. Works well with individual notes.

Warning: The “useful” ranges of parameters are not yet mapped.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
1997

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-3

51.2 pareq

ar pareqpareqpareqpareq asig, kc, iv, iq, imode

DESCRIPTION
Implementation of Zoelzer’s parametric equalizer filters, with some modifications by the
author.

The formula for the low shelf filter is:

omega = 2*pi*f/sr
K = tan(omega/2)

b0 = 1 + sqrt(2*V)*K + V*K^2
b1 = 2*(V*K^2 - 1)
b2 = 1 - sqrt(2*V)*K + V*K^2

a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

The formula for the high shelf filter is:

omega = 2*pi*f/sr
K = tan((pi-omega)/2)

b0 = 1 + sqrt(2*V)*K + V*K^2
b1 = -2*(V*K^2 - 1)
b1 = 1 - sqrt(2*V)*K + V*K^2

a0 = 1 + K/Q + K^2
a1 = -2*(K^2 - 1)
a2 = 1 - K/Q + K^2

The formula for the peaking filter is:

omega = 2*pi*f/sr
K = tan(omega/2)

b0 = 1 + V*K/2 + K^2
b1 = 2*(K^2 - 1)
b2 = 1 - V*K/2 + K^2

a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

INITIALIZATION
iv – amount of boost or cut. Positive values give boost, negative values give cut.

iq – Q of the filter (sqrt(.5) is no resonance)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-4

imode – operating mode

• 0 = Peaking
• 1 = Low Shelving
• 2 = High Shelving

PERFORMANCE
kc – center frequency in peaking mode, corner frequency in shelving mode.

asig – the incoming signal

EXAMPLE

 instr 15
ifc = p4 ; Center / Shelf
iq = p5 ; Quality factor sqrt(.5) is no resonance
iv = ampdb(p6) ; Volume Boost/Cut
imode = p7 ; Mode 0=Peaking EQ, 1=Low Shelf, 2=High Shelf
kfc linseglinseglinseglinseg ifc*2, p3, ifc/2
asig randrandrandrand 5000 ; Random number source for testing
aout pareqpareqpareqpareq asig, kfc, iv, iq, imode ; Parametric equalization
 outsoutsoutsouts aout, aout ; Output the results
endin

; SCORE:
; Sta Dur Fcenter Q Boost/Cut(dB) Mode
i15 0 1 10000 .2 12 1
i15 + . 5000 .2 12 1
i15 . . 1000 .707 -12 2
i15 . . 5000 .1 -12 0
e

AUTHOR
Hans Mikelson
December, 1998
(New in Csound version 3.50)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-5

51.3 dcblock

ar dcblockdcblockdcblockdcblock asig[, ig]

DESCRIPTION
Implements the DC blocking filter

Y[i] = X[i] – X[i-1] + (igain * Y[i=1])

Based on work by Perry Cook.

INITIALIZATION
igain – the gain of the filter, which defaults to 0.99

PERFORMANCE
ain – audio signal input

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Specialized Filters Page 51-6

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Envelope Modifiers Page 52-1

52 SIGNAL MODIFIERS: ENVELOPE
MODIFIERS

52.1 l inen, l inenr, envlpx, envlpxr

kr linenlinenlinenlinen kamp, irise, idur, idec
ar linenlinenlinenlinen xamp, irise, idur, idec
kr linenrlinenrlinenrlinenr kamp, irise, idec, iatdec
ar linenrlinenrlinenrlinenr xamp, irise, idec, iatdec
kr envlpxenvlpxenvlpxenvlpx kamp, irise, idur, idec, ifn, iatss, iatdec[,ixmod]
ar envlpxenvlpxenvlpxenvlpx xamp, irise, idur, idec, ifn, iatss, iatdec[,ixmod]
kr envlpxrenvlpxrenvlpxrenvlpxr kamp, irise, idec, ifn, iatss, iatdec[, ixmod[, irind]]
ar envlpxrenvlpxrenvlpxrenvlpxr xamp, irise, idec, ifn, iatss, iatdec[, ixmod[, irind]]

DESCRIPTION
linen – apply a straight line rise and decay pattern to an input amp signal.

envlpx – apply an envelope consisting of 3 segments:

• stored function rise shape
• modified exponential pseudo steady state
• exponential decay.

linenr, envlpxr – as above, except that the final segment is entered only on sensing a MIDI
note release, and the note is then extended by the decay time

INITIALIZATION
irise – rise time in seconds. A zero or negative value signifies no rise modification.

idur – overall duration in seconds. A zero or negative value will cause initialization to be
skipped.

idec – decay time in seconds. Zero means no decay. An idec > idur will cause a truncated
decay.

irind (optional) – independence flag. If left zero, the release time (idec) will influence the
extended life of the current note following a note-off. If non-zero, the idec time is quite
independent of the note extension (see below). The default value is 0.

ifn – function table number of stored rise shape with extended guard point.

iatss – attenuation factor, by which the last value of the envlpx rise is modified during the
note’s pseudo steady state. A factor l causes an exponential growth, and < l an exponential
decay. A 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration.
However, if iatss is negative (or if steady state < 4 k-periods) a fixed attenuation rate of
abs(iatss) per second will be used. 0 is illegal.

iatdec – attenuation factor by which the closing steady state value is reduced exponentially
over the decay period. This value must be positive and is normally of the order of .01. A
large or excessively small value is apt to produce a cutoff which is audible. A zero or
negative value is illegal.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Envelope Modifiers Page 52-2

ixmod (optional, between +- .9 or so) – exponential curve modifier, influencing the
steepness of the exponential trajectory during the steady state. Values less than zero will
cause an accelerated growth or decay towards the target (e.g. subito piano). Values
greater than zero will cause a retarded growth or decay. The default value is zero
(unmodified exponential).

PERFORMANCE
Rise modifications are applied for the first irise seconds, and decay from time idur – idec.
If these periods are separated in time there will be a steady state during which amp will be
unmodified (linen) or modified by the first exponential pattern (envlpx). If linen rise and
decay periods overlap then both modifications will be in effect for that time; in envlpx
that will cause a truncated decay. If the overall duration idur is exceeded in performance,
the final decay will continue on in the same direction, going negative for linen but tending
asymptotically to zero in envlpx.

linenr is unique within Csound in containing a note-off sensor and release time extender.
When it senses either a score event termination or a MIDI noteoff, it will immediately
extend the performance time of the current instrument by idec seconds, then execute an
exponential decay towards the factor iatdec. For two or more units in an instrument,
extension is by the greatest idec.

linenr, envlpxr are examples of the special Csound “r” units that contain a note-off sensor
and release time extender. Unless made independent by irind, when each senses a score
event termination or a MIDI noteoff, it will immediately extend the performance time of
the current instrument by idec seconds, then begin a decay (as described above) from
wherever it was at the time. These “r” units can also be modified by MIDI noteoff velocities
(see veloffs). If the irind flag is on (non-zero), the overall performance time is unaffected
by note-off and veloff data.

MULTIPLE “R” UNITS
When two or more “r” units occur in the same instrument it is usual to have only one of
them influence the overall note duration. This is normally the master amplitude unit. Other
units controlling, say, filter motion can still be sensitive to note-off commands while not
affecting the duration by making them independent (irind non-zero). Depending on their
own idec (release time) values, independent “r” units may or may not reach their final
destinations before the instrument terminates. If they do, they will simply hold their target
values until termination. If two or more “r” units are simultaneously master, note
extension is by the greatest idec.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Amplitude Modifiers Page 53-1

53 SIGNAL MODIFIERS: AMPLITUDE
MODIFIERS

53.1 rms, gain, balance

kr rmsrmsrmsrms asig[, ihp, iskip]
ar gaingaingaingain asig, krms[, ihp, iskip]
ar balancebalancebalancebalance asig, acomp[, ihp, iskip]

DESCRIPTION
The rms power of asig can be interrogated, set, or adjusted to match that of a comparator
signal.

INITIALIZATION
ihp (optional) – half-power point (in Hz) of a special internal low-pass filter. The default
value is 10.

iskip (optional) – initial disposition of internal data space (see reson). The default value is
0.

PERFORMANCE
rms output values kr will trace the rms value of the audio input asig. This unit is not a
signal modifier, but functions rather as a signal power-gauge.

gain provides an amplitude modification of asig so that the output ar has rms power equal
to krms. rms and gain used together (and given matching ihp values) will provide the same
effect as balance.

balance outputs a version of asig, amplitude-modified so that its rms power is equal to that
of a comparator signal acomp. Thus a signal that has suffered loss of power (e.g., in passing
through a filter bank) can be restored by matching it with, for instance, its own source. It
should be noted that gain and balance provide amplitude modification only – output signals
are not altered in any other respect.

EXAMPLE

asrc buzzbuzzbuzzbuzz 10000,440, sr/440, 1 ; band-limited pulse train
a1 resonresonresonreson asrc, 1000,100 ; sent through
a2 resonresonresonreson a1,3000,500 ; 2 filters
afin balancebalancebalancebalance a2, asrc ; then balanced with source

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Amplitude Modifiers Page 53-2

53.2 dam

ar damdamdamdam asig, kthreshold, icomp1, icomp2, irtime, iftime

DESCRIPTION
This opcode dynamically modifies a gain value applied to the input sound ‘ain’ by
comparing its power level to a given threshold level. The signal will be
compressed/expanded with different factors regarding that it is over or under the
threshold.

INITIALIZATION
icomp1 – compression ratio for upper zone.

icomp2 – compression ratio for lower zone.

irtime – gain rise time in seconds. Time over which the gain factor is allowed to raise of
one unit.

iftime – gain fall time in seconds. Time over which the gain factor is allowed to decrease
of one unit.

PERFORMANCE
asig – input signal

kthreshold – level of input signal which acts as the threshold. Can be changed at k-time
(e.g. for ducking)

Note on the compression factors: A compression ratio of one leaves the sound unchanged.
Setting the ratio to a value smaller than one will compress the signal (reduce its volume)
while setting the ratio to a value greater than one will expand the signal (augment its
volume).

AUTHOR
Marc Resibois
Belgium
1997

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Amplitude Modifiers Page 53-3

53.3 cl ip

ar clipclipclipclip asig, imeth, ilimit[, iarg]

DESCRIPTION
Clips an a-rate signal to a predefined limit, in a “soft” manner, using one of three
methods.

INITIALIZATION
imeth – selects the clipping method. The default is 0. The methods are:

• 0 = Bram de Jong method (default)
• 1 = sine clipping
• 2 = tanh clipping

ilimit – limiting value

iarg (optional) – when imeth = 0, indicates the point at which clipping starts, in the range 0
– 1. Not used when imeth = 1 or imeth = 2. Default is 0.5.

PERFORMANCE
asig – a-rate input signal

The Bram de Jong method (imeth = 0) applies the algorithm:

|x| > a: f(x) = sin(x) * (a+(x-a)/(1+((x-a)/(1-a))2
|x| > 1: f(x) = sin(x) * (a+1)/2

This method requires that asig be normalized to 1.

The second method (imeth = 1) is the sine clip:

|x| < limit: f(x) = limit * sin(π*x/(2*limit))
f(x) = limit * sin(x)

The third method (imeth = 0) is the tanh clip:

|x| < limit: f(x) = limit * tanh(x/limit)/tanh(1)
f(x) = limit * sin(x)

Note: Method 1 appears to be non-functional at release of Csound version 4.07.

EXAMPLE

a1 soundinsoundinsoundinsoundin
a2 osciloscilosciloscil 25000, 1
asig clipclipclipclip a1+a2, 0, 30000, .75

outoutoutout asig

AUTHOR
John ffitch
University of Bath, Codemist Ltd.
Bath, UK
August, 2000
New in Csound version 4.07

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Amplitude Modifiers Page 53-4

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Signal Limiters Page 54-1

54 SIGNAL MODIFIERS: SIGNAL LIMITERS

54.1 l imit , mirror, wrap

ir limitlimitlimitlimit isig, ilow, ihigh
kr limitlimitlimitlimit ksig, klow, khigh
ar limitlimitlimitlimit asig, klow, khigh

ir wrapwrapwrapwrap isig, ilow, ihigh
kr wrapwrapwrapwrap ksig, klow, khigh
ar wrapwrapwrapwrap asig, klow, khigh

ir mirrormirrormirrormirror isig, ilow, ihigh
kr mirrormirrormirrormirror ksig, klow, khigh
ar mirrormirrormirrormirror asig, klow, khigh

DESCRIPTION
Wraps the signal in various ways.

INITIALIZATION
isig – input signal

ilow – low threshold

ihigh – high threshold

PERFORMANCE
xsig – input signal

xlow – low threshold

xhigh – high threshold

limit sets lower and upper limits on the xsig value they process. If xhigh is lower than xlow,
then the output will be the average of the two – it will not be affected by xsig. mirror
“reflects” the signal that exceeds the low and high thresholds. wrap wraps-around the
signal that exceeds the low and high thresholds.

These opcodes are useful in several situations, such as table indexing or for clipping and
modeling i-rate, k-rate or a-rate signals. wrap is also useful for wrap-around of table data
when the maximum index is not a power of two (see table and tablei). Another use of wrap
is in cyclical event repeating, with arbitrary cycle length.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Signal Limiters Page 54-2

AUTHORS
Gabriel Maldonado (wrap, mirror)
 Italy
New in Csound version 3.49

Robin Whittle (limit)
Australia
New in Csound version 3.46

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-1

55 SIGNAL MODIFIERS: DELAY

55.1 delayr, delayw, delay, delay1

ar delayrdelayrdelayrdelayr idlt[, iskip]
delaywdelaywdelaywdelayw asig

ar delaydelaydelaydelay asig, idlt[, iskip]
ar delay1delay1delay1delay1 asig[, iskip]

DESCRIPTION
A signal can be read from or written into a delay path, or it can be automatically delayed
by some time interval.

INITIALIZATION
idlt – requested delay time in seconds. This can be as large as available memory will
permit. The space required for n seconds of delay is 4n * sr bytes. It is allocated at the
time the instrument is first initialized, and returned to the pool at the end of a score
section.

iskip (optional) – initial disposition of delay-loop data space (see reson). The default value
is 0.

PERFORMANCE
delayr reads from an automatically established digital delay line, in which the signal
retrieved has been resident for idlt seconds. This unit must be paired with and precede an
accompanying delayw unit. Any other Csound statements can intervene.

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as
a pair, these two units permit the formation of modified feedback loops, etc. However,
there is a lower bound on the value of idlt, which must be at least 1 control period (or
1/kr).

delayr/delayw pairs may be interleaved. Beginning another delayr/delayw pair before
terminating a previous pair is no longer excluded. For the interleaved pairs, the first
delayr unit is associated with the first delayw unit, the second delayr unit with the second
delayw unit, and so on. In this way, it is possible to implement cross-coupled feedback that
is completed within the same control-rate cycle. See Example 2. (This feature added in
Csound version 3.57 by Jens Groh and John ffitch).

delay is a composite of the above two units, both reading from and writing into its own
storage area. It can thus accomplish signal time-shift, although modified feedback is not
possible. There is no minimum delay period.

delay1 is a special form of delay that serves to delay the audio signal asig by just one
sample. It is thus functionally equivalent to “delay asig, 1/sr” but is more efficient in both
time and space. This unit is particularly useful in the fabrication of generalized non-
recursive filters.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-2

EXAMPLES
Example 1:

 tigototigototigototigoto contin ; except on a tie,
 a2 delaydelaydelaydelay a1, .05, 0 ; begin 50 msec clean delay of sig
 contin:

Example 2:

ainput1 =
ainput2 =

;Read delayed signal, first delayrdelayrdelayrdelayr instance:
adly1 delayrdelayrdelayrdelayr 0.11

;Read delayed signal, second delayrdelayrdelayrdelayr instance:
adly2 delayrdelayrdelayrdelayr 0.07

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal associated with first delayrdelayrdelayrdelayr instance:
delaywdelaywdelaywdelayw afdbk1

;Feed back signal associated with second delayrdelayrdelayrdelayr instance:
delaywdelaywdelaywdelayw afdbk2
outsoutsoutsouts adly1, adly2

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-3

55.2 deltap, deltapi , deltapn, deltap3

ar deltapdeltapdeltapdeltap kdlt
ar deltapideltapideltapideltapi xdlt
ar deltapndeltapndeltapndeltapn xnumsamps
ar deltap3deltap3deltap3deltap3 xdlt

DESCRIPTION
Tap a delay line at variable offset times.

PERFORMANCE
These units can tap into a delayr/delayw pair, extracting delayed audio from the idlt
seconds of stored sound. There can be any number of deltap and/or deltapi units between
a read/write pair. Each receives an audio tap with no change of original amplitude.

deltap extracts sound by reading the stored samples directly; deltapi extracts sound by
interpolated readout. By interpolating between adjacent stored samples deltapi represents
a particular delay time with more accuracy, but it will take about twice as long to run.

The arguments kdlt, xdlt specify the tapped delay time in seconds. Each can range from 1
Control Period to the full delay time of the read/write pair; however, since there is no
internal check for adherence to this range, the user is wholly responsible. Each argument
can be a constant, a variable, or a time-varying signal; the xdlt argument in deltapi implies
that an audio-varying delay is permitted there. deltapn is identical to deltapi, except
delay time is specified in number of samples, instead of seconds (Hans Mikelson). deltap3
is experimental, and uses cubic interpolation. (New in Csound version 3.50.)

These units can provide multiple delay taps for arbitrary delay path and feedback
networks. They can deliver either constant-time or time-varying taps, and are useful for
building chorus effects, harmonizers, and Doppler shifts. Constant-time delay taps (and
some slowly changing ones) do not need interpolated readout; they are well served by
deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific
delayr unit, it not only has to be located between that delayr and the appropriate delayw
unit, but must also precede any following delayr units. See Example 2. (This feature added
in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-
shifts of audio samples; this will be found quite adequate for slowly changing tap times.
For medium to fast-paced changes, however, one should provide a higher resolution audio-
rate timeshift as input.

EXAMPLES
Example 1:

 asource buzzbuzzbuzzbuzz 1, 440, 20, 1
 atime linseglinseglinseglinseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
 ampfac ==== 1/atime/atime ; and calc an amp factor
 adump delayrdelayrdelayrdelayr 1 ; set maximum distance
 amove deltapideltapideltapideltapi atime ; move sound source past
 delaywdelaywdelaywdelayw asource ; the listener
 outoutoutout amove * ampfac

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-4

Example 2:

ainput1 =
ainput2 =
kdlyt1 =
kdlyt2 =

;Read delayed signal, first delayrdelayrdelayrdelayr instance:
adump delayrdelayrdelayrdelayr 4.0
adly1 deltapdeltapdeltapdeltap kdlyt1 ;associated with first delayrdelayrdelayrdelayr instance

;Read delayed signal, second delayr delayr delayr delayr instance:
adump delayrdelayrdelayrdelayr 4.0
adly2 deltapdeltapdeltapdeltap kdlyt2 ; associated with second delayrdelayrdelayrdelayr
instance

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayrdelayrdelayrdelayr instance:
delaywdelaywdelaywdelayw afdbk1

;Feed back signal, associated with second delayrdelayrdelayrdelayr instance:
delaywdelaywdelaywdelayw afdbk2
outsoutsoutsouts adly1, adly2

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-5

55.3 multitap

ar multitapmultitapmultitapmultitap asig, itime1, igain1, itime2, igain2 . . .

DESCRIPTION
Multitap delay line implementation.

INITIALIZATION
The arguments itime and igain set the position and gain of each tap.

The delay line is fed by asig.

EXAMPLE

 a1 osciloscilosciloscil 1000, 100, 1
 a2 multitapmultitapmultitapmultitap a1, 1.2, .5, 1.4, .2
 outoutoutout a2
This results in two delays, one with length of 1.2 and gain of .5, and one with length of 1.4
and gain of .2.

AUTHOR
Paris Smaragdis
MIT, Cambridge
1996

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Delay Page 55-6

55.4 vdelay, vdelay3

ar vdelayvdelayvdelayvdelay asig, adel, imaxdel [, iskip]
ar vdelay3vdelay3vdelay3vdelay3 asig, adel, imaxdel [, iskip]

DESCRIPTION
This is an interpolating variable time delay, it is not very different from the existing
implementation (deltapi), it is only easier to use. vdelay3 is experimental, and is the same
as vdelay, except that it uses cubic interpolation. (New in Version 3.50.)

INITIALIZATION
imaxdel – Maximum value of delay in milliseconds. If adel gains a value greater than
imaxdel it is folded around imaxdel. This should not happen.

iskip – Skip initialization if present and non-zero

PERFORMANCE
With this unit generator it is possible to do Doppler effects or chorusing and flanging.

asig – Input signal.

adel – Current value of delay in milliseconds. Note that linear functions have no pitch
change effects. Fast changing values of adel will cause discontinuities in the waveform
resulting noise.

EXAMPLE

 f1 0 8192 10 1
 ims = 100 ; Maximum delay time in msec
 a1 osciloscilosciloscil 10000, 1737, 1 ; Make a signal
 a2 osciloscilosciloscil ims/2, 1/p3, 1 ; Make an LFO
 a2 = a2 + ims/2 ; Offset the LFO so that it is positive
 a3 vdelayvdelayvdelayvdelay a1, a2, ims ; Use the LFO to control delay time
 outoutoutout a3

Two important points here. First, the delay time must be always positive. And second, even
though the delay time can be controlled in k-rate, it is not advised to do so, since sudden
time changes will create clicks.

AUTHOR
Paris Smaragdis
MIT, Cambridge
1995

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-1

56 SIGNAL MODIFIERS: REVERBERATION

56.1 comb, alpass, reverb

ar combcombcombcomb asig, krvt, ilpt[, iskip][, insmps]
ar alpassalpassalpassalpass asig, krvt, ilpt[, iskip][, insmps]
ar reverbreverbreverbreverb asig, krvt[, iskip]

DESCRIPTION
An input signal is reverberated for krvt seconds with “colored” (comb), flat (alpass), or
“natural room” (reverb) frequency response.

INITIALIZATION
ilpt – loop time in seconds, which determines the “echo density” of the reverberation. This
in turn characterizes the “color” of the comb filter whose frequency response curve will
contain ilpt * sr/2 peaks spaced evenly between 0 and sr/2 (the Nyquist frequency). Loop
time can be as large as available memory will permit. The space required for an n second
loop is 4n* sr bytes. comb and alpass delay space is allocated and returned as in delay.

iskip (optional) – initial disposition of delay-loop data space (cf. reson). The default value
is 0.

insmps (optional) – if non-zero, loop time is in samples instead of seconds. Default is zero.
New in Csound version 4.10.

PERFORMANCE
These filters reiterate input with an echo density determined by loop time ilpt. The
attenuation rate is independent and is determined by krvt, the reverberation time (defined
as the time in seconds for a signal to decay to 1/1000, or 60dB down from its original
amplitude). Output from a comb filter will appear only after ilpt seconds; alpass output
will begin to appear immediately.

A standard reverb unit is composed of four comb filters in parallel followed by two alpass
units in series. Loop times are set for optimal “natural room response.” Core storage
requirements for this unit are proportional only to the sampling rate, each unit requiring
approximately 3K words for every 10KC. The comb, alpass, delay, tone and other Csound
units provide the means for experimenting with alternate reverberator designs

Since output from the standard reverb will begin to appear only after 1/20 second or so of
delay, and often with less than three-fourths of the original power, it is normal to output
both the source and the reverberated signal. If krvt is inadvertently set to a non-positive
number, krvt will be reset automatically to 0.01. (New in Csound version 4.07.) Also, since
the reverberated sound will persist long after the cessation of source events, it is normal to
put reverb in a separate instrument to which sound is passed via a global variable, and to
leave that instrument running throughout the performance.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-2

EXAMPLE
ga1 initinitinitinit 0 ; init an audio receiver/mixer

instrinstrinstrinstr 1 ; instr (there may be many copies)
a1 oscilioscilioscilioscili 8000, cpspch(p5), 1 ; generate a source signal

outoutoutout a1 ; output the direct sound
ga1 ==== ga1 + a1 ; and add to audio receiver

endinendinendinendin
instrinstrinstrinstr 99 ; (highest instr number executed last)

a3 reverbreverbreverbreverb ga1, 1.5 ; reverberate whatever is in ga1
outoutoutout a3 ; and output the result

ga1 ==== 0 ; empty the receiver for the next pass
endinendinendinendin

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-3

56.2 reverb2, nreverb

ar reverb2reverb2reverb2reverb2 asig, ktime, khdif [,iskip]
ar nreverbnreverbnreverbnreverb asig, ktime, khdif [,iskip] [,inumCombs, ifnCombs]\\

[, inumAlpas, ifnAlpas]

DESCRIPTION
This is a reverberator consisting of 6 parallel comb-lowpass filters being fed into a series of
5 allpass filters. nreverb replaces reverb2 (version 3.48) and so both opcodes are
identical.

INITIALISATION
iskip – Skip initialization if present and non zero

inumCombs – number of filter constants in comb filter. If omitted, the values default to
the nreverb constants. New in Csound version 4.09.

ifnCombs – function table with inumCombs comb filter time values, followed the same
number of gain values. The ftable should not be rescaled (use negative fgen number).
Positive time values are in seconds. The time values are converted internally into number
of samples, then set to the next greater prime number. If teh time is negative, it is
interpreted directly as time in sample frames, and no processing is done (except negation).
New in Csound version 4.09.

inumAlpas, ifnAlpas – same as inumCombs and ifnCombs, for allpass filter. New in Csound
version 4.09.

PERFORMANCE
The output of nreverb (and reverb2) is zeroed on the first perfomance pass. The input
signal asig is reverberated for ktime seconds. The parameter khdif controls the high
frequency diffusion amount. The values of khdif should be from 0 to 1. If khdif is set to 0
the all the frequencies decay with the same speed. If khdif is 1, high frequencies decay
faster than lower ones. If ktime is inadvertently set to a non-positive number, ktime will
be reset automatically to 0.01. (New in Csound version 4.07.)

As of Csound version 4.09, nreverb may read any number of comb and allpass filter from
an ftable.

EXAMPLES
This results in a 2.5 sec reverb with faster high frequency attenuation:

 a1 osciloscilosciloscil 10000, 100, 1
 a2 reverb2reverb2reverb2reverb2 a1, 2.5, .3
 outoutoutout a1 + a2 * .2

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-4

This illustrates the use of an ftable for filter constants:

;Orchestra:
instrinstrinstrinstr 1

a1 soundinsoundinsoundinsoundin "neopren.wav"
 a2 nreverbnreverbnreverbnreverb a1, 1.5, .75, 0, 8, 71, 4, 72

outoutoutout a1 + a2 * .4
endinendinendinendin

;Score:
; freeverb time constants, as direct (negative) sample, with arbitrary gains
f71 0 16 -2 -1116 -1188 -1277 -1356 -1422 -1491 -1557 -1617 0.8 0.79 0.78 \\

0.77 0.76 0.75 0.74 0.73
f72 0 16 -2 -556 -441 -341 -225 0.7 0.72 0.74 0.76

i1 0 7
e

AUTHORS
Paris Smaragdis (reverb2)
MIT, Cambridge
1995

Richard Karpen (nreverb)
Seattle, Wash
1998

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-5

56.3 nestedap

ar nestedapnestedapnestedapnestedap asig, imode, imaxdel, idel1, igain1[, idel2, igain2\\
[, idel3, igain3]]

DESCRIPTION
Three different nested all-pass filters, useful for implementing reverbs.

INITIALIZATION
imode – operating mode of the filter:

1 = simple all-pass filter
2 = single nested all-pass filter
3 = double nested all-pass filter

idel1, idel2, idel3 – delay times of the filter stages. Delay times are in seconds and must
be greater than zero. idel1 must be greater than the sum of idel2 and idel3.

igain1, igain2, igain3 – gain of the filter stages.

imaxdel – will be necessary if k-rate delays are implemented. Not currently used.

PERFORMANCE
asig – input signal

If imode = 1, the filter takes the form:

If imode = 2, the filter takes the form:

id
el

idel2
,

id
el

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-6

If imode = 3, the filter takes the form:

EXAMPLE

instr 5
 insnd = p4
 gasig diskin insnd, 1

endin

instr 10
 imax = 1
 idel1 = p4
 igain1 = p5
 idel2 = p6
 igain2 = p7
 idel3 = p8
 igain3 = p9
 idel4 = p10
 igain4 = p11
 idel5 = p12
 igain5 = p13
 idel6 = p14
 igain6 = p15
 afdbk init 0

 aout1 nestedap gasig+afdbk*.4, 3, imax, idel1, igain1, idel2,\\ igain2,
idel3, igain3

 aout2 nestedap aout1, 2, imax, idel4, igain4, idel5, igain5

 aout nestedap aout2, 1, imax, idel6, igain6

 afdbk butterlp aout, 1000

outs gasig+(aout+aout1)/2, gasig-(aout+aout1)/2

gasig = 0

endin

;Score

f1 0 8192 10 1

; Diskin
; Sta Dur Soundin
i5 0 3 1

; Reverb
; St Dur Del1 Gn1 Del2 Gn2 Del3 Gn3 Del4 Gn4 Del5 Gn5 Del6 Gn6
i10 0 4 97 .11 23 .07 43 .09 72 .2 53 .2 119 .3
e

AUTHOR
Hans Mikelson
February 1999
New in Csound version 3.53

idel1,
igain1

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-7

56.4 babo

a1, a2 babobabobabobabo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz[, idiff\\
[, ifno]]

DESCRIPTION
babo stands for ball-within-the-box. It is a physical model reverberator based on a paper
by Davide Rocchesso "The Ball within the Box: a sound-processing metaphor", Computer
Music Journal, Vol 19, N.4, pp.45-47, Winter 1995.

The resonator geometry can be defined, along with some response characteristics, the
position of the listener within the resonator, and the position of the sound source.

INITIALIZATION
irx, iry, irz – the coordinates of the geometry of the resonator (length of the edges in
meters)

idiff – is the coefficient of diffusion at the walls, which regulates the amount of diffusion
(0-1, where 0 = no diffusion, 1 = maximum diffusion - default: 1)

ifno – expert values function: a function number that holds all the additional parameters of
the resonator. This is typically a GEN2--type function used in non-rescaling mode. They are
as follows:

• decay – main decay of the resonator (default: 0.99)
• hydecay – high frequency decay of the resonator (default: 0.1)
• rcvx, rcvy, rcvz – the coordinates of the position of the receiver (the listener) (in

meters; 0,0,0 is the resonator center)
• rdistance – the distance in meters between the two pickups (your ears, for

example - default: 0.3)
• direct – the attenuation of the direct signal (0-1, default: 0.5)
• early_diff – the attenuation coefficient of the early reflections (0-1, default: 0.8)

PERFORMANCE
asig – the input signal

ksrcx, ksrcy, ksrcz – the virtual coordinates of the source of sound (the input signal). These
are allowed to move at k-rate and provide all the necessary variations in terms of response
of the resonator.

EXAMPLES
Orchestra File - Simple usage

 ; minimal babo instrument
 ;
 instr 1
 ix =p5 ; x position of source
 iy =p6 ; y position of source
 iz =p7 ; z position of source
 ixsize =p8 ; width of the resonator
 iysize =p9 ; depth of the resonator
 izsize =p10 ; height of the resonator

 ainput soundin p4

 al,ar babo ainput*0.9, ix, iy, iz, ixsize, iysize, izsize

 outs al,ar

 endin

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-8

Score File - Simple Usage

 ; simple babo usage:
 ;
 ;p4 : soundin number
 ;p5 : x position of source
 ;p6 : y position of source
 ;p7 : z position of source
 ;p1 : width of the resonator
 ;p12 : depth of the resonator
 ;p13 : height of the resonator
 ;
 i1 0 10 1 6 4 3 14.39 11.86 10
 ; ^^^^^^^ ^^^^^^^^^^^^^^
 ; ||||||| ++++++++++++++: optimal room dims according to
 ; ||||||| Milner and Bernard JASA 85(2), 1989
 ; +++++++++: source position
 e

Orchestra File - Expert usage

 ; full blown babo instrument with movement
 ;
 instr 2
 ixstart=p5 ; start x position of source (left-right)
 ixend =p8 ; end x position of source
 iystart=p6 ; start y position of source (front-back)
 iyend =p9 ; end y position of source
 izstart=p7 ; start z position of source (up-down)
 izend =p10 ; end z position of source
 ixsize =p11 ; width of the resonator
 iysize =p12 ; depth of the resonator
 izsize =p13 ; height of the resonator
 idiff =p14 ; diffusion coefficient
 iexpert=p15 ; power user values stored in this function

 ainput soundin p4
 ksource_x line ixstart, p3, ixend
 ksource_y line iystart, p3, iyend
 ksource_z line izstart, p3, izend

 al,ar babo ainput*0.9, ksource_x, ksource_y, ksource_z,
ixsize, iysize, izsize, idiff, iexpert

 outs al,ar

 endin

Score File - Expert Usage

 ; full blown instrument
 ;p5 : start x position of source (left-right)
 ;p6 : end x position of source
 ;p7 : start y position of source (front-back)
 ;p8 : end y position of source
 ;p9 : start z position of source (up-down)
 ;p10 : end z position of source
 ;p11 : width of the resonator
 ;p12 : depth of the resonator
 ;p13 : height of the resonator
 ;p14 : diffusion coefficient
 ;p15 : power user values stored in this function

 ; decay hidecay rx ry rz rdistance direct early_diff
 f1 0 8 -2 0.95 0.95 0 0 0 0.3 0.5 0.8 ; brighter
 f2 0 8 -2 0.95 0.5 0 0 0 0.3 0.5 0.8 ; default (to be set
as)
 f3 0 8 -2 0.95 0.01 0 0 0 0.3 0.5 0.8 ; darker
 f4 0 8 -2 0.95 0.7 0 0 0 0.3 0.1 0.4 ; to hear the effect
of diffusion
 f5 0 8 -2 0.9 0.5 0 0 0 0.3 2.0 0.98 ; to hear the
movement
 f6 0 8 -2 0.99 0.1 0 0 0 0.3 0.5 0.8 ; default vals
 ; ^
 ; ----- gen. number: negative to avoid rescaling

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-9

 i2 10 10 1 6 4 3 6 4 3 14.39 11.86 10 1 6 ; defaults
 i2 + 4 2 6 4 3 6 4 3 14.39 11.86 10 1 1 ; hear brightness 1
 i2 + 4 2 6 4 3 -6 -4 3 14.39 11.86 10 1 2 ; hear brightness 2
 i2 + 4 2 6 4 3 -6 -4 3 14.39 11.86 10 1 3 ; hear brightness 3
 i2 + 3 2 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 0.0 4 ; hear diffusion 1
 i2 + 3 2 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 1.0 4 ; hear diffusion 2
 i2 + 4 2 12 4 3 -12 -4 -3 24.39 21.86 20 1 5 ; hear movement
 ;
 i2 + 4 1 6 4 3 6 4 3 14.39 11.86 10 1 1 ; hear brightness 1
 i2 + 4 1 6 4 3 -6 -4 3 14.39 11.86 10 1 2 ; hear brightness 2
 i2 + 4 1 6 4 3 -6 -4 3 14.39 11.86 10 1 3 ; hear brightness 3
 i2 + 3 1 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 0.0 4 ; hear diffusion 1
 i2 + 3 1 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 1.0 4 ; hear diffusion 2
 i2 + 4 1 12 4 3 -12 -4 -3 24.39 21.86 20 1 5 ; hear movement
 ; ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^ ^
 ; ||||||||||||||||||| ||||||||||||||||| |-: expert values function
 ; ||||||||||||||||||| ||||||||||||||||| +--: diffusion
 ; ||||||||||||||||||| optimal room dims according

 to Milner and Bernard JASA 85(2), 1989
 ; |||||||||||||||||||
 ; --------------------: source position start and end
 e

AUTHORS
Paolo Filippi
Padova, Italy
1999

Nicola Bernardini
Rome, Italy
2000

New in Csound version 4.09

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Reverberation Page 56-10

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Waveguides Page 57-1

57 SIGNAL MODIFIERS: WAVEGUIDES

57.1 wguide1, wguide2

ar wguide1wguide1wguide1wguide1 asig, xfreq, xcutoff, kfeedback;
ar wguide2wguide2wguide2wguide2 asig, xfreq1, xfreq2, kcutoff1, kcutoff2, kfeedback1,\

kfeedback2

DESCRIPTION
Simple waveguide blocks

PERFORMANCE
asig – the input of excitation noise

xfreq – the frequency (i.e. the inverse of delay time) Changed to x-rate in Csound version
3.59.

kcutoff1, kcutoff2 – the filter cutoff frequency in Hz

xcutoff – the filter cutoff frequency in Hz. Changed to x-rate for wguide1 in Csound
version 3.59.

kfeedback – the feedback factor

wguide1 is the most elemental waveguide model, consisting of one delayline and one first-
order lowpass filter.

wguide2 is a model of beaten plate consisting of two parallel delaylines and two first-order
lowpass filters. The two feedback lines are mixed and sent to the delay again each cycle.

Implementing waveguide algorithms as opcodes, instead of as orc instr, allows the user to
set kr different than sr, allowing better performance particularly when using real-time.

wguide1

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Waveguides Page 57-2

wguide2

AUTHOR
Gabriel Maldonado
Italy
October, 1998 (New in Csound version 3.49)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Waveguides Page 57-3

57.2 streson

ar stresonstresonstresonstreson asig, kfr, ifdbgain

An audio signal is modified by a string resonator with variable fundamental frequency.

INITIALIZATION
ifdbgain – feedback gain, between 0 and 1, of the internal delay line. A value close to 1 creates a

slower decay and a more pronounced resonance. Small values may leave the input signal
unaffected. Depending on the filter frequency, typical values are > .9.

PERFORMANCE
streson passes the input asig through a network composed of comb, low-pass and all-pass
filters, similar to the one used in some versions of the Karplus-Strong algorithm, creating a
string resonator effect. The fundamental frequency of the “string” is controlled by the k-
rate variable kfr. This opcode can be used to simulate sympathetic resonances to an input
signal.

streson is an adaptation of the StringFlt object of the SndObj Sound Object Library
developed by the author.

AUTHOR
Victor Lazzarini
Music Department
National University of Ireland, Maynooth
Maynooth, Co. Kildare
1998 (New in Csound version 3.494)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Waveguides Page 57-4

 T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-1

58 SIGNAL MODIFIERS: SPECIAL EFFECTS

58.1 harmon

ar harmonharmonharmonharmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode,\\
iminfrq, iprd

DESCRIPTION
Analyze an audio input and generate harmonizing voices in synchrony.

INITIALIZATION
imode – interpreting mode for the generating frequency inputs kgenfreq1, kgenfreq2. 0:
input values are ratios with respect to the audio signal analyzed frequencies. 1: input
values are the actual requested frequencies in Hz.

iminfrq – the lowest expected frequency (in Hz) of the audio input. This parameter
determines how much of the input is saved for the running analysis, and sets a lower bound
on the internal pitch tracker.

iprd – period of analysis (in seconds). Since the internal pitch analysis can be time-
consuming, the input is typically analyzed only each 20 to 50 milliseconds.

PERFORMANCE
This unit is a harmonizer, able to provide up to two additional voices with the same
amplitude and spectrum as the input. The input analysis is assisted by two things: an input
estimated frequency kestfrq (in Hz), and a fractional maximum variance kmaxvar about
that estimate which serves to limit the size of the search. Once the real input frequency is
determined, the most recent pulse shape is used to generate the other voices at their
requested frequencies.

The three frequency inputs can be derived in various ways from a score file or MIDI source.
The first is the expected pitch, with a variance parameter allowing for inflections or
inaccuracies; if the expected pitch is zero the harmonizer will be silent. The second and
third pitches control the output frequencies; if either is zero the harmonizer will output
only the non-zero request; if both are zero the harmonizer will be silent. When the
requested frequency is higher than the input, the process requires additional computation
due to overlapped output pulses. This is currently limited for efficiency reasons, with the
result that only one voice can be higher than the input at any one time.

This unit is useful for supplying a background chorus effect on demand, or for correcting
the pitch of a faulty input vocal. There is essentially no delay between input and output.
Output includes only the generated parts, and does not include the input.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-2

EXAMPLE

 asig1 inininin ; get the live input
 kcps1 cpsmidibcpsmidibcpsmidibcpsmidib ; and its target pitch
 asig2 harmonharmonharmonharmon asig1, kcps1, .3, kcps1, kcps1 * 1.25, 1, 110, .04 ; add maj 3rd
 outoutoutout asig2 ; output just the corrected and added voices

AUTHOR
Barry Vercoe
MIT, Cambridge, Mass
1997

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-3

58.2 f langer

ar flangerflangerflangerflanger asig, adel, kfeedback[, imaxd]

DESCRIPTION
A user controlled flanger.

INITIALIZATION
imaxd(optional) – maximum delay in seconds (needed for initial memory allocation)

PERFORMANCE
asig – input signal

adel – delay in seconds

kfeedback – feedback amount (in normal tasks this should not exceed 1, even if bigger
values are allowed)

This unit is useful for generating choruses and flangers. The delay must be varied at a-rate
connecting adel to an oscillator output. Also the feedback can vary at k-rate. This opcode
is implemented to allow kr different than sr (else delay could not be lower than ksmps)
enhancing real-time performance. This unit is very similar to wguide1, the only difference
is flanger does not have the lowpass filter.

flanger

AUTHOR
Gabriel Maldonado
Italy
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-4

58.3 distort1

ar distort1distort1distort1distort1 asig[, kpregain[, kpostgain[, kshape1[, kshape2]]]]

DESCRIPTION
Implementation of modified hyperbolic tangent distortion. distort1 can be used to
generate wave shaping distortion based on a modification of the tanh function.

 exp(asig * (pregain + shape1)) - exp(asig*(pregain+shape2))
aout = ---
 exp(asig*pregain) + exp(-asig*pregain)

PERFORMANCE
asig – is the input signal.

kpregain – determines the amount of gain applied to the signal before waveshaping. A
value of 1 gives slight distortion.

kpostgain – determines the amount of gain applied to the signal after waveshaping.

kshape1 – determines the shape of the positive part of the curve. A value of 0 gives a flat
clip, small positive values give sloped shaping.

kshape2 – determines the shape of the negative part of the curve.

All arguments except asig, were made optional in Csound version 3.52.

EXAMPLE

gadist initinitinitinit 0

 instrinstrinstrinstr 1
iamp = p4
ifqc = cpspch(p5)
asig pluckpluckpluckpluck iamp, ifqc, ifqc, 0, 1
gadist = gadist + asig
 endinendinendinendin

 instr instr instr instr 50
kpre initinitinitinit p4
kpost initinitinitinit p5
kshap1 initinitinitinit p6
kshap2 initinitinitinit p7
aout distort1distort1distort1distort1 gadist, kpre, kpost, kshap1, kshap2
 outs aout, aout
gadist = 0
 endinendinendinendin

; Sta Dur Amp Pitch
i1 0.0 3.0 10000 6.00
i1 0.5 2.5 10000 7.00
i1 1.0 2.0 10000 7.07
i1 1.5 1.5 10000 8.00

; Sta Dur PreGain PostGain Shape1 Shape2
i50 0 3 2 1 0 0
e

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-5

AUTHOR
Hans Mikelson
December 1998 (New in Csound version 3.50)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-6

58.4 phaser1, phaser2

ar phaser1phaser1phaser1phaser1 asig, kfreq, iord, kfeedback[, iskip]
ar phaser2phaser2phaser2phaser2 asig, kfreq, kq, iord, imode, ksep, kfeedback

DESCRIPTION
An implementation of iord number of first-order (phaser1) or second-order (phaser2)
allpass filters in series.

INITIALIZATION
iord – the number of allpass stages in series. For phaser1, these are first-order filters, and
iord can range from 1 to 4999. For phaser2, these are second-order filters, and iord can
range from 1 to 2499. With higher orders, the computation time increases.

iskip – used to control initial disposition of internal data space. Since filtering incorporates
a feedback loop of previous output, the initial status of the storage space used is
significant. A zero
value will clear the space; a non-zero value will allow previous information to remain. The
default value is 0.

imode – used in calculation of notch frequencies.

PERFORMANCE
kfreq – frequency (in Hz) of the filter(s). For phaser1, this is the frequency at which each
filter in the series shifts its input by 90 degrees. For phaser2, this is the center frequency
of the notch of the first allpass filter in the series. This frequency is used as the base
frequency from which the frequencies of the other notches are derived.

kq – Q of each notch. Higher Q values result in narrow notches. A Q between 0.5 and 1
results in the strongest “phasing” effect, but higher Q values can be used for special
effects.

kfeedback – amount of the output which is fed back into the input of the allpass chain.
With larger amounts of feedback, more prominent notches appear in the spectrum of the
output. kfeedback must be between -1 and +1. for stability.

ksep – scaling factor used, in conjunction with imode, to determine the frequencies of the
additional notches in the output spectrum.

phaser1 implements iord number of first-order allpass sections, serially connected, all
sharing the same coefficient. Each allpass section can be represented by the following
difference equation:

y(n) = C * x(n) + x(n-1) - C * y(n-1)

where x(n) is the input, x(n-1) is the previous input, y(n) is the output, y(n-1) is the
previous output, and C is a coefficient which is calculated from the value of kfreq, using
the bilinear z-transform.

By slowly varying kfreq, and mixing the output of the allpass chain with the input, the
classic “phase shifter” effect is created, with notches moving up and down in frequency.
This works best with iord between 4 and 16. When the input to the allpass chain is mixed
with the output, 1 notch is generated for every 2 allpass stages, so that with iord = 6, there
will be 3 notches in the output. With higher values for iord, modulating kfreq will result in
a form of nonlinear pitch modulation.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-7

phaser2 implements iord number of second-order allpass sections, connected in series. The
use of second-order allpass sections allows for the precise placement of the frequency,
width, and depth of notches in the frequency spectrum. iord is used to directly determine
the number of notches in the spectrum; e.g. for iord = 6, there will be 6 notches in the
output spectrum.

There are two possible modes for determining the notch frequencies. When imode = 1, the
notch frequencies are determined the following function:

frequency of notch N = kbf + (ksep * kbf * N-1)

For example, with imode = 1 and ksep = 1, the notches will be in harmonic relationship
with the notch frequency determined by kfreq (i.e. if there are 8 notches, with the first at
100 Hz, the next notches will be at 200, 300, 400, 500, 600, 700, and 800 Hz). This is useful
for generating a “comb filtering” effect, with the number of notches determined by iord.
Different values of ksep allow for inharmonic notch frequencies and other special effects.
ksep can be swept to create an expansion or contraction of the notch frequencies. A useful
visual analogy for the effect of sweeping ksep would be the bellows of an accordion as it is
being played – the notches will be seperated, then compressed together, as ksep changes.

When imode = 2, the subsequent notches are powers of the input parameter ksep times the
initial notch frequency specified by kfreq. This can be used to set the notch frequencies to
octaves and other musical intervals. For example, the following lines will generate 8
notches in the output spectrum, with the notches spaced at octaves of kfreq:

aphs phaser2phaser2phaser2phaser2 ain, kfreq, 0.5, 8, 2, 2, 0
aout = ain + aphs

When imode = 2, the value of ksep must be greater than 0. ksep can be swept to create a
compression and expansion of notch frequencies (with more dramatic effects than when
imode = 1).

EXAMPLES
; Orchestra for demonstration of phaser1phaser1phaser1phaser1 and phaser2phaser2phaser2phaser2
srsrsrsr = 44100
krkrkrkr = 4410
ksmpsksmpsksmpsksmps = 10
nchnlsnchnlsnchnlsnchnls = 1

instrinstrinstrinstr 1 ; demonstration of phase shifting
; ; ; ; abilities of phaser1.

; Input mixed with output of
; phaser1 to generate notches.
; Shows the effects of different
; iorder values on the sound

idur = p3
iamp = p4 * .05
iorder = p5 ; number of 1st-order stages in

; phaser1 network.
; Divide iorder by 2 to get the
; number of notches.

ifreq = p6 ; frequency of modulation of
; phaser1

ifeed = p7 ; amount of feedback for phaser1

kamp linseg linseg linseg linseg 0, .2, iamp, idur - .2, iamp, .2, 0

iharms = (sr*.4) / 100

asig gbuzz gbuzz gbuzz gbuzz 1, 100, iharms, 1, .95, 2 ; "Sawtooth" waveform

; modulation oscillator for phaser1 ugen.
kfreq oscili oscili oscili oscili 5500, ifreq, 1
kmod = kfreq + 5600

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-8

aphs phaser1 phaser1 phaser1 phaser1 asig, kmod, iorder, ifeed
out out out out (asig + aphs) * iamp

endinendinendinendin

instr instr instr instr 2 ; demonstration of phase shifting
; abilities of phaser2. Input
; mixed with output of phaser2 to
; generate notches. Demonstrates
; the interaction of imode and
; ksep.

idur = p3
iamp = p4 * .04
iorder = p5 ; number of 2nd-order stages in

; phaser2 network

ifreq = p6 ; not used
ifeed = p7 ; amount of feedback for phaser2
imode = p8 ; mode for frequency scaling
isep = p9 ; used with imode to determine

; notch frequencies

kamp linseg linseg linseg linseg 0, .2, iamp, idur - .2, iamp, .2, 0
iharms = (sr*.4) / 100

asig gbuzz gbuzz gbuzz gbuzz 1, 100, iharms, 1, .95, 2 ; "Sawtooth" waveform

; exponentially decaying function, to control notch frequencies
kline expseg expseg expseg expseg 1, idur, .005
aphs phaser2 asig, kline * 2000, .5, iorder, imode, isep, ifeed

out out out out (asig + aphs) * iamp
endinendinendinendin

; score file for above
f1 0 16384 9 .5 -1 0 ; inverted half-sine, used
; for modulating phaser1 frequency
f2 0 8192 9 1 1 .25 ; cosine wave for gbuzz

; phaser1
i1 0 5 7000 4 .2 .9
i1 6 5 7000 6 .2 .9
i1 12 5 7000 8 .2 .9
i1 18 5 7000 16 .2 .9
i1 24 5 7000 32 .2 .9
i1 30 5 7000 64 .2 .9

; phaser2, imode=1
i2 37 10 7000 8 .2 .9 1 .33
i2 48 10 7000 8 .2 .9 1 2

; phaser2, imode=2
i2 60 10 7000 8 .2 .9 2 .33
i2 72 10 7000 8 .2 .9 2 2
e

TECHNICAL HISTORY
A general description of the differences between flanging and phasing can be found in
Hartmann [1]. An early implementation of first-order allpass filters connected in series can
be found in Beigel [2], where the bilinear z-transform is used for determining the phase
shift frequency of each stage. Cronin [3] presents a similar implementation for a four-stage
phase shifting network. Chamberlin [4] and Smith [5] both discuss using second-order
allpass sections for greater control over notch depth, width, and frequency.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-9

REFERENCES
1. Hartmann, W.M. “Flanging and Phasers.” Journal of the Audio Engineering Society,

Vol. 26, No. 6, pp. 439-443, June 1978.

2. Beigel, Michael I. “A Digital ‘Phase Shifter’ for Musical Applications, Using the Bell Labs
(Alles-Fischer) Digital Filter Module.” Journal of the Audio Engineering Society, Vol.
27, No. 9, pp. 673-676,September 1979.

3. Cronin, Dennis. “Examining Audio DSP Algorithms.” Dr. Dobb’s Journal, July 1994, p.
78-83.

4. Chamberlin, Hal. Musical Applications of Microprocessors. Second edition. Indianapolis,
Indiana: Hayden Books, 1985.

5. Smith, Julius O. “An Allpass Approach to Digital Phasing and Flanging.” Proceedings of
the 1984 ICMC, p. 103-108.

AUTHOR
Sean Costello
Seattle, Washington
1999
New in Csound version 4.0

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Special Effects Page 58-10

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Convolution and Morphing Page 59-1

59 SIGNAL MODIFIERS: CONVOLUTION
AND MORPHING

59.1 convolve

ar1[,ar2] convolveconvolveconvolveconvolve ain, ifilcod, ichannel
[,ar3][,ar4]

DESCRIPTION
Output is the convolution of signal ain and the impulse response contained in ifilcod. If
more than one output signal is supplied, each will be convolved with the same impulse
response. Note that it is considerably more efficient to use one instance of the operator
when processing a mono input to create stereo, or quad, outputs. Note: this opcode can
also be written convle.

INITIALIZATION
ifilcod – integer or character-string denoting an impulse response data file. An integer
denotes the suffix of a file convolve.m; a character string (in double quotes) gives a
filename, optionally a full pathname. If not a fullpath, the file is sought first in the current
directory, then in the one given by the environment variable SADIR (if defined). The data
file contains the Fourier transform of an impulse response. Memory usage depends on the
size of the data file, which is read and held entirely in memory during computation, but
which is shared by multiple calls.

PERFORMANCE
convolve implements Fast Convolution. The output of this operator is delayed with respect
to the input. The following formulas should be used to calculate the delay:

For (1/kr) <= IRdur:
 Delay = ceil(IRdur * kr) / kr
For (1/kr) IRdur:
 Delay = IRdur * ceil(1/(kr*IRdur))
Where:
 kr = Csound control rate
 IRdur = duration, in seconds, of impulse response
 ceil(n) = smallest integer not smaller than n

One should be careful to also take into account the initial delay, if any, of the impulse
response. For example, if an impulse response is created from a recording, the soundfile
may not have the initial delay included. Thus, one should either ensure that the soundfile
has the correct amount of zero padding at the start, or, preferably, compensate for this
delay in the orchestra. (the latter method is more efficient). To compensate for the delay
in the orchestra, subtract the initial delay from the result calculated using the above
formula(s), when calculating the required delay to introduce into the ‘dry’ audio path.

For typical applications, such as reverb, the delay will be in the order of 0.5 to 1.5
seconds, or even longer. This renders the current implementation unsuitable for real time
applications. It could conceivably be used for real time filtering however, if the number of
taps is small enough.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Convolution and Morphing Page 59-2

The author intends to create a higher-level operator at some stage, that would mix the wet
& dry signals, using the correct amount of delay automatically.

EXAMPLE
Create frequency domain impulse response file:

c:\ Csound -Ucvanal l1_44.wav l1_44.cv

Determine duration of impulse response. For high accuracy, determine the number of
sample frames in the impulse response soundfile, and then compute the duration with:

duration = (sample frames)/(sample rate of soundfile)

This is due to the fact that the SNDINFO utility only reports the duration to the nearest
10ms. If you have a utility that reports the duration to the required accuracy, then you can
simply use the reported value directly.

 c:\ sndinfo l1_44.wav
 length = 60822 samples, sample rate = 44100

 Duration = 60822/44100 = 1.379s.

Determine initial delay, if any, of impulse response. If the impulse response has not had
the initial delay removed, then you can skip this step. If it has been removed, then the only
way you will know the initial delay is if the information has been provided separately. For
this example, let’s assume that the initial delay is 60ms. (0.06s)

Determine the required delay to apply to the dry signal, to align it with the convolved
signal:

 If kr = 441:
 1/kr = 0.0023, which is <= IRdur (1.379s), so:
 Delay1 = ceil(IRdur * kr) / kr
 = ceil(608.14) / 441
 = 609/441
 = 1.38s

 Accounting for the initial delay:
 Delay2 = 0.06s
 Total delay = delay1 - delay2
 = 1.38 - 0.06
 = 1.32s

Create .orc file, e.g.:

 ; Simple demonstration of CONVOLVE operator, to apply reverb.
 srsrsrsr = 44100
 krkrkrkr = 441
 ksmpsksmpsksmpsksmps = 100
 nchnlsnchnlsnchnlsnchnls = 2
 instrinstrinstrinstr 1
imix = 0.22 ; Wet/dry mix. Vary as desired.
 ; NB: ‘Small’ reverbs often require a much higher
 ; percentage of wet signal to sound interesting. ‘Large’
 ; reverbs seem require less. Experiment! The wet/dry mix is
 ; very important - a small change can make a large difference.
ivol = 0.9 ; Overall volume level of reverb. May need to adjust
 ; when wet/dry mix is changed, to avoid clipping.
idel = 1.32 ; Required delay to align dry audio with output of convolve.
 ; This can be automatically calculated within the orc file,
 ; if desired.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Convolution and Morphing Page 59-3

adry soundinsoundinsoundinsoundin “anechoic.wav” ; input (dry) audio
awet1,awet2 convolveconvolveconvolveconvolve adry,”l1_44.cv” ; stereo convolved (wet) audio
adrydel delaydelaydelaydelay (1-imix)*adry,idel ; Delay dry signal, to align it with
 ; convolved signal. Apply level
 ; adjustment here too.
 outsoutsoutsouts ivol*(adrydel+imix*awet1),ivol*(adrydel+imix*awet2)
 ; Mix wet & dry signals, and output
 endinendinendinendin

AUTHOR
Greg Sullivan
1996

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Convolution and Morphing Page 59-4

59.2 cross2
ar cross2cross2cross2cross2 ain1, ain2, isize, ioverlap, iwin, kbias

DESCRIPTION
This is an implementation of cross synthesis using FFT’s.

INITIALIZATION
isize – This is the size of the FFT to be performed. The larger the size the better the
frequency response but a sloppy time response.

ioverlap – This is the overlap factor of the FFT’s, must be a power of two. The best
settings are 2 and 4. A big overlap takes a long time to compile.
iwin – This is the ftable that contains the window to be used in the analysis.

PERFORMANCE

ain1 – The stimulus sound. Must have high frequencies for best results.

ain2 – The modulating sound. Must have a moving frequency response (like speech) for
best results.

kbias – The amount of cross synthesis. 1 is the normal, 0 is no cross synthesis.

EXAMPLES
 a1 osciloscilosciloscil 10000, 1, 1
 a2 randrandrandrand 10000
 a3 cross2cross2cross2cross2 a2, a1, 2048, 4, 2, 1
 outoutoutout a3

If ftable one is a speech sound, this will result in speaking white noise.
ftable 2 must be a window function (GEN20).

AUTHOR
Paris Smaragdis
MIT, Cambridge
1997

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-1

60 SIGNAL MODIFIERS: PANNING AND
SPATIALIZATION

60.1 pan

a1, a2, a3, a4 panpanpanpan asig, kx, ky, ifn[, imode[, ioffset]]

DESCRIPTION
Distribute an audio signal amongst four channels with localization control.

INITIALIZATION
ifn – function table number of a stored pattern describing the amplitude growth in a
speaker channel as sound moves towards it from an adjacent speaker. Requires extended
guard-point.

imode (optional) – mode of the kx, ky position values. 0 signifies raw index mode, 1 means
the inputs are normalized (0 – 1). The default value is 0.

ioffset (optional) – offset indicator for kx, ky. 0 infers the origin to be at channel 3 (left
rear); 1 requests an axis shift to the quadraphonic center. The default value is 0.

PERFORMANCE
pan takes an input signal asig and distributes it amongst four outputs (essentially quad
speakers) according to the controls kx and ky. For normalized input (mode=1) and no
offset, the four output locations are in order: left-front at (0,1), right-front at (1,1), left-
rear at the origin (0,0), and right-rear at (1,0). In the notation (kx, ky), the coordinates kx
and ky, each ranging 0 – 1, thus control the ‘rightness’ and ‘forwardness’ of a sound
location.

Movement between speakers is by amplitude variation, controlled by the stored function
table ifn. As kx goes from 0 to 1, the strength of the right-hand signals will grow from the
left-most table value to the right-most, while that of the left-hand signals will progress
from the right-most table value to the left-most. For a simple linear pan, the table might
contain the linear function 0 – 1. A more correct pan that maintains constant power would
be obtained by storing the first quadrant of a sinusoid. Since pan will scale and truncate kx
and ky in simple table lookup, a medium-large table (say 8193) should be used.

kx, ky values are not restricted to 0 – 1. A circular motion passing through all four speakers
(inscribed) would have a diameter of root 2, and might be defined by a circle of radius R =
root 1/2 with center at (.5,.5). kx, ky would then come from Rcos(angle), Rsin(angle), with
an implicit origin at (.5,.5) (i.e. ioffset = 1). Unscaled raw values operate similarly. Sounds
can thus be located anywhere in the polar or Cartesian plane; points lying outside the
speaker square are projected correctly onto the square’s perimeter as for a listener at the
center.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-2

EXAMPLE
 instr 1
 k1 phasorphasorphasorphasor 1/p3 ; fraction of circle
 k2 tableitableitableitablei k1, 1, 1 ; sin of angle (sinusoid in f1)
 k3 tableitableitableitablei k1, 1, 1, .25, 1 ; cos of angle (sin offset 1/4 circle)
 a1 oscilioscilioscilioscili 10000,440, 1 ; audio signal..
a1,a2,a3,a4 panpanpanpan a1, k2/2, k3/2, 2, 1, 1
 ; sent in a circle (f2=1st quad sin)
 outqoutqoutqoutq a1, a2, a3, a4
 endin

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-3

60.2 locsig, locsend
a1, a2 locsiglocsiglocsiglocsig asig, kdegree, kdistance, kreverbsend
a1, a2, a3, a4 locsiglocsiglocsiglocsig asig, kdegree, kdistance, kreverbsend
a1, a2 locsendlocsendlocsendlocsend
a1, a2, a3, a4 locsendlocsendlocsendlocsend

DESCRIPTION
locsig takes an input signal and distributes it among 2 or 4 channels using values in degrees
to calculate the balance between adjacent channels. It also takes arguments for distance
(used to attenuate signals that are to sound as if they are some distance further than the
loudspeaker itself), and for the amount the signal that will be sent to reverberators. This
unit is based upon the example in the Charles Dodge/Thomas Jerse book, Computer Music,
page 320.

locsend depends upon the existence of a previously defined locsig. The number of output
signals must match the number in the previous locsig. The output signals from locsend are
derived from the values given for distance and reverb in the locsig and are ready to be sent
to local or global reverb units (see example below). The reverb amount and the balance
between the 2 or 4 channels are calculated in the same way as described in the Dodge book
(an essential text!).

PERFORMANCE
kdegree – value between 0 and 360 for placement of the signal in a 2 or 4 channel space
configured as: a1=0, a2=90, a3=180, a4=270 (kdegree=45 would balanced the signal equally
between a1 and a2). locsig maps kdegree to sin and cos functions to derive the signal
balances (i.e.: asig=1, kdegree=45, a1=a2=.707).

kdistance – value >= 1 used to attenuate the signal and to calculate reverb level to
simulate distance cues. As kdistance gets larger the sound should get softer and somewhat
more reverberant (assuming the use of locsend in this case).

kreverbsend – the percentage of the direct signal that will be factored along with the
distance and degree values to derive signal amounts that can be sent to a reverb unit such
as reverb, or reverb2.

EXAMPLE

asig some audio signal
kdegree linelinelineline 0, p3, 360
kdistance linelinelineline 1, p3, 10
a1, a2, a3, a4 locsiglocsiglocsiglocsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsendlocsendlocsendlocsend
ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outqoutqoutqoutq a1, a2, a3, a4
endinendinendinendin

instrinstrinstrinstr 99 ; reverb instrument
a1 reverb2reverb2reverb2reverb2 ga1, 2.5, .5
a2 reverb2reverb2reverb2reverb2 ga2, 2.5, .5
a3 reverb2reverb2reverb2reverb2 ga3, 2.5, .5
a4 reverb2reverb2reverb2reverb2 ga4, 2.5, .5
outqoutqoutqoutq a1, a2, a3, a4

ga1 = 0
ga2 = 0
ga3 = 0
ga4 = 0

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-4

In the above example, the signal, asig, is sent around a complete circle once during the
duration of a note while at the same time it becomes more and more “distant” from the
listeners’ location. locsig sends the appropriate amount of the signal internally to locsend.
The outputs of the locsend are added to global accumulators in a common Csound style
and the global signals are used as inputs to the reverb units in a separate instrument.

locsig is useful for quad and stereo panning as well as fixed placed of sounds anywhere
between two loudspeakers. Below is an example of the fixed placement of sounds in a
stereo field.

instr 1
a1, a2 locsig asig, p4, p5, .1
ar1, ar2 locsend
ga1 = ga1+ar1
ga2 = ga2+ar2
outs a1, a2

endin

instr 99
; reverb....

endin

A few notes:

;place the sound in the left speaker and near
i1 0 1 0 1
;place the sound in the right speaker and far
i1 1 1 90 25
;place the sound equally between left and right and in the middle ground distance
i1 2 1 45 12
e

The next example shows a simple intuitive use of the distance value to simulate Doppler
shift. The same value is used to scale the frequency as is used as the distance input to
locsig.

kdistance linelinelineline 1, p3, 10
kfreq = (ifreq * 340) / (340 + kdistance)
asig oscilioscilioscilioscili iamp, kfreq, 1
kdegree linelinelineline 0, p3, 360
a1, a2, a3, a4 locsiglocsiglocsiglocsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsendlocsendlocsendlocsend

AUTHOR
Richard Karpen
Seattle, Wash
1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-5

60.3 space, spsend, spdist
a1, a2, a3, a4 spacespacespacespace asig, ifn, ktime, kreverbsend [,kx, ky]
a1, a2, a3, a4 spsendspsendspsendspsend
k1 spdistspdistspdistspdist ifn, ktime, [,kx, ky]

DESCRIPTION
space takes an input signal and distributes it among 4 channels using Cartesian xy
coordinates to calculate the balance of the outputs. The xy coordinates can be defined in a
separate text file and accessed through a Function statement in the score using GEN28, or
they can be specified using the optional kx, ky arguments. There advantages to the former
are:

• A graphic user interface can be used to draw and edit the trajectory through the
Cartesian plane

• The file format is in the form time1 X1 Y1 time2 X2 Y2 time3 X3 Y3 allowing the
user to define a time-tagged trajectory.

space then allows the user to specify a time pointer (much as is used for pvoc, lpread and
some other units) to have detailed control over the final speed of movement.

spsend depends upon the existence of a previously defined space. The output signals from
spsend are derived from the values given for XY and reverb in the space and are ready to
be sent to local or global reverb units (see example below).

spdist uses the same xy data as space, also either from a text file using GEN28 or from x
and y arguments given to the unit directly. The purpose of this unit is to make available the
values for distance that are calculated from the xy coordinates. In the case of space the xy
values are used to determine a distance which is used to attenuate the signal and prepare
it for use in spsend. But it is also useful to have these values for distance available to scale
the frequency of the signal before it is sent to the space unit.

PERFORMANCE
The configuration of the XY coordinates in space places the signal in the following way:

• a1 is -1, 1
• a2 is 1, 1
• a3 is -1, -1
• a4 is 1, -1.

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is
right back. Values greater than 1 will result in sounds being attenuated as if in the
distance. space considers the speakers to be at a distance of 1; smaller values of XY can be
used, but space will not amplify the signal in this case. It will, however balance the signal
so that it can sound as if it were within the 4 speaker space. x=0, y=1, will place the signal
equally balanced between left and right front channels, x=y=0 will place the signal equally
in all 4 channels, and so on. Although there must be 4 output signal from space, it can be
used in a 2 channel orchestra. If the XYs are kept so that Y>=1, it should work well to do
panning and fixed localization in a stereo field.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-6

ifn – number of the stored function created using GEN28. This function generator reads a
text file which contains sets of three values representing the xy coordinates and a time-tag
for when the signal should be placed at that location. The file should look like:

0 -1 1
1 1 1
2 4 4
2.1 -4 -4
3 10 -10
5 -40 0

If that file were named “move” then the GEN28 call in the score would like:

 f1 0 0 28 “move”

GEN28 takes 0 as the size and automatically allocates memory. It creates values to 10
milliseconds of resolution. So in this case there will be 500 values created by interpolating
X1 to X2 to X3 and so on, and Y1 to Y2 to Y3 and so on, over the appropriate number of
values that are stored in the function table. In the above example, the sound will begin in
the left front, over 1 second it will move to the right front, over another second it move
further into the distance but still in the left front, then in just 1/10th of a second it moves
to the left rear, a bit distant. Finally over the last .9 seconds the sound will move to the
right rear, moderately distant, and it comes to rest between the two left channels (due
west!), quite distant. Since the values in the table are accessed through the use of a time-
pointer in the space unit, the actual timing can be made to follow the file’s timing exactly
or it can be made to go faster or slower through the same trajectory. If you have access to
the GUI that allows one to draw and edit the files, there is no need to create the text files
manually. But as long as the file is ASCII and in the format shown above, it doesn’t matter
how it is made!

Important: If ifn is 0 then space will take its values for the xy coordinates from kx and ky.

ktime – index into the table containing the xy coordinates. If used like:

ktime linelinelineline 0, 5, 5
 a1, a2, a3, a4 spacespacespacespace asig, 1, ktime, ...

with the file “move” described above, the speed of the signal’s movement will be exactly
as described in that file. However:

 ktime linelinelineline 0, 10, 5

the signal will move at half the speed specified. Or in the case of:

ktime line 5, 15, 0

the signal will move in the reverse direction as specified and 3 times slower! Finally:

ktime linelinelineline 2, 10, 3

will cause the signal to move only from the place specified in line 3 of the text file to the
place specified in line 5 of the text file, and it will take 10 seconds to do it.

kreverbsend – the percentage of the direct signal that will be factored along with the
distance as derived from the XY coordinates to calculate signal amounts that can be sent to
reverb units such as reverb, or reverb2.

kx, ky – when ifn is 0, space and spdist will use these values as the XY coordinates to
localize the signal. They are optional and both default to 0.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-7

EXAMPLE

instr 1
asig some audio signal
ktime line 0, p3, p10
a1,a2,a3,a4 space asig,1, ktime, .1
ar1,ar2,ar3,ar4 spsend

ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outq a1, a2, a3, a4
endin

instr 99 ; reverb instrument

a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1 = 0
ga2 = 0
ga3 = 0
ga4 = 0

In the above example, the signal, asig, is moved according to the data in Function #1
indexed by ktime. space sends the appropriate amount of the signal internally to spsend.
The outputs of the spsend are added to global accumulators in a common Csound style and
the global signals are used as inputs to the reverb units in a separate instrument.

space can useful for quad and stereo panning as well as fixed placed of sounds anywhere
between two loudspeakers. Below is an example of the fixed placement of sounds in a
stereo field using XY values from the score instead of a function table.

instrinstrinstrinstr 1
...
a1,a2,a3,a4 spacespacespacespace asig, 0, 0, .1, p4, p5
ar1,ar2,ar3,ar4 spsendspsendspsendspsend

ga1 = ga1+ar1
ga2 = ga2+ar2

outs a1, a2
endinendinendinendin

instr 99 ; reverb....
....

endinendinendinendin

A few notes: p4 and p5 are the X and Y values

;place the sound in the left speaker and near
i1 0 1 -1 1
;place the sound in the right speaker and far
i1 1 1 45 45
;place the sound equally between left and right and in the middle ground distance
i1 2 1 0 12
e

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-8

The next example shows a simple intuitive use of the distance values returned by spdist to
simulate Doppler shift.

ktime linelinelineline 0, p3, 10
kdist spdisspdisspdisspdist 1, ktime
kfreq = (ifreq * 340) / (340 + kdist)
asig oscilioscilioscilioscili iamp, kfreq, 1

a1, a2, a3, a4 spacespacespacespace asig, 1, ktime, .1
ar1, ar2, ar3, ar4 spsendspsendspsendspsend

The same function and time values are used for both spdist and space. This insures that
the distance values used internally in the space unit will be the same as those returned by
spdist to give the impression of a Doppler shift!

AUTHOR
Richard Karpen
Seattle, Wash
1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-9

60.4 hrtfer

aLeft, aRight hrtferhrtferhrtferhrtfer asig, kAz, kElev, “HRTFcompact”

DESCRIPTION
Output is binaural (headphone) 3D audio.

INITIALIZATION
kAz – azimuth value in degrees. Positive values represent position on the right, negative
values are positions on the left.

kElev – elevation value in degrees. Positive values represent position above horizontal,
negative values are positions above horizontal.

At present, the only file which can be used with hrtfer is HRTFcompact. It must be passed
to the opcode as the last argument within quotes as shown above.

HRTFcompact my be obtained via anonymous ftp from:

ftp://ftp.maths.bath.ac.uk/pub/dream/utilities/Analysis/HRTFcompact

PERFORMANCE
These unit generators place a mono input signal in a virtual 3D space around the listener by
convolving the input with the appropriate HRTF data specified by the opcode’s azimuth and
elevation values. hrtfer allows these values to be k-values, allowing for dynamic
spatialization. hrtfer can only place the input at the requested position because the HRTF
is loaded in at i-time (remember that currently, Csound has a limit of 20 files it can hold in
memory, otherwise it causes a segmentation fault). The output will need to be scaled
either by using balance or by multiplying the output by some scaling constant.

Note – the sampling rate of the orchestra must be 44.1kHz. This is because 44.1kHz is the
sampling rate at which the HRTFs were measured. In order to be used at a different rate,
the HRTFs would need to be re-sampled at the desired rate.

EXAMPLE

kaz linseglinseglinseglinseg 0, p3, -360 ; move the sound in circle
kel linseglinseglinseglinseg -40, p3, 45 ; around the listener, changing
 ; elevation as its turning
asrc soundinsoundinsoundinsoundin “soundin.1”
aleft,aright hrtferhrtferhrtferhrtfer asrc, kaz, kel, “HRTFcompact”
aleftscale = aleft * 200
arightscale = aright * 200
 outsoutsoutsouts aleftscale, arightscale

AUTHORS
Eli Breder & David MacIntyre
Montreal
1996

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-10

60.5 vbapls init , vbap4, vbap8, vbap16,
vbap4move, vbap8move,
vbap16move, vbapz, vbapzmove

vbaplsinitvbaplsinitvbaplsinitvbaplsinit idim, ilsnum, idir1, idir2,...

ar1, ar2, ar3, ar4 vbap4vbap4vbap4vbap4 asig, iazim, ielev, ispread

ar1, ar2, ar3, ar4, vbap8vbap8vbap8vbap8 asig, iazim, ielev, ispread
ar5, ar6, ar7, ar8

ar1, ar2, ar3, ar4, vbap16vbap16vbap16vbap16 asig, iazim, ielev, ispread
ar5, ar6, ar7, ar8,
ar9, ar10, ar11, ar12,
ar13, ar14, ar15, ar16

ar1, ar2, ar3, ar4 vbap4movevbap4movevbap4movevbap4move asig, ispread, ifldnum, ifld1, ifld2,...

ar1, ar2, ar3, ar4, vbap8movevbap8movevbap8movevbap8move asig, ispread, ifldnum, ifld1, ifld2,...
ar5, ar6, ar7, ar8

ar1, ar2, ar3, ar4, vbap16movevbap16movevbap16movevbap16move asig, ispread, ifldnum, ifld1, ifld2,...
ar5, ar6, ar7, ar8,
ar9, ar10, ar11, ar12,
ar13, ar14, ar15, ar16

vbapzvbapzvbapzvbapz inumchnls, istartndx, asig, iazim,
ielev, ispread

vbapzmovevbapzmovevbapzmovevbapzmove inumchnls, istartndx, ispread, ifldnum,
ifld1, ifld2,...

DESCRIPTION
Distribute an audio signal among 2 to 16 output channels or write it to a ZAK array, all with
localization control.

INITIALIZATION
idim – dimensionality of loudspeaker array. Either 2 or 3.

ilsnum – number of loudspeakers. In two dimensions, the number can vary from 2 to 16. In
three dimensions, the number can vary from 3 and 16.

idir1, idir2, etc. – directions of loudspeakers. Number of directions must be less than or
equal to 16. In two-dimensional loudspeaker positioning, idirn is the azimuth angle
respective to nth channel. In three-dimensional loudspeaker positioning, fields are the
azimuth and elevation angles of each loudspeaker consequently (azi1, ele1, azi2, ele2,
etc.).

iazim – azimuth angle of the virtual source

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-11

ielev – elevation angle of the virtual source

ispread – spreading of the virtual source (range 0 – 100). If value is zero, conventional
amplitude panning is used. When ispread is increased, the number of loudspeakers used in
panning increases. If value is 100, the sound is applied to all loudspeakers.

ifldnum – number of fields (absolute value must be 2 or larger). If ifldnum is positive, the
virtual source movement is a polyline specified by given directions. Each transition is
performed in an equal time interval. If ifldnum is negative, specified angular velocities are
applied to the virtual source during specified relative time intervals (see below).

ifld1, ifld2, etc. – azimuth angles or angular velocities, and relative durations of
movement phases (see below).

inumchnls – number of channels to write to the ZA array. Must be in the range 2 – 256.

istartndx – first index or position in the ZA array to use

PERFORMANCE
asig – audio signal to be panned

vbap4, vbap8, and vbap16 take an input signal, asig, and distribute it among 2 to 16
outputs, according to the controls iazim and ielev, and the configured loudspeaker
placement. If idim = 2, ielev is set to zero. The distribution is performed using Vector Base
Amplitude Panning (VBAP – See reference). VBAP distributes the signal using loudspeaker
data configured with vbaplsinit. The signal is applied to, at most, two loudspeakers in 2-D
loudspeaker configurations, and three loudspeakers in 3-D loudspeaker configurations. If
the virtual source is panned outside the region spanned by loudspeakers, the nearest
loudspeakers are used in panning.

vbap4move, vbap8move, and vbap16move allow the use of moving virtual sources. If
ifldnum is positive, the fields represent directions of virtual sources and equal times, iazi1,
[iele1,] iazi2, [iele2,], etc. The position of the virtual source is interpolated between
directions starting from the first direction and ending at the last. Each interval is
interpolated in time that is fraction total_time / number_of_intervals of the duration of
the sound event.

If ifldnum is negative, the fields represent angular velocities and equal times. The first
field is, however, the starting direction, iazi1, [iele1,] iazi_vel1, [iele_vel1,] iazi_vel2,
[iele_vel2,] Each velocity is applied to the note that is fraction total_time /
number_of_velocities of the duration of the sound event. If the elevation of the virtual
source becomes greater than 90 degrees or less than 0 degrees, the polarity of angular
velocity is changed. Thus the elevational angular velocity produces a virtual source that
moves up and down between 0 and 90 degrees.

The opcodes vbapz and vbapzmove are the multiple channel analogs of the above
opcodes, working an inumchnls and using a ZAK array for output.

EXAMPLE
2-D panning example with stationary virtual sources:

srsrsrsr = 4100
krkrkrkr = 441
ksmpsksmpsksmpsksmps = 100
nchnlsnchnlsnchnlsnchnls = 4
vbaplsinitvbaplsinitvbaplsinitvbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instrinstrinstrinstr 1
asig osciloscilosciloscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8vbap8vbap8vbap8 asig, p4, 0, 20 ;p4 = azimuth

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Panning and Spatialization Page 60-12

;render twice with alternate outqoutqoutqoutq statements
; to obtain two 4 channel .wav files:

outqoutqoutqoutq a1,a2,a3,a4
; outqoutqoutqoutq a5,a6,a7,a8

endinendinendinendin

REFERENCE
Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning”
Journal of the Audio Engineering Society,
1997 June, Vol. 45/6, p. 456.

AUTHORS
Ville Pulkki
Sibelius Academy Computer Music Studio
Laboratory of Acoustics and Audio Signal Processing
Helsinki University of Technology
Helsinki, Finland
May, 2000 (New in Csound version 4.06)

John ffitch (vbapz, vbabzmove)
University of Bath/Codemist Ltd.
Bath, UK
May, 2000 (New in Csound version 4.06)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Sample Level Operators Page 61-1

61 SIGNAL MODIFIERS: SAMPLE LEVEL
OPERATORS

61.1 samphold, downsamp, upsamp,
interp, integ, diff

kr downsampdownsampdownsampdownsamp asig[, iwlen]
ar upsampupsampupsampupsamp ksig
ar interpinterpinterpinterp ksig[, iskip]
kr integinteginteginteg ksig[, iskip]
ar integinteginteginteg asig[, iskip]
kr diffdiffdiffdiff ksig[, iskip]
ar diffdiffdiffdiff asig[, iskip]
kr sampholdsampholdsampholdsamphold xsig, kgate[, ival, ivstor]
ar sampholdsampholdsampholdsamphold asig, xgate[, ival, ivstor]

DESCRIPTION
Modify a signal by up- or down-sampling, integration, and differentiation.

INITIALIZATION
iwlen (optional) – window length in samples over which the audio signal is averaged to
determine a downsampled value. Maximum length is ksmps; 0 and 1 imply no window
averaging. The default value is 0.

iskip (optional) – initial disposition of internal save space (see reson). The default value is
0.

ival, ivstor (optional) – controls initial disposition of internal save space. If ivstor is zero
the internal “hold” value is set to ival ; else it retains its previous value. Defaults are 0,0
(i.e. init to zero)

PERFORMANCE
downsamp converts an audio signal to a control signal by downsampling. It produces one
kval for each audio control period. The optional window invokes a simple averaging process
to suppress foldover.

upsamp, interp convert a control signal to an audio signal. The first does it by simple
repetition of the kval, the second by linear interpolation between successive kvals. upsamp
is a slightly more efficient form of the assignment, `asig = ksig’.

integ, diff perform integration and differentiation on an input control signal or audio
signal. Each is the converse of the other, and applying both will reconstruct the original
signal. Since these units are special cases of low-pass and high-pass filters, they produce a
scaled (and phase shifted) output that is frequency-dependent. Thus diff of a sine produces
a cosine, with amplitude 2 * sin(pi * Hz / sr) that of the original (for each component
partial); integ will inversely affect the magnitudes of its component inputs. With this
understanding, these units can provide useful signal modification.

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Sample Level Operators Page 61-2

samphold performs a sample-and-hold operation on its input according to the value of
gate. If gate 0, the input samples are passed to the output; If gate = 0, the last output
value is repeated. The controlling gate can be a constant, a control signal, or an audio
signal.

EXAMPLE

 asrc buzzbuzzbuzzbuzz 10000,440,20, 1 ; band-limited pulse train
 adif diffdiffdiffdiff asrc ; emphasize the highs
 anew balancebalancebalancebalance adif, asrc ; but retain the power
 agate resonresonresonreson asrc,0,440 ; use a lowpass of the original
 asamp sampholdsampholdsampholdsamphold anew, agate ; to gate the new audiosig
 aout tonetonetonetone asamp,100 ; smooth out the rough edges

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Sample Level Operators Page 61-3

61.2 ntrpol

ir ntrpolntrpolntrpolntrpol isig1, isig2, ipoint [, imin, imax]
kr ntrpolntrpolntrpolntrpol ksig1, ksig2, kpoint [, imin, imax]
ar ntrpolntrpolntrpolntrpol asig1, asig2, kpoint [, imin, imax]

DESCRIPTION
Calculates the weighted mean value (i.e. linear interpolation) of two input signals

INITIALIZATION
imin – minimum xpoint value (optional, default 0)

imax – maximum xpoint value (optional, default 1)

PERFORMANCE
xsig1, xsig2 – input signals

xpoint – interpolation point between the two values

ntrpol opcode outputs the linear interpolation between two input values. xpoint is the
distance of evaluation point from the first value. With the default values of imin and imax,
(0 and 1) a zero value indicates no distance from the first value and the maximum distance
from the second one. With a 0.5 value, ntrpol will output the mean value of the two
inputs, indicating the exact half point between xsig1 and xsig2. A 1 value indicates the
maximum distance from the first value and no distance from the second one. The range of
xpoint can be also defined with imin and imax to make its management easier.

These opcodes are useful for crossfading two signals.

AUTHOR
Gabriel Maldonado
Italy
October, 1998 (New in Csound version 3.49)

The Public Csound Reference Manual Version 4.10 Signal Modifiers: Sample Level Operators Page 61-4

61.3 fold
ar foldfoldfoldfold asig, kincr

DESCRIPTION
Adds artificial foldover to an audio signal.

PERFORMANCE
asig – input signal

kincr – amount of foldover expressed in multiple of sampling rate. Must be >= 1

fold is an opcode which creates artificial foldover. For example, when kincr is equal to 1
with sr=44100, no foldover is added. When kincr is set to 2, the foldover is equivalent to a
downsampling to 22050, when it is set to 4, to 11025 etc. Fractional values of kincr are
possible, allowing a continuous variation of foldover amount. This can be used for a wide
range of special effects.

EXAMPLE

instr 1
 kfreq line 1,p3,200
 a1 oscili 10000, 100, 1
 k1 init 8.5
 a1 fold a1, kfreq
 out a1

endin

AUTHOR
Gabriel Maldonado
Italy
1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-1

62 ZAK PATCH SYSTEM
The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak
system can be thought of as a global array of variables. These opcodes are useful for
performing flexible patching or routing from one instrument to another. The system is
similar to a patching matrix on a mixing console or to a modulation matrix on a synthesizer.
It is also useful whenever an array of variables is required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the
other global initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of
memory, one area for i- and k-rate patching, and the other area for a-rate patching. The
zakinit opcode may only be called once. Once the zak space is initialized, other zak
opcodes can be used to read from, and write to the zak memory space, as well as perform
various other tasks.

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-2

62.1 zakinit

zakinitzakinitzakinitzakinit isizea, isizek

DESCRIPTION
Establishes zak space. Must be called only once.

INITIALIZATION
isizea – the number of audio rate locations for a-rate patching. Each location is actually an
array which is ksmps long.

isizek – the number of locations to reserve for floats in the zk space. These can be written
and read at i- and k-rates.

PERFORMANCE
At least one location each is always allocated for both za and zk spaces. There can be
thousands or tens of thousands za and zk ranges, but most pieces probably only need a few
dozen for patching signals. These patching locations are referred to by number in the other
zak opcodes.

To run zakinit only once, put it outside any instrument definition, in the orchestra file
header, after sr, kr, ksmps, and nchnls.

EXAMPLE
zakinitzakinitzakinitzakinit 10 30

reserves memory for locations 0 to 30 of zk space and for locations 0 to 10 of a-rate za
space. With ksmps = 8, this would take 31 floats for zk and 80 floats for za space.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-3

62.2 ziw, zkw, zaw, z iwm, zkwm, zawm

ziwziwziwziw isig, indx
zkwzkwzkwzkw ksig, kndx
zawzawzawzaw asig, kndx
ziwmziwmziwmziwm isig, indx [, imix]
zkwmzkwmzkwmzkwm ksig, kndx [, imix]
zawmzawmzawmzawm asig, kndx [, imix]

DESCRIPTION

Write to a location in zk space at either i-rate or k-rate, or a location in za space at a-rate.
Writing can be with, or without, mixing.

INITIALIZATION

indx – points to the zk location to which to write.

isig – initializes the value of the zk location.

PERFORMANCE

kndx – points to the zk or za location to which to write.

ksig – value to be written to the zk location.

asig – value to be written to the za location.

ziw writes isig into the zk variable specified by indx.

zkw writes ksig into the zk variable specified by kndx.

zaw writes asig into the za variable specified by kndx.

These opcodes are fast, and always check that the index is within the range of zk or za
space. If not, an error is reported, 0 is returned, and no writing takes place.

ziwm, zkwm, and zawm are mixing opcodes, i.e. they add the signal to the current value
of the variable. If no imix is specified, mixing always occurs, but if imix is specified, imix =
0 will cause overwriting, like ziw, zkw, and zaw, and any other value will cause mixing.

Caution: When using the mixing opcodes ziwm, zkwm, and zawm, care must be taken that
the variables mixed to, are zeroed at the end (or start) of each k or a cycle. Continuing to
add signals to them, can cause their values can drift to astronomical figures.

One approach would be to establish certain ranges of zk or za variables to be used for
mixing, then use zkcl or zacl to clear those ranges.

EXAMPLES

instrinstrinstrinstr 1
zkwzkwzkwzkw kzoom, p8 ; p8 in the score line determines w w w where

; in zk space kzoom iswritten
endinendinendinendin

instrinstrinstrinstr 2
zkw zkw zkw zkw kzoom, 7 ; always writes kzoom to zk location 7

endinendinendinendin

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-4

instrinstrinstrinstr 3
kxxx phasorphasorphasorphasor 1
kdest ==== 40+kxxx*16 ; This will write azoom to

; locations 40 to 55
 zawzawzawzaw azoom,kdest ; on a one second scan cycle

endinendinendinendin

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-5

62.3 zir , zkr, zar, zarg

ir zirzirzirzir indx
kr zkrzkrzkrzkr kndx
ar zarzarzarzar kndx
ar zargzargzargzarg kndx, kgain

DESCRIPTION

Read from a location in zk space at i-rate or k-rate, or a location in za space at a-rate.

INITIALIZATION
kndx – points to the zk or za location to be read.

kgain – multiplier for the a-rate signal.

PERFORMANCE
zir reads the signal at indx location in zk space.

zkr reads the array of floats at kndx in zk space.

zar reads the array of floats at kndx in za space, which are ksmps number of a-rate floats
to be processed in a k cycle.

zarg is similar to zar, but multiplies the a-rate signal by a k-rate value kgain.

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Zak Patch System Page 62-6

62.4 zkmod, zamod, zkcl , zacl

kr zkmodzkmodzkmodzkmod ksig, kzkmod
ar zamodzamodzamodzamod asig, kzamod

zkclzkclzkclzkcl kfirst, klast
zaclzaclzaclzacl kfirst, klast

DESCRIPTION
Clear and modulate the za and zk spaces.

PERFORMANCE
ksig – the input signal

kzkmod – controls which zk variable is used for modulation. A positive value means additive
modulation, a negative value means multiplicative modulation. A value of 0 means no
change to ksig. kzkmod can be i-rate or k-rate

kfirst – first zk or za location in the range to clear.

klast – last zk or za location in the range to clear.

zkmod facilitates the modulation of one signal by another, where the modulating signal
comes from a zk variable. Either additive or multiplicative modulation can be specified.

zamod modulates one a-rate signal by a second one, which comes from a za variable. The
location of the modulating variable is controlled by the i-rate or k-rate variable kzamod.
This is the a-rate version of zkmod

zkcl clears one or more variables in the zk space. This is useful for those variables which
are used as accumulators for mixing k-rate signals at each cycle, but which must be cleared
before the next set of calculations.

zacl clears one or more variables in the za space. This is useful for those variables which
are used as accumulators for mixing a-rate signals at each cycle, but which must be cleared
before the next set of calculations.

EXAMPLES

k1 zkmodzkmodzkmodzkmod ksig, 23 ; adds value at location 23 to ksig

a1 zamodzamodzamodzamod asig, -402 ; multiplies asig by value at location 402

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-1

63 OPERATIONS USING SPECTRAL DATA
TYPES
These units generate and process non-standard signal data types, such as down-sampled
time-domain control signals and audio signals, and their frequency-domain (spectral)
representations. The new data types (d-, w-) are self-defining, and the contents are not
processable by any other Csound units. These unit generators are experimental, and
subject to change between releases; they will also be joined by others later.

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-2

63.1 specaddm, specdiff , specscal ,
spechist, specfi lt

wsig specaddmspecaddmspecaddmspecaddm wsig1, wsig2[, imul2]
wsig specdiffspecdiffspecdiffspecdiff wsigin
wsig specscalspecscalspecscalspecscal wsigin, ifscale, ifthresh
wsig spechistspechistspechistspechist wsigin
wsig specfiltspecfiltspecfiltspecfilt wsigin, ifhtim

INITIALIZATION
imul2 (optional) – if non-zero, scale the wsig2 magnitudes before adding. The default value
is 0.

PERFORMANCE
specaddm – do a weighted add of two input spectra. For each channel of the two input
spectra, the two magnitudes are combined and written to the output according to: magout
= mag1in + mag2in * imul2. The operation is performed whenever the input wsig1 is sensed
to be new. This unit will (at Initialization) verify the consistency of the two spectra (equal
size, equal period, equal mag types).

specdiff – find the positive difference values between consecutive spectral frames. At each
new frame of wsigin, each magnitude value is compared with its predecessor, and the
positive changes written to the output spectrum. This unit is useful as an energy onset
detector.

specscal – scale an input spectral datablock with spectral envelopes. Function tables
ifthresh and ifscale are initially sampled across the (logarithmic) frequency space of the
input spectrum; then each time a new input spectrum is sensed the sampled values are
used to scale each of its magnitude channels as follows: if ifthresh is non-zero, each
magnitude is reduced by its corresponding table-value (to not less than zero); then each
magnitude is rescaled by the corresponding ifscale value, and the resulting spectrum
written to wsig.

spechist – accumulate the values of successive spectral frames. At each new frame of
wsigin, the accumulations-to-date in each magnitude track are written to the output
spectrum. This unit thus provides a running histogram of spectral distribution.

specfilt – filter each channel of an input spectrum. At each new frame of wsigin, each
magnitude value is injected into a 1st-order lowpass recursive filter, whose half-time
constant has been initially set by sampling the ftable ifhtim across the (logarithmic)
frequency space of the input spectrum. This unit effectively applies a persistence factor to
the data occurring in each spectral channel, and is useful for simulating the energy
integration that occurs during auditory perception. It may also be used as a time-
attenuated running histogram of the spectral distribution.

EXAMPLE

 wsig2 specdiffspecdiffspecdiffspecdiff wsig1 ; sense onsets
 wsig3 specfilspecfilspecfilspecfilt wsig2, 2 ; absorb slowly
 specdisp wsig2wsig2wsig2wsig2, .1 ; & display both spectra
 specdisp wsig3wsig3wsig3wsig3, .1

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-3

63.2 specptrk

koct, specptrkspecptrkspecptrkspecptrk wsig, kvar, ilo, ihi, istr, idbthresh, inptls,//
kamp irolloff[, iodd, iconfs, interp, ifprd, iwtflg]

DESCRIPTION
Estimate the pitch of the most prominent complex tone in the spectrum.

INITIALIZATION
ilo, ihi, istr – pitch range conditioners (low, high, and starting) expressed in decimal
octave form.

idbthresh – energy threshold (in decibels) for pitch tracking to occur. Once begun,
tracking will be continuous until the energy falls below one half the threshold (6 dB down),
whence the koct and kamp outputs will be zero until the full threshold is again surpassed.
idbthresh is a guiding value. At initialization it is first converted to the idbout mode of the
source spectrum (and the 6 dB down point becomes .5, .25, or 1/root 2 for modes 0, 2 and
3). The values are also further scaled to allow for the weighted partial summation used
during correlation.The actual thresholding is done using the internal weighted and summed
kamp value that is visible as the second output parameter.

inptls, irolloff – number of harmonic partials used as a matching template in the
spectrally-based pitch detection, and an amplitude rolloff for the set expressed as some
fraction per octave (linear, so don’t roll off to negative). Since the partials and rolloff
fraction can affect the pitch following, some experimentation will be useful: try 4 or 5
partials with .6 rolloff as an initial setting; raise to 10 or 12 partials with rolloff .75 for
complex timbres like the bassoon (weak fundamental). Computation time is dependent on
the number of partials sought. The maximum number is 16.

iodd (optional) – if non-zero, employ only odd partials in the above set (e.g. inptls of 4
would employ partials 1,3,5,7). This improves the tracking of some instruments like the
clarinet The default value is 0 (employ all partials).

iconfs (optional) – number of confirmations required for the pitch tracker to jump an
octave, pro-rated for fractions of an octave (i.e. the value 12 implies a semitone change
needs 1 confirmation (two hits) at the spectrum generating iprd). This parameter limits
spurious pitch analyses such as octave errors. A value of 0 means no confirmations
required; the default value is 10.

interp (optional) – if non-zero, interpolate each output signal (koct, kamp) between
incoming wsig frames. The default value is 0 (repeat the signal values between frames).

ifprd (optional) – if non-zero, display the internally computed spectrum of candidate
fundamentals. The default value is 0 (no display).

iwtftg (optional) – wait flag. If non-zero, hold each display until released by the user. The
default value is 0 (no wait).

PERFORMANCE
At note initialization this unit creates a template of inptls harmonically related partials
(odd partials, if iodd non-zero) with amplitude rolloff to the fraction irolloff per octave. At
each new frame of wsig, the spectrum is cross-correlated with this template to provide an
internal spectrum of candidate fundamentals (optionally displayed). A likely pitch/amp
pair (koct, kamp, in decimal octave and summed idbout form) is then estimated. koct
varies from the previous koct by no more than plus or minus kvar decimal octave units. It is
also guaranteed to lie within the hard limit range ilo – ihi (decimal octave low and high

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-4

pitch). kvar can be dynamic, e.g. onset amp dependent. Pitch resolution uses the
originating spectrum ifrqs bins/octave, with further parabolic interpolation between
adjacent bins. Settings of root magnitude, ifrqs = 24, iq = 15 should capture all the
inflections of interest. Between frames, the output is either repeated or interpolated at
the k-rate. (See spectrum.)

EXAMPLE

a1,a2 insinsinsins ; read a stereo clarinet input
 krms rms rms rms rms a1, 20 ; find a monaural rms value
 kvar = 0.6 + krms/8000 ; & use to gate the pitch variance
 wsig spectrumspectrumspectrumspectrum a1, .01, 7, 24, 15, 0, 3 ; get a 7-oct spectrum, 24 bibs/oct
 specdispspecdispspecdispspecdisp wsig, .2 ; display this and now estimate
 koct,ka spectrkspectrkspectrkspectrk wsig, kvar, 7.0, 10, 9, 20, 4, .7, 1, 5, 1, .2 ; the

 ; pch and amp
 aosc osciloscilosciloscil ka*ka*10, cpsoct(koct),2 ; & generate \ new tone with these
 koct = (koct<7.0?7.0:koct) ; replace non pitch with low C
 displaydisplaydisplaydisplay koct-7.0, .25, 20 ; & display the pitch track
 displaydisplaydisplaydisplay ka, .25, 20 ; plus the summed root mag
 outsoutsoutsouts a1, aosc ; output 1 original and 1 new

 ; track

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-5

63.3 specsum, specdisp

ksum specsumspecsumspecsumspecsum wsig[, interp]
specdispspecdispspecdispspecdisp wsig, iprd[, iwtflg]

INITIALIZATION
interp (optional) – if non-zero, interpolate the output signal (koct or ksum). The default
value is 0 (repeat the signal value between changes).

iwtflg (optional) – wait flag. If non-zero, hold each display until released by the user. The
default value is 0 (no wait).

PERFORMANCE
specsum – sum the magnitudes across all channels of the spectrum. At each new frame of
wsig, the magnitudes are summed and released as a scalar ksum signal. Between frames,
the output is either repeated or interpolated at the k-rate. This unit produces a k-signal
summation of the magnitudes present in the spectral data, and is thereby a running
measure of its moment-to-moment overall strength.

specdisp – display the magnitude values of spectrum wsig every iprd seconds (rounded to
some integral number of wsig’s originating iprd).

EXAMPLE

 ksum specsumspecsumspecsumspecsum wsig, 1 ; sum the spec bins, and ksmooth
 if ksum < 2000 kgoto zero ; if sufficient amplitude
 koct specptrkspecptrkspecptrkspecptrk wsig ; pitch-track the signal
 kgoto contin
zero: koct = 0 ; else output zero
contin:
.

The Public Csound Reference Manual Version 4.10 Operations Using Spectral Data Types Page 63-6

63.4 spectrum

wsig spectrumspectrumspectrumspectrum xsig, iprd, iocts, ifrqs, iq[,ihann, idbout, idsprd,
idsinrs]

DESCRIPTION
Generate a constant-Q, exponentially-spaced DFT across all octaves of a multiply-
downsampled control or audio input signal.

INITIALIZATION
ihann (optional) – apply a Hamming or Hanning window to the input. The default is 0
(Hamming window)

idbout (optional) – coded conversion of the DFT output: 0 = magnitude, 1 = dB, 2 = mag
squared, 3 = root magnitude. The default value is 0 (magnitude).

idisprd (optional) – if non-zero, display the composite downsampling buffer every idisprd
seconds. The default value is 0 (no display).

idsines (optional) – if non-zero, display the Hamming or Hanning windowed sinusoids used
in DFT filtering. The default value is 0 (no sinusoid display).

PERFORMANCE
This unit first puts signal asig or ksig through iocts of successive octave decimation and
downsampling, and preserves a buffer of down-sampled values in each octave (optionally
displayed as a composite buffer every idisprd seconds). Then at every iprd seconds, the
preserved samples are passed through a filter bank (ifrqs parallel filters per octave,
exponentially spaced, with frequency/bandwidth Q of iq), and the output magnitudes
optionally converted (idbout) to produce a band-limited spectrum that can be read by
other units.

The stages in this process are computationally intensive, and computation time varies
directly with iocts, ifrqs, iq, and inversely with iprd. Settings of ifrqs = 12, iq = 10, idbout
= 3, and iprd = .02 will normally be adequate, but experimentation is encouraged. ifrqs
currently has a maximum of 120 divisions per octave. For audio input, the frequency bins
are tuned to coincide with A440.

This unit produces a self-defining spectral datablock wsig, whose characteristics used (iprd,
iocts, ifrqs, idbout) are passed via the data block itself to all derivative wsigs. There can
be any number of spectrum units in an instrument or orchestra, but all wsig names must be
unique.

EXAMPLE

asig in ; get external audio
wsig spectrumspectrumspectrumspectrum asig,.02,6,12,33,0,1,1 ; downsample in 6 octs & calc
a 72 pt dft (Q 33, dB out) every 20 msecs

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Input Page 64-1

64 SIGNAL INPUT AND OUTPUT: INPUT

64.1 in, ins, inq, inh, ino, soundin, diskin

ar1 inininin
ar1, ar2 insinsinsins
ar1, ar2, inqinqinqinq
ar3, ar4
ar1, ar2, inhinhinhinh
ar3, ar4,
ar5, ar6
ar1, ar2, inoinoinoino
ar3, ar4,
ar5, ar6,
ar7, ar8
ar1 soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]
ar1, ar2 soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]
ar1, ar2, soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]
ar3, ar4
ar1[,ar2 diskindiskindiskindiskin ifilcod, kpitch[, iskiptim [,iwraparound[, iformat]]]
[,a3,ar4]]

DESCRIPTION
These units read audio data from an external device or stream.

INITIALIZATION
ifilcod – integer or character-string denoting the source soundfile name. An integer
denotes the file soundin.filcod ; a character-string (in double quotes, spaces permitted)
gives the filename itself, optionally a full pathname. If not a full path, the named file is
sought first in the current directory, then in that given by the environment variable SSDIR
(if defined) then by SFDIR. See also GEN01.

iskptim (optional) – time in seconds of input sound to be skipped. The default value is 0.

iformat (optional) – specifies the audio data file format:
• 1 = 8-bit signed char (high-order 8 bits of a 16-bit integer),
• 2 = 8-bit A-law bytes,
• 3 = 8-bit U-law bytes,
• 4 = 16-bit short integers,
• 5 = 32-bit long integers,
• 6 = 32-bit floats.

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -o
command flag. The default value is 0.

iwraparound – 1=on, 0=off (wraps around to end of file either direction) kpitch – can be
any real number. a negative number signifies backwards playback. The given number is a
pitch ratio, where:

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Input Page 64-2

• 1 = norm pitch,
• 2 = oct higher,
• 3 = 12th higher, etc;
• .5 = oct lower,
• .25 = 2oct lower, etc;
• -1 = norm pitch backwards,
• -2 = oct higher backwards, etc..

PERFORMANCE
in, ins, inq, inh, ino – copy the current values from the standard audio input buffer. If the
command-line flag -i is set, sound is read continuously from the audio input stream (e.g.
stain or a soundfile) into an internal buffer. Any number of these units can read freely from
this buffer.

soundin is functionally an audio generator that derives its signal from a pre-existing file.
The number of channels read in is controlled by the number of result cells, a1, a2, etc.,
which must match that of the input file. A soundin unit opens this file whenever the host
instrument is initialized, then closes it again each time the instrument is turned off. There
can be any number of soundin units within a single instrument or orchestra; also, two or
more of them can read simultaneously from the same external file.

diskin is identical to soundin, except that it can alter the pitch of the sound that is being
read.

AUTHORS
Barry Vercoe, Matt Ingols/Mike Berry
MIT, Mills College
1993-1997

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Input Page 64-3

64.2 inx, in32, inch, inz

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, inxinxinxinx
ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, in32in32in32in32
ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16,
ar17, ar18, ar19, ar20, ar21, ar22, ar23, ar24,
ar25, ar26, ar27, ar28, ar29, ar30, ar31, ar32

ar1 inchinchinchinch ksig1

inzinzinzinz ksig1

DESCRIPTION
These units read multi-channel audio data from an external device or stream.

PERFORMANCE
inx and in32 read 16 and 32 channel inputs, respectively.

inch reads from a numbered channel determined by ksig1 into a1.

inz reads audio samples in nchnls into a ZAK array starting at ksig1.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
May, 2000 (New in Csound version 4.06)

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Input Page 64-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Output Page 65-1

65 SIGNAL INPUT AND OUTPUT: OUTPUT

65.1 soundout, soundouts, out, outs1,
outs2, outs, outq1, outq2, outq3,
outq4, outq, outh, outo

soundoutsoundoutsoundoutsoundout asig, ifilcod[, iskptim]
soundoutssoundoutssoundoutssoundouts asig, ifilcod[, iskptim]
outoutoutout asig
outs1outs1outs1outs1 asig
outs2outs2outs2outs2 asig
outsoutsoutsouts asig1, asig2
outq1outq1outq1outq1 asig
outq2outq2outq2outq2 asig
outq3outq3outq3outq3 asig
outq4outq4outq4outq4 asig
outqoutqoutqoutq asig1, asig2, asig3, asig4
outhouthouthouth asig1, asig2, asig3, asig4, asig5, asig6
outooutooutoouto asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8

DESCRIPTION
These units write audio data to an external device or stream.

INITIALIZATION
ifilcod – integer or character-string denoting the destination soundfile name. An integer
denotes the file soundin.filcod; a character-string (in double quotes, spaces permitted)
gives the filename itself, optionally a full pathname. If not a full path, the named file is
sought first in the current directory, then in that given by the environment variable SSDIR
(if defined) then by SFDIR. See also GEN01.

iskptim (optional) – time in seconds of input sound to be skipped. The default value is 0.

PERFORMANCE
out, outs, outq, outh, outo – send audio samples to an accumulating output buffer
(created at the beginning of performance) which serves to collect the output of all active
instruments before the sound is written to disk. There can be any number of these output
units in an instrument. The type (mono, stereo, quad, hex, or oct) should agree with
nchnls, but as of version 3.50, will attempt to change and incorrect opcode, to arguer with
nchnls statement. Units can be chosen to direct sound to any particular channel: outs1
sends to stereo channel 1, outq3 to quad channel 3, etc.

soundout and soundouts write audio output to a disk file. soundouts is currently not
implemented.

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Output Page 65-2

AUTHORS
Barry Vercoe, Matt Ingols/Mike Berry
MIT, Mills College
1993-1997

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Output Page 65-3

65.2 outx, out32, outc, outch, outz

outxoutxoutxoutx asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8,
asig9, asig10, asig11, asig12, asig13, asig14, asig15,
asig16

out32out32out32out32 asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8,
asig10, asig11, asig12, asig13, asig14, asig15, asig16,
asig17, asig18, asig19, asig20, asig21, asig22, asig23,
asig24, asig25, asig26, asig27, asig28, asig29, asig30,
asig31, asig32

outcoutcoutcoutc asig1[, asig2,...]
outchoutchoutchoutch ksig1, asig1, ksig2, asig2, ...
outzoutzoutzoutz ksig1

DESCRIPTION
These units write multi-channel audio data to an external device or stream.

PERFORMANCE
outx and out32 output 16 and 32 channels of audio.

outc outputs as many channels as provided. Any channels greater than nchnls are ignored,
and zeros are added as necessary

outch outputs asig1 on the channel determined by ksig1, asig2 on the channel determined
by ksig2, etc.

outz outputs from a ZAK array, for nchnls of audio.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
May, 2000 (New in Csound version 4.06)

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Output Page 65-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-1

66 SIGNAL INPUT AND OUTPUT:
FILE I/O

66.1 dumpk, dumpk2, dumpk3, dumpk4,
readk, readk2, readk3, readk4

dumpkdumpkdumpkdumpk ksig, ifilname, iformat, iprd
dumpk2dumpk2dumpk2dumpk2 ksig1, ksig2, ifilname, iformat, iprd
dumpk3dumpk3dumpk3dumpk3 ksig1, ksig2, ksig3, ifilname, iformat, iprd
dumpk4dumpk4dumpk4dumpk4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

kr1 readkreadkreadkreadk ifilname, iformat, iprd[, ipol]
kr1,kr2 readk2readk2readk2readk2 ifilname, iformat, iprd[, ipol]
kr1,kr2, readk3readk3readk3readk3 ifilname, iformat, iprd[, ipol]
kr3
kr1,kr2, readk4readk4readk4readk4 ifilname, iformat, iprd[, ipol]
kr3,kr4

DESCRIPTION
Periodically write orchestra control-signal values to a named external file in a specific
format.

INITIALIZATION
ifilname – character string(in double quotes, spaces permitted) denoting the external file
name. May either be a full path name with target directory specified or a simple filename
to be created within the current directory

iformat – specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer
• 4 = 16-bit short integers
• 5 = 32bit long integers
• 6 = 32-bit floats, 7=ASCII long integers
• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the last
two are binary. The output file contains no header information.

iprd – the period of ksig output i seconds, rounded to the nearest orchestra control period.
A value of 0 implies one control period (the enforced minimum), which will create an
output file sampled at the orchestra control rate.

ipol (optional) – if non-zero, and iprd implies more than one control period, interpolate the
k- signals between the periodic reads from the external file. The default value is 0 (repeat
each signal between frames). Currently not supported.

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-2

PERFORMANCE
These units allow up to four generated control signal values to be read or saved in a named
external file. The file contains no self-defining header information, but is a regularly
sampled time series, suitable for later input or analysis. There may be any number of
readk units in an instrument or orchestra, and they may read from the same or different
files. There may be any number of dumpk units in an instrument or orchestra, but each
must write to a different file.

OPCODE HISTORY
dumpk opcodes were originally called kdump. As of Csound version 3.493 that name is
deprecated. dumpk should be used instead of kdump. The readk opcodes were originally
called kread, but were not implemented until Csound version 3.52. However, the optional
readk argument, ipol is ignored. This situation is expected to be corrected in a later
release.

EXAMPLE
knum = knum+1 ; at each k-period
ktemp tempesttempesttempesttempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995
 ;estimate the tempo
koct specptrkspecptrkspecptrkspecptrk wsig, 6, .9, 0 ;and the pitch
 dumpk3 dumpk3 dumpk3 dumpk3 knum, ktemp, cpsoct(koct), “what happened when”, 8 0
 ;& save them

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-3

66.2 fout, foutk, fouti , foutir , f iopen
foutfoutfoutfout “ifilename”, iformat, aout1[, aout2, aout3,...,aoutN]
foutkfoutkfoutkfoutk “ifilename”, iformat, kout1[, kout2, kout3,....,koutN]
foutifoutifoutifouti ihandle, iformat, iflag, iout1[, iout2,

iout3,....,ioutN]
 foutirfoutirfoutirfoutir ihandle, iformat, iflag, iout1[, iout2,\\

iout3,....,ioutN]
ihandle fiopenfiopenfiopenfiopen “ifilename”,imode

DESCRIPTION
fout, foutk, fouti and foutir output N a-, k-, or i-rate signals to a specified file of N
channels. fiopen can be used to open a file in one of the specified modes.

INITIALIZATION
ifilename – a double-quote delimited string file name

iformat – a flag to choose output file format:

• for fout and foutk only:
• 0 – 32-bit floating point samples without header (binary PCM multichannel file)
• 1 – 16-bit integers without header (binary PCM multichannel file)
• 2 – 16-bit integers with .wav type header (Microsoft WAV mono or stereo file)
• for fouti and foutir only:
• 0 – floating point in text format
• 1 – 32-bit floating point in binary format

iflag – choose the mode of writing to the ASCII file (valid only in ASCII mode; in binary
mode iflag has no meaning, but it must be present anyway). iflag can be a value chosen
among the following:

• 0 – line of text without instrument prefix
• 1 – line of text with instrument prefix (see below)
• 2 – reset the time of instrument prefixes to zero (to be used only in some

particular cases. See below)

iout,..., ioutN – values to be written to the file

imode – choose the mode of opening the file. imode can be a value chosen among the
following:

• 0 – open a text file for writing
• 1 – open a text file for reading
• 2 – open a binary file for writing
• 3 – open a binary file for reading

PERFORMANCE
aout1,... aoutN – signals to be written to the file

kout1,...koutN – signals to be written to the file

fout (file output) writes samples of audio signals to a file with any number of channels.
Channel number depends by the number of aoutN variables (i.e. a mono signal with only an
a-rate argument, a stereo signal with two a-rate arguments etc.) Maximum number of
channels is fixed to 64. Multiple fout opcodes can be present in the same instrument,
referring to different files.

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-4

Notice that, unlike out, outs and outq, fout does not zero the audio variable, so you must
zero it after calling fout, if polyphony is to be used. You can use incr and clear opcodes for
this task.

foutk operates in the same way as fout, but with k-rate signals. iformat can be set only to
0 or 1.

fouti and foutir write i-rate values to a file. The main use of these opcodes is to generate a
score file during a real-time session. For this purpose, the user should set iformat to 0
(text file output) and iflag to 1, which enable the output of a prefix consisting of the
strings inum, actiontime, and duration, before the values of iout1...ioutN arguments. The
arguments in the prefix refer to instrument number, action time and duration of current
note.

The difference between fouti and foutir is that, in the case of fouti, when iflag is set to 1,
the duration of the first opcode is undefined (so it is replaced by a dot). Whereas, foutir is
defined at the end of note, so the corresponding text line is written only at the end of the
current note (in order to recognize its duration). The corresponding file is linked by the
ihandle value generated by the fiopen opcode (see below). So fouti and foutir can be used
to generate a Csound score while playing a real-time session.

fiopen opens a file to be used by the fout family of opcodes. It must be defined in the
header section, external to any instruments. It returns a number, ihandle, which is
unequivocally referring to the opened file.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-
number generated by fiopen. Whereas, with fouti and foutir, the target file can be only
specified by means of a handle-number.

AUTHOR
Gabriel Maldonado
Italy
1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-5

66.3 f in, f ink, f ini
finfinfinfin “ifilename”, iskipframes, iformat, ain1[, ain2,\\

ain3,...,ainN]
finkfinkfinkfink “ifilename”, iskipframes, iformat, kin1[, kin2,\\

kin3,...,kinN]
finifinifinifini “ifilename”, iskipframes, iformat, in1[, in2,\\

in3,...,inN]

DESCRIPTION
Read signals from a file (at a-, k-, and i-rate)

INITIALIZATION
ifilename – input file name (can be a string or a handle number generated by fiopen)

iskipframes – number of frames to skip at the start (every frame contains a sample of each
channel)

iformat – a number specifying the input file format

for fin and fink:
• 0 – 32 bit floating points without header
• 1 – 16 bit integers without header

and for fini:
• 0 – floating points in text format (loop; see below)
• 1 – floating points in text format (no loop; see below)
• 2 – 32 bit floating points in binary format (no loop)

PERFORMANCE
fin (file input) is the complement of fout: it reads a multichannel file to generate audio
rate signals. At the present time no header is supported for the file format. The user must
be sure that the number of channels of the input file is the same as the number of ainX
arguments. fink is the same as fin, but operates at k-rate.

fini is the complement of fouti and foutir, it reads the values each time the corresponding
instrument note is activated. When iformat is set to 0, if the end of file is reached, the file
pointer is zeroed, restarting the scan from the beginning. When iformat is set to 1 or 2, no
looping is enabled, so at the end of file, the corresponding variables will be filled with
zeroes.

AUTHOR
Gabriel Maldonado
Italy
1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Signal Input and Output:
File I/O Page 66-6

66.4 vincr, c lear
vincrvincrvincrvincr asig, aincr
clearclearclearclear avar1[,avar2, avar3,...,avarN]

DESCRIPTION
vincr increments an audio variable of another signal, i.e. accumulates output. clear zeroes
a list of audio signals.

PERFORMANCE
asig – audio variable to be incremented

aincr – incrementing signal

avar1 [,avar2, avar3,...,avarN] – signals to be zeroed

vincr (variable increment) and clear are intended to be used together. vincr stores the
result of the sum of two audio variables into the first variable itself (which is intended to
be used as an accumulator in polyphony). The accumulator variable can be used for output
signal by means of fout opcode. After the disk writing operation, the accumulator variable
should be set to zero by means of clear opcode (or it will explode).

AUTHOR
Gabriel Maldonado
Italy
1999
New in Csound version 3.56

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Sound File Queries Page 67-1

67 SIGNAL INPUT AND OUTPUT: SOUND
FILE QUERIES

67.1 f i le len, f i lesr , f i lenchnls , f i lepeak

ir filelenfilelenfilelenfilelen “ifilcod”
ir filesrfilesrfilesrfilesr “ifilcod”
ir filenchnlsfilenchnlsfilenchnlsfilenchnls “ifilcod”
ir filepeakfilepeakfilepeakfilepeak “ifilcod”[, ichnl]

DESCRIPTION
Obtains information about a sound file.

INITIALIZATION
ifilecod – sound file to be queried

ichnl – channel to be used in calculating the peak value. Default is 0.
• ichnl = 0 returns peak value of all channels
• ichnl > 0 returns peak value of ichnl

PERFORMANCE
filelen returns the length of the sound file ifilcod in seconds. filesr returns the sample rate
of the sound file ifilcod. filenchnls returns the number of channels in the sound file ifilcod.
filepeak returns the peak absolute value of the sound file ifilcod. Currently, filepeak
supports only AIFF-C float files.

AUTHOR
Matt Ingalls
July, 1999
New in Csound version 3.57

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Sound File Queries Page 67-2

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Printing and Display Page 68-1

68 SIGNAL INPUT AND OUTPUT:
PRINTING AND DISPLAY

68.1 print, display, dispfft
printprintprintprint iarg[, iarg,...]
displaydisplaydisplaydisplay xsig, iprd[, inprds[, iwtflg]]
dispfftdispfftdispfftdispfft xsig, iprd, iwsiz[, iwtyp[, idbouti[, iwtflg]]]

DESCRIPTION
These units will print orchestra init-values, or produce graphic display of orchestra control
signals and audio signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are
approximated in ASCII characters.

INITIALIZATION
iprd – the period of display in seconds.

iwsiz – size of the input window in samples. A window of iwsiz points will produce a Fourier
transform of iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a
power of 2, with a minimum of 16 and a maximum of 4096. The windows are permitted to
overlap.

iwtyp (optional) – window type. 0 = rectangular, 1 = Hanning. The default value is 0
(rectangular).

idbout (optional) – units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels.
The default is 0 (magnitude).

iwtflg (optional) – wait flag. If non-zero, each display is held until released by the user.
The default value is 0 (no wait).

PERFORMANCE
print – print the current value of the i-time arguments (or expressions) iarg at every i-pass
through the instrument.

display – display the audio or control signal xsig every iprd seconds, as an amplitude vs.
time graph.

dispfft – display the Fourier Transform of an audio or control signal (asig or ksig) every iprd
seconds using the Fast Fourier Transform method.

EXAMPLE
 k1 envlpxenvlpxenvlpxenvlpx l, .03, p3, .05, l, .5, .0l ; generate a note envelope
 display display display display k1, p3 ; and display entire shape

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Printing and Display Page 68-2

68.2 printk, printks

printkprintkprintkprintk itime, kval, [ispace]
printksprintksprintksprintks “txtstring”, itime, kval1, kval2, kval3, kval4

DESCRIPTION
These opcodes are intended to facilitate the debugging of orchestra code.

INITIALIZATION
itime – time in seconds between printings. (Default 1 second.)

ispace (optional) – number of spaces to insert before printing. (Max 130.)

 “txtstring” – text to be printed. Can be up to 130 characters and must be in double
quotes.

PERFORMANCE
kvalx – The k-rate values to be printed. These are specified in “txtstring” with the
standard C value specifier %f, in the order given. Use 0 for those which are not used.

printk prints one k-rate value on every k cycle, every second or at intervals specified. First
the instrument number is printed, then the absolute time in seconds, then a specified
number of spaces, then the kval value. The variable number of spaces enables different
values to be spaced out across the screen – so they are easier to view.

printks prints numbers and text, with up to four printable numbers – which can be i- or k-
rate values. printks is highly flexible, and if used together with cursor positioning codes,
could be used to write specific values to locations in the screen as the Csound processing
proceeds.

A special mode of operation allows this printks to convert kval1 input parameter into a 0 to
255 value and to use it as the first character to be printed. This enables a Csound program
to send arbitrary characters to the console. To achieve this, make the first character of the
string a # and then, if desired continue with normal text and format specifiers. Three more
format specifies may be used – they access kval2, kval3 and kval4.

Both these opcodes can be run on every k cycle they are run in the instrument. To every
accomplish this, set itime to 0.

When itime is not 0, the opcode print on the first k cycle it is called, and subsequently
when every itime period has elapsed. The time cycles start from the time the opcode is
initialized – typically the initialization of the instrument.

PRINT OUTPUT FORMATTING
Standard C language printf() control characters may be used, but must be prefaced with an
additional backslash:

\\n or \\N Newline
\\t or \\T Tab

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Printing and Display Page 68-3

The standard C language %f format is used to print kval1, kval2, kval3, and kval4. For
example:

%f prints with full precision: 123.456789
%6.2f prints 1234.56
%5.0p prints 12345

EXAMPLES
The following:

printks printks printks printks \”Volume = %6.2f Freq = %8.3f\n\”, 0.1, kvol, kfreq, 0, 0
would print:
Volume = 1234.56 Freq = 12345.678

The following:

printksprintksprintksprintks \”#x\\y = %6.2\n\”, 0.1, kxy, 0, 0, 0
would print a tab character followed by:
x\y = 1234.56

AUTHOR
Robin Whittle
Australia
May 1997

The Public Csound Reference Manual Version 4.10 Signal Input and Output: Printing and Display Page 68-4

68.3 printk2
printk2printk2printk2printk2 kvar [, numspaces]

INITIALIZATION
numspaces – number of space characters printed before the value of kvar

PERFORMANCE
kvar - signal to be printed

Derived from Robin Whittle’s printk, prints a new value of kvar each time kvar changes.
Useful for monitoring MIDI control changes when using sliders.

WARNING! don’t use this opcode with normal, continuously variant k-signals, because it can
hang the computer, as the rate of printing is too fast.

AUTHOR
Gabriel Maldonado
Italy
1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-1

69 THE STANDARD NUMERIC SCORE

69.1 Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s
statement. Before being read by the orchestra, a score is preprocessed one section at a
time. Each section is normally processed by 3 routines: Carry, Tempo, and Sort.

CARRY
Within a group of consecutive i statements whose p1 whole numbers correspond, any
pfield left empty will take its value from the same pfield of the preceding statement. An
empty pfield can be denoted by a single point (.) delimited by spaces. No point is required
after the last nonempty pfield. The output of Carry preprocessing will show the carried
values explicitly. The Carry Feature is not affected by intervening comments or blank lines;
it is turned off only by a non-i statement or by an i statement with unlike p1 whole
number.

Three additional features are available for p2 alone: +, ^ + x, and ^ – x. The symbol + in p2
will be given the value of p2 + p3 from the preceding i statement. This enables note action
times to be automatically determined from the sum of preceding durations. The + symbol
can itself be carried. It is legal only in p2. E.g.: the statements

i1 0 .5 100
i . +
I

will result in

i1 0 .5 100
i1 .5 .5 100
i1 1 .5 100

The symbols ^ + x and ^ – x determine the current p2 by adding or subtracting,
respectively, the value of x from the preceding p2. These may be used in p2 only.

The Carry feature should be used liberally. Its use, especially in large scores, can greatly
reduce input typing and will simplify later changes.

TEMPO
This operation time warps a score section according to the information in a t statement.
The tempo operation converts p2 (and, for i statements, p3) from original beats into real
seconds, since those are the units required by the orchestra. After time warping, score files
will be seen to have orchestra-readable format demonstrated by the following: i p1
p2beats p2seconds p3beats p3seconds p4 p5

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-2

SORT
This routine sorts all action-time statements into chronological order by p2 value. It also
sorts coincident events into precedence order. Whenever an f statement and an i
statement have the same p2 value, the f statement will precede. Whenever two or more i
statements have the same p2 value, they will be sorted into ascending p1 value order. If
they also have the same p1 value, they will be sorted into ascending p3 value order. Score
sorting is done section by section (see s statement). Automatic sorting implies that score
statements may appear in any order within a section.

NOTE
The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score
file, to produce a new file in orchestra-readable format (see the Tempo example).
Processing can be invoked either explicitly by the Scsort command, or implicitly by Csound
which processes the score before calling the orchestra. Source-format files and orchestra-
readable files are both in ASCII character form, and may be either perused or further
modified by standard text editors. User-written routines can be used to modify score files
before or after the above processes, provided the final orchestra-readable statement
format is not violated. Sections of different formats can be sequentially batched; and
sections of like format can be merged for automatic sorting.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-3

69.2 Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score
features are interpreted during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be
replaced by the appropriate pfield value found on the next i statement (or previous i
statement) that has the same p1. For example, the symbol np7 will be replaced by the
value found in p7 of the next note that is to be played by this instrument. np and pp
symbols are recursive and can reference other np and pp symbols which can reference
others, etc. References must eventually terminate in a real number or a ramp symbol.
Closed loop references should be avoided. np and pp symbols are illegal in p1,p2 and p3
(although they may reference these). np and pp symbols may be Carried. np and pp
references cannot cross a Section boundary. Any forward or backward reference to a non-
existent note-statement will be given the value zero.

E.g.: the statements

i1 0 1 10 np4 pp5
i1 1 1 20
i1 1 1 30

will result in

i1 0 1 10 20 0
i1 1 1 20 30 20
i1 2 1 30 0 30

np and pp symbols can provide an instrument with contextual knowledge of the score,
enabling it to glissando or crescendo, for instance, toward the pitch or dynamic of some
future event (which may or may not be immediately adjacent). Note that while the Carry
feature will propagate np and pp through unsorted statements, the operation that
interprets these symbols is acting on a time-warped and fully sorted version of the score.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-4

69.3 Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear
interpolation of a time-based ramp. Ramps are anchored at each end by the first real
number found in the same pfield of a preceding and following note played by the same
instrument. E.g.: the statements

i1 0 1 100
i1 1 1 <
i1 2 1 <
i1 3 1 400
i1 4 1 <
i1 5 1 0

will result in

i1 0 1 100
i1 1 1 200
i1 2 1 300
i1 3 1 400
i1 4 1 200
i1 5 1 0

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol
(although they may be referenced by these). Ramp symbols are illegal in p1, p2 and p3.
Ramp symbols may be Carried. Note, however, that while the Carry feature will propagate
ramp symbols through unsorted statements, the operation that interprets these symbols is
acting on a time-warped and fully sorted version of the score. In fact, time-based linear
interpolation is based on warped score-time, so that a ramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential
interpolation ramp, similar to expon. The symbols { and } to define an exponential ramp
have been deprecated. Using the symbol ~ will result in uniform, random distribution
between the first and last values of the ramp. Use of these functions must follow the same
rules as the linear ramp function.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-5

69.4 Score Macros
#define#define#define#define NAME # replacement text #
#define#define#define#define NAME(a’ b’ c’) # replacement text #
$NAME$NAME$NAME$NAME....
#undef#undef#undef#undef NAME

DESCRIPTION
Macros are textual replacements which are made in the score as it is being presented to
the system. The macro system in Csound is a very simple one, and uses the characters #
and $ to define and call macros. This can allow for simpler score writing, and provide an
elementary alternative to full score generation systems. The score macro system is similar
to, but independent of, the macro system in the orchestra language.

#define NAME – defines a simple macro. The name of the macro must begin with a letter
and can consist of any combination of letters and numbers. Case is significant. This form is
limiting, in that the variable names are fixed. More flexibility can be obtained by using a
macro with arguments, described below.

#define NAME(a’ b’ c’) – defines a macro with arguments. This can be used in more
complex situations. The name of the macro must begin with a letter and can consist of any
combination of letters and numbers. Within the replacement text, the arguments can be
substituted by the form: $A. In fact, the implementation defines the arguments as simple
macros. There may be up to 5 arguments, and the names may be any choice of letters.
Remember that case is significant in macro names.

$NAME. – calls a defined macro. To use a macro, the name is used following a $
character. The name is terminated by the first character which is neither a letter nor a
number. If it is necessary for the name not to terminate with a space, a period, which will
be ignored, can be used to terminate the name. The string, $NAME., is replaced by the
replacement text from the definition. The replacement text can also include macro calls.

#undef NAME – undefines a macro name. If a macro is no longer required, it can be
undefined with #undef NAME.

INITIALIZATION
replacement text # – The replacement text is any character string (not containing a #)
and can extend over multiple lines. The replacement text is enclosed within the #
characters, which ensure that additional characters are not inadvertently captured.

PERFORMANCE
Some care is needed with textual replacement macros, as they can sometimes do strange
things. They take no notice of any meaning, so spaces are significant. This is why, unlike
the C programming language, the definition has the replacement text surrounded by #
characters. Used carefully, this simple macro system is a powerful concept, but it can be
abused.

ANOTHER USE FOR MACROS
When writing a complex score it is sometimes all too easy to forget to what the various
instrument numbers refer. One can use macros to give names to the numbers. For
example:

#define#define#define#define Flute #i1#
#define#define#define#define Whoop #i2#

$Flute$Flute$Flute$Flute. 0 10 4000 440
$Whoop$Whoop$Whoop$Whoop. 5 1

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-6

EXAMPLES

Simple Macro
a note-event has a set of p-fields which are repeated:

#define#define#define#define ARGS # 1.01 2.33 138#
i1 0 1 8.00 1000 $ARGS
i1 0 1 8.01 1500 $ARGS
i1 0 1 8.02 1200 $ARGS
i1 0 1 8.03 1000 $ARGS
This will get expanded before sorting into:
i1 0 1 8.00 1000 1.01 2.33 138
i1 0 1 8.01 1500 1.01 2.33 138
i1 0 1 8.02 1200 1.01 2.33 138
i1 0 1 8.03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one
could have a second macro (there is no real limit on the number of macros one can define).

#define#define#define#define ARGS1 # 1.01 2.33 138#
#define#define#define#define ARGS2 # 1.41 10.33 1.00#
i1 0 1 8.00 1000 $ARGS1
i1 0 1 8.01 1500 $ARGS2
i1 0 1 8.02 1200 $ARGS1
i1 0 1 8.03 1000 $ARGS2

Macros with arguments
#define#define#define#define ARG(A) # 2.345 1.03 $A 234.9#
i1 0 1 8.00 1000 $ARG(2.0)
i1 + 1 8.01 1200 $ARG(3.0)

which expands to
i1 0 1 8.00 1000 2.345 1.03 2.0 234.9
i1 + 1 8.01 1200 2.345 1.03 3.0 234.9

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-7

69.5 Multiple Fi le Score

It is sometimes convenient to have the score in more than one file. This use is supported by
the #include facility which is part of the macro system. A line containing the text

#include “filename”

where the character “ can be replaced by any suitable character. For most uses the double
quote symbol will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input.
There is currently a limit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the
composer’s style. It could also be used to provide repeated sections.

s
#include “section1”
;; Repeat that
s
#include “section1”

Alternative methods of doing repeats, use the r, m, and n statements.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-8

69.6 Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There
are occasions when some simple evaluation would be easier. This need is increased when
there are macros. To assist in this area the syntax of an arithmetic expressions within
square brackets [] has been introduced. Expressions built from the operations +, -, *, /,
%, and ^ are allowed, together with grouping with (). The expressions can include
numbers, and naturally macros whose values are numeric or arithmetic strings. All
calculations are made in floating point numbers. Note that unary minus is not yet
supported.

New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@x
(next power-of-two-plus-one greater than or equal to x).

EXAMPLE
r3 CNT

i1 0 [0.3*$CNT.]
i1 + [($CNT./3)+0.2]

e
As the three copies of the section have the macro $CNT. with the different values of 1, 2
and 3, this expands to

s
i1 0 0.3
i1 0.3 0.533333
s
i1 0 0.6
i1 0.6 0.866667
s
i1 0 0.9
i1 0.9 1.2
e

This is an extreme form, but the evaluation system can be used to ensure that repeated
sections are subtly different.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-9

69.7 f Statement (or Function Table
Statement)

ffff p1 p2 p3 p4 ...

DESCRIPTION
This causes a GEN subroutine to place values in a stored function table for use by
instruments.

P FIELDS

p1 Table number (from 1 to 200) by which the stored function will
be known. A negative number requests that the table be
destroyed.

p2 Action time of function generation (or destruction) in beats.
p3 Size of function table (i.e. number of points) Must be a power

of 2, or a power-of-2 plus 1 (see below). Maximum table size is
16777216 (2**24) points.

p4 Number of the GEN routine to be called (see GEN ROUTINES). A
negative value will cause rescaling to be omitted.

p5 |
p6 | Parameters whose meaning is determined by the particular

GEN
| routine.

. |

. |

SPECIAL CONSIDERATIONS
Function tables are arrays of floating-point values. Arrays can be of any length in powers of
2; space allocation always provides for 2**n points plus an additional guard point. The
guard point value, used during interpolated lookup, can be automatically set to reflect the
table’s purpose: If size is an exact power of 2, the guard point will be a copy of the first
point; this is appropriate for interpolated wrap-around lookup as in oscili, etc., and should
even be used for non-interpolating oscil for safe consistency. If size is set to 2**n + 1, the
guard point value automatically extends the contour of table values; this is appropriate for
single-scan functions such in envplx, oscil1, oscil1i, etc.

Table space is allocated in primary memory, along with instrument data space. The
maximum table number has a soft limit of 200; this can be extended if required.

An existing function table can be removed by an f statement containing a negative p1 and
an appropriate action time. A function table can also be removed by the generation of
another table with the same p1. Functions are not automatically erased at the end of a
score section.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-10

p2 action time is treated in the same way as in i statements with respect to sorting and
modification by t statements. If an f statement and an i statement have the same p2, the
sorter gives the f statement precedence so that the function table will be available during
note initialization.

An f 0 statement (zero p1, positive p2) may be used to create an action time with no
associated action. Such time markers are useful for padding out a score section (see s
statement)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-11

69.8 i Statement (Instrument or Note
Statement)

iiii p1 p2 p3 p4 ...

DESCRIPTION
This statement calls for an instrument to be made active at a specific time and for a
certain duration. The parameter field values are passed to that instrument prior to its
initialization, and remain valid throughout its Performance.

P FIELDS

p1 Instrument number (from 1 to 200), usually a non-negative
integer. An optional fractional part can provide an additional
tag for specifying ties between particular notes of consecutive
clusters. A negative p1 (including tag) can be used to turn off
a particular `held’ note.

p2 Starting time in arbitrary units called beats.
p3 Duration time in beats (usually positive). A negative value

will initiate a held note (see also ihold). A zero value will
invoke an initialization pass without performance (see also
instr).

p4 |
p5 | Parameters whose significance is determined by the

instrument.
. |
. |

SPECIAL CONSIDERATIONS
Beats are evaluated as seconds, unless there is a t statement in this score section or a -t
flag in the command line.

Starting or action times are relative to the beginning of a section (see s statement), which
is assigned time 0.

Note statements within a section may be placed in any order. Before being sent to an
orchestra, unordered score statements must first be processed by Sorter, which will
reorder them by ascending p2 value. Notes with the same p2 value will be ordered by
ascending p1; if the same p1, then by ascending p3.

Notes may be stacked, i.e., a single instrument can perform any number of notes
simultaneously. (The necessary copies of the instrument’s data space will be allocated
dynamically by the orchestra loader.) Each note will normally turn off when its p3 duration
has expired, or on receipt of a MIDI noteoff signal. An instrument can modify its own
duration either by changing its p3 value during note initialization, or by prolonging itself
through the action of a linenr unit.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-12

An instrument may be turned on and left to perform indefinitely either by giving it a
negative p3 or by including an ihold in its i-time code. If a held note is active, an i
statement with matching p1 will not cause a new allocation but will take over the data
space of the held note. The new pfields (including p3) will now be in effect, and an i-time
pass will be executed in which the units can either be newly initialized or allowed to
continue as required for a tied note (see tigoto). A held note may be succeeded either by
another held note or by a note of finite duration. A held note will continue to perform
across section endings (see s statement). It is halted only by turnoff or by an i statement
with negative matching p1 or by an e statement.

It is possible to have multiple instances (usually, but not necessarily, notes of different
pitches) of the same instrument, held simultaneously, via negative p3 values. The
instrument can then be fed new parameters from the score. This is useful for avoiding long
hard-coded linsegs, and can be accomplished by adding a decimal part to the instrument
number.

For example, to hold three copies of instrument 10 in a simple chord:

i10.1 0 -1 7.00
i10.2 0 -1 7.04
i10.3 0 -1 7.07

Subsequent i statements can refer to the same sounding note instances, and if the
instrument definition is done properly, the new p-fields can be used to alter the character
of the notes in progress. For example, to bend the previous chord up an octave and
release it:

i10.1 1 1 8.00
i10.2 1 1 8.04
i10.3 1 1 8.07

The instrument definition has to take this into account, however, especially if clicks are to
be avoided (see the example below).

Note that the decimal instrument number notation cannot be used in conjunction with
real-time MIDI. In this case, the instrument would be monophonic while a note was held.

Notes being tied to previous instances of the same instrument, should skip most
initialization by means of tigoto, except for the values entered in score. For example, all
table reading opcodes in the instrument, should usually be skipped, as they store their
phase internally. If this is suddenly changed, there will be audible clicks in the output.

Note that many opcodes (such as delay and reverb) are prepared for optional initialization.
To use this feature, the tival flag is suitable. Therefore, they need not be hidden by a
tigoto jump.

Beginning with Csound version 3.53, strings are recognized in p- fields for opcodes that
accept them (convolve, adsyn, diskin, etc.). There may be only one string per score line.

EXAMPLE
Here is an instrument which can find out whether it is tied to a previous note (tival returns
1), and whether it is held (negative p3). Attack and release are handled accordingly:

instrinstrinstrinstr 10

icps initinitinitinit cpspch(p4) ;Get target pitch from score event
iportime initinitinitinit abs(p3)/7 ; Portamento time dep on note length

 iamp0 initinitinitinit p5 ; Set default amps
iamp1 initinitinitinit p5
iamp2 initinitinitinit p5

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-13

itie tivaltivaltivaltival ; Check if this note is tied,
if itie == 1 igoto nofadein ; if not fade in
iamp0 initinitinitinit 0

nofadein:
if p3 < 0 igoto nofadeout ; Check if this note is held,

; if not fade out
iamp2 initinitinitinit 0

nofadeout:
 ; Now do amp from the set values:
kamp linseglinseglinseglinseg iamp0, .03, iamp1, abs(p3)-.03, iamp2

 ; Skip rest of initialization on tied note:
tigototigototigototigoto tieskip

kcps initinitinitinit icps ; Init pitch for untied note
kcps portportportport icps, iportime, icps ; Drift towards target pitch

kpw osciloscilosciloscil .4, rnd(1), 1, rnd(.7) ; A simple triangle-saw oscil
ar vcovcovcovco kamp, kcps, 3, kpw+.5, 1, 1/icps

; (Used in testing - one may set ipch to cpspch(p4+2)
; and view output spectrum)
; ar oscil kamp, kcps, 1

outoutoutout ar

tieskip: ; Skip some initialization on tied note

endinendinendinendin

A simple score using three instances of the above instrument:

f1 0 8192 10 1 ; Sine

i10.1 0 -1 7.00 10000
i10.2 0 -1 7.04
i10.3 0 -1 7.07
i10.1 1 -1 8.00
i10.2 1 -1 8.04
i10.3 1 -1 8.07
i10.1 2 1 7.11
i10.2 2 1 8.04
i10.3 2 1 8.07
e

Additional text (Csound version 4.0) explaining tied notes, edited by Rasmus Ekman from a
note by David Kirsh, posted to the Csound mailing list. Example instrument by Rasmus
Ekman.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-14

69.9 a Statement (or Advance Statement)

aaaa p1 p2 p3

DESCRIPTION
This causes score time to be advanced by a specified amount without producing sound
samples.

P FIELDS

p1 Carries no meaning. Usually zero.
p2 Action time, in beats, at which advance is to begin.
p3 Number of beats to advance without producing sound.
p4 |
p5 | These carry no meaning.
p6 |
.
.

SPECIAL CONSIDERATIONS
This statement allows the beat count within a score section to be advanced without
generating intervening sound samples. This can be of use when a score section is
incomplete (the beginning or middle is missing) and the user does not wish to generate and
listen to a lot of silence.

p2, action time, and p3, number of beats, are treated as in i statements, with respect to
sorting and modification by t statements.

An a statement will be temporarily inserted in the score by the Score Extract feature when
the extracted segment begins later than the start of a Section. The purpose of this is to
preserve the beat count and time count of the original score for the benefit of the peak
amplitude messages which are reported on the user console.

Whenever an a statement is encountered by a performing orchestra, its presence and
effect will be reported on the user’s console.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-15

69.10 t Statement (Tempo Statement)

tttt p1 p2 p3 p4 ... (unlimited)

DESCRIPTION
This statement sets the tempo and specifies the accelerations and decelerations for the
current section. This is done by converting beats into seconds.

P FIELDS

p1 Must be zero.
p2 Initial tempo on beats per minute.
p3, p5, p7,... Times in beats per minute (in non-decreasing order).
p4, p6, p8,... Tempi for the referenced beat times.

SPECIAL CONSIDERATIONS
Time and Tempo-for-that-time are given as ordered couples that define points on a “tempo
vs. time” graph. (The time-axis here is in beats so is not necessarily linear.) The beat-rate
of a Section can be thought of as a movement from point to point on that graph: motion
between two points of equal height signifies constant tempo, while motion between two
points of unequal height will cause an accelerando or ritardando accordingly. The graph
can contain discontinuities: two points given equal times but different tempi will cause an
immediate tempo change.

Motion between different tempos over non-zero time is inverse linear. That is, an
accelerando between two tempos M1 and M2 proceeds by linear interpolation of the single-
beat durations from 60/M1 to 60/M2.

The first tempo given must be for beat 0.

A tempo, once assigned, will remain in effect from that time-point unless influenced by a
succeeding tempo, i.e. the last specified tempo will be held to the end of the section.

A t statement applies only to the score section in which it appears. Only one t statement is
meaningful in a section; it can be placed anywhere within that section. If a score section
contains no t statement, then beats are interpreted as seconds (i.e. with an implicit t 0 60
statement).

N.B. If the Csound command includes a -t flag, the interpreted tempo of all score t
statements will be overridden by the command-line tempo.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-16

69.11 b Statement

bbbb p1

DESCRIPTION
This statement resets the clock for subsequent i statements.

P FIELDS

p1 Specifies how the clock is to be set.

SPECIAL CONSIDERATIONS
p1 is the number of beats by which p2 values of subsequent i statements are modified. If
p1 is positive, the clock is reset forward, and subsequent notes appear later, the number of
beats specified by p1 being added to the note’s p2. If p1 is negative, the clock is reset
backward, and subsequent notes appear earlier, the number of beats specified by p1 being
subtracted from the note’s p2. There is no cumulative affect. The clock is reset with each
b statement. If p1 = 0, the clock is returned to its original position, and subsequent notes
appear at their specified p2.

EXAMPLE

i1 0 2
i1 10 888

b 5 ; set the clock "forward"
i2 1 1 440 ; start time = 6
i2 2 1 480 ; start time = 7

b –1 ; set the clock back
i3 3 2 3.1415 ; start time = 2
i3 5.5 1 1.1111 ; start time = 4.5

b 0 ; reset clock to normal
i4 10 200 7 ; start time = 10

Explanation suggested and example provided by Paul Winkler. (Csound version 4.0)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-17

69.12 v Statement

vvvv p1

DESCRIPTION
The v statement provides for locally variable time warping of score events.

P FIELDS

p1 Time warp factor (must be positive).

SPECIAL CONSIDERATIONS
The v statement takes effect with the following i statement, and remains in effect until
the next v, s, or e statement.

EXAMPLES
The value of p1 is used as a multiplier for the start times (p2) of subsequent i statements.

iiii1 0 1 ;note1
vvvv2
iiii1 1 1 ;note2

In this example, the second note occurs two beats after the first note, and is twice as long.

Although the v statement is similar to the t statement, the v statement is local in
operation. That is, v affects only the following notes, and its effect may be cancelled or
changed by another v statement.

Carried values (see Section 14.1.1) are unaffected by the v statement.

iiii1 0 1 ;note1
vvvv2
iiii1 1 . ;note2
iiii1 2 . ;note3
vvvv1
iiii1 3 . ;note4
iiii1 4 . ;note5
eeee

In this example, note2 and note4 occur simultaneously, while note3 actually occurs before
note2, that is, at its original place. Durations are unaffected.

iiii1 0 1
vvvv2
iiii. + .
iiii. . .

In this example, the v statement has no effect.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-18

69.13 s Statement

ssss anything

DESCRIPTION
The s statement marks the end of a section.

P FIELDS
All p-fields are ignored.

SPECIAL CONSIDERATIONS
Sorting of the i, f and a statements by action time is done section by section.

Time warping for the t statement is done section by section.

All action times within a section are relative to its beginning. A section statement
establishes a new relative time of 0, but has no other reinitializing effects (e.g. stored
function tables are preserved across section boundaries).

A section is considered complete when all action times and finite durations have been
satisfied (i.e., the “length” of a section is determined by the last occurring action or turn-
off). A section can be extended by the use of an f0 statement.

A section ending automatically invokes a Purge of inactive instrument and data spaces.

Note: Since score statements are processed section by section, the amount of memory
required depends on the maximum number of score statements in a section. Memory
allocation is dynamic, and the user will be informed as extra memory blocks are requested
during score processing.

For the end of the final section of a score, the s statement is optional; the e statement
may be used instead.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-19

69.14 e Statement

eeee anything

DESCRIPTION
This statement may be used to mark the end of the last section of the score.

P FIELDS
All pfields are ignored.

SPECIAL CONSIDERATIONS
The e statement is contextually identical to an s statement. Additionally, the e statement
terminates all signal generation (including indefinite performance) and closes all input and
output files.

If an e statement occurs before the end of a score, all subsequent score lines will be
ignored.

The e statement is optional in a score file yet to be sorted. If a score file has no e
statement, then Sort processing will supply one.

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-20

69.15 r Statement (Repeat Statement)

rrrr p1 p2

DESCRIPTION
Starts a repeated section, which lasts until the next s, r or e statement.

P FIELDS

p1 Number of times to repeat the section.
p2 Macro(name) to advance with each repetition (optional).

SPECIAL CONSIDERATIONS
In order that the sections may be more flexible than simple editing, the macro named p2 is
given the value of 1 for the first time through the section, 2 for the second, and 3 for the
third. This can be used to change p-field parameters, or ignored.

WARNING: Because of serious problems of interaction with macro expansion, sections must
start and end in the same file, and not in a macro.

EXAMPLE
In the following example, the section is repeated 3 times. The macro NN is used and
advanced with each repetition.

rrrr3 NN ;start of repeated section – use macro NN
some code

.

.

.
ssss ;end repeat - go back to previous rrrr if repetitions < 3

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-21

69.16 m Statement (Mark Statement)

mmmm p1

DESCRIPTION
Sets a named mark in the score, which can be referenced by an n statement.

P FIELDS

p1 Name of mark.

SPECIAL CONSIDERATIONS
This can be helpful in setting a up verse and chorus structure in the score. Names may
contain letters and numerals.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Standard Numeric Score Page 69-22

69.17 n Statement

nnnn p1

DESCRIPTION
Repeats a section from the referenced m statement.

P FIELDS

p1 Name of mark to repeat.

SPECIAL CONSIDERATIONS
This can be helpful in setting a up verse and chorus structure in the score. Names may
contain letters and numerals.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-1

70 GEN ROUTINES

The GEN subroutines are function-drawing procedures called by f statements to construct
stored wavetables. They are available throughout orchestra performance, and can be
invoked at any point in the score as given by p2. p1 assigns a table number, and p3 the
table size (see f statement). p4 specifies the GEN routine to be called; each GEN routine
will assign special meaning to the pfield values that follow.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-2

70.1 GEN01

f f f f # time size 1 filcod skiptime format channel

DESCRIPTION
This subroutine transfers data from a soundfile into a function table.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement), with the one exception: allocation of table size can be deferred by setting this
parameter to 0. See Notes, below. The maximum table size is 16777216 (224) points.
Reading stops at end-of-file or when the table is full. Table locations not filled will contain
zeros.

filcod – integer or character-string denoting the source soundfile name. An integer denotes
the file soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the
filename itself, optionally a full pathname. If not a full path, the file is sought first in the
current directory, then in that given by the environment variable SSDIR (if defined) then by
SFDIR. See also soundin.

skiptime – begin reading at skiptime seconds into the file.

channel – channel number to read in. 0 denotes read all channels. An AIFF source can be
mono or stereo.

format – specifies the audio data-file format:
• 1 - 8-bit signed character
• 2 - 8-bit A-law bytes
• 3 - 8-bit U-law bytes
• 4 - 16-bit short integers
• 5 - 32-bit long integers
• 6 - 32-bit floats

If format = 0 the sample format is taken from the soundfile header, or by default from the
Csound -o command flag.

NOTES
If the source soundfile is of type AIFF, allocation of table size can be deferred by setting
size to 0. The size allocated is then the number of points (or samples) in the file, which is
probably not a power-of-2. In this case, the table generated is usable only by loscil Using
the form “@N” for size, where N = the number of samples in the sound file, will give the
lowest power of 2 greater than or equal to N. Using the form “@@N”, adds one to that
number, giving a power-of-2 plus 1 sized table.

If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value
of 1 after generation). A negative p4 will cause rescaling to be skipped.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-3

EXAMPLES
f 1 0 8192 1 23 0 4
f 2 0 0 -1 “trumpet A#5” 0 4

The tables are filled from 2 files, “soundin.23” and “trumpet A#5”, expected in SSDIR or
SFDIR. The first table is pre-allocated; the second is allocated dynamically, and its
rescaling is inhibited. .

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-4

70.2 GEN02

f f f f # time size 2 v1 v2 v3 . . .

DESCRIPTION
This subroutine transfers data from immediate pfields into a function table.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The maximum tablesize is 16777216 (224) points.

v1, v2, v3, ... – values to be copied directly into the table space. The number of values is
limited by the compile-time variable PMAX, which controls the maximum pfields (currently
150). The values copied may include the table guard point; any table locations not filled
will contain zeros.

NOTE
If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value
of 1 after generation). A negative p4 will cause rescaling to be skipped.

EXAMPLE
f 1 0 16 -2 0 1 2 3 4 5 6 7 8 9 10 11 0

This calls upon GEN02 to place 12 values plus an explicit wrap-around guard value into a
table of size next-highest power of 2. Rescaling is inhibited.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-5

70.3 GEN03

f f f f # time size 3 xval1 xval2 c0 c1 c2 . . . cn

DESCRIPTION
This subroutine generates a stored function table by evaluating a polynomial in x over a
fixed interval and with specified coefficients.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 ().

xval1, xval2 – left and right values of the x interval over which the polynomial is defined
(xval1 < xval2). These will produce the 1st stored value and the (power-of-2 plus l)th
stored value respectively in the generated function table.

c0, c1, c2, ... cn – coefficients of the nth-order polynomial

c0 + c1x + c2x2 + . . . + cnxn

Coefficients may be positive or negative real numbers; a zero denotes a missing term in the
polynomial. The coefficient list begins in p7, providing a current upper limit of 144 terms.

NOTE
The defined segment [fn(xval1), fn(xval2)] is evenly distributed. Thus a 512-point table
over the interval [-1,1] will have its origin at location 257 (at the start of the 2nd half).
Provided the extended guard point is requested, both fn(-1) and fn(1) will exist in the
table.

GEN03 is useful in conjunction with table or tablei for audio waveshaping (sound
modification by non-linear distortion). Coefficients to produce a particular formant from a
sinusoidal lookup index of known amplitude can be determined at preprocessing time using
algorithms such as Chebyshev formulae. See also GEN13.

EXAMPLE
f 1 0 1025 3 -1 1 5 4 3 2 2 1

This calls GEN03 to fill a table with a 4th order polynomial function over the x-interval -1
to 1. The origin will be at the offset position 512. The function is post-normalized.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-6

70.4 GEN04

ffff # time size 4 source# sourcemode

DESCRIPTION
This subroutine generates a normalizing function by examining the contents of an existing
table.

INITIALIZATION
size – number of points in the table. Should be power-of-2 plus 1. Must not exceed (except
by 1) the size of the source table being examined; limited to just half that size if the
sourcemode is of type offset (see below).

source # – table number of stored function to be examined.

sourcemode – a coded value, specifying how the source table is to be scanned to obtain the
normalizing function. Zero indicates that the source is to be scanned from left to right.
Non-zero indicates that the source has a bipolar structure; scanning will begin at the mid-
point and progress outwards, looking at pairs of points equidistant from the center.

NOTE
The normalizing function derives from the progressive absolute maxima of the source table
being scanned. The new table is created left-to-right, with stored values equal to
1/(absolute maximum so far scanned). Stored values will thus begin with 1/(first value
scanned), then get progressively smaller as new maxima are encountered. For a source
table which is normalized (values <= 1), the derived values will range from 1/(first value
scanned) down to 1. If the first value scanned is zero, that inverse will be set to 1.

The normalizing function from GEN04 is not itself normalized.

GEN04 is useful for scaling a table-derived signal so that it has a consistent peak
amplitude. A particular application occurs in waveshaping when the carrier (or indexing)
signal is less than full amplitude.

EXAMPLE
f 2 0 512 4 1 1

This creates a normalizing function for use in connection with the GEN03 table 1 example.
Midpoint bipolar offset is specified.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-7

70.5 GEN05, GEN07

ffff # time size 5 a n1 b n2 c . . .
ffff # time size 7 a n1 b n2 c . . .

DESCRIPTION
These subroutines are used to construct functions from segments of exponential curves
(GEN05) or straight lines (GEN07).

INITIALIZATION
size – number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f
statement).

a, b, c, etc. – ordinate values, in odd-numbered pfields p5, p7, p9, . . . For GEN05 these
must be nonzero and must be alike in sign. No such restrictions exist for GEN07.

n1, n2, etc. – length of segment (no. of storage locations), in even-numbered pfields.
Cannot be negative, but a zero is meaningful for specifying discontinuous waveforms (e.g.
in the example below). The sum n1 + n2 + will normally equal size for fully specified
functions. If the sum is smaller, the function locations not included will be set to zero; if
the sum is greater, only the first size locations will be stored.

NOTE
If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1
after generation). A negative p4 will cause rescaling to be skipped.

Discrete-point linear interpolation implies an increase or decrease along a segment by
equal differences between adjacent locations; exponential interpolation implies that the
progression is by equal ratio. In both forms the interpolation from a to b is such as to
assume that the value b will be attained in the n + 1th location. For discontinuous
functions, and for the segment encompassing the end location, this value will not actually
be reached, although it may eventually appear as a result of final scaling.

EXAMPLE
f 1 0 256 7 0 128 1 0 -1 128 0

This describes a single-cycle sawtooth whose discontinuity is mid-way in the stored
function.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-8

70.6 GEN06

ffff # time size 6 a n1 b n2 c n3 d . . .

DESCRIPTION
This subroutine will generate a function comprised of segments of cubic polynomials,
spanning specified points just three at a time.

INITIALIZATION
size – number of points in the table. Must be a power off or power-of-2 plus 1 (see f
statement).

a, c, e, ... – local maxima or minima of successive segments, depending on the relation of
these points to adjacent inflexions. May be either positive or negative.

b, d, f, ... – ordinate values of points of inflexion at the ends of successive curved
segments. May be positive or negative.

n1, n2, n3... – number of stored values between specified points. Cannot be negative, but
a zero is meaningful for specifying discontinuities. The sum n1 + n2 + ... will normally equal
size for fully specified functions. (for details, see GEN05).

NOTE
GEN06 constructs a stored function from segments of cubic polynomial functions. Segments
link ordinate values in groups of 3: point of inflexion, maximum/minimum, point of
inflexion. The first complete segment encompasses b, c, d and has length n2 + n3, the next
encompasses d, e, f and has length n4 + n5, etc. The first segment (a, b with length n1) is
partial with only one inflexion; the last segment may be partial too. Although the inflexion
points b, d, f ... each figure in two segments (to the left and right), the slope of the two
segments remains independent at that common point (i.e. the 1st derivative will likely be
discontinuous). When a, c, e... are alternately maximum and minimum, the inflexion joins
will be relatively smooth; for successive maxima or successive minima the inflexions will be
comb-like.

EXAMPLE
f 1 0 65 6 0 16 .5 16 1 16 0 16 -1

This creates a curve running 0 to 1 to -1, with a minimum, maximum and minimum at these
values respectively. Inflexions are at .5 and 0, and are relatively smooth.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-9

70.7 GEN08

ffff # time size 8 a n1 b n2 c n3 d . . .

DESCRIPTION
This subroutine will generate a piecewise cubic spline curve, the smoothest possible
through all specified points.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f
statement).

a, b, c ... – ordinate values of the function.

n1, n2, n3 ... – length of each segment measured in stored values. May not be zero, but
may be fractional. A particular segment may or may not actually store any values; stored
values will be generated at integral points from the beginning of the function. The sum n1
+ n2 + ... will normally equal size for fully specified functions.

NOTE
GEN08 constructs a stored table from segments of cubic polynomial functions. Each
segment runs between two specified points but depends as well on their neighbors on each
side. Neighboring segments will agree in both value and slope at their common point. (The
common slope is that of a parabola through that point and its two neighbors). The slope at
the two ends of the function is constrained to be zero (flat).

Hint: to make a discontinuity in slope or value in the function as stored, arrange a series of
points in the interval between two stored values; likewise for a non-zero boundary slope.

EXAMPLES
f 1 0 65 8 0 16 0 16 1 16 0 16 0

This example creates a curve with a smooth hump in the middle, going briefly negative
outside the hump then flat at its ends.

f 2 0 65 8 0 16 0 .1 0 15.9 1 15.9 0 .1 0 16 0

This example is similar, but does not go negative.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-10

70.8 GEN09, GEN10, GEN19

ffff # time size 9 pna stra phsa pnb strb phsb . . .
ffff # time size 10 str1 str2 str3 str4
ffff # time size 19 pna stra phsa dcoa pnb strb \\

phsb dcob . . .

DESCRIPTION
These subroutines generate composite waveforms made up of weighted sums of simple
sinusoids. The specification of each contributing partial requires 3 pfields using GEN09, 1
using GEN10, and 4 using GEN19.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f
statement).

pna, pnb, etc. – partial no. (relative to a fundamental that would occupy size locations per
cycle) of sinusoid a, sinusoid b, etc. Must be positive, but need not be a whole number,
i.e., non-harmonic partials are permitted. Partials may be in any order.

stra, strb, etc. – strength of partials pna, pnb, etc. These are relative strengths, since the
composite waveform may be rescaled later. Negative values are permitted and imply a 180
degree phase shift.

phsa, phsb, etc. – initial phase of partials pna, pnb, etc., expressed in degrees.

dcoa, dcob, etc. – DC offset of partials pna, pnb, etc. This is applied after strength scaling,
i.e. a value of 2 will lift a 2-strength sinusoid from range [-2,2] to range [0,4] (before later
rescaling).

str1, str2, str3, etc. – relative strengths of the fixed harmonic partial numbers 1,2,3, etc.,
beginning in p5. Partials not required should be given a strength of zero.

NOTE
These subroutines generate stored functions as sums of sinusoids of different frequencies.
The two major restrictions on GEN10 that the partials be harmonic and in phase do not
apply to GEN09 or GEN19.

In each case the composite wave, once drawn, is then rescaled to unity if p4 was positive.
A negative p4 will cause rescaling to be skipped.

EXAMPLES
f 1 0 1024 9 1 3 0 3 1 0 9 .3333 180
f 2 0 1024 19 .5 1 270 1

f 1 combines partials l, 3 and 9 in the relative strengths in which they are found in a square
wave, except that partial 9 is upside down. f 2 creates a rising sigmoid [0 – 2]. Both will be
rescaled.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-11

70.9 GEN11

ffff # time size 11 nh [lh [r]]

DESCRIPTION
This subroutine generates an additive set of cosine partials, in the manner of Csound
generators buzz and gbuzz.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f
statement).

nh – number of harmonics requested. Must be positive.

lh (optional) – lowest harmonic partial present. Can be positive, zero or negative. The set
of partials can begin at any partial number and proceeds upwards; if lh is negative, all
partials below zero will reflect in zero to produce positive partials without phase change
(since cosine is an even function), and will add constructively to any positive partials in the
set. The default value is 1

r (optional) – multiplier in an amplitude coefficient series. This is a power series: if the
lhth partial has a strength coefficient of A the (lh + n)th partial will have a coefficient of A
* rn, i.e. strength values trace an exponential curve. r may be positive, zero or negative,
and is not restricted to integers. The default value is 1.

NOTE
This subroutine is a non-time-varying version of the Csound buzz and gbuzz generators,
and is similarly useful as a complex sound source in subtractive synthesis. With lh and r
present it parallels gbuzz; with both absent or equal to 1 it reduces to the simpler buzz
(i.e. nh equal-strength harmonic partials beginning with the fundamental).

Sampling the stored waveform with an oscillator is more efficient than using dynamic buzz
units. However, the spectral content is invariant, and care is necessary lest the higher
partials exceed the Nyquist during sampling to produce foldover.

EXAMPLES
f 1 0 2049 11 4
f 2 0 2049 11 4 1 1
f 3 0 2049 -11 7 3 .5

The first two tables will contain identical band-limited pulse waves of four equal-strength
harmonic partials beginning with the fundamental. The third table will sum seven
consecutive harmonics, beginning with the third, and at progressively weaker strengths (1,
.5, .25, .125 . . .). It will not be post-normalized.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-12

70.10 GEN12

ffff # time size -12 xint

DESCRIPTION
This generates the log of a modified Bessel function of the second kind, order 0, suitable
for use in amplitude-modulated FM.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint – specifies the x interval [0 to +int] over which the function is defined.

NOTE
This subroutine draws the natural log of a modified Bessel function of the second kind,
order 0 (commonly written as I subscript 0), over the x-interval requested. The call should
have rescaling inhibited.

The function is useful as an amplitude scaling factor in cycle-synchronous amplitude-
modulated FM. (See Palamin & Palamin, J. Audio Eng. Soc., 36/9, Sept. 1988, pp.671-684.)
The algorithm is interesting because it permits the normally symmetric FM spectrum to be
made asymmetric around a frequency other than the carrier, and is thereby useful for
formant positioning. By using a table lookup index of I(r – 1/r), where I is the FM
modulation index and r is an exponential parameter affecting partial strengths, the
Palamin algorithm becomes relatively efficient, requiring only oscils, table lookups, and a
single exp call.

EXAMPLE
f 1 0 2049 -12 20

This draws an unscaled ln(I0(x)) from 0 to 20.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-13

70.11 GEN13, GEN14

ffff # time size 13 xint xamp h0 h1 h2 . . . hn
ffff # time size 14 xint xamp h0 h1 h2 . . . hn

DESCRIPTION
These subroutines use Chebyshev coefficients to generate stored polynomial functions
which, under waveshaping, can be used to split a sinusoid into harmonic partials having a
pre-definable spectrum.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint – provides the left and right values [-xint, +xint] of the x interval over which the
polynomial is to be drawn. These subroutines both call GEN03 to draw their functions; the
p5 value here is therefor expanded to a negative-positive p5,p6 pair before GEN03 is
actually called. The normal value is 1.

xamp – amplitude scaling factor of the sinusoid input that is expected to produce the
following spectrum.

h0, h1, h2, hn – relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will
result when a sinusoid of amplitude

xamp * int(size/2)/xint

is waveshaped using this function table. These values thus describe a frequency spectrum
associated with a particular factor xamp of the input signal.

NOTE:
GEN13 is the function generator normally employed in standard waveshaping. It stores a
polynomial whose coefficients derive from the Chebyshev polynomials of the first kind, so
that a driving sinusoid of strength xamp will exhibit the specified spectrum at output. Note
that the evolution of this spectrum is generally not linear with varying xamp. However, it is
bandlimited (the only partials to appear will be those specified at generation time); and
the partials will tend to occur and to develop in ascending order (the lower partials
dominating at low xamp, and the spectral richness increasing for higher values of xamp). A
negative hn value implies a 180 degree phase shift of that partial; the requested full-
amplitude spectrum will not be affected by this shift, although the evolution of several of
its component partials may be. The pattern +,+,-,-,+,+,... for h0,h1,h2... will minimize the
normalization problem for low xamp values (see above), but does not necessarily provide
the smoothest pattern of evolution.

GEN14 stores a polynomial whose coefficients derive from Chebyshevs of the second kind.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-14

EXAMPLE
f 1 0 1025 13 1 1 0 5 0 3 0 1

This creates a function which, under waveshaping, will split a sinusoid into 3 odd-harmonic
partials of relative strength 5:3:1.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-15

70.12 GEN15

ffff # time size 15 xint xamp h0 phs0 h1 phs1 h2
phs2 . . .

DESCRIPTION
This subroutine creates two tables of stored polynomial functions, suitable for use in phase
quadrature operations.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

xint – provides the left and right values [-xint, +xint] of the x interval over which the
polynomial is to be drawn. This subroutine will eventually call GEN03 to draw both
functions; this p5 value is therefor expanded to a negative-positive p5, p6 pair before
GEN03 is actually called. The normal value is 1.

xamp – amplitude scaling factor of the sinusoid input that is expected to produce the
following spectrum.

h0, h1, h2, ... hn – relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will
result when a sinusoid of amplitude

xamp * int(size/2)/xint

is waveshaped using this function table. These values thus describe a frequency spectrum
associated with a particular factor xamp of the input signal.

phs0, phs1, ... – phase in degrees of desired harmonics h0, h1, ... when the two functions
of GEN15 are used with phase quadrature.

NOTE
GEN15 creates two tables of equal size, labeled f # and f # + 1. Table # will contain a
Chebyshev function of the first kind, drawn using GEN03 with partial strengths h0cos(phs0),
h1cos(phs1), ... Table #+1 will contain a Chebyshev function of the 2nd kind by calling
GEN14 with partials h1sin(phs1), h2sin(phs2),... (note the harmonic displacement). The
two tables can be used in conjunction in a waveshaping network that exploits phase
quadrature.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-16

70.13 GEN16

f # time size 15 beg dur type end

DESCRIPTION
Creates a table from beg value to end value of dur steps.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

beg – starting value

dur – number of segments

type – if 0, a straight line is produced. If non-zero, then GEN16 creates the following
curve, for dur steps:

beg+(end-beg)*(1-exp(i*type/(dur-1)))/(1-exp(type))

end – value after dur segments

NOTES
If type > 0, there is a slowly rising, fast decaying (convex) curve, while if type < 0, the
curve is fast rising, slowly decaying (concave). See also transeg.

AUTHOR
John ffitch
University of Bath, Codemist. Ltd.
Bath, UK
October, 2000
New in Csound version 4.09

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-17

70.14 GEN17

ffff # time size 17 x1 a x2 b x3 c . . .

DESCRIPTION
This subroutine creates a step function from given x-y pairs.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f
statement). The normal value is power-of-2 plus 1.

x1, x2, x3, etc. – x-ordinate values, in ascending order, 0 first.

a, b, c, etc. – y-values at those x-ordinates, held until the next x-ordinate.

NOTE
This subroutine creates a step function of x-y pairs whose y-values are held to the right.
The right-most y-value is then held to the end of the table. The function is useful for
mapping one set of data values onto another, such as MIDI note numbers onto sampled
sound ftable numbers (see loscil).

EXAMPLE
ffff 1 0 128 -17 0 1 12 2 24 3 36 4 48 5 60 6 72 7 84 8

This describes a step function with 8 successively increasing levels, each 12 locations wide
except the last which extends its value to the end of the table. Rescaling is inhibited.
Indexing into this table with a MIDI note-number would retrieve a different value every
octave up to the eighth, above which the value returned would remain the same.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-18

70.15 GEN20

ffff # time size 20 window max [opt]

DESCRIPTION
This subroutine generates functions of different windows. These windows are usually used
for spectrum analysis or for grain envelopes.

INITIALIZATION
size – number of points in the table. Must be a power of 2 (+ 1).

window – Type of window to generate.

• 1 = Hamming
• 2 = Hanning
• 3 = Bartlett (triangle)
• 4 = Blackman (3-term)
• 5 = Blackman-Harris (4-term)
• 6 = Gaussian
• 7 = Kaiser
• 8 = Rectangle
• 9 = Sync

max – For negative p4 this will be the absolute value at window peak point. If p4 is positive
or p4 is negative and p6 is missing the table will be post-rescaled to a maximum value of 1.

opt – Optional argument required by the Kaiser window.

EXAMPLES
f 1f 1f 1f 1 0 1024 20 5

This creates a function which contains a 4 – term Blackman – Harris window with maximum
value of 1.

f 1f 1f 1f 1 0 1024 -20 2 456

This creates a function that contains a Hanning window with a maximum value of 456.

f 1f 1f 1f 1 0 1024 -20 1

This creates a function that contains a Hamming window with a maximum value of 1.

f 1f 1f 1f 1 0 1024 20 7 1 2

This creates a function that contains a Kaiser window with a maximum value of 1. The
extra argument specifies how “open” the window is, for example a value of 0 results in a
rectangular window and a value of 10 in a Hamming like window.

For diagrams, see Appendix. Section 76.4.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-19

AUTHORS
Paris Smaragdis
MIT, Cambridge
1995

John ffitch
University of Bath/Codemist Ltd.
Bath, UK
New in Csound version 3.2

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-20

70.16 GEN21

ffff # time size 21 type level [arg1 [arg2]]

DESCRIPTION
This generates tables of different random distributions. (See also x-class noise
generators.)

time and size are the usual GEN function arguments. level defines the amplitude. Note that
GEN21 is not self-normalizing as are most other GEN functions. type defines the
distribution to be used as follows:

• 1 = Uniform (positive numbers only)
• 2 = Linear (positive numbers only)
• 3 = Triangle (positive and negative numbers)
• 4 = Exponential (positive numbers only)
• 5 = Biexponential (positive and negative numbers)
• 6 = Gaussian (positive and negative numbers)
• 7 = Cauchy (positive and negative numbers)
• 8 = Positive Cauchy (positive numbers only)
• 9 = Beta (positive numbers only)
• 10 = Weibull (positive numbers only)
• 11 = Poisson (positive numbers only)

Of all these cases only 9 (Beta) and 10 (Weibull) need extra arguments. Beta needs two
arguments and Weibull one.

EXAMPLES
f1 0 1024 21 1 ; Uniform (white noise)
f1 0 1024 21 6 ; Gaussian
f1 0 1024 21 9 1 1 2 ; Beta (note that level precedes arguments)
f1 0 1024 21 10 1 2 ; Weibull

All of the above additions were designed by the author between May and December 1994,
under the supervision of Dr. Richard Boulanger.

AUTHORS
Paris Smaragdis
MIT, Cambridge
1995

John ffitch
University of Bath/Codemist Ltd.
Bath, UK
New in Csound version 3.2

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-21

70.17 GEN23

ffff # time size -23 “filename.txt”

DESCRIPTION
This subroutine reads numeric values from an external ASCII file

INITIALIZATION
“filename.txt” – numeric values contained in “filename.txt” (which indicates the complete
pathname of the character file to be read), can be separated by spaces, tabs, newline
characters or commas. Also, words that contains non-numeric characters can be used as
comments since they are ignored.

size – number of points in the table. Must be a power of 2 , power of 2 + 1, or zero. If size
= 0, table size is determined by the number of numeric values in filename.txt. (New in
Csound version 3.57)

NOTE
All characters following ‘;’ (comment) are ignored until next line (numbers too).

AUTHOR
Gabriel Maldonado
Italy
February, 1998
New in Csound version 3.47

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-22

70.18 GEN25, GEN27

ffff # time size 25 x1 y1 x2 y2 x3 . . .
ffff # time size 27 x1 y1 x2 y2 x3 . . .

DESCRIPTION
These subroutines are used to construct functions from segments of exponential curves
(GEN25) or straight lines (GEN27) in breakpoint fashion.

INITIALIZATION
size – number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f
statement.

x1, x2, x3, etc. – locations in table at which to attain the following y value. Must be in
increasing order. If the last value is less than size, then the rest will be set to zero. Should
not be negative but can be zero.

y1, y2, y3,, etc. – Breakpoint values attained at the location specified by the preceding x
value. For GEN25 these must be non-zero and must be alike in sign. No such restrictions
exist for GEN27.

NOTE
If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1
after generation). A negative p4 will cause rescaling to be skipped.

EXAMPLE
f 1 0 257 27 0 0 100 1 200 -1 256 0

This describes a function which begins at 0, rises to 1 at the 100th table location, falls to -
1, by the 200th location, and returns to 0 by the end of the table. The interpolation is
linear.

AUTHOR
John ffitch
University of Bath/Codemist Ltd.
Bath, UK
New in Csound version 3.49

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-23

70.19 GEN28

ffff # time size 28 ifilcod

DESCRIPTION
This function generator reads a text file which contains sets of three values representing
the xy coordinates and a time-tag for when the signal should be placed at that location,
allowing the user to define a time-tagged trajectory. The file format is in the form:

time1 X1 Y1
time2 X2 Y2
time3 X3 Y3

The configuration of the XY coordinates in space places the signal in the following way:
• a1 is -1, 1
• a2 is 1, 1
• a3 is -1, -1
• a4 is 1, -1.

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is
right back. Values greater than 1 will result in sounds being attenuated as if in the
distance. GEN28 creates values to 10 milliseconds of resolution.

INITIALIZATION
size – number of points in the table. Must be 0. GEN28 takes 0 as the size and
automatically allocates memory.

ifilcod – character-string denoting the source soundfile name. A character-string (in double
quotes, spaces permitted) gives the filename itself, optionally a full pathname. If not a full
path, the named file is sought in the current directory.

 EXAMPLE
f1 0 0 28 “move”

The file “move” should look like:

0 -1 1
1 1 1
2 4 4
2.1 -4 -4
3 10 -10
5 -40 0

Since GEN28 creates values to 10 milliseconds of resolution, there will be 500 values
created by interpolating X1 to X2 to X3 and so on, and Y1 to Y2 to Y3 and so on, over the
appropriate number of values that are stored in the function table. The sound will begin in
the left front, over 1 second it will move to the right front, over another second it move
further into the distance but still in the left front, then in just 1/10th of a second it moves
to the left rear, a bit distant. Finally over the last .9 seconds the sound will move to the
right rear, moderately distant, and it comes to rest between the two left channels (due
west!), quite distant.

The Public Csound Reference Manual Version 4.10 GEN Routines Page 70-24

AUTHOR
Richard Karpen
Seattle, Wash
1998 (New in Csound version 3.48)

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-1

71 THE CSOUND COMMAND

Csound is a command for passing an orchestra file and score file to Csound to generate a
soundfile. The score file can be in one of many different formats, according to user
preference. Translation, sorting, and formatting into orchestra-readable numeric text is
handled by various preprocessors; all or part of the score is then sent on to the orchestra.
Orchestra performance is influenced by command flags, which set the level of displays and
console reports, specify 1/0 filenames and sample formats, and declare the nature of real-
time sensing and control.

71.1 Order of Precedence
With some recent additions to Csound, there are now three places (and in some cases four)
where options for Csound performance may be set. They are processed in the following
order:

1. Csound’s own defaults

2. .csoundrc file

3. Csound command line

4. <CsOptions> tag in a .csd file

5. Orchestra header (for sr, kr, ksmps, nchnls)

The last assignment of an option will override any earlier ones.

71.2 Generic F lags
These are generic Csound command flags. Various platform implementations may not react
the same way to different flags!

The format of a command is:

csoundcsoundcsoundcsound [-flags] orchname scorename

where the arguments are of 2 types: flag arguments (beginning with a “-”), and name
arguments (such as filenames). Certain flag arguments take a following name or numeric
argument. The available flags are:

-U unam run utility program unam
-C use Cscore processing of scorefile
-I i-time only orch run
-n no sound onto disk
-i fnam sound input filename
-o fnam sound output filename
-b N sample frames (or -kprds) per software sound I/O buffer
-B N samples per hardware sound I/O buffer
-A create an AIFF format output soundfile
-W create a WAV format output soundfile
-J create an IRCAM format output soundfile
-h no header on output soundfile

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-2

-c 8-bit signed_char sound samples
-a alaw sound samples
-8 8-bit unsigned_char sound samples
-u ulaw sound samples
-s short_int sound samples
-l long_int sound samples
-f float sound samples
-r N orchestra srate override
-k N orchestra krate override
-v verbose orch translation
-m N TTY message level. Sum of: 1=note amps, 2=out-of-range msg,

4=warnings
-d suppress all displays
-g suppress graphics, use ASCII displays
-G suppress graphics, use Postscript displays
-S score is in Scot format
-x fnam extract from score.srt using extract file ‘fnam’
-t N use uninterpreted beats of the score, initially at tempo N
-L dnam read Line-oriented real-time score events from device

‘dnam’
-M dnam read MIDI real-time events from device ‘dnam’
-F fnam read MIDI file event stream from file ‘fnam’
-P N MIDI sustain pedal threshold (N = 0-128)
-R continually rewrite header while writing soundfile

(WAV/AIFF)
-H/H1 generates a rotating line progress report
-H2 generates a . every time a buffer is written
-H3 reports the size of the output in seconds. In Windows,

writes the information to the window title bar.
-H4 sounds a bell for every buffer of the output written
-N notify (ring the bell) when score or MIDI track is done
-T terminate the performance when MIDI track is done
-D defer GEN01 soundfile loads until performance time
-z List opcodes in this version
-z1 List opcodes with arguments in this version
-- fnam Log all text output to file fnam
-j fnam derive console messages from database fnam
-Z Switch on dithering of audio conversion from internal

floating point to 32, 16 and 8 bit formats. (New in
Csound version 4.05)

-K num Switch off peak chunks.

71.3 PC Windows Specif ic f lags
-j num set the number of console text rows (default 25)
-J num set the number of console text columns (default 80)
-q num WAVE OUT device id number (use only if more than one WAVE

device is installed)
-p num number of WAVE OUT buffers (default 4; max. 40)
-O suppresses all console text output for better real-time

performance
-e allows any sample rate (use only with WAVE cards supporting

this feature)

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-3

-y doesn’t wait for keypress on exit
-E allows graphic display for WCSHELL by Riccardo Bianchini
-Q num enable MIDI OUT. num (optional) = MIDI OUT port device id

number
-Y suppresses real-time WAVE OUT for better MIDI OUT timing

performance
-* yields control to the system until audio output buffer is

full

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-4

71.4 Macintosh Specif ic F lags
-q sampdir set the directory for finding samples
-Q analdir set the directory for finding analyses
-X snddir set the directory for saving sound files
-V num set screen buffer size
-E num set number of graphs saved
-p play on finishing
-e num set rescaling factor
-w set recording of MIDI data
-y num set rate for progress display
-Y num set rate for profile display

71.5 Description

Flags may appear anywhere in the command line, either separately or bundled together. A
flag taking a Name or Number will find it in that argument, or in the immediately
subsequent one. The following are thus equivalent commands:

csoundcsoundcsoundcsound –nm3 orchname –Sxxfilename scorename
csoundcsoundcsoundcsound –n –m 3 orchname –x xfilename –S scorename

All flags and names are optional. The default values are:

csoundcsoundcsoundcsound –s –otest –b1024 –B1024 –m7 –P128 orchname scorename

where orchname is a file containing Csound orchestra code, and scorename is a file of
score data in standard numeric score format, optionally presorted and time-warped. If
scorename is omitted, there are two default options:

• if real-time input is expected (-L, -M or -F), a dummy score file is substituted
consisting of the single statement ‘f 0 3600’ (i.e. listen for RT input for one hour)

• else Csound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it goes, doing
various syntax and error checks along the way. Once the actual performance has begun,
any error messages will derive from either the instrument loader or the unit generators
themselves. A Csound command may include any rational combination of the following flag
arguments, with default values as described:

Csound -U

Invoke Utility Preprocessing programs: sndinfo, hetro, lpanal, pvanal, cvanal, and pvlook.

Csound -I

i-time only. Allocate and initialize all instruments as per the score, but skip all p-time
processing (no k-signals or a-signals, and thus no amplitudes and no sound). Provides a fast
validity check of the score pfields and orchestra i-variables.

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-5

Csound -n

No sound. Do all processing, but bypass writing of sound to disk. This flag does not change
the execution in any other way.

Csound -i isfname

Input soundfile name. If not a full pathname, the file will be sought first in the current
directory, then in that given by the environment variable SSDIR (if defined), then by SFDIR.
The name stdin will cause audio to be read from standard input. If RTAUDIO is enabled, the
name devaudio will request sound from the host audio input device.

Csound -o osfname

Output soundfile name. If not a full pathname, the soundfile will be placed in the directory
given by the environment variable SFDIR (if defined), else in the current directory. The
name stdout will cause audio to be written to standard output. If no name is given, the
default name will be test. If RTAUDIO is enabled, the name devaudio will send to the host
audio output device.

Csound -b Numb

Number of audio sample-frames per sound i/o software buffer. Large is efficient, but small
will reduce audio I/O delay. The default is 1024. In real-time performance, Csound waits
on audio I/O on Numb boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made synchronous. For convenience,
if Numb = -N (is negative) the effective value is ksmps * N (audio synchronous with k-period
boundaries). With N small (e.g. 1) polling is then frequent and also locked to fixed DAC
sample boundaries.

Csound -B Numb

Number of audio sample-frames held in the DAC hardware buffer. This is a threshold on
which software audio I/O (above) will wait before returning. A small number reduces audio
I/O delay; but the value is often hardware limited, and small values will risk data lattes.
The default is 1024.

Csound -h

No header on output soundfile. Don’t write a file header, just binary samples.
Csound {-c, -a, -u, -s, -l, -f}
Audio sample format of the output soundfile. One of:

• c = 8-bit signed character
• a = 8-bit a-law
• u = 8-bit u-law
• s = short integer
• l = long integer
• f = single-precision float (not playable, but can be read by -i, soundin and GEN01)

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-6

Csound -A

Write an AIFF output soundfile. Restricts the above formats to c, s, l, or f (AIFC).

Csound –W

Write a .wav output soundfile.

Csound –J

Write an IRCAM output soundfile.

Csound -v

Verbose translate and run. Prints details of orch translation and performance, enabling
errors to be more clearly located.

Csound -m Numb

Message level for standard (terminal) output. Takes the sum of 3 print control flags, turned
on by the following values:

• 1 = note amplitude messages
• 2 = samples out of range message
• 4 = warning messages. The default value is m7 (all messages on).

Csound -d

Suppress all displays.

Csound -g

Recast graphic displays into ASCII characters, suitable for any terminal.

Csound -S

Interpret scorename as a Scot format file and create a standard score file (named “score”)
from it, then sort and perform that.

Csound -x xfile

Extract a portion of the sorted score score.srt, according to xfile (see Extract).

Csound -t Numb

Use the uninterpreted beats of score.srt for this performance, and set the initial tempo at
Numb beats per minute. When this flag is set, the tempo of score performance is also
controllable from within the orchestra. The flag –t0 will prevent Csound from deleting the
sorted score file, score.srt, upon exit.

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-7

Csound -L devname

Read Line-oriented real-time score events from device devname. The name stdin will
permit score events to be typed at your terminal, or piped from another process. Each line-
event is terminated by a carriage-return. Events are coded just like those in a standard
numeric score, except that an event with p2=0 will be performed immediately, and an
event with p2=T will be performed T seconds after arrival. Events can arrive at any time,
and in any order. The score carry feature is legal here, as are held notes (p3 negative) and
string arguments, but ramps and pp or np references are not.

Csound -M devname

Read MIDI events from device devname.

Csound -F mfname

Read MIDI events from MIDI file mfname.

Csound -P Numb

Set MIDI sustain pedal threshold (0 – 128). The official switch value of 64 is normally too
low, and is more realistic above 100. The default value of 128 will block all pedal info.

Csound -N

Notify (ring the bell) when score or MIDI track is done.

Csound -T

Terminate the performance when MIDI track is done.

Csound –j fnam

Use database fnam for messages to print to console during performance. (New in version
3.55)

Csound -K num

Switch off peak chunks. New in Csound version 4.09.

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-8

PC/WINDOWS-SPECIFIC FLAGS

Csound -q num

WAVE OUT device id number (optional, use only if WAVE OUT devices are more than one)

Csound -p num

number of WAVE OUT buffers (optional; default=4, maximum=40). -b (buffer length) and -p
flags are related each other. Finding the optimum values for “-b” and “-p” flags requires
some experimentation: more buffer length means more latency delay but also more safety
from dropouts and sound interruptions (flag “-B” is now obsolete, don’t use it). You now
can drastically reduce buffer length and delay by using -e flag and ‘rounded’ sr and kr.
Note that sometimes a smaller buffer length can handle sound flow better than a larger.
Only experiments can lead you toward optimal ‘-b’ values. -b and -p flags value can now be
reduced considerably by using “rounded” ar and kr values (for example ar=32000 and
kr=320; ar=40000 and kr=400 and so on) together with -e flag. This feature has been tested
only with a SB16 ASP and with an AWE32 card. Support by other cards is unknown. Reducing
“-b” and “-p” flag values means reducing latency delay and so a more interactive real-time
playing.

Csound -j num

console virtual text rows number.

Csound -J num

console virtual text columns number.

Csound -O (uppercase letter)

suppresses all printf for better real-time performance. This switch is better than ‘-m0’
because ‘-m0’ still leaves some message output to the console. Use both switches together
for maximum performance speed.

Csound -e

allows arbitrary output sample rate (for cards that support this feature).

Csound -y

doesn’t wait for keypress on exit.

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-9

Csound -E

graphic display for WCSHELL by Riccardo Bianchini.

Csound -Q num

enables MIDI OUT operations and optionally chooses device id num (if num argument is
present). This flag allows parallel MIDI OUT and DAC performance. Unfortunately the real-
time timing implemented in Csound is completely managed by DAC buffer sample flow. So
MIDI OUT operations can present some time irregularities. These irregularities can be fully
eliminated when suppressing DAC operations themselves (see -Y flag).

Csound -Y

disables WAVE OUT (for better MIDI OUT timing performances). This enhances timing of
MIDI out operations when used in conjunction with “-Q” flag. Low k-rates (max. kr=1000)
are recommended for use with the “-Y” flag. As in Win95 maximum timer resolution is
1/1000 of second, unpredictable results can occur when using it at k-rates greater than
1000. Also it is very important to set only kr values in which the following division: 1000/kr
produces integer results (some example: kr = 10; 20; 50; 100; 125; 200; 250 etc.) because
Win95 timer only handles integer periods in milliseconds.
If you use a kr value that produces a non-integer result in the above formula, Csound seems
to run normally but times will be not reliable. A value of kr=200 works well on most
computers. Maybe with slower computers a lower value works better. Experiment! Values
greater than 200 increase the overhead affecting the entire system, and do not give a
notable precision improvement. A time resolution of 1/200 of sec is precise enough for
almost all MIDI applications. The sr/kr/ksmps ratio must be respected, or an error message
will stop the performance, even if sr value is meaningless when using “-Y” flag.

Csound -*

compels Csound to yield control to system until audio output buffer content passes a
certain threshold. Below this threshold Csound continues processing, while over this
threshold Csound yields control to Windows. This gives a big enhancement in multitasking
processes. Enabling this option reduces polyphony a bit when using short buffer space. So
the user should increase the number (‘-p’ flag) and the length (‘-b’ flag) of buffers when
setting ‘-*’ flag. Experiment to find best values. Do not use this flag when time response to
gestural actions is critical.

The Public Csound Reference Manual Version 4.10 The Csound Command Page 71-10

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Unified File Format for Orchestras and Scores Page 72-1

72 UNIFIED FILE FORMAT FOR
ORCHESTRAS AND SCORES

72.1 Description
The Unified File Format, introduced in Csound version 3.50, enables the orchestra and
score files, as well as command line flags, to be combined in one file. The file has the
extension .csd. This format was originally introduced by Michael Gogins in AXCsound.

The file is a structured data file which uses markup language, similar to any SGML such as
HTML. Start tags (<tag>) and end tags (</tag>) are used to delimit the various elements.
The file is saved as a text file.

72.2 Structured Data Fi le Format

MANDATORY ELEMENTS
The Csound Element is used to alert the csound compiler to the .csd format. The file must
begin with the start tag <CsoundSynthesizer>. The last line of the file must be the end tag
</CsoundSynthesizer>. The remaining elements are defined below.

Options
Csound command line flags are put in the Options Element. This section is delimited by the
start tag <CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are
treated as comments. For precedence of flags, options, and header statements, see
Section 67.1.

Instruments (Orchestra)
The instrument definitions (orchestra) are put into the Instruments Element. The
statements and syntax in this section are identical to the Csound orchestra file, and have
the same requirements, including the header statements (sr, kr, etc.) This Instruments
Element is delimited with the start tag <CsInstruments> and the end tag
</CsInstruments>.

Score
Csound score statements are put in the Score Element. The statements and syntax in this
section are identical to the Csound score file, and have the same requirements. The Score
Element is delimited by the start tag <CsScore> and the end tag </CsScore>.

OPTIONAL ELEMENTS

Included Base64 Files
Base64 encoded MIDI files may be included with the tag <CsMidifileB filename=filename>,
where filename is the name of the file containing the MIDI information. There is no
matching end tag. New in Csound version 4.07.

The Public Csound Reference Manual Version 4.10 Unified File Format for Orchestras and Scores Page 72-2

Base64 encoded sample files may be included with the tag <CsSampleB
filename=filename>, where filename is the name of the file containing the sample. There
is no matching end tag. New in Csound version 4.07.

Version Blocking
Versions of Csound may blocked by placing one of the following statements between the
start tag <CsVersion> and the end tag </CsVersion>:

Before #.#

or

After #.#
where #.# is the requested Csound version number. The second statement may be written
simply as:

#.#

See example below. New in Csound version 4.09.

72.3 Example
Below is a sample file, test.csd, which renders a .wav file at 44.1 kHz sample rate
containing one second of a 1 kHz sine wave. Displays are suppressed. test.csd was created
from two files, tone.orc and tone.sco, with the addition of command line flags.

<CsoundSynthesizer><CsoundSynthesizer><CsoundSynthesizer><CsoundSynthesizer>
 ; test.csd – a Csound structured data file

<CsOptions><CsOptions><CsOptions><CsOptions>
 -W -d -o tone.wav
</CsOptions></CsOptions></CsOptions></CsOptions>

<CsVersion><CsVersion><CsVersion><CsVersion> ;optional section
 Before 4.10 ;these two statements check for
 After 4.08 ; Csound version 4.09

 </CsVersion></CsVersion></CsVersion></CsVersion>

<CsInstruments><CsInstruments><CsInstruments><CsInstruments>
 ; originally tone.orc

srsrsrsr = 44100
kr = 4410
ksmpsksmpsksmpsksmps = 10
nchnlsnchnlsnchnlsnchnls = 1

instrinstrinstrinstr 1
a1 osciloscilosciloscil p4, p5, 1 ; simple oscillator

outoutoutout a1
endinendinendinendin

</CsInstruments></CsInstruments></CsInstruments></CsInstruments>

<CsScore><CsScore><CsScore><CsScore>
 ; originally tone.sco
 f1 0 8192 10 1
 i1 0 1 20000 1000 ;play one second of one kHz tone
 e
</CsScore></CsScore></CsScore></CsScore>
</CsoundSynthesizer></CsoundSynthesizer></CsoundSynthesizer></CsoundSynthesizer>

The Public Csound Reference Manual Version 4.10 Unified File Format for Orchestras and Scores Page 72-3

72.4 Command Line Parameter Fi le
If the file .csoundrc exists, it will be used to set the command line parameters. These can
be overridden. It uses the same form as a .csd file. Lines beginning with # or ; are treated
as comments.

The Public Csound Reference Manual Version 4.10 Unified File Format for Orchestras and Scores Page 72-4

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Score File Preprocessing Page 73.1

73 SCORE FILE PREPROCESSING

73.1 The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions
taken from a control file. The control file contains an instrument list and two time points,
from and to, in the form:

 instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated as i, f and t. The time points denote the
beginning and end of the extract in terms of:

 [section no.] : [beat no.].

each of the three parts is also optional. The default values for missing i, f or t are:

 all instruments, beginning of score, end of score.

The Public Csound Reference Manual Version 4.10 Score File Preprocessing Page 73.2

73.2 Independent Pre-Processing with
Scsort

Although the result of all score preprocessing is retained in the file score.srt after
orchestra performance (it exists as soon as score preprocessing has completed), the user
may sometimes want to run these phases independently. The command

 scotscotscotscot filename

will process the Scot formatted filename, and leave a standard numeric score result in a
file named score for perusal or later processing.

The command

 scscortscscortscscortscscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the
result in outfile.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as
a standalone program:

 extractextractextractextract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent
through Scsort then piped to the extract program:

 scsortscsortscsortscsort < scorefile | extractextractextractextract xfile > score.extract

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-1

74 UTILITY PROGRAMS

The Csound Utilities are soundfile preprocessing programs that return information on a
soundfile or create some analyzed version of it for use by certain Csound generators.
Though different in goals, they share a common soundfile access mechanism and are
describable as a set. The Soundfile Utility programs can be invoked in two equivalent
forms:

csound –U utilnamecsound –U utilnamecsound –U utilnamecsound –U utilname [flags] filenames ...
utilnameutilnameutilnameutilname [flags] filenames ...

In the first, the utility is invoked as part of the Csound executable, while in the second it is
called as a standalone program. The second is smaller by about 200K, but the two forms
are identical in function. The first is convenient in not requiring the maintenance and use
of several independent programs – one program does all. When using this form, a -U flag
detected in the command line will cause all subsequent flags and names to be interpreted
as per the named utility; i.e. Csound generation will not occur, and the program will
terminate at the end of utility processing.

Directories. Filenames are of two kinds, source soundfiles and resultant analysis files. Each
has a hierarchical naming convention, influenced by the directory from which the Utility is
invoked. Source soundfiles with a full pathname (begins with dot (.), slash (/), or for
ThinkC includes a colon (:)), will be sought only in the directory named. Soundfiles without
a path will be sought first in the current directory, then in the directory named by the
SSDIR environment variable (if defined), then in the directory named by SFDIR. An
unsuccessful search will return a “cannot open” error.

Resultant analysis files are written into the current directory, or to the named directory if
a path is included. It is tidy to keep analysis files separate from sound files, usually in a
separate directory known to the SADIR variable. Analysis is conveniently run from within
the SADIR directory. When an analysis file is later invoked by a Csound generator it is
sought first in the current directory, then in the directory defined by SADIR.

Soundfile Formats. Csound can read and write audio files in a variety of formats. Write
formats are described by Csound command flags. On reading, the format is determined
from the soundfile header, and the data automatically converted to floating-point during
internal processing. When Csound is installed on a host with local soundfile conventions
(SUN, NeXT, Macintosh) it may conditionally include local packaging code which creates
soundfiles not portable to other hosts. However, Csound on any host can always generate
and read AIFF files, which is thus a portable format. Sampled sound libraries are typically
AIFF, and the variable SSDIR usually points to a directory of such sounds. If defined, the
SSDIR directory is in the search path during soundfile access. Note that some AIFF sampled
sounds have an audio looping feature for sustained performance; the analysis programs will
traverse any loop segment once only.

For soundfiles without headers, an SR value may be supplied by a command flag (or its
default). If both header and flag are present, the flag value will over-ride.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-2

When sound is accessed by the audio Analysis programs , only a single channel is read. For
stereo or quad files, the default is channel one; alternate channels may be obtained on
request.

Author
Dan Ellis
MIT Media Lab
Cambrige, Massachussetts
1990

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-3

74.1 sndinfo

DESCRIPTION
get basic information about one or more soundfiles.

csound –U sndinfocsound –U sndinfocsound –U sndinfocsound –U sndinfo soundfilenames ...

or

sndinfosndinfosndinfosndinfo soundfilenames ...

sndinfo will attempt to find each named file, open it for reading, read in the soundfile
header, then print a report on the basic information it finds. The order of search across
soundfile directories is as described above. If the file is of type AIFF, some further details
are listed first.

EXAMPLE
csound –U sndinfocsound –U sndinfocsound –U sndinfocsound –U sndinfo test Bosendorfer/”BOSEN mf A0 st” foo foo2

where the environment variables SFDIR = /u/bv/sound, and SSDIR = /so/bv/Samples, might
produce the following:
util SNDINFO:
 /u/bv/sound/test:
 srate 22050, monaural, 16 bit shorts, 1.10 seconds
 headersiz 1024, datasiz 48500 (24250 sample frames)

 /so/bv/Samples/Bosendorfer/BOSEN mf A0 st: AIFF, 197586 stereo samples, base Frq
261.6 (MIDI 60), sustnLp: mode 1, 121642 to 197454, relesLp: mode 0
 AIFF soundfile, looping with modes 1, 0
 srate 44100, stereo, 16 bit shorts, 4.48 seconds

 headersiz 402, datasiz 790344 (197586 sample frames)

 /u/bv/sound/foo:
 no recognizable soundfile header

 /u/bv/sound/foo2:
 couldn’t find

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-4

74.2 hetro

DESCRIPTION
hetrodyne filter analysis for the Csound adsyn generator.

csound –U hetrocsound –U hetrocsound –U hetrocsound –U hetro [flags] infilename outfilename

or

hetrohetrohetrohetro [flags] infilename outfilename

hetro takes an input soundfile, decomposes it into component sinusoids, and outputs a
description of the components in the form of breakpoint amplitude and frequency tracks.
Analysis is conditioned by the control flags below. A space is optional between flag and
value.

-s srate – sampling rate of the audio input file. This will over-ride the srate of the soundfile
header, which otherwise applies. If neither is present, the default is 10000. Note that for
adsyn synthesis the srate of the source file and the generating orchestra need not be the
same.

-c channel – channel number sought. The default is 1.

-b begin – beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d duration – duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file. Maximum length is 32.766 seconds.

-f begfreq – estimated starting frequency of the fundamental, necessary to initialize the
filter analysis. The default is 100 (cps).

-h partials – number of harmonic partials sought in the audio file. Default is 10, maximum
is a function of memory available.

-M maxamp – maximum amplitude summed across all concurrent tracks. The default is
32767.

-m minamp – amplitude threshold below which a single pair of amplitude/frequency tracks
is considered dormant and will not contribute to output summation. Typical values: 128 (48
dB down from full scale), 64 (54 dB down), 32 (60 dB down), 0 (no thresholding). The
default threshold is 64 (54 dB down).

-n brkpts – initial number of analysis breakpoints in each amplitude and frequency track,
prior to thresholding (-m) and linear breakpoint consolidation. The initial points are spread
evenly over the duration. The default is 256.

-l cutfreq – substitute a 3rd order Butterworth low-pass filter with cutoff frequency
cutfreq (in Hz), in place of the default averaging comb filter. The default is 0 (don’t use).

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-5

EXAMPLE

hetrohetrohetrohetro -s44100 -b.5 -d2.5 -h16 -M24000 audiofile.test adsynfile7

This will analyze 2.5 seconds of channel 1 of a file “audiofile.test”, recorded at 44.1 kHz,
beginning .5 seconds from the start, and place the result in a file “adsynfile7”. We request
just the first 16 harmonics of the sound, with 256 initial breakpoint values per amplitude or
frequency track, and a peak summation amplitude of 24000. The fundamental is estimated
to begin at 100 Hz. Amplitude thresholding is at 54 dB down.

The Butterworth LPF is not enabled.

FILE FORMAT
The output file contains time-sequenced amplitude and frequency values for each partial
of an additive complex audio source. The information is in the form of breakpoints (time,
value, time, value,) using 16-bit integers in the range 0 – 32767. Time is given in
milliseconds, and frequency in Hertz (Hz). The breakpoint data is exclusively non-negative,
and the values -1 and -2 uniquely signify the start of new amplitude and frequency tracks.
A track is terminated by the value 32767. Before being written out, each track is data-
reduced by amplitude thresholding and linear breakpoint consolidation.

A component partial is defined by two breakpoint sets: an amplitude set, and a frequency
set. Within a composite file these sets may appear in any order (amplitude, frequency,
amplitude; or amplitude, amplitude..., then frequency, frequency,...). During adsyn
resynthesis the sets are automatically paired (amplitude, frequency) from the order in
which they were found. There should be an equal number of each.

A legal adsyn control file could have following format:

-1 time1 value1 ... timeK valueK 32767 ; amplitude breakpoints for partial 1
-2 time1 value1 ... timeL valueL 32767 ; frequency breakpoints for partial 1
-1 time1 value1 ... timeM valueM 32767 ; amplitude breakpoints for partial 2
-2 time1 value1 ... timeN valueN 32767 ; frequency breakpoints for partial 2
-2 time1 value1
-2 time1 value1 ; pairable tracks for partials 3 and 4
-1 time1 value1
-1 time2 value1

If the filename passed to hetro has the extension .sdif, data will be written in SDIF format
as 1TRC frames of additive synthesis data. The utility program sdif2ads can be used to
convert any SDIF file containing a stream of 1TRC data to the Csound adsyn format. New in
Csound version 4.08.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-6

74.3 lpanal

DESCRIPTION
linear predictive analysis for the Csound lp generators

csound –U lpanalcsound –U lpanalcsound –U lpanalcsound –U lpanal [flags] infilename outfilename

or

lpanallpanallpanallpanal [flags] infilename outfilename

lpanal performs both lpc and pitch-tracking analysis on a soundfile to produce a time-
ordered sequence of frames of control information suitable for Csound resynthesis. Analysis
is conditioned by the control flags below. A space is optional between the flag and its
value.

-a – [alternate storage] asks lpanal to write a file with filter poles values rather than the
usual filter coefficient files. When lpread / lpreson are used with pole files, automatic
stabilization is performed and the filter should not get wild. (This is the default in the
Windows GUI) – Changed by Marc Resibois.

-s srate – sampling rate of the audio input file. This will over-ride the srate of the soundfile
header, which otherwise applies. If neither is present, the default is 10000.

-c channel – channel number sought. The default is 1.

-b begin – beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d duration – duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file.

-p npoles – number of poles for analysis. The default is 34, the maximum 50.

-h hopsize – hop size (in samples) between frames of analysis. This determines the number
of frames per second (srate / hopsize) in the output control file. The analysis framesize is
hopsize * 2 samples. The default is 200, the maximum 500.

-C string – text for the comments field of the lpfile header. The default is the null string.

-P mincps – lowest frequency (in Hz) of pitch tracking. -P0 means no pitch tracking.

-Q maxcps – highest frequency (in Hz) of pitch tracking. The narrower the pitch range, the
more accurate the pitch estimate. The defaults are -P70, -Q200.

-v verbosity – level of terminal information during analysis.
• 0 = none
• 1 = verbose
• 2 = debug
• The default is 0.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-7

EXAMPLE
lpanallpanallpanallpanal –a –p26 –d2.5 –P100 –Q400 audiofile.test lpfil22

will analyze the first 2.5 seconds of file “audiofile.test”, producing srate/200 frames per
second, each containing 26-pole filter coefficients and a pitch estimate between 100 and
400 Hertz. Stabilized (-a) output will be placed in “lpfil22” in the current directory.

FILE FORMAT
Output is a file comprised of an identifiable header plus a set of frames of floating point
analysis data. Each frame contains four values of pitch and gain information, followed by
npoles filter coefficients. The file is readable by Csound’s lpread.

lpanal is an extensive modification of Paul Lanksy’s lpc analysis programs.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-8

74.4 pvanal

DESCRIPTION
Fourier analysis for the Csound pvoc generator

csound –U pvanalcsound –U pvanalcsound –U pvanalcsound –U pvanal [flags] infilename outfilename

or

pvanalpvanalpvanalpvanal [flags] infilename outfilename

pvanal converts a soundfile into a series of short-time Fourier transform (STFT) frames at
regular timepoints (a frequency-domain representation). The output file can be used by
pvoc to generate audio fragments based on the original sample, with timescales and
pitches arbitrarily and dynamically modified. Analysis is conditioned by the flags below. A
space is optional between the flag and its argument.

-s srate – sampling rate of the audio input file. This will over-ride the srate of the soundfile
header, which otherwise applies. If neither is present, the default is 10000.

-c channel – channel number sought. The default is 1.

-b begin – beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d duration – duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file.

-n frmsiz – STFT frame size, the number of samples in each Fourier analysis frame. Must be
a power of two, in the range 16 to 16384. For clean results, a frame must be larger than
the longest pitch period of the sample. However, very long frames result in temporal
“smearing” or reverberation. The bandwidth of each STFT bin is determined by sampling
rate / frame size. The default framesize is the smallest power of two that corresponds to
more than 20 milliseconds of the source (e.g. 256 points at 10 kHz sampling, giving a 25.6
ms frame).

-w windfact – Window overlap factor. This controls the number of Fourier transform frames
per second. Csound’s pvoc will interpolate between frames, but too few frames will
generate audible distortion; too many frames will result in a huge analysis file. A good
compromise for windfact is 4, meaning that each input point occurs in 4 output windows,
or conversely that the offset between successive STFT frames is framesize/4. The default
value is 4. Do not use this flag with -h.

-h hopsize – STFT frame offset. Converse of above, specifying the increment in samples
between successive frames of analysis (see also lpanal). Do not use with -w.

EXAMPLE
pvanalpvanalpvanalpvanal asound pvfile

will analyze the soundfile “asound” using the default frmsiz and windfact to produce the
file “pvfile” suitable for use with pvoc.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-9

FILES
The output file has a special pvoc header containing details of the source audio file, the
analysis frame rate and overlap. Frames of analysis data are stored as float, with the
magnitude and ‘frequency’ (in Hz) for the first N/2 + 1 Fourier bins of each frame in turn.
‘Frequency’ encodes the phase increment in such a way that for strong harmonics it gives a
good indication of the true frequency. For low amplitude or rapidly moving harmonics it is
less meaningful.

DIAGNOSTICS
Prints total number of frames, and frames completed on every 20th.

AUTHOR
Dan Ellis
MIT Media Lab
Cambrige, Massachussetts
1990

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-10

74.5 cvanal

DESCRIPTION
Impulse Response Fourier Analysis for convolve operator

Csound -U cvanalCsound -U cvanalCsound -U cvanalCsound -U cvanal [flags] infilename outfilename

cvanal converts a soundfile into a single Fourier transform frame. The output file can be
used by the convolve operator to perform Fast Convolution between an input signal and
the original impulse response. Analysis is conditioned by the flags below. A space is
optional between the flag and its argument.

-s rate – sampling rate of the audio input file. This will over-ride the srate of the soundfile
header, which otherwise applies. If neither is present, the default is 10000.

-c channel –channel number sought. If omitted, the default is to process all channels. If a
value is given, only the selected channel will be processed.

-b begin – beginning time (in seconds) of the audio segment to be analyzed. The default is
0.0

-d duration – duration (in seconds) of the audio segment to be analyzed. The default of 0.0
means to the end of the file.

EXAMPLE
cvanalcvanalcvanalcvanal asound cvfile

will analyze the soundfile “asound” to produce the file “cvfile” for the use with convolve.

To use data that is not already contained in a soundfile, a soundfile converter that accepts
text files may be used to create a standard audio file, e.g., the .DAT format for SOX. This
is useful for implementing FIR filters.

FILES
The output file has a special convolve header, containing details of the source audio file.
The analysis data is stored as ‘float’, in rectangular (real/imaginary) form.

Note: The analysis file is not system independent! Ensure that the original impulse
recording/data is retained. If/when required, the analysis file can be recreated.

AUTHOR
Greg Sullivan
(Based on algorithm given in ‘Elements Of Computer Music’, by F. Richard Moore.

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-11

74.6 pvlook

DESCRIPTION
View formatted text output of STFT analysis files created with pvanal.

csound –U pvlookcsound –U pvlookcsound –U pvlookcsound –U pvlook [flags] infilename

or

pvlookpvlookpvlookpvlook [flags] infilename

pvlook reads a file, and frequency and amplitude trajectories for each of the analysis bins,
in readable text form. The file is assumed to be an STFT analysis file created by pvanal. By
default, the entire file is processed.

-bb N – begin at analysis bin number N, numbered from 1. Default is 1.

-eb N – end at analysis bin number N. Defaults to the highest.

-bf N – begin at analysis frame number N, numbered from 1. Defaults to 1.

-ef N – end at analysis frame number N. Defaults to the highest.

-i – prints values as integers. Defaults to floating point.

EXAMPLE
enakis 259% ../csound -U pvlook test.pv
Using csound.txt
Csound Version 3.57 (Aug 3 1999)
util PVLOOK:
; Bins in Analysis: 513
; First Bin Shown: 1
; Number of Bins Shown: 513
; Frames in Analysis: 1184
; First Frame Shown: 1
; Number of Data Frames Shown: 1184

Bin 1 Freqs.0.000 87.891 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-12

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 -87.891 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 87.891 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-13

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bin 1 Amps. 0.180 0.066 0.252 0.248 0.245 0.246 0.246 0.249
0.252 0.251 0.250 0.248 0.244 0.245 0.248 0.250 0.254 0.251
0.248 0.247 0.244 0.246 0.249 0.250 0.253 0.251 0.247 0.246
0.245 0.246 0.250 0.251 0.252 0.250 0.247 0.245 0.246 0.247
0.251 0.252 0.250 0.249 0.246 0.245 0.248 0.249 0.252 0.253
0.249 0.248 0.245 0.245 0.249 0.251 0.252 0.252 0.249 0.246
0.246 0.245 0.249 0.252 0.252 0.251 0.249 0.245 0.246 0.248
0.250 0.253 0.251 0.249 0.247 0.244 0.247 0.249 0.250 0.253
0.251 0.248 0.247 0.245 0.247 0.250 0.252 0.252 0.251 0.247
0.246 0.246 0.247 0.251 0.252 0.251 0.249 0.246 0.245 0.248
0.249 0.252 0.252 0.249 0.248 0.246 0.245 0.249 0.250 0.252
0.252 0.249 0.247 0.246 0.246 0.249 0.252 0.252 0.251 0.248
0.245 0.246 0.247 0.249 0.253 0.251 0.249 0.247 0.245 0.246
0.248 0.250 0.253 0.251 0.248 0.247 0.244 0.246 0.250 0.251
0.252 0.250 0.247 0.246 0.246 0.248 0.251 0.252 0.251 0.250
0.246 0.245 0.247 0.248 0.251 0.252 0.250 0.248 0.246 0.245
0.248 0.249 0.252 0.252 0.248 0.247 0.245 0.245 0.249 0.251
0.251 0.251 0.248 0.246 0.246 0.247 0.250 0.252 0.251 0.250
0.248 0.244 0.246 0.248 0.250 0.253 0.251 0.248 0.247 0.245
0.247 0.249 0.250 0.252 0.250 0.247 0.246 0.245 0.247 0.251
0.252 0.251 0.250 0.246 0.245 0.247 0.248 0.252 0.252 0.249
0.248 0.245 0.245 0.248 0.249 0.251 0.252 0.248 0.247 0.245
0.245 0.249 0.250 0.251 0.251 0.248 0.246 0.245 0.246 0.249
0.252 0.251 0.250 0.247 0.244 0.246 0.247 0.249 0.252 0.251
0.249 0.247 0.244 0.247 0.249 0.250 0.252 0.250 0.247 0.246
0.245 0.247 0.250 0.251 0.251 0.250 0.246 0.245 0.246 0.248
0.251 0.252 0.250 0.249 0.245 0.245 0.247 0.248 0.251 0.252
0.249 0.247 0.245 0.245 0.248 0.250 0.251 0.251 0.247 0.246
0.245 0.245 0.249 0.251 0.251 0.250 0.247 0.245 0.246 0.246
0.249 0.252 0.251 0.249 0.247 0.244 0.247 0.248 0.250 0.252
0.250 0.247 0.246 0.245 0.247 0.250 0.251 0.252 0.249 0.246
0.245 0.245 0.247 0.251 0.251 0.250 0.249 0.246 0.245 0.247
0.248 0.251 0.251 0.249 0.248 0.245 0.245 0.248 0.249 0.251
0.251 0.248 0.246 0.245 0.245 0.249 0.251 0.251 0.251 0.247
0.245 0.245 0.246 0.249 0.251 0.250 0.249 0.247 0.244 0.246
0.248 0.250 0.252 0.250 0.247 0.246 0.245 0.247 0.249 0.250
0.251 0.249 0.246 0.246 0.245 0.247 0.250 0.250 0.250 0.249
0.245 0.245 0.246 0.248 0.251 0.251 0.249 0.248 0.245 0.245
0.247 0.249 0.251 0.251 0.248 0.246 0.245 0.245 0.248 0.250
0.251 0.250 0.247 0.245 0.245 0.246 0.249 0.251 0.250 0.249
0.246 0.244 0.246 0.247 0.250 0.251 0.250 0.248 0.246 0.245
0.247 0.249 0.250 0.251 0.249 0.247 0.246 0.245 0.247 0.250
0.250 0.251 0.248 0.245 0.245 0.246 0.248 0.251 0.251 0.249
0.248 0.245 0.245 0.247 0.249 0.251 0.251 0.248 0.247 0.245
0.245 0.248 0.249 0.250 0.250 0.247 0.246 0.246 0.246 0.249
0.251 0.250 0.250 0.246 0.245 0.246 0.247 0.250 0.251 0.249
0.248 0.246 0.244 0.246 0.248 0.250 0.251 0.249 0.247 0.246
0.245 0.247 0.250 0.250 0.251 0.249 0.245 0.245 0.246 0.248
0.251 0.250 0.250 0.248 0.245 0.245 0.247 0.248 0.251 0.250
0.248 0.247 0.245 0.246 0.248 0.250 0.251 0.250 0.247 0.246
0.245 0.246 0.249 0.251 0.250 0.249 0.246 0.245 0.246 0.247
0.250 0.251 0.250 0.249 0.246 0.244 0.246 0.248 0.250 0.251
0.249 0.247 0.246 0.245 0.247 0.249 0.250 0.251 0.287 0.331
0.178 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-14

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.140 1.265 2.766 3.289 3.296 3.293 3.296 3.296 3.290 3.293
3.292 3.291 3.297 3.295 3.294 3.296 3.291 3.292 3.294 3.291
3.296 3.297 3.292 3.295 3.292 3.290 3.295 3.293 3.294 3.297
3.292 3.293 3.294 3.290 3.295 3.295 3.292 3.296 3.293 3.291
3.294 3.291 3.293 3.297 3.292 3.295 3.294 3.288 3.293 3.293
3.292 3.297 3.294 3.292 3.295 3.290 3.292 3.295 3.292 3.295
3.295 3.290 3.294 3.292 3.292 3.297 3.293 3.293 3.295 3.290
3.292 3.293 3.290 3.296 3.296 3.292 3.295 3.291 3.290 3.294
3.291 3.294 3.296 3.291 3.293 3.293 3.290 3.295 3.294 3.293
3.296 3.291 3.291 3.293 3.290 3.294 3.296 3.292 3.295 3.293
3.288 3.293 3.292 3.292 3.297 3.292 3.293 3.294 3.289 3.292
3.294 3.291 3.296 3.293 3.291 3.294 3.291 3.292 3.296 3.292
3.294 3.295 3.289 3.292 3.292 3.291 3.296 3.294 3.292 3.295
3.290 3.290 3.293 3.291 3.295 3.296 3.291 3.294 3.291 3.289
3.294 3.292 3.293 3.295 3.291 3.292 3.293 3.290 3.294 3.295
3.292 3.294 3.291 3.289 3.293 3.291 3.293 3.296 3.292 3.293
3.293 3.288 3.292 3.293 3.292 3.296 3.293 3.291 3.294 3.289
3.292 3.295 3.291 3.294 3.293 3.289 3.292 3.291 3.290 3.295
3.293 3.292 3.294 3.289 3.291 3.293 3.290 3.295 3.294 3.290
3.293 3.290 3.289 3.294 3.291 3.293 3.295 3.290 3.292 3.292
3.289 3.293 3.293 3.292 3.295 3.291 3.289 3.292 3.290 3.292
3.295 3.291 3.293 3.292 3.288 3.292 3.291 3.291 3.295 3.291
3.291 3.292 3.289 3.291 3.294 3.291 3.294 3.292 3.289 3.292
3.290 3.290 3.295 3.292 3.293 3.294 3.289 3.291 3.292 3.290
3.294 3.293 3.291 3.293 3.289 3.290 3.293 3.291 3.294 3.295
3.290 3.292 3.291 3.289 3.294 3.293 3.292 3.294 3.290 3.290
3.292 3.289 3.293 3.294 3.291 3.293 3.291 3.289 3.292 3.291
3.291 3.295 3.291 3.291 3.292 3.288 3.292 3.293 3.291 3.295
3.292 3.290 3.292 3.289 3.291 3.294 3.291 3.293 3.292 3.288
3.291 3.291 3.290 3.295 3.292 3.291 3.293 3.289 3.290 3.292
3.290 3.294 3.293 3.290 3.292 3.290 3.289 3.293 3.291 3.292
3.294 3.290 3.290 3.291 3.289 3.293 3.293 3.291 3.293 3.290
3.288 3.291 3.290 3.292 3.294 3.290 3.292 3.291 3.288 3.291
3.291 3.291 3.294 3.291 3.290 3.291 3.288 3.291 3.293 3.291
3.293 3.292 3.288 3.291 3.290 3.290 3.294 3.291 3.291 3.292
3.288 3.290 3.291 3.290 3.294 3.293 3.290 3.292 3.289 3.289
3.293 3.290 3.292 3.293 3.289 3.291 3.290 3.289 3.293 3.292
3.291 3.293 3.289 3.289 3.291 3.289 3.292 3.293 3.290 3.292
3.290 3.288 3.292 3.291 3.291 3.294 3.290 3.290 3.291 3.288
3.291 3.292 3.291 3.293 3.291 3.288 3.291 3.289 3.290 3.293
3.290 3.292 3.292 3.288 3.291 3.291 3.290 3.293 3.291 3.290
3.292 3.288 3.289 3.292 3.290 3.292 3.293 3.289 3.291 3.289
3.288 3.293 3.291 3.291 3.292 3.288 3.289 3.290 3.288 3.292
3.293 3.290 3.292 3.289 3.288 3.291 3.290 3.291 3.293 3.289
3.290 3.290 3.287 3.291 3.291 3.290 3.293 3.290 3.288 3.290
3.288 3.290 3.293 3.291 3.292 3.291 3.288 3.290 3.289 3.289
3.293 3.290 3.290 3.291 3.287 3.289 3.291 3.289 3.292 3.291
3.288 3.290 3.288 3.288 3.292 3.290 3.291 3.292 3.288 3.289
3.290 3.288 3.292 3.292 3.290 3.292 3.289 3.288 3.291 3.289
3.291 3.293 3.289 3.291 3.290 3.287 3.291 3.290 3.290 3.293
3.289 3.289 3.290 3.287 3.290 3.292 3.290 3.292 3.290 3.287
3.290 3.289 3.289 3.292 3.290 3.290 3.291 3.287 3.289 3.290
3.289 3.292 3.291 3.289 3.291 3.288

etc…

AUTHOR
Richard Karpen
Seattle, Wash
1993 (New in Csound version 3.57)

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-15

74.7 sdif2ads

DESCRIPTION
Convert files Sound Description Interchange Format (SDIF) to the format usable by Csound’s
adsyn opcode. As of Csound version 4.10, sdif2ads was available only as a standalone
program for Windows console and DOS.

Csound –U sdif2adsCsound –U sdif2adsCsound –U sdif2adsCsound –U sdif2ads [flags] infilename outfilename

-sN – apply amplitude scale factor N

-pN – keep only the first N partials. Limited to 1024 partials. The source partial track
indices are used directly to select internal storage. As these can be arbitrary values, the
maximum of 1024 partials may not be realized in all cases.

-r – byte-reverse output file data. The byte-reverse option facilitates transfer across
platforms, as Csound's adsyn file format is not portable.

If the filename passed to hetro has the extension .sdif, data will be written in SDIF format
as 1TRC frames of additive synthesis data. The utility program sdif2ads can be used to
convert any SDIF file containing a stream of 1TRC data to the Csound adsyn format.
sdif2ads allows the user to limit the number of partials retained, and to apply an
amplitude scaling factor. This is often necessary, as the SDIF specification does not, as of
the release of sdif2ads, require amplitudes to be within a particular range. sdif2ads
reports information about the file to the console, including the frequency range.

The main advantages of SDIF over the adsyn format, for Csound users, is that SDIF files are
fully portable across platforms (data is “big-endian”), and do not have the duration limit of
32.76 seconds imposed by the 16 bit adsyn format. This limit is necessarily imposed by
sdif2ads. Eventually, SDIF reading will be incorporated directly into adsyn, thus enabling
files of any length (subject to system memory limits) to be analysed and processed.

Users should remember that the SDIF formats are still under development. While the 1TRC
format is now fairly well established, it can still change.

For detailed information on the Sound Description Interchange Format, refer to the CNMAT
website:

• http://cnmat.CNMAT.Berkeley.EDU/SDIF

Some other SDIF resources (including a viewer) are available via the NC_DREAM website:
• http://www.bath.ac.uk/~masjpf/NCD/dreamhome.html

AUTHOR
Richard Dobson
Somerset, England
August, 2000
New in Csound version 4.08

The Public Csound Reference Manual Version 4.10 Utility Programs Page 74-16

This page intentionally left blank.

The Public Csound Reference Manual Version 4.10 Cscore Page 75.1

75 CSCORE

Cscore is a program for generating and manipulating numeric score files. It comprises a
number of function subprograms, called into operation by a user-written control program,
and can be invoked either as a standalone score preprocessor, or as part of the Csound run-
time system:

 CscoreCscoreCscoreCscore scorefilein scorefileout
 or

CsoundCsoundCsoundCsound –C [otherflags] orchname scorename

The available function programs augment the C language library functions; they can read
either standard or pre-sorted score files, can massage and expand the data in various
ways, then make it available for performance by a Csound orchestra.

The user-written control program is also in C, and is compiled and linked to the function
programs (or the entire Csound) by the user. It is not essential to know the C language well
to write this program, since the function calls have a simple syntax, and are powerful
enough to do most of the complicated work. Additional power can come from C later as
the need arises.

The Public Csound Reference Manual Version 4.10 Cscore Page 75.2

75.1 Events, L ists , and Operations

An event in Cscore is equivalent to one statement of a standard numeric score or time-
warped score (see any score.srt), stored internally in time-warped format. It is either
created in-line, or read in from an existing score file (either format). Its main components
are an opcode and an array of pfield values. It is stored somewhere in memory, organized
by a structure that starts as follows:

 typedef struct {
 CSHDR h; /* space-managing header */
 long op; /* opcode—t, w, f, I, a, s or e */
 long pcnt; /* number of pfields p1, p2, p3 … */
 long strlen; /* length of optional string argument */
 char *strarg; /* address of optional string argument */
 float p2orig; /* unwarped p2, p3 */
 float p3orig;
 float offtim; /* storage used during performance */
 float p[1]; /* array of pfields p0, p1, p2 … */
 } EVENT;

Any function subprogram that creates, reads, or copies an event will return a pointer
to the storage structure holding the event data. The event pointer can be used to
access any component of the structure, in the form of e-op or e-p[n]. Each newly
stored event will give rise to a new pointer, and a sequence of new events will
generate a sequence of distinct pointers that must themselves be stored. Groups of
event pointers are stored in an event list, which has its own structure:

 typedef struct {
 CSHDR h;
 int nslots; /* max events in this event list */
 int nevents; /* number of events present */
 EVENT *e[1]; /* array of event pointers e0, e1, e2.. */
 } EVLIST;

Any function that creates or modifies a list will return a pointer to the new list. The list
pointer can be used to access any of its component event pointers, in the form of a-e[n].
Event pointers and list pointers are thus primary tools for manipulating the data of a score
file. Pointers and lists of pointers can be copied and reordered without modifying the data
values they refer to. This means that notes and phrases can be copied and manipulated
from a high level of control. Alternatively, the data within an event or group of events can
be modified without changing the event or list pointers. The Cscore function subprograms
enable scores to be created and manipulated in this way.

In the following summary of Cscore function calls, some simple naming conventions are
used:
 the symbols e, f are pointers to events (notes);

 the symbols a, b are pointers to lists (arrays) of such events;
 the letters ev at the end of a function name signify operation on an event;
 the letter l at the start of a function name signifies operation on a list.
 the symbol fp is a score input stream file pointer (FILE *);
 calling syntax description
 e = createv(n); create a blank event with n pfields
 int n;
 e = defev(“…”); defines an event as per the character string …
 e = copyev(f); make a new copy of event f
 e = getev(); read the next event in the score input file
 putev(e); write event e to the score output file
 putstr(“…”); write the string-defined event to score output
 a = lcreat(n); create an empty event list with n slots
 int n;
 a = lappev(a,e); append event e to list a
 a = lappstrev(a,”…”); append a string-defined event to list a;
 a = lcopy(b); copy the list b (but not the events)
 a = lcopyev(b); copy the events of b, making a new list

The Public Csound Reference Manual Version 4.10 Cscore Page 75.3

 a = lget(); read all events from score input, up to next s or e
 a = lgetnext(nbeats); read next nbeats beats from score input
 float nbeats;
 a = lgetuntil(beatno); read all events from score input up to beat beatno
 float beatno;
 a = lsepf(b); separate the f statements from list b into list a
 a = lseptwf(b); separate the t,w & f statements from list b into list a
 a = lcat(a,b); concatenate (append) the list b onto the list a
 lsort(a); sort the list a into chronological order by p[2]
 a = lxins(b,”…”); extract notes of instruments … (no new events)
 a = lxtimev(b,from,to); extract notes of time-span, creating new events
 float from, to;
 lput(a); write the events of list a to the score output file
 lplay(a); send events of list a to the Csound orchestra for
 immediate performance (or print events if no orchestra)
 relev(e); release the space of event e
 lrel(a); release the space of list a (but not the events)
 lrelev(a); release the events of list a, and the list space
 fp = getcurfp(); get the currently active input scorefile pointer
 (initially finds the command-line input scorefile pointer)
 fp = filopen(“filename”); open another input scorefile (maximum of 5)
 setcurfp(fp); make fp the currently active scorefile pointer
 filclose(fp); close the scorefile relating to FILE *fp

The Public Csound Reference Manual Version 4.10 Cscore Page 75.4

75.2 Writing a Main Program

The general format for a control program is:

#include “cscore.h”
cscore()
{
 /* VARIABLE DECLARATIONS */
 /* PROGRAM BODY */
}

The include statement will define the event and list structures for the program. The
following C program will read from a standard numeric score, up to (but not including) the
first s or e statement, then write that data (unaltered) as output.

#include “cscore.h”
cscore()
{
 EVLIST *a; /* a is allowed to point to an event list */
 a = lget(); /* read events in, return the list pointer */
 lput(a); /* write these events out (unchanged) */
 putstr(“e”); /* write the string e to output */
}

After execution of lget(), the variable a points to a list of event addresses, each of which
points to a stored event. We have used that same pointer to enable another list function
(lput) to access and write out all of the events that were read. If we now define another
symbol e to be an event pointer, then the statement

e = a-e[4];

will set it to the contents of the 4th slot in the evlist structure. The contents is a pointer to
an event, which is itself comprised of an array of parameter field values. Thus the term e-
p[5] will mean the value of parameter field 5 of the 4th event in the evlist denoted by a.
The program below will multiply the value of that pfield by 2 before writing it out.

#include “cscore.h”
cscore()
{
 EVENT *e; /* a pointer to an event */
 EVLIST *a;
 a = lget(); /* read a score as a list of events */
 e = a-e[4]; /* point to event 4 in event list a */
 e-p[5] *= 2; /* find pfield 5, multiply its value by 2 */
 lput(a); /* write out the list of events */
 putstr(“e”); /* add a “score end” statement */
}

Now consider the following score, in which p[5] contains frequency in Hz.

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
I 1 1 3 0 440 10000
I 1 4 3 0 256 10000
I 1 7 3 0 880 10000
e

If this score were given to the preceding main program, the resulting output would look
like this:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
I 1 1 3 0 440 10000
I 1 4 3 0 512 10000 ; p[5] has become 512 instead of 256.
I 1 7 3 0 880 10000
e

The Public Csound Reference Manual Version 4.10 Cscore Page 75.5

Note that the 4th event is in fact the second note of the score. So far we have not
distinguished between notes and function table setup in a numeric score. Both can be
classed as events. Also note that our 4th event has been stored in e[4] of the structure.
For compatibility with Csound pfield notation, we will ignore p[0] and e[0] of the event and
list structures, storing p1 in p[1], event 1 in e[1], etc. The Cscore functions all adopt this
convention.

As an extension to the above, we could decide to use a and e to examine each of the
events in the list. Note that e has not preserved the numeral 4, but the contents of that
slot. To inspect p5 of the previous listed event we need only redefine e with the
assignment

e = a-e[3];

More generally, if we declare a new variable f to be a pointer to a pointer to an event, the
statement

f = &a-e[4];

will set f to the address of the fourth event in the event list a, and *f will signify the
contents of the slot, namely the event pointer itself. The expression

(*f)-p[5],

like e-p[5], signifies the fifth pfield of the selected event. However, we can advance to the
next slot in the evlist by advancing the pointer f. In C this is denoted by f++.

In the following program we will use the same input score. This time we will separate the
ftable statements from the note statements. We will next write the three note-events
stored in the list a, then create a second score section consisting of the original pitch set
and a transposed version of itself. This will bring about an octave doubling.

By pointing the variable f to the first note-event and incrementing f inside a while block
which iterates n times (the number of events in the list), one statement can be made to
act upon the same pfield of each successive event.

#include “cscore.h”
 cscore()
 {
 EVENT *e,**f; /* declarations. see pp.8-9 in the */
 EVLIST *a,*b; /* C language programming manual */
 int n;
 a = lget(); /* read score into event list “a” */
 b = lsepf(a); /* separate f statements */
 lput(b); /* write f statements out to score */
 lrelev(b); /* and release the spaces used */
 e = defev(“t 0 120”); /* define event for tempo statement */
 putev(e); /* write tempo statement to score */
 lput(a); /* write the notes */
 putstr(“s”); /* section end */
 putev(e); /* write tempo statement again */
 b = lcopyev(a); /* make a copy of the notes in “a” */
 n = b-nevents; /* and get the number present */
 f = &a-e[1];
 while (n--) /* iterate the following line n times: */
 (*f++)-p[5] *= .5; /* transpose pitch down one octave */
 a = lcat(b,a); /* now add these notes to original pitches */
 lput(a);
 putstr(“e”);
 }

The Public Csound Reference Manual Version 4.10 Cscore Page 75.6

The output of this program is:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
I 1 1 3 0 440 10000
I 1 4 3 0 256 10000
I 1 7 3 0 880 10000
s
t 0 120
I 1 1 3 0 440 10000
I 1 4 3 0 256 10000
I 1 7 3 0 880 10000
I 1 1 3 0 220 10000
I 1 4 3 0 128 10000
I 1 7 3 0 440 10000
e

Next we extend the above program by using the while statement to look at p[5] and p[6].
In the original score p[6] denotes amplitude. To create a diminuendo in the added lower
octave, which is independent from the original set of notes, a variable called dim will be
used.

#include “cscore.h”
cscore()
{
 EVENT *e,**f;
 EVLIST *a,*b;
 int n, dim; /* declare two integer variables */
 a = lget();
 b = lsepf(a);
 lput(b);
 lrelev(b);
 e = defev(“t 0 120”);
 putev(e);
 lput(a);
 putstr(“s”);
 putev(e); /* write out another tempo statement */
 b = lcopyev(a);
 n = b-nevents;
 dim = 0; /* initialize dim to 0 */
 f = &a-e[1];
 while (n--){
 (*f)-p[6] -= dim; /* subtract current value of dim */
 (*f++)-p[5] *= .5; /* transpose, move f to next event */
 dim += 2000; /* increase dim for each note */
 }
 a = lcat(b,a);
 lput(a);
 putstr(“e”);
}

The increment of f in the above programs has depended on certain precedence rules of C.
Although this keeps the code tight, the practice can be dangerous for beginners.
Incrementing may alternately be written as a separate statement to make it more clear.

while (n--){
 (*f)-p[6] -= dim;
 (*f)-p[5] *= .5;
 dim += 2000;
 f++;
}

The Public Csound Reference Manual Version 4.10 Cscore Page 75.7

Using the same input score again, the output from this program is:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
I 1 1 3 0 440 10000
I 1 4 3 0 256 10000
I 1 7 3 0 880 10000
s
t 0 120
I 1 1 3 0 440 10000 ; Three original notes at
I 1 4 3 0 256 10000 ; beats 1,4 and 7 with no dim.
I 1 7 3 0 880 10000
I 1 1 3 0 220 10000 ; three notes transposed down one octave
I 1 4 3 0 128 8000 ; also at beats 1,4 and 7 with dim.
I 1 7 3 0 440 6000
e

In the following program the same three-note sequence will be repeated at various time
intervals. The starting time of each group is determined by the values of the array cue.
This time the dim will occur for each group of notes rather than each note. Note the
position of the statement which increments the variable dim outside the inner while block.

#include “cscore.h”
int cue[3]={0,10,17}; /* declare an array of 3 integers */
cscore()
{
 EVENT *e, **f;
 EVLIST *a, *b;
 int n, dim, cuecount, holdn; /* declare new variables */
 a = lget();
 b = lsepf(a);
 lput(b);
 lrelev(b);
 e = defev(“t 0 120”);
 putev(e);
 n = a-nevents;
 holdn = n; /* hold the value of “n” to reset below */
 cuecount = 0; /* initialize cuecount to “0” */
 dim = 0;
 while (cuecount <= 2) { /* count 3 iterations of inner “while” */
 f = &a-e[1]; /* reset pointer to first event of list “a” */
 n = holdn; /* reset value of “n” to original note count */
 while (n--) {
 (*f)-p[6] -= dim;
 (*f)-p[2] += cue[cuecount]; /* add values of cue */
 f++;
 }
 printf(“; diagnostic: cue = %d\n”, cue[cuecount]);
 cuecount++;
 dim += 2000;
 lput(a);
 }
 putstr(“e”);
}

Here the inner while block looks at the events of list a (the notes) and the outer while
block looks at each repetition of the events of list a (the pitch group repetitions). This
program also demonstrates a useful trouble-shooting device with the printf function. The
semi-colon is first in the character string to produce a comment statement in the resulting
score file. In this case the value of cue is being printed in the output to insure that the
program is taking the proper array member at the proper time. When output data is wrong
or error messages are encountered, the printf function can help to pinpoint the problem.

The Public Csound Reference Manual Version 4.10 Cscore Page 75.8

Using the identical input file, the C program above will generate:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
; diagnostic: cue = 0
I 1 1 3 0 440 10000
I 1 4 3 0 256 10000
I 1 7 3 0 880 10000
; diagnostic: cue = 10
I 1 11 3 0 440 8000
I 1 14 3 0 256 8000
I 1 17 3 0 880 8000
; diagnostic: cue = 17
I 1 28 3 0 440 4000
I 1 31 3 0 256 4000
I 1 34 3 0 880 4000
e;

The Public Csound Reference Manual Version 4.10 Cscore Page 75.9

75.3 More Advanced Examples

The following program demonstrates reading from two different input files. The idea is to
switch between two 2-section scores, and write out the interleaved sections to a single
output file.

./.htmlinclude “cscore.h” /* CSCORE_SWITCH.C */
cscore() /* callable from either Csound or standalone cscore */
{
 EVLIST *a, *b;
 FILE *fp1, *fp2; /* declare two scorefile stream pointers */
 fp1 = getcurfp(); /* this is the command-line score */
 fp2 = filopen(“score2.srt”); /* this is an additional score file */
 a = lget(); /* read section from score 1 */
 lput(a); /* write it out as is */
 putstr(“s”);
 setcurfp(fp2);
 b = lget(); /* read section from score 2 */
 lput(b); /* write it out as is */
 putstr(“s”);
 lrelev(a); /* optional to reclaim space */
 lrelev(b);
 setcurfp(fp1);
 a = lget(); /* read next section from score 1 */
 lput(a); /* write it out */
 putstr(“s”);
 setcurfp(fp2);
 b = lget(); /* read next sect from score 2 */
 lput(b); / * write it out */
 putstr(“e”);
}

Finally, we show how to take a literal, uninterpreted score file and imbue it with some
expressive timing changes. The theory of composer-related metric pulses has been
investigated at length by Manfred Clines, and the following is in the spirit of his work. The
strategy here is to first create an array of new onset times for every possible sixteenth-
note onset, then to index into it so as to adjust the start and duration of each note of the
input score to the interpreted time-points. This also shows how a Csound orchestra can be
invoked repeatedly from a run-time score generator.

./.htmlinclude “cscore.h” /* CSCORE_PULSE.C */

 /* program to apply interpretive durational pulse to */
 /* an existing score in 3/4 time, first beats on 0, 3, 6 … */

static float four[4] = { 1.05, 0.97, 1.03, 0.95 }; /* pulse width for 4’s*/
static float three[3] = { 1.03, 1.05, .92 }; /* pulse width for 3’s*/

cscore() /* callable from either Csound or standalone cscore */
{
 EVLIST *a, *b;
register EVENT *e, **ep;
 float pulse16[4*4*4*4*3*4]; /* 16th-note array, 3/4 time, 256 measures */
 float acc16, acc1,inc1, acc3,inc3, acc12,inc12, acc48,inc48, acc192,inc192;
register float *p = pulse16;
register int n16, n1, n3, n12, n48, n192;
 /* fill the array with interpreted ontimes */
 for (acc192=0.,n192=0; n192<4; acc192+=192.*inc192,n192++)
 for (acc48=acc192,inc192=four[n192],n48=0; n48<4; acc48+=48.*inc48,n48++)
 for (acc12=acc48,inc48=inc192*four[n48],n12=0;n12<4;
 acc12+=12.*inc12,n12++)
 for (acc3=acc12,inc12=inc48*four[n12],n3=0; n3<4; acc3+=3.*inc3,n3++)
 for (acc1=acc3,inc3=inc12*four[n3],n1=0; n1<3; acc1+=inc1,n1++)
 for (acc16=acc1,inc1=inc3*three[n1],n16=0; n16<4;
 acc16+=.25*inc1*four[n16],n16++)
 *p++ = acc16;

The Public Csound Reference Manual Version 4.10 Cscore Page 75.10

/* for (p = pulse16, n1 = 48; n1--; p += 4) /* show vals & diffs */
/* printf(“%g %g %g %g %g %g %g %g\n”, *p, *(p+1), *(p+2), *(p+3),
/* *(p+1)-*p, *(p+2)-*(p+1), *(p+3)-*(p+2), *(p+4)-*(p+3)); */

 a = lget(); /* read sect from tempo-warped score */
 b = lseptwf(a); /* separate warp & fn statements */
 lplay(b); /* and send these to performance */
 a = lappstrev(a, “s”); /* append a sect statement to note list */
 lplay(a); /* play the note-list without interpretation */
 for (ep = &a-e[1], n1 = a-nevents; n1--;) { /* now pulse-modify it */
 e = *ep++;
 if (e-op == ‘I’) {
 e-p[2] = pulse16[(int)(4. * e-p2orig)];
 e-p[3] = pulse16[(int)(4. * (e-p2orig + e-p3orig))] – e-p[2];
 }
 }

 lplay(a); /* now play modified list */
}

As stated above, the input files to Cscore may be in original or time-warped and pre-sorted
form; this modality will be preserved (section by section) in reading, processing and
writing scores. Standalone processing will most often use unwarped sources and create
unwarped new files. When running from within Csound the input score will arrive already
warped and sorted, and can thus be sent directly (normally section by section) to the
orchestra.

A list of events can be conveyed to a Csound orchestra using lplay. There may be any
number of lplay calls in a Cscore program. Each list so conveyed can be either time-
warped or not, but each list must be in strict p2-chronological order (either from presorting
or using lsort). If there is no lplay in a cscore module run from within Csound, all events
written out (via putev, putstr or lput) constitute a new score, which will be sent initially to
scsort then to the Csound orchestra for performance. These can be examined in the files
‘cscore.out’ and ‘cscore.srt’.

A standalone Cscore program will normally use the put commands to write into its output
file. If a standalone Cscore program contains lplay, the events thus intended for
performance will instead be printed on the console.

A note list sent by lplay for performance should be temporally distinct from subsequent
note lists. No note-end should extend past the next list’s start time, since lplay will
complete each list before starting the next (i.e. like a Section marker that doesn’t reset
local time to zero). This is important when using lgetnext() or lgetuntil() to fetch and
process score segments prior to performance.

The Public Csound Reference Manual Version 4.10 Cscore Page 75.11

75.4 Compil ing a Cscore Program

A Cscore program can be invoked either as a Standalone program or as part of Csound:

cscore –U pvanalcscore –U pvanalcscore –U pvanalcscore –U pvanal scorename outfilename
or

csoundcsoundcsoundcsound –C [otherflags] orchname scorename

To create a standalone program, write a cscore.c program as shown above and test
compile it with ‘cc cscore.c’. If the compiler cannot find “cscore.h”, try using –
I/usr/local/include, or just copy the cscore.h module from the Csound source directory
into your own. There will still be unresolved references, so you must now link your program
with certain Csound I/O modules. If your Csound installation has created a libcscore.a, you
can type

cc –o cscore.c –lcscore

Else set an environment variable to a Csound directory containing the already compiled
modules, and invoke them explicitly:

setenv CSOUND /ti/u/bv/Csound
cc –o cscore cscore.c $CSOUND/cscoremain.o $CSOUND/cscorefns.o \

$CSOUND/rdscore.o $CSOUND/memalloc.o

The resulting executable can be applied to an input scorefilein by typing:

cscore scorefilein scorefileout

To operate from Csound, first proceed as above then link your program to a complete set
of Csound modules. If your Csound installation has created a libcsound.a, you can do this
by typing

cc –o mycsound cscore.o –lcsounc –lX11 –lm (X11 if your installation included it)

Else copy *.c, *.h and Makefile from the Csound source directory, replace cscore.c by your
own, then run ‘make Csound’. The resulting executable is your own special Csound, usable
as above. The –C flag will invoke your Cscore program after the input score is sorted into
‘score.srt’. With no lplay, the subsequent stages of processing can be seen in the files
‘cscore.out’ and ‘cscore.srt’.

The Public Csound Reference Manual Version 4.10 Cscore Page 75.12

T h i s p a g e i n t e n t i o n a l l y l e f t b l a n k .

The Public Csound Reference Manual Version 4.10 Adding your own Cmodules to Csound Page 76-1

76 ADDING YOUR OWN CMODULES TO
CSOUND

If the existing Csound generators do not suit your needs, you can write your own modules in
C and add them to the run-time system. When you invoke Csound on an orchestra and score
file, the orchestra is first read by a table-driven translator ‘otran’ and the instrument
blocks converted to coded templates ready for loading into memory by ‘oload’ on request
by the score reader. To use your own C-modules within a standard orchestra you need only
add an entry in otran’s table and relink Csound with your own code.

The translator, loader, and run-time monitor will treat your module just like any other
provided you follow some conventions. You need a structure defining the inputs, outputs
and workspace, plus some initialization code and some perf-time code. Let’s put an
example of these in two new files, newgen.h and newgen.c:

 typedef struct { /* newgen.h - define a structure */
 OPDS
 h; /* required header */
 float *result, *istrt, *incr, *itime, *icontin; /* addr outarg, inargs
*/
 float curval, vincr; /* private dataspace */
 long countdown; /* ditto */
 } RMP;

#include “cs.h” /* newgen.c - init and perf code */
#include “newgen.h”

void rampset(RMP *p) /* at note initialization: */
{
 if (*p-icontin == 0.)
 p-curval = *p-istrt; /* optionally get new start value */
 p-vincr = *p-incr / esr; /* set s-rate increment per sec. */
 p-countdown = *p-itime * esr; /* counter for itime seconds */
}

void ramp(RMP *p) /* during note performance: */
 {
 float *rsltp = p-result; /* init an output array pointer */
 int nn = ksmps; /* array size from orchestra */
 do {
 rsltp++ = p-curval; / copy current value to output */
 if (--p-countdown = 0) /* for the first itime seconds, */
 p-curval += p-vincr; /* ramp the value */
 } while (--nn);
 }

Now we add this module to the translator table entry.c, under the opcode name rampt:

 #include “newgen.h”
 void rampset(), ramp();

 /* opcode dspace thread outarg inargs isub ksub asub
*/
 { “rampt”, S(RMP), 5, “a”, “iiio”, rampset, NULL, ramp },

The Public Csound Reference Manual Version 4.10 Adding your own Cmodules to Csound Page 76-2

Finally we relink Csound to include the new module. If your Csound installation has
created a libcsound.a, you can do this by typing

cc -o mycsound newgen.c entry.c -lcsound –lX11 –lm
(X11 if included at installation)

Else copy *.c, *.h and Makefile from the Csound sources, add newgen.o to the Makefile list
OBJS, add newgen.h as a dependency for entry.o, and a new dependency ‘newgen.o:
newgen.h’, then run ‘make Csound’. If your host is a Macintosh, simply add newgen.h
and newgen.c to one of the segments in the Csound Project, and invoke the C compiler.

The above actions have added a new generator to the Csound language. It is an audio-rate
linear ramp function which modifies an input value at a user-defined slope for some period.
A ramp can optionally continue from the previous note’s last value. The Csound manual
entry would look like:

ar ramptramptramptrampt istart, islope, itime [, icontin]

istart – beginning value of an audio-rate linear ramp. Optionally overridden by a continue
flag.

islope – slope of ramp, expressed as the y-interval change per second.

itime – ramp time in seconds, after which the value is held for the remainder of the note.

icontin (optional) – continue flag. If zero, ramping will proceed from input istart . If non-
zero, ramping will proceed from the last value of the previous note. The default value is
zero.

The file newgen.h includes a one-line list of output and input parameters. These are the
ports through which the new generator will communicate with the other generators in an
instrument. Communication is by address, not value, and this is a list of pointers to floats.
There are no restrictions on names, but the input-output argument types are further
defined by character strings in entry.c (inargs, outargs). Inarg types are commonly x, a, k,
and I, in the normal Csound manual conventions; also available are o (optional, defaulting
to 0), p (optional, defaulting to 1). Outarg types include a, k, I and s (asig or ksig). It is
important that all listed argument names be assigned a corresponding argument type in
entry.c. Also, I-type args are valid only at initialization time, and other-type args are
available only at perf time. Subsequent lines in the RMP structure declare the work space
needed to keep the code re-entrant. These enable the module to be used multiple times in
multiple instrument copies while preserving all data.

The file newgen.c contains two subroutines, each called with a pointer to the uniquely
allocated RMP structure and its data. The subroutines can be of three types: note
initialization, k-rate signal generation, a-rate signal generation. A module normally
requires two of these initialization, and either k-rate or a-rate subroutines which become
inserted in various threaded lists of runnable tasks when an instrument is activated. The
thread-types appear in entry.c in two forms: isub, ksub and asub names; and a threading
index which is the sum of isub=1, ksub=2, asub=4. The code itself may reference global
variables defined in cs.h and oload.c, the most useful of which are:

extern OPARMS O ; float esr
 user-defined sampling rate float ekr
 user-defined control rate float ensmps
 user-defined ksmps int ksmps
 user-defined ksmps int nchnls
 user-defined nchnls int O.odebug
 command-line –v flag int O.msglevel
 command-line –m level float pi, twopi obvious
 constants float tpidsr twopi / esr float
 sstrcod special code for string arguments

The Public Csound Reference Manual Version 4.10 Adding your own Cmodules to Csound Page 76-3

FUNCTION TABLES
To access stored function tables, special help is available. The newly defined structure
should include a pointer

FUNC *ftp;

initialized by the statement

ftp = ftpfind(p-ifuncno);

where float *ifuncno is an I-type input argument containing the ftable number. The stored
table is then at ftp-ftable, and other data such as length, phase masks, cps-to-incr
converters, are also accessed from this pointer. See the FUNC structure in cs.h, the ftfind()
code in fgens.c, and the code for oscset() and koscil() in opcodes2.c.

ADDITIONAL SPACE
Sometimes the space requirement of a module is too large to be part of a structure (upper
limit 65535 bytes), or it is dependent on an I-arg value which is not known until
initialization. Additional space can be dynamically allocated and properly managed by
including the line

AUXCH auxch;

in the defined structure (*p), then using the following style of code in the init module:

 if (p-auxch.auxp == NULL)
 auxalloc(npoints * sizeof(float), &p-auxch);

The address of this auxiliary space is kept in a chain of such spaces belonging to this
instrument, and is automatically managed while the instrument is being duplicated or
garbage-collected during performance. The assignment

char *auxp = p-auxch.auxp;

will find the allocated space for init-time and perf-time use. See the LINSEG structure in
opcodes1.h and the code for lsgset() and klnseg() in opcodes1.c.

FILE SHARING
When accessing an external file often, or doing it from multiple places, it is often efficient
to read the entire file into memory. This is accomplished by including the line

MEMFIL *mfp;

in the defined structure (*p), then using the following style of code in the init module:

 if (p-mfp == NULL)
 p-mfp = ldmemfile(filname);

where char *filname is a string name of the file requested. The data read will be found
between

 (char *) p-mfp-beginp; and (char *) p-mfp-endp;

Loaded files do not belong to a particular instrument, but are automatically shared for
multiple access. See the ADSYN structure in opcodes3.h and the code for adset() and
adsyn() in opcodes3.c.

The Public Csound Reference Manual Version 4.10 Adding your own Cmodules to Csound Page 76-4

STRING ARGUMENTS
To permit a quoted string input argument (float *ifilnam, say) in our defined structure (*p),
assign it the argtype S in entry.c, include another member char *strarg in the structure,
insert a line

TSTRARG(“rampt”, RMP) \

in the file oload.h, and include the following code in the init module:

 if (*p-ifilnam == sstrcod)
 strcpy(filename, unquote(p-strarg));

See the code for adset() in opcodes3.c, lprdset() in opcodes5.c, and pvset() in opcodes8.c.

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–1

77 APPENDIX A: MISCELLANEOUS
INFORMATION

77.1 Pitch Conversion
Note Hz cpspch MIDI Note Hz cpspch MIDI
C-1 8.176 3.00 0 E4 329.628 8.04 64
C#-1 8.662 3.01 1 F4 349.228 8.05 65
D-1 9.177 3.02 2 F#4 369.994 8.06 66
D#-1 9.723 3.03 3 G4 391.995 8.07 67
E-1 10.301 3.04 4 G#4 415.305 8.08 68
F-1 10.913 3.05 5 A4 440.000 8.09 69
F#-1 11.562 3.06 6 A#4 466.164 8.10 70
G-1 12.250 3.07 7 B4 493.883 8.11 71
G#-1 12.978 3.08 8 C5 523.251 9.00 72
A-1 13.750 3.09 9 C#5 554.365 9.01 73
A#-1 14.568 3.10 10 D5 587.330 9.02 74
B-1 15.434 3.11 11 D#5 622.254 9.03 75
C0 16.352 4.00 12 E5 659.255 9.04 76
C#0 17.324 4.01 13 F5 698.456 9.05 77
D0 18.354 4.02 14 F#5 739.989 9.06 78
D#0 19.445 4.03 15 G5 783.991 9.07 79
E0 20.602 4.04 16 G#5 830.609 9.08 80
F0 21.827 4.05 17 A5 880.000 9.09 81
F#0 23.125 4.06 18 A#5 932.328 9.10 82
G0 24.500 4.07 19 B5 987.767 9.11 83
G#0 25.957 4.08 20 C6 1046.502 10.00 84
A0 27.500 4.09 21 C#6 1108.731 10.01 85
A#0 29.135 4.10 22 D6 1174.659 10.02 86
B0 30.868 4.11 23 D#6 1244.508 10.03 87
C1 32.703 5.00 24 E6 1318.510 10.04 88
C#1 34.648 5.01 25 F6 1396.913 10.05 89
D1 36.708 5.02 26 F#6 1479.978 10.06 90
D#1 38.891 5.03 27 G6 1567.982 10.07 91
E1 41.203 5.04 28 G#6 1661.219 10.08 92
F1 43.654 5.05 29 A6 1760.000 10.09 93
F#1 46.249 5.06 30 A#6 1864.655 10.10 94
G1 48.999 5.07 31 B6 1975.533 10.11 95
G#1 51.913 5.08 32 C7 2093.005 11.00 96
A1 55.000 5.09 33 C#7 2217.461 11.01 97
A#1 58.270 5.10 34 D7 2349.318 11.02 98
B1 61.735 5.11 35 D#7 2489.016 11.03 99
C2 65.406 6.00 36 E7 2637.020 11.04 100
C#2 69.296 6.01 37 F7 2793.826 11.05 101
D2 73.416 6.02 38 F#7 2959.955 11.06 102
D#2 77.782 6.03 39 G7 3135.963 11.07 103
E2 82.407 6.04 40 G#7 3322.438 11.08 104
F2 87.307 6.05 41 A7 3520.000 11.09 105
F#2 92.499 6.06 42 A#7 3729.310 11.10 106
G2 97.999 6.07 43 B7 3951.066 11.11 107
G#2 103.826 6.08 44 C8 4186.009 12.00 108
A2 110.000 6.09 45 C#8 4434.922 12.01 109
A#2 116.541 6.10 46 D8 4698.636 12.02 110
B2 123.471 6.11 47 D#8 4978.032 12.03 111

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–2

Note Hz cpspch MIDI Note Hz cpspch MIDI
C3 130.813 7.00 48 E8 5274.041 12.04 112
C#3 138.591 7.01 49 F8 5587.652 12.05 113
D3 146.832 7.02 50 F#8 5919.911 12.06 114
D#3 155.563 7.03 51 G8 6271.927 12.07 115
E3 164.814 7.04 52 G#8 6644.875 12.08 116
F3 174.614 7.05 53 A8 7040.000 12.09 117
F#3 184.997 7.06 54 A#8 7458.620 12.10 118
G3 195.998 7.07 55 B8 7902.133 12.11 119
G#3 207.652 7.08 56 C9 8372.018 13.00 120
A3 220.000 7.09 57 C#9 8869.844 13.01 121
A#3 233.082 7.10 58 D9 9397.273 13.02 122
B3 246.942 7.11 59 D#9 9956.063 13.03 123
C4 261.626 8.00 60 E9 10548.08 13.04 124
C#4 277.183 8.01 61 F9 11175.30 13.05 125
D4 293.665 8.02 62 F#9 11839.82 13.06 126
D#4 311.127 8.03 63 G9 12543.85 13.07 127

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–3

77.2 Sound Intensity Values (for a 1000 Hz
tone)

Dynamics Intensity (W/m^2) Level (dB)
pain 1 120
fff 10^-2 100
f 10^-4 80
p 10^-6 60
ppp 10^-8 40
threshold 10^-12 0

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–4

77.3 Formant Values
f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

soprano “a” tenor “a”
freq (Hz) 800 1150 2900 3900 4950 freq (Hz) 650 1080 2650 2900 3250
amp (dB) 0 -6 -32 -20 -50 amp (dB) 0 -6 -7 -8 -22
bw (Hz) 80 90 120 130 140 bw (Hz) 80 90 120 130 140
soprano “e” tenor “e”
freq (Hz) 350 2000 2800 3600 4950 freq (Hz) 400 1700 2600 3200 3580
amp (dB) 0 -20 -15 -40 -56 amp (dB) 0 -14 -12 -14 -20
bw (Hz) 60 100 120 150 200 bw (Hz) 70 80 100 120 120
soprano “I” tenor “I”
freq (Hz) 270 2140 2950 3900 4950 freq (Hz) 290 1870 2800 3250 3540
amp (dB) 0 -12 -26 -26 -44 amp (dB) 0 -15 -18 -20 -30
bw (Hz) 60 90 100 120 120 bw (Hz) 40 90 100 120 120
soprano “o” tenor “o”
freq (Hz) 450 800 2830 3800 4950 freq (Hz) 400 800 2600 2800 3000
amp (dB) 0 -11 -22 -22 -50 amp (dB) 0 -10 -12 -12 -26
bw (Hz) 70 80 100 130 135 bw (Hz) 40 80 100 120 120
soprano “u” tenor “u”
freq (Hz) 325 700 2700 3800 4950 freq (Hz) 350 600 2700 2900 3300
amp (dB) 0 -16 -35 -40 -60 amp (dB) 0 -20 -17 -14 -26
bw (Hz) 50 60 170 180 200 bw (Hz) 40 60 100 120 120
alto “a” bass “a”
freq (Hz) 800 1150 2800 3500 4950 freq (Hz) 600 1040 2250 2450 2750
amp (dB) 0 -4 -20 -36 -60 amp (dB) 0 -7 -9 -9 -20
bw (Hz) 80 90 120 130 140 bw (Hz) 60 70 110 120 130
alto “e” bass “e”
freq (Hz) 400 1600 2700 3300 4950 freq (Hz) 400 1620 2400 2800 3100
amp (dB) 0 -24 -30 -35 -60 amp (dB) 0 -12 -9 -12 -18
bw (Hz) 60 80 120 150 200 bw (Hz) 40 80 100 120 120
alto “I” bass “I”
freq (Hz) 350 1700 2700 3700 4950 freq (Hz) 250 1750 2600 3050 3340
amp (dB) 0 -20 -30 -36 -60 amp (dB) 0 -30 -16 -22 -28
bw (Hz) 50 100 120 150 200 bw (Hz) 60 90 100 120 120
alto “o” bass “o”
freq (Hz) 450 800 2830 3500 4950 freq (Hz) 400 750 2400 2600 2900
amp (dB) 0 -9 -16 -28 -55 amp (dB) 0 -11 -21 -20 -40
bw (Hz) 70 80 100 130 135 bw (Hz) 40 80 100 120 120
alto “u” bass “u”
freq (Hz) 325 700 2530 3500 4950 freq (Hz) 350 600 2400 2675 2950
amp (dB) 0 -12 -30 -40 -64 amp (dB) 0 -20 -32 -28 -36
bw (Hz) 50 60 170 180 200 bw (Hz) 40 80 100 120 120

f1 f2 f3 f4 f5
countertenor “a”
freq (Hz) 660 1120 2750 3000 3350
amp (dB) 0 -6 -23 -24 -38
bw (Hz) 80 90 120 130 140
countertenor “e”
freq (Hz) 440 1800 2700 3000 3300
amp (dB) 0 -14 -18 -20 -20
bw (Hz) 70 80 100 120 120
countertenor “I”
freq (Hz) 270 1850 2900 3350 3590
amp (dB) 0 -24 -24 -36 -36
bw (Hz) 40 90 100 120 120
countertenor “o”
freq (Hz) 430 820 2700 3000 3300
amp (dB) 0 -10 -26 -22 -34
bw (Hz) 40 80 100 120 120
countertenor “u”
freq (Hz) 370 630 2750 3000 3400
amp (dB) 0 -20 -23 -30 -34
bw (Hz) 40 60 100 120 120

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–5

77.4 Window Functions

Windowing functions are used for analysis, and as waveform envelopes, particularly in
granular synthesis. Window functions are built in to some opcodes, but others require a
function table to generate the window. GEN20 is used for this purpose. The diagram of
each window below, is accompanied by the f statement used to generate the it.

HAMMING
 f81 0 8192 20 1 1

HANNING
 f82 0 8192 20 2 1

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–6

BARTLETT
 f83 0 8192 20 3 1

BLACKMAN
 f84 0 8192 20 4 1

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–7

BLACKMAN-HARRIS
 f85 0 8192 20 5 1

GAUSSIAN
 f86 0 8192 20 6 1

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–8

RECTANGLE
 f88 0 8192 -20 8 .1
Note: Vertical scale is exaggerated in this diagram.

SYNC
 f89 0 4096 -20 9 .75

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–9

77.5 SoundFont2 Fi le Format

Beginning with Csound Version 4.06, Csound supports SoundFont2 sample file format.
SoundFont2 (or SF2) is a widespread standard which allows encoding banks of wavetable-
based sounds into a binary file. In order to understand the usage of these opcodes, the user
must have some knowledge of the SF2 format, so a brief description of this format follows.

The SF2 format is made by generator and modulator objects. All current Csound opcodes
regarding SF2 support the generator function only.

There are several levels of generators having a hierarchical structure. The most basic kind
of generator object is a sample. Samples may or may not be be looped, and are associated
with a MIDI note number, called the base-key. When a sample is associated with a range of
MIDI note numbers, a range of velocities, a transposition (coarse and fine tuning), a scale
tuning, and a level scaling factor, the sample and its associations make up a “split.” A set
of splits, together with a name, make up an “instrument.” When an instrument is
associated with a key range, a velocity range, a level scaling factor, and a transposition,
the instrument and its associations make up a “layer.” A set of layers, together with a
name, makes up a “preset.” Presets are normally the final sound-generating structures
ready for the user. They generate sound according to the settings of their lower-level
components.

Both sample data and structure data is embedded in the same SF2 binary file. A single SF2
file can contain up to a maximum of 128 banks of 128 preset programs, for a total of 16384
presets in one SF2 file. The maximum number of layers, instruments, splits, and samples is
not defined, and probably is only limited by the computer’s memory.

SoundFont2 File Structure

Preset

Layer

Layer

Layer

Instrument

Instrument

Instrument

Split

Split

Split

Sample

Sample

Sample

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–10

77.6 Print Edit ion Update Procedure

Updated pages only, are available, in Adobe Acrobat (.pdf) format, separately from the
complete manual. There are separate sets of files for single- and double-sided printing.
The name of the update file for single-sided printing, will be with the Csound version
number to which they correspond, ending with up.pdf. For example, the update file for
version 3.52 will be called 3_52up.pdf.

The files containing the update pages only, for double-sided printing, will follow the same
convention as for single-sided printing, except that a 1 will be appended for the odd
numbered pages and a 2 for even numbered pages. Example: 3_52up1.pdf and 3_52up2.pdf
for Csound version 3.52.

There will be as many sets of updates on the server as space permits, in the event the user
misses an update before the next one is released. The version of the manual is stated on
the title page, in the footer of each page, and in Section 22.6 (Manual Update History).

To update an existing manual, print the update file(s) for either single- or double-sided
printing, as required. Insert the new pages, and replace the changed pages, as needed,
discarding the old pages that have been replaced.

WHERE TO GET THE MANUAL
The manual files are available from browser download from the editor’s website:

http://www.lakewoodsound.com/csound

or via anonymous ftp:

ftp://ftp.csounds.com/manual

All the files are zipped for easy downloading, but the Acrobat files are not compressed.
Also available at this site are an HTML Edition, and ASCII text edition, and a Spanish
Edition, also in Acrobat format, translated by Servando Valero.

BUG REPORTS
We have worked to make these manuals as accurate as possible. Errors, however, will
happen. If you find a bug, an error, or omission, please report it to the editor
(csound@lakewoodsound.com).

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–11

77.7 Manual Update History
Note: Beginning with Version 3.55, page numbers in bold indicate new or added pages.
Other page numbers are revised, existing pages.

DATE VERSION NEW OR CHANGED PAGES

September, 1998 Version 3.48 All

3 November, 1998 Version 3.49 iii, v-xiv, 1:3, 2:1-2:2, 2:13, 5:4, 7:12-7:14, 8:4, 8:16-
8:65, 9:3-9:4, 9:31-9:40, 11:5-11:6, 13:1-13:2, 13:9,
14:4-14:18, 15:18-15:20, 16:4-16:8, 22:6

8 November, 1998 Version 3.491 I, iii, v-xiv, 2:2, 2:16, 8:66, 12:5-12:6, 14:7, 22:6

Included in 3.493
release

Version 3.492 7:3, 7:14 – 7:18, 8:59 – 8:60, 8:66, 9:8 – 9:9, 9:35,
13:5 – 13:6

24 November, 1998 Version 3.493 iii, vi – xiv, 2:5, 5:3 8:18, 8:20, 22:6

5 January, 1999 Version 3.494 iii, vii-xi, xiii-xiv, 3:1, 4:1, 8:14, 8:15, 8:35, 8:59,
9:32, 9:41, 9:42, 22:6

21 January, 1999 Version 3.50 iii-xvi, 2:9, 5:3, 7:3, 7:19-22, 8:4-6, 8:18, 8:61 8:67-
70, 9:8-9, 9:21, 9:23 9:36-37, 9:42-44 13:1-2, 13:5-6,
17:1-2, 18:1-2, 22:6

27 January, 1999 Version 3.51 iii, v, vii, xiv, xv, 8:65, 9:14, 17:1, 17:2, 22:6

24 February, 1999 Version 3.52 iii; v-xi; xiii-xv; 5:4; 7:4-7; 7:11; 7:19-22; 8:8-12;
8:49; 8:54; 8:71-72; 9:28; 9:38; 9:42; 12:5; 13:5;
13:6; 13:7; 14:4; 22:6

23 March, 1999 Version 3.53 All

20 May, 1999 Version 3.54 I; iii; v-xv; xix; xxiii-xxv; xxviii; xxx; xxxii-xxxiii; 2:2;
5:4-6; 7:6-7; 7:9; 7:12; 7:20; 8:4-5; 8:8; 8:10-11;
8:16; 8:18, 8:28; 8:30; 8:34; 8:34; 8:44-46; 8:65;
8:67-68; 9:1-2; 9:6; 9:10; 9:12; 9:39-40; 9:46; 9:49-
50; Sec13; 19:1-2; 19:9

21 June, 1999 Version 3.55 I; iii; v-xvi; xix; xxxi; xxxv-xxxvi; 1:5; 2:1-3; 2:10-11;
4:1; 5:4-6; 5:7-8; 7:18; 7:20; 8:5-15; 8:20; 8:24; 8:32;
8:34; 8:37; 8:39; 8:42; 8:60; 8:64; 8:68; 8:70; 8:72;
9:13; 9:23; 9:26; 9:32; 9:34; 9:36-38; 9:39; 9:41;
9:44; 9:48-49; 9:50-58; 10:6; 13:2; 13:6; 13:8; 13:11-
12; 13:14-19; 14:1-2; 14:4-6; 14:9-10; 14:14-17;
14:19-21; 15:1-7; 15:10-14; 15:16-20; 15:21-22; 16:2-
8; 17:2; 18:2; 19:4-6; 19:10; 20:1; 20:5-7; 20:10-13;
21:2; 22:6; 22:10-11

22 July, 1999 Version 3.56 i-xxxviii; xxxix-xl; 7:6-9; 7:11-12; 7:14-16; 7:18-21;
8:1; 8:4-5; 8:8-9; 8:11; 8:13-15; 8:22-23; 8:63-74;
8:75-76; 9:59-62; 12:7-8; 13:20; 13:21-22; 14:8;
14:11; 22:11-12; 23:1-24

9 August, 1999 Version 3.57 I; v-xl; xli-xlvi; 2:9; 2:16; 5:2; 5:9-10; 6:1; 7:2; 7:18;
7:20; 8:1-3; 8:6-7; 8:18; 8:20; 8:22-23; 8:25; 8:32;
8:40; 8:60; 8:63; 9:1-62; 9:63-64; 12:1; 12:7-8; 12:9-
10; 13:20; 13:22; 14:7; 15:16-22; 19:4-10; 19:11-16;
20:04; 22:11; 23:1-22; (delete 23:23-24)

The Public Csound Reference Manual Version 4.10 Appendix A: Miscellaneous Information Page 77–12

Manual Update History (Continued)
18 August, 1999 Version 3.58 I; v-xv; iii; xxxi; xxxii; xxxiii; xxxiv; 1:3; 5:4; 7:1; 9:3;

9:13; 9:16; 9:20; 9:25-26; 9:36; 9:38; 9:40; 9:46-64;
14:11-22; 14:23-24; 15:19; 19:11; 22:10; 22:12

16 November, 1999 Version 4.0 All

23 November, 1999 Version 4.01 I; ix-xvii; 42-3; 49-7 – 49-22; 49-23 – 49-24; 70-5;
76-12; QR10; QR13

25 February, 2000 Version 4.03 I – xvii; 2-3 – 2-5; 3-1; 3-3; 11-11; 11-12; 42-7; 45-1;
50-3; 50-4; 50-5; 50-6; 52-1; 52-2; 68-15; 76-12;
QR2; QR11; QR13

1 August, 2000 Version 4.06 All

15 September, 2000 Version 4.07 I–xviii; 29-2; 34-1; 35-3; 39-3; 40-11; 42-11–42-12;
43-3; 43-12; 43-13–43-16; 56-1; 56-3; 58-3; 58-4;
60-6; 60-11–60-13; 70-2–70-24; 77-13; QR10; QR14;
QR16

20 March, 2001 Version 4.10 All

Csound Quick Reference

The Public Csound Reference Manual 1 Version 4.0

Orchestra Syntax: Orchestra Header Statements
srsrsrsr ==== iarg
krkrkrkr ==== iarg
ksmpsksmpsksmpsksmps ==== iarg
nchnlsnchnlsnchnlsnchnls ==== iarg

strsetstrsetstrsetstrset iarg, “stringtext”
psetpsetpsetpset con1, con2, ...
seedseedseedseed ival

gir ftgenftgenftgenftgen ifn, itime, isize, igen, iarga[, iargb, …iargz]
massignmassignmassignmassign ichnl, insnum
ctrlinitctrlinitctrlinitctrlinit ichnkm, ictlno1, ival1[, ictlno2, ival2[, ictlno3,

ival3[, …ival32]]

Orchestra Syntax: Variable Data Types
iiiiname (init variable - initialization only)
kkkkname (control signal - performance time, control rate)
aaaaname (audio signal - performance time, audio rate)
gigigiginame (global init variable - initialization only)
gkgkgkgkname (global control signal - performance time, control

rate)
gagagaganame (global audio signal - performance time, audio rate)
wwwwname (spectral data – performance time, control rate)

Orchestra Syntax: Instrument Block Statements
instrinstrinstrinstr NN
endinendinendinendin

Orchestra Syntax: Variable Initialization
i/k/ar ==== iarg
i/k/ar initinitinitinit iarg
ir tivaltivaltivaltival
i/k/ar divzdivzdivzdivz ia, ib, isubst

Instrument Control: Instrument Invocation
scheduleschedulescheduleschedule insnum, iwhen, idur[, p4, p5, …]
schedwhenschedwhenschedwhenschedwhen ktrigger, kinsnum, kwhen, kdur[, p4, p5, …]
schedkwhenschedkwhenschedkwhenschedkwhen ktrigger, kmintim, kmaxnum, kinsnum, kwhen, kdur[,

kp4, kp5, …]
turnonturnonturnonturnon insnum[, itime]

Instrument Control: Duration Control
iholdiholdiholdihold
turnoffturnoffturnoffturnoff

Csound Quick Reference

The Public Csound Reference Manual 2 Version 4.0

Instrument Control: Realtime Performance Control
ir activeactiveactiveactive insnum

cpuprccpuprccpuprccpuprc insnum, ipercent
maxallocmaxallocmaxallocmaxalloc insnum, icount
preallocpreallocpreallocprealloc insnum, icount

Instrument Control: Time Reading
i/kr timektimektimektimek
i/kr timestimestimestimes
kr timeinstktimeinstktimeinstktimeinstk
kr timeinststimeinststimeinststimeinsts

Instrument Control: Clock Control
clockonclockonclockonclockon inum
clockoffclockoffclockoffclockoff inum

ir readclockreadclockreadclockreadclock inum

Instrument Control: Sensing and Control
kpitch,
kamp

pitchpitchpitchpitch asig, iupdte, ilo, ihi, idbthresh[, ifrqs, iconf,
istrt, iocts, iq, inptls, irolloff, iskip]

kcps,
krms

pitchamdfpitchamdfpitchamdfpitchamdf asig, imincps, imaxcps[, icps[, imedi[, idowns
[, iexcps]]]]

ktemp tempesttempesttempesttempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim,
ixfdbak, istartempo, ifn[, idisprd, itweek]

kr followfollowfollowfollow asig, idt
kout triggertriggertriggertrigger ksig, kthreshold, kmode
k/ar peakpeakpeakpeak k/asig

tempotempotempotempo ktempo, istartempo
kx, ky xyinxyinxyinxyin iprd, ixmin, ixmax, iymin, iymax[, ixinit, iyinit]
ar follow2follow2follow2follow2 asig, katt, krel

setctrlsetctrlsetctrlsetctrl inum, kval, itype
kr controlcontrolcontrolcontrol inum
kr buttonbuttonbuttonbutton inum
kr checkboxcheckboxcheckboxcheckbox inum
kr sensekeysensekeysensekeysensekey

Instrument Control: Conditional Values
(a >>>> b ???? v1 :::: v2)
(a <<<< b ???? v1 :::: v2)
(a >=>=>=>= b ???? v1 :::: v2)
(a <=<=<=<= b ???? v1 :::: v2)
(a ======== b ???? v1 :::: v2)
(a !=!=!=!= b ???? v1 :::: v2)

Csound Quick Reference

The Public Csound Reference Manual 3 Version 4.0

Instrument Control: Macros
#define#define#define#define NAME # replacement text #
#define#define#define#define NAME(a’b’c) # replacement text #
$NAME.$NAME.$NAME.$NAME.
#undef#undef#undef#undef NAME
#include#include#include#include “filename”

Instrument Control: Program Flow Control
igotoigotoigotoigoto label
tigototigototigototigoto label
kgotokgotokgotokgoto label
gotogotogotogoto label
ifififif ia R ib igotoigotoigotoigoto label
ifififif ka R kb kgotokgotokgotokgoto label
ifififif ia R ib gotogotogotogoto label
timouttimouttimouttimout istrt idur label

label ::::

Instrument Control: Reinitialization
reinitreinitreinitreinit label
rigotorigotorigotorigoto label
rireturnrireturnrireturnrireturn

Mathematical Operations: Arithmetic and Logic
Operations

- - - - a (no rate restriction)
+ + + + a (no rate restriction)
a && && && && b (logical AND; not audio-rate)
a || || || || b (logical OR; not audio-rate)
a + + + + b (no rate restriction)
a - - - - b (no rate restriction)
a * * * * b (no rate restriction)
a / / / / b (no rate restriction)
a ^ ^ ^ ^ b (b not audio-rate)
a % % % % b (no rate restriction)

Csound Quick Reference

The Public Csound Reference Manual 4 Version 4.0

Mathematical Operations: Mathematical Functions
intintintint(x) (init-rate or control-rate args only)
fracfracfracfrac(x) (init-rate or control-rate args only)
iiii(x) (control-rate args only)
absabsabsabs(x) (no rate restriction)
expexpexpexp(x) (no rate restriction)
loglogloglog(x) (no rate restriction)
log10log10log10log10(x) (no rate restriction)
sqrtsqrtsqrtsqrt(x) (no rate restriction)
powoftwopowoftwopowoftwopowoftwo(x) (init-rate or control-rate args only)
logbtwologbtwologbtwologbtwo(x) (init-rate or control-rate args only)

Mathematical Operations: Trigonometric Functions
sinsinsinsin(x) (no rate restriction)
coscoscoscos(x) (no rate restriction)
tantantantan(x) (no rate restriction)
sininvsininvsininvsininv(x) (no rate restriction)
cosinvcosinvcosinvcosinv(x) (no rate restriction)
taninvtaninvtaninvtaninv(x) (no rate restriction)
sinhsinhsinhsinh(x) (no rate restriction)
coshcoshcoshcosh(x) (no rate restriction)
tanhtanhtanhtanh(x) (no rate restriction)

Mathematical Operations: Amplitude Functions
dbampdbampdbampdbamp(x) (init-rate or control-rate args only)
ampdbampdbampdbampdb(x) (no rate restriction)
dbfsampdbfsampdbfsampdbfsamp(x) (init-rate or control-rate args only)
ampdbfsampdbfsampdbfsampdbfs(x) (no rate restriction)

Mathematical Operations: Random Functions
rndrndrndrnd(x) (init- or control-rate only)
birndbirndbirndbirnd(x) (init- or control-rate only)

Mathematical Operations: Opcode Equivalents of
Functions
ar sumsumsumsum asig1, asig2[,asig3…asigN]
ar productproductproductproduct asig1, asig2[,asig3…asigN]
i/k/ar powpowpowpow i/k/aarg, i/k/pow
i/k/ar taninv2taninv2taninv2taninv2 i/k/ax, i/k/ay
ar macmacmacmac asig1, ksig1, asig2, ksig2, asig3, …
ar macamacamacamaca asig1, ksig1, asig2, ksig2, asig3, …

Csound Quick Reference

The Public Csound Reference Manual 5 Version 4.0

Pitch Converters: Functions
octpchoctpchoctpchoctpch(pch) (init- or control-rate args only)
pchoctpchoctpchoctpchoct(oct) (init- or control-rate args only)
cpspchcpspchcpspchcpspch(pch) (init- or control-rate args only)
octcpsoctcpsoctcpsoctcps(cps) (init- or control-rate args only)
cpsoctcpsoctcpsoctcpsoct(oct) (no rate restriction)

Pitch Convertors: Tuning Opcodes
icps cps2pchcps2pchcps2pchcps2pch ipch, iequal
icps cpsxpchcpsxpchcpsxpchcpsxpch ipch, iequal, irepeat, ibase

MIDI Support: Converters
ival notnumnotnumnotnumnotnum
ival velocvelocvelocveloc [ilow, ihigh]
icps cpsmidicpsmidicpsmidicpsmidi
i/kcps cpsmidibcpsmidibcpsmidibcpsmidib [irange]
icps cpstmidcpstmidcpstmidcpstmid ifn
ioct octmidioctmidioctmidioctmidi
i/koct octmidiboctmidiboctmidiboctmidib [irange]
ipch pchmidipchmidipchmidipchmidi
i/kpch pchmidibpchmidibpchmidibpchmidib [irange]
iamp ampmidiampmidiampmidiampmidi iscal[, ifn]
kaft aftouchaftouchaftouchaftouch [imin[, imax]]
i/kbend pchbendpchbendpchbendpchbend [imin[, imax]]
i/kval midictrlmidictrlmidictrlmidictrl inum[, imin[, imax]]

MIDI Support: Controller Input
initc7initc7initc7initc7 ichan, ictlno, ivalue
initc14initc14initc14initc14 ichan, ictlno1, ictlno2, ivalue
initc21initc21initc21initc21 ichan, ictlno1, ictlno2, ictlno3, ivalue

i/kdest midic7midic7midic7midic7 ictlno, i/kmin, i/kmax[, ifn]
i/kdest midic14midic14midic14midic14 ictlno1, ictlno2, i/kmin, i/kmax[, ifn]
i/kdest midic21midic21midic21midic21 ictlno1, ictlno2, ictlno3, i/kmin, i/kmax[, ifn]
i/kdest ctrl7ctrl7ctrl7ctrl7 ichan, ictlno, i/kmin, i/kmax[, ifn]
i/kdest ctrl14ctrl14ctrl14ctrl14 ichan, ictlno1, ictlno2, i/kmin, i/kmax[, ifn]
i/kdest ctrl21ctrl21ctrl21ctrl21 ichan, ictlno1, ictlno2, ictlno3, i/kmin, i/kmax[, ifn]
i/kval chanctrlchanctrlchanctrlchanctrl ichnl, ictlno[, ilow, ihigh]

Csound Quick Reference

The Public Csound Reference Manual 6 Version 4.0

MIDI Support: Slider Banks
i/k1, …,
i/k8

slider8slider8slider8slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1, …,
ictlnum8, imin8, imax8, init8, ifn8

i/k1, …,
i/k16

slider16slider16slider16slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1, …,
ictlnum16, imin16, imax16, init16, ifn16

i/k1, …,
i/k32

slider32slider32slider32slider32 ichan, ictlnum1, imin1, imax1, init1, ifn1, …,
ictlnum32, imin32, imax32, init32, ifn32

i/k1, …,
i/k64

slider64slider64slider64slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1, …,
ictlnum64, imin64, imax64, init64, ifn64

k1, …,
k8

slider8fslider8fslider8fslider8f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,
…, ictlnum8, imin8, imax8, init8, ifn8, icutoff8

k1, …,
k16

slider16fslider16fslider16fslider16f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,
…, ictlnum16, imin16, imax16, init16, ifn16, icutoff16

k1, …,
k32

slider32fslider32fslider32fslider32f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,
…, ictlnum32, imin32, imax32, init32, ifn32, icutoff32

k1, …,
k64

slider64fslider64fslider64fslider64f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,
…, ictlnum64, imin64, imax64, init64, ifn64, icutoff64

i/k1, …,
i/k16

s16b14s16b14s16b14s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,
initvalue1, ifn1, …, ictlno_msb16, ictlno_lsb16,
imin16, imax16, initvalue16, ifn16

i/k1, …,
i/k32

s32b14s32b14s32b14s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1,
initvalue1, ifn1, …, ictlno_msb32, ictlno_lsb32,
imin32, imax32, initvalue32, ifn32

MIDI Support: Generic I/O
kstatus,
kchan,
kdata1,
kdata2

midiinmidiinmidiinmidiin

midioutmidioutmidioutmidiout kstatus, kchan, kdata1, kdata2

MIDI Support: Note-on/Note-off
noteonnoteonnoteonnoteon ichn, inum, ivel
noteoffnoteoffnoteoffnoteoff ichn, inum, ivel
noteondurnoteondurnoteondurnoteondur ichn, inum, ivel, idur
noteondur2noteondur2noteondur2noteondur2 ichn, inum, ivel, idur
moscilmoscilmoscilmoscil kchn, knum, kvel, kdur, kpause
midionmidionmidionmidion kchn, knum, kvel
midion2midion2midion2midion2 kchn, knum, kvel, ktrig

Csound Quick Reference

The Public Csound Reference Manual 7 Version 4.0

MIDI Support: MIDI Message Output
outicouticouticoutic ichn, inum, ivalue, imin, imax
outkcoutkcoutkcoutkc kchn, knum, kvalue, kmin, kmax
outic14outic14outic14outic14 ichn, imsb, ilsb, ivalue, imin, imax
outkc14outkc14outkc14outkc14 kchn, kmsb, klsb, kvalue, kmin, kmax
outipboutipboutipboutipb ichn, ivalue, imin, imax
outkpboutkpboutkpboutkpb kchn, kvalue, kmin, kmax
outiatoutiatoutiatoutiat ichn, ivalue, imin, imax
outkatoutkatoutkatoutkat kchn, kvalue, kmin, kmax
outipcoutipcoutipcoutipc ichn, iprog, imin, imax
outkpcoutkpcoutkpcoutkpc kchn, kprog, kmin, kmax
outipatoutipatoutipatoutipat ichn, inotenum, ivalue, imin, imax
outkpatoutkpatoutkpatoutkpat kchn, knotenum, kvalue, kmin, kmax
nrpnnrpnnrpnnrpn kchan, kparmnum, kparmvalue
mdelaymdelaymdelaymdelay kstatus, kchan, kd1, kd2, kdelay

MIDI Support: Realtime Messages
mclockmclockmclockmclock ifreq
mrtmsgmrtmsgmrtmsgmrtmsg imsgtype

MIDI Support: MIDI Event Extenders
xtratimxtratimxtratimxtratim iextradur

kflag releasereleasereleaserelease

Signal Generators: Linear and Exponential
Generators
k/ar linelinelineline ia, idur1, ib
k/ar exponexponexponexpon ia, idur1, ib
k/ar linseglinseglinseglinseg ia, idur1, ib[, idur2, ic[…]]
k/ar linsegrlinsegrlinsegrlinsegr ia, idur1, ib[, idur2, ic[…]], irel, iz
k/ar expsegexpsegexpsegexpseg ia, idur1, ib[, idur2, ic[…]]
k/ar expsegrexpsegrexpsegrexpsegr ia, idur1, ib[, idur2, ic[…]], irel, iz
ar expsegaexpsegaexpsegaexpsega ia, idur1, ib[, idur2, ic[…]]
k/ar adsradsradsradsr iatt, idec, islev, irel[, idel]
k/ar madsrmadsrmadsrmadsr iatt, idec, islev, irel[, idel]
k/ar xadsrxadsrxadsrxadsr iatt, idec, islev, irel[, idel]
k/ar mxadsrmxadsrmxadsrmxadsr iatt, idec, islev, irel[, idel]
k/ar transegtransegtransegtranseg ibeg, idur, itype, ival

Csound Quick Reference

The Public Csound Reference Manual 8 Version 4.0

Signal Generators: Table Access
i/k/ar tabletabletabletable i/k/andx, ifn[, ixmode[, ixoff[, iwrap]]]
i/k/ar tableitableitableitablei i/k/andx, ifn[, ixmode[, ixoff[, iwrap]]]
i/k/ar table3table3table3table3 i/k/andx, ifn[, ixmode[, ixoff[, iwrap]]]
kr oscil1oscil1oscil1oscil1 idel, kamp, idur, ifn
kr oscil1ioscil1ioscil1ioscil1i idel, kamp, idur, ifn
ar oscilnoscilnoscilnosciln kamp, ifrq, ifn, itimes

Signal Generators: Phasors
k/ar phasorphasorphasorphasor k/xcps[, iphs]
k/ar phasorbnkphasorbnkphasorbnkphasorbnk k/xcps, kindx, icnt [, iphs]

Signal Generators: Basic Oscillators
k/ar osciloscilosciloscil k/xamp, k/xcps, ifn[, iphs]
k/ar oscilioscilioscilioscili k/xamp, k/xcps, ifn[, iphs]
k/ar oscil3oscil3oscil3oscil3 k/xamp, k/xcps, ifn[, iphs]
k/ar poscilposcilposcilposcil kamp, kcps, ifn[, iphs]
k/ar poscil3poscil3poscil3poscil3 kamp, kcps, ifn[, iphs]
k/ar lfolfolfolfo kamp, kcps[, itype]

Signal Generators: Dynamic Spectrum Oscillators
ar buzzbuzzbuzzbuzz xamp, xcps, knh, ifn[, iphs]
ar gbuzzgbuzzgbuzzgbuzz xamp, xcps, knh, klh, kr, ifn[, iphs]
ar vcovcovcovco kamp, kfqc[, iwave][, ipw][, ifn][, imaxd]

Signal Generators: Additive Synthesis/Resynthesis
ar adsynadsynadsynadsyn kamod, kfmod, ksmod, ifilcod
ar adsyntadsyntadsyntadsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt[, iphs]
ar hsboscilhsboscilhsboscilhsboscil kamp, ktone, kbrite, ibasfreq, iwfn, ioctfn[, ioctcnt

[, iphs]]

Csound Quick Reference

The Public Csound Reference Manual 9 Version 4.0

Signal Generators: FM Synthesis
ar foscilfoscilfoscilfoscil xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
ar foscilifoscilifoscilifoscili xamp, kcps, kcar, kmod, kndx, ifn[, iphs]
ar fmvoicefmvoicefmvoicefmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1,

ifn2, ifn3, ifn4, ivibfn
ar fmbellfmbellfmbellfmbell kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,

ifn3, ifn4, ivfn
ar fmrhodefmrhodefmrhodefmrhode kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,

ifn3, ifn4, ivfn

ar fmwurliefmwurliefmwurliefmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,
ifn3, ifn4, ivfn

ar fmmetalfmmetalfmmetalfmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,
ifn3, ifn4, ivfn

ar fmb3fmb3fmb3fmb3 kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,
ifn3, ifn4, ivfn

ar fmpercflfmpercflfmpercflfmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2,
ifn3, ifn4, ivfn

Signal Generators: Sample Playback
ar[,
ar2]

loscilloscilloscilloscil xamp, kcps, ifn[, ibas[, imod1, ibeg1, iend1[, imod2,
ibeg2, iend2]]]

ar[,
ar2]

loscil3loscil3loscil3loscil3 xamp, kcps, ifn[, ibas[, imod1, ibeg1, iend1[, imod2,
ibeg2, iend2]]]

ar lposcillposcillposcillposcil kamp, kfreqratio, kloop, kend, ifn[, iphs]
ar lposcil3lposcil3lposcil3lposcil3 kamp, kfreqratio, kloop, kend, ifn[, iphs]

Signal Generators: Granular Synthesis
ar foffoffoffof xamp, xfund, xform, koct, kband, kris, kdur, kdec,

iolaps, ifna, ifnb, itotdur[, iphs[, ifmode]]
ar fof2fof2fof2fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec,

iolaps, ifna, ifnb, itotdur, kphs, kgliss
ar fogfogfogfog xamp, xdens, xtrans, xspd, koct, kband, kris, kdur,

kdec, iolaps, ifna, ifnb, itotdur[, iphs[, itmode]]
ar graingraingraingrain xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn,

iwfn, imgdur[, igrnd]
ar granulegranulegranulegranule xamp, ivoice, iratio, imode, ithd, ifn, ipshift,

igskip, igskip_os, ilength, kgap, igap_os, kgsize,
igsize_os, iatt, idec[, iseed[, ipitch1[, ipitch2[,
ipitch3[, ipitch4[, ifnenv]]]]]]]]

ar[, ac] sndwarpsndwarpsndwarpsndwarp xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw,
ioverlap, ifn2, itimemode

ar1, ar2
[,ac1,
ac2]

sndwarpstsndwarpstsndwarpstsndwarpst xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw,
ioverlap, ifn2, itimemode

Csound Quick Reference

The Public Csound Reference Manual 10 Version 4.0

Signal Generators: Waveguide Physical Modeling
ar pluckpluckpluckpluck kamp, kcps, icps, ifn, imeth[, iparm1, iparm2]
ar wgpluckwgpluckwgpluckwgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite
ar repluckrepluckrepluckrepluck iplk, xam, icps, kpick, krefl, axcite
ar wgpluck2wgpluck2wgpluck2wgpluck2 iplk, xam, icps, kpick, krefl
ar wgbowwgbowwgbowwgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn[, iminfreq]
ar wgflutewgflutewgflutewgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp,

ifn[, iminfreq[, kjetrf[, kendrf]]]
ar wgbrasswgbrasswgbrasswgbrass kamp, kfreq, iatt, kvibf, kvamp, ifn[, iminfreq]
ar wgclarwgclarwgclarwgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, kvamp,

ifn[, iminfreq]

Signal Generators: Models and Emulations
ar moogmoogmoogmoog kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn,

iwfn, ivfn
ar shakershakershakershaker kamp, kfreq, kbeans, kdamp, ktimes[, idecay]
ar marimbamarimbamarimbamarimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn,

idec
ar vibesvibesvibesvibes kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn,

idec
ar mandolmandolmandolmandol kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn[,

iminfreq]
ar gogobelgogobelgogobelgogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn
ar voicevoicevoicevoice kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn
ax, ay,
az

lorenzlorenzlorenzlorenz ks, kr, kb, kh, ix, iy, iz, iskip

ax, ay,
az

planetplanetplanetplanet kmass1, kmass2, ksep, ix, iy, iz, ivx, ivy, ivz,
idelta, ifriction

Signal Generators: STFT Resynthesis (Vocoding)
ar pvocpvocpvocpvoc ktimpnt, kfmod, ifilcod, ifn, ibins[, ibinoffset,

ibinincr, iextractmode, ifreqlim, igatefn]
kfr, kap pvreadpvreadpvreadpvread ktimpnt, ifile, ibin

pvbufreadpvbufreadpvbufreadpvbufread ktimpnt, ifile
ar pvinterppvinterppvinterppvinterp ktimpnt, kfmod, ifile, kfreqscale1, kfreqscale2,

kampscale1, kampscale2, kfreqinterp, kampinterp
ar pvcrosspvcrosspvcrosspvcross ktimpnt, kfmod, ifile, kamp1, kamp2[, ispecwp]

tablesegtablesegtablesegtableseg ifn1, idur1, ifn2[, idur2, ifn3[…]]
tablexsegtablexsegtablexsegtablexseg ifn1, idur1, ifn2[, idur2, ifn3[…]]

ar vpvocvpvocvpvocvpvoc ktimpnt, kfmod, ifile[, ispecwp]

ar pvaddpvaddpvaddpvadd ktimpnt, kfmod, ifilcod, ifn, ibins[, ibinoffset,
ibinincr, iextractmode, ifreqlim, igatefn]

Csound Quick Reference

The Public Csound Reference Manual 11 Version 4.0

Signal Generators: LPC Resynthesis
krmsr,
krmso,
kerr,
kcps

lpreadlpreadlpreadlpread ktimpnt, ifilcod[, inpoles[, ifrmrate]]

ar lpresonlpresonlpresonlpreson asig
ar lpfresonlpfresonlpfresonlpfreson asig, kfrqratio

lpslotlpslotlpslotlpslot islot
lpinterplpinterplpinterplpinterp islot1, islot2, kmix

Signal Generators: Random (Noise) Generators
k/ar randrandrandrand k/xamp[, iseed[, isize]]
k/ar randhrandhrandhrandh k/xamp, k/xcps[, iseed[, isize]]
k/ar randirandirandirandi k/xamp, k/xcps[, iseed[, isize]]
i/k/ar linrandlinrandlinrandlinrand krange
i/k/ar trirandtrirandtrirandtrirand krange
i/k/ar exprandexprandexprandexprand krange
i/k/ar bexprndbexprndbexprndbexprnd krange
i/k/ar cauchycauchycauchycauchy kalpha
i/k/ar pcauchypcauchypcauchypcauchy kalpha
i/k/ar poissonpoissonpoissonpoisson klambda
i/k/ar gaussgaussgaussgauss krange
i/k/ar weibullweibullweibullweibull ksigma, ktau
i/k/ar betarandbetarandbetarandbetarand krange, kalpha, kbeta
i/k/ar unirandunirandunirandunirand krange
ar pinkishpinkishpinkishpinkish xin[, imethod, inumbands, iseed, iskip]
ar noisenoisenoisenoise xamp, kbeta

Function Table Control: Table Queries
nsampnsampnsampnsamp(x) (init-rate args only)
ftlenftlenftlenftlen(x) (init-rate args only)
ftlptimftlptimftlptimftlptim(x) (init-rate args only)
ftsrftsrftsrftsr(x) (init-rate args only)

i/kr tablengtablengtablengtableng i/kfn

Csound Quick Reference

The Public Csound Reference Manual 12 Version 4.0

Function Table Control: Table Selection
k/ar tablekttablekttablekttablekt k/xndx, i/kfn[, ixmode[, ixoff[, iwrap]]]
k/ar tableikttableikttableikttableikt k/xndx, kfn[, ixmode[, ixoff[, iwrap]]]

Function Table Control: Read/Write Operations
tablewtablewtablewtablew i/k/asig, i/k/andx, ifn[, ixmode[, ixoff[, iwgmode]]]
tablewkttablewkttablewkttablewkt k/asig, k/andx, kfn[, ixmode[, ixoff[, iwgmode]]]
tableiwtableiwtableiwtableiw isig, indx, ifn[, ixmode[, ixoff[, iwrap]]]
tableigpwtableigpwtableigpwtableigpw ifn
tablegpwtablegpwtablegpwtablegpw kfn
tableimixtableimixtableimixtableimix idft, idoff, ilen, is1ft, is1off, is1g, is2ft, is2off,

is2g
tablemixtablemixtablemixtablemix kdft, kdoff, klen, ks1ft, ks1off, ks1g, ks2ft, ks2off,

ks2g
tableicopytableicopytableicopytableicopy idft, isft
tablecopytablecopytablecopytablecopy kdft, ksft

ar tableratableratableratablera kfn, kstart, koff
kstart tablewatablewatablewatablewa kfn, asig, koff

Csound Quick Reference

The Public Csound Reference Manual 13 Version 4.0

Signal Modifiers: Standard Filters
kr portkportkportkportk ksig, khtim[, isig]
kr portportportport ksig, ihtim[, isig]
kr tonektonektonektonek ksig, khp[, iskip]
ar tonetonetonetone asig, khp[, iskip]
kr atonekatonekatonekatonek ksig, khp[, iskip]
ar atoneatoneatoneatone asig, khp[, iskip]
kr resonkresonkresonkresonk ksig, kcf, kbw[, iscl, iskip]
ar resonresonresonreson asig, kcf, kbw[, iscl, iskip]
kr aresonkaresonkaresonkaresonk ksig, kcf, kbw[, iscl, iskip]
ar aresonaresonaresonareson asig, kcf, kbw[, iscl, iskip]
ar tonextonextonextonex asig, khp[, inumlayer, iskip]
ar atonexatonexatonexatonex asig, khp[, inumlayer, iskip]
ar resonxresonxresonxresonx asig, kcf, kbw[, inumlayer, iscl, iskip]
ar resonrresonrresonrresonr asig, kcf, kbw[,iscl, iskip]
ar resonzresonzresonzresonz asig, kcf, kbw[,iscl, iskip]
ar resonyresonyresonyresony asig, kbf, kbw, inum, ksep[,iscl, iskip]
ar lowreslowreslowreslowres asig, kcutoff, kresonance[, iskip]
ar lowresxlowresxlowresxlowresx asig, kcutoff, kresonance[, inumlayer, iskip]
ar vlowresvlowresvlowresvlowres asig, kfco, kres, iord, ksep
ar lowpass2lowpass2lowpass2lowpass2 asig, kcf, kq[, iskip]
ar biquadbiquadbiquadbiquad asig, kb0, kb1, kb2, ka0, ka1, ka2[, iskip]
ar rezzyrezzyrezzyrezzy asig, xfco, xres[, imode]
ar moogvcfmoogvcfmoogvcfmoogvcf asig, xfco, xres[, iscale]
alow,
ahigh,
aband

svfiltsvfiltsvfiltsvfilt asig, kcf, kq[, iscl]

ar1, ar2 hilberthilberthilberthilbert asig
ar butterhpbutterhpbutterhpbutterhp asig, kfreq[, iskip]
ar butterlpbutterlpbutterlpbutterlp asig, kfreq[, iskip]
ar butterbpbutterbpbutterbpbutterbp asig, kfreq, kband[, iskip]
ar butterbrbutterbrbutterbrbutterbr asig, kfreq, kband[, iskip]
k/ar filter2filter2filter2filter2 k/asig, iM, iN, ib0, ib1, …, ibM, ia1, ia2, …, iaN
ar zfilter2zfilter2zfilter2zfilter2 asig, kdamp, kfreq, iM, iN, ib0, ib1, …, ibM, ia1, ia2,

…, iaN
ar lpf18lpf18lpf18lpf18 asig, kfco, kres, kdist
ar tbvcftbvcftbvcftbvcf asig, xfco, xres, kdist, kasym

Signal Modifiers: Specialized Filters
ar nlfiltnlfiltnlfiltnlfilt ain, ka, kb, kd, kL, kC
ar pareqpareqpareqpareq asig, kc, iv, iq, imode
ar dcblockdcblockdcblockdcblock asig[, ig]

Csound Quick Reference

The Public Csound Reference Manual 14 Version 4.0

Signal Modifiers: Envelope Modifiers
k/ar linenlinenlinenlinen k/xamp, irise, idur, idec
k/ar linenrlinenrlinenrlinenr k/xamp, irise, idec, iatdec
k/ar envlpxenvlpxenvlpxenvlpx k/xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod]
k/ar envlpxrenvlpxrenvlpxrenvlpxr k/xamp, irise, idur, idec, ifn, iatss, iatdec[, ixmod[,

irind]]

Signal Modifiers: Amplitude Modifiers
kr rmsrmsrmsrms asig[, ihp, iskip]
ar gaingaingaingain asig, krms[, ihp, iskip]
ar balancebalancebalancebalance asig, acomp[, ihp, iskip]
ar damdamdamdam ain, kthreshold, icomp1, icomp2, rtime, ftime

Signal Modifiers: Signal Limiters
i/k/ar wrapwrapwrapwrap i/k/asig, i/k/klow, i/k/khigh
i/k/ar mirrormirrormirrormirror i/k/asig, i/k/klow, i/k/khigh
i/k/ar limitlimitlimitlimit i/k/asig, i/k/klow, i/k/khigh

Signal Modifiers: Delay
ar delayrdelayrdelayrdelayr idlt[, iskip]

delaywdelaywdelaywdelayw asig
ar delaydelaydelaydelay asig, idlt[, iskip]
ar delay1delay1delay1delay1 asig[, iskip]
ar deltapdeltapdeltapdeltap kdlt
ar deltapideltapideltapideltapi xdlt
ar deltapndeltapndeltapndeltapn xnumsamps
ar deltap3deltap3deltap3deltap3 xdlt
ar multitapmultitapmultitapmultitap asig, itime1, igain1, itime2, igain2…
ar vdelayvdelayvdelayvdelay asig, adel, imaxdel[, iskip]
ar vdelay3vdelay3vdelay3vdelay3 asig, adel, imaxdel[, iskip]

Signal Modifiers: Reverberation

ar reverbreverbreverbreverb asig, krvt[, iskip]
ar reverb2reverb2reverb2reverb2 asig, ktime, khdif[, iskip]
ar nreverbnreverbnreverbnreverb asig, ktime, khdif[, iskip][,inumCombs, ifnCombs][,

inumAlpas, ifnAlpas]
ar combcombcombcomb asig, krvt, ilpt[, iskip][, insmps]
ar alpassalpassalpassalpass asig, krvt, ilpt[, iskip][, insmps]
ar nestedapnestedapnestedapnestedap asig, imode, imaxdel, idel1, igain1[, idel2, igain2[,

idel3, igain3]]
a1, a2 babobabobabobabo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz[, idiff[,

ifno]]

Csound Quick Reference

The Public Csound Reference Manual 15 Version 4.0

Signal Modifiers: Waveguides
ar wguide1wguide1wguide1wguide1 asig, kfreq, kcutoff, kfeedback
ar wguide2wguide2wguide2wguide2 asig, kfreq1, kfreq2, kcutoff1, kcutoff2, kfeedback1,

kfeedback2
ar stresonstresonstresonstreson asig, kfr, ifdbgain
ar nlalpnlalpnlalpnlalp asig, klcf, knlcf [, iskip[, iupdm]]

Signal Modfiers: Special Effects
ar harmonharmonharmonharmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode,

iminfrq, iprd
ar flangerflangerflangerflanger asig, adel, kfeedback[, imaxd]
ar distort1distort1distort1distort1 asig[, kpregain[, kpostgain[, kshape1[, kshape2]]]]
ar phaser1phaser1phaser1phaser1 asig, kfreq, iord, kfeedback[, iskip]
ar phaser2phaser2phaser2phaser2 asig, kfreq, iord, imode, ksep, kfeedback

Signal Modifiers: Convolution and Morphing
ar1[,
ar2[,
ar3[,
ar4]]]

convolveconvolveconvolveconvolve ain, ifilcod, ichannel

ar cross2cross2cross2cross2 ain1, ain2, isize, ioverlap, iwin, kbias

Signal Modifiers: Panning and Spatialization
a1, a2,
a3, a4

panpanpanpan asig, kx, ky, ifn[, imode[, ioffset]]

a1, a2 locsiglocsiglocsiglocsig asig, kdegree, kdistance, kreverbsend
a1, a2,
a3, a4

locsiglocsiglocsiglocsig asig, kdegree, kdistance, kreverbsend

a1, a2 locsendlocsendlocsendlocsend
a1, a2,
a3, a4

locsendlocsendlocsendlocsend

a1, a2,
a3, a4

spacespacespacespace asig, ifn, ktime, kreverbsend[, kx, ky]

a1, a2,
a3, a4

spsendspsendspsendspsend

k1 spdistspdistspdistspdist ifn, ktime[, kx, ky]
aleft,
aright

hrtferhrtferhrtferhrtfer asig, kaz, kelev, “HRTFcompact”

Csound Quick Reference

The Public Csound Reference Manual 16 Version 4.0

Signal Modifiers: Sample Level Operators
kr downsampdownsampdownsampdownsamp asig[, iwlen]
ar upsampupsampupsampupsamp ksig
ar interpinterpinterpinterp ksig[, iskip]
k/ar integinteginteginteg k/asig[, iskip]
k/ar diffdiffdiffdiff k/asig[, iskip]
k/ar sampholdsampholdsampholdsamphold x/asig, k/xgate[, ival, ivstor]
i/k/ar ntrpolntrpolntrpolntrpol i/k/asig1, i/k/asig2, i/k/kpoint[, imin, imax]
ar foldfoldfoldfold asig, kincr

Zak Patch System
zakinitzakinitzakinitzakinit isizea, isizek
ziwziwziwziw isig, indx
zkwzkwzkwzkw ksig, kndx
zawzawzawzaw asig, kndx
ziwmziwmziwmziwm isig, indx[, imix]
zkwmzkwmzkwmzkwm ksig, kndx[, kmix]
zawmzawmzawmzawm asig, kndx[, kmix]

ir zirzirzirzir indx
kr zkrzkrzkrzkr kndx
ar zarzarzarzar kndx
ar zargzargzargzarg kndx, kgain
kr zkmodzkmodzkmodzkmod ksig, kzkmod
ar zamodzamodzamodzamod asig, kzamod

zkclzkclzkclzkcl kfirst, klast
zaclzaclzaclzacl kfirst, klast

Operations Using Spectral Data-Types
wsig specaddmspecaddmspecaddmspecaddm wsig1, wsig2[, imul2]
wsig specdiffspecdiffspecdiffspecdiff wsigin
wsig specscalspecscalspecscalspecscal wsigin, ifscale, ifthresh
wsig spechistspechistspechistspechist wsigin
wsig specfiltspecfiltspecfiltspecfilt wsigin, ifhtim
koct,
kamp

specptrkspecptrkspecptrkspecptrk wsig, kvar, ilo, ihi, istrt, idbthresh, inptls,
irolloff[, iodd, iconfs, interp, ifprd, iwtflg]

ksum specsumspecsumspecsumspecsum wsig[, interp]
specdispspecdispspecdispspecdisp wsig, iprd[, iwtflg]

wsig spectrumspectrumspectrumspectrum xsig, iprd, iocts, ifrqa, iq[, ihann, idbout, idsprd,
idsinrs]

Csound Quick Reference

The Public Csound Reference Manual 17 Version 4.0

Signal Input and Output: Input
a1 inininin
a1, a2 insinsinsins
a1, a2,
a3, a4

inqinqinqinq

a1, a2,
a3, a4,
a5, a6

inhinhinhinh

a1, a2,
a3, a4,
a5, a6,
a7, a8

inoinoinoino

a1 soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]
a1, a2 soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]
a1, a2,
a3, a4

soundinsoundinsoundinsoundin ifilcod[, iskptim[, iformat]]

a1[,a2
[,a3,a4]]

diskindiskindiskindiskin ifilcod, kpitch[, iskiptim[, iwraparound[, iformat]]]

Signal Input and Output: Output
outoutoutout asig
outs1outs1outs1outs1 asig
outs2outs2outs2outs2 asig
outsoutsoutsouts asig1, asig2
outq1outq1outq1outq1 asig
outq2outq2outq2outq2 asig
outq3outq3outq3outq3 asig
outq4outq4outq4outq4 asig
outqoutqoutqoutq asig1, asig2, asig3, asig4
outhouthouthouth asig1, asig2, asig3, asig4, asig5, asig6
outooutooutoouto asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8
soundoutsoundoutsoundoutsoundout asig1, ifilcod[, iformat]
soundoutssoundoutssoundoutssoundouts asig1, asig2, ifilcod[, iformat] (**Not implemented***)

Csound Quick Reference

The Public Csound Reference Manual 18 Version 4.0

Signal Input and Output: File I/O
dumpkdumpkdumpkdumpk ksig, ifilname, iformat, iprd
dumpk2dumpk2dumpk2dumpk2 ksig1, ksig2, ifilname, iformat, iprd
dumpk3dumpk3dumpk3dumpk3 ksig1, ksig2, ksig3, ifilname, iformat, iprd
dumpk4dumpk4dumpk4dumpk4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

ksig readkreadkreadkreadk ifilname, iformat[, ipol]
k1, k2 readk2readk2readk2readk2 ifilname, iformat[, ipol]
k1,k2,k3 readk3readk3readk3readk3 ifilname, iformat[, ipol]
k1,k2,
k3,k4

readk4readk4readk4readk4 ifilname, iformat[, ipol]

foutfoutfoutfout “ifilename”, iformat, aout1[, aout2, aout3,...,aoutN]
foutkfoutkfoutkfoutk “ifilename”, iformat, aout1[, aout2, aout3,...,aoutN]
foutifoutifoutifouti ihandle, iformat, iflag, iout1[, iout2,

iout3,....,ioutN]
foutirfoutirfoutirfoutir ihandle, iformat, iflag, iout1[, iout2,

out3,....,ioutN]
ihandle fiopenfiopenfiopenfiopen “ifilename”,imode

finfinfinfin “ifilename”, iskipframes, iformat, ain1[, ain2,
ain3,...,ainN]

finkfinkfinkfink “ifilename”, iskipframes, iformat, kin1[, kin2,
kin3,...,kinN]

finifinifinifini “ifilename”, iskipframes, iformat, in1[, in2,
in3,...,inN]

vincrvincrvincrvincr asig, aincr
clearclearclearclear avar1[,avar2, avar3,…,avarN]

Signal Input and Output: Sound File Queries
ir filelenfilelenfilelenfilelen “ifilcod”
ir filesrfilesrfilesrfilesr “ifilcod”
ir filenchnlsfilenchnlsfilenchnlsfilenchnls “ifilcod”
ir filepeakfilepeakfilepeakfilepeak “ifilcod”[, ichnl]

Signal Input and Output: Printing and Display
printprintprintprint iarg[, iarg, ...]
displaydisplaydisplaydisplay xsig, iprd[, inprds[, iwtflg]]
dispfftdispfftdispfftdispfft xsig, iprd, iwsiz[, iwtyp[, idbouti[, iwtflg]]]
printkprintkprintkprintk kval, ispace[, itime]
printksprintksprintksprintks “txtstring”, itime, kval1, kval2, kval3, kval4
printk2printk2printk2printk2 kvar[, numspaces]

Csound Quick Reference

The Public Csound Reference Manual 19 Version 4.0

Score Syntax: Statements
ffff “table number” “action time” “size” “GEN routine” arg1[arg2...arg...]
f0f0f0f0 “action time” (Dummy f-table for padding score sections with silence

and reporting on progress of long running jobs).
bbbb “base clock time” (Effective prior to score sorting. This time base is

pre-warped.)
tttt 0 “initial tempo” “time in beats” “tempo2”[“time in beats” “tempo3”

“time in...]
aaaa 0 “begin time advance in beats” “duration of time advance in beats”
iiii “instrument number” “start” “duration” [p4 p5 p...]
ssss (marks end of section and restarts score counting from time 0)
mmmm “score location name” (marks a score section with a name)
nnnn “score location name” (named score section is re-read into the score

file at this location)
rrrr “integer repeat count” “a macro name” (begins a new repeating

sections)
eeee (marks end of score - optional)

Score Syntax: P-Field Substitution
.... (carries same p-field value from preceding “iiii” statement with like

instrument #)
++++ (determines current start from sum of preceeding durations by adding

p2 + p3 from previous “iiii” statement. legal in p2 only.)
^+^+^+^+x (determines current start of instrument from sum of preceeding written

event by adding last p2 to x. legal in p2 only.)
^-^-^-^-x (determines current start of instrument from sum of preceeding written

event by subtracting x from last p2. legal in p2 only.)
npnpnpnpx (replace with p-field(x) value from next note statement illegal in p1

p2 p3.)
ppppppppx (replace with p-field(x) value from previous note statement illegal in

p1 p2 p3.)
<<<< (p-field replaced by value derived from linear interpolation between

previous and subsequent “anchor” values in same p-field. illegal in p1
p2 p3)

>>>> (p-field replaced by value derived from linear interpolation between
previous and subsequent “anchor” values in same p-field. illegal in p1
p2 p3)

)))) (p-field replaced by value derived from exponential interpolation
between previous and subsequent “anchor” values in same p-field.
illegal in p1 p2 p3)

(((((p-field replaced by value derived from exponential interpolation
between previous and subsequent “anchor” values in same p-field.
illegal in p1 p2 p3)

~~~~ (p-field replaced by value derived from random value in the range
between previous and subsequent “anchor” values in same p-field.
illegal in p1 p2 p3)



Csound Quick Reference

The Public Csound Reference Manual 20 Version  4.0

Score Syntax: Expressions
[[[[x++++y]]]] (add value x to value y within a p-field. Note expressions must be in

[[[[brackets]]]])
[[[[x----y]]]] (subtract value y from value x within a p-field. Note expressions must

be in [[[[brackets]]]])
[[[[x****y]]]] (multiply value x by value y within a p-field. Note expressions must

be in [[[[brackets]]]])
[[[[x////y]]]] (divide value x by value y within a p-field. Note expressions must be

in [[[[brackets]]]])
[[[[x%%%%y]]]] (value x remainder value y within a p-field. Note expressions must be

in [[[[brackets]]]])
[[[[x^̂̂̂y]]]] (power of value x to value y within a p-field. Note expressions must

be in [[[[brackets]]]])
 [ [ [ [@x]]]] (next power-of-two greater than or equal to x. Note expressions must

be in [[[[brackets]]]])
[@@[@@[@@[@@x]]]] (next power-of-two-plus-one greater than or equal to x. Note

expressions must be in [[[[brackets]]]])

Score Syntax:  Macros
#define#define#define#define NAME # replacement text #
#define#define#define#define NAME(a’b’c) # replacement text #
$NAME.$NAME.$NAME.$NAME.
#undef#undef#undef#undef NAME
#include#include#include#include “filename”



Csound Quick Reference

The Public Csound Reference Manual 21 Version  4.0

GEN Routines: Sine/Cosine Generators
ffff # time size 9999 pna stra phsa pnb strb phsb …
ffff # time size 10101010 str1 str2 str3 str4 …
ffff # time size 19191919 pna stra phsa dcoa pnb strb phsb dcob
ffff # time size 11111111 nh lh r

GEN Routines: Line/Exponential Segment Generators
ffff # time size 5555 a n1 b n2 c …
ffff # time size 6666 a n1 b n2 c n3 d …
ffff # time size 7777 a n1 b n2 c …
ffff # time size 8888 a n1 b n2 c n3 d …
ffff # time size 16161616 beg dur type end
ffff # time size 25252525 x1 y1 x2 y2 x3 ...
ffff # time size 27272727 x1 y1 x2 y2 x3 ...

GEN Routines: File Access
ffff # time size 1111 filcod skiptime format channel
ffff # time size 23232323 “filename.txt”
ffff # time 0 28282828 filcod

GEN Routines: Numeric Value Access
ffff # time size 2222 v1 v2 v3 …
ffff # time size 17171717 x1 a x2 b x3 c …

GEN Routines: Window Functions
ffff # time size 20202020 window max op

GEN Routines: Random Functions
ffff # time size 21212121 type lvl arg1 arg2

GEN Routines: Waveshaping
ffff # time size 3333 xval1 xval2 c0 c1 c2 … cn
ffff # time size 13131313 xint xamp h0 h1 h2 … hn
ffff # time size 14141414 xint xamp h0 h1 h2 … hn
ffff # time size 15151515 xint xamp h0 phs0 h1 phs1 h2 phs2

GEN Routines: Amplitude Scaling
ffff # time size 4444 source# sourcemode
ffff # time size 12121212 xint



Csound Quick Reference

The Public Csound Reference Manual 22 Version  4.0

Command Line Flags: Generic
-I-I-I-I i-time only orch run
-n-n-n-n no sound onto disk
-i -i -i -i fnamfnamfnamfnam sound input filename fnam
-o -o -o -o fnamfnamfnamfnam sound output filename fnam
-b -b -b -b NNNN sample frames (or -kprds) per software sound I/O buffer
-B -B -B -B NNNN samples per hardware sound I/O buffer
-A-A-A-A create an AIFF format output soundfile
-W-W-W-W create a WAV format output soundfile
-J-J-J-J create an IRCAM format output soundfile
-h-h-h-h no header on output soundfile
-c-c-c-c 8-bit signed_char sound samples
-a-a-a-a alaw sound samples
-8-8-8-8 8-bit unsigned_char sound samples
-u-u-u-u ulaw sound samples
-s-s-s-s short_int sound samples
-l-l-l-l long_int sound samples
-f-f-f-f float sound samples
-r -r -r -r NNNN orchestra srate override
-k -k -k -k NNNN orchestra krate override
-v-v-v-v verbose orch translation
-m -m -m -m NNNN tty message level. N = Sum of: 1 = note amps, 2 = out-of-range

msg, 4 = warnings
-d-d-d-d suppress all displays
-g-g-g-g suppress graphics, use ASCII displays
-G-G-G-G create Postscript displays of any display
-S-S-S-S score is in Scot format
-x -x -x -x fnamfnamfnamfnam extract from score.srt using extract file fnam
-t -t -t -t NNNN use uninterpreted beats of the score, initially at tempo N
-L -L -L -L dnamdnamdnamdnam read Line-oriented real-time score events from device dnam
-M -M -M -M dnamdnamdnamdnam read MIDI real-time events from device dnam
-F -F -F -F fnamfnamfnamfnam read MIDI file event stream from file fnam
-P -P -P -P NNNN MIDI sustain pedal threshold (N = 0 - 128)
-R-R-R-R continually rewrite header while writing soundfile (WAV/AIFF)
-H/H1-H/H1-H/H1-H/H1 print a heartbeat character at each soundfile write
-H2-H2-H2-H2 generates a “.” every time a buffer is written.
-H3-H3-H3-H3 reports the size in seconds of the output.
-H4-H4-H4-H4 sounds a bell for every buffer of the output written.
-N-N-N-N notify (ring the bell) when score or MIDI file is done
-T-T-T-T terminate the performance when MIDI file is done
-D-D-D-D defer GEN01 soundfile loads until performance time
-z-z-z-z List opcodes in this version
-z1-z1-z1-z1 List opcodes and arguments in this version
-- -- -- -- lognamlognamlognamlognam Log all text output to lognam
-j fnam-j fnam-j fnam-j fnam Derive console messages from database fnam
-K-K-K-K Switch off peak chunks.



Csound Quick Reference

The Public Csound Reference Manual 23 Version  4.0

Command Line Flags: Utility Invocation
-U sndinfo-U sndinfo-U sndinfo-U sndinfo run utility program sndinfosndinfosndinfosndinfo
-U hetro-U hetro-U hetro-U hetro run utility program hetrohetrohetrohetro
-U lpanal-U lpanal-U lpanal-U lpanal run utility program lpanallpanallpanallpanal
-U pvanal-U pvanal-U pvanal-U pvanal run utility program pvanalpvanalpvanalpvanal
-U cvanal-U cvanal-U cvanal-U cvanal run utility program cvanalcvanalcvanalcvanal
-U pvlook-U pvlook-U pvlook-U pvlook run utility program pvlookpvlookpvlookpvlook
-C-C-C-C use Cscore processing of scorefile

Command Line Flags: PC and Windows-Specific
-j -j -j -j numnumnumnum set the number of console text rows (default 25)
-J -J -J -J numnumnumnum set the number of console text columns (default 80)
-K -K -K -K numnumnumnum enables MIDI IN. num (optional) = MIDI IN port device id number
-q -q -q -q numnumnumnum WAVE OUT device id number (use only if more WAVE devices are

installed)
-p -p -p -p numnumnumnum number of WAVE OUT buffers (default 4; max. 40)
-O-O-O-O suppresses all console text output for better real-time

performance
-e-e-e-e allows any sample rate (to use only with WAVE cards supporting

this feature)
-y-y-y-y doesn’t wait for keypress on exit
-E-E-E-E allows graphic display for WCSHELL by Riccardo Bianchini
-Q -Q -Q -Q numnumnumnum enable MIDI OUT. num (optional) = MIDI OUT port device id number
-Y-Y-Y-Y suppresses real-time WAVE OUT for better MIDI OUT timing

performance
-*-*-*-* yields control to the system until audio output buffer is full

Command Line Flags: Macintosh-Specific
-q -q -q -q sampdirsampdirsampdirsampdir set the directory for finding samples
-Q -Q -Q -Q analdiranaldiranaldiranaldir set the directory for finding analyses
-X -X -X -X snddirsnddirsnddirsnddir set the directory for saving sound files
-V -V -V -V numnumnumnum set screen buffer size
-E -E -E -E numnumnumnum set number of graphs saved
-p-p-p-p play on finishing
-e -e -e -e numnumnumnum set rescaling factor
-w-w-w-w set recording of MIDI data
-y -y -y -y numnumnumnum set rate for progress display
-Y -Y -Y -Y numnumnumnum set rate for profile display



Csound Quick Reference

The Public Csound Reference Manual 24 Version  4.0

Utilities: Analysis File Generation
hetrohetrohetrohetro -sr n infilename outfilename Hetrodyne analysis sample rate

-c n infilename outfilename Hetrodyne analysis channel number
-b n infilename outfilename Hetrodyne analysis segment begin time
-d n infilename outfilename Hetrodyne analysis segment duration
-f n infilename outfilename Hetrodyne analysis beginning

frequency
-h n infilename outfilename Hetrodyne analysis number of partials
-M n infilename outfilename Hetrodyne analysis maximum amplitude
-m n infilename outfilename Hetrodyne analysis minimum amplitude
-n n infilename outfilename Hetrodyne analysis number of

breakpoints
-l n infilename outfilename Hetrodyne analysis use third order

low-pass filter with fc of n
lpanallpanallpanallpanal -a infilename outfilename LPC analysis write filter pole

instead of coeffecients
-s n infilename outfilename LPC analysis sample rate
-c n infilename outfilename LPC analysis channel number
-b n infilename outfilename LPC analysis segment begin time
-d n infilename outfilename LPC analysis segment duration
-p n infilename outfilename LPC analysis number of poles
-h n infilename outfilename LPC analysis hop size in samples
-C s infilename outfilename LPC analysis text string for comments
-P n infilename outfilename LPC analysis lowest frequency
-Q n infilename outfilename LPC analysis highest frequency
-v n infilename outfilename LPC analysis verbosity level of

terminal messages

pvanalpvanalpvanalpvanal -s n infilename outfilename STFT analysis sample rate
-c n infilename outfilename STFT analysis channel number
-b n infilename outfilename STFT analysis segment begin time
-d n infilename outfilename STFT analysis segment duration
-n n infilename outfilename STFT analysis frame size
-w n infilename outfilename STFT analysis window overlap factor
-h n infilename outfilename STFT analysis hop size in samples

cvanalcvanalcvanalcvanal -s n infilename outfilename FFT analysis sample rate
-c n infilename outfilename FFT analysis channel number
-b n infilename outfilename FFT analysis segment begin time
-d n infilename outfilename FFT analysis segment duration



Csound Quick Reference

The Public Csound Reference Manual 25 Version  4.0

Utilities: File Queries
sndinfosndinfosndinfosndinfo soundfilename get info about one or more sound

files soundfilename
pvlookpvlookpvlookpvlook -bb n infilename STFT analysis file formatted text

output beginning bin number
-eb n infilename STFT analysis file formatted text

output ending bin number
-bf n infilename STFT analysis file formatted text

output beginning frame number
-ef n infilename STFT analysis file formatted text

output ending frame number
-i infilename STFT analysis file formatted text

output as integers


	Copyright Notice
	Contributors
	Table of Contents
	Finder
	Preface
	Syntax of the Orchestra
	Orchestra Syntax: Orchestra Header Statements
	Orchestra Syntax: Instrument Block Statements
	Orchestra Syntax: Variable Initialization
	Instrument Control: Instrument Invocation
	Instrument Control: Duration Control Statements
	Instrument Control: Real-time Performance Control
	Instrument Control: Time Reading
	Instrument Control: Clock Control
	Instrument Control: Sensing and Control
	Instrument Control: Conditional Values
	Instrument Control: Macros
	Instrument Control: Program Flow Control
	Instrument Control: Reinitialization
	Mathematical Operations: Arithmetic and Logic Operations
	Mathematical Operations: Mathematical Functions
	Mathematical Operations: Trigonometric Functions
	Mathematical Operations: Amplitude Functions
	Mathematical Operations: Random Functions
	Mathematical Functions: Opcode Equivalents of Functions
	Pitch Converters: Functions
	Pitch Converters: Tuning Opcodes
	MIDI Support: Converters
	MIDI Support: Controller Input
	MIDI Support: Slider Banks
	MIDI Support: Generic I/O
	MIDI Support: Note-on/Note-off
	MIDI Support: MIDI Message Output
	MIDI Support: Real-time Messages
	MIDI Support: Event Extenders
	Signal Generators: Linear and Exponential Generators
	Signal Generators: Table Access
	Signal Generators: Phasors
	Signal Generators: Basic Oscillators
	Signal Generators: Dynamic Spectrum Oscillators
	Signal Generators: Additive Synthesis/Resynthesis
	Signal Generators: FM Synthesis
	Signal Generators: Sample Playback
	Signal Generators: Granular Synthesis
	Signal Generators: Scanned Synthesis
	Signal Generators: Waveguide Physical Modeling
	Signal Generators: Models and Emulations
	Signal Generators: STFT Resynthesis (Vocoding)
	Signal Generators: LPC Resynthesis
	Signal Generators: Random (Noise) Generators
	Function Table Control: Table Queries
	Function Table Control: Table Selection
	Function Table Control: Read/Write Operations
	Signal Modifiers: Standard Filters
	Signal Modifiers: Specialized Filters
	Signal Modifiers: Envelope Modifiers
	Signal Modifiers: Amplitude Modifiers
	Signal Modifiers: Signal Limiters
	Signal Modifiers: Delay
	Signal Modifiers: Reverberation
	Signal Modifiers: Waveguides
	Signal Modifiers: Special Effects
	Signal Modifiers: Convolution and Morphing
	Signal Modifiers: Panning and Spatialization
	Signal Modifiers: Sample Level Operators
	Zak Patch System
	Operations Using Spectral Data Types
	Signal Input and Output: Input
	Signal Input and Output: Output
	Signal Input and Output:�File I/O
	Signal Input and Output: Sound File Queries
	Signal Input and Output: Printing and Display
	The Standard Numeric Score
	GEN Routines
	The Csound Command
	Unified File Format for Orchestras and Scores
	Score File Preprocessing
	Utility Programs
	Cscore
	Adding your own Cmodules to Csound
	Appendix A: Miscellaneous Information
	Csound Quick Reference
	Orchestra Syntax: Orchestra Header Statements
	Orchestra Syntax: Variable Data Types
	Orchestra Syntax: Variable Initialization
	Instrument Control: Instrument Invocation
	Instrument Control: Duration Control
	Instrument Control: Realtime Performance Control
	Instrument Control: Conditional Values
	Instrument Control: Macros
	Instrument Control: Program Flow Control
	Mathematical Operations: Arithmetic and Logic Operations
	Mathematical Operations: Mathematical Functions
	Mathematical Operations: Trigonometric Functions
	Mathematical Operations: Amplitude Functions
	Pitch Converters: Functions
	Pitch Convertors: Tuning Opcodes
	MIDI Support: Converters
	MIDI Support: Controller Input
	Signal Generators: Linear and Exponential Generators
	Signal Generators: Table Access
	Signal Modifiers: Envelope Modifiers
	Signal Modifiers: Amplitude Modifiers
	Zak Patch System
	Operations Using Spectral Data-Types
	Signal Input and Output: Input
	Signal Input and Output: Output
	Score Syntax: Statements
	Score Syntax: P-Field Substitution
	Score Syntax:  Macros
	GEN Routines: Sine/Cosine Generators
	GEN Routines: Line/Exponential Segment Generators
	GEN Routines: File Access
	GEN Routines: Numeric Value Access
	GEN Routines: Waveshaping
	GEN Routines: Amplitude Scaling
	Command Line Flags: Generic
	Command Line Flags: Utility Invocation
	Command Line Flags: PC and Windows-Specific
	Command Line Flags: Macintosh-Specific
	Utilities: Analysis File Generation
	Utilities: File Queries


