Alexander V. Mikhailov
University of Leeds, UK
in collaboration with Victor M. Buchstaber

Polynomial integrable Hamiltonian systems

and symmetric powers of \mathbb{C}^{2}

We give a construction of polynomial integrable systems in $\mathbb{C}^{2 N}$ (or on $\mathbb{R}^{2 N}$, if the base field is \mathbb{R}) using the algebra-geometric structure of the space $\operatorname{Sym}^{N}\left(\mathbb{C}^{2}\right)$. It is based on a canonical transformation $\varphi: \mathbb{C}^{2 N} \rightarrow \mathbb{C}^{2 N}$ from variables $(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{2 N}, \mathbf{x}=$ $\left(x_{1}, \ldots, x_{N}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ to $\left.\mathbf{q}=\left(q_{1}, \ldots, q_{N}\right), \mathbf{p}=p_{1}, \ldots, p_{N}\right)$ given by the generating function

$$
G=\sum_{i, n=1}^{N} \frac{1}{n} x_{i}^{n} p_{n} \Rightarrow \quad q_{n}=\frac{\partial G}{\partial p_{n}}=\frac{1}{n} \sum_{i=1}^{N} x_{i}^{n}, \quad y_{i}=\frac{\partial G}{\partial x_{i}}=\sum_{n=1}^{N} x_{i}^{n-1} p_{n} .
$$

The canonical transformation φ can be decomposed in the projection $\pi: \mathbb{C}^{2 N} \rightarrow$ Sym $^{N}\left(\mathbb{C}^{2}\right)$ and a bi-rational isomorphism $\operatorname{Sym}^{N}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2 N}$. The projection π gives a branching covering of $\operatorname{Sym}^{N}\left(\mathbb{C}^{2}\right)$.

With any polynomial $F(x, y) \in \mathbb{C}[x, y]$ such that $\partial_{y} F(x, y) \neq 0$ we associate N compatible Stäkel type integrable Hamiltonian systems in $\mathbb{C}^{2 N}$

$$
\frac{d x_{i}}{d t_{k}}=\frac{\partial H_{k}(\mathbf{x}, \mathbf{y})}{\partial y_{i}}, \quad \frac{d y_{i}}{d t_{k}}=-\frac{\partial H_{k}(\mathbf{x}, \mathbf{y})}{\partial x_{i}}, \quad i, k \in\{1, \ldots, N\}
$$

where $H_{k}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{N} W_{k, i} F\left(x_{i}, y_{i}\right)$ and $W_{k, i}$ is the inverse Vandermonde matrix. The intersection of the level sets $H_{s}(\mathbf{x}, \mathbf{y})=h_{s}, h_{s} \in \mathbb{C}, s=1, \ldots, N$, is a quasi-projective algebraic variety in $\mathbb{C}^{2 N}$

$$
\mathcal{G}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{2 N} \mid x_{i} \neq x_{j} \text { if } i \neq j, \text { and } F\left(x_{i}, y_{i}\right)=\sum_{s=1}^{N} h_{s} x_{i}^{s-1}, i=1, \ldots, N\right\} .
$$

which is S_{N} invariant with the free action of S_{N}.
We show that the functions $\mathcal{H}_{k}(\mathbf{q}, \mathbf{p}), k=1, \ldots, N$, defined by $\phi^{*} \mathcal{H}_{k}(\mathbf{q}, \mathbf{p})=$ $H_{k}(\mathbf{x}, \mathbf{y})$ are polynomials. They are functionally independent. It leads us to one of our main result:
In the space $\mathbb{C}^{2 N}$ there are N commuting polynomial Hamiltonian systems correponding to the Hamiltonians $\mathcal{H}_{1}(\mathbf{q}, \mathbf{p}), \ldots, \mathcal{H}_{N}(\mathbf{q}, \mathbf{p})$.

It follows from the Liouville theorem that all Hamiltonian systems obtained are completely integrable. In the results obtained we do not impose any condition on the genus of the curve

$$
\Gamma=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=\sum_{s=1}^{N} h_{s} x^{s-1}\right\}
$$

neither request that the curve Γ is regular.

Application of this construction to N-th symmetric power of a plane algebraic curve Γ of genus g leads to N integrable Hamiltonian systems on $\mathbb{C}^{2 N}$. In the case of a non-singular hyperelliptic curves Γ of genus g and $N=g$ our systems represent integrable hierarchies of equations which had been discovered in the theory of finite gap solutions (algebra-geometric integration) of the Korteweg-de-Vrise equation.

For $N=2,3$ and $g=1,2,3$ we present explicit examples of our polynomial systems and discuss the problem of their integration. These results were announced in:
V. M. Buchstaber and A. V. Mikhailov, Polynomial integrable Hamiltonian systems on symmetric powers of plane algebraic curves, UMN, December (2018).

