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Introducing the notion of rigidity

All base fields k will have char = 0. All automorphisms will be
k -algebra automorphisms.
A natural and important question in invariant theory is the
following:

Question
(Galois Embedding) Given a finitely generated k algebra A, are
there non-trivial finite groups of automorphisms G such that
AG ∼= A?

In the commutative world, this question has been famously
adressed by the Chevalley-Shephard-Todd theorem. In
non-commutative algebras, it is quite common that the so
called “rigidity"phenomena happens:

(Rigidity) AG is never isomorphic to A, for any finite group
of automorphisms.
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The unreal rigidity of the Weyl Algebra...

One such case, our main interest, is the Weyl Algebra An(k) -
proved rigid by Alev and Polo in 1995 (for k algebraically
closed). In 2017, Tikaradze settled an old conjectured and
proved even more:

Theorem
(Tikaradze, 2017) There is no C-domain Γ with a non-trivial
finite group of automorphisms G such that ΓG ∼= An(C).

Nonetheless, we have the following surprising:
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... and the surreal softness it hides

Theorem
(Alev, Dumas, 1997) Let G be any finite group of
automorphisms of A1(C), and extend its action to W1(C), the
total quotient field of the Weyl algebra. Then we allways have
W1(C)G ∼= W1(C)

We will use the notation Wn(k) to denote the Weyl Fields, the
field o fractions of the Weyl Algebras.
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What is behind this surprising phenomena? The idea comes
from algebraic geometry. Classifying objects up to isomorphism
is a too hard problem, so they are studied up to birational
equivalence. In case of affine varieties this means:
Specm A ∼= Specm B if and only if A ∼= B; they are birationally
equivalent if and only if Frac A ∼= Frac B. We have the GIT
quotient (Specm A)/G = Specm AG, so in the geometric case
Question 1 asks: (Specm A)/G ∼= (Specm A)? The birational
version, then, is:

Question
(Birational Galois Embedding) Let A be an Ore domain an G a
finite group of automorphisms of A. Use Q() to denote the ring
of fractions. When Q(AG) = Q(A)G ∼= Q(A)?
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In the commutative case we have the famous

Problem
(Noether’s Problem, 1913) Given a finite group G acting linearly
on the rational function field k(x1, . . . , xn), when
k(x1, . . . , xn)G ∼= k(x1, . . . , xn)?

The n-th Weyl An(k) algebra is generated by the canonical
Weyl generators, denoted here by x1, . . . , xn, ∂1, . . . , ∂n, that
satisfy the canonical Weyl relations. It is also the ring of
differential operators on the polynomial algebra, and any action
of a finite group G by linear automorphisms on the polynomial
algebra Pn(k) can be extended to the Weyl Algebra (as seen
this way) by conjugation with differential operators:
g.D(f ) = g(D(g−1(f ))), g ∈ G,D ∈ An(k), f ∈ Pn(k). Such
group automorphisms of the Weyl Algebra are called linear.
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Following Gelfand-Kirillov philosophy that the Weyl Fields are
an important non-commutative analogue to the field of rational
functions, in 2006 Alev in Dumas introduced the
Noncommutative Noether’s Problem:

Problem
(Noncommutative Noether’s Problem) Let G be a finite group of
linear automorphisms of An(k). When we have
Wn(k)G ∼= Wn(k)?

As we shall see, there is a striking similarity for the solutions
between the original and noncommutative versions of Noether’s
Problem. So, despite the rigidity of the Weyl algebra, there is
still a lot of good structure theory, resembling the original Weyl
algebra, when we consider an adequate notion of birational
equivalence.
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The same happens for the representation theory. Remember
the following well-known result from commutative algebra:

Proposition
Let A ⊂ B be an integral extension of two k-algebras. Consider
the induced map Φ : Specm B → Specm A.

The fibers are never empty.
In case B is also a finite algebra over A, the fibers are all
finite;
In case A = BG the number of fibers of the map is
uniformely bounded (G a finite group of automorphisms of
B).
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We shall see that a similar phenomena happens for many
invariant rings of the Weyl algebra (and other rings of
differential operators). We use the theory of Galois Algebras
and Orders (Futorny, Ovsienko, 2010, 2014), which provide an
adequate theoretical framework the categories like the
Gelfand-Tsetlin one for U(gln). This involves a pair of algebra U
and commutative subalgebra Γ. This involes embedding U in a
skew monoid ring over Frac Γ, and we obtain a map
Φ : left − Specm U → Specm Γ with properties which are
similar as those above. Again, despite the non-isomorphism
given by the rigidity result, the Weyl algebra and their invariants
are similar in the structure of their categories of
(Gelfand-Tsetlin) modules.
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A review of the classical commutative case with a
geometric bias

Let G be a finite group of automorphism of GLn(k) acting on
the polynomial algebra Pn(k) = k [x1, . . . , xn] by linear
automorphisms. Every such action arises in the following way:
we have G a finite group of GL(V ) for a finite dimensional
vector space V of dimension n and we make it act in the
algebra of polynomial functions on V , S(V ∗), in the standard
way: g.f (v) = f (g−1(v)), f ∈ S(V ∗),g ∈ G, v ∈ V .
Let’s recall the precise statement of Chevalley-Shephard-Todd
Theorem.
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Theorem
(Chevalley-Shephardd-Tod) Let G be a finite group acting
linearly on Pn(k). Then are equivalent:

G, seem as a subgroup of GLn(k), is a pseudo-reflection
group in it’s natural representation.
Pn(k)G ∼= Pn(k) (geometric interpretation: An/G ∼= An).
Pn(k) is finitely generated free/projective/flat module over
Pn(k)G (geometric interpretation: the projection map
π : An → An/G is a flat morphism.)
Pn(k)G is a regular ring (geometric interpretation: An/G is
smooth).
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We asked in the Chevalley-Shephard-Todd, in the geometric
interpretation: when An/G ∼= An for a finite group G acting
linearly? When we consider the weaker relation of birational
equivalence, we can expect a more rich situation.
This is Noether’s Problem:

Problem
(Noether’s Problem, 1913) Given a finite group G acting linearly
on the rational function field k(x1, . . . , xn), when
k(x1, . . . , xn)G ∼= k(x1, . . . , xn)?
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These are some of most important cases of positive solution:

When n = 1 and 2; and when k is algebraically closed, for
n = 3.
When G is a group of pseudo-reflections (by
Chevalley-Shephard-Todd Theorem).
When the natural representation of G decomposes as a
direct sum of one dimensional representations (Fischer).
For finite abelian groups acting by transitive permutations
of the variables x1, . . . , xn, the problem is settled by the
work of Lenstra.
For k(x1, . . . , xn, y1, . . . , yn) and the symmetric group Sn
permutes the variables yi , xi simultaneously (Mattuck).
For the alternating groups A3,A4, and A5 (Maeda).

Counter-examples are also known. The case of permutation
actions is particularly important for it’s relation to constructive
aspects of the Inverse Galois Problem.
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Rigidity in Algebras

Given the study realized for the polynomial algebra, it was
natural to search for analogues to the
Chevalley-Shephard-Todd theorem for other kinds of algebras.
Given that the polynomial algebra is the relatively free algebra
in the variety determined by the identity [x , y ] = 0, a natural first
step was to study invariants of free and relativiely free algebras
in varieties.
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Theorem
Let k〈x1, . . . , xn〉 be the free associative algebra and G a
finite group acting linearly. Then the subalgebra of
invariants is allways free (Lane, Kharchenko, 1976, 1978).
However, the rank behaves badly (it can be of infinite rank
of instance). The rank is the same only if the group is trivial
(Dicks, Formanek, 1982).
The ring of generic matrices is rigid (Guralnick, 1985).
Using the result above, it can be shown that the ring of
invariants of an relavitively free algebra is allways rigid,
unless the Jacobson(=prime) radical of it’s T-ideal is the
one generated by ([x , y ]).
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In 1995 Alev and Polo proved the following theorems (k is
suposed algebraically closed):

Theorem
Let g be a semisimple Lie algebra of finite dimension, and
G a finite group of automorphisms of U(g). If
U(g)G ∼= U(g′) for another semisimple lie algebra g′, then
g ∼= g′ and G is trivial. In particular the algebra is rigid.
For any finite group of automorphisms of An(k), G, we
can’t have An(k)G ∼= An(k). The proof is much simpler if
the action of G is linear.
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In 2008, E. Kirkman, J. Kuzmanovich and J.J. Zhang
discovered more classes of rigid algebras, and noticing work of
Alev and Dumas such as the mentioned above, they proposed
the following two questions: For a rigid Ore domain, study when
Q(A)G ∼= Q(A), or then Q(B), where B is a Artin-Schelter
regular algebra. Noncommutative Noether’s Problem is a
natural approach to the first question; we will have some words
to say about the second one also.
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Gelfand-Kirillov Philosophy

We said before that, following the work of Gelfand and Kirillov, it
has become usual to consider the Weyl Fields as canonical
representatives of isomorphisms classes of Q(A), for many
Noetherian domains A in certain families of algebras. In this
sense, rationality is understood as having as total ring of
quotients a Weyl Field.
The origin of this way of thinking is the remarkable

Conjecture
(Gelfand-Kirillov Conjecture, 1966) Let L be a finite dimensional
Lie algebra over an algebraically closed field. Then Q(U(L)) is
isomorphic to Wn(K ), where K is a purely transcedental
extension of k (of finite transcendence degree).
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The most important cases of positive solution are:

L = gln, sln, L nilpotent (Gelfand,Kirillov, 1966).
L solvable. (Borho, Joseph, McConnell. 1973)
L has dimension at most 8 (Alev, Ooms, Van den Bergh,
2000).

The first counter-example to this conjecture was found by Alev,
Ooms, Van den Bergh (1996). For simple Lie algebras, the
question was almost completely solved by Premet (2010) : true
for algebras of type A, unknown for type C and G2, and false for
all others.
However, the Conjecture is true after a small modification for all
simple Lie algebras: for U(L)⊗Z (U(L)) Z̃ , where Z̃ is an
adequate extension of the center (Gelfand, Kirillov, 1969). It is
also true after the necessary modifications for the maximal
primitive quotients of their envelopping algebras (Conze, 1974).
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There are many other cases of algebras, infinite dimensional
over their centers, where the Gelfand-Kirillov philosophy is
applied - for instance, the Sympletic Reflection Algebras of
Etingof and Ginzburg (2002); and many Galois Algebras. We
are going to see these in a moment. They all are all connected
to Noncommutative Noether’s Problem.
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Given the development of quantum groups, a quantum
Gelfand-Kirillov Conjecture was also introduced. Loosely
speaking:

Conjecture
(Quantum Gelfand-Kirillov Conjecture) Let A be a “quantum
group- such as quantized coordinate ring, or a quantized Weyl
algebra, or a quantized envelopping algebra. Then Q(A) is
isomorphic to a the total quotient ring of a quantum affine space
over a purely transcedental extension (of finite transcendence
degree) of the base field (suposed algebraically closed).

A full discussion can be found in K. Brown, K. Goodearl,
“Lectures on Algebraic Quantum Groups". We will adress this
question again - and point it has also a connection to a
quantized version of Noether’s Problem.
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Back to Noncommutative Noether’s Problem

Now to Noncommutative Noether’s Problem proper. Let’s recall
it.

Problem
(Noncommutative Noether’s Problem) Let G be a finite group of
linear automorphisms of An(k). When we have
Wn(k)G ∼= Wn(k)?

The following cases of positive solution were obtained by Alev
and Dumas (2006)

When n = 1,2 and G is arbitrary.
When the natural representation of G decomposes as a
direct sum of one dimensional representations.

In 2010 Futorny, Molev and Ovsienko proved the positive
solution for the problem when G = Sn act on a space of
dimension n permuting the base as usual, and k is
algebraically closed.
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New Results!

In 2017, elaborating on a preliminar work of 2006 by Futorny
and Ovsienko, Futorny and Schwarz obtained a elementary
proof (a much simplified version of the 2006’s one) of the same
statement for any field.

Theorem
(Eshmatov, Futorny, Schwarz, 2015 arxiv, 2017 Proc. Amer.
Math. Society) When, in it’s natural representation, G acts as
an unitary reflection group, we have Wn(C)G ∼= Wn(C)

The key igredient for the proof is the following: call
Λ = C[x1, . . . , xn]. By restriction of domain, the inclusion
ΛG → Λ induces an injective map D(Λ)G → D(ΛG) ∼= D(Λ) that,
however, is not injective, because the action of G is not free.
Removing the fixed hyperplanes is equivalent to localize Λ by
an G invariant polynomial ∆, and obtain a Zariski open set
where the action of G restrict and is free.
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Then we can use:

Theorem
(Main Technical Result, from Cannings and Holland, 1994) Let
X be an affine irreducible algebraic variety and G a finite group
acting on it. Let V be the open subset of X where G acts freely.
If X satisfies Serre condition S2 (in particular, if it is normal) and
codimX (X − V ) ≥ 2 then D(X/G) ∼= D(X )G. The same holds if
G acts freely.

From this follows clearly:

Proposition

Consider the inclusion ΛW
∆ → Λ∆. By restriction of domain

(†)φ : D(Λ∆)W → D(ΛW
∆ ) is an isomorphism.

This is the main ingredient in the proof.
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In the last two years, Futorny and Schwarz obtained the
following generalization of this result. We use the same
notation as before. The difference is that k is an arbitrary field
of zero characteristic. We would like to thanks Jacques Alev for
his great discussions, which contributed to the final form of this
theorem.

Theorem
(Futorny, Schwarz, 2018) Noncommutative Noether’s Problem
has a positive solution for any pseudo-reflection group over any
field k: if G acts by pseudo-reflections, Wn(k)G ∼= Wn(k).
Morover, we have an algorithm to find the Weyl generators
inside Wn(k)G - and in fact, they can be found inside a
localization of An(k)G by a single polynomial.
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Here is an example of the use of the algorithm for the
isomorphism W3(k)S3 →W3(k).

x1 + x2 + x3 → X1, x1x2 + x2x3 + x1x3 → X2, x1x2x3 → X3;

x2
1 (x2 − x3)

J
∂1 +

x2
2 (x3 − x1)

J
∂2 +

x2
3 (x1 − x2)

J
∂3 → Y1;

x1(x3 − x2)

J
∂1 +

x2(x1 − x3)

J
∂2 +

x3(x2 − x1)

J
∂3 → Y2;

(x2 − x3)

J
∂1 +

(x3 − x1)

J
∂2 +

(x1 − x2)

J
∂3 → Y3.

where J = (x1 − x2)(x1 − x3)(x3 − x2).
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The idea of the proof is as follows:
Use invariant theory theory of arbitrary pseudo-reflection
groups to find good invariant polynomials to localize
(mimicking the proof for the complex case).
Use the well-known (but not easy to find) fact that
pseudo-reflection groups decompose as a direct product of
irreducible factors (like the finite coxeter groups case).
Very hard results regarding the field of definition of the
representation theory of pseudo-reflection groups, to
reduce the problem to the cases where we can apply ideas
from algebraic geometry.

Conjecture
(Schwarz, 2018) The proof strongly suggest the following
statement: Let G be a Weyl group. Then
FracAn(k)G ∼= FracAn(k), where k is field of prime
characteristic, for char k >> 0.

.
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A Conjecture relating Noether’s Problem and it’s
Noncommutative Analogue

The following is an elaboration of a heuristic conjecture made
by Schwarz in 2015 (S. Paulo Journal Math. Sci.).

Conjecture
Let k be any field of 0 char. Let G be a finite group acting
linearly on a vector space V of dimension n. Then if classical
Noether’s Problem holds for S(V ∗)G then the Noncommutative
one holds for D(S(V ∗))G.

As we saw, the conjecture holds for pseudo-reflection groups;
from the work of Alev and Dumas, we have more coincidences:
when dim V = 1,2, or when the representation of G is a direct
sum of one dimensional representations.
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Under technical conditions, the conjecture allways holds. Let k
be algebraically closed.

Theorem
(Futorny, Schwarz, 2017) Supose G satisfies the conditions of
the Main Technical Result (since the affine space is a normal
variety, the conditions are only on the group action). Then the
Conjecture holds for G.

This theorem has a very technical assumption. However, with it
we can show the amazing:

Theorem
(Futorny, Schwarz, 2018) Let k be algebraically closed, and let
G be any group acting by permutations on Noether’s Problem
with a positive solution. Then the Noncommutative Noether’s
Problem also has a positive solution. This includes, for
instance, the positive part of Lenstra work, Mattuck result, and
the alternating groups.
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As surprising this result might be, ideally the result should hold
for the same fields as the original actions in the original
Noether’s Problem. In a certain sense, being algebraically
closed trivializes things, as it reduces things to algebraic
geometry (if there is something like trivial algebraic geometry to
begin with).
Indeed we have:

Theorem
(Futorny, Schwarz, 2018) Let k be any field of zero
characteristic. If A3 acts on W3(k) permuting the variables as
usual, then Noncommutative Noether’s Problem holds:
W3(k)A3 ∼= W3(k). Similary, W4(k)A4 ∼= W4(k).
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Open Problems

Problem
Find Counter-Examples to Noncommutative Noether Problem.

Problem
In view of our Conjecture and the strong evidence for it, find an
example of a linear action of a finite group such that the
Classical Noether’s Problem fails but the Noncommutative does
hold.
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A question to the audience before they start making
questions to me

Have you heard about this result?

Let k be any field of zero characteristic and G any finite
group of automorphisms of k [x , y ]. Then
k(x , y)G ∼= k(x , y).

I am curious because of Alev and Dumas result about the first
Weyl Field, among the same lines. Note that is essential in the
case of the polynomial ring to suppose k not algebraically
closed - otherwise the result is trivially true because of
Zariski-Castelnuovo Theorem.
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