Using Interpreted CompositeCalls to Improve
Operating System Services

Francisco J. Ballesteros!*

Sergio Arevalo®’

Ricardo Jimenez2" Marta Patifio®'

Fabio Kon’*
Roy H. Campbell®*

ISystems and Communications Group. Carlos III University of Madrid
2Distributed Operating Systems Group. Technical University of Madrid
3Systems Research Group. University of Illinois at Urbana-Champaign

Abstract

A high number of protection domain crossings and context switches is often the cause of bad performance in complex

object-oriented systems.

We identified the CompositeCall pattern which has been used to address this problem for decades. The pattern
modifies the traditional client/server interaction model so that clients are able to build compound requests which are

evaluated in the server domain.

We implemented CompositeCalls for both a traditional OS, Linux, and an experimental object-oriented research
pkernel, Off ++. In the first case, we learned about implications of applying CompositeCall to a non-object-oriented
“legacy” system. In both experiments, we learned when CompositeCalls help improving system performance (and when
they do not help). In addition, our experiments gave us important insights about some pernicious design traditions

extensively used in OS construction.

1 Introduction

In operating systems, invoking a system service is usually
a heavy-weight operation due to protection domain cross-
ing. In distributed systems, invoking remote services is
more expensive than invoking local services due to network
latency and processing overhead. However, many applica-
tions spend most of their time within a tight loop, issuing
repeated calls to objects in a different protection domain or
in a different node. A non-negligible portion of the proces-
sor time consumed by these applications is entirely spent in
domain-crossing.

Service designers have to decide whether to provide

*Partially supported by Spanish CICYT grant # TIC-98-1032-C03-03.

non-primitive operations (i.e. those which could be built
using already implemented operations) or not. If they are
included, the interface gets more complex and changes in
the primitive operations may affect the non-primitive ones ! .
If they are not included, a larger number of domain cross-

ings (or messages) might be needed at run time.

To state it more clearly, consider for instance a system
service such as a name service, a connection service, or
even a complete operating system. It is typical for a sin-
gle application to issue several calls to the domain where
the service resides. A program like pc_copy, which uses a
file server, can be an example of such system usage pattern:

TPartially supported by the Spanish Research Council CICYT grant # TIC-98-1032-C03-01 and by the Madrid Regional Research Council grant
number CAM-07T/0012/1998

Fabio Kon is supported in part by a grant from CAPES, the Brazilian Research Agency, proc.# 1405/95-2.

$The Systems Research Group is supported in part by a grant from the National Science Foundation, NSF 98-70736.

! As the implementor may fall into the temptation of using some internal feature of the service.

// Using primitive calls

pc_copy() {

while (FileSys::aFile.read(buf))
write(FileSys::otherFile.write(buf));

}

Calls to either operating system or remote services (e.g
to FileSys) are much more expensive than calls within the
client domain. Therefore, it would be not just convenient
but also much more efficient to use a non-primitive opera-
tion like copy.

// Using composite calls

cc_copy() {
FileSys::otherFile.copy(FileSys::aFile)

}

The difference between the original pc_copy and
cc_copy is that the former uses four domain crossings per
loop (two per call). The latter uses just two domain cross-
ings, no matter what the number of iterations is.

Sadly, well-designed servers provide just primitive op-
erations (i.e. operations which cannot be built using other
operations already provided by the server). Therefore, a
operation like copy is seldom provided. What the client
could do instead, is to send the whole while loop to the file
server. A single cross-domain call (i.e. two domain cross-
ings) would be enough to perform the file copy.

The CompositeCall pattern enables the extension of
server interfaces for safe execution of repeated sequences
of service calls and simple control structures. It provides
the means to compose separate calls to a server into a single
one. A CompositeCall is indeed a program a client sends
for execution in the server domain.

It is well known that some existing systems, like SPIN
[3], support code-downloading as a means for extensibility.
Our main contributions are that we have identified the pat-
tern being discussed, and we are applying it to systems not
designed to support such feature. Also, we have applied it
to a distributed adaptable pkernel, Off ++. Besides, we have
employed very light-weight interpreters, which performed
surprisingly well (at least when compared with those heavy-
weight interpreters used in previous systems).

In the case of bulk data transfer operations, a very large
amount of data copying can be avoided by using Compos-
iteCalls. Compare, for instance, pc_copy and cc_copy
considering that the file service is provided by a remote NFS
server. In the first case, the whole file must be sent to the
client and back to the server. In the second case, by means
of CompositeCalls, the file content does not need to leave
the server just to be copied back to the place where it came
from.

We found that other systems concepts such as
gather/scatter IO, message batching, deferred calls, and het-
erogeneous resource allocation could be seen as instances of
this pattern. By allowing clients to compose calls, all these
abstractions can be provided by a single piece of code as
described below.

Using CompositeCalls helps to keep the system (server)
small, as only primitive operations must be included. Non-
primitive operations can be provided by programs built by
clients.

After identifying the CompositeCall pattern, we have
applied it to improve the performance of user programs in
two different environments, Unix and Off++ [1, 15]. In
Off ++, the pattern is also applied to provide support for dis-
connected operations, gather/scatter I/O, and heterogeneous
resource allocation—these services being not provided as
primitive operations.

The remainder of this paper is organized as follows. We
introduce the CompositeCall pattern in section 2. Section 3
discusses some issues related to the application of Compos-
iteCall to OS services. This includes the design and im-
plementation of the pattern on Linux (section 3.1) and on
Off ++ (section 3.2). Section 4 presents experimental results
and lessons we learned. Finally, section 5 is devoted to re-
lated work and section 6 presents our conclusions and future
work.

2 The CompositeCall
pattern

The CompositeCall pattern combines a simple control com-
mand language with an existing server as shown in figure 1
(this figure and the following ones follow the OMT notation
[16] variant used in [6]).

The goal of CompositeCalls is to enable users to send
simple groups of calls (or programs) to the server. Issu-
ing separate single calls can thus be avoided under many
circumstances. In fact, the programming model for using
system services is being shifted from a “protected library”
providing several entry points to an “interpreter” executing
client programs to service requests.

Clients compose primitive calls to build a Composite-
Call, also known as Program. The program is then sent to
an extended server, or InterpServer. A single instance of
InterpServer resides in the server protection domain. The
InterpServer implements execute as an alternate entry
point into the server.

InterpServer

Execute(vars,program server)

Server

Program

VarTable

Run(vars,server)
Terminate()

VarTable vars;
Server server;

ConcreteServer

servicel (parms)
service2(parms)

Figure 1: Main participants in the CompositeCall pattern.

To enable the use of a single InterpServer with differ-
ent servers, a reference to an abstract Server is supplied to
execute whenever a program needs to be executed. Con-
crete Server subclasses wrap existing servers, providing a
way for the program to issue calls to legacy services.

A complete view of the entities involved in the Com-
positeCall pattern is depicted in figure 2.

All Programs are made of Commands. The set of
Commands accepted by a Program can be divided into:

e Control commands: which allow the construction of
simple control structures (e.g. While in figure 3).

e Call commands: which issue calls to primitive server
entry points. (e.g. Read and Write in figure 3).

Depending upon the chosen control command language,
different interpreters can be used. In particular, we have
designed and implemented both a high-level command
language (HighLevelProgram) and a low-level byte-code
based language (LowLevelProgram).

Our goal is to let users write programs — like the one
shown in figure 3 — and compile them to generate low-level
programs which can be interpreted more efficiently. In fact,
depending on the latency of domain-crossing operations,
low-level programs might not be needed at all. If the extra
latency introduced by domain-crossing is very large, like on
WAN distributed applications, high level programs will al-
ready produce significant performance improvements. Note
that, as discussed in section 3, there might be more reasons
than just latency to use CompositeCalls.

A detailed description of how high-level programs are
built and compiled is out of the scope of this paper (see the
extended version in [15]). However, an example of a high-
level program is presented in figure 3.

Constructors for concrete classes representing “control
structures” and “server call” commands allow for a conve-
nient syntax. Instances representing the structure of the pro-
gram are built while constructors are invoked. They end-up
building a (syntax) tree which represents the program struc-
ture.

Such “high-level” programs are built by the user (or the
client) and can be serialized and sent to the server, where
it is deserialized for interpretation. Alternatively, it can be
compiled by the client into a “low-level” program before
being sent, as suggested in line 11 of figure 3.

The compilation triggered in line 11 of figure 3 is what
could be called on-line compilation. Of course, it is always
feasible to compile the program off-line and then include
just the low-level program into the user application.

run, the main method of Program, triggers program ex-
ecution by calling the do method of the proper Command
(e.g.: In figure 3, the cross-domain call to execute will
call to program.run, in the server domain; afterwards,
program.run calls to Sequence: :do in the Sequence in-
stance).

A single storage area, named VarTable, is required to
run a program. It is supplied as a parameter to execute.
Some entries in VarTable act as input or output arguments
for the program, others behave as local temporary variables.
The storage area is returned to the user upon program com-

InterpServer

execute(vars,program,server)

i

Program VarTable

run(vars,server)

terminate()
J: VarTable vars;

‘ Server server;

Server

ConcreteServer /K
servicel (parms)
service2(parms)
HighLevelProgram LowLevelProgram
HighLevelProgram(hlcommands) LowLevelProgram(llcommands)
run(vars server) O K>— run(vars,serv%:r) 0O K>——
terminate() code terminate() code
while(!terminated())
code.do() code[program_counter].do()
Command
setProgram() | program
doQ)
[|
HLCommand LLCommand
do() do()
Figure 2: CompositeCalls: The whole picture.
1: VarTable vars; // Declares a variable pool.
2: StringVar buf(vars,100); // Allocates a string of up to
3: // 100 characters in vars.
4: IntVar len(vars); // Allocates an integer in vars.
5: HighLevelProgram hprogram =
6: Sequence (// These Constructors can
7: Read(buf,len), // initialize hprogram by
8: While(Greater(len,0), // building a tree
9: Write(buf,len)
10:)i
11: LowLevelProgram program = hprogram.compile(); // which can be
12: // translated
13: // to byte-code
14: InterpServer::execute(vars,program,server); // and executed.

Figure 3: A high-level user program for copy: this code, which executes within the client, builds a program for copy
(lines 5 to 10), and sends the program for execution into the server domain (line 14).

pletion.

The pattern is completely independent of the transport
mechanism used to deliver calls to the server. It can be used
in systems using trap-based system calls, remote method
invocations, Rendez-Vous, or any other IPC mechanism.

2.1 Related patterns

A Progranm is actually an interpreter for programs made of
Commands. The Interpreter pattern [6] is thus used to im-
plement the desired command language. In turn, Commands
are usually Composites [6], so high-level constructs (e.g.
loops) can be expressed cleanly.

The Visitor [6] pattern can be used to compile high-level
programs into byte code to be sent to the InterpServer.
Different mechanisms can be used to issue the call from the
client to the server, like for instance the Rendez Vous pattern
[7].

The Active Objects [11] pattern can also be used to de-
couple the client from the server, by decoupling method in-
vocation from method execution. It can be combined with
CompositeCall pattern, so that the CompositeCall is iso-
lated from server concurrency issues.

3 Using CompositeCalls

Now, we discuss some issues regarding the use of Compos-
iteCall in Operating Systems.

Should CompositeCall be used? Using CompositeCall
is worthwhile when enough number of calls are issued from
within the program. Otherwise, the overhead introduced by
having to generate, send and interpret the program will be
larger than the gain from using CompositeCall. In some
cases, the relative overhead is so small that it is worthwhile
to use CompositeCall to provide simple non-primitive op-
erations.

CompositeCalls can be also used to decouple the ser-
vice requester (the program builder) from the service
provider and the calling mechanism. A CompositeCall pro-
gram can be passed back and forth between different com-
ponents of the client while calls, targeted to the server, are
added to the program. Finally, the program is delivered to
the server domain for execution.

The level of indirection provided by the program can be
used as an indirect call [2], as one can transmit the program
to the server by different means.

Our experience says that, in the cases in which the only
motivation for using CompositeCall is efficiency, careful

timing must be done. Depending on the interpreter used
and the latency of domain crossing, it might, or might not,
be worth the effort.

Existing services need no changes to support Composite-
Calls. Since CompositeCall works by simply aggregating
existing calls, legacy servers can be used off-the-shelf with
this pattern.

The system call mechanism is used as-is, without
changes, to transfer the program and the variable array
down to the kernel. Once the program has reached the
server-domain, it is verified and given to the interpreter (the
implementation of the execute method).

Security is not compromised. No access is given to the
user other than that granted by existing system services.

Verifying the program for safety is a very simple op-
eration. Such process consists on ensuring that only valid
commands are included in the program. The simpler the
command language, the simpler the program verification.
In the extreme case, when the command language is made
just of call commands, the only check needed is ensuring
that called entry points exist. We have found that the com-
plexity of the interpreter heavily influences CompositeCall
performance (i.e. the simpler, the better).

Note that every primitive system call still verifies its ar-
guments before doing the actual work. The only difference
is that these arguments now come from the VarTable in-
stead of coming from the user space. Therefore, there is
no difference regarding security between an interpreted pro-
gram and the corresponding sequence of system calls. We
discuss more about this issue in the following sections.

Error handling and recovery must also be addressed.
When the user calls system services directly, (s)he is no-
tified of any error condition. That happens usually immedi-
ately after the system call returns. However, what should be
done if a command fails during the execution of a Program
given to the InterpServer?

Our experience with CompositeCalls shows that users
typically build programs assuming that either

1. every call will succeed, and no error condition is
checked by any command in the program; or

2. calls are likely to fail and explicit commands are in-
serted in the program to deal with error conditions.

In the first case, it is convenient to let the interpreter
abort the execution of the program as soon as a command
fails. Error checking is performed implicitly by the call
Commands, and the user does not need to insert more com-
mands for that. In the second case, the interpreter must ig-
nore error conditions, as the user Program will test such
conditions in the following Commands.

In any case, it is the responsibility of the concrete
Program to provide either Commands or any other means
for the user to express the desired behavior (e.g. our inter-
preters include AbortOnError and DoNotAbortOnError
commands).

Side effects may behave differently with clients issuing
cross-domain calls and clients using CompositeCalls. With
CompositeCalls, server calls are issued within the server
domain, not from the client domain (i.e. they are issued
from within the kernel in the pattern instances we built
for Linux and Off++). Besides, depending on the com-
mand language, (infinite) loops might be dowloaded into
the server on behalf of a single client process. This should
be taken into account when implementing an instance of
CompositeCalls.

The problem is that certain servers do not do all their
work on response to entry point calls. Sometimes, some
work might be done by the skeleton code between the trans-
port (i.e. network, or caller domain) and the server entry
point. An example could be a server creating new threads,
acquiring or releasing locks, or executing pending back-
ground tasks, within skeleton code.

In modern and cleanly designed operating systems, this
should not be a problem. In other cases (which include
some instances of UNIX and Windows variants) that is cer-
tainly an issue as shown in section 3.1.2.

In general, if the skeleton code produces side-effects,
they must be taken into account by the CompositeCall im-
plementation. As a CompositeCall issues several calls
without traversing all the skeleton from the network to the
server, such side-effects might not be triggered as they were
when using simple calls. Server implementations assuming
that such side-effects will be honored frequently or between
any two successive server calls might behave badly with
CompositeCalls.

Section 3.1.2 describes how we addressed this problem
in our experimental implementations.

3.1 Applying CompositeCall on Linux

We have instantiated the CompositeCall pattern using the
Linux kernel as the Server. Even though the interpreter
has been written in C, its implementation matches the de-
sign pattern here described. Therefore, all elements found
in the pattern, as shown before, can be found in this in-
stance. The overall picture is shown in figure 4.

An instance of the CompositeCall InterpServer was
added to the Linux kernel as a new system call (interp).

int
interp(prog_t prog[], void *vars,
int 1p, int lv, int flags);

The interp system call receives the program to be ex-
ecuted prog (of length 1p), a variable array vars (of length
1v), and some flags.

The low-level interpreter implements the following con-
crete LowLevelCommands inside the Linux kernel:

e Simple arithmetic commands like ADD and the like
which operate on two entries of the vars variable ta-
ble.

e Comparison and branch commands. They compare
two entries in vars and adjust the CompositeCall
program counter if the test succeeds.

e An unconditional branch command.

e A MOVE command, used to perform copies within the
argument array.

e A family of LinuxCall commands, used to issue sys-
tem calls within the kernel.

Arithmetic, branch, and move instructions are ex-
tremely simple. The references they use are indeed indexes
into the program and variable array. Thus, they are not able
to access any kernel data outside of the variable array.

Input values for the system calls might be either preset
in the variable array when the user calls interp, or might
be set at program (prog) run time by move or arithmetic in-
structions. Of course, an input value for a system call might
come from an output value of a previous call.

In the following section, we discuss some issues related
to this implementation.

3.1.1 Implementation

The interp system call has been statically linked to a Linux
kernel, although a loadable module could have been used
instead.

user program

Linux kernel

write =

syscall table

V4

- - —> Dispatches to

Figure 4: The CompositeCall instance for Linux system calls

As all arguments for existing Linux system calls fit into
long integers, we have wrapped existing calls into just six
different Services (these services are methods of the Com-
positeCall ConcreteServer, as shown in figure 1). For
each Service, there is a low level command used to cod-
ify a system call in the downloaded Program. Concrete
LinuxCall commands are named call0 to call5, depend-
ing on the expected number of arguments?.

Each concrete LinuxCall command contains:

e The system call ID number (also implicit in the com-
mand type).

e The number of arguments (also implicit in the com-
mand type).

e The index in the variable array where arguments start.

e The index in the variable array where the result
should be placed.

Using the first two members we can dispatch to the ac-
tual system call. System call arguments and return values
are handled by using the last two LinuxCall fields. Return
values from system calls are stored in the VarTable (vars)
at the specified slot. This slot can be verified and used in
successive program instructions.

It could have been the first impression, after looking at
the pattern, that additional argument data copying is needed.
That is not the case. Note that, in calls accepting user sup-
plied buffers, (e.g. read or write), such buffers do not need
to be copied more times than when using traditional system
calls. As an example, the buffer argument for read is a
pointer to a user-space storage area which is still handled
by read as if it were called by the user.

3.1.2 Side effects

Unfortunately, we faced some unwanted interactions be-
tween the interpreter and some Linux mechanisms. All of
them did appear because some operations are triggered by
checks performed within the system call return path. With
CompositeCall,, those checks were being honored at the end
of the program.

Scheduling. Special care needs to be taken with the in-
teraction between the interp mechanism and the Linux
scheduler. As the kernel is non-preemptive, there is no op-
portunity to preempt the process during the interp system
call. Of course, system calls issued by the user process us-
ing interp will still block and resume as usual, but the end-
of-quantum event might not be honored until the interpreted
program finishes.

Fortunately, the solution is simple: interp must check
a flag set by the kernel whenever the processor quantum
expires. This needs-reschedule flag must be checked after
each system call. It must also be checked periodically by the
interpreter, even when no system call has been issued. That
is to prevent a program with an infinite loop from freezing
the system.

If the flag is set, the interpreter calls the scheduler, as
Linux would do, possibly preempting the current process.
The interpreter remains in a “ready to run” state until placed
again on a processor.

2That is indeed the way Linux (and most of other OSes) implements its system calls.

Signals. Yet another side-effect is the signal delivering
mechanism. Signals are not actually delivered when they
are sent. A flag is set in the process structure which is later
checked. Such flag is precisely checked when system calls
return. If a signal is sent to a process executing interp,
it would not be delivered until the end of interp. Among
other things, this has the undesirable effect of inhibiting the
interrupt signal.

Again, the solution we found was to check the pending-
signals flag within interp. It must be checked on a peri-
odic basis and after every system call. Unfortunately, the
routine delivering a signal assumes that the process is al-
ways returning from a system call, which is no longer the
case. Such code operates on the process stack and behaves
in different ways depending on the caller.

Although it could be expected that calling the signal de-
livering routine would suffice, it does not. We simply opted
for aborting the whole interpreter program and returning an
error code informing the user that a signal occurred.

Mechanisms to resume the program from the state
where it stopped when the signal was delivered can be pro-
vided. For low-level programs it is just a matter of return-
ing the program counter and the variable table to the user
(perhaps, using a Memento [6]). The program can then be
adjusted and redownloaded to complete its execution. Al-
ternatively, it could be cached within the kernel to avoid
repeated downloading.

3.2 Applying CompositeCall on Off++

Off++ [1, 15] is a research distributed object oriented
pkernel used by the 2k [10] operating system. In Off ++,
calls to system objects proceed through remote method in-
vocation (RMI) into the kernel domain. Such RMI employs
user and kernel wrappers, as seen in figure 5, and it might
cross the network (Off ++ is a distributed ukernel). The user
wrapper is a proxy which delivers messages to the kernel
domain; the kernel wrapper verifies user arguments and per-
forms access checks.

Services provided by Off++ are mainly allocation
and deallocation of (distributed) physical resources (page
frames, address translations, processor slots, etc.). There-
fore, it is common for users to issue several calls at a time
(e.g. to allocate a page frame, allocate an address transla-
tion, and setup the translation so that it points to the allo-
cated page frame.)

The CompositeCall pattern has been instantiated for
Off ++ and implemented using C++. In this case, we imple-
mented two different command families. off ByteCode
is the one used in the Linux implementation (wrapped in

C++). off _CallArray includes just the constructs needed
for manipulating resource arrays. The latter permits alloca-
tion of multiple resources in a single composite call.

Depending on the control command family, we can
build either off CallArray programs or off ByteCode
programs. Both of them can be used as off_Programs.

Programs built using off CallArrays can use the fol-
lowing high-level commands:

Repeat(Command, n) which performs the given Com-
mand n times.

Move(from, to, i, 0, size, n) which copies n items, of the
specified size. Items are taken starting at from, us-
ing a step of i bytes (e.g. the kth item will start at
from+k-i). Items are copied to the address to, using
a step of o bytes.

These constructs can be used to allocate multiple resources
which may be used on subsequent requests.

An 0ffCall command is required in both command
families, to perform calls to kernel objects. The 0OffCall
accepts as arguments the object and method the message is
targeted to, an input message, and an output message. When
the 0ffCall do method is called within the kernel, a call is
made to in-kernel object wrappers. These wrappers were
already present in Off++, as part of the system call mech-
anism, and they transform message delivering into object
invocation (thus, there is not additional overhead). Argu-
ments for the called object are taken from the input mes-
sage. Result values are incrementally stored into the output
message, which is returned to the caller.

As it happened with the Linux instance, access checks
are performed (this time, by in-kernel wrappers) as usually
within the kernel.

3.2.1 Implementation

Most of the CompositeCall implementation consists of in-
cluding an off_Interp instance co-located with the Off ++
kernel domain. The off_Interp instance is indeed our
InterpServer. It provides a new execute entry point to
the kernel.

As this implementation uses an object oriented lan-
guage, the concrete type of the off Program determines
which implementation of the interpreter must be used.

In Off++, both kernel and user are preempted when
needed; the kernel behaves like a protected library for user
processes. There was no need to deal with side-effects.

There was no need to modify any kernel code to use
CompositeCall, and the implementation follows the class

User wrapper

Domain cro.

ssing, which might go through the network

- Kernel wrapper
z==77 N

off_Interp

OKernel object

Off++ kernel

— Normal call path

— == CompositeCall call path

Figure 5: Normal system call path and CompositeCall call path in Off ++.

diagram shown for the pattern in section 2. Thus, there are
no further implementation issues to be discussed.

4 Experimental results

CompositeCall performance on Linux was measured
using a traditional copy program and a modified one,
icopy, using the interpreted program shown in figure 6.
Both of them copy what they read from their input into their
output.

Because the copy program has to issue several sys-
tem calls, the overhead imposed by the interp system call
(building the program, copying it and the variable array, and
decoding program instructions) may be outweighed by the
time it saves on domain crossings.

The Linux system call path is well tuned. In our initial
implementation, using CompositeCall was only worthwhile
when more than 5,000 calls were issued by the same pro-
gram. The program setup time was only amortized when
interp could save, at least, 10,000 domain crossings.

After carefully tuning our interp implementation, we
observed that the use of interp started to pay when the
program issued more than 7 system calls within the inter-
preted program. A small difference in the performance of
the interpreter inner loop can make the difference between
achieving a speedup or a slowdown.

Frequently used programs can be kept within the ker-
nel, so that users only need to supply the variable table.
Programs may be installed in the kernel (they are small),
and then used many times. As programs tend to match
commonly used non-primitive operations, they can be ag-
gressively reused by a process, by different processes and
even by different users. Caching programs eliminates some
overhead (due to program copying) and leads to the figures 3
shown in table 1 (see also figure 7). Cached Composite-

Call-based programs can run faster than their traditional
counterparts, even when only two system calls are issued
within the CompositeCall.

In our experiment, for non-cached CompositeCall-
based programs, 16 yseconds should be added to the exe-
cution times shown in table 1 (and figure 7). The reason
is that it takes 16 useconds to setup a new copy program
for interp. Therefore, instead of just 2 system calls, non-
cached programs must issue at least 7 system calls within
the CompositeCall to run faster than their traditional coun-
terparts.

We plan to implement the interpreter inner loop in as-
sembler so that CompositeCalls could be even more use-
ful in Linux environments. Nevertheless, even our sim-
plistic interpreter achieves a speedup of more than 25%.
These measurements correspond to a system with a rela-
tively cheap, very well optimized user/kernel domain cross-
ing.

On distributed systems, and object-oriented systems
with expensive domain crossing, the performance improve-
ments due to CompositeCall should be even higher. Note
that our experiments do not capture the case in which Com-
positeCall avoids sending data through the network (as in
the NFS copy example from section 1).

CompositeCall performance on Off++ was measured
by implementing several services with both primitive sys-
tem calls and with CompositeCalls. The chosen services
were a user-level page fault handler, and a page frame allo-
cator.

We describe, here, just the fault handler shown in fig-
ure 8. For the sake of simplicity, we have omitted some
few additional parameters and declarations. The page fault
handler allocates a page frame and installs a translation to

3Figures shown correspond to the mean of 10,000 experiments on a 100MHz Pentium-based Toshiba 110CS.

// CompositeCall-based program for copy. Slots in variable array are:
// 0: unused; 1-3: fd,buf,len for read; 4-6: fd,buf,len for write;
!/ 7: 0; 8: result; 9: PC for start (0); 10: PC for end (4)
START:
call read/3, 1, 6 // call to read with 3 args. Take args from
!/ slot #1 in vars. Store result at slot #6 in vars.
jmple 6,7,10 // jump to PC in slot #10 if slot #6 <= slot #7.
// i.e. jump to END if read result <= 0
call write/3, 4, 8 // call to write with 3 args. Take args from
!/ slot #4 in vars. Store result at slot #8 in vars.
jmp 9 // jump to PC in slot #9 (i.e. to START)
END: // terminate program execution.
end

Figure 6: A CompositeCall-based program for copy.

| number of calls: fT1[2]3]4]5]6]7]8]9]10]
Using system calls 36 | 46 | 57 | 68 | 78 | 89 | 98 | 108 | 119 | 131
Using CompositeCall || 38 | 45 | 54 | 61 | 67 |77 |82 | 94 | 98 | 107

Table 1: Times (in gseconds) for copy programs on Linux issuing a fixed number of system calls

140 | | | |
Using CompositeCall ©— +
Using system calls -+ -
120 Is - |
o+
100 A
puseconds

60 1
403 _— |

l ' ' ' ' I ! !

1 2 3 4 5 6 7 8 9 10
Number of system calls

Figure 7: CompositeCall-based copy vs. Traditional copy on Linux.

10

it*.

This routine can be transformed into another call to
off Interp.execute, passing to it the program shown in
figure 9 (which performs the same task done by the one in
figure 8). Figure 9 also shows one way to build the program
with CompositeCalls. Only three instructions are needed:
(1) a call to the page allocation method in the memory bank,
(2) moving the identifier of the allocated page frame into the
map request, and (3) issuing a map request (to install a new
address translation).

The numbers shown in table 2 correspond to the execu-
tion of both handlers. It can be seen how a handler, using
CompositeCall, executes 32% faster than a traditional one.

We have also used a program allocating a given num-
ber of page frames to get a picture of how CompositeCall
behaves in Off++ as the number of issued system calls in-
creases. Results can be seen in figure 10. The big amount
of time spent on executing a system call is due to the ex-
pensive set of debug checks being done by the kernel ver-
sion employed. We did not remove such checks to obtain
performance measures for CompositeCall on a system with
expensive system calls.

4.1 Lessons learned

The asymmetry between client and server code hurts.
Although this issue is not strictly related to the Compos-
iteCall, we learned that it was the asymmetry between the
kernel and the user code the one causing most of the prob-
lems in the Linux implementation. All interactions with
preemption and signal delivering showed because the ker-
nel behavior is not symmetric with respect to user code, and
kernel code can not be written in the same way user code is.

The non-preemption of the kernel (apart from degrading
performance on multiprocessor systems) makes it infeasible
to write system calls which can compute for an indetermi-
nate amount of time. At least, without carefully calling the
scheduler.

Also making the implementation of signal delivering
not really asynchronous also makes infeasible to write sys-
tem calls which can compute for an indeterminate amount
of time.

This lesson can be extrapolated to a more general case:
on servers using a single thread to serve all client requests,
special care must be taken. If CompositeCalls are used with
single-threaded servers, they may modify the server con-
currency semantics by stealing the server thread for a long

period. It is advisable to either forbid non-terminating pro-
grams or create additional threads to service requests from
different clients. Thread processing may be encapsulated in
concrete servers wrapping existing ones. In order to imple-
ment that, one could use the Active Objects pattern [11] to
handle thread management in a clean way.

These problems were not encountered in the implemen-
tation of CompositeCall for Off ++ because

o the kernel is structured as a set of servers which can
be preempted in the same way that user code is pre-
empted; and

o the system call mechanism does not present side-
effects.

It is convenient to define non-primitive operations.
Several CompositeCalls, corresponding to non-primitive
operations on system services, began to appear soon. Some
examples are FileCopy (which opens two files and copies
the first one into the second), and SendTCP (which estab-
lishes a connection using TCP and then enters a loop send-
ing the given buffer). One could have a whole family of
composite operations for sending and receiving TCP and
UDP data.

It would be very convenient to be able to use exist-
ing versions of these programs. Frequently used programs
could be kept within the kernel, as mentioned before.

As an example, it is very common in Off ++ to allocate a
page frame and then install an address translation pointing
to it. We could have provided an allocate_and install
entry point, but that would have mixed physical storage
management with virtual memory facilities —which we pre-
fer not to mix. Now, this operation could be implemented
in a library using the CompositeCall mechanism.

Design patterns should be applied to legacy systems.
There are some apparently disjoint pieces in almost every
OS which indeed could be implemented by using Compos-
iteCalls. Even though we have experience in the field of
Operating Systems, we never imagined that a single piece
of code could replace separate functions like gather/scatter
IO and heterogeneous resource allocation.

By trying to identify common patterns in the design of
different (already implemented) components, we can learn
how to simplify both the design and implementation of our
computing systems.

“In general, the user level page fault handler in Off ++ performs additional tasks. It must, at least, analyze the reason for the page fault and decide

what to do. Nevertheless, this handler is still useful for applications resident

11

in pinned memory when they need to grow their stack or data segments.

// Handling a page fault on Off++
//
err_t pfhandler(off PgFltReq *pf,

off uPFrame p; //
extern off uMBank mb; /7
p = mb.alloc(); //
dtlb.map(pf->vaddr, p, mode);//
//
//
//

return (r->m err=EOK); //

}

using primitive system services.

off MsgRep *r)({
A page frame.
A memory bank.

Allocate a page frame.

Setup an address translation

from the faulting address (vaddr) to
the newly allocated page frame

and install it at our protection domain.
(Assuming that no allocation fails).

Figure 8: Handling page faults in Off ++

// The variable table contains:

// PAGE_ALLOC_RQ: page allocation request message.
// PAGE_ALLOC_REP:page allocation reply message.
// DTLB MAP RQ: map request message.

// DTLB_MAP REP:map reply message.

cmd[0]= new OffCall(MBANK, PAGE ALLOC_RQ, PAGE ALLOC REP);

cmd[1]= new Move(PAGE_ALLOC_REP + offset in that message for page frame id,
DTLB_MAP_REQ + offset in that message for page frame id,
sizeof (page frame id),
1 // copy just one value

)i

cmd[2]= new OffCall(DTLB, DTLB MAP RQ, DTLB MAP REP);

CallArray pfprogram(cmd, 3); // To be used for off Interp::execute() calls.

Figure 9: Handling page faults with CompositeCall in Off ++

Test timeofsilrllrg]i:calltest ‘
Using single calls 1
Using CompositeCall 0.68

Table 2: Scaled times for page fault handlers in Off ++.

12

4.5

3.5

3
Time (ms)
2.5

|
Using CompositeCall —&—
Using system calls - -+ |

1

3
Number of system calls.

Figure 10: Performance of page frame allocation using CompositeCall in Off ++.

For us, this pattern has been a process where we first
learned some “theory” from existing systems, and then, ap-
plied what we had learned back to “practice”.

5 Related work and other pattern in-
stances

Our implementation of CompositeCalls, which entails a
Program and a variable array is similar to the concept of
closure [9]. In programming languages like scheme, a clo-
sure is a structure containing a lambda expression (equiv-
alent to our Program) and an environment, i.e., an asso-
ciation of values with variables (equivalent to our variable
array). A given closure represents a lambda expression with
some of its free variables substituted by values in the envi-
ronment. The idea of sending a piece of code and its en-
vironment for execution in a different context was applied
before in different situations.

Database systems supporting Stored Procedures [5] in-
stantiate CompositeCall too. A Stored Procedure can be
thought of as a small data access program to be used for
retrieving information from the data store.

Systems like SPIN [3], u#Choices [12], and VINO [19,
18], use code downloading. They include such mechanism
as a means for adaptability and extensibility.

In these systems, downloaded user programs are ex-

13

pected to execute at almost the same speed as native kernel
code. A general-purpose language is used for programming
system extensions.

On the other hand, the command language in Compos-
iteCall is simply a “domain specific” language designed
with the objective of composing existing calls. Thus, the
language can be much simpler (therefore, safer), and users
cannot cause damage to sensitive kernel or server data.
Therefore, it is not a surprise, that systems mentioned
above, restrict downloading of programs to trusted users,
to trusted compilers, or to the intersection of both. We can
summarize the difference between those systems and our
work on CompositeCalls by saying that:

1. Code downloading in those systems may be consid-
ered as concrete instances of the CompositeCalls pat-
tern where the program can be expressed in Mod-
ula 3, Java, or other general-purpose language.

. The instances of CompositeCalls described in this
paper—which have been developed by following the
design pattern—are simpler and smaller than any
comparable system. The implementation of our
CompositeCall instance for Linux has 382 lines of
code, and uses less than 1 Kbyte of memory. Com-
pare that with the complexity and size of the Sun
JVM [13].

3. The CompositeCall pattern can be applied to systems
not designed with CompositeCalls in mind, as we
demonstrated for both Linux and Off++. No change
was necessary on those systems. That was not the
case of systems like SPIN, which were designed with
code downloading in mind. Our approach require
neither ad-hoc mechanisms, nor specific compilers,
nor any special kernel support to include Compos-
iteCalls (apart, of course, of the added code for the
CompositeCall interpreter).

The idea behind Agent systems [22] is closely related
to CompositeCall. However, the aim of Agent systems is
to build mobile stand-alone programs. In a CompositeCall,
the program will remain in the server domain domain until
termination; it will not move to a different domain. In Com-
positeCall the emphasis is made only on the interface shift
(from a single entry point to a CompositeCall), and other
(unrelated) technologies are left apart.

Nevertheless, some of the machinery needed for imple-
menting Agents [22, 8] can also be considered as another
instance of the pattern. Again, it is a program sent to an in-
terpreter with some storage area. The peculiarity is that, in
their case, the command language includes a go instruction
to move the program to a different server.

What we have said also applies to systems borrowing
techniques from the field of mobile Agents, like NetPebbles
[14]. Active networking frameworks [21] also instantiate
CompositeCall, their programs or capsules can be consid-
ered to be calls to the involved network elements.

Systems supporting disconnected operation also instan-
tiate CompositeCall. Examples could be distributed sys-
tems like Coda [17] and Bayou [4], which defer changes
while the system is disconnected. Pending changes are ag-
gregated and processed by the servers when the system is
reconnected. As dictated by the CompositeCall pattern,
primitive calls (a single change or update) are composed
and processed later. Most notably, Bayou [4] operations are
actually programs which can detect and resolve conflicts.

Finally, lessons learned in the design of domain specific
languages for other applications like user interface specifi-
cation, software development process support, and text pro-
cessing [20] can be applied to design adequate languages
for concrete CompositeCall instances.

6 Conclusions and future work

We identified the CompositeCall pattern and discussed how
it is instantiated in several existing systems. We developed

14

two new instances of the pattern on a traditional, monolithic
kernel and on a object-oriented research pkernel. No change
was needed to those systems, which were not designed with
CompositeCalls in mind.

The experimental results show that, although the Com-
positeCall mechanism can provide great performance im-
provements, its use must be carefully analyzed. In some
cases, the overhead it imposes may be larger than the per-
formance gain it provides. We plan to perform further ex-
periments on distributed services in which we expect to ob-
tain very significant speedups.

As future work, we plan to implement an optimized
interpreter in assembler, so smaller Linux and Off++ pro-
grams could benefit from CompositeCalls. We also plan
to develop applications using CompositeCalls as the main
abstraction for client/server interaction.

Acknowledgments

We are grateful to Gorka Guardiola Muzquiz for his help in the
implementation of the Linux CompositeCall mechanism.

References

[1] Franscisco J. Ballesteros, Fabio Kon, and Roy H. Camp-
bell. A Detailed Description of Off++, a Distributed Adapt-
able Microkernel. Technical Report UIUCDCS-R-97-2035,
Department of Computer Science, University of Illinois at
Urbana-Champaign, August 1997.

[2] Carlos Baquero. Indirect Calls: Remote invocations on
loosely coupled systems. http://gsd.di.uminho.pt/People-

/cbm/public/ps/icalls.ps, 1996.

B.N.Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,
safety and performance in the SPIN operating system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles. ACM, December 1995.

W. K. Edwards, E. D. Mynatt, K. Petersen, M. J. Spre-
itzer, D. B. Terry, and M.M. Theimer. Designing and Im-
plementing Asynchronous Collaborative Applications with
Bayou. In Proceedings of the Tenth ACM Symposium on
User Interface Software and Technology (UIST), Banff, Al-
berta, Canada, October 1997.

(3]

(4]

[5] A. Eisenberg. New standard for stored procedures in SQL.
SIGMOD Record (ACM Special Interest Group on Manage-

ment of Data),25(4):81-7?, December 1996.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Elements of Object-Oriented Soft-
ware. Addison-Wesley, 1995.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

R. Jiménez-Peris, M. Pati no Martinez, and S. Arévalo. Mul-
tithreaded Rendezvous: A Design Pattern for Distributed
Rendezvous. In ACM Symposium on Applied Computing.
ACM Press, Feb. 1999. To appear.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider.
Operating System Support for Mobile Agents. In Proceed-
ings of the 5th IEEE Workshop on Hot Topics in Operating
Systems, Orcas Island, Wa (USA), May 1995. IEEE.

Samuel N. Kamin. Programming Languages. Addison-

Wesley Publishing Company, 1990.

Fabio Kon, Ashish Singhai, Roy H. Campbell, Dulcineia
Carvalho, Robert Moore, and Francisco Ballesteros. 2K: A
Reflective, Component-Based Operating System for Rapidly
Changing Environments. In Proceedings of the ECOOP’98
Workshop on Reflective Object-Oriented Programming and
Systems, Brussels, Belgium, July 1998.

R. Greg Lavender and Douglas C. Schmidt. Active object —
an object behavioral pattern for concurrent programming. In
Proceedings of the Second Pattern Languages of Programs
conference (PLoP)., Monticello, Illinois, September 1995.
Y.Li, S. M. Tan, M. Sefika, R. H. Campbell, and W. S. Liao.
Dynamic Customization in the yChoices Operating System.
In Proceedings of Reflection’96, San Francisco, April 1996.
Reflection’96.

Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Weley, 1996. Java Series.

Ajay Mohindra, Apratim Purakayastha, Deborra Zukowski,
, and Murthy Devarakonda. Programming Network Compo-
nents Using NetPebbles: An Early Report. In Proceedings
of the 4th USENIX Conference on Object-Oriented Tech-
nologies and Systems, Santa Fe, New Mexico, April 1998.
USENIX.

15

[15]
[16]

(17]

(18]

[19]

(20]

[21]

[22]

Off++ web site. http://www.gsyc.inf.uc3m.es/off.

James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorenson. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

M. Satyanarayanan, James J. Kistler, Puneet Kumar,
Maria E. Okasaki, Ellen H. Siegel, and David C. Steere.
Coda: A highly available file system for a distributed work-
station environment. Technical Report CMU-CS-89-165,
Department of Computer Science at Carnegie Mellon Uni-
versity, November 1989.

Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and
Keith A. Smith. Dealing with disaster: Surviving misbe-
haved kernel extensions. In Proc. of the Second Symposium
on Operating Systems Design and Implementation, pages
213-227, Seattle, WA, October 1996. USENIX Assoc.

Christopher Small and Margo Seltezer. Vino: An integrated
platform for operating system and database research. Tech-
nical report, Hardvard Computer Science Laboratory, Hard-
vard University, Cambridge, MA 02138, 1994.

Diomidis Spinellis and V. Guruprasad. Lightweight Lan-
guages as Software Engineering Tools. In ;login: DSL’97
Conference Summaries, volume 23, Santa Barbara, CA,
February 1998.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A Survey of Active Network
Research. IEEE Communications Magazine, 35(1), January
1997.

Jim White. Mobile Agents. General Magic Corporation,
1996.

