Leading successful government-academia collaborations using FLOSS

and agile values

The 30-month case of rebuilding the Brazilian Public Software portal

Melissa Wen®, Rodrigo Siqueira®, Nelson Lago®, Diego Camarinha®, Antonio Terceiro®, Fabio Kon®

and Paulo Meirelles?®

4University of Sao Paulo — IME-USP, Brazil
bFederal University of Sao Paulo — UNIFESP, Brazil

¢Linaro Limited, Brazil

ARTICLE INFO

Keywords:

Project Management
Government-Academia Collaboration
Free Software

Open Source Software

Agile Methodologies

e-Government.

Abstract

Government and academia share concerns for efficiently and effectively servicing societal demands,
which includes the development of e-government software. Government-academia partnerships
can be a valuable approach for improving productivity in achieving these goals. However, govern-
mental and academic institutions tend to have very different agendas and organizational and man-
agerial structures, which can hinder the success of such collaborative projects. In order to identify
effective approaches to overcome collaboration barriers, we systematically studied the case of the
Brazilian Public Software portal project, a 30-month government-academia collaboration that, using
Free/Libre/Open Source Software practices and agile methods for project management, developed
an unprecedented platform in the context of the Brazilian government. We gathered information
from experience reports and data collection from repositories and interviews to derive a collection
of practices that contributed to the success of the collaboration. In this paper, we describe how the
data analysis led to the identification of a set of three high-level decisions supported by the adoption
of nine best practices that improved the project performance and enabled professional training of

the whole team.

1. Introduction

The use of information and communication technolo-
gies (ICT) to support government procedures and routines,
engage citizens, and provide government services (Scholl,
2003), known as Electronic Government (e-government),
has become synonymous with the idea of a modern state.
While “e-government” has different meanings for different
people (Chandra Misra, 2006), such projects virtually al-
ways differ from most other ICT projects due to their com-
plexity and large size (Anthopoulos et al., 2016). On the one
hand, they are complex because they combine innovation,
information & communications technologies, politics, and
social impact. On the other hand, they are large in their
scope, target audience, organizational size, and time.

The development of innovative e-government projects
that meet the needs of society may be addressed through
collaboration between government and academia. How-
ever, managing such collaborative projects is often chal-
lenging. Indeed, one of the leading causes of e-government
project failure is poor project management (Anthopou-
los et al., 2016) caused by difficulties such as lack of cre-
ativity and vision, poor communication and organization
skills, unclear work-breakdown, ineffective workload man-
agement, poor scope definition, and change management,
shifting requirements, technical complexity, and poor dele-
gation and tracking. In a joint project between government

© 2019. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license (creativecommons.org/licenses/
by-nc-nd/4. 0). Published version DOI: 10.1016/j.js5.2020.110548.

and academia, other specific challenges become significant,
such as organizing the collaboration around the project,
aligning goals, synchronizing the pace of both partners,
and overcoming the failure trend of e-government projects
(Goldfinch, 2007). Therefore, proper management of the
collaborative project should be a relevant concern when
government and academia combine efforts to develop an
e-government solution.

In the context of software development projects, an in-
stitution adopts development methods that best meet its
managerial procedures and organizational culture. For ex-
ample, academia can work on cutting-edge development
methodologies while the government typically relies on
traditional techniques. When two large-scale, complex or-
ganizations decide to develop a solution collaboratively, the
development methods and workflow of one may conflict
with the culture and interests of the other. Changing the
development process of either of them represents an orga-
nizational disturbance with impacts on structure, culture,
and management practices (Nerur et al., 2005). Accord-
ingly, when in collaboration, government and academia
should strive to increase the chances of success, given the
typical tight deadlines and limited outlay of such projects.
Thus, they should avoid interferences in their respective
managerial processes that result only in negative impacts
on the project schedule and in budget wastage. Actual
mechanisms to achieve this, however, are not straightfor-
ward.

Difficulties such as these are part of the landscape of
many FLOSS (Free-Libre-Open Source Software) projects.

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.jss.2020.110548

Page 1 of 23

creativecommons.org/licenses/by-nc-nd/4.0
creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1016/j.jss.2020.110548
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

The development of such projects is frequently a collabo-
rative work involving multiple institutions with different
interests and organization without their internal processes
being affected. The significant success of FLOSS, which
has considerable overlap with agile methodologies, to de-
liver complex and quality products, reinforces the power
of applying their values and practices in collaborative sce-
narios. Understanding how to overcome conflicting differ-
ences between crucial stakeholders could lead a collabora-
tion to success, especially in the case of government and
academia.

Concerned with understanding the best practices that
government and academia can adopt to develop high-
quality, well-structured, resource-saving e-government so-
lutions jointly, we focus on the following two research
questions:

RQ1. How to introduce FLOSS and agile best practices
into government-academia collaboration projects?

RQ2. What FLOSS and agile practices favor effective
team management in government-academia collaborative
projects?

We explore these questions based on a case study about
the SPB (Brazilian Public Software, e.g., Sofware Publico
Brasileiro, in Portuguese). The project behind it was an
unprecedented 30-month software development structured
as a partnership between an academic team and a govern-
ment agency aiming at three goals: the development of a
novel product (the SPB Portal); the acquisition of experi-
ence and expertise regarding agile and FLOSS best practices
within the governmental agency; and the professional and
educational evolution of the involved undergraduate stu-
dents. As we will see, this project exhibited many of the
complicating characteristics of government-academia co-
development projects. It enabled us to showcase both quan-
titative and qualitative analyses of the benefits of FLOSS
and agile practices.

To this end, we identified the applied best practices
from FLOSS ecosystems and agile methodologies used in
the project. We collected and analyzed data from the
project repository and conducted a survey targeted at the
project participants to extract their perception about how
these practices were useful for government-academia col-
laboration. From this data, we identified three high-level
project management decisions that improved the project
performance and contributed to the success of the part-
nership: (1) the use of the system under development to
develop the system itself; (2) bringing together the govern-
ment staff and the development team; (3) organizing the de-
velopment team into priority fronts, and for each one, hire
at least one specialist from the IT market. Starting from
these decisions and the perceived benefits brought by them,
we proceed to map how actual day-to-day practices materi-
alized them. By identifying them, we aim to help academia
to understand better critical issues they will be confronted
with when engaging in a government-academia software
project.

This paper is an extension to previous studies from
our research group concerning a Brazilian government-
academia collaboration project. The first study about the
SPB portal development project (Meirelles et al., 2017) was
an experience report that revealed lessons learned by the
academic members responsible for coordinating project ac-
tivities (professors and senior developers). In the second,
Siqueira et al. (2018) focused on presenting its continuous
delivery approach, technically describing the pipeline cre-
ated to support large organizations in the development of
a system of systems. In a more recent conference paper,
Wen et al. (2018) examined the method developed over the
30 months of the project using both agile values and stan-
dards from the FLOSS community to mitigate the cultural
gap between organizations.

Here we provide a comprehensive view of our previous
studies on government-academia collaboration. We go be-
yond the earlier works by systematically investigating and
describing how the practices adopted favor a government-
academia collaboration. Moreover, we discuss reflections
from a complementary questionnaire sent to participants
and provide critical analysis of the benefits and conse-
quences of the decisions and the adopted practices. The
novel research resources enabled us to: (i) find new insights
on software engineering training; (ii) reach additional ben-
efits that improve collaboration; and (iii) identify how the
experience with the adopted practices has been reflected
in the participants’ professional skills a few years after the
end of the project.

The paper is organized as follows. Section 2 addresses
underlying concepts and research opportunities related to
this study, such as co-development, knowledge transfer,
and adoption of management practices in both large orga-
nizations and public administration. We discuss the char-
acteristics and associated difficulties of collaborative prod-
uct development, especially academia-government part-
nerships and e-government endeavors, and how FLOSS and
agile methods may be suitable in such scenarios. Section 3
presents the object of our case study: the SPB project. We
describe its origins and goals, the components that com-
prise it, and the teams and organizations involved. In Sec-
tion 4, we state our research questions, focused on the
use of FLOSS and agile techniques to support government-
academia collaboration, provide a more detailed overview
of the SPB project, and describe how we collected and or-
ganized the analyzed data, which culminated in the iden-
tification of the decisions, practises, and benefits that con-
stitute the core of this work. Section 5 offers a systematic
view of the obtained results, detailing the high-level project
management decisions and the adopted practices of the SPB
project as well as mapping their benefits to the collabora-
tion as a whole, and discusses their consequences to the
involved people. In Section 6, we discuss how this research
coincides with and differs from previous works, presenting
the results reported in the related literature and contrasting
them with our findings. Finally, in Section 7, we summarize
the material, highlighting its main contributions, pointing

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 2 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

out some of its limitations, and suggesting paths to future
works.

2. Background

As mentioned above, this paper describes a partner-
ship between an academic team and a government agency
with multiple, disparate goals. Accordingly, we see this
partnership not as a simple customer-supplier relationship,
but as a collaborative product development process, with
“two or more partners joining complementary resource
and experience with mutual aims, to design or develop
a new or improved product” (Buytukdzkan and Arsenyan,
2012). Such partnerships involve additional management
risks and challenges beyond those posed by product devel-
opment itself (Littler et al., 1995). Therefore, this scenario
demands special attention and leads to interesting research
opportunities.

Software co-development is a kind of collaborative
product development (Chesbrough and Schwartz, 2007;
Biyiikozkan and Arsenyan, 2012) concerning different
models of software development collaborations (Kourte-
sis et al., 2012). The relationship between co-development,
platforms, and ecosystems has evolved with the advent of
cloud computing (Kourtesis et al., 2012). Large-scale soft-
ware products evolved to platforms for co-development
and software ecosystems, with central coordination for
software development (Kourtesis et al., 2012) . According
to Kourtesis et al. (2012), the advantages of this approach
are “decreased software and business development costs,
quicker time-to-market, improved focus, reduced complex-
ity, and economic profit”. They include FLOSS projects as
examples of software platforms open for all involved part-
ners, which is the focus of our study.

Complex and large-scale organizations, such as the
public administration, have to deal with multiple project
variables. In public administration, software products are
acquired or developed in a rigid framework of contract obli-
gations. This factor has helped to increase “complexities,
delays or even failed delivery of digital services” (Mergel,
2016). As one of the responses for that, government agen-
cies are adopting agile methods (Balter, 2011; Margetts
and Dunleavy, 2013) “to update large-scale legacy systems
and adapt to environmental changes and citizen requests
faster” (Mergel, 2016).

A relevant aspect we discuss in this paper is the adop-
tion of agile practices. Nerur et al. (2005) recognized criti-
cal issues concerning the migration from traditional to ag-
ile software development by comparing practices of both
methodologies. The authors point out managerial, orga-
nizational, people, process, and technological issues to be
rethought and reconfigured in an organization for a suc-
cessful migration. They concluded that agile methodolo-
gies are more suitable in projects with a high variation of
requirements, technical capacities, and technologies. For-
mal and bureaucratic organizations have more difficulty in
the adoption of such methods.

Agile methods represent a significant departure from

traditional software development and rely on a different
management paradigm. Strode et al. (2009) investigated
the relationship between the adoption of agile methodolo-
gies and organizational culture by evaluating nine projects.
They identified a set of six factors (feedback and learning,
teamwork, empowerment of people, focus on results, inno-
vative leadership, and mutual trust) directly linked to agile
methods. They concluded that the presence of these as-
pects in an organization correlates with the effective use of
agile methodologies in their projects.

In spite of the growing knowledge about agile methods,
they are not always easy to implement. Melo et al. (2013)
investigate the growing adoption of agile methods in the
Brazilian IT industry. The results of their survey highlight
some mismatch that companies face when developing soft-
ware for public administrations. They show that the ac-
ceptance of agile methods has changed in the last decades.
The software development industry claims to follow some
of the recommendations of the agile manifesto, but some
universities and companies are still resistant to adopt such
methods.

Beyond the reasonably well-known agile methods, we
also highlight here the relevance of FLOSS values and prac-
tices. Yet, they are not so well defined. Some studies
tried to identify FLOSS practices, while others attempted
to determine the relationship between FLOSS practices
and agile methods. Raymond (1999), in a seminal essay,
described FLOSS best practices from observations of the
Linux kernel project and also reflections of his experience
with the FLOSS communities. Capiluppi et al. (2003) exam-
ined about 400 projects to find FLOSS project properties. In
their work, they extracted generic characterization (project
size, age, license, and programming language), analyzed
the average number of people involved in the project, the
community of users, and documentation characteristics.
Warsta and Abrahamsson (2003) found differences and sim-
ilarities between agile development and FLOSS practices.
The authors argued that FLOSS development might differ
from agile in their philosophical and economic perspec-
tives; on the other hand, both approaches share the defi-
nition of work. In its turn, Fraser et al. (2006) claimed that
FLOSS is a kind of Agile software development methodol-
ogy.

Discussions about the relationship between FLOSS and
Agile methods are frequently concerned with managing the
software project (Javdani Gandomani et al.,, 2013). Okoli
and Carillo (2012) explained this relationship by compar-
ing the characteristics of FLOSS and Agile approaches.
While Magdaleno et al. (2012) stated that the relationship
between FLOSS and Agile practice was still embryonic at
the time of their study (2012), others point in the same
direction as our work, reporting that FLOSS and Agile
share similar values (Adams and Capiluppi, 2009; Tsirakidis
et al., 2009; Corbucci and Goldman, 2010; Javdani Gan-
domani et al., 2013). For instance, both approaches rely
on self-organized teams as well as on team-wide shared
and coherent goals (Adams and Capiluppi, 2009; Tsirakidis

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 3 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

et al., 2009). Several studies also pointed out that FLOSS
and Agile methods support each other in some practices
and in tracking the progress of the software development
project (Porruvecchio et al,, 2007; Deshpande and Riehle,
2008; Adams and Capiluppi, 2009; Lavazza et al., 2010; Gary
et al,, 2011; Okoli and Carillo, 2012; Rahman et al., 2013).
Moreover, Diiring (2006) and Goth (2007) describe the use
of FLOSS and Agile methodologies simultaneously, which
is the same approach analyzed in our research.

Nevertheless, none of these works provide enough ev-
idence about the comprehensive integration of FLOSS and
Agile when used simultaneously in a project (Javdani Gan-
domani et al., 2013). Even recent works such as Harzl (2017)
and Muller (2018), who present how FLOSS projects can
apply agile management frameworks to favor software de-
velopment planning, do not advance this issue, especially
in large-scale and complex cases such as ours.

Inlight of this scenario, our work presents a government-
academia collaboration for co-developing a production-
level solution. We analyzed the decisions made during
the life cycle of a real project from the FLOSS and agile
perspectives. Our findings are in line with the idea of “con-
tinuous activities”, which together is part of the roadmap
for continuous software engineering proposed by Fitzger-
ald and Stol (2017). Based on questionnaires, interviews,
and development activities data, we extracted the (contin-
uous) best practices that helped to harmonize the interac-
tions between two different development processes, as well
as satisfied the management processes of government and
academia sides.

3. The case of the Brazilian Public Software
Portal

The Brazilian government designed the original Brazil-
ian Public Software (SPB) portal in 2005 and released it in
2007. It is a web system that has consolidated itself as an en-
vironment for sharing software projects (Freitas and Meffe,
2008). The SPB portal' also provides a space (community)
for each software. These communities have tools to pro-
mote collaboration and interaction among managers, users,
and developers, according to practices FLOSS communities
use. It was created to support the plan of the government
to foster public adoption of FLOSS solutions.

Initially, the portal’s purpose was only to share soft-
ware developed for or by any of the many Brazilian gov-
ernment branches to reduce the costs of hiring software
in others. However, for every new software project re-
leased, a community was formed around it. Several people,
then, started collaborating and sharing the results obtained
through the use of those solutions, as commonly occurs in
FLOSS (Ducheneaut, 2005).

The concept of a Brazilian Public Software goes beyond
FLOSS (Freitas and Meffe, 2008). In addition to being li-

thttps://pt.wikipedia.org/wiki/Software_
livre_nos_governos#Software_Publico_
Brasileiro_(SPB)

censed under a FLOSS license, the software needs to have
explicit guarantees that it is a public good and its project
must be available on the SPB portal. Inclusion in the SPB
Portal also has extra requirements, such as having a public
version control system, installation manual and hardware
requirements specification (Meirelles et al., 2017).
Notwithstanding its value, in practice, in 2009 the SPB
Portal started having several technical issues. The origi-
nal codebase development stopped, and the SPB Portal did
not receive any code updates. To recover the SPB portal,
in January 2014, the University of Brasilia (UnB) and the
University of Sdo Paulo (USP), in a partnership with the
Brazilian Ministry of Planning, Budget, and Management
(MPOG), designed a project to evolve the SPB portal into
an integrated platform for collaborative software develop-
ment (CDE) (Booch and Brown, 2003) with additional social
capabilities. The new SPB Portal was developed by partially
distributed teams of undergraduate interns, IT profession-
als and professors from the Advanced Laboratory of Pro-
duction, Research, and Innovation in Software Engineering
(LAPPIS/UnB?) and the FLOSS Competence Center at USP
(CCSL/USP?), both with experience in FLOSS development.
The new SPB portal® includes features such as so-
cial networking, mailing lists, version control system, and
source code quality monitoring. As of October 2018, it had
83 software communities and 7,347 user accounts, mostly
from government employees. It is a novelty in the con-
text of the Brazilian government, due to the technolo-
gies employed and its various features. Moreover, these
characteristics led the project to interact with different
FLOSS projects and communities. At the end of the project,
the teams built a system-of-systems (Nielsen et al., 2015),
adapting and integrating five existing FLOSS projects:

Colab’ is a system integration platform for web applica-
tions. It provides a unified view and interface for a set of
different software systems. Thus, users do not notice sig-
nificant differences when they shift their interaction from
one application to the other. For that, Colab provides facili-
ties for (i) centralized authentication, (ii) visual consistency,
(iii) relaying of events between applications and (iv) an in-
tegrated search engine. Colab implements this integration
by working as a reverse proxy for the applications, i.e., all
external requests pass through Colab before reaching them.

Noosfero® is a software for building social and collabo-
rative networks. Besides the classical social networking
features such as uploading content and enabling commen-
taries to make conversations, it also provides publication
features such as blogs and a general-purpose CMS. Most
of the user interactions with SPB is through Noosfero:
user registration, project and documentation, and contact
forms.

’https://lappis.rocks
Shttp://ccsl.ime.usp.br
‘https://softwarepublico.gov.br
Shttps://github.com/colab
®https://gitlab.com/noosfero/noosfero

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 4 of 23

https://pt.wikipedia.org/wiki/Software_livre_nos_governos#Software_P%C3%BAblico_Brasileiro_(SPB)
https://pt.wikipedia.org/wiki/Software_livre_nos_governos#Software_P%C3%BAblico_Brasileiro_(SPB)
https://pt.wikipedia.org/wiki/Software_livre_nos_governos#Software_P%C3%BAblico_Brasileiro_(SPB)
https://lappis.rocks
http://ccsl.ime.usp.br
https://softwarepublico.gov.br
https://github.com/colab
https://gitlab.com/noosfero/noosfero
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

GitLab’ is a web-based Git repository manager with wiki
pages and issues tracking features. It is a FLOSS platform
and focuses on delivering a holistic solution that will sup-
port developers from idea to production seamlessly and on
a single platform. GitLab has several unique features, such
as built-in continuous integration and continuous deploy-
ment, flexible permissions, tracking of Work-in-Progress
work, moving issues between projects, group-level mile-
stones, creating new branches from issues, dashboard and
time tracking.

Mezuro® is a platform to collect source code metrics to

monitor the internal quality of software written in C, C++,
Java, Python, Ruby, and PHP. It provides a single interface
grouping available metric collection tools, allows the selec-
tion and composition of metrics flexibly, stores the metrics
evolution history, presents results in a friendly way, as well
as allows users to customize the given metric values inter-
pretation according to their context.

GNU Mailman’ is an application for managing electronic
mail discussion and e-newsletter lists. Colab itself provides
a web interface for GNU Mailman to allow the dialogue and
communication between developers, users, and enthusiasts
of a determined software. Each software community has its
mailing list whose privacy settings can be configured by the
software community administrators.

All these integrated systems involve a total of 106,253
commits and 1,347,421 lines of code. In summary, Colab
orchestrates these multiple systems using a plugin archi-
tecture and smoothly provides a unified interface to final
users, including single sign-on and global searches. With-
out it, the integration of the several features of these sys-
tems and other needed back-end features written in dif-
ferent programming languages and frameworks would re-
quire a non-trivial amount of work.

In this scenario, we studied the open and collabora-
tive software development practices that inspired the SPB
project progress. The academic teams empirically defined
an adaptation of different agile and FLOSS communities
practices to guide the development process, with a high
degree of automation resulting from DevOps practices and
also a working process executed in a cadenced and contin-
uous way with the government team.

While the development itself was handled by the aca-
demic team, this was not a typical outsourcing scenario:

« The academic partner had a voice in the strategic deci-
sions, as well as the requirements and features defini-
tions;

« Students in leadership roles participated in meetings

with government managers;

+ Much of the communication and validation of the
project converged to the GitLab tool within the project
itself;

"https://gitlab.com
8https://mezuro.github.io
*https://list.org

« The group created a “translation” mechanism from the
development team project assessment to the govern-
ment’s managerial tools;

« Budget management was a concern for both partners;

+ The adopted Continuous Delivery pipeline highlights
the collaborative aspect of the project workflow;

« One of the goals of the partnership was to promote the
transference of knowledge from academia to the gov-
ernment staff regarding FLOSS and agile practices.

In summary, during the SPB project, the academia and
the government coordinated and divided the responsibili-
ties of the management activities, sharing concerns about
funding and accountability, and business rules and strate-
gic decisions.

4. Research Design

A government-academia collaboration project demands
strong inter-institutional management, which involves fi-
nancial issues, requirements and priorities definitions, and
possible divergences in the methodologies and develop-
ment techniques to be employed. In most cases, this kind
of software development partnership sets up work teams
with different experiences, knowledge, maturity, and work
performances. These managerial and organizational com-
plexities resemble the peculiarities found in FLOSS ecosys-
tems, which also often involve multiple institutions with
different interests and backgrounds.

With this in mind, FLOSS and agile practices may ad-
equately handle differences in the pace between the in-
stitutions involved, improving the cooperation of distinct
teams and benefiting the software being developed. From
the FLOSS ecosystems, we can extract useful practices
such as open communication, project modularity, devel-
opment of a community of users, and fast response to re-
ported issues (Capiluppi et al., 2003; Warsta and Abrahams-
son, 2003). Besides, individuals and interactions, work-
ing software, customer collaboration, and responsiveness
to change (Beck et al., 2010) are agile values also suitable in
this context.

4.1. Research Questions

As mentioned before, we are interested in handling
the different development processes at play in collabora-
tive projects, primarily in gov-ernment-academia joint ven-
tures. To guide this discussion, we focus on two research
questions:

RQ1. How to introduce FLOSS and agile best practices into
government-academia collaboration projects?

We begin by examining 30 months of a government-
academia collaboration project to identify managerial and
organizational changes. This partnership enabled the in-
troduction of agile methods and FLOSS practices such as
collaborative environment development, use of a version

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 5 of 23

https://gitlab.com
https://mezuro.github.io
https://list.org
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Previous Questionnaire

Work Questionnaires i’ Updates

Case High-level
— igh-level
Study Decisions

Repository /

Data Collection

Development Data |,/ Impacts and
Practices Analysis Benefits

Figure 1: Investigation workflow

control tool and discussion list, continuous delivery, and
self-organization. Our study aims to reveal ways to bring
such practices into the development process without sacri-
ficing or causing significant impacts on the internal proce-
dures of the institutions involved.

We focus our analysis on issues related to organiza-
tional differences and diversity of project members regard-
ing maturity and experience in collaborative development.
The harmony between teams sought not only to approxi-
mate the mindset and work culture but also to circumscribe
the interactions between different roles and responsibili-
ties.

RQ2. What FLOSS and agile practices favor effective team
management in government-academia collaborative projects?

We continue by pinpointing how the introduction of
FLOSS and agile methods has improved interactions be-
tween the institutions as well as the internal development
teams. For this, we gathered opinions through interviews
and questionnaires from three different roles of the project:
senior developers, interns, and government staff. In addi-
tion to these responses, we also analyze data documented
in the project management and development platform to
capture the main benefits of the changes in the collabora-
tion management and development model.

4.2. Research Method

Due to the exploratory and explanatory character of
RQ1 and RQ2, we used the case study as the research
method to answer these questions. This method is a good
fit when asking “how” or “why” questions and when we
can directly observe the events under study and interview
persons involved in the activities (two sources of evidence
relevant for case studies) (Yin, 2009). Nonetheless, we have
also analyzed repository data to ratify our results.

To conduct the data analysis, we adopted coding (Char-
maz, 2008), the core strategy of Grounded Theory (Glaser
and Strauss, 1999; Corbin and Strauss, 2014). It is a research
approach widely-used in software engineering (Waterman
et al., 2015; Stol et al., 2016; Santos et al., 2016; Hoda and
Noble, 2017). We describe in detail our data analysis strat-
egy in Section 4.2.4.

Figure 1 summarizes our investigation workflow, which
had as its starting point previous works about the SPB
project (Meirelles et al., 2017; Siqueira et al.,, 2018; Wen
et al, 2018). The rectangles identify our research ap-
proaches, and the four following subsections describe how

we used each one. The light blue ellipses represent our find-
ings through the methods used. We explain and discuss
them in Section 5.

4.2.1. Case study

A case study is the exhaustive study of a single
case with the purpose of enlightening a broader class of
cases (Gerring, 2006). According to Yin (2009), the essence
of a case study is to shed light on a decision or a set of deci-
sions, trying to understand the reasons and ways for their
implementation and the lessons learned. With this in mind,
we chose the SPB Portal as a case study because, besides be-
ing a high-quality example of a well-balanced government-
academia managerial process, it offered a valuable op-
portunity to explore the benefits and challenges of using
FLOSS (Kon et al., 2011; DeKoenigsberg, 2008; Fagerholm
et al,, 2013, 2014) and Agile (Steghofer et al., 2016; Harzl,
2017; Miller, 2018) practices for Software Engineering due
to the diversity of actors involved and the relationships
between government, academia, and industry.

On the academic side, the project team was composed
of 42 undergraduate interns, two college professors, six de-
velopers with significant experience in the FLOSS tools in-
tegrated into the portal, and two UX specialists from the IT
market. On the government side, the project was managed
by two requirement analysts and a board of directors com-
posed of one department director and one department co-
ordinator. While government staff was more used to tradi-
tional project management approaches, the academic mem-
bers believed that the use of agile methods was more appro-
priate for the development of the proposed platform. As a
consequence, conflicts between the internal management
processes and differences in pace and goals of each insti-
tution started to compromise the platform development.
Moreover, during the project, the government board of di-
rectors changed and, with it, the vision of the project, af-
fecting the previously approved project requirements. Un-
der these circumstances, the professors who coordinated
the project made decisions in a non-systematic way, incre-
mentally adopting best practices derived from FLOSS and
agile values to improve the project management process.
Finally, during the six initial months, the project received
only a fraction of the planned funding for the period, push-
ing the coordinators to restrict work to formatting the pro-
cess to be used by the project, in particular through train-
ing undergraduate interns on the relevant tools. Much of
the project activity from this period focused on require-
ments definition, tools selection, and other architectural
decisions, as well as team building, including handling the
bureaucracy to hire the interns and the professionals from
FLOSS communities and from the IT market.

The SPB portal project underwent two phases regard-
ing the traceability of project management activities. The
first one, between January 2014 and March 2015, is non-
traceable, since only the universities managed the devel-
opment activities. In April 2015, the project started using
the SPB portal itself to manage the development process,

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 6 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

inaugurating the second phase of the project. From then
on, much of the management and communication activi-
ties were recorded and published in online channels and
tools. During this period, the development leaders consol-
idated several FLOSS practices and agile values employed
in the development process.

This study brings forth observations of researchers who
worked directly in the project coordination, researchers
who participated in the internal processes, and researchers
who did not participate in the project. The first two
groups mapped the practices adopted during the project
and analyzed and explained the experience previously re-
ported (Meirelles et al., 2017; Siqueira et al., 2018) by some
of the authors of this paper. The others contributed their
expertise in FLOSS and agile methods studies and helped
the inside researchers define macro-decisions and inter-
pret, with a more neutral perspective, the benefits and ef-
fects of these best practices on the project management
context as preliminary presented by Wen et al. (2018).

4.2.2. Survey

For us to obtain a good overview of how participants
perceived multiple aspects of the project, we needed to sur-
vey them. However, as mentioned, the SPB project had
a wide range of stakeholders. Accordingly, to guide the
creation of the necessary questionnaires and interviews as
well as the analysis of the collected data, we divided the
project team into three groups: undergraduate interns, IT
professionals (senior developers and designers), and MPOG
analysts. Besides each member’s point of view (obtained
from interviews and questionnaires described here), we
also had other sources of evidence, such as data from the
code repository and from the activity management tool (as
presented in Section 4.2.3).

We designed an online questionnaire!® addressed to the
undergraduate interns and another!! addressed to the IT
professionals, as well as semi-structured interviews (Ed-
wards and Holland, 2013) with the two MPOG analysts
who directly interacted with the development team and
the project development process. To design the question-
naires and interview questions, we followed principles of
survey research (Pfleeger and Kitchenham, 2001): search-
ing the relevant literature, constructing the instrument
(Kitchenham and Pfleeger, 2002a), and evaluating the in-
strument (Kitchenham and Pfleeger, 2002b). In particu-
lar, we used the lessons learned reported in our previous
work (Meirelles et al., 2017) to reduce the overhead of sur-
vey construction (Kitchenham and Pfleeger, 2002a). More-
over, the authors of this study that participated directly
in different roles of the project brought an improved com-
prehension of each interaction and aided in contacting the
participants. Thereby, we conducted several brainstorming

Whttps://gitlab.com/ccsl-usp/spb-jss-2018/
raw/master/data-collection/questionnaires/
interns-questions-1.md

Uhttps://gitlab.com/ccsl-usp/spb-jss-2018/
raw/master/data-collection/questionnaires/
senior-developers-questions.md

conversations with three ex-interns and two senior devel-
opers. This step, also recommended by the classical Ground
Theory approach (Glaser and Strauss, 1999), provided a bet-
ter understanding of the relevance of the project for the
involved participants. All these principles and actions ul-
timately helped us shape the questionnaires and interview
questions used as survey instruments.

Questionnaires

The questionnaire for the undergraduate interns dealt
with topics related to (1) project organization, (2) devel-
opment process, (3) communication and relationship with
members, (4) acquired knowledge, and (5) experience with
FLOSS projects. To cover these topics, we elaborated a to-
tal of 51 questions (45 multiple-choice questions and six
open questions). The questionnaire for the IT professionals
was comprised of 29 multiple-choice questions and 10 open
questions, covering the following topics: (1) project organi-
zation; (2) project and stakeholders development processes;
(3) communication and relationship with undergraduate
interns; (4) the product developed; and (5) experience with
FLOSS projects.

For both questionnaires, we designed multiple-choice
questions for a more direct evaluation of the evolution of
the methods used for activity management, of the organiza-
tion of the project, and of the quality of the communication
among all parties involved. We used open-ended questions
to gather more nuanced perceptions.

The questionnaires were in Portuguese (the native lan-
guage of the participants). The questionnaire guide trans-
lated into English is available in our repository'?. We used
the Google Forms service'® to implement them and obtain
response charts'?. Before submitting the questionnaires to
the participants, we performed a test-completion of both
to estimate response time. We also conducted a trial with
Computer Science Graduate Students at the University of
Séo Paulo and IT professionals with similar profiles to the
respondents. Thereby, we could confirm the readability
and correct interpretation of the questions as well as fix
spelling mistakes and replace ambiguous terms found by
testers. We also redefined some response formats: For in-
stance, we opted for the Likert scale over a numerical range
in opinion closed-questions, because the Likert scale makes
the respondent more comfortable to decide on a suitable
answer.

We sent the questionnaires to 42 interns and 8 IT pro-
fessionals. All interns worked as developers and received
scholarships. We got a total of 37 (88%) intern responses,
while all 8 IT professionals responded. On average, in-
terns were 22 years old and professionals were 30 years
old, wherein 3 of 37 (8%) and 1 of 8 (13%) respectively were
women. 16 of 37 (about 43%) of the interns had the SPB

Rhttps://gitlab.com/ccsl-usp/spb-jss-2018/
tree/master/data-collection/questionnaires

Bdocs.google.com/forms

“Yhttps://gitlab.com/ccsl-usp/spb-jss-2018/
tree/master/data-collection/questionnaires/
responses

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 7 of 23

https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-1.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-1.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-1.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/senior-developers-questions.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/senior-developers-questions.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/senior-developers-questions.md
https://gitlab.com/ccsl-usp/spb-jss-2018/tree/master/data-collection/questionnaires
https://gitlab.com/ccsl-usp/spb-jss-2018/tree/master/data-collection/questionnaires
docs.google.com/forms
https://gitlab.com/ccsl-usp/spb-jss-2018/tree/master/data-collection/questionnaires/responses
https://gitlab.com/ccsl-usp/spb-jss-2018/tree/master/data-collection/questionnaires/responses
https://gitlab.com/ccsl-usp/spb-jss-2018/tree/master/data-collection/questionnaires/responses
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

project as their first contact with FLOSS. On average, the
IT professionals had 11 years of experience, worked in at
least 5 different companies, and participated in 4 to 80 dis-
tinct projects. Finally, 7 of 8 (86%) of them had some back-
ground with FLOSS before the SPB project.

Interviews

We conducted semi-structured interviews (Edwards
and Holland, 2013) with the two MPOG analysts who
directly interacted with the development team and the
project development process. Semi-structured interviews
are more spontaneous than structured interviews: They al-
low much more space for interviewees to answer on their
terms. In a typical semi-structured interview, the inter-
viewer follows an interview guide but is flexible to deviate
from the predefined topical trajectory when he or she finds
it appropriate and productive. He or she can probe answers,
ensue a dialogue, and discuss a proposed theme better.

We initially defined an interview protocol with 28 ques-
tions in Portuguese, and shared it with respondents. The
protocol translated into English is available in our reposi-
tory'>. The questions guide had four parts: (1) Professional
profile;(2) Organization, communication, and development
methodologies; (3) Satisfaction with the developed plat-
form; and (4) Lessons learned. Before conducting the in-
terviews, we reviewed the protocol with one project coor-
dinator and four development team coaches who interacted
directly with the MPOG analysts. Being a semi-structured
interview, the interviewer conducted the interview placing
each question according to the pace and meaning of each
response. The interviewer also added additional questions
during data collection to clarify or detail some interesting
things mentioned by the interviewee.

Each interviewee was invited by email to indicate the
date, time, and location most convenient for the interview.
The interviews were conducted separately with each ana-
lyst via video-conference, using the Google Hangouts plat-
form. Each meeting took an average of two hours and
was carried out outside the working environment. Respon-
dents agreed to have their voice and image recorded for this
study. The interviewer was a member of the project team
and had already met the interviewees at an earlier time.
Both respondents were over 30 years old and had more than
seven years working in the government. The analysts said
that the SPB project represented their first experience of
government-academia collaboration.

After two years of the project conclusion, we sent a
second questionnaire'® to the same group of undergrad-
uate interns to ratify the results obtained in the previous
survey and evaluate the impacts of the project experience
on the professional life of these interns. This was a short-
questionnaire with two closed questions, aimed at draw-

Bhttps://gitlab.com/ccsl-usp/spb-jss-2018/
raw/master/data-collection/interviews/
mpog-interview.md

https://gitlab.com/ccsl-usp/spb-jss-2018/
raw/master/data-collection/questionnaires/
interns-questions-2.md

ing a brief updated profile of the participants, and three
open questions about the professional activities performed
by them and the unfolding of the knowledge acquired in
the project on these activities. We made the questionnaire
available to receive responses for seven days, reaching 28
respondents of the 42 interns.

4.2.3. Repository Data Collection

Although most of the development team already had
experience with agile methodologies and the use of tools
such as Redmine!” and GitLab in the development pro-
cess, these resources were not part of the government’s
administrative culture. Consequently, in the first phase
of the project (as explained in Section 4.2.1), these differ-
ences in managerial culture, coupled with the trust rela-
tionship still under construction between the two institu-
tions, led to non-integrated management processes in the
same project. The communication between government
and academia was, generally, through private channels,
such as professional e-mails, personal meetings, and tele-
phone calls. Therefore, the quantitative data found for this
period are not conclusive or have little expressiveness, and
we do not examine them.

In contrast with this, the second phase of the project,
when management activities shifted to the SPB Portal tools,
was characterized by the automatic collection of a signifi-
cant amount of meaningful data. This data source enabled
us to reach a wealth of managerial information available
on the project platform. We manually analyzed these data
from the central project repository considering all the is-
sues and commits from this second phase.

The project code was structured in the GitLab instance
of the SPB platform. The development team defined a cen-
tral repository, which concentrated on the customizations
of the software. They also had local mirrors for the repos-
itories of each integrated tool, where the team developed
general improvements of each project for later submission
of contributions. Within this structure, the dialogue be-
tween government and academia always took place around
the central repository. The data collected from the reposi-
tories, which we discuss in Section 5.1.1, was divided into
two categories:

Development data

« The number of commits per project made in the GitLab
instance of the platform (Central, Noosfero, Colab, etc.).

« The number of different authors of commits registered
in the repositories.

« The number of issues per project (Central, Noosfero,
Colab, etc.).

« The number of different authors of issues with their re-
spective identifier and author name.

https://redmine.org

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 8 of 23

https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/interviews/mpog-interview.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/interviews/mpog-interview.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/interviews/mpog-interview.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-2.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-2.md
https://gitlab.com/ccsl-usp/spb-jss-2018/raw/master/data-collection/questionnaires/interns-questions-2.md
https://redmine.org
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Interaction data
« List of issues per project, ordered by ascending date.

« Date of the first issue opened by some MPOG staff (au-
thor).

« The number of comments on each issue, with names
and emails of the participating authors.

4.2.4. Data Analysis

Software engineering researchers have adopted Grounded

Theory in recent years and regularly use it to analyze in-
terviews and descriptive field-notes (Sbaraini et al., 2011).
With a coding strategy from the Grounded Theory ap-
proach (Glaser and Strauss, 1999; Corbin and Strauss, 2014),
we broke down and labeled the data into smaller compo-
nents (Sbaraini et al., 2011). Based on this strategy, our
analysis comprehends five steps:

(i) Data review: We organized and consolidated the data
from the questionnaires and interviews (described in Sec-
tion 4.2.2). During the process, we reviewed the records
again, transcribing the full interviews. These transcripts
preserve the interviewed speech, maintaining details such
as colloquial expressions.

“A very positive meeting was about software qualifica-
tion, talking to the team to get a level of detail of the feature
they could understand, and all the questions were answered.”

After that, we read the responses of the questionnaires
open-questions. We reviewed the transcriptions and the
form responses to fix typos, fill in small gaps in sentence
construction, and map non-familiar terms. An example of
non-familiar terms, according to the above transcription
quote, is:

Software Qualification — The feature developed to

evaluate software available on the SPB platform.
We also unified the meaning of some terms found:

Version Control: GitLab, version management, ver-

sioning.
Continuous Delivery: setup management, Devops, au-

tomation, integration delivery, continuous delivery, auto-
mated tests.

(ii) Practices and Benefits — Open coding: We identi-
fied expressions (codes) that could relate to the appropri-
ate actions or perceptions described in the descriptive field-
notes and the interviews. These initial codes are labels that
represent the first set of mapped practices and benefits to
be consolidated throughout all the analysis. This step is ex-
emplified as follows — examining a piece of transcriptions
related to the “government-academia interaction”

(a) “.robust interaction via the Internet”

(b) “..almost in real-time”

(c)“..use of mailing lists, [..] personal email, [..] Hangouts
chat”

(d) “..alot of discussion in the project itself (with GitLab sub-
system).”

(e) “..video-conferences to answer questions with the whole
team distributed between 3-4 cities”

(f) “I had no communication problem”

(g) “..the frequency of dialogues increased and evolved when
the communication has migrated to the GitLab”

(h) “..the interaction itself was open and accessible”

(i) “..the interaction was mostly by email, GitLab, hangout,
and even phone calls”

Given the list above, we could extract the practices re-
lated to “government-academia interaction” from items (a),
(c), (d), (e), (i), while the benefits derived from these prac-
tices are described by (b), (f), (g), (h).

We also examined the responses to the questionnaire
open-questions related to “government-academia interac-
tion” to map practices and derived benefits:

(a) “Joint planning and seasonable meetings were essential
for understanding MPOG’s needs”

(b) “Interaction via SPB tools helped validate the system as
a development platform?”

(iii) Decisions — from codes to categories: Based on
the initial list of practices and benefits (the codes), we con-
ducted a comparative analysis to identify similar expres-
sions in the data, categorizing the labels to group codes
of the same semantics. We can exemplify this process by
taking the above example of open coding of transcription.
Practices outlined in items (a), (c), (d), (i), and consequently
the related benefits (f), (g), (h), fell under the same category
related to “Government and Academia interact through the
system under development”. By completing this process, all
practices and benefits reached some category (correspond-
ing to one of the decisions discussed in Section 5.1).

(iv) Decisions refinement: In the previous step, we de-
termined three categories. In this step, we did not change
the number of mapped decisions. However, we renamed
them to better describe each one, such as (category) “Gov-
ernment and Academia interact through the system under de-
velopment” to (decision) “Use of the system under develop-
ment to develop the system itself”.

We also consolidated the group of practices and bene-
fits related to each decision to support the found categories
(summarized in Table 1, Section 5).

(v) From decisions to long-term benefits: Having iden-
tified the refined decisions, we surveyed the ex-interns (for-
mer undergraduate students), who joined the development

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 9 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Decision Practice Explanation

D1: Use of the system un-
der development to de-
velop the system itself

planning and review.

D2: Bring together gov-
ernment staff and develop-
ment team

discussions.

ning of the project.

both sides.

D3: Organize the devel-
opment team into priority
fronts, and for each one,
hire at least one specialist
from the IT market

front were hired to work in person or remotely.

« P3.4: Each team develops its self-organization, being guided by one

intern-coach and at least one senior developer.

Table 1
Empirical SPB management decisions and its benefits

team, in a second round. We examined how the identi-
fied decisions and practices reflected in their professional
life after the project. Thereby, we obtained enough data to
highlight the “Benefits for Teaching Software Engineering”
as discussed in Section 5.2.2.

5. Results and Discussion

As previously shown in Figure 1, we extracted a set of
high-level decisions presented as beneficial to the project
from the lessons learned reported by academic coordina-
tion in the first study on the project (Meirelles et al., 2017).
Based on the material just discussed, we analyzed the data
obtained to understand the managerial practices, their con-
sequences for the project, and to classify practices and ben-
efits in a more consolidated description of the high-level
decisions. This analysis resulted in an organized view of
the core decisions made in the project, the practices that
embodied these decisions throughout its evolution, and the
perceived benefits brought by them.

Table 1 summarizes the results, organizing them in
three columns. The first one presents the high-level deci-
sions identified by the letter “D” plus the number of the de-
cision (e.g., “D1”). The second column shows the manage-
rial practices related to each decision. Its identifier includes
the letter “P” plus the numbers of the related decision and
the practice (e.g., “P1.1”). The last column presents the ben-
efits derived from each decision and its associated practices.

P1.1: The features and tools of the platform under development
support the project management and communication activities.

P2.3: Involve government board of directors only in strategic plan-

P3.1: Coordinators separate the development team into priority
work areas considering the main demands of the project.

P3.2: IT market professionals with recognized experience on each

P3.3: Identify among the interns the leadership roles: a coach for
each front, and a meta-coach of the entire development team.

Benefits

« B1.1: Communicating with transparency and efficiency.
« B1.2: Easy monitoring of activities.
« B1.3: More interactions between developers and public servants.

« B1.4: Confidence in the developed code.

B1.5: Organic documentation.

B2.1: Reducing communication misunderstanding.

P2.1: Government staff, academic coordinators, senior developers,
and team coaches meet biweekly at the university lab for sprint

B2.2: Better meeting expectations of both sides.

B2.3: Improvement of the decision-making process.

P2.2: Direct contact, with no bureaucratic barriers, between gov- « B2.4: Overcoming the government bias regarding low productivity
ernment staff and the development team on the platform technical

of collaborative projects with academia.

B2.5: Synchronizing the execution pace of activities.

B2.6: Shared responsibility using Continuous Delivery.

B2.7: Strengthening trust in the relationship with the government.

P2.4: Build a Continuous Delivery pipeline with stages involving

B2.8: Sharing a common understanding of the process from one
side to the other.

B3.1: Conciliating the development processes of each institution,
taking better technical decisions.

B3.2: Improving the management and technical knowledge.

« B3.3: Promoting team self-training with knowledge transfer.

B3.4: Providing opportunities for more advanced undergradu-
ates to evaluate management issues and participate in business
decisions.

B3.5: Self-organizing and gaining autonomy in the management of
their tasks.

B3.6: Channeling professors’ efforts to address high-level issues
and to manage collaboration bureaucracies.

We labeled its identifier with the letter “B” plus the num-
bers of the related decision and the benefits (e.g., “B1.1”).
We will use these identifiers to refer to the decisions, prac-
tices, and benefits in several parts of the discussions of the
results in this section.

5.1. Decisions and Benefits

In the case study, we identified three high-level project
decisions that were relevant to reduce the communication
gap between the teams and to increase project productivity:

D1 Use of the system under development to develop the
system itself;

D2 Bring together government staff and development
team;

D3 Organized development team into priority fronts, and
for each one, hire at least one specialist from the IT market.

We now describe each of these decisions and their ben-
efits according to the respondents, and present an analysis
of corresponding repository data.

5.1.1. Decision (D1): Use of the system under devel-
opment to develop the system itself

The new SPB Portal combines functionalities adapted

from existing collaborative software and others developed

by the project team. As a result, the platform integrates

different features such as social networking, mailing list,

version control system, content management, and source

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 10 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

code quality monitoring.

Because of these features, the development coordina-
tors decided to use the platform under construction to de-
velop the system itself. Gradually, in addition to devel-
opment activities, the government and university teams
moved the project management and communication be-
tween them to the portal environment.

Features like help pages, mailing list management,
project-centered administration, Mezuro code quality anal-
ysis, and global search, offered the expected practical sup-
port for the development process. This use was also in-
strumental for the ongoing testing and improvement of the
platform.

Collaborative Development Features supporting D1

The SPB Portal became a platform to stimulate (1) the
openness of the source code, (2) an ongoing dialogue be-
tween users and the development team, and also (3) main-
tenance and evolution of the software, which provide more
transparency in Government investments regarding soft-
ware development. These qualities were offered mainly by
use of the Collaborative Development Environment tools
inherited from the GitLab integration.

Usually, CDEs demand a version control system, track-
ers, build tools, knowledge centers, and communication
tools (Lanubile et al., 2010). The new SPB Portal also pro-
vides tools to encourage developers to keep the source code
and its development activity within the platform. Any soft-
ware project created in the SPB Portal has, by default, an
associated Git repository with Wiki pages and issue track-
ing. The tools most often used during the development of
the new SPB were:

1. Project repository: the teams used one organization
with many repositories;

2. Wiki: each release had one Wiki page with the compi-
lation of the strategical meeting notes;

3. Milestones: each milestone was used to register a user
story (feature);

4. Issues: each sprint planning generated issues, which
were associated to the related milestone (feature as user
story) and registered on the corresponding Wiki page.
Finally, each developer assigned the issue to him or her-

self.

The features provided by GitLab were particularly cru-
cial in the management of the project. In short, the wiki
feature was used for logging meetings, defining goals, plan-
ning sprints, and documenting deployment procedures and
user guides. The issue tracker supported discussing re-
quirements, monitoring features under development, re-
questing and recording changes, and validating the deliv-
ered functionalities. Finally, the mailing list was used for
the collaborative construction of requirements, defining
schedules, and scheduling meetings between institutions.

Thanks to the variety of features present in the plat-
form, it was easily adapted to manage project planning,
documentation, and development. Both university and
government teams navigated and made use of these fea-
tures daily. In general, the assimilation of the created func-
tionalities happened organically, and the constant use of
the development tools enabled the project members to test
and validate their correct operation from the view of the
developer, the user, and also the client.

Benefits brought by D1

Our surveys report the mailing list (100%) and issue
tracker (62.5%) as the primary means of interaction be-
tween senior developers and interns. The development
team and MPOG staff also interacted mostly via the mail-
ing list (87.5%) and issue tracker (50%). According to one
of the interviewees, this decision made the communica-
tion more transparent and efficient (B1.1). An MPOG
analyst said that:

“Communicating well goes far beyond speed. It
means enabling someone to tell everyone about
everything that is happening in the project. We
did not use [private] emails, we use more mail-
ing list and avoid [private] emails. This usage
helped us considerably. Everything was public
and did not pollute our email box. So, when you
wanted to know something, you could access the
SPB list [on the web] and see everything”.

Migrating to the SPB platform also eased monitor-
ing of activities (B1.2) and increased interactions be-
tween developers and public servants (B1.3). The data
collected from the repository (Section 4.2.3) highlights the
frequent use of the platform by both teams.

Significant usage by the development team was to be
expected and, indeed, they made 3,256 commits in the
repository mentioned above. More importantly, there was
strong participation from the government team as well:
from April 2015 to June 2016 (the last 15 months of the
project), 59 distinct authors, 8 of which were MPOG agents,
opened 879 issues. These issues received a total of 4,658
comments from 64 distinct users, 9 of them from MPOG.
When we consider the issues with more interactions —
those which had ten comments or more —, we notice that
the government team also felt comfortable in using the tool
to interact directly with the development team. In a set of
102 active issues, MPOG staff created 43 of them (this rep-
resents 42% of the most active issues).

For the MPOG analysts, interaction via repository im-
proved communication:

“There was a big evolution, we increased our
communication via GitLab”.

Migrating to the platform also led MPOG staff to trust
the developed code (B1.4):

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 11 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

“Everything was validated. We tested the func-
tionalities and developed the project on the SPB
platform itself. Hence, the use of the system val-
idated most of its features. From the moment we
began to use it for development, this validation
was constant. We felt confident in the code pro-
duced”.

The decision mentioned above also collaborated to
meet the government’s demand for meticulous documenta-
tion of the software design and stages of development with-
out bureaucratizing or modifying the development process.
The usage of the platform for project team management
conducted the organic production of documentation
and records (B1.5), as mentioned in one of the MPOG re-
sponses:

“It was a great learning experience. There are
many things documented in emails as well as in
the portal itself. We can access the tools at any
time and find out how we developed a solution.
We can remember the positive points”.

5.1.2. Decision (D2): Bring together government
staff and development team

As the project evolved, the MPOG analysts that we
interviewed became responsible for negotiating with the
teams the day-to-day development and product delivery
decisions as well as for reporting to their superiors on inter-
institutional meetings. During the first phase of the project,
they did not participate in any direct interaction with uni-
versity representatives. They stated that at that time there
was significant communication noise in the internal dia-
logues with their superiors, as well as between them and
the development team. It was in the project’s second phase
that those analysts became direct government representa-
tives and started to visit the laboratory at the university
biweekly. At this time, the development workflow had also
changed due to the implementation of a Continuous De-
livery (CD) pipeline. The development team used CD as a
survival technique, that is, as a way to gain the government
trust (Siqueira et al., 2018).

Continuous Delivery Pipeline supporting D2

The project’s deployment followed a typical CD pipeline
(Humble and Farley, 2010), adapted to the project’s techni-
cal and organizational context and the use of FLOSS best
practices. As depicted in Figure 2, it began when a new
feature is ready for deployment and ended when it reached
production.

The implemented code was heavily tested. Each inte-
grated system had its own test suite, and there was also a
test suite for the platform as a whole. If any test suite failed,
by either a test error or coverage reduction below a certain
threshold, the process stopped. Only when all tests passed,
the pipeline could proceed to prepare a new release.

SPB had its own Git repository'®. An SPB portal re-

Bhttps://softwarepublico.gov.br/gitlab/
softwarepublico

Code
..... e
.............................. Yoo Yo
Acceptance : Automated
Tests : Testing
AAAAA AR
O O TR SOV SOV AP
‘«-i Preparing

VE Deploy Packaging : New

< = Release

SPB release

Figure 2: The SPB Deployment Pipeline

lease was an aggregate of all its integrated systems. That
is, when one of them passed all of the SPB integration tests,
the team manually created a corresponding tag on the SPB
repository. At the end of this process, the DevOps team
was ready to start packaging.

Packaging brings portability, simplifies deployment,
and enables configuration and permission control. The ap-
proach used involved building separate packages for each
system, in three fully automated steps: generating scripts
for the specific environment, building the package, and
uploading it to a package repository. When all ran success-
fully, the new packages would be ready and available for
the deployment scripts. Before deploying to production,
the system would first be deployed to a validation environ-
ment.

The Validation Environment (VE) was a replica of the
Production Environment (PE) with anonymized data and
access restricted to MPOG staff and the DevOps team. Af-
ter anew SPB portal VE deployment, the development team
used the environment to verify the integrity of the entire
portal. MPOG staff also checked the new features, required
changes, and bug fixes. If they identified a problem, they
would notify developers via comments on the SPB portal
issue tracker, prompting the team to fix it and restart the
pipeline. Otherwise, the team could move forward to pro-
duction deployment, using the same configuration man-
agement tool, scripts, and package versions as in the VE.
After the deploy was completed, both VE and PE were iden-
tical, and any new features and bug fixes would become
available to end users.

Benefits of D2

CD brings many advantages such as accelerated time
to market, building the right product, productivity and ef-
ficiency improvements, stable releases, and better customer
satisfaction (Chen, 2015; Savor et al., 2016). Figure 3 shows
the evolution of the number of releases during the project’s
lifetime both regarding its growth over time, grouped per
semester (red bars) and depicts the number of project mem-
bers (green line) and the reorganization of the team for the
creation of a group specialized in DevOps (blue line).

Over 30 months, 84 versions were deployed. Without

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 12 of 23

https://softwarepublico.gov.br/gitlab/softwarepublico
https://softwarepublico.gov.br/gitlab/softwarepublico
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Project Members

o Project Members
13 & DevOps Members

Ne N
R > > >
& & =)
! L L L -
\I T T 7 1 |
0 5 15 30 57 84
First Phase €— : —» Second Phase

Release Number

Figure 3: The evolution of the SPB release in comparison to
development team members distribution

taking into account the first half of the project, where the
team and the project requirements were still under con-
struction, the project deployment averaged 15 versions per
semester. After the creation of a DevOps team and the im-
plementation of continuous delivery in June 2016, the num-
ber of deployments per semester grew to 27, representing
an increase of 80% on the delivery rate. In summary, over
64% of the total of releases happened in these last 12 months
of the project. It is also important to note that there is an
intersection between DevOps members and undergradu-
ate interns. Again, it is clear that, after an initial period
dedicated to building and improving the CD pipeline, the
creation of the DevOps team was crucial for the project to
make more frequent releases.

Respondents also reported CD benefits. For 30 out of
37 (81%) of the interns and for 6 out of 8 (75%) of the IT
professionals, deploying new versions of the SPB portal in
production was a motivator during the project. On the
government side, this approach helped to overcome the
government bias toward low productivity of collab-
orative projects with academia (B2.4), as mentioned by
them:

“Government staff has a bias that universities do
not deliver products. However, in this project, we
made many deliveries with high quality. Nowa-
days, I think if we had paid the same amount for
a company, it would not have done the amount
of features we did with the technical quality we
have”.

Additionally, constant deployments enabled both side
teams to share a common understanding of the pro-
cess (B2.8), because MPOG analysts became able to keep
a high-level view of the project and to focus on planning
future releases, as one of them mentioned:

“We had only the strategic vision of the project.
When we needed to deal with technical issues,
we had some difficulty planning the four-month
releases. However, in the last stages of the project
I realized that this was not a problem. The team
was delivering and the results were available in

production. The team was qualified, the code
had quality, and the project was well executed.
So in practice, our difficulty in interpreting the
technical details did not impact the release plan-
ning”.

The presence of government representatives in the uni-
versity laboratory was also responsible for reinforcing the
government-academia synchronization. One of the ana-
lysts believed that:

“At this point, the communication started to
change”.

The new dynamics reduced communication misun-
derstandings (B2.1) and unified both sides, as reported by
another interviewee:

“Tt was very positive. We liked to go there and to
interact with the team. I think it brought more
unity, more integration into the project”.

27 out of 37 (73%) of the interns considered positive the
direct participation of the MPOG staff, and 30 out of 37
(81%) of them believed the presence of government staff in
sprint routines was relevant for the project development.
For 28 out of 37 (76%) of the interns, writing the require-
ments together with the MPOG staff was very important
to meet expectations of both sides better (B2.2). Ac-
cording to one of them, this closer interaction improved
the decision-making process (B2.3):

“Yoint planning and timely meetings were very
important for understanding the needs of MPOG”.

Closer dialogue between government and academia
generated empathy, as reported by one of the interviewees:

“Knowing people in person makes a big differ-
ence in the relationship because it causes em-
pathy. You know who that person is. He’s not
merely a name”.

Consequently, this empathy helped to synchronize
the execution pace of activities (B.5):

“Visiting the lab and meeting the developers en-
couraged us to validate resources faster and give
faster feedback to the team. In return, they also
quickly answered us any question”.

Some of the ex-undergraduate interns currently serve
as academic professors or government employees. Due to
the proximity between government and academia experi-
enced during the project, such students reported encourag-
ing the public administration to adopt agile methods, soft-
ware sharing, and collaborative software development:

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 13 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

“The project experience developed my view
about the value of FLOSS and software shar-
ing between public administration departments.
Hence, I have brought this concern inside the
execution of my assignments and in discussions
related to this theme with others civil servants.”

They also believe that these values, when implemented
at the governmental level, enable resource savings and bet-
ter project planning:

“The project enabled me to acquire a practi-
cal understanding of software development us-
ing agile methodologies and taught me the cor-
rect use of tools which bear this kind of develop-
ment. Through this knowledge, we (MPOG) are
spreading to other departments, and public ser-
vants the importance of agile methods and col-
laborative development for resource saving and
software development planning inside the min-
istry.”

5.1.3. Decision (D3): Organized development team
into priority fronts, and for each one, hire at
least one specialist from the IT market

The SPB team was composed of a variety of profes-
sionals with different levels of experience and skill, where
most of them were undergraduate software engineering
students. Since students could not dedicate many hours
per week to the project, they had the flexibility to nego-
tiate their work schedule during the semester in order not
to harm their classes and coursework. Their work routine
in the project included programming and DevOps tasks.

The project required a vast experience and background
that undergraduate students do not usually have. For this
reason, a few senior developers have joined the project to
help with the more difficult issues and to transfer knowl-
edge to the students. Their main task was to provide so-
lutions for complex problems, working as developers. As
these professionals were very skillful and the project could
not fund full-time work for all of them, they worked part-
time on the project. Besides, they lived in either different

Brazilian states or other countries, which led much of the

communication to occur online.

Team Organization adopted with D3

Approximately 70% of the development team was com-
posed of software engineering undergraduate students
from UnB working physically in the same laboratory. The
senior developers tried to synchronize their work with
the students’ schedules, but each student had his sched-
ule based on his classes, which complicated the adoption
of pair programming. To cope with this scenario, a few
basic rules were guiding the project organization:

1. Classes have high priority for undergraduate students;

2. Pairing whenever possible (locally or remotely);

3. During one morning or afternoon per week, everyone
but the remote members should be together physically
in the laboratory;

4. Every 2 to 3 months the senior developers would travel
to work alongside the students for a few days.

With the aforementioned rules, the development team
had four work areas divided in accordance to the main de-
mands of the project: User Experience, DevOps, Integra-
tion of Systems, and Social Networking. One student of
each team was the coach, responsible for reducing commu-
nication issues with other groups and helping the members
to organize themselves in the best way for everyone (al-
ways respecting their work time). The coach also had the
extra duty of registering the current tasks developed in the
sprint. One important thing to notice is the mutability of
the team and the coach. During the project many students
switched teams to try different areas.

For each segment, at least one professional from the
IT market was hired to raise the quality of the product
assuming the position of senior developers. They have
been selected based on their vast experience in FLOSS sys-
tems and their knowledge of the tools used in the project.
Their expertise was essential to address hard decisions and
complex problems. Thus, it was not the coach’s role to
deal with complicated technical decisions, which encour-
aged students to be coaches. Lastly, the senior developers
worked directly with the students, and this was important
to give them the opportunity to interact with a savvy pro-
fessional in their areas and to keep the knowledge flowing
in the project.

Finally, two other elements in the team organization
were essential for the project harmony: the meta-coaches
and the professors. The former were software engineers
recently graduated that wanted to keep working on the
project. The latter were professors that orchestrated all
the interactions between all members of the project. Each
meta-coach usually worked in one specific team and had
the extra task of knowing the current status of all the oth-
ers. Professors and the meta-coaches worked together to
reduce communication issues among groups. Lastly, all the
paperwork tasks, such as reporting on the project progress
to the Brazilian Government, was handled by the profes-
sors.

Benefits of D3

The presence of senior developers in the project con-
tributed to conciliate the development processes of
each institution and make better technical decisions
(B3.1), as quoted in one of the answers to the senior devel-
oper’s questionnaire:

“Ithink my main contribution was to balance the
relations between the MPOG staff and the uni-
versity team”.

5 out of 8 (62.5%) of the IT professionals believe they
have collaborated to conciliate the management and devel-
opment process between the two institutions and another 5

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 14 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

of 8 (62.5%) helped MPOG staff express their requests more
clearly. Government analysts were also more open to sug-
gestions from these developers:

“They are upstream developers of the systems
that integrate the platform. They conveyed trust,
and therefore we trust the developed code”.

According to questionnaire responses, IT professionals
mostly agreed with the project development process. For
5 out of 8 (62.5%), this process has close similarity to their
previous experiences. In contrast, another 5 of 8 (62.5%) did
not understand the MPOG’s project management process
and 4 out of 8 (50%) believed this process could affect the
project productivity.

The senior developers were also responsible for im-
proving the management and technical knowledge of
the interns about practices from industry and open source
projects (B3.2). 34 out of 37 (92%) of the interns believed
that working with professionals was essential for learning
and, for all of them, working with IT professionals was im-
portant during the project. 6 out of 8 (75%) of the IT profes-
sionals believed that “Working in pairs with a senior” and
5 out of 8 (62.5%) that “Participating in joint review tasks”
were the activities with the involvement of them that most
contributed to the evolution of the interns. 6 out of 8 (75%)
believed that the knowledge shared by them with one in-
tern was widespread among the others in the team. Gov-
ernment analysts also pointed out this knowledge sharing:

“On the university side, we noticed a significant
improvement in the platform with the hiring of
the systems’ original developers. They had a
guide on how to best develop each feature and
were able to solve non-trivial problems quickly”.

Organizing the development team and hiring the IT
professionals allowed each team to self-organize and
gain more autonomy in the management of their
tasks (B3.5). There was a development coach to lead each
team, and at least one meta-coach supported all of them in
their internal management activities. The coaches (most
advanced interns) were important references in the de-
velopment process. 33 out of 37 (89%) of the interns said
that the presence of the coach was essential to the sprint’s
running, and for 7 out of 8 (88%) of the IT professionals the
coaches were crucial for their interaction with the develop-
ment team. MPOG analysts saw the coaches as facilitators
for their activities and communication with the develop-
ment team. They said:

‘T interacted more with the project coordinator
(professor) and team coaches”, “Usually, we con-
tact a coach to clarify some requirements or to
understand some feature. The coaches were more
available than senior developers and, sometimes,
they would take our question to a senior devel-
oper”.

When we recently asked former undergraduate-interns
about the experience acquired during the project, we ob-
served that the team’s organization and the presence of se-
nior developers had brought maturity and positive impacts
on their current professional activities. One of them stated
that:

“The SPB project experience offered me a great
maturity on professional FLOSS development”.

For another, the experience favored his career directly:

“The project experience helped me to develop
myself technically and to understand some is-
sues about project management of which I
wouldn’t have the opportunity in another mo-
ment. I also built a strong and valuable profes-
sional network with very qualified developers,
and one of the senior developers introduced me
to the Debian project (a Linux distribution). This
gateway to the FLOSS environment was crucial
for my current job in a recognized company of
Open Source consultancy”.

Some respondents said that the experience with a par-
tially remote team also contributed to their professional
growth. In general, ex-interns have spontaneously re-
ported that the contact of developers from different areas
and professional profiles has enabled them to improve their
technical skills and build a network of professional con-
tacts:

“Besides the opportunity of technical contribu-
tion to large software projects, I learned a lot
with senior developers as well as undergraduate
colleagues. The project gave me the chance to
work with various professional profiles (such as
designers) and introduced me to the FLOSS world
wherewith, and I am very grateful”.

One ex-participant also reported that the organization
of the team into priority fronts, and the possibility of mi-
gration between them, gave him a comprehensive view of
how a quality product is developed. The experience of the
project as a whole was the basis for some of them to be
able to work directly on FLOSS projects - such as coop-
erating to Noosfero project, participating and mentoring
in the Google Summer of Code Program, mentoring in the
Outreachy Program'?, and contributing to the Linux Kernel
project.

5.2. Adopted practices and consequences
Providing a high-quality product and overcoming the
differences in pace and interest of stakeholders were possi-
ble with the non-systematic employment of practices ob-
tained from agile methodologies and FLOSS ecosystems.
These practices emerged from the mentioned strategic de-
cisions that guided the overall development of the project.

Yhttps://outreachy.org

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 15 of 23

https://outreachy.org
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Our previous work (Wen et al., 2018) revealed a set of
nine managerial practices that resulted in 14 benefits evi-
denced by replies to questionnaires and analysis of repos-
itory data. Table 1, from the previous section, presents an
update of the summary of macro-decisions, practices, and
benefits found in that work, as well as 5 new identified ben-
efits. Based on the data set above, we analyzed all ques-
tionnaire’s responses and performed a critical review of the
effects of these practices on both the management of col-
laboration and the professional training of undergraduate
students. After showcasing the major decisions and their
benefits in the previous section, we now proceed to discuss
the individual practices and how each one brought the ben-
efits previously highlighted.

5.2.1. Day-to-day practices and benefits achieved

P1.1 The features and tools of the platform under develop-
ment support the project management and communication
activities. As soon as a first beta version of the new por-
tal became available, the new SPB project, including both
the development process and the project management ac-
tivities, migrated to it. Discussions and technical decisions
originally occurred in a dispersed way through difficult-to-
monitor communication media such as telephone, e-mail,
and face-to-face contact. The government and academia
teams then started to keep their dialogues registered in the
repository issues, wiki pages, and list of project discussions
available on the platform.

B1.1 Communicating with transparency and efficiency.
The use of a mailing list and the specification of require-
ments through issues on GitLab made the discussions
and decisions available publicly and in real time.

B1.2 Easy monitoring of activities. Each code addition
was versioned and directly related to the activity that
originated it. Coordinators and developers could allo-
cate contingency activities faster and monitor solutions
adopted as well as all the code generated for it.

B1.3 More interactions between developers and public
servants. Using online resources, made available in CMS
and community format, broke physical and mental bar-
riers of dialogue between the government team and the
university team.

B1.4 Confidence in the developed code. Daily interac-
tions with the software brought to the surface all bugs
and accelerated the software improvement process.

B1.5 Organic documentation. Decisions, meeting re-
ports, and changes were automatically recorded in the
issue tracker, wiki, and mailing list.

P2.1 Government staff, academic coordinators, senior devel-
opers, and team coaches meet biweekly at the university lab
for sprint planning and review. Initially, only the academic

development team participated in the development follow-
up routines, and leaders of academia moved to the govern-
ment headquarters to meet the government team for deter-
mining the features to be delivered in the next four months.
There was a gap in time and space between institutions that
was softened by defining a more dynamic schedule, where
the government team also attended meetings held at the
university and participated more frequently in achieving
the requirements.

B2.1 Reducing communication misunderstanding. In-
person meetings generate empathy among team mem-
bers and solve problems of interpretation due to er-
rors in written expression and understanding thanks to
speech tone.

B2.4 Overcoming the government bias regarding low
productivity of collaborative projects with academia.
Government staff realized the intensity of the agile de-
velopment and shared the difficulties encountered dur-
ing the construction of a feature.

P2.2 Direct contact, with no bureaucratic barriers, between
government staff and the development team on the platform
technical discussions. Stakeholders from both the govern-
ment and the development team were encouraged to dis-
cuss issues and features directly among each other instead
of going through the chain of command.

B2.2 Better meeting of expectations on both sides. Man-
aging development through GitLab provide a greater
approximation of all stakeholders to the development
process, technical decisions, and deliveries of function-
ality.

P2.3 Involve government board of directors only in strategic
planning of the project. Due to the directors’ schedule, they
could not keep up with the unfolding of technical decisions.
To better explore the few meetings with the presence of the
directors, discussions with them were restricted to strategic
business issues, leaving the planning of the development
process to the more frequent reunions with only the MPOG
analysts.

B2.3 Improvement of the decision-making process. Tech-
nical details no longer interfered with strategic deci-
sions, and political issues also did not affect techni-
cal choices. These restrictions generated less wear and
tear among the teams and enriched the discussions of
technical subjects among those better acquainted with
them.

P2.4 Build a Continuous Delivery pipeline with stages in-
volving both sides. The development and management pro-
cesses became automated, providing guidance, clarity of re-
sponsibilities, and rhythm to all teams involved.

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 16 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

B2.5 Synchronizing the execution pace of activities. The
CD pipeline performance depended on the synchro-
nization between the academia and government teams,
as each party had to be prepared to take action as soon
as the other concluded a given task. The use of an ex-
plicit CD pipeline helped identify critical points of de-
lay, and increased productivity.

B2.6 Shared responsibility using Continuous Delivery.
According to the conventional MPOG process, the de-
velopment team could not track what happened to the
code after its delivery, since their employees were the
only ones responsible for deployment. The implemen-
tation of CD made the development team feel equally
responsible for what was getting into production and
take ownership of the project (Shahin et al., 2016).

B2.7 Strengthening trust in the relationship with the gov-
ernment. With CD, intermediate and candidate ver-
sions became available to be validated in the biweekly
meetings, allowing the government staff to perform
small validations over time. Constant monitoring of
the development work brought greater assurance to the
MPOG leaders and improved the interactions with the
development team.

B2.8 Sharing a common understanding of the process.
The steady pace and faster deployment provided by the
pipeline brought a better overall view of the project for
all participants.

P3.1 Coordinators separate the development team into pri-
ority work areas considering the main demands of the project.
The project was divided into four work fronts, two to ad-
dress general concerns of User eXperience and DevOps and
two aimed at the development of the integrated applica-
tions that provided substantial functionalities to the plat-
form: Noosfero and Colab.

B3.1 Conciliating the development processes of each in-
stitution, taking better technical decisions. With this divi-
sion, both the government and academia teams began to
describe better the requirements for identifying the re-
sponsible work front and correctly reference feedback,
bugs, and necessary adjustments. Each work front has
become a core of knowledge, developing among them
technical skills according to the work scope. This im-
proved the argumentative and explanatory capacity of
the development team to technical issues raised by the
government team.

P3.2 IT market professionals with recognized experience on
each front were hired to work in person or remotely. With
the division of the team, experienced professionals in the
field of information architecture, design, front-end, infras-
tructure, as well as creators and maintainers of Noosfero,
Colab, and other FLOSS projects joined to undergraduate
interns in the different work fronts. Due to the high cost

of moving this category of professionals, many worked re-
motely for the project.

B3.2 Improving the management and technical knowl-
edge. The contracted professionals brought the team
their technical abilities and experiences with industry,
large-scale project and collaborative development. In
addition to developing in the team the ability to orga-
nize and interact remotely, increasingly common in to-
day’s work environments.

B3.3 Promoting team self-training with knowledge trans-
fer. Through peer programming, code review, and
consultations, senior developers have transferred their
knowledge to interns. Undergraduate interns could or-
ganically absorb a high load of technical expertise dur-
ing the performance of their activities which would not
be possible in the classroom context.

P3.3 Identify among the interns the leadership roles: a coach
for each front, and a meta-coach of the entire development
team. The academic coordinators invited the interns who
had good maturity and knowledge of their work front to
leadership and coaching roles. The one who acquired a
good perception of the whole development process was
then chosen to lead the dynamics between teams and the
dialogues between the development team and the govern-
ment team.

B3.4 Providing opportunities for more advanced under-
graduates to evaluate management issues and participate
in business decisions. When the intern took on the role
of coach, he represented the team in the overall plan-
ning of the development of requirements and at times
participated in direct meetings with government staff
and board directors. These interactions enabled him to
develop leadership and management skills.

P3.4 Each team self-organizes, being guided by one intern-
coach and at least one senior developer. The intern-coach
was responsible for planning and managing the activities
and relied on senior developers’ maturity and experience
to schedule tasks, identify bottlenecks and overcome tech-
nical difficulties.

B3.5 Self-organizing and gaining autonomy in the man-
agement of their tasks. The closeness and openness in
communication between the coach with the other in-
terns summed with the maturity and market experi-
ence of the senior developers provided a balance in the
development of the tasks of each work front and self-
organization of the team according to the abilities of
each one.

B3.6 Channeling professors’ efforts to address high-level
issues and to manage collaboration bureaucracies. Self-
manageable work fronts allowed the academic coordi-
nators (university professors) to be more available for

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 17 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

definition of strategic goals with the government and
management of the financial and contractual project is-
sues, without compromising their teaching activities at
the university.

The results presented in this paper corroborate the
lessons learned in our previous work on studying the SPB
project case (Meirelles et al., 2017). Evidence from the data
collected, responses to questionnaires, and interviews rein-
force what has been reported by the academic coordination
of the project, adding the point of views of government and
other roles involved on the academic side. In short, the gov-
ernment staff took time to understand how collaboration
works and to realize that the project should not assume a
client-executor relationship, but rather that both organiza-
tions were at the same hierarchical level in the work plan.

5.2.2. Benefits for Teaching Software Engineering

After about two years of SPB project conclusion, in ad-
dition to contributions for the management of future part-
nerships between government and academia, this experi-
ence reverberated in the professional life of both senior de-
velopers and government agents, as well as the interns —
former undergraduate students. The experience of a real
project during the academic training allowed these newly
graduated students to reach advanced positions in the uni-
verse of academia, private initiative, entrepreneurship, and
FLOSS. The ex-interns revealed in their responses of the
second round questionnaire that:

“The project helped me develop my masters and
personal projects.”, “It was the gateway to the job
market and contributed significantly to my cur-
rent job”.

71% of these ex-interns stated that the use of agile meth-
ods in a large-scale project with real clients was the pri-
mary professional contribution of the project since such
practices are part of their current workflow.

“Everything that I learned during the SPB project
I could employ on my current job, from best de-
velopment practices to the use of Colab.”, “The
project experience was essential to start in the
Jjob market, especially the experience with agile
methodologies and their procedures”.

68% of them have reported that DevOps abilities and
versioning using git are knowledge from SPB project that
improves their current work performance. For 36%, under-
standing of the collaborative development and the cycle of
contributions to FLOSS projects are insights they apply in
their professional and academic activities.

“Nowadays I am in the development area, and
the DevOps knowledge acquired during the
project helps me identify and solve problems
faster.”, “The knowledge of real projects, deliv-
eries, scopes, and deadlines was essential to my

professional performance”.

In summary, because the SPB portal platform was not
a “toy project”, the heterogeneity of its project actively en-
couraged these ex-interns to work on their personal and
professional maturity and to search for practical techniques
of versioning, infrastructure, and DevOps.

“The experience with a multidisciplinary team
reflects directly on my current job.”, “The project
experience was essential to define what I want
to work with during my life and gave me the
framework not to start my professional activities
without a sense of real software development.”),
“Now I can see the project as a substantial pro-
fessional and personal growth experience. The
integration between senior developers and un-
dergraduate interns ripened the team in different
moments, helping the team to uncover problems
promptly, and search for reasonable alternatives
or best ways to change. The adoption of agile
practices also led us to a good dynamic of devel-
opment”.

In addition to the delivered new version of the new
SPB portal itself, this study also reveals that the adopted
practices have benefited the people involved in the SPB re-
building project. After we analyzed the post-mortem data
of the SPB project, we noticed this project extrapolated
FLOSS and agile values by impacting the lives of the peo-
ple involved. Most of the former interns answered the sec-
ond questionnaire: a total of 29 respondents. Five of them
are working in large companies or Brazilian government
agencies, three became entrepreneurs, and 11 are Com-
puter Science or Information System researchers, which
means 19 out of 29 respondents (65%). Additionally, several
of the participants still actively contribute to large FLOSS
communities, such as Debian, Fedora, Linux, Spark, Elixir,
among others. Senior developers from the SPB rebuilding
project have recruited some of the ex-interns they helped to
train to become their co-workers. In summary, the project
benefited the training of several students significantly.

6. Related Work

Buiytikozkan and Arsenyan (2012) divide the literature
on collaborative product development in three categories:
papers that describe typical collaborative product develop-
ment dynamics and success factors, usually case studies;
papers that deal with the process of partnership formation,
such as choice of partner; and papers discussing techno-
logical and methodological tools to improve collaboration.
Our work fits in the first and third categories, as it is a
case study that describes the progressive development and
adoption of new technologies and management techniques
as the project evolved. Therefore, in this section, we prior-
itize the literature dealing both with the adoption of novel
management approaches and with co-development involv-
ing either academia or government.

Dittrich et al. (2003) discussed the co-development of
services, citizenship, and technology in the e-Government

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 18 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

context. From four different cases, they mapped simi-
lar issues regarding e-government development. Since e-
government changes the paradigm of several public ser-
vices, the authors claim that it requires coordination by
means of design and construction of supporting technical
and organizational infrastructures. Our findings show that
the government, especially the analysts, acquired all the
expertise to design and provide the technical and organi-
zational infrastructure to the users of the new SPB por-
tal. They were actively involved in the collaborative devel-
opment process and used the new platform tools for their
management and communication activities during project
development. From the analysts’ responses, we observed
that they recognized the potential of the new platform
in practice through the development of the project itself.
Hence, they became advanced users of the new SPB portal
before any other users. Based on this experience, they also
increased their understanding of collaborative software de-
velopment.

Co-development is also related to knowledge trans-
fer. Wan et al. (2010) conducted an empirical study on
the influence of knowledge transfer in Software Process
Improvement (SPI). They proposed a conceptual frame-
work composed of five elements: “transfer of knowledge,
sources of knowledge, recipients of knowledge, the rela-
tionship of transfer parties, and the environment of trans-
fer”. The framework investigated ten key factors such as
“ambiguity, systematism, transfer willingness, the capacity
of impartation, the capacity of absorption, incentive mech-
anism, culture, technical support, trust, and knowledge dis-
tance”. Among these, the authors found that a trust rela-
tionship among the involved teams influenced the knowl-
edge transfer and concluded that incentive mechanisms im-
pacted positively in the knowledge transfer regarding SPIL
Both findings are something we also observed. Our work
reports that continued delivery and joint participation by
both sides at various stages of the development cycle have
built trust between government and academia. This confi-
dence aroused the interest of the development team in un-
derstanding and better meeting the bureaucratic demands
of the government. Also, the government analysts recog-
nized the importance of absorbing agile values and FLOSS
to the dynamism of the workflow. In the responses to
the interviews and questionnaires, we also observed both
teams realized that the transparency and learning of differ-
ent project management techniques made the work more
fluid and productive. Senior developers were not only mo-
tivated by payment but also by the opportunity to get new
contributors to evolve the projects for which they were cre-
ators or maintainers. Besides, they found a way to show the
relevance of their area of expertise to customer satisfaction
and product acceptance by teaching students.

Foos et al. (2006) studied key-relationships that influ-
ence the transfer of knowledge between two partners. They
collected both qualitative and quantitative data and identi-
fied that “trust, early involvement, and the due diligence”
leverage the transfer of technology and tacit knowledge.

The study also evidences that managers and project lead-
ers comprehend poorly the implicit knowledge transfer,
content, and process. The authors found there are differ-
ent perceptions of knowledge transfer and a lack of meth-
ods to manage it. The findings indicate that managers did
not succeed in absorbing knowledge for long-term product
management. Managers work based on well-defined sched-
ule and scope requirements of their projects, being “re-
warded on execution, timing, and budgetary compliance”.
Foos et al. (2006) indicate that managers extract from their
partner “minimally what is required to commercialize the
product” because they are not responsible for the “next-
generation product that they may not be working on”. Un-
like what is claimed in that paper, government analysts
who managed the SPB project gained much knowledge
from the academic and development team. They incor-
porated several practices in their day-to-day activities, in-
volving other MPOG staff to collaborate in the SPB project.
They also reported that the availability of ample documen-
tation from the project is a valuable asset they can refer
to at any time, suggesting a long-term change in manage-
ment strategies and knowledge. In fact, an analyst men-
tioned that the experience extracted during the SPB project
is useful to her new position as a project manager in an-
other Brazilian government ministry.

Our paper focuses on two particular partners: academia
and government. Some works discuss how academia can
collaborate and transfer knowledge to the industry in the
management of software projects. Chookittikul et al. (2011)
evaluated the increasing use of agile techniques in software
development companies in Thailand. The authors sug-
gested that universities should create curricula that develop
their undergraduate students’ practical skills required by
industry (mainly agile practices) to promote growth in local
software businesses. Our findings from the second ques-
tionnaire sent to former undergraduates confirm the im-
portance of including the development of practical skills in
undergraduate curricula. The SPB project was a successful
case of teaching and training IT professionals. The respon-
dents reported that FLOSS and Agile methodologies skills
developed during the project made it easier for them to get
a job and also perform well their work activities.

Sandberg and Crnkovic (2017) report the use of Scrum
in an industry-academia research consortium (involving
ten industry partners and five universities in Sweden).
Through a case study, they demonstrate that being able to
bring together the meaningful activities of the stakeholders
is essential to the success of collaborative research between
industry and academia. Similarly to theirs, our work also
shows how the adoption of agile values supports the collab-
oration of institutions with different goals. Sandberg and
Crnkovic (2017) found nine practical ways to help industry-
academia collaborations, including organizing activities in
sprints, monthly face-to-face stakeholder meetings, using
Scrum routines, joint development planning, and delivery
of intermediate versions. Their results have a close connec-
tion with four practices reported in our paper that describe

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 19 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Decision 2 (D2) made in the SPB project.

Mergel (2016) conducted a study including interviews
with managers of the central digital transformation team
from the U.S. government. The author investigated the ex-
isting initiatives for agile management implementation and
proposed a research framework to guide future investiga-
tions regarding collaborative and agile innovation manage-
ment approaches in government. This framework includes
research questions such as: “How can government incen-
tivize open sharing of source code instead of reinventing
the wheel with every request for proposals, signed contract
or grant?”. The SPB Portal itself, the target of our study, is a
case study that answers this question: the portal’s primary
purpose is providing an environment to share software de-
veloped for or by any of the many Brazilian government
agencies, reducing the costs of software and services acqui-
sition. The development of the platform also addressed this
point: the platform is a system-of-systems that has adapted
and integrated five existing FLOSS projects, whose devel-
opment was supported by the management decisions and
practices listed in this study.

Discussions on how to introduce new management
methods into an organization are present in the litera-
ture (Qumer and Henderson-Sellers, 2008; Misra et al., 2009;
Mishra and Mishra, 2011). However, Nuottila et al. (2016)
highlights that only a few works investigated agile adop-
tion in public organizations. Based on a case study from
the Finnish government, they conducted research “to iden-
tify and categorize the challenges that may hinder efficient
adoption and use of agile methods in public IT projects”.
The study presents seven challenges: Documentation (C1);
Education, experience, and commitment (C2); Stakeholder
communication and involvement(C3); Roles in the agile
set-up (C4); Location of the agile teams (C5); Legislation
(C6); Complexity of software architecture and system in-
tegration (C7). The decisions discussed in our paper are
directly related to the challenges C1, C2, C3 and C7. Our
Decision 1 (D1) provided benefits such as organic docu-
mentation (B1.5), communicating with transparency and
efficiency (B1.1), and more interactions between develop-
ers and public servants (B1.3). The benefit B1.5 is related
to challenge C1 while B1.1 and B1.3 concern C3. Benefits
from Decision 2 (D2) such as reducing communication mis-
understanding (B2.1), better meeting expectations of both
sides (B2.2), synchronizing the execution pace of activities
(B2.5), strengthening trust in the relationship with the gov-
ernment (B2.7), and sharing a common understanding of
the process from one side to the other (B2.8) also are related
to challenge C3. Our Decision 2 (D2), in specific the prac-
tice P2.4 (build a Continuous Delivery pipeline with stages
involving both sides), also provided benefit B2.6 (Shared re-
sponsibility using Continuous Delivery), associated with
challenge C7. Lastly, Decision 3 (D3) brought benefits
such as improving management and technical knowledge
(B3.2), promoting team self-training with knowledge trans-
fer (B3.3), providing opportunities for more advanced un-
dergraduates to evaluate management issues and partici-

pate in business decisions (B3.4), and self-organizing and
gaining autonomy in the management of their tasks (B3.5)
which correlates to challenge C2.

Finally, Nerur et al. (2005) and Strode et al. (2009) (dis-
cussed in Section 2) argue that the adoption of agile de-
velopment techniques does indeed produce changes in an
organization’s culture. Conversely, our study does not
discuss significant changes in the involved Brazilian gov-
ernment agency, since the strategy reported here had the
premise that both organizations (academia and govern-
ment) should collaborate with minimum impact on their in-
ternal macro-management processes and culture. As seen
in this section, such form of collaboration yields positive
outcomes mostly similar to other endeavors.

7. Conclusion

We reported on our investigation on the rebuilding of
the Brazilian government platform for software sharing,
the SPB portal. For restructuring the architecture and pro-
viding new functionality to the system, the federal govern-
ment teamed up with universities in a 30-month collabora-
tion project. The partnership developed a unique platform,
described by project members interviewed as an innovative
product, with no other similar reference within the Brazil-
ian government. Due to the adoption of agile and FLOSS
practices and collaborative development technologies, the
software delivered can be easily updated and replicated for
other government sectors, and the management structure
may serve as an example for future government-academia
collaborations.

In addition to technical aspects of the platform, the col-
laboration studied in this work had a significant manage-
rial complexity. By involving large-scale organizations that
have significant differences in their development meth-
ods and customary workflows, the development process
needed to be well-adapted to mitigate mismatch and con-
flicts of interest, without interposing their internal man-
agerial procedures and organizational routines. This con-
ciliation is crucial in a case of government-academia collab-
oration since the weak and unadaptable management could
lead the project to fail, resulting in the waste of tax-payer
resources.

The case study enabled us to systematize management
best practices that mitigate the interinstitutional conflicts
and led the partnership to succeed. As a result, we iden-
tified high-level decisions, empirically taken by the devel-
opment leaders, which oriented the whole team to adopt
practices from agile methods and FLOSS ecosystems. From
this, we asked members on both sides of the project how
these decisions had influenced the progress of activities.
The answers obtained, together with data collected from
the development repositories, enabled us to map the best
practices and the benefits they generated.

Regarding our first research question “How to introduce
FLOSS and agile best practices into government-academia
collaboration projects?”, we examined the SPB project and

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 20 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

identified three high-level decisions taken by the academic
coordinators that drove them to intuitively adopt nine
FLOSS and agile best practices in the development process:

D1 Use of the system under development to develop the
system itself.

D2 Bring together government staff and development
team.

D3 Organize development teams into priority fronts, and
for each one, hire at least one specialist from the IT
market.

The interview responses and data collected from the
development repositories enabled us to understand how
FLOSS and agile practices contributed to project manage-
ment. We recently sent ex-interns a set of complementary
questions to update our analysis of the adopted manage-
ment method benefits and the project experience impacts
on their professional lives. Based on these data, we an-
swered the second research question “What FLOSS and ag-
ile practices favor effective team management in government-
academia collaborative projects?”, by enumerating at least
19 benefits obtained from the use of the nine best practices:

P1.1 The features and tools of the platform under develop-
ment support the project management and commu-
nication activities.

P2.1 Government staff, academic coordinators, senior de-
velopers, and team coaches meet biweekly at the uni-
versity lab for sprint planning and review.

P2.2 Direct contact, with no bureaucratic barriers, be-
tween government staff and the development team
on the platform technical discussions.

P2.3 Involve government board of directors only in strate-
gic planning of the project.

P2.4 Build a Continuous Delivery pipeline with stages in-
volving both sides.

P3.1 Coordinators separate the development team into
priority work areas considering the main demands
of the project.

P3.2 IT market professionals with recognized experience
on each front were hired to work in person or re-
motely.

P3.3 Identify among the interns the leadership roles: a
coach for each front, and a meta-coach of the entire
development team.

P3.4 Each team develops its self-organization, being
guided by one intern-coach and at least one senior
developer.

Moreover, based on the responses from the second
questionnaire sent to the ex-interns, we were also able to
evaluate the additional benefits in terms of training in soft-
ware engineering via an experience on a real software de-
velopment project. Interns were exposed to the complex-
ities of large-scale institutions, advanced high-tech chal-
lenges, as well as the dynamics of FLOSS projects. About
two years after the end of the project, the ex-interns who
participated in the new SPB portal development reached
significant positions in their academic or professional ca-
reers; several of them also have significant contributions to
large FLOSS projects. Our study showed that the adopted
practices impacted the people involved in the project no-
tably.

This research has a few limitations. First, we point out
the lack of formal communication records and low trace-
ability of the management data referring to the first phase
of the project. Second, we consider a drawback the hia-
tus between the completion of the project and the execu-
tion of interviews and questionnaires, since we relied on
the memory of the interviewees to recollect events. Never-
theless, this hiatus also allowed team members more time
to reflect on their participation in the project and let them
gain more professional experience enabling them to bet-
ter evaluate the period in which they participated in the
project. Third, the current situation of the respondents,
such as their current working mindset, may also alter their
perception of the topics addressed in the questionnaire and,
consequently, their responses. Finally, the decisions, prac-
tices, and benefits discussed should be evaluated and used
in context with a more substantial plurality and diversity
of government stakeholders.

We believe that our findings can be used as effective
guidelines for govern-ment-academia collaborative soft-
ware development projects. In fact, UnB and USP are
currently adopting some of these practices to develop
government-academia software projects in the fields of
Healthcare and Culture in collaboration with federal and
state governments. As future work, we believe it will be
valuable to compare different approaches for managing
government-academia collaborations and map other useful
managerial methods, evaluating the short- and long-term
organizational impacts on the institutions involved.

Acknowledgments

This research is part of the INCT of the Future Internet
for Smart Cities funded by the Brazilian National Council
for Scientific and Technological Development (CNPq) proc.
465446/2014-0, the Coordination for the Improvement of
Higher Education Personnel — Brasil (CAPES) — Finance
Code 001, and the Sio Paulo Research Foundation (FAPESP)
proc. 14/50937-1 and proc. 15/24485-9. Some authors were
supported by fellowships from CNPq and CAPES, Brazil.
The authors thank especially all project ex-interns and IT
professionals as well as the Brazilian government IT profes-
sionals for answering the questionnaires, participating in

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.js5.2020.110548

Page 21 of 23

https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

the interviews, and being available to improve our under-
standing of the SPB rebuilding project. Their contributions
during and after the project were essential for developing
this research.

References

Adams, P., Capiluppi, A., 2009. Bridging the gap between agile and free
software approaches: The impact of sprinting. International Journal
of Open Source Software and Processes (IJOSSP) 1, 58-71. doi:10.
4018/jossp.2009010104.

Anthopoulos, L., Reddick, C.G., Giannakidou, 1., Mavridis, N., 2016. Why
e-government projects fail? an analysis of the healthcare. gov website.
Government Information Quarterly 33, 161-173.

Balter, B.J., 2011. Toward a more agile government: The case for rebooting
federal it procurement. Public Contract Law Journal 41, 149-171. URL:
http://www.jstor.org/stable/23058602.

Beck, K., Beedle, M., Bennekum, A, et al., 2010. Manifesto for agile soft-
ware development. agile alliance (2001). Retrieved June 14.

Booch, G., Brown, AW.,, 2003. Collaborative development environments.
Advances in Computers 59, 1-27.

Biiyiikozkan, G., Arsenyan, J., 2012. Collaborative product development: a
literature overview. Production Planning & Control 23, 47-66. doi:10 .
1080/09537287.2010.543169.

Capiluppi, A., Lago, P., Morisio, M., 2003. Characteristics of open source
projects, in: Software Maintenance and Reengineering, 2003. Proceed-
ings. Seventh European Conference on, IEEE. pp. 317-327.

Chandra Misra, D., 2006. Defining e-government: A citizen-centric
criteria-based approach .

Charmaz, K., 2008. Chapter 7: Grounded theory as an emergent method,
in: Handbook of Emergent Methods. The Guilford Press.

Chen, L., 2015. Continuous delivery: Huge benefits, but challenges too 32.

Chesbrough, H., Schwartz, K., 2007. Innovating business models with co-
development partnerships. Journal Research-Technology Management
50, 55-59.

Chookittikul, W., Kourik, J.L., Maher, P.E., 2011. Reducing the gap be-
tween academia and industry: The case for agile methods in thailand,
in: 2011 Eighth International Conference on Information Technology:
New Generations, pp. 239-244. doi:10.1109/ITNG.2011.49.

Corbin, J., Strauss, A., 2014. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. 4th ed., SAGE Pub-
lications, Inc.

Corbucci, H., Goldman, A., 2010. Open source and agile methods: Two
worlds closer than it seems, in: Sillitti, A., Martin, A., Wang, X., Whit-
worth, E. (Eds.), Agile Processes in Software Engineering and Extreme
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 383~
384.

DeKoenigsberg, G., 2008. How successful open source projects work,
and how and why to introduce students to the open source world., in:
Saiedian, H., Williams, L.A. (Eds.), CSEET, IEEE Computer Society. pp.
274-276.

Deshpande, A., Riehle, D., 2008. Continuous integration in open source
software development, in: Russo, B., Damiani, E., Hissam, S., Lundell,
B., Succi, G. (Eds.), IFIP International Conference on Open Source Sys-
tems: Open Source Development, Communities and Quality, Springer
US, Boston, MA. pp. 273-280.

Dittrich, Y., Ekelin, A., Elovaara, P., Eriksen, S., Hansson, C., 2003. Mak-
ing e-government happen everyday co-development of services, citi-
zenship and technology, in: 36th Annual Hawaii International Con-
ference on System Sciences, 2003. Proceedings of the, pp. 12 pp.—.
doi:10.1109/HICSS.2003.1174328.

Ducheneaut, N., 2005. Socialization in an open source software commu-
nity: A socio-technical analysis. Computer Supported Cooperative
Work 14, 323-368.

Diiring, B., 2006. Sprint driven development: Agile methodologies in a
distributed open source project (pypy), in: Abrahamsson, P., Marchesi,
M., Succi, G. (Eds.), Extreme Programming and Agile Processes in Soft-

ware Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
191-195.

Edwards, R., Holland, J., 2013. What is qualitative interviewing? A&C
Black.

Fagerholm, F., Guinea, A.S., Minch, J., Borenstein, J., 2014. The role of
mentoring and project characteristics for onboarding in open source
software projects, in: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
ACM, New York, NY, USA. pp. 55:1-55:10.

Fagerholm, F., Johnson, P., Guinea, A.S., Borenstein, J., Minch, J., 2013.
Onboarding in open source software projects: A preliminary analysis.
CoRR abs/1311.1334.

Fitzgerald, B., Stol, KJ., 2017. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software 123, 176 —
189. URL: http://www.sciencedirect.com/science/
article/pii/S0164121215001430, doithttps://doi.
org/10.1016/j.3ss.2015.06.063.

Foos, T., Schum, G., Rothenberg, S., 2006. Tacit knowledge transfer and the
knowledge disconnect. Journal of Knowledge Management 10, 6-18.
doi:10.1108/13673270610650067.

Fraser, S., Agerfalk, P.J., Eckstein, J., Korson, T., Rainsberger,]J.B., 2006.
Open source software in an agile world, in: Abrahamsson, P., March-
esi, M., Succi, G. (Eds.), Extreme Programming and Agile Processes in
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg.
pp. 217-220.

Freitas, C., Meffe, C., 2008. FLOSS in an Open World: best practices from
Brazil. Roadmap white paper. Paris, France. In: 2020 FLOSS Roadmap.

Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P, Yaniv, Z,
Cleary, K., Kokoori, S., Muffih, B., Heidenreich, J., 2011. Ag-
ile methods for open source safety-critical software. Jour-
nal of Software: Practice and Experience 41, 945-962. URL:
https://onlinelibrary.wiley.com/doi/abs/10.
1002/spe.1075,doi:10.1002/spe . 1075.

Gerring, J., 2006. Case Study Research: Principles and Practices. Cam-
bridge University Press.

Glaser, B., Strauss, A., 1999. The discovery of grounded theory: strategies
for qualitative research. Aldine Transaction.

Goldfinch, S., 2007. Pessimism, computer failure, and information systems
development in the public sector. Public Administration Review 67,
917-929.

Goth, G., 2007. Sprinting toward open source development. IEEE Software
24, 88-91. doi:10.1109/MS. 2007 . 28.

Harzl, A., 2017. Can foss projects benefit from integrating kanban: a case
study. Journal of Internet Services and Applications 8, 7.

Hoda, R, Noble, J., 2017. Becoming agile: A grounded theory of agile tran-
sitions in practice, in: 2017 IEEE/ACM 39th International Conference
on Software Engineering, pp. 141-151.

Humble, J., Farley, D., 2010. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. 1st ed.,
Addison-Wesley Professional.

Javdani Gandomani, T., Zulzalil, H., abdul ghani, A.a., Md Sultan, A.B.,
2013. A systematic literature review on relationship between agile
methods and open source software development methodology. Inter-
national Review on Computers and Software 7.

Kitchenham, B., Pfleeger, S., 2002a. Principles of survey research: part 3:
constructing a survey instrument. ACM SIGSOFT Software Engineer-
ing Notes 27, 20-24.

Kitchenham, B., Pfleeger, S., 2002b. Principles of survey research part 4:
questionnaire evaluation. ACM Sigsoft Software Engineering Notes 27.
doi:10.1145/638574.638580.

Kon, F., Meirelles, P., Lago, N., Terceiro, A., Chavez, C., Mendonga, M.,
2011. Free and open source software development and research: Op-
portunities for software engineering., in: SBES, IEEE Computer Soci-
ety. pp. 82-91.

Kourtesis, D., Bratanis, K., Bibikas, D., Paraskakis, I., 2012. Software co-
development in the era of cloud application platforms and ecosystems:
The case of cast, in: Camarinha-Matos, L.M., Xu, L., Afsarmanesh,
H. (Eds.), Collaborative Networks in the Internet of Services, Springer

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.jss.2020.110548

Page 22 of 23

http://dx.doi.org/10.4018/jossp.2009010104
http://dx.doi.org/10.4018/jossp.2009010104
http://www.jstor.org/stable/23058602
http://dx.doi.org/10.1080/09537287.2010.543169
http://dx.doi.org/10.1080/09537287.2010.543169
http://dx.doi.org/10.1109/ITNG.2011.49
http://dx.doi.org/10.1109/HICSS.2003.1174328
http://www.sciencedirect.com/science/article/pii/S0164121215001430
http://www.sciencedirect.com/science/article/pii/S0164121215001430
http://dx.doi.org/https://doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/https://doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1108/13673270610650067
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1075
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1075
http://dx.doi.org/10.1002/spe.1075
http://dx.doi.org/10.1109/MS.2007.28
http://dx.doi.org/10.1145/638574.638580
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Berlin Heidelberg, Berlin, Heidelberg. pp. 196-204.

Lanubile, F., Ebert, C., Prikladnicki, R., Vizcaino, A., 2010. Collaboration
tools for global software engineering. IEEE Softw. 27, 52-55.

Lavazza, L., Morasca, S., Taibi, D., Tosi, D., 2010. Applying scrum in an oss
development process: An empirical evaluation, in: Sillitti, A., Martin,
A., Wang, X., Whitworth, E. (Eds.), Agile Processes in Software Engi-
neering and Extreme Programming, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 147-159.

Littler, D., Leverick, F., Bruce, M., 1995. Factors affecting the process of col-
laborative product development: A study of UK manufacturers of infor-
mation and communications technology products. Journal of Product
Innovation Management 12, 16-32. doi:10.1111/1540-5885.
1210016.

Magdaleno, A.M., Werner, C.M.L., de Araujo, RM. 2012. Rec-
onciling software development models: A quasi-systematic
review. Journal of Systems and Software 85, 351 - 369.
URL: http://www.sciencedirect.com/science/
article/pii/sS0164121211002287, doi:https:
//doi.org/10.1016/j.jss.2011.08.028. special
issue with selected papers from the 23rd Brazilian Symposium on
Software Engineering.

Margetts, H., Dunleavy, P., 2013. The second wave of digital-era
governance: a quasi-paradigm for government on the web. Philo-
sophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 371, 20120382. URL: https:
//royalsocietypublishing.org/doi/abs/10.
1098/rsta.2012.0382,doi:10.1098/rsta.2012.0382.

Meirelles, P., Wen, M., Terceiro, A., Siqueira, R., Kanashiro, L., Neri, H.,
2017. Brazilian public software portal: An integrated platform for col-
laborative development, in: Proceedings of the 13th International Sym-
posium on Open Collaboration, ACM. pp. 16:1-16:10.

Melo, C.d.O., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Gold-
man, A., Kon, F., 2013. The evolution of agile software development in
brazil. Journal of the Brazilian Computer Society 19, 523-552. URL:
https://doi.org/10.1007/s13173-013-0114-x,
doi:10.1007/s13173-013-0114-x.

Mergel, 1, 2016. Agile innovation management in government: A
research agenda. Government Information Quarterly 33, 516 -
523. URL: http://www.sciencedirect.com/science/
article/pii/S0740624X16301101, doi:https://doi.
org/10.1016/3j.giq.2016.07.004. open and Smart Gov-
ernments: Strategies, Tools, and Experiences.

Mishra, D., Mishra, A., 2011. Complex software project development: agile
methods adoption. Journal of Software Maintenance and Evolution:
Research and Practice 23, 549-564. doi:10.1002/smr.528.

Misra, S.C., Kumar, V., Kumar, U, 2009. Identifying some im-
portant success factors in adopting agile software develop-
ment practices. Journal of Systems and Software 82, 1869
- 1890. URL: http://www.sciencedirect.com/
science/article/pii/S016412120900123X,
doithttps://doi.org/10.1016/j.jss.2009.05.052.
sI: TAIC PART 2007 and MUTATION 2007.

Miiller, M., 2018. Agile challenges and chances for open source: Lessons
learned from managing a floss project, in: 2018 IEEE Conference
on Open Systems (ICOS), pp. 1-6. doi:10.1109/IC0S.2018.
86328109.

Nerur, S., Mahapatra, R., Mangalaraj, G., 2005. Challenges of migrating to
agile methodologies. Communications of the ACM - Adaptive complex
enterprises 48, 72-78.

Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J., 2015.
Systems of systems engineering: Basic concepts, model-based tech-
niques, and research directions. ACM Comput. Surv. 48, 18:1-18:41.

Nuottila, J., Aaltonen, K., Kujala, J., 2016. Challenges of adopting agile
methods in a public organization. International Journal of Informa-
tion Systems and Project Management 4, 65-85. doi:10.12821/
1jispm040304.

Okoli, C., Carillo, K., 2012. The best of adaptive and predictive methodolo-
gies: open source software development, a balance between agility and

discipline. International Journal of Information Technology and Man-
agement 11, 153-166. URL: https://spectrum. library.
concordia.ca/7098/.

Pfleeger, S., Kitchenham, B., 2001. Principles of survey research: Part 1:
Turning lemons into lemonade. ACM SIGSOFT Software Engineering
Notes 26, 16-18. doi:10.1145/505532.505535.

Porruvecchio, G., Concas, G., Palmas, D., Quaresima, R., 2007. An agile
approach for integration of an open source health information system,
in: Concas, G., Damiani, E., Scotto, M., Succi, G. (Eds.), Agile Processes
in Software Engineering and Extreme Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg. pp. 213-218.

Qumer, A., Henderson-Sellers, B., 2008. A framework to sup-
port the evaluation, adoption and improvement of agile meth-
ods in practice. Journal of Systems and Software 81, 1899 —
1919. URL: http://www.sciencedirect.com/science/
article/pii/S0164121208000113, doithttps://doi.
org/10.1016/j.jss.2007.12.806.

Rahman, S.S.M., Mollah, S., Anirban, S., Rahman, M., Rahman, M., Hassan,
M.M,, Sharif, M.-H., 2018. Oscrum: A modified scrum for open source
software development. International Journal of Simulation: Systems,
Science and Technology 19, 20.1-20.7. doi:10.5013/IJSSST.a.
19.03.20.

Raymond, E., 1999. The cathedral and the bazaar. Philosophy & Technol-
ogy 12, 23.

Sandberg, A B., Crnkovic, L, 2017. Meeting industry: Academia research
collaboration challenges with agile methodologies, in: Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering in Practice Track, IEEE Press. pp. 73-82.

Santos, R, Silva, F., Magalhaes, C., Monteiro, C., 2016. Building a the-
ory of job rotation in software engineering from an instrumental case
study, in: 2016 IEEE/ACM 38th International Conference on Software
Engineering, pp. 971-981.

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M., 2016.
Continuous deployment at facebook and oanda, in: Proceedings of the
38th International Conference on Software Engineering Companion.

Sbaraini, A., Carter, S.M., Evans, RW., Blinkhorn, A., 2011. How to do a
grounded theory study: a worked example of a study of dental prac-
tices. BMC medical research methodology 11, 1-20.

Scholl, HJ., 2003. E-government: a special case of ict-enabled business
process change, in: 36th Annual Hawaii International Conference on
System Sciences, 2003. Proceedings of the, pp. 12 pp.—.

Shahin, M., Babar, M.A., Zhu, L., 2016. The intersection of continuous
deployment and architecting process: Practitioners’ perspectives, in:
Proceedings of the 10th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement, pp. 44:1-44:10.

Siqueira, R., Camarinha, D., Wen, M., Meirelles, P., Kon, F., 2018. Con-
tinuous delivery: Building trust in a large-scale, complex government
organization. IEEE Software PP, 1-1.

Steghofer, J.P., Knauss, E., Alégroth, E., Hammouda, L., Burden, H., Erics-
son, M., 2016. Teaching agile: Addressing the conflict between project
delivery and application of agile methods, in: Proceedings of the 38th
International Conference on Software Engineering Companion, ACM,
New York, NY, USA. pp. 303-312.

Stol, KJ., Ralph, P., Fitzgerald, B., 2016. Grounded theory in software engi-
neering research: A critical review and guidelines, in: 2016 IEEE/ACM
38th International Conference on Software Engineering, pp. 120-131.

Strode, D.E., Huff, S.L., Tretiakov, A., 2009. The impact of organizational
culture on agile method use, in: System Sciences, 2009. HICSS’09. 42nd
Hawaii International Conference on, IEEE. pp. 1-9.

Tsirakidis, P., Kobler, F., Krcmar, H., 2009. Identification of success and
failure factors of two agile software development teams in an open
source organization, in: 2009 Fourth IEEE International Conference on
Global Software Engineering, pp. 295-296. doi:10.1109/ICGSE.
2009.42.

Wan, J., Liu, Q., Li, D., Xu, H., 2010. Research on knowledge transfer
influencing factors in software process improvement. Journal of Soft-
ware Engineering and Applications (JSEA) 3, 134-140. doi: 10 . 4236/
jsea.2010.32017.

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.jss.2020.110548

Page 23 of 23

http://dx.doi.org/10.1111/1540-5885.1210016
http://dx.doi.org/10.1111/1540-5885.1210016
http://www.sciencedirect.com/science/article/pii/S0164121211002287
http://www.sciencedirect.com/science/article/pii/S0164121211002287
http://dx.doi.org/https://doi.org/10.1016/j.jss.2011.08.028
http://dx.doi.org/https://doi.org/10.1016/j.jss.2011.08.028
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2012.0382
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2012.0382
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2012.0382
http://dx.doi.org/10.1098/rsta.2012.0382
https://doi.org/10.1007/s13173-013-0114-x
http://dx.doi.org/10.1007/s13173-013-0114-x
http://www.sciencedirect.com/science/article/pii/S0740624X16301101
http://www.sciencedirect.com/science/article/pii/S0740624X16301101
http://dx.doi.org/https://doi.org/10.1016/j.giq.2016.07.004
http://dx.doi.org/https://doi.org/10.1016/j.giq.2016.07.004
http://dx.doi.org/10.1002/smr.528
http://www.sciencedirect.com/science/article/pii/S016412120900123X
http://www.sciencedirect.com/science/article/pii/S016412120900123X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1109/ICOS.2018.8632819
http://dx.doi.org/10.1109/ICOS.2018.8632819
http://dx.doi.org/10.12821/ijispm040304
http://dx.doi.org/10.12821/ijispm040304
https://spectrum.library.concordia.ca/7098/
https://spectrum.library.concordia.ca/7098/
http://dx.doi.org/10.1145/505532.505535
http://www.sciencedirect.com/science/article/pii/S0164121208000113
http://www.sciencedirect.com/science/article/pii/S0164121208000113
http://dx.doi.org/https://doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/https://doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.5013/IJSSST.a.19.03.20
http://dx.doi.org/10.5013/IJSSST.a.19.03.20
http://dx.doi.org/10.1109/ICGSE.2009.42
http://dx.doi.org/10.1109/ICGSE.2009.42
http://dx.doi.org/10.4236/jsea.2010.32017
http://dx.doi.org/10.4236/jsea.2010.32017
https://doi.org/10.1016/j.jss.2020.110548

Leading successful government-academia collaborations

Warsta, J., Abrahamsson, P., 2003. Is open source software development
essentially an agile method, in: Proceedings of the 3rd Workshop on
Open Source Software Engineering, pp. 143-147.

Waterman, M., Noble, J., Allan, G., 2015. How much up-front?: A
grounded theory of agile architecture, in: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, pp. 347-357.

Wen, M., Meirelles, P., Siqueira, R., Kon, F., 2018. Floss project man-
agement in government-academia collaboration, in: Stamelos, I,
Gonzalez-Barahofa, J.M., Varlamis, I, Anagnostopoulos, D. (Eds.),
Open Source Systems: Enterprise Software and Solutions, Springer In-
ternational Publishing, Cham. pp. 15-25.

Yin, R., 2009. Case Study Research: Design and Methods. SAGE Publica-
tions.

Wen et al.: Published in the Journal of Systems and Software, Volume 164, pp.110548, June 2020

DOI:10.1016/j.jss.2020.110548

Page 24 of 23

https://doi.org/10.1016/j.jss.2020.110548

	Introduction
	Background
	The case of the Brazilian Public Software Portal
	Research Design
	Research Questions
	Research Method
	Case study
	Survey
	Repository Data Collection
	Data Analysis

	Results and Discussion
	Decisions and Benefits
	Decision (D1): Use of the system under development to develop the system itself
	Decision (D2): Bring together government staff and development team
	Decision (D3): Organized development team into priority fronts, and for each one, hire at least one specialist from the IT market

	Adopted practices and consequences
	Day-to-day practices and benefits achieved
	Benefits for Teaching Software Engineering

	Related Work
	Conclusion

