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1 IntroductionContemporary Distributed File Systems make extensive use of �le caching both on clientand server sides. Caching of �les in the server physical memory avoids a signi�cant numberof accesses to disk. On the other hand, �le caching on clients purports to decrease theuse of the network. Consequently, the network load is lowered and a faster �le service isprovided.However, the use of client caching introduces the problem of maintaining the consis-tency among the several copies of a �le which is accessed by more than one client. Whenone client updates a block of a �le stored in its local cache, it would be interesting that thesystem could guarantee that subsequent accesses to the same block made by other clientscould perceive the recent modi�cations. The greater is the network scale, the harder is toreach this goal.Existent �le systems applies di�erent sort of policies regarding the semantics of �lesharing. SUN's NFS [SUN90] does not o�er any type of guarantee that shared �leswill be seen consistently by di�erent clients. When a �le is updated by one client, thismodi�cations may not be noticed by other clients during a period of up to 6 seconds.When a �le is created or deleted, this fact can take up to 60 seconds to be perceived byother clients. If one needs a coherent sharing of information throughout the distributedsystem, some other mechanism { like message passing { must be used.The ANDREW File System [Sat90], on the other hand, applies what is called thesession semantics. Under the session semantics the updates made to a �le by one clientcan only be perceived by clients that open this �le after the moment when the �rst clienthas closed it.The SPRITE Network Operating System [NWO88] presented a solution to the problemof maintaining strict coherency among the copies of a �le in several client caches. SPRITEdisables the client cache when a �le is concurrently shared by more than one client andat least one of these clients has the �le open for updates. This kind of situation is calledconcurrent write sharing.The problem with the SPRITE approach is that it requires that each time a �le isopened or closed the client must notify the server of this fact, thus increasing the networkload. Besides, when a �le is concurrently shared with updates, every client query mustbe treated directly by the server through the network.In many real networks that is not a problem since concurrent write sharing rarelyoccurs. However, when �le sharing is more frequent a better protocol is required. In thispaper we will discuss leases, a mechanism to assure consistency on a distributed system.Section 2 describes the lease protocol. A new analytical model of the behavior of theprotocol is presented in section 3. Finally, section 4 describes SODA, our implementationof the protocol in the LINUX operating system.2 LeasesThe lease mechanism was �rst proposed by Gray [GC89]. The designers of the ECHO[MBH+93] distributed �le system, however, claim to have developed the lease concept2



simultaneously and independently of Gray. In fact, ECHO was the �rst implementationof leases used by a large number of users. Due to problems involving the project whereECHO was inserted, it ceased to be used in the summer of 1992.2.1 The ProtocolA lease is a contract that assures the right of property to some good during a �xed periodof time. Let us see how this concept is applied to distributed �le systems.After sending a read request to a server, the client receives not only the data requestedbut also a lease which is a guarantee that the server will not update that data withoutthe permission of the client possessing the lease. Every lease is valid for a limited perioddetermined by the server. Indeed, what the server sends to the client, besides the �ledata, is the instant when the lease will be expired.If a client application requests a read from a �le that is locally cached, the clientoperating system must be sure that the lease he has for that �le is still valid. If thelease is valid, the application can receive the requested data without any contact with theserver.On the other side, if the lease is not valid anymore, the client must send a message tothe server to check whether the local version of the data is the most recent one. Shouldthe cached data be out of date, the new data must be fetched from the server.When the server receives an update request for a �le, it cannot con�rm the updateimmediately. Before committing the update, the server must gain the agreement of allclients that possess a valid lease for this �le. The server can commit the update andreturn from the client request only after all the clients which have a valid lease for this�le have agreed with the update or after the expiration of the leases of the clients whichhave not replied.When a client receives a request for update agreement from his server, it marks itslease as expired. If, after that, this client needs to read the same �le again, the newversion must be fetched from the server.Leases may be used not only to maintain the consistency of the �le contents but alsoto maintain the consistency of meta-data like �le attributes and directory and locationinformation. When this sort of information is cached, leases can be used to control itscoherency.We must notice that this mechanismassures the consistency of the cached data only if awrite-trough police is adopted, i.e., the write requests are not cached, they are sent directlyto the server and the thread that requested the write is blocked until its completion.It is possible to maintain the consistency using leases even with write-behind1 but, inthis case, the protocol becomes more complex.In order to use leases and write-behind, one must use two types of leases. A read leasewould be similar to the one just described. However, a delayed-write lease would provide aclient the possibility of writing to its cached data and updating the server asynchronously.Before giving a delayed-write lease for any client, the server must be sure that no otherclient has a lease for the same �le.1When write-behind is adopted, the write requests made by the client applications are cached. Therequests to the server are delayed and the application thread is not blocked.3



On the other hand, before providing a client with a read lease, the server must check ifany client has a delayed-write lease. If such a client exists, the server must ask the clientto ush its dirty data and invalidate its lease. Only after receiving all dirty data from theclient or after the lease expiration time the server may send the requested read lease.Sometimes, the management of these leases may produce a signi�cant overhead result-ing in poor performance. In this cases, the best solution is simply disabling some part ofthe client cache.From now on, we will only treat the case where write-through is adopted. In order toget a good performance under this policy it is important that most of the temporary �lesbe stored locally and not in remote servers.2.2 Fault ToleranceOne of the main advantages of the lease protocol is its fault tolerance. Di�erently fromthe ANDREW and SPRITE protocols, the lease protocol is fault tolerant2 on his own. Ifeach lease is valid for a period shorter than the time required by the server to reboot, noextra mechanism is required to provide fault tolerance.When a server crashes in ANDREW or SPRITE systems, a lot of important informa-tion about the state of the system is lost. Under the lease protocol, the only informationlost is that about the clients which have valid leases. But if the time required by theserver reboot process is longer than a lease lifetime, then no relevant information is lost.On the other hand, if the server receives a write request while the network is parti-tioned, all the server must do is to follow the protocol, it delays the write until every leaseowned by an inaccessible client has expired.In the client side, if the communication with a server is lost, no special action mustbe taken. The client just uses its cache data while its leases are valid. When the leasesexpire, it must keep asking for new leases until the server replies.In addition, the cache availability in a lease based system is better than in the SPRITEsystem. In the latter, if a client which has a �le opened for update crashes, then no otherclient will have permission to access the �le until the server becomes aware that the �rstclient has crashed. This may take a long time. In the lease case, this problem does notexist.2.3 Lease TermThe major factor in the performance of a lease based system is the extent of the periodwhile the lease is valid, i.e., its term.If the leases are valid for a short period, the necessity to revalidate them is greater. Onthe opposite side, if the leases last a long period, the necessity to invalidate them whenthe updates occur is greater.Too long leases tend to be a bad choice in the presence of client crashes and networkpartitions. In these cases, the updates must wait a longer period to be committed. Besides,if the lease term is greater than the time required by the server to reboot, then somemechanism to make the lease information survive server crashes is needed.2We are considering just non-Byzantine faults here.4



3 An Analytical ModelGray [GC89] has presented a simple analytical model for measuring the server load andthe �le service delay associated with the lease protocol. We have extended and modi�edhis model in order to more accurately represent the extra network load produced by theconsistency maintenance.Our model counts the number of messages used to maintain the consistency of a single�le provided by a single server. Figure 1 presents our model parameters.N number of clients accessing the �leR per client read rateW per client write ratet lease termTable 1: Model parametersWe suppose that N clients request reads and writes following a Poisson distributionwith per client rates R and W respectively.Let us �rst measure the portion of time in which a client possesses a valid lease for aspeci�c �le. The �gure 1 shows some periods where the client has a valid lease { labeledL { and periods where it does not have a valid lease { labeled T.
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timeFigure 1: Leases in one clientA known result of the Theory of Reliability3 assures that the relative portion of timein which the client has a valid lease is, on average,E(L)E(L) + E(T )where E() denotes the expected period extent.A T-period starts when the lease expires and ends when the next read is made. Poissonprocesses does not have memory, i.e., the future process behavior does not depend on the3See [BP81], section 7.2 5



past. So, the expected time until the next time is always the same, the inverse of the readrate: E(T ) = 1R:The L-periods start when the client receives a lease and end in the next write or aftert units of time. In order to estimate E(L) we may imagine that during the L-periods asuperposition of two Poisson processes occurs. The �rst, with rate NW represents thatthe lease may be canceled by a write requested by any of the N clients. The secondrepresents normal lease expiration after t units of time, hence has rate 1t .The resulting process rate is the sum of the above rates. Therefore, the expected valuefor the L-period extent is the inverse of this rate:E(L) = 1NW + 1t :So, the portion of time in which a client possesses a valid lease is1NW+ 1t1NW+ 1t + 1R = Rt1 +Rt+NWt :If we suppose that the N clients access the �le independently, then the expectednumber of clients sharing the �le at a given moment isS = NRt1 +Rt +NWt : (1)3.1 The Cost of Leases in the ReadsWhile a lease is valid, a client serves RE(L) read requests through its cache excludingthe read which produced the lease request. So, the cost (2 messages) of giving a leaseis amortized within 1 + RE(L) reads. Therefore, the rate of messages related to leaseconcessions to the N clients { or the cost of leases in the reads { isCR = 2NR1 +R E(L) = 2NR1 +R 1NW+ 1t = 2NR(1 +NWt)1 +Rt+NWt : (2)3.2 The Cost of Leases in the WritesWhen the server receives a write request, it must invalidate the leases of the clients whichstill have a valid lease for the �le. Since it does not have to invalidate the lease of theclient which requested the write, it has to invalidateS � SN = S(N � 1)N6



client leases4.If the network where the lease protocol is implemented supports multicast than theserver must send one invalidation message and wait for S(N�1)N replies each time a writeis requested.Should the network not support multicast, the server must send S(N�1)N messages andwait for the same number of replies. Therefore, the cost of leases in the writes isCW = 8><>: (1 + SN�1N )NW = NW + S(N � 1)W (multicast case)2SN�1N NW = 2S(N � 1)W (no multicast case) : (3)3.3 The Lease Protocol Total CostFrom 2 and 3, we see that the total cost of the lease protocol isCtotal = 8>><>>: 2NR(1+NWt)1+Rt+NWt +NW + S(N � 1)W (multicast case)2NR(1+NWt)1+Rt+NWt + 2S(N � 1)W (no multicast case) : (4)3.4 Comparing with the SPRITE ProtocolIn order to compare the load produced by the SPRITE protocol and that produced bythe lease protocol, we will consider the case of concurrent write sharing of a �le. When a�le is not concurrent write shared, both protocols tends to present a good performance.Under concurrent write sharing the SPRITE clients must contact the server each timea read is requested. The client sends a message for the server and the server send itone reply. The writes are sent directly to the server as in our lease model, so we willnot consider them here. So, let us consider that the total tra�c related to consistencymaintenance is 2NR.Therefore, formula 4 assures that, under concurrent write sharing, the lease protocolgenerates a lower load than SPRITE protocol if and only if2NR(1 +NWt)1 +Rt+NWt +NW + S(N � 1)W < 2NR (5)if the network supports multicast and if and only if2NR(1 +NWt)1 +Rt+NWt + 2S(N � 1)W < 2NR (6)if the network does not support multicast.Applying the S value given by (1) to (6) we get the following condition for the leasessuperiority in the case with no multicast:RW > (N � 1) (7)4We are subtracting from S the probability of the client which had requested the write having a validlease for the �le. 7



So, we can see that when the read rate is su�ciently larger than the write rate { when(7) is satis�ed { the lease protocol is a good choice. Although, when the write rate is solarge that (7) is not ful�lled the best solution is to disable the cache as SPRITE does.In the multicast case, it follows from (1) and (5) that the lease protocol is a betterchoice if and only ifR > NWt+qN2W 2t2 + 8 (NW 2t2 +Wt)4t = NW4 0@1 +s1 + 8N �1 + 1NWt� 1A :As long as some regular writing is going on (say, at least one write every two leaseperiods, so NWt > 1=2), and N is not too small either (take N � 6), the conditionabove is satis�ed if R=W > 0:8N . Therefore, multicast should improve the odds of leasesbeing better than SPRITE. However, due to the lack of an appropriate testbed for thisversion of the protocol, the remaining analysis considers only the case where no multicastis available.3.5 Model EstimatesFigure 2 shows how the number of messages produced by the lease protocol depends onthe lease term under the no multicast case. The graph was made considering 5 clientsrequesting, on average, one write in each 10 seconds and two reads per second.
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We may see that there is no optimal value for the lease term. The longer the leaseduration is, the lower is the load produced by the protocol. Therefore, long leases arebetter choices. The only limitation to the lease extension are the disadvantages of toolong leases described in section 2.3.On the other hand, we can see from �gure 2, that 60 second leases do not provide anysigni�cant gain compared to 20 second leases. So, in this example, adopting 20 secondleases would be a good choice.Figure 3 presents the ratio between the load produced by the lease protocol and thatproduced by the SPRITE protocol. When the value in the vertical axes is below 1, theload produced by the lease protocol is lower than the load produced by the SPRITEprotocol.
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0R = 2 e W = 0; 05Figure 3: ScalabilityWe can see that, while N < R+WW (N < 41 in this example), increasing the lease terme�ects a lowering of the load produced by the lease protocol. When N > 41, the leaseload is greater than the SPRITE load and longer leases produce a higher load. This isthe point where the cache must be disabled.However, our model assumes that all the N clients are writing to the �le. But, sinceit is not a common situation to have tens of clients writing concurrently to the same �le,we may consider the scalability of the lease protocol as being good.9



4 The SODA Distributed File SystemIn order to study the behavior of a lease based system on a real network, we developedthe �rst version of the SODA consistent distributed �le system [Kon94] during the �rstsemester of 1994. SODA was implemented on the LINUX operating system and its codewas written using the LINUX NFS 2.0 code. Since the SODA protocol is an extension ofthe NFS protocol, it can be implemented in any other system using the NFS code as astarting point.4.1 ImplementationThree main modi�cation to the LINUX NFS were made:1. The LINUX NFS does not implement client caching. So we had to create the datastructures and the functions wich are responsible for the cache maintenance insidethe client kernel.2. NFS servers are stateless but the lease protocol requires that the server store infor-mation about the clients which have valid leases. Therefore, we had to create datastructures and functions to manage this information on the server side { which isthe daemon process nfsd .3. Di�erently from NFS, the lease protocol requires that the server send messages tothe clients and wait for their replies. In order to carry this, we had to introduce anew daemon process called sodad in the client side. This process receives the leaseinvalidation requests from the servers, makes a local system call to invalidate theleases and replies to the appropriate server.Figure 4 shows how our system works. In this example, the server attends a readrequest from client 1 and, while the client 1 lease is still valid, a write request from client2. In the beginning, the process p1 executes a read() system call in order to read somebytes of a certain �le (1). Its kernel checks its local tables and �nds that this �le ismanaged by a remote server. Since it does not have a local copy of the requested bytes inits cache, the kernel sends a read request to the appropriate server using a RPC (2). ThisRPC is received by nfsd which forward the request to its local kernel (3) which accessesthe local disk if necessary.After receiving the bytes from the kernel, nfsd returns the RPC sending the client notonly the requested bytes but also a new lease for this �le (4). Then, the client 1 kernelcopies the bytes just received to its local cache, updates its lease table and returns thesystem call with the requested bytes (5).If, while this lease is still valid, a process p2 in other machine requests a write to thesame �le (6), then the following occurs.After receiving the write request, the client 2 kernel �nds that the �le is remote locatedand forwards the write request to its server using a RPC (7). The server nfsd receivesthe write request and looks for leases for the same �le in its lease table �nding that client10
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Client1 Client2Figure 4: A read and a write request1 possesses a valid lease. At this moment, it sends a lease invalidation message to thesodad process at client 1 (8).When sodad receives the invalidation request, it executes the invalidate lease()system call (9). This system call marks the lease as expired in the kernel lease table.Upon completion of the system call, the client replies to the server corroborating the leaseinvalidation (10).Only after receiving client 1 response, the server can call the local write() systemcall to commit client 2 request (11) and then the RPC can return (12) with the resultof the request.Finally, client2 kernel receives the result of its remote write request and returns thesame result to process p2 (13).4.2 Performance ResultsIn order to evaluate our system, we made some tests using three 486 and one 386-basedPCs all of them running LINUX 1.0.9 and our current version of SODA. This machineswere connected to a 10Mbit Ethernet network shared by a lot of workstations distributedacross our Institute. The tests were made during low network load periods.In this environment, the read requests attended by the client cache could be completedat least 13 times faster than a read attended by the server through the network.On the other side, a read attended by the server in a SODA system is, on average,20% slower than one in a standard LINUX NFS system. This overhead, caused by thecache maintenance procedures, is small enough to let the SODA system provide a fasterservice under many di�erent conditions making extensive use of client caching.The inuence of the lease term can be seen in �gure 5. This �gure shows the serverload produced by three clients accessing 10 �les, each one with rates R = 2 and W = 0:01.The graph shape is similar to that predicted by the analytical model.In order to compare the protocol adopted by SODA and the protocol used by SPRITE11
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