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ABSTRACT

Opportunistic grids are a class of computational grids that
can leverage the idle processing and storage capacity of shared
workstations in laboratories, companies, and universities to
perform useful computation. OppStore is a middleware that
allows using the free disk space of machines from an oppor-
tunistic grid for the distributed storage of application data.

But when machines depart from the grid, it is necessary
to reconstruct the fragments that were stored in that ma-
chines. Depending on the amount of stored data and the
rate of machine departures, the generated traffic may make
the distributed storage of data infeasible. In this work we
present and evaluate a fragment recovery mechanism that
makes viable to achieve redundancy and large data scale in
a dynamic environment.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Reliability, availability,
and serviceability

General Terms

Design, Performance, Reliability
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1. INTRODUCTION

Computational grids [6, 5] coordinate geographically dis-
persed resources to allow the execution of computer-intensive
applications. Opportunistic grids, such as InteGrade [7],
are a class of computational grids that can leverage the idle
processing and storage capacity of shared workstations in
laboratories, companies, and universities to perform useful
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computation. Several classes of parallel applications manip-
ulate large amounts of data and need a data storage and
management infrastructure. OppStore [4] is a middleware
that allows the storage of application data using the un-
used disk space of non-dedicated machines in the context of
opportunistic grids.

There are several challenges inherent to ensuring the avail-
ability of distributed data. First, it is necessary to use the
machine resources only when they are idle. Also, those ma-
chines are frequently turned off during the night and week-
ends, reducing the time available for data transfer. An-
other problem is that machines may leave the Grid unex-
pectedly, and data stored in these machines is permanently
lost. Moreover, if a machine owner shared some of its re-
sources with the Grid and later needs the disk space back,
the OppStore files will be removed immediately. To solve
these problems, OppStore encodes files into redundant frag-
ments and distributes those fragments across different grid
clusters. This allows files to be retrieved even if some of the
fragments are not available. Additionally, it implements a
mechanism to reconstruct lost fragments from existing ones,
to maintain the desired level of redundancy and to prevent
files from becoming unavailable. Furthermore, to improve
scalability, OppStore organizes the grid machines into a fed-
eration of clusters, where each cluster is typically composed
of machines from a single laboratory or department of an in-
stitution. The clusters are connected by a peer-to-peer net-
work based on the Pastry [14] distributed hash table (DHT).

As noted by other researchers [2], designing and imple-
menting a system capable of providing high redundancy for
applications that store large amounts of data in dynamic
environments is a difficult task. In this scenario, the band-
width required to maintain the data in the case of node de-
partures becomes impractical. Nevertheless, to build highly
available and reliable opportunistic grids that manipulate
large amounts of data, these difficulties have to be overcome.

In this work, we present a data maintenance mechanism
for OppStore that operates in highly dynamic environments
with low-overhead. The efficiency of the mechanism can be
achieved due to the following characteristics of OppStore:
(1) organization of machines into a federation of clusters and
(2) decoupling data storage location from its identifier. The
organization of machines in a federation of clusters allows
dealing with machine joining and departing locally in the
cluster. The decoupling of data storage location from its
identifier means that when a machine joins or leaves the
grid, data stored in its neighbors do not need to be migrated
to correct the placement of data.



Machine departures are the main cause for data manage-
ment traffic, since fragments stored in the machines have
to be reconstructed to maintain the redundancy level. The
fragment reconstruction operation is expensive, since it is
necessary to reconstruct the original file for every lost frag-
ment. Consequently, we need to prevent its execution when-
ever possible. The strategy we propose in this work is to
keep an extra copy of each stored fragment in another ma-
chine from the same cluster where it is stored. Thus we
can regenerate the fragments lost due to machine departures
from the other copy of the fragment. Our strategy is based
on the assumption that free disk storage space and intra-
cluster network bandwidth are less scarce than the inter-
cluster network bandwidth. We consider this a reasonable
hypothesis for opportunistic grids.

We evaluated the proposed mechanism measuring the ob-
tained file availability and the amount of inter-cluster and
intra-cluster bandwidth used for data maintenance, compar-
ing this mechanism with other alternatives to reduce band-
width. The main contribution of this paper is to present
and evaluate a mechanism that makes viable to achieve re-
dundancy and large data scale in a dynamic environment.

2. RELATED WORK

There are a number of works in the area of distributed
data storage in peer-to-peer networks and computational
grids. PAST [13], CFS [3], and pStore [1] are peer-to-peer
distributed storage systems built over a DHT infrastructure,
such as Pastry [14]. To improve availability, PAST stores
multiple replicas of the files and CFS and pStore break the
files into fragments and store several replicas of those frag-
ments. The main differences to our system are that PAST,
CFS and pStore organize all machines at a single level and
store data directly in the machines that perform message
routing. Consequently, each node arrival and departure re-
quires that large amounts of data are transfered to compen-
sate for changes in machine organization, suffering from the
problems described by Blake et al. [2].

OceanStore [8] creates a global-scale persistent storage.
It codes the data into redundant fragments and distributes
the fragments amongst several machines. Differently from
our work, it focus on dedicated machines, which means that
data reconstruction seldom needs to be performed.

PeerStore [9] is also a peer-to-peer distributed storage sys-
tem. Like our work, it decouples fragment location from its
identifier, storing the file index and fragments separately.
This eliminates the maintenance due to data misplacement
caused by node joinings and departures. Notwithstanding,
it recovers lost fragments caused by departures in a lazy
way, compromising the immediate recovery of stored files.
This characteristic makes it less suitable for very dynamic
environments, such as opportunistic grids.

A common technique for computational grids is using data
replication in conjunction with a replica location system [12].
These systems store the grid application data on dedicated
storage servers and are not targeted at opportunistic grids.

3. OPPSTORE

Computational grids are commonly organized as a fed-
eration of clusters [6, 7], where a computational cluster is
composed of physically close machines, for example, in a
single laboratory or department. OppStore [4] organizes the

machines in the same fashion, allowing its deployment over
existing grid middlewares. We consider that each cluster has
a management machine, where we instantiate the CDRM
(Cluster Data Repository Manager), the module responsi-
ble for manages the machines within the same cluster. The
other machines provide free space for storage of application
data and execute the ADR (Autonomous Data Repository)
module. CDRMs are organized in a peer-to-peer network,
structured as a DHT, and leveraging Pastry [14] as sub-
strate. The DHT is used to locate the ADRs where Opp-
Store will store the files and to retrieve those files later.
Figure 1 shows the OppStore architecture.
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Figure 1: OppStore architecture.

A two-level architecture facilitates grid management, since
machine departures and joins can be dealt with locally within
the cluster. Information about nodes leaving and joining the
cluster only need to be propagated to other clusters when
they pertain to the machine executing the CDRM. We as-
sume that this will be an infrequent event.

3.1 Data Management

OppStore allows grid applications to store files using two
storage methods: (1) ephemeral and (2) perennial. In the
ephemeral mode, two replicas of the file are stored in the
machines from the cluster where the storage request was
issued. This mode is used for data that will be used in the
same cluster where it is stored and within a few hours at
most. A typical use is for storage of application checkpoints.

The perennial mode is for data that will be stored for
periods of time longer than a few hours. In this mode, Opp-
Store encodes the files into redundant fragments, using an
optimized version [10] of the Information Dispersal Algo-
rithm (IDA) [11]. This coding generates n fragments from
which any k£ < n are sufficient to reconstruct the original
file. Total fragment sizes is n/k times the original file size.

OppStore transfers the fragments to ADRs at different
clusters and constructs a File Fragment Index (FFI), con-
taining the storage address of each fragment and some ex-
tra information. The contents of the FFI are then hashed
to generate an unique identifier for the FFI. Finally, a mes-
sage containing the FFI is routed in the DHT for storage
in the CDRM responsible for the FFI identifier. Updating
a stored file would be possible, but we consider that stored
information is mostly application input and output data.

Data coding is fast and, consequently, the time needed to
store files is normally limited by the network speed. When
using the public Internet to connect the clusters, files of a



few hundred MBytes can be stored in a reasonable time [4].

Although the use of erasure coding improves data avail-
ability significantly [15], when a machine leaves the grid,
fragments are lost and need to be reconstructed. Moreover,
a machine owner may need the disk space that it shared
with the grid, requiring OppStore to immediately remove
the fragments from the machine. Cluster departures are
also possible. This case would be equivalent to all machines
from the cluster leaving the grid simultaneously.

It is difficult to know if a node departure is temporary or
definitive. Moreover, we use heartbeats as a way to detect
node departures and, consequently, false departure detec-
tions can happen in the case of transient network failures.
To minimize the impact of transient departures and false
node departure detection, we delay the beginning of the re-
construction until a significant number of fragments are lost,
in the hopes that some of the nodes have left the grid only
temporarily or that the departure was a false detection. We
call reconstruction threshold the minimum number of frag-
ments that need to be available.

Another important traffic generator is that when machines
from a DHT join or leave the system, it is necessary to
correct data misplacement due to the reorganization of the
identifier space [2, 9]. Since OppStore decouples the frag-
ment storage location from its identifier, transfers are not
necessary during machine joins and departures [4].

4. RECONSTRUCTION PROTOCOL

We designed a reconstruction protocol for lost fragments
that works in all cases and defined several optimizations for
this standard protocols to reduce the reconstruction over-
head. The reconstruction protocol is given by:

1. The CDRM from the cluster where a machine departed
notify the CDRMs containing the FFIs of the frag-
ments stored on that machine.

2. For each notification a CDRM receives, it verifies if
the reconstruction threshold was reached. If affirma-
tive, the CDRM downloads the fragments necessary to
reconstruct the original file directly from the ADRs.

3. The CDRM reconstruct the lost fragments from the
file and routes a message for each generated fragment
requesting an ADR address to store the fragment.

4. The CDRM transfers the generated fragments to their
storage sites and update the FFI of the files with re-
covered fragments with the new storage sites.

To estimate the cost of the reconstruction process for
the lost fragments of each file, we consider the number of
messages that the system routes in the peer-to-peer net-
works and the number of bytes transfered directly from
the broker to the ADRs and vice-versa. If we define n
as the number of fragments generated per file, k& the num-
ber of fragments necessary to reconstruct a file, r the re-
construction threshold and N the number of cluster in the
grid, the cost of each reconstruction step is given by: (1)
1 message, (2) fileSize bytes, (3) n — r messages, and (4)
(n —r)/k x fileSize bytes. Consequently, the protocol re-
quires transferring (14 (n — r)/k) x fileSize bytes of data
and routing 1+ n — r messages in the peer-to-peer network.

There are some approaches to reduce the communication
cost of the reconstruction protocol. For example, it is possi-
ble to decrease the reconstruction threshold, which reduces
the number of times the reconstruction protocol is started
and regenerates more fragments in a single execution of the
protocol. The disadvantage is that file availability is re-
duced, since less fragments are available while the recon-
struction threshold is not reached. Another alternative is
to increase the redundancy level, providing higher file avail-
abilities and less calls to the reconstruction protocol, but file
storage becomes more expensive.

Finally, OppStore can cache a copy of the stored file in
the node from the data storage request was performed at
no cost by keeping a link to the file in the local file sys-
tem. Consequently, it is possible for the CDRM containing
the FFI to ask directly for this node (if it is idle) to recon-
struct and send the fragments again. We evaluate all these
optimizations in the simulations.

4.1 Local Fragment Copy

The protocol for reconstruction of fragments just pre-
sented can reconstruct lost fragments in all scenarios, but
requires large amounts of communication resources.

OppStore organizes machines in a federation of clusters
and decouples fragment storage location from its identifier
by using the File Fragment Indexes (FFIs). Consequently,
we can prevent starting the fragment reconstruction process
in the majority of cases by keeping, for each fragment stored
in cluster, an extra copy of that fragment in another machine
from the same cluster. When a machine departs, the CDRM
can immediately regenerate each of the lost fragments using
the copies stored in the cluster. In other words, machine
departures are treated locally in the cluster.

In this approach, we have to double the required storage
space and put extra strain in the local networks, but now
fragments are lost only when the two machines holding the
copies of a fragment leaves the grid almost simultaneously.
If we combine the local fragment copy with a reconstruction
threshold, we eliminate the need for the reconstruction pro-
tocol in the vast majority of the cases. Moreover, keeping lo-
cal fragment copies puts no extra burden in the inter-cluster
connections, which normally have a more limited amount of
bandwidth than local networks. Consequently, if storage
space and local network bandwidth are not scarce, we can
use this approach to solve the data maintenance problem.

S. EVALUATION

We performed simulations using our implementation of
OppStore to evaluate the following points: (1) if it is feasi-
ble to deploy OppStore in a typical dynamic opportunistic
grid environment, (2) how much bandwidth is needed to
keep the file availability level in the presence of machine de-
partures, and (3) which is the best approach to reconstruct
the fragment for different scenarios. Since we needed to eval-
uate the behavior of OppStore in large-scale grids in several
scenarios, we consider that using simulations was a better
choice.

5.1 Simulation Parameters

We simulated an opportunist grid composed of 30 clusters
of desktop machines from universities and institutions. The
number of machines on each cluster was randomly chosen as
10, 20, 50, 100, and 200.



To evaluate file availability, we defined three different us-
age patterns, which are randomly assigned to each cluster.
In the first pattern, the mean idle time is 60% during the day
and 80% during the night and weekends. The second pat-
tern has idle times of 25% and 40%, and the third 40% and
70%, respectively. We consider that clusters are uniformly
distributed across 24 timezones.

Fragment losses can occur with machine departures and
when the owner of a machine demands back the shared disk
space. In both cases we consider that all the fragments in
the ADR are lost and we evaluated a range of loss rates to
determine the expected overhead of the reconstruction pro-
tocol. To keep the number of machines stable, we consider
that when a machine leaves the grid, another one joins the
grid immediately in a random cluster. Finally, we consider
that the network is reliable and that messages are always
delivered.

5.2 Data availability

In this experiment, we evaluate the availability of files
stored in OppStore in the presence of machine departures.
We stored 3000 files and simulated a one month period with
a machine departure rate of 10% per day, running the frag-
ment reconstruction protocols. At the end of this period, we
requested the recovery of all stored files and measured the
percentage of the files that could be recovered.

Table 1: Mean data availability.

IDA t=9 t=12 t=15 fc
k=6, n=12 0.45133 - - 0.84733
k=6, n=18 0.73833 0.87500 0.99733 1.00000
k=6, n=24 0.88100 0.92933 0.95867 1.00000

Table 1 shows the mean availability for several IDA con-
figurations and threshold values and for the fragment copy
strategy. As we increase the threshold, the mean availability
of the stored files also increases, since the fragment recovery
protocol is executed more often. But, the availability when
using fragment copy is always higher, since fragments are
immediately recovered from their copies.

5.3 Network usage

In this experiment, we measure the network traffic gener-
ated for each strategy for different ADR fragment loss rates.
We stored 3000 files of different sizes in OppStore, with a
total size of about 65GB. We simulated a period of 1 month,
where ADRs depart or lose their stored fragments at differ-
ent rates per day.

Figure 2 shows the generated bandwidth used to store the
files and recover the lost fragments for different ADR frag-
ment loss rates, using IDA(6,12) with threshold 9, IDA(6,24)
with threshold 9, IDA (6,24) with threshold 15, and IDA(6,12)
with the fragments copy strategy.

When not using fragment copy, the required bandwidth
increases linearly with the departure rate. But even when
considering a departure rate of 1.25% of the nodes per day,
the used bandwidth is about 130GB to store the files and
150GB to maintain those files. Consequently, in a single
month, an amount of data comparable in size to all of the
stored data is transfered between clusters. Also, for higher
departure rates, we see that increasing the replication level
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Figure 2: Bandwidth for fragment reconstruction.

lowers the bandwidth necessary to maintain the data, for
example, when we increase the number of fragments to 24.
Reducing the reconstruction threshold also lowers the used
bandwidth. But as we saw in Section 5.2, file availability
decreases when we decrease the reconstruction threshold.

When using the fragment copy, for all ADR departure
rates, the inter-cluster bandwidth is constant and lower than
the other strategies. This occurs because this bandwidth is
used only for the transfer of fragments during file storage.
Consequently, when considering the inter-cluster bandwidth
used, the fragment copy strategy is very efficient.
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Figure 3: Local Bandwidth during reconstruction.

Figure 3 shows the generated bandwidth in the local net-
works inside the clusters using the same scenario above. It
is interesting because it shows that the usage of local net-
work bandwidth for the fragment copy strategy is also lower.
This result can be explained if we remember that, in the
reconstruction protocol without fragment copy, every time
the fragments are transfered in the inter-cluster network,
they are also transfer in the local networks of two different
clusters. Consequently, besides the load in the inter-cluster
network, a high load is also put in the local networks.
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Figure 4: Number of messages exchanged.

Consequently, even in the usage of bandwidth of local net-
works, the fragment copy strategy performs better. The ex-
ception is for the lowest departure rates, the need to keep
two copies of each fragment increases the local network us-
age. Moreover, when we analyze the highest departure rate
of 20%, the total generated local bandwidth is about 1500GB
in a month, giving 50 GB per day in all 30 clusters, which
is about 1670 MB of traffic per day in the local networks of
each cluster. Considering that those networks have a band-
width of at least 100Mbps, this overhead is very reasonable.

Finally, Figure 4 shows the number of messages that are
routed in the peer-to-peer network for the different recon-
struction strategies. When using fragment copy, every de-
parture of a machine causes the generation of 1 message per
lost fragment to notify the change in the storage address of
the fragment. The number of messages generated when us-
ing the local fragment copy is close to the use of IDA(6,24)
and a threshold of 9.

6. CONCLUSIONS

In this paper, we showed that it is possible to store large
amounts of data with high redundancy in a highly dynamic
environment. For this, we presented a data maintenance
protocol that takes advantage of the organization of ma-
chines into a federation of clusters and the decoupling of
data storage location from its identifier. We showed that,
in realistic scenarios, this protocol uses reasonable amounts
of intra-cluster bandwidth and very low amounts of inter-
cluster bandwidth.

As future work, we will deploy OppStore for long periods
in an opportunistic grid and monitor the fragment recovery
mechanism, validating the results obtained in the simula-
tions. Another important point is to consider limiting the
network usage when there are machine owners utilizing the
network for their tasks. If users notice a significant loss in
performance, they will be unwilling to share their resources.
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