
Grid: An Architectural Pattern

Raphael Y. de Camargo, Andrei Goldchleger, Márcio Carneiro, and Fabio Kon

Department of Computer Science
University of S̃ao Paulo

{rcamargo,andgold,carneiro,kon}@ime.usp.br

June, 2004

Grid

The Grid pattern allows the sharing of distributed and possibly heterogeneous computational re-
sources, such as CPU, memory, and disk storage, in an efficient and transparent manner.

Example

Weather forecasting is a typical computationally intensive problem. Briefly describing, data
regarding the area subject to forecasting is split into smaller pieces, each one corresponding to a
fraction of the total area. Each fragment is then assigned to a computing resource, typically a PC
in a cluster, or a processor in a parallel machine. During the computation, each computational node
needs to exchange data with others, since the forecasting in each of the fragments is influenced by
neighboring areas. After several hours of processing, the results of the computation are expected to
reflect the weather of the given area for a certain period, a few days for example. Figure 1 shows
the results of a simulation where the total area was divided in 16 fragments.

In order to perform a computation such as the one described, one typically uses dedicated in-
frastructures, such as parallel machines or dedicated clusters. Institutions typically have a limited
amount of these resources, which are disputed by many users who needs processing power. At the
same time, it is very likely that in these same institutions there are hundreds of workstations that
remain idle for most of the time. If these workstations could be used for processing during these
idle periods, they would multiply the processing power available to the users.

1



Figure 1: Weather forecasting.

Context

Sharing of computational resources in heterogeneous distributed systems in order to improve
the availability of computing resources for the execution of computationally intensive applications.

The Problem

Using the idle periods of available computing resources can greatly increase the amount of re-
sources available to users of an organization. However, it is very difficult to do this using traditional
off-the-shelf software and operating systems. Many issues have to be treated, such as application
deployment, distributed scheduling, collection of results, fault-tolerance, and security. This leads to
the necessity of an additional software infrastructure to provide solutions to the above mentioned
problems. The followingforcesmust be considered when developing such an infrastructure:

• It must allow the sharing of computational resources, such as processors, memory, storage,
and other kinds of hardware resources, that would otherwise remain idle or underutilized.

• It needs to allow the execution of applications on various computing architectures running
different versions of different operating systems.

• It needs to be transparent to the user. The user should not need to know where submitted
applications will be executed.

• In the case of shared workstations, it needs to provide quality of service (QoS) to both users

2



submitting applications and resource owners, by reaching a compromise between their neces-
sities.

• It needs to provide autonomy to users and system administrators, avoiding imposing rigid
policies on resource offering.

• It must allow existing applications to be easily adapted to the new context. In particular,
support for standard parallel programming APIs should be provided.

• It needs to have a low deployment cost, not requiring extensive reconfigurations on existing
systems.

Solution

TheGrid pattern can be used to solve this problem. It consists of using a middleware to manage
distributed and possibly heterogeneous resources, allowing users to submit applications for execu-
tion. These applications can be either single process, in which case none or few changes in the
application are required, or parallel applications, which should rely on parallel communication li-
braries provided by the middleware. These libraries are typically grid-enabled version of traditional
parallel libraries, which makes easy to migrate pre-existing applications to theGrid environment.

A user interested in executing applications submit execution requests via anaccess agent. The
access agent allows the user to specify execution constraints regarding the application, such as
operating system, computer architecture, and memory requirements.

A scheduling servicereceives the execution requests, checks the identity of the user who submit-
ted the application, and uses aresource monitoring serviceto discover which nodes have available
resources to execute the application. These nodes, which must run theresource provision service,
are calledresource providers. If there are nodes with free resources, the scheduler sends the jobs1

to the selected nodes. Otherwise, the request waits in an execution queue.
When a resource provider receives a job for execution, it creates a new process for that job and

puts it in the execution queue of the local machine. When the job execution finishes, the results are
then returned to the access agent.

An important point is that all the execution is transparent to the user. After application submis-
sion, theGrid is responsible for finding the computational resources, scheduling the application for
execution, providing fault-tolerance and returning the results to the user.

• In the case of the weather forecasting application, if it were written using an API supported
by theGrid, the user would only have to recompile the application with the libraries provided
by theGrid and submit it for execution. When the execution is finished, the user gets the
results through the access agent.

1In this work we use the termjob to refer to each of the processes of an application.

3



Figure 2: CRC cards describing theGrid modules.

Structure

• Thecommunication infrastructureallows the differentGrid components to exchange informa-
tion. It provides a reliable communication mechanism and other services, such as a naming
service, to simplify the development of the remaining grid modules.

• Theaccess agentis the primary point of access for users to interact with theGrid. It must be
executed in each node from which applications will be submitted. Besides the submission of
applications, it allows the user to specify application requirements, monitor executions, and
collect execution results.

• The resource provision servicemust be executed on each machine that exports its resources
to theGrid. It is responsible for servicing execution requests by retrieving application code,
starting application execution, reporting errors on application execution and returning applica-
tion results. This service is also responsible for managing local resource usage and providing
information about resource availability.

• The resource monitoring serviceis responsible for monitoring the state ofGrid resources

4



Figure 3: Relationships between theGrid modules.

and providing information about this state for other services. It monitors which resource
providers are currently available and the state of their resources, such as processor usage and
free memory. When requested, it can provide information about these resources, for example,
when the scheduler needs to find a suitable node for the execution of an application. This
service can also keep the resource usage and offering history for each user. This value can
then be used by the scheduler to assign priorities to execution requests.

To keep the information up to date, this service receives periodic updates from resource
providers concerning their resource availability status. This updates also serve for the mon-
itoring service to detect when resource providers are not reachable. This can happen due to
failures in the network or hardware and software failures in the node. The service then reports
the errors for the scheduling service so that it can reschedule the processes that were running
in these nodes for execution on another nodes.

• The scheduling servicemanages the available resources in theGrid. It is responsible for
receiving application execution requests and, based on information provided by the resource
monitoring service, selecting a node that satisfies the application requirements. When there
are competing requests, the scheduler can define user priorities, which can be computed using
factors such as the user class, resource usage history and resource sharing history.

• Thesecurity serviceis responsible for three major tasks: (1) protecting shared resources, so
that a user who share his resources with theGrid does not suffer the effects of a rogue applica-
tion, (2) managing users identities, so that application ownership can be established, enabling
relations of trust and accountability, and (3) securingGrid communications, providing infor-
mation confidentiality and integrity.

• Support for parallel applications is provided by libraries implementing parallel computing
models, such as MPI [For93], BSP [Val90], and PVM [Sun90]. Those libraries are typically
grid-specific versions implementing the same APIs defined by stand-alone versions of these

5



Figure 4: TypicalGrid organization.

parallel libraries, thus allowing applications to run on theGrid with little or even no modifi-
cations.

CRC cards describing theGrid modules are presented in Figure 2. Figure 3 shows the interac-
tions betweenGrid modules and Figure 4 shows a typicalGrid organization.

Dynamics

Scenario I: this scenario, shown in Figure 5, illustrates the resource monitoring service receiv-
ing resource availability information from resource providers and responding to a query from the
scheduling service.

• Resource providers send periodic updates with their resource offerings and usage.

• The scheduling service queries the resource monitoring service about resource availability.

• The resource monitoring service searches for available resources which satisfy the query.
If resources are found, it returns their locations. Otherwise it returns aresource not found
message.

• Resource providers keep sending periodic updates about its resource offerings and usage.

Scenario II: illustrates theGrid behavior when an access agent requests a single-node application
execution (shown in Figure 6). In this example, we consider that no errors occur during application
execution.

6



Figure 5:Scenario I: resource monitoring service.

Figure 6:Scenario II: successful execution request.

7



• The access agent sends an execution request to the scheduling service, possibly with some
information about the required resources.

• The scheduling service queries the resource monitoring service for a node meeting the re-
source requirements. A list containing the location of nodes satisfying the query is returned.

• The scheduling service determine if it is possible to execute the application in the available
nodes. If the execution is possible, the request is sent to the selected resource providers.
Otherwise, it queues the request for later execution.

• The resource provider downloads the application code from the access agent that submitted
the execution request or from an application repository.

• The resource provider checks the identity and permissions of the code owner with help of the
security service.

• The resource provider executes the application. When the execution is finished, the results
are sent back to the access agent.

Figure 7:Scenario III : required resources not found.

Scenario III: illustrates theGrid behavior when the resources necessary for an application execu-
tion are not found (shown in Figure 7).

• The access agent sends an application execution request to the scheduling service, possibly
with some information about the required resources.

• The scheduling service queries the resource monitoring service about resource availability.

• The resource monitoring service determines that it is not possible to satisfy the query with the
available resources. It then returns aresource not foundmessage.

• The scheduling service sends a failure report to the access agent. It is now the user’s respon-
sibility to decide what to do.

8



Implementation

Here we present some guidelines for implementing theGrid pattern.

• Communication infrastructure:the basic requirements of this infrastructure are that it work
on all the platforms whereGrid components will be installed and that it provide some form of
reliable communication mechanism, such as remote procedures calls (RPC). Higher levels of
abstraction in this layer eases the development ofGrid components built on top of it.

When implementing this infrastructure, it is easier to use an existing communication infras-
tructure, such as CORBA [Obj02a]. CORBA is a mature and robust object-oriented industry
standard that is platform and language independent, and permits that communication among
components be done through remote method invocations. Also, it provides various services
that may be helpful for the implementation, such as naming, trading, security, and transaction
services. Other existing communication infrastructures include DCOM, Java RMI, and .NET.
The drawback of these infrastructures is that they are either platform or language dependent.

• Access agent:is implemented as a proxy that takes execution requests and forwards it to the
Grid. It must provide a well defined API from where it is possible to make execution requests,
specify application requirements, monitor application execution, and collect executions re-
sults.

– Submitting application code:there are two possibilities: (1) the access agent directly
uploads the application code to the resource providers selected for execution, or (2)
the access agent first uploads the application code to anapplication repositoryused
for application storage. The resource providers can then download the application code
from this repository. The first option is the simpler, but the second gives more flexibility.

Independent of the chosen method for application submission, it is also necessary to
send an user certificate with the application. The resource provider who receives the
application for execution can then check this certificate with a central authority provided
by the security service.

– Format for application submission:it is necessary to define the format of the applica-
tions to be submitted for execution. A simple possibility is submitting binary code ready
for execution. The advantage is that it is ready to use, not requiring the compilation of
the code on the resource providers. However, binary code is machine and operating
system specific, and can require specific versions of shared libraries. If theGrid is com-
posed of highly heterogeneous systems, a better approach is for the access agent to send
the source code for compilation on the machines where the application will be executed.
However, the need to compile the application in the target machine uses resources on
that machine, increases system complexity, and also imposes that a compliant compiler
be available in each of the target machines.

A third possibility is to provide a virtual machine to interpret code pre-compiled in a
platform independent format (e.g. Java or Smalltalk bytecode). To improve perfor-

9



mance, the virtual machine compiles this bytecode into native code just before applica-
tion execution. The advantage is that application written in these languages can run in
any platform where a virtual machine is available. But this advantage comes at a perfor-
mance penalty and a higher level of resource consumption on the resource providers.

– User interface:although not part of the access agent, it is important that a tool provid-
ing an interface for user interaction with theGrid be available. This interface can be
implemented as a shell-like interface, a graphical interface or a Web portal.

• Resource provision service:must have a small memory footprint. Since it will be executed
permanently in each of the resource providing nodes, it is important to assure that resource
owners do not perceive any degradation in the quality of service provided by their machines.
Consequently, if the implementation of this service uses external libraries or applications,
these should be the smallest possible. Thus, this service should be implemented in program-
ming languages that can lead to small memory footprint (such as C and C++) and do not
require the execution of a large virtual machine.

As was mentioned in the Structure section, this service is responsible for retrieving appli-
cation code and starting its execution, controlling the local resource usage, and providing
information about its resource offerings:

– Retrieving application code:it can be implemented by either downloading the code
directly from the access agent or from an application repository, as mentioned for the
access agent. This code download is performed when the resource provider receives the
execution request from the scheduler. After downloading this code, the last step before
executing it is to check the identity and permissions of the application owner with the
security service by sending the user certificate that was downloaded with the application
code.

– Starting application execution:the main issue is the format of the retrieved code. If
it is the source-code of the application, the resource provider must compile and report
compiler errors back to the scheduler. The scheduler would them report the error back
to the access agent. If the application format is binary code ready for execution, the
resource provision service only has to create a new process for executing the code.

– Providing resource usage information:the resource providers must periodically send
updates for the resource monitoring service regarding resource usage on the nodes, in-
cluding the amount of resources used by jobs from differentGrid users.
An important decision is the time interval between updates. A shorter interval leads
to higher network traffic, while longer intervals can lead to the information becoming
stale. An adaptive approach can be used, dynamically choosing the best interval.

– Specifying constraints on resource sharing:this service must provide a user interface
that allows the resource owner to specify constraints on resource sharing. It should
provide the possibility of specifying restrictions such as the users who can access the
resources, the period of the day in which the resources can be shared, and the amount of
resources that can be shared.

10



– Managing of local resources:a local scheduler manages the local resources. This local
scheduler can be the same used by the operating system, with the processes submitted
by theGrid being treated as background processes.

In the case of shared workstations, there is the situation where the owner of a node
decides to use the workstation to do his daily work. The workstation owner should not
perceive a substantial drop in performance, so the executing process must be killed or
suspended. The service must then send an error message to the scheduler, which will
then either allow for the migration2 of the process to another node or reschedule it for
execution from the beginning.

– Returning execution results:a Grid process will typically put its results in one or more
files, thus all this service has to do is to send these files back to the access agent. A
special case occurs when the process fails during execution. In this case, the service
must send an error report back to the scheduler which, depending on the error, will
schedule the process for execution or send an error message for the access agent.

– Usage patterns:besides the periodical updates on resource availability, resource provi-
ders may contain more elaborate mechanisms for determining node usage patterns. For
example, the mechanism can collect usage information on each node for a certain time
interval and, through the use of clustering or time series algorithms, determine usage
patterns that can help to predict the node usage for a future period of time. This data can
be used by the scheduling service to improve resource usage efficiency. For example,
if a usage pattern indicates that during the morning a machine usually remains idle for
only short intervals, it would be unwise for the scheduling service to select this machine
for the execution of a long running application.

• Resource monitoring service:needs to provide interfaces for both queries and updates re-
garding availability of the resources from resource providers. When queried, the resource
monitoring service must perform a search for a set of nodes containing resources that satisfy
the requirements specified in the query and return this set of nodes. In the case of updates
from resource providers, it just updates its database. The resource usage and offering history
for each user can be implemented by a simple resource usage index that is incremented when
the user shares his private resources and decremented when the user usesGrid resources.

In case of failure ofGrid nodes, the resource monitoring service needs to inform the sched-
uler about the jobs that were running in that nodes. Information about the running jobs in
each node is obtained from the scheduler when these jobs are scheduled for execution, and
maintained by the resource monitoring service throughout their execution.

For the storage of dynamic resource availability information, it is better to use existing solu-
tions, such as the CORBA Trading Service [Obj00] or LDAP [YHK95]. Another possibility
is to implement the service using a database, and provide some front-end for queries and
updates.

2Process migration issues are discussed later in this section.

11



• Scheduling service:must employ a scheduling strategy that balances requests of users who
need lots of computing power and users who seldom submit applications. This can be done
by assigning user priorities that are modulated by the amount of resources consumed by each
user. This modulation can be achieved using a resource modulation index maintained by the
resource monitoring service. A simple strategy would be to prioritize jobs according to their
owners’ priority. Care must be taken to schedule simultaneously the jobs that compose a
parallel application. By using theStrategy [GHJV95] pattern it should be easy to employ
different scheduling strategies. The scheduling service must provide APIs for access agents
to submit execution requests.

The service should return an error to the user when the resources required to run the applica-
tion cannot be found. The error message may provide some information about the available
resources, so that the user can decide what to do. In the case an error occurs during the execu-
tion of a job, different approaches can be taken depending on the error. For a crash failure on
the node where the job was executing, it is a good idea to reschedule the process for execution
is another node. But in the case of an error in the application code such as a segmentation
fault, a error message should be returned to the access client.

• Security service:resource providers can be protected by limiting system privileges forGrid
applications. These restrictions can be implemented by intercepting system calls or using a
virtual machine. An important design decision is how restrictive the environment should be.
If the Grid makes use of user workstations, the security provided for resource owners must be
a top priority. Typical restrictions include forking new processes, accessing peripherals such
as printers, and obtaining free access to the filesystem. The resource provision service must
provide an tool that allow the resource owner to specify these security restrictions.

User authentication can be done through the use of certificates managed by a central author-
ity. Resource providers can then verify user certificates with this central authority before
executingGrid applications.

The implementation of both user authentication and data encryption can be greatly simplified
by reusing existing libraries. GSS (Generic Security System) [Lin93] is a standard API for
managing security; it does not provide the security mechanisms itself, but can be used on
top of other security methods, such as Kerberos [NT94]. CorbaSEC [Obj02b] is a sophisti-
cated alternative, but it can be used only if the communication infrastructure is also based on
CORBA.

• Process Migration:since theGrid is composed of resources that can become unavailable at
any moment, some mechanism to allow the progress of application execution in such a situ-
ation is necessary. That is, when migrating the application to a new node, it is important to
resume its execution from an intermediate state, not from the beginning of its execution. In
the case of parallel applications this is particularly important because, depending on the case,
the failure of a single process can require that all the processes from the application be reini-
tialized. This occurs because message exchanges cause dependencies among the processes.
For a parallel application containing many processes running on different nodes, the failure

12



rate would be too high.

A mechanism that allows this kind of migration isCheckpointing[EAWJ02]. It consists
in periodically saving the application state as a checkpoint, allowing recovering application
execution from the last saved checkpoint. The main issues are that this mechanism is difficult
to implement and incurs an overhead in application execution time.

• The implementation of libraries for parallel programming can be done either from scratch or
by modifying existing libraries for using of theGrid communication, resource monitoring,
and scheduling infrastructures.

For the implementation of process migration, it is necessary to consider the interprocess de-
pendencies caused by message exchanges among application processes. A simple way to
solve this problem is to synchronize all processes that exchanged messages since the last
saved checkpoint.

• The deployment of theGrid pattern is as follows: the resource provision service is started
on each machine that will export its resources to theGrid. Access agents are deployed on
machines belonging to users that submit applications for execution. It is necessary to have
a node where the scheduling, resource monitoring, and security services will run. This node
has to be permanently available. If desired, this node availability constraint can be relaxed
by adding redundancy to the resource monitoring, scheduling and security services, but this
requires a more complex implementation of these services.

Variants

• InterCluster Architectures:

TheGrid pattern here presented, composed of centralized resource monitoring and schedul-
ing services, scales well up to a few hundred nodes. When connecting more machines, this
architecture shows some limitations. The main issue is that node management will be under
a single administration. For aGrid composed of thousands of machines this can become a big
problem. Another issue is that if the node containing the resource monitoring service crashes,
all nodes in theGrid will become unreachable for a certain period of time.

Consequently, if one needs to interconnect thousands of machines it is necessary to use a
more scalable architecture. A possible solution is to divide the machines in clusters. Each
cluster would then have its own resource monitoring and scheduling service, which need to be
extended in order to communicate with other schedulers and resource monitoring services to
provide inter-cluster integration. These clusters are organized in an inter-cluster architecture,
for example, a static hierarchical or dynamic peer-to-peer architecture. The former is simpler
to implement, while the latter is more flexible.

Each cluster has its own scheduling, resource monitoring and security services. Intracluster
schedulers try to execute requests from clients within its cluster. In case this is not possible,

13



it then contacts resource monitoring services from neighboring clusters to search for avail-
able resources in that clusters. If resources are found, the application execution request is
forwarded to the scheduler of the cluster with available resources.

Known Uses

Globus [FK97] is a grid computing system that provides a collection of services necessary for
developers to write applications to execute on Globus grids. It is built as a toolkit, which allows the
incremental addition of functionalities for the development of grid applications. It implements most
of the services described in this pattern. It has a resource monitoring service calledMDS (Mon-
itoring and Discovery Service) [CFFK01], a scheduling service calledGRAM (Globus Resource
Allocation Manager) [CFK+98], certificate-based authentication and support for some parallel pro-
gramming APIs.

Condor [LLM88] allows the integration of many computational resources to create a cluster
for executing applications. Condor emphasizes the use of shared resources that remain idle for
a significant amount of time, such as workstations, to produce useful computations. The system
was implemented using plain sockets for communication. Scheduling is performed by a central
coordinator, which sends jobs to the machines offering its resources. These jobs are then put on a
local execution queue. The conditions on which the resources can be used can be specified by the
resource owner. Single process applications benefit from a transparent checkpointing mechanism,
but this mechanism is not portable and is not available for parallel and distributed applications.

InteGrade [GKG+04] is a grid computing system designed as a middleware infrastructure and
programming platform for grid applications. This system also implements most of the services
of the Grid pattern. Its resource monitoring and scheduling services are implemented together as
the Global Resource Manager(GRM ). The resource provision service is calledLocal Resource
Manager(LRM ). Other key current InteGrade features are the use of CORBA for the communica-
tion infrastructure and a lightweight Resource Provision Service that imposes a small overhead on
shared resources. Future releases will also include transparent support for checkpointing of parallel
applications using the InteGrade APIs for parallel programming, support for usage pattern recog-
nition and analysis, and a security service including user authentication and secure communication
channels.

MyGrid [CPC+03] is a simple grid system which allows the execution of bag of tasks applica-
tions. The system is written in Java and uses RMI for communication. Its two main components are
the scheduler and theGridMachineInterface(GuM ). The scheduler has a functionality similar to
the scheduling service from theGrid pattern while GuM implements the access agent and resource
provision service.

Consequences

TheGrid pattern presents some important advantages:

• Reusability:once implemented, theGrid infrastructure will work for many applications, since
they will use the same services and programming libraries. Moreover, since the system is a

14



middleware that provides an abstraction layer for the development of applications, it can be
easily installed as an off-the-shelf middleware on different systems with little modifications
on the underlying systems.

• Encapsulation of Heterogeneity:theGrid hides the specific details on communications, com-
puter architectures, and operating systems. Consequently, the applications can be developed
much more easily, without the need to worry about details of communication and heteroge-
neous computer environments.

• Easy application deployment:theGrid manages the details of resource allocation, scheduling,
and application deployment. This facilitates the execution process, since the user needs not
to worry about the details of reserving computing resources and deploying the application on
the nodes on which it will be executed.

• Efficient resource usage:resource idleness is significantly reduced when using aGrid. This
applies both to workstations and to specialized and expensive resources. During normal oper-
ation, they are used by their owners, without degradation in the Quality of Service. But when
idle, these resources can be shared to be utilized by applications running on theGrid. This
better usage of resources means that less hardware will have to be purchased and maintained,
causing a significant reduction in costs.

• Integration of dispersed resources:the use of theGrid eases the integration of dispersed re-
sources, including geographically distant nodes. In the cases these resources are spread across
administrative domains, different policies for resource sharing, such as access restrictions, can
be implemented for each domain.

Some disadvantages of using the pattern:

• High complexity:the implementation of theGrid pattern implies many problems that still do
not have a consolidated solution. Although this problem is applicable for distributed systems
in general, in the case of theGrid it needs to employ much more general and comprehensive
solutions. Therefore, this task needs a considerable amount of time and effort of talented
people, what can incur in a high cost. The investment on this system must be justified by the
use on many applications and/or environments.

• Necessity to change applications:to take advantage of theGrid services, it may be necessary
to alter parts of the application source. This requires access to the application source code,
something that is rare on commercial applications. Even when the source code is available,
its adaptation for theGrid can consume considerable amounts of time and money, for example
if the application is written using a parallel programming API not supported by theGrid.

• Harder to debug and test applications:applications submitted for execution on theGrid are
harder to test and debug. This happens because the user has no control on where the applica-
tion processes are executed. In addition, currently available tools for testing and debugging
distributed applications are limited.

15



Related Patterns

TheBroker pattern [BMR+96] has similarities with theGrid pattern. Like theGrid, its goal is
to encapsulate several details regarding the implementation of distributed systems, simplifying the
development of applications. But, differently from theGrid, the Broker is recommended for simpler
applications, such as business systems based on client/server architectures. Consequently, it does
not require many of the characteristics available on theGrid, such as the scheduling and resource
monitoring services. Since the Broker encapsulates details such as the communication with remote
entities, it can be used as a substrate for the implementation of theGrid pattern. The InteGrade
system uses CORBA, an implementation of the Broker pattern, as the basis for its communication.

The Master-Slave pattern [BMR+96] also consists of having a central coordinator that dis-
tributes tasks for execution on servants and get the results back. But differently from theGrid
pattern, the main focus of the Master-Slave pattern is multiprocessor architectures. It only applies
to problems that can be solved by the ‘divide and conquer’ approach. But this specificity allows a
simpler system that can be optimized for determined computer architectures, improving execution
performance.

Acknowledgments

We would like to thank Eugenio Sper de Almeida for providing the weather forecasting image
used in our example. Special thanks for Michael Stal. His innumerable suggestions were invaluable
for improving the quality of this pattern.

References

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern - Oriented System Architecture: a System of Patterns, chapter 2.3. John
Wiley & Sons, 1996.

[CFFK01] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid Information
Services for Distributed Resource Sharing. InProceedings of the Tenth IEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC-10). IEEE Press,
August 2001.

[CFK+98] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. A Resource Management Architecture for Metacomputing
Systems. InProceedings of IPPS/SPDP98 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 62–82, 1998.

[CPC+03] Walfredo Cirne, Daniel Paranhos, Lauro Costa, Elizeu Santos-Neto, Francisco
Brasileiro, and Jacques Sauvé. Running Bag-of-Tasks Applications on Computational
Grids: The MyGrid Approach. InProceedings of the ICCP’2003 - International Confer-
ence on Parallel Processing, pages 407–, October 2003.

16



[EAWJ02] Mootaz Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey
of rollback-recovery protocols in message-passing systems.ACM Computing Surveys,
34(3):375–408, May 2002.

[FK97] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.Inter-
national Journal of Supercomputing Applications, 2(11):115–128, 1997.

[For93] MPI Forum. MPI: A Message Passing Interface. InSupercomputing Conference, 1993.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software, chapter 4, pages 139–150. Addison-
Wesley, 1995.

[GKG+04] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Ger-
mano Capistrano Bezerra. InteGrade: Object-Oriented Grid Middleware Leveraging Idle
Computing Power of Desktop Machines.Concurrency and Computation: Practice and
Experience, 16:449–459, March 2004.

[Lin93] J. Linn. Generic Security Service Application Program Interface, September 1993. Inter-
net RFC 1508.

[LLM88] Michael Litzkow, Miron Livny, and Matt Mutka. Condor - A Hunter of Idle Workstations.
In Proceedings of the 8th International Conference of Distributed Computing Systems,
pages 104–111, June 1988.

[NT94] B. C. Neuman and T. Tso. Kerberos: An Authentication Service for Computer Networks.
IEEE Communications, 32:33–38, September 1994.

[Obj00] Object Management Group.Trading Object Service Specification, June 2000. version
1.0, OMG document formal/00-06-27.

[Obj02a] Object Management Group.CORBA v3.0 Specification, July 2002. OMG Document
02-06-33.

[Obj02b] Object Management Group.Security Service Specification, March 2002. version 1.0,
OMG document formal/02-03-11.

[Sun90] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing.Concurrency,
Practice and Experience, 2(4):315–340, 1990.

[Val90] Leslie G. Valiant. A Bridging Model for Parallel Computation.Communications of the
ACM, 33:103–111, 1990.

[YHK95] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. RFC #1777,
March 1995.

17


