

Debugging Distributed Object Applications
With the Eclipse Platform

Giuliano Mega and Fabio Kon
Department of Computer Science

University of São Paulo
{giuliano, kon}@ime.usp.br

Abstract

Debugging distributed applications is a well-
known challenge within the realm of Computer
Science. Common problems faced by developers
include: lack of an observable global state, lack
of a central location from where to monitor possi-
ble states, non-deterministic execution, heisen-
bugs, and many others. There are currently many
good techniques available which could be em-
ployed in building a tool for circumventing some
of those issues, especially when considering wide-
spread middleware-induced models such as Java
RMI, CORBA or Microsoft .NET based applica-
tions.
 In this paper, we introduce an extended sym-
bolic debugger for Eclipse which besides usual
source-level debugging capabilities, adds to the
abstraction pool a distributed thread concept,
central to causality in any synchronous-call dis-
tributed object application.

1 Introduction
Debugging a distributed system can be a daunting
task. In addition to normal debugging issues (the
old isolate-extirpate paradigm), the developer of a
distributed system must also cope with the fact
that there might be multiple chains of states and
events evolving independently and across multi-
ple machines.
 To get some minimum insight as to how the
execution of the system actually took place
(something that is crucial for detecting and isolat-
ing bugs), the developer must somehow gather

 Copyright 2004 by ACM, Inc. Full copyright notice at
http://www.acm.org/pubs/copyright_policy/#Notice

and correlate trace data from the various compo-
nents of the distributed system, hoping that this
approximate view of the execution will be enough
for tracking down misbehaviors. If one has to do
it all manually, things get even more difficult.
 Following the trend of Object Oriented Pro-
gramming, traditional socket and RPC-based Dis-
tributed Systems have evolved over the past few
years into modern Distributed Object Systems
(DOS). Those are in essence distributed systems
which employ some sort of middleware layer that
allows the use of object interfaces for publishing
and accessing distributed services.
 The net effect is that the developer is enabled
to think of his distributed system “as if” it were
not distributed1. Most middleware design efforts
are targeted at improving transparency and ab-
straction. It is only though these powerful and
well-known concepts that application developers
can build complex distributed object applications
– by putting aside the complexity handled by
middleware services, one can focus on managing
its own application complexity.
 Unfortunately, much of the complexity hid-
ing provided by middleware at development time
is lost when debugging and, despite the natural
pressure to evolve, it seems that debuggers have
lagged behind in this area. Traditional symbolic
debuggers have been stuck on basic source-level
and language-level abstractions for decades,
whilst middleware and other similar tools have
been continuously extending language abstrac-
tions. Even though there are currently many de-
bugging tools available for collecting behavioral
information from running distributed applications

1 Within some reasonable limits.

42

OOPSLA'04 Eclipse Technology eXchange (ETX) Workshop,
Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM

43

those are, in general, very different from what the
average developer could expect, since they are
mostly based on purely monitoring techniques
and/or data analysis and bear little or no resem-
blance to symbolic debuggers. The goal of our
project is to extend the Eclipse debugger so that
developers can symbolic-debug their distributed
applications without losing the abstractions the
underlying middleware provides, while applying
convenient and solid distributed debugging tech-
niques found in other tools and described in the
literature. This should translate into an effective
mean of symbolic-debugging distributed applica-
tions (something that current tools do not allow)
while enjoying all the benefits the Eclipse debug-
ger model provides.
 The remainder of this paper is organized as
follows. In the following section we present the
basis and motivation for our particular choice of
semantic extension from the set of possible exten-
sions to the Eclipse symbolic debugger. In Section
3 we underline the basic architecture and current
state of implementation of our tool, exposing its
current capabilities and explaining a few of its
mechanisms. In Section 4 we summarize our re-
sults and comment on ongoing and future work.

2 Motivation

There are basically three issues to discuss when
considering our current state of work. Those are
addressed in the paragraphs that follow.
 1. Centralized Presentation: It is a known
fact [3,4] that an observed error might be on the
tip of a large chain of previously misbehaved or
mispredicted events. The difference when consid-
ering distributed systems is that this chain of
events might span multiple machines, making
events difficult to observe and correlate without
appropriate tools. Since two distributed execu-
tions are hardly equal, if we are to have any hope
in finding out the cause of an error then we must
somehow capture event information for later re-
construction (postmortem analysis). Though this
process of observation is distributed, we want to
be able to somehow visualize the complete chains
of events. This brings the need for tracing events
and forwarding them to a central location where
they can be later correlated and presented to the
developer, either after his application has ran or
while it is running.
 By allowing the distributed debugger to con-
tain a central piece at Eclipse from where the de-

veloper can easily access collected information
we are actually making his life easier as he will
not have to jump from machine to machine manu-
ally scanning trace files whenever an error occurs.
 2. Causality: Another issue that arises in the
context of distributed systems (not just distributed
debugging) is related to the notion of event order-
ing. Since most real-world distributed systems
have no global clock, unless we find ways of im-
posing an ordering on collected events we will
just end up with a load of scrambled information
that tell us nothing about which event happened
before which.
 Lamport [3] brought this up in his classical
paper about logical clocks and causal order, but
Lamport’s paper discusses message-passing sys-
tems and that is where employing middleware
changes things a bit. Synchronous call mecha-
nisms such as the one Java RMI and CORBA
provide makes remote objects appear as if they
were local. This means we effectively have,
through middleware and synchronous calls, a lo-
cal flow-of-control abstraction. In other words,
calls made to remote objects transfer the thread of
control to callees much like the ones made to lo-
cal objects do. Since the outcome of a computa-
tion in a multithreaded or shared-memory parallel
environment is only determined by the dynamic
data dependencies formed among concurrent
threads at runtime [6], we feel we can work cau-
sality on DOSs much like we do in multithreaded
systems, provided a few precautions are taken [2].
 What we propose is to describe causal rela-
tions on DOSs through the dynamic data depend-
encies formed among concurrent distributed
threads - hence their importance to our project.
Initially, however, we are only interested in track-
ing distributed threads through successive syn-
chronous remote method calls, or the so-called
caller/callee relationship [2] (as tracking arbitrary
dynamic dependencies would be a lot of work for
an initial implementation).
 3. Semantics: As discussed earlier, we wish
to present the developer with some sort of mid-
dleware view of his distributed system. The most
notorious abstraction not provided by conven-
tional debuggers is that of a distributed thread
(see sec. 3.2 for details). This “middleware view”
allows the developer to treat his distributed object
application “as if” it were a multithreaded appli-
cation, much like the middleware does.

44

3 The software

We now present the basic building blocks of our
implementation and explain their origins and roles.

3.1 Architecture
Our software is based on a widely adopted archi-
tecture for distributed debuggers [8], depicted in
Fig. 1.

Figure 1: architectural view

 Apart from being a requirement to any cen-
tralized debugger, this architecture favors decoup-
ling. In Fig. 1, the small grey spheres represent
application processes to which are attached local
debugging agents, which in turn communicate
through a language-neutral wire protocol with a
central debugging agent living in Eclipse.

Figure 2: interacting parts

 Though our system does not yet reflect this
architecture in its plenitude (see Sec. 3.2 for de-
tails), our intention is evolving the implementa-
tion until it does.
 From an software division point of view
(shown in Fig. 2), there are four interacting parts

that build up our system to which (almost) all
classes can be traced to - namely two infrastruc-
ture components (node lifecycle and configura-
tion), one debugger component (extended
symbolic debugger) and one (could be more) user
interface. All components with the exception of a
few parts in the extended symbolic debugger (the
local agents) run in the same JVM as Eclipse.
 Each of those components play a specific role
in the debugging process - the configuration infra-
structure is responsible for reading information
from the various XML-based configuration files,
instantiating object proxies, assembling instances
and setting up managers that will later on be used
to set up nodes and debugger resources.
 The node lifecycle infrastructure provides
fine-grained control over individual nodes at the
process level and allows for data harvesting and
interaction (more details in Sec. 3.3). The ex-
tended symbolic debugger acts as an omniscient
entity that hovers over the running system, moni-
toring and interacting with it from the outside
through a wire debug protocol. The running appli-
cation is composed of the user application code
itself and is included in the picture for clarifica-
tion purposes only (not part of the debugger).

3.2 Choices and Threads
We have decided to start working with restricted
Java/CORBA environments since the Java Plat-
form Debug Architecture [7] offers support for
remote debugging by means of a well-defined and
established interface (the JDI, or Java Debug In-
terface), allowing us to skip (most of) the local
agent developing efforts as well as the debug wire
protocol implementation. Also, our aim at lan-
guage-independence led us to prefer CORBA over
Java RMI at this early stage of our work.
 While we tried to build the highest level of
the debugger in the most language-neutral fashion
we could, our model must yet grow mature before
it can accommodate all the organizational differ-
ences between the languages we may wish to sup-
port in the future (besides C++ and Java).
 As mentioned earlier, our primary concern at
this point is tracking distributed threads. More
than just tracking, we wish to extend the Eclipse
symbolic debugger so that it can cope with dis-
tributed threads much the same way it does with
“normal” threads. That would include, for in-
stance, allowing the user to step into a CORBA
call and popping at some remote machine without

45

further difficulties – “as if” it were a local call.
 In order to do so, however, we must first
define a distributed thread, then we must map it to
the language level and then somehow manage to
identify, at any point of a given execution, which
local threads map to which distributed threads.
This mapping to the language level must be as
unintrusive as it can, ideally relying exclusively
on the CORBA specification for portability and
making use of as little code instrumentation as
possible. That said, defining distributed threads is
easy enough since they are mainly a corollary of
the synchronous-call mechanism CORBA (and
other middleware) implements. Defining more
precisely, all local threads are either distributed
threads by themselves or are encompassed by a
larger distributed thread to which they are com-
ponents.
 If a local thread is involved in making a (pos-
sibly remote) synchronous call, then the thread
which services this request at the server-side is
part of the same distributed thread. Note that, un-
der normal circumstances, there must be at most
one component thread running per distributed
thread at any given point in time2.Therefore, our
task for tracking distributed threads consists of
tagging local threads with some sort of system-
wide identifier as soon as they get created. This
identifier, once assigned, must get carried along
with the distributed thread across nested call
chains of arbitrary depth.
 The thread id assignment is accomplished
through a classloading instrumentation scheme
that modifies all classes implementing the Run-
nable interface. A code snippet containing our
custom registration code is inserted at the begin-
ning of each run method, causing new threads to
register themselves automatically with a local
registry (or tag repository) when started. This
approach does not break even if the user calls the
run method directly.
 The propagation of the thread id, on the other
hand, is accomplished at the interceptor level
through the use of service contexts, providing for
a low-intrusion and portable solution. More de-
tails about this mechanism will be given in a few
paragraphs. Details concerning interceptors and
service contexts can be found in [5]. Our other
(highly related) task - enabling the Eclipse debug-
ger to cope with distributed threads – consisted of
devising a mechanism for automatic placement of

2 We could consider that a safety property.

breakpoints at the CORBA servant level when-
ever a request is made to “step into” a remote
object stub3. A schematic of our full solution is
given in Fig 3.

Figure 3: distributed thread tracking mechanism

 In Figure 3, the application code requests a
new thread, eventually firing an instrumented run
method and executing our code snippet (1), which
automatically registers the newly created thread
with a local registry (2), and associates it with a
system-wide locally-generated thread tag id (3).
 If a step request is made into a local stub, the
global agent marks the current distributed thread
as “remote stepping” and resumes the local com-
ponent thread, causing it to eventually hit an in-
strumented stub, (4) who then queries the local
registry for the current thread tag id and inserts it
into a preallocated PICurrent slot [5]. The request
then resumes its flow until it reaches an installed
client-side interceptor (5), who is responsible for
extracting the current distributed thread id from
the PICurrent slot and transforming it into a ser-
vice context that can go through the wire. The
client-side interceptor may also communicate
with the central agent for non-stepping mode
event tracking purposes. As soon as the request
reaches the server-side it triggers another inter-
ceptor (6) who reads the transported context and
reinserts it into a PICurrent slot, to be accessed
later on by an instrumented servant (7), responsi-
ble for informing the global agent that a distrib-
uted thread has reached its boundaries. The global
agent then decides whether or not to insert a
breakpoint at the servant method and, at the same
time, it gains knowledge of where the distributed
thread will be passing next (for tracking purposes).
When the breakpoint is finally hit (8) the central

3 We actually invented a new stepping mode, the “step
remote”, which works just like “step into” for local
object calls but jumps to remote machines whenever it
detects that the local object is also a CORBA stub.

46

agent works together with the runtime instru-
mented skeleton (7) to avoid possible race condi-
tions. The central agent then resumes step mode at
the servant object method boundary, giving an
illusion to the user sitting in front of Eclipse that
he has “stepped into” a remote object.

3.3 Node Lifecycle
 Our system also implements a node lifecycle
infrastructure that allows for flexible management
and data harvest from remote processes. It allows
the user to configure, via XML, multiple ways of
launching remote JVMs as well as providing fa-
cilities for on-the-fly harvesting of text data from
remote processes standard output (stdout) and
remote error output (stderr). One of the main ob-
jectives of this infrastructure is providing the user
with means for easily setting debug scenarios and
controlling remote processes (launching and then
taking down nodes for simulating failures, for
example). It is useful for automated testing and
could assist in cyclic debugging (for an explana-
tion of cyclic debugging you can refer to [6]). We
currently support those features in integration
with the GNU Secure Shell Client and plain rlogin.

4 Conclusion and Future
Work

 We have taken the first step towards building
an extensible symbolic distributed debugger for
Eclipse which levels middleware abstractions and
allows the developer to think the same way while
debugging and developing. Our work is novel in
the sense that it allows the live tracking of distrib-
uted threads and also in the sense that it provides
an infrastructure for easily setting distributed de-
bugging scenarios, including capabilities for
launching and killing remote processes, simulat-
ing node failure and communicating with remote
processes I/O. The plugin source code is available
for download at http://eclipse.ime.usp.br/projects/
DistributedDebugging.
 This small step is part of a much more ambi-
tious project – there are still many unclosed gaps
and many other distributed debugging issues left
unhandled. Our main focus shall shift from now
on to issues like improving non-intrusiveness,
seeking better ways of instrumenting classes, im-
plementing distributed predicate detection [1] and,
finally, distributed execution replay. Also, Eclipse

integration is still very limited and must be han-
dled properly above all else.

Acknowledgements

This work is supported in part by an Eclipse In-
novation Grant from IBM and by a grant from
CAPES-Brazil.

About the Authors

Giuliano Mega is a graduate student and Fabio
Kon is an Assistant Professor, both in the De-
partment of Computer Science at the University
of São Paulo.

References
[1] I. Tomlinson and V.K. Garg. Detecting

Relational Global Predicates in Distributed
Systems. In Proceedings of the 1993
ACM/ONR Workshop on Parallel and
Distributed Debugging. pages 21-31, USA.

[2] J. Li. Monitoring and Characterization of
Component-Based Systems with Global
Causality Capture. 23rd ICDCS. Providence,
Rhode Island, May 19-22, 2003.

[3] L. Lamport. Time, clocks and the ordering of
events in a distributed system. CACM,
21(7) :558-565, July 1978.

[4] F. Mattern. Virtual Time and Global States of
Distributed Systems. In Proc. Workshop
Parallel and Distributed Algorithms, Elsevier
Science Pub., Amsterdan, 1989, pages 215-
226

[5] Object Management Group. The Common
Object Request Broker : Architecture and
Specification, Revision 3.0.3, March 2004.

[6] R. H. B. Netzer. Optimal tracing and replay
for debugging shared-memory parallel
programs. In Proc. Workshop on Parallel and
Dsitrbuted Debugging, pages 1-10. 1993.

[7] Sun Microsystems. The Java Platform
Debugger Architecture.
http://java.sun.com/products/jpda/index.jsp

[8] IBM Distributed Debugger : Overview.
http://web.ccr.jussieu.fr/ccr/Documentation/C
alcul/usr-share/html/idebug/en_US/concepts/
cbcddovr.htm

