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ABSTRACT

Scheduling parallel and distributed applications efficiently
onto grid environments is a difficult task and a great vari-
ety of scheduling heuristics have been developed aiming to
address this issue. A successful grid resource allocation de-
pends, among other things, on the quality of the available
information about software artifacts and grid resources. In
this paper, we propose a semantic approach to integrate se-
lection of equivalent resources and selection of equivalent
software artifacts in order to improve the schedule of re-
sources suitable for a given set of application execution re-
quirements. We also describe a prototype implementation
of our approach based on the Integrade grid middleware and
experimental results that indicate its benefits.

Categories and Subject Descriptors

H.3.4 [Distributed Systems]|: [Systems and Software, In-
formation Storage and Retrieval]

1. INTRODUCTION

Computational grids are dynamic and heterogeneous envi-
ronments that should deals efficiently with the coordinated
sharing of resources for the solution of computational prob-
lems. A central issue in grid environments is the appropriate
match of grid resources with application requirements. To
our best known, most grid resource management systems
focus their approaches to match grid resources and applica-
tion requirements based only on resource descriptions. Usu-
ally a search engine gets a resource application request and
tries to find a suitable resource or a set of suitable resources
over which an application may runs on. In general, resource
discovery mechanisms, perform an exact matching of appli-
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cation requirements with attribute-based resources descrip-
tions. More flexible mechanisms, as shown in [11], allow
asymmetrical matching of inexact or incomplete application
requirements with ontology-based resource descriptions.

A successful grid resource allocation depends, among other
things, on the quality of the available information about
software artifacts and grid resources. Strategies for appli-
cation scheduling and scheduling algorithms are based on
descriptions of resource attributes and applications require-
ments and preferences. So, the way how this information is
captured, stored, organized, and made available plays a rele-
vant role in resource matching activities. Every one of these
tasks is built around the available grid resources and appli-
cations metadata. Grid metadata permeates and connects
them. From our point of view, the grid metadata design
can affect the execution of tasks in different and relevant
ways. In order to face this problem, we propose a semantic
approach, based on ontologies, intendend for efficient appli-
cation execution on the grid.

Ontologies can improve the quality of information about
grid software and resource. They enable reuse of domain
knowledge, the sharing of common understanding about do-
main concepts, explicit definition of domain assumptions,
and interoperability enhancement among other important
features, in different grid domains. A worthwhile grid on-
tology should comprise a taxonomy of grid concepts, prop-
erties, and axioms which can be reused in different contexts
and by other ontologies. Such ontology, used in conjunction
with inference tools, provides a flexible and powerful way of
reasoning about grid elements.

In this paper, we present a set of related extensible grid
ontologies and describe how this semantic approach may be
used on grid environments, highlighting resource matching
for scheduling application execution requests. Our proto-
type implementation uses the InteGrade grid middleware
[6]. Integrade follows an opportunist approach, taking ad-
vantage of idle computational resources for executing exten-
sive parallel applications. We describe how our semantic
approach could be integrated to Integrade in order to allow
better management and effective reuse of software and grid
resources. We also performed experiments, comparing the
results of the conventional resource matching approach with
the semantic one. The results sustain our claim that seman-
tics improve the reuse, sharing, and integration of software
and computational resources on grid environments.

This paper is organized as follows: Section 2 introduces
semantic grid concepts and presents a set of grid ontologies
and their relation mechanisms on the knowledge base. Sec-



tion 3 explores the use of semantics on grid environments
considering two related scenarios. Section 4 describes our
prototype based on the Integrade middleware. Section 5
describes the experiments performed and compares the se-
mantic approach for resource matching with the Integrade
conventional one. Section 6 describes some relevant related
works, comparing them with our approach, while Section 7
presents our conclusions and describes future directions of
this work.

2. DEFINING THE GRID ONTOLOGIES

De Roure et al. [5] define semantic grid as “an exten-
sion of the current grid in which information and services
are given a well-defined meaning, better enabling computers
and people to work in cooperation”. Semantic grid, as se-
mantic web technologies, enable integration of applications,
data, resource, and users in specific domains on the grid
and eases automation of middleware tasks, such as select-
ing grid resources for application execution based on their
requirements [10].

Our grid ontologies are described with OWL [4], a W3C
recommended ontology language. OWL embodies the so
called Classical Paradigm: a modelling paradigm based on
characteristics appropriate to the open environment of the
semantic web [9]. In this paper, we explore cases of infer-
encing and querying a grid ontology based on OWL-DL, a
sublanguage of OWL.

Ontologies in OWL-DL can be processed by a reasoner,
through inference, to meet different goals. Conclusions not
explicitly presented in the knowledge base can be inferred
from rules and axioms in this base, finding what is necessar-
ily true and consistent with the system axioms. Subsump-
tion inference task produces a class hierarchy based on the
classes description. It enables one to construct an asserted
hierarchy and let a reasoner engine infer and maintain any
additional inheritance relation. Such task is related to the
domain definition knowledge and, in general, it is useful to
perform most inferences in advance, since inferences will ap-
ply to a domain as a whole. The reasoner can also perform
consistency checking, and computation of inferred type.

We used the Protégé-OWL tool [7] to enter the proposed
set of grid ontologies and to work on refining it. This tool
enables the creation of an extensible OWL ontology, includ-
ing classes, properties, restrictions on classes, and individu-
als (instances). Additionally, reasoning to check consistency
and to infer class hierarchy was performed through a con-
nected Pellet [12] reasoning tool.

We defined our system architecture based on the grid sys-
tem ontology described in [15], which includes a large and
unordered variety of different, although related, concepts,
properties, and axioms. That ontology was an exploratory
approach to expose the taxonomic and reasoning possibili-
ties on the grid domain. In order to improve the knowledge
base maintenance and scalability, we separated the original
ontology in a set of related ontologies of three types: upper-
level ontologies, ancillary ontologies, and concrete ontolo-
gies.

An upper-level ontology or top-level ontology, as defined in
[3], is an ”ontology that describes knowledge at higher levels
of generality”. In general, upper-level ontologies are used to
describe basic concepts that can be extended in more spe-
cific ontologies. Ancillary ontologies contains domain spe-
cific concepts. We consider as ancillary an ontology that

support another one, but performing a less important role.
Concrete grid ontologies extends the upper-level ontologies
to describe specific grid concepts, reusing the top ontolo-
gies. These different ontologies can be connected through
an ¢mport mechanism.

The import mechanism allows an ontology to import other
ontology. This mechanism enables to refer and extend all
concepts and properties of the imported ontology, enhanc-
ing knowledge reuse and sharing. Concepts and properties
from the imported ontology receive a prefix referring to the
related name space. Other known mechanisms to relate on-
tologies, not explored in this work, are the so called mapping
and e-connection mechanisms. These approaches are rele-
vant to improve the knowledge base scalability.

In our knowledge base prototype, we have one upper-level
ontology, which is called the Grid Base Ontology, one an-
cillary ontology, the Platform Ontology, and a concrete grid
ontology, the Grid Resource Management Ontology.

Figure 1 shows the asserted class hierarchy of a specific
Platform Ontology branch, the operating system branch.
The Platform Ontology contains a short class hierarchy and
related properties about the computational platform do-
main. It includes, among others, concepts such as operating
systems, architectures and processors. This hierarchy can
be extended with new concrete concepts, allowing to obtain
new knowledge from incomplete asserted information and
based on axioms defined in the ontology. Figure 2 presents
the asserted class hierarchy of another specific Platform On-
tology branch, the processor branch.
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Figure 1: Platform Ontology - OS branch

The Grid Base Ontology initially acts as a fundamental
taxonomy encompassing the main concepts related to grid
systems. It contains concepts, properties and axioms which
can be considered common to grid domain application and
users. Figure 3, generated by the Protégé-OWL tool, shows
the asserted class hierarchy of the Grid Base Ontology. The
class hierarchy is based on two root concepts: Grid Soft-
ware Concepts and Grid Resource Concepts. The former
encompasses other related concepts, such as Domain, Prob-
lem, Approach, Algorithm, Application, Software Artifacts,
and so on. These concepts are sufficiently high level to be
extended by Grid Application Developers to describe more
specifically their domains, problems, and related software
solutions. Grid Resource Concepts encompasses concepts
related to grid computational resources, such as Computer,
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Figure 2: Platform Ontology - Processors

Cluster, DiskSpace, MemorySpace, and Platform. These
concepts, in turn, can be extended by the Grid Manager to
describe a concrete computational grid infrastructure. The
upper-level ontology imports an ancillary ontology, the Plat-
form Ontology, and reuse its concepts and properties.
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Figure 3: Grid Base Ontology

An example of a more specific grid ontology is the Grid
Resource Management Ontology. In order to improve vis-
ibility, we separated parts of this ontology in two distinct
figures. A set of more general software related concepts is
presented in Figure 4, while some concepts related to soft-
ware artifacts are shown in Figure 5. This ontology imports
the Grid Base Ontology showed in Figure 3. The set of de-
scribed concepts includes a specific domain, Data Mining
Domain, and some of its specific related concepts, also de-
rived from the Grid Base Ontology, such as Data Mining
Problems, Classification Approaches, and so on. Other dif-
ferent domains and their related concepts can be created as
extensions of the Grid Base Ontology, such as Mathematic
and Biology. The complete set of ontologies is available for
download at http://www.deinf.ufma.br/~vidal/GBOS/.
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Figure 5: GRM Ontology - software artifacts

3. EXPLORING THE ONTOLOGIES

This section describes two scenarios of exploring the on-
tologies in order to improve resource management on grid
environments. Initially, we discuss how grid scheduling can
take advantage of a semantic resource pre-selection. After-
wards, we describe how the proposed ontologies can leverage
the grid usage as a distributed and integrated application
repository.

For both the scenarios, we adopted an inference in ad-
vance policy, for the whole set of involved ontologies. A
subsumption inference updates the knowledge base in a suit-
able frequency. The inferred knowledge base contains new
inheritance relationships, extending the available metadata
with new semantic information.

3.1 Semantic Grid Scheduling

According to [17], a schedule is a mapping of tasks to
time and computational resources and the scheduling prob-
lem consists in computing a schedule that optimizes some
metric. The grid resources and applications metadata play
a crucial role in such scheduling task, since they describe
resource features and application requirements in the grid
context.

Grids are heterogeneous environments. In the same way,
grid metadata themselves are also heterogeneous. Such het-
erogeneity makes it difficult to explore grid resources effi-
ciently. For example, different virtual organizations may em-
ploy distinct terminologies to describe a same grid resource.
As a result, the integration of related grid resources is not
an easy task. A semantic approach can mitigate this prob-
lem enabling the identification of related resources based on
ontologies concepts and axioms.

In general, whenever a grid user requests an application



execution, the grid middleware schedules a set of resources
for performing the computation. A semantic approach can
also achieve better resource matching than an approach based
on exact matching of metadata attributes, leading to more
alternative nodes for scheduling the application. This is due
to the fact that, through an inference policy, which extends
the set of selected resources, the grid middleware can dis-
cover interchangeable or equivalent resources, considering
the user restrictions for a given application submission (such
as the required minimum memory and processing power).

3.2 Semantic Application Repository

Computer grids have been used to solve problems in var-
ied areas of scientific, enterprise, and industrial activities,
such as: computational biology, image processing for medi-
cal diagnosis, weather forecast, high energy physics, market-
ing simulations, and oil prospection. Grid computing em-
powers the conception of a new generation of applications
that allow combining computations, experiments, observa-
tions, and data got in real time. The phenomena modeled
by these applications require diverse software components
whose compositions and interactions are extremely dynamic.
Under particular conditions, application executables in a do-
main can be interchangeable and software components can
be reused in different domains. We propose to leverage the
grid usage as a distributed and integrated repository of soft-
ware artifacts through the use of metadata.

To be able to select the best application component for
each situation, it is important to have the means to classify
these software artifacts and be capable of explicitly reason-
ing about them. The search mechanism for a software ar-
tifact should also be flexible, as far as possible, allowing to
obtain equivalent alternatives for a proposed query.

Using our proposed ontologies, each virtual organization
could feed the knowledge base during the application reg-
istering process, either extending the hierarchy of software
concepts or creating individuals ones to represent the soft-
ware component. Later on, the knowledge base could be
enhanced through a subsumption inference. Some kind of
bulk policies may be adopted, reducing the reasoner cost.
Our semantic data structure privileges the class hierarchy
and the subsumption inference, since both abstractions are
central in ontology based approaches.

4. INTEGRADE BASED PROTOTYPE

The Integrade project [6] is a multi-university effort to
build a novel grid computing middleware infrastructure to
leverage the idle computing power of personal workstations
for the execution of computationally-intensive parallel ap-
plications.

The basic architectural unit of an Integrade grid is the
cluster, a collection of machines usually connected by a lo-
cal network. Clusters can be organized in a hierarchy, al-
lowing to encompass a large number of machines. They can
also be organized in a P2P fashion. Each cluster contains a
Cluster Manager node that executes Integrade components
responsible for managing the cluster computing resources
and for inter-cluster communication. Other cluster nodes
are called Workstations, which export part of its resources
to Grid users. They can be shared or dedicated machines.

! Homepage: www.integrade.org.br

Integrade currently allows the execution of three applica-
tion classes: (a) regular applications, where the executable
code is assigned to a single grid node; (b) parametric or BoT
applications, where several copies of the executable code are
assigned to different grid nodes and each of them processes
a subset of the input data independently and without ex-
changing data; (c) parallel applications following the BSP
or MPI model whose processes occasionally exchange data
between themselves.

We developed on Integrade a prototype of a Semantic Grid
Integration Architecture, shown in Figure 6. Its main com-
ponent is the SGIC Semantic Grid Integration Component,
which is a facade module composed of two other functional
specific components:

1. Semantic Metadata Manager (SMM): responsible for
managing the semantic metadata. It allows to load and
save the semantic metadata, to perform class hierar-
chy inferences, to check ontologies consistency, and to
perform computation of inferred types. The current
implementation of this component uses the Protégé-
OWL API and the Pellet inference tool;

2. Semantic Grid Resource Manager (SGRM): responsi-
ble for managing grid resources, performing functions
such as resource and application selection for resolv-
ing a given user query or execution submission. The
current component implementation uses a query inter-
face based on the Protégé-OWL API and the SPARQL
query language.
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Figure 6: Semantic Grid Integration Architecture

While the described prototype was based on the Integrade
grid middleware, our Semantic Grid Integration Architec-
ture is sufficiently general in order to be ported to other
grid software infrastructures with minimum effort.

S. MODEL EVALUATION

In order to evaluate our approach and demonstrate its use-
fulness, we performed experiments in a scenario of resource
scheduling for application submissions, comparing the re-
sult of the conventional InteGrade resource selection with
the one obtained with our semantic enhancements.

The grid environment hardware considered on the exper-
iments is described on Table 1. Platforms P1, P2, P3, P6,
and P7 execute the i686 GNU /Linux operating system,



platforms P4 and P5 the amd_64 GNU /Linux, and plat-
form P8 the PowerPC_Darwin operating system. From
the application execution perspective, platforms P1, P2, P3,
P6, and P7 are equivalents and they correspond to 19 grid
nodes. Platforms P4 and P5 are also equivalent and the grid
environment has one node of each type, comprising two grid
nodes. Only one grid node follows platform P8, which has
none equivalent platform.

Types of Hardware Platforms

Type Platforms

P1 Intel(R) Pentium(R) 4 CPU 3.00GHz
P2 AMD Athlon(tm) XP 2800+

P3 Intel(R) Xeon(TM) CPU 3.00GHz

P4 AMD Athlon(tm) 64 Processor 3200+
P5 AMD Athlon(tm) 64 Processor 3000+
P6 Intel(R) Pentium(R) 4 CPU 2.80GHz
P7 Intel(R) Pentium(R) D CPU 2.80GHz
P8 Power PC G4

Table 1: Hardware Platform types

For performing the experiments, we used several software
artifacts consisting of a set of algorithms for Image Texture
Analysis (ITA), which are related to the Pattern Recogni-
tion domain. The algorithms describe conventional texture
analysis methods, e.g. the Gray-Level Run-Length Method
(GLRLM) and the Spatial Gray Level Dependency Method
(SGLDM), used to extract characteristics from a given im-
age [8]. The algorithms can be used in different horizontal
domains, such as aerial photo image analysis for geographic
researches and tomography image analysis for cancer diag-
nosis. The methods used by the different algorithms lead
to different CPU and memory requirements but, under a
specific context, these algorithms could replace each others.
Table 2 shows the used set of algorithms and applications
and the suitable platforms for executing each one of them,
considering the available executable binaries.

Suitable Platforms and Nodes
Application | Platforms | #nodes
SGLDM_App P1 8
GLRLM_App | P5 e P8 2
GLDM_App P4 1
PSM_App P4 1

Table 2: ITA available software artifacts

On InteGrade, during the submission process the user can
either select a specific application executable binary or an
application, in a more general sense, to be executed by the
grid. In the first case, the middleware will try to identify
the nodes on the local cluster whose platforms are described
exactly as the platform description of the correspondent bi-
nary. The second case is more flexible, in the sense that the
middleware will try to first discover all available executa-
bles of the selected application. Such approach increases
the set of suitable platforms to execute the application and,
potentially, will increase the number of available machines
for application execution.

The experiment consists of submitting a user request for
each ITA application (SGLDM, GLRM, GLDM, and PSM)
for the conventional Integrade middleware and for our ex-
tended version of it (with semantics), comparing the re-
source matching results obtained with both approaches. For

the conventional Integrade, we used the more general case
of submitting an application, since it increases the set of
suitable platforms to execute the application, as explained
on the previous paragraph. As shown on Table 2, there are
binaries for executing the SGLD application on platform P1,
the GLRM application on platforms P5 and P8, and both
GLDM and PSM applications on platform P4.

Table 3 shows the results obtained. The conventional In-
tegrade discovered 8, 2, 1, and 1 nodes available for execut-
ing applications SGLDM, GLRM, GLDM, and PSM, respec-
tively, considering the grid hardware described on Table 1.
The second column of Table 3 (1st Case) shows the results
obtained with our semantic approach using the equivalence
relationships between platforms asserted with the Platform
Ontology. The third column of Table 3 (2nd Case) shows
the results obtained when our semantic approach also con-
siders the use of equivalent applications related to a set of
equivalent algorithms, defined on the Grid Management On-
tology. The better results are due to the fact that algorithms
described through the assertion gbo:describes some Texture-
AnalysisApproach, are inferred to be also subclass of the
class TextureAnalysisApproach. This happens because the
class Texture AnalysisApproach is subclass of the class Algo-
rithm and is also defined by the assertion gbo:describes only
Texture AnalysisApproach. The acronym gbo refers to the
name space of the imported ontology Grid Base Ontology.

Comparison of Scheduling Approaches
Application #Selected Nodes by approach
InteGrade Semantic
1st Case | 2nd Case
SGLDM_App 8 19 22
GLRLM_App 2 3 22
GLDM_App 1 2 22
PSM_App 1 2 22

Table 3: Comparison of scheduling approach results

As the experimental results demonstrated, the use of se-
mantics can increase the amount of possibilities for execu-
tion a given user submission, since each application can be
related to different equivalent executables. In the same way,
each executable can be related to different equivalent plat-
forms, leading to better resource matching results. This is
just one advantage of exploring the use of semantics on grid
environments, as described on Section 3.

6. RELATED WORK

The Core Grid Ontology (CGO), described in [16], pro-
vides a common knowledge base about grid systems. CGO
is an extensible grid system ontology that expresses funda-
mental grid-specific concepts and relationships. However,
our focus is on improving grid tasks, such as discovering ap-
plications and suitable resources on the grid, while exploring
reasoning capabilities and query languages.

Cannataro [2] describes the Data Mining for Grid Pro-
gramming project which uses an ontology (DAMON) for
the data mining domain. DAMON exploits only one spe-
cific grid application domain, namely, data mining, while
we propose a more general approach to the management of
grid content and resources.

Matching of grid resources and application requirements
is largely explored by semantic grid applications. Brook et



al. [1] propose a semantic approach to build a broker of
resources described by different grid middleware, aiming to
provide seamless access to resources on the grid. Tangmu-
narunkit et al. [14] introduce a similar approach. In a simi-
lar way, [11] describes an asymmetric mapping between ap-
plications and resources based on incomplete application re-
quirement description. Somasundaram et al. [13] propose an
ontology template component integrated with a grid service
broker. All of them propose an ontology-based matching of
task requirements and grid resource policies. Our work, in
comparison, aims to integrate the search and matching of
applications and grid resource description within a compre-
hensive perspective.

In our approach we borrow the general idea of decoupled
scheduling from [17]. However, while they try to reduce
the amount of resources selected aiming to optimize some
scheduling algorithm, our work aims to identify the max-
imum amount of suitable resources for satisfying an user
request in a grid cluster.

7. CONCLUSION AND FUTURE WORK

This work explores the use of ontologies to describe core
concepts related to grid applications and resources. Such on-
tologies are related between them through an import mech-
anism and can be extended either by adding new classes
and individuals to a specific ontology or by connecting new
ontologies derived from the top level ontologies.

We described some important scenarios for exploring the
knowledge base that can be constructed through the use of
the proposed ontologies and the inference mechanisms that
can improve the performance of grid scheduling and leverage
the grid usage as a distributed and integrated application
repository, leading to better discovery and composition of
software artifacts. We propose a Semantic Grid Integration
Architecture based on the Protégé-OWL API and the Pellet
reasoner to be used for grid knowledge base maintenance
and to explore the described scenarios. A prototype was
developed using the Integrade grid middleware as its base.

We also evaluated our approach, comparing the resource
matching results for application submissions obtained with
and without the use of semantics, sustaining the conclusion
that the use of semantics can lead to substantial gains in
resource management on grid environments.

The future directions of this work includes the investiga-
tion of the semantic relations between ontologies which have
intersection (mapping) and between disjointed ontologies (e-
connections), which comprehends a relevant aspect in order
to improve scalability of the knowledge base.
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