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A B S T R A C T

During the past 100 years, many large cities around the world prioritized individual transportation in cars over
more sustainable and healthier modes of transportation. As a result, traffic jams, air pollution, and fatal accidents
are a daily reality in most metropolis, in both developed and developing countries. On the other hand, walking
and bicycling are effective means of transportation for short to medium distances that offer advantages to both
the city environment and the health of its citizens. While there is a large body of research in modeling and
analysis of urban mobility based on motorized vehicles, there is much less research focusing on non-motorized
vehicles, and almost no research on comparing pedestrian and cyclist behavior. In this paper, we present a
detailed quantitative analysis of two datasets, for the same period and location, covering pedestrian and bike
sharing mobility. We contrast the mobility patterns in the two modes and discuss their implications. We show
how pedestrian and bike mobility are affected by temperature, precipitation and time of day. We also analyze the
spatial distribution of non-motorized trips in Greater Boston and characterize the associated network of mobility
flows with respect to multiple metrics. This work contributes to a better understanding of the characteristics of
non-motorized urban mobility with respect to distance, duration, time of day, spatial distribution, as well as
sensitivity to the weather.

1. Introduction

Contemporary urban environments are highly affected by the con-
sequences of car traffic: noise and air pollution, accidents, and fatalities
are the most frequent phenomena that are detrimental to the urban
experience, worldwide. Minimizing individual motorized mobility in
cities is an objective of many municipalities and policy makers, to im-
prove health conditions for citizens and increase environmental quality
in urban spaces. One of the most compelling reasons to reduce auto-
mobile dependence is health: planning cities for health had been for-
gotten since the urban sanitarian movement in the mid-nineteenth
century (Corburn, 2007). In the past two decades, a renewed interest in
the connection between health and cities has arisen from concerns
about obesity, physical inactivity, pollution, climate change, and road
traffic injuries. Physical inactivity is one of the most important health
challenges of the 21st century because of its influence on the most
deadly chronic diseases. Therefore, transportation and planning policies

promoting active modes of transportation, such as walking and cycling,
as alternatives to private motor vehicles can contribute to improve
health, with the potential of gaining further co-benefits such as con-
gestion mitigation (De Nazelle et al., 2011). In this context, the concept
of the walkable city has been widely investigated from different points
of view. One of the most enlightening definitions has been given by
Southworth (2005) who states that “Walkability is the extent to which
the built environment supports and encourages walking by providing
for pedestrian comfort and safety, connecting people with varied des-
tinations within a reasonable amount of time and effort, and offering
visual interest in journeys throughout the network.” The advantages of
a walkable city are numerous, are widely recognized, and affect mul-
tiple domains: walkable environments promote social and cultural in-
clusion, guarantee accessibility and safety, are linked to a higher at-
tractiveness of urban spaces and better environmental quality.
Numerous studies have analyzed correspondences between urban
morphology and walking behavior (Handy et al., 2002; Forsyth et al.,
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2008; Forsyth, 2015), highlighting the influence of safety, vegetation,
compactness, and diversity. These studies have employed GIS datasets
that describe urban characteristics and, more recently, datasets that
collect walking behavior.

Nevertheless, even in appropriate environments, walking is severely
limited by the distance it can cover. To close the gap between pedes-
trian and automobile mobility, bicycles represent a promising active
mode of transportation. In recent years, the increasing presence of bike
sharing systems in Europe, Asia, and the Americas has addressed the
growing demand for non-motorized mobility. This increase in cycling
not only fosters the foundations of a sustainable city, but it also brings
crucial benefits for health and well being; it both replaces vehicle use
(Rojas-Rueda et al., 2012) and promotes physical activity. Bike sharing
systems also generate a large amount of data that enables quantitative
studies of bicycle-based mobility. Bike sharing has grown rapidly in the
past decade, since the first large-scale system was deployed in Paris in
2007. Currently, over 400 cities in the Americas, Europe, and Asia have
at least one Bike Sharing System with the number of available bikes
worldwide growing every month.1

Data from the USDOT 2017 National Household Travel Survey in-
dicate that 35% of car trips in the USA were shorter than 2 miles, and
almost half of them were less than 3 miles (USDOT, 2018). This is a
distance that, in several situations, could be covered with either
walking or cycling. The same survey shows that only 10.5% of the trips
use walking as its mode while only 1% of the trips are based on bi-
cycles. Thus, at least in the USA, there is a large room for improvement
towards a larger share of non-motorized mobility modes, with its as-
sociated environmental and health benefits.

Several studies have already illustrated potentials of bike use and
walking (Pucher et al., 2011; Griffin et al., 2014). The novelty of the
present study is to perform a quantitative comparison of both mobility
modes, in the same spatial and temporal domain. To this end, we em-
ployed datasets for the Greater Boston area covering the same period
(May 2014 to May 2015). The analyzed area consists of approximately
of 200 km2 and total population of approximately 900,000 in 2016. Due
to its compact structure, Boston is one of the most walkable cities in the
United States (Vanky et al., 2017) and, also, a relatively bike-friendly
city, having received a silver-medal award (LAB, 2018) from the League
of American Bicyclists in 2017.

The anonymized human trace data was collected from an activity-
tracking mobile phone application. The data, which includes about 260
thousand pedestrian trips of nearly 6 thousand users from May 2014 to
May 2015, record GPS locations and walking behavior of individuals in
the Boston metropolitan area.

Boston's pioneering bike-sharing system, Hubway, was launched in
2011 and it has been growing since then. In 2018, its name changed to
BlueBikes and it now has over 1800 bicycles and 308 dock stations
across Boston, Brookline, Cambridge, and Somerville. For the analysis
described in this paper, we utilized open data from the Hubway system,
which describes the origin, destination, and timestamps of each in-
dividual trip in the period under study, totaling nearly 800 thousand
trips.

The main contribution of this paper is a novel data-driven analysis
and comparison method between pedestrian and cycling mobility da-
tasets. The method is illustrated with two datasets covering the same
area and the same one-year period. We discuss the similarities and
differences between the two modes of transportation, showing that they
serve different, complementary purposes. We identify and quantify how
non-motorized mobility is affected by weather, time, distance, and
duration and characterize its spatial mobility flows in terms of network
metrics. These findings can serve both as evidence for public policy and
as a basis for further research in the field.

In the next section, we discuss related work on the analysis of

pedestrian and cycling data. Then, we describe our datasets and
methods. The following section presents a comparative analysis of pe-
destrian and cycling mobility patterns with respect to distance, dura-
tion, time of day, geospatial flows, and sensitivity to weather condi-
tions. We finish by presenting our conclusions and discussing future
work.

2. Related work

Combining bike and pedestrian data offers the opportunity to
evaluate non-motorized mobility in a wider perspective, considering
not only the recreational character of these modes of transportation.
Unlike most vigorous physical activities engaged in for health or re-
creational purposes, walking and cycling can be undertaken for mul-
tiple purposes. Walking and cycling can be done for leisure, recreation,
or exercise; for occupational purposes; and for basic transportation,
including shopping or going to work (Saelens et al., 2003).

In fact, besides increasing physical activity, biking and walking are
basic modes of transportation, particularly in dense urban environ-
ments. Rietveld (2001) points out that “transport statistics are usually
formulated in terms of ‘main’ transport mode. This leads to a systematic
underestimation of non-motorized transport modes. Even in the case of
car trips, walking to and from the parking place is an inevitable element
of the chain. The same holds true for walking and biking to the bus stop
or the railway station. A consequence of this complementarity is that
when the various trip elements are considered, the share of bike and
walking is much higher.”

Still according to Rietveld (2001), in multimodal chains, pedestrians
dominate the scene and bicycles are rather important in particular in
train related public transport trips. Bike mobility is relevant for the
activities at the end of train routes; non-motorized transport modes can
be faster than bus or tram, especially when aspects like rescheduling
costs and uncertainty costs are taken into account: because of their
time-continuous character, these non-motorized modes do not give rise
to the risk of missing a connection in a chain. Furthermore, individual
characteristics such as age, income, and physical abilities play a role
and income can be an essential feature to include in the evaluation.

Another frequently mentioned factor is infrastructure: bicycle paths
may be essential to improve the convenience and safety of bicycle trips
(Pucher et al., 1999) and could contribute to the community as a whole
over the longer term. For example, a new bicycle path, if extensively
used, may prompt or stimulate development and increased private in-
vestment (Krizek et al., 2009). Factors such as topography and points of
interest also influence the “bikeability” of a certain region (Winters
et al., 2013). Finally, social influences (family and neighbors) also have
a significant impact on the willingness to walk and to cycle (Pikora
et al., 2003).

Despite their increasingly recognized potential as a solution to
several pressing problems, walking and cycling remain the most un-
derstudied – and least understood – modes of travel. Complicating the
study of walking and cycling as modes of transportation is their fre-
quent use for exercise and recreation rather than for travel (Krizek
et al., 2009), mainly in the past decades. Despite individual preferences,
replacing motorized mobility by cycling and walk brings up the ne-
cessity of considering these modes as part of the complex network of
urban mobility. Because transport demands are diverse, increasing
transport system diversity tends to increase efficiency and equity by
allowing each mode to be used for what it does best (Litman, 2015).
Conventional transportation analysis (and policy) often groups walking
and cycling together as non-motorized modes, thereby implying that
such travel serves similar purposes and markets. Both activities are
human powered and entail greater direct exposure to environmental
conditions than transit or cars (Krizek et al., 2009). Nevertheless, our
studies help unveiling that, despite being non-motorized, cycling and
walking present substantially different features and, as such, should be
considered distinct transport modes.1 See http://bikes.oobrien.com for a list of active bike sharing systems.
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Recent related works have used similar pedestrian datasets to un-
derstand human mobility patterns at a high resolution, both in a tem-
poral and spatial scale. Vanky et al. (2017) examined the association
between meteorological (weather) conditions in a given location and
pedestrian trips frequency and duration with the use of geolocated di-
gital data. These associations were determined for seasonality, urban
microclimate, and commuting. While previous studies were often con-
strained to small spatial units of analysis, the increasing ubiquity of
mobile devices offers opportunities to obtain new data to understand
human activity. Leveraging these data offers an unprecedented oppor-
tunity to understand human mobility patterns at a substantial temporal
and spatial scale, with a level of detail heretofore unavailable. Santucci
et al. (2018) uses presence as an indicator for walkability by relating it
to additional layers to provide an accurate model of the urban mor-
phology. Their case study presents a methodology on how human
walking activities can be sensed, quantified, and applied to determine
the impact of the urban morphology and its effects on climate at a
micro-scale. The study also reveals how people flows react to highly
fluctuating microclimatic conditions and how pedestrians respond to
the variability of the urban environment. Quercia et al. (2014) pro-
posed an alternative algorithm to the shortest distance path to identify
the most walkable routes based on qualitative measures of environ-
mental perception extracted from Flickr metadata, validating their
work with a controlled experiment with 84 participants.

There is a large body of research analyzing bike sharing data since
providers started to release its data a few years ago. Most previous work
on bike sharing data analysis focuses on usage patterns of individual
bicycle dock stations (O'Brien et al., 2014; Faghih-Imani et al., 2014;
Sarkar et al., 2015; Wang et al., 2016). Research that focused on mo-
bility patterns many times focuses on the flows from one individual
dock station to the other (Corcoran et al., 2014; Zhang et al., 2018). The
problem is that stations are normally distributed unevenly across the
city and each individual station is a too fine unit of analysis that does
not provide an overall picture of city mobility dynamics. In a more
recent study, Zhou (2015) used a clustering algorithm to group together
trips connecting dock stations in Chicago and help identifying spatio-
temporal patterns of biking behavior. Austwick et al. (2013) studied the
complex network structure of the bike-sharing system on five different
cities, and identified similarities in aggregated statistics such as the
travel distances or the presence of clusters of dock stations.

To the best of our knowledge, no previous research has performed a
comparative analysis of walking and cycling activity as presented in
this paper. Similar (non-comparative) analysis in the past were based
on small datasets or questionnaire data while our research is based on
mathematical analysis of large datasets collected with GPS from real
trips. In our research, we not only identify the influence of multiple
metrics on walking and cycling, but we also quantify it based on data
analysis. Finally, our comparisons were derived from the analyzed data
using our flow-based method, which is also not prevalent in the lit-
erature.

A recent development in non-motorized mobility is the emergence
of scooter-sharing systems, which became popular in 2018 and are now
being deployed in a variety of cities. Preliminary work comparing a
dockless scooter-share system with a bike-share system was performed
by McKenzie (2019). The work is limited to analyzing the time and
distance covered by the trips as well as the neighborhoods where they
occur, but it already shows significant differences between the two
modes, indicating that further research in this direction can be inter-
esting.

3. Datasets and methods

The employed datasets refer to the Greater Boston urbanized area,
Massachusetts. From a geographic point of view, the area is char-
acterized by the presence of important natural features such as the coast
to the Atlantic Ocean, the Charles River, numerous lakes and

orographic variations. The urbanized area has different morphological
patterns: while Boston's center has a dense mid to high-rise urban
morphology derived from historic paths, the more peripheral areas
have low density characteristics; in some cases, they can be associated
with those of the urban sprawl. The urbanized area has a polycentric
structure, where the centers of the different municipalities (i.e.:
Harvard Square in Cambridge, Downtown and Backbay in Boston,
Union square in Somerville) constitute the vital nodes.

To establish a connection between the urban geography and the
employed data sets, we used an unbiased 100 × 100 grid that we dis-
tributed across the area, overlaying it to the urban structure.

The walking dataset was collected from an activity-oriented mobile
phone application. The data, which includes about 260,000 trips of
over 6000 anonymous users from May 2014 to May 2015, record GPS
locations and walking behavior of anonymous individuals in the
Greater Boston area. The data indicates the trip start and ending co-
ordinates with specific timestamps, associated to individual informa-
tion through a unique user Id. For an additional anonymization, a
random distance of up to 100 m was erased from the start and ending of
each trip to avoid re-identification through reoccurring visited loca-
tions. The walking trajectories consisted originally of a set of geo-
graphic points with corresponding timestamps; due to the noise of the
original GPS locations, the data were normalized using a map-matching
algorithm based on the OpenStreetMap street network to rectify the
mistaken trajectories. The Hidden Markov Map Matching algorithm
(HMM) was used to match the measured longitudes/latitudes in human
trace records to roads (Newson and Krumm, 2009). The HMM algo-
rithm accounts for the GPS noise and the layout of the road network,
and matches the GPS locations to corresponding streets with high ac-
curacy. The uniqueness of this dataset consists of its size and resolution,
although the tracked walking record cannot be attributed to specific
population segments. The data anonymization procedure we applied
due to privacy reasons also brings a contribution to literature and
highlights the need of specific legislation to regulate this issue.

Bike sharing data was collected from the Bluebikes website, the
largest Boston bike-sharing provider.2 For each trip, we use the location
and time of origin and destination. For the analysis involving distances
and speed, we estimate the road distance between two bicycle dock
stations by using the GraphHopper API (http://graphhopper.com)
over OpenStreetMap map; in particular, we use the bike mode route
planner, which provides bike-friendly routes. The bike routes suggested
by the API is around 30% longer than the Euclidean distance, on
average.

The cycling dataset does not contain a user ID for privacy concerns.
The pedestrian dataset does contain a user ID and could support some
analysis on the behavior of individual users. However, as the goal of
this paper is to compare both mobility modes, we focused our analysis
on trips and on the most relevant flows. While their large size brings the
benefits of high resolution and coverage of the population, datasets
collected through smartphone apps are usually lacking information
about users due to privacy regulations. This is also the case with the
pedestrian and bike sharing datasets used in this paper. Thus, we cannot
attribute the observed mobility patterns to any specific population
segment. On the other hand, it is known in the literature that datasets
collected through smartphone apps are typically biased towards rela-
tively younger, better educated, and more affluent population.

Both datasets are jointly processed in Jupyter Notebooks leveraging
Python libraries for data analysis and geovisualization. To identify the
relevant flows, we divide the Greater Boston area using a homogeneous
2-dimensional grid of size 100 × 100 and compute, for each of the
10,000 possible (origin, destination) pairs, how many trips were per-
formed. Depending on the specific analysis under consideration, we
filter the data with respect to different parameters such as trip duration,

2 https://www.bluebikes.com/system-data
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distance, average speed, date, and time.
Fig. 1a shows the wide Greater Boston area and its location in the

Northeast of the USA. Although both bike and pedestrian trips are
spread throughout a large area of over 200 Km2 in the region shown in
the inset of Fig. 1(a), the large majority of the trips are concentrated in
a more central area of approximately 50 Km2 depicted in Fig. 5.

To deal with the same time period, we restricted our analysis to the
portion of the time covered by both datasets and we disregarded the
period before August 2014, when the number of pedestrian trips was
too small. Therefore, we considered all bike and pedestrian trips that
occurred between 2014‐08-01 and 2015-05-01. Furthermore, we re-
moved all bikes trips that left and arrived at the same station. This
resulted in 144,128 pedestrian trips and 795,531 bike trips. Workdays
present similar patterns among themselves but they differ greatly from
weekends, so we normally treat these classes separately. Within a single
day, we investigate three different time periods: morning peak (from
7:00 to 10:00), lunch time (from 11:00 to 14:00) and afternoon peak

(from 17:00 to 20:00) as their patterns differ significantly.
A strong variation in usage is observed in both mobility modes

throughout the study period. The average number of trips per hour in
our datasets reduces significantly during the winter months for both
modes. In particular, bike trips are the most affected since the average
number of trips per hour in the entire dataset drops from 230 in
September to only 13 in February, as shown in Fig. 2a. A more mod-
erate but still significant reduction of trip frequency is observed also in
pedestrian trips, that range from 33 trips per hour in August to 20 trips
per hour in February. Note that these numbers of trips per hour depend
completely on the datasets we have: while the cycling dataset contains
all of the bike-sharing trips of the period, the pedestrian dataset con-
tains only a small portion of all pedestrian trips of the city, i.e., only for
those pedestrians using the mobility app used to track their routes.
Thus, we cannot compare the absolute number of trips in one dataset
with the absolute numbers in the other; we can do only relative ana-
lysis.

Fig. 1. The area under study: (a) the inset shows the 100 × 100 grid over the Great Boston and the location of the bike sharing stations; the inset covers an area of
approximately 200Km2. (b) pedestrian trajectories cover a wider area of approximately 400 Km2 but relatively few of them are outside the area depicted in the inset
of Figure a, which contains the central business district, commercial and educational areas.
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To analyze the impact of weather conditions on non-motorized
mobility, we obtained from weather.com the hourly precipitation
report for the period under study. We considered as precipitation every
event classified as snow, drizzle, Rain, Storm, Thunder, Sleet, Wintry
Mix, and Precipitation. Fig. 2b shows the number of hours of pre-
cipitation per month occurred between 7 am and 7 pm, which is the
time of the day in which the vast majority of the non-motorized trips
happen. As expected, such events were more frequent during the colder
part of the year, which is typical for the Boston area.

4. Comparative analysis

We now proceed with the analysis of both datasets, emphasizing the
similarities and differences we found between the two modes of non-
motorized mobility.

4.1. Distance and duration

In terms of coverage, pedestrian trips in our dataset are spread
throughout a larger area of about 400 Km2 while the bike trips are
concentrated in the 200 Km2 area covered by the bike dock stations.
However, the pedestrian trips in the periphery are very sparse; the large
majority of trips are concentrated in the more densely populated,
commercial, and university areas around city centers as depicted in
Fig. 5.

Fig. 3a shows the distribution of the distances travelled by pedes-
trians and bikes aggregated over the entire time period. We can see that
pedestrian and bike trips typically cover a different range of distances.
In fact, while the 2nd and 3rd quartiles (resulting in 50%) of pedestrian

trips fall between 368 m and 948 m, with a median of 510 m (mean of
789 m), bike trips have 50% of the trips between 1.41 km and 3.42Km,
with a median of 2.2Km (mean of 2.6 km).

Differently, the distributions of travel time, depicted in Fig. 3b,
show a greater similarity between cycling and walking; a large portion
of trips in the two categories falls in the range of 4 to 17 min and both of
them present a log-normal distribution. More specifically, the 2nd and
3rd quartiles of pedestrian trips falls between 3.9 and 12.4 min with a
median of 7 min, while the 2nd and 3rd quartiles of bike trips falls
between 6.1 and 17 min, with a mean of 10.1 min. These findings
corroborate the concept introduced in the 1980s by Yacov Zahavi of
travel time budget, according to which travelers make available a con-
stant amount of time for moving from one place to the other in their
daily routine (Marchetti, 1994).

Undertaking a bike sharing trip has some overhead: it takes a few
minutes to walk to a dock station, select a bicycle and use the App to
request it, remove the bicycle from the rack and start the trip. Thus, it is
normally not worth to use bike sharing for very short trips that take less
than 5 min. Of course, the same does not happen for walking, ex-
plaining while, although the distributions present a similar log-normal
shape, bike trips tend to be a little longer.

4.2. Time of the day

To characterize the typology of trips between pedestrians and bikes
it is important to look at the temporal distribution of the trips over the
day. Fig. 4 shows the distribution of trip departure times for both pe-
destrians and bikes. It is worth noticing the high level of similarity
between both distributions over the entire day, except for the lunch

Fig. 2. (a) Average number of trips per hour for pedestrian and bike sharing on different months; (b) distribution of the number of hours of precipitation on different
months.

Fig. 3. (a) Distribution of the distance covered by the trips (it can be approximated by the grey dotted line, a lognormal with parameters μ= − 0.48 and σ= 0.66,
and by the orange dotted line, a lognormal with parameters μ= 0.76 and σ= 0.62). (b) Distribution of the duration of the trips (it can be approximated by the grey
dotted line, a lognormal with parameters μ= 1.9 and σ= 0.91 and the orange dotted line, a lognormal with parameters μ= 2.34 and σ= 0.70). Note that μ and σ are
the mean and the standard deviation of the logarithm of the values of the distribution.
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time, when walking shows a significantly higher frequency of trips. This
observation supports the intuition that bike mobility is relatively more
important for commuting than walking and that people in Boston tend
to walk to lunch.

4.3. Spatial flows

To compare the spatial flows of the two modes of mobility, we ag-
gregated the bike sharing and pedestrian trips into flows connecting
different regions of the city. As mentioned before, we divided the
greater Boston area by using a 100 × 100 grid, each Grid cell being a
square of side close to 300 m. For each pair of grid cells, we counted the
number of trips connecting those two regions. We then plot the re-
sulting flows on the map, with an arrow whose width and opacity is
proportional to the number of trips represented by that flow, so that
flows with more trips are more prominent and flows with very few trips
tend to disappear in the visualization.3 Finally, to better visualize dif-
ferent mobility patterns, we divided the trips in workday or weekend
and according to the time of the day. Fig. 5 depicts pedestrian mobility
patterns on the left hand side and bike sharing patterns on the right
hand side. The three rows present the patterns in the morning rush hour
(7 am to 10 am), lunch-time (11 am to 2 pm), and afternoon rush hour
(5 pm to 8 pm).

Observing Fig. 5, we can see that bike flows and pedestrian flows
have different purposes. Both present a high concentration around the
major subway and train stations. But bicycles are used mostly to con-
nect the different cities in the Greater Boston and to connect neigh-
borhoods that are 2 to 5 Km away from each other (see scale in the
bottom figures). On the other hand, most pedestrian trips are shorter
and are used to access locations in business and university districts. The
bicycle trips are more concentrated on fewer flows while the pedestrian
trips are more evenly distributed across all major business and uni-
versity areas. On the one hand, we can see a few commuting-style pe-
destrian trips in the morning and afternoon covering longer distances
but most trips are short, within the same area of the city. On the other
hand, most bike sharing trips in the morning and afternoon peaks
present a commuting style (from a residential area to business/educa-
tion area in the morning and vice versa in the afternoon) or are con-
nected to the major subway and train stations.

We can conclude that the overall shape of the flows across the city
demonstrate that pedestrian trips and bike trips serve a different pur-
pose with regard to urban mobility. Although they overlap in trips
between 600 m and 1Km, they mostly complement each other pro-
viding alternative mobility modes for shorter (under 600 m, normally
on foot) and longer (from 1Km to 4Km, normally on a bike) trips.
Combined, they represent a real alternative for decreasing the number
of car trips in contemporary cities since, for instance, as much as 1/3 of
car trips in the USA are shorter than 3.2 Km (USDOT, 2018).

4.4. Network analysis

The network flows illustrated above can be modeled as a weighted
directed network. The vertices of the network are the locations iden-
tified by the grid and the weight of a directed link wij is the number of
trips between i and j in the considered time interval. In network science,
the importance of a vertex can be measured by a centrality metric
(Newman, 2018) such as degree, closeness, betweenness, or Page Rank.
The betweenness centrality is more appropriate in assessing the cen-
trality of a given location on a street network where the shortest path is,
indeed, the most reasonable criterion to navigate a city. However, in
our case, we are not taking into account the street network, and it is not
obvious that a person would select the shortest path on the transition
matrix of locations to reach a destination. In addition, it is worth no-
ticing that the bike network is very dense, which implies that the
shortest path connecting two nodes is in general the link itself. Here, we
are dealing with a directed weighted network representing mobility
flows within a city, thus Page Rank (Page et al., 1999) is a more ap-
propriate metric. The Page Rank of a vertex i on a weighted directed
network is the likelihood that a walker following a biased random walk
on the network will arrive in i after an infinitely long walk. The larger is
the value of the Page Rank, the more important will be the vertex with
respect to the network flow.

We built both the bike and pedestrian networks by aggregating all
the trips occurred between August and April. We then evaluated the
Page Rank for all the vertices of the networks. However, to compare the
results of both networks, we must take into account that just 142 of the
vertices of the bike network have a degree larger than zero. This hap-
pens because not all the grid cells have a bike sharing station.
Differently, 5,571 vertices of the pedestrian network have degree larger
than zero. To visually compare the values, in Fig. 6a, we plotted only
the Page Rank of the vertices with a degree larger than zero on both
networks, i.e., the 142 vertices of the bike network that contains a
station. One can observe a significant weak Pearson correlation of 0.34
between the Page Rank of the vertices of both networks, indicating that
the most important locations in each of the two systems are quite di-
verse. In particular, by looking at the marginal distributions on Fig. 6a,
the pedestrian locations (depicted as the histogram in the top of the
figure) seem to have a high concentration in low values with few lo-
cations with a high value of Page Rank; differently, the respective lo-
cations on the bike network (depicted on the right-hand side of the
figure) seem more uniformly distributed over a wider range of Page
Rank values. That means that the pedestrian network presents a
structure more concentrated on hubs than the bike network.

The hypothesis that the pedestrian network is more concentrated on
hubs is confirmed by looking at the graphical representation of the Gini
coefficient (Gini, 1936; Crucitti et al., 2006) depicted in Fig. 6b. The
Gini coefficient is a measure of inequality commonly used in Eco-
nomics. A specific point in the curve in Fig. 6b indicates that a certain
fraction of the locations has a cumulative fraction of all incoming trips
of the system. In the case of perfect homogeneity, such a curve would
lie on the first bisectrix. The Gini coefficient is a number in [0,1] and is
defined as two times the area between the first bisectrix and the curve.
For the bike sharing network, the Gini coefficient is 0.37, whereas, for
the pedestrian network, it is 0.52, confirming our hypothesis of a hub-
based structure more pronounced for the pedestrian network.4

A hub-based structure, in contrast to a point-to-point structure, is a
fundamental structure in the architecture of contemporary transporta-
tion systems. While the former is characterized by high connectivity
among different locations with few direct connections, the latter re-
quires a larger number of direct point-to-point links to produce a

Fig. 4. Distributions of the departure times.

3 The width and opacity of pedestrian flows are relative to the total number of
pedestrian trips only; the same for the bike-sharing trips.

4 When considering the entire area of the pedestrian network, i.e., not only
the area that overlaps with the bike network, the Gini coefficient is even larger,
0.75.
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Fig. 5. Top mobility flows within Greater Boston.
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similar effect in connectivity. A specific kind of hub-based structure, the
hub-and-spoke structure (O'Kelly and Miller, 1994) is the typical pat-
tern followed by the large national airlines, with most of the flights
connected to a major hub; differently, a point-to-point structure is ty-
pical of new low-cost companies (Alderighi et al., 2005). It is interesting
to note that, in the case of the airline industry, the choice for the hub-
and-spoke approach is a top-down planning decision, while for pedes-
trian mobility, the concentration around hubs is an emergent behavior
from the individual decisions of walkers. It is indeed surprising that, for
the bike-sharing mobility network, where the location of the dock
stations might induce the emergence of hubs, data analysis shows that it
is, in fact, less concentrated in hubs than the pedestrian network. A
possible explanation for this phenomenon (yet to be verified) is that
bike trips are used to reach a relatively larger variety of destinations
(for example, for commuting and other activities), while pedestrian
trips, during weekdays, are highly concentrated on business areas.
Since a bike trip allows the rider to reach a wider area, the hubs tend to
be less pronounced.

To further characterize the network and verify how similar to a hub-
and-spoke structure our networks are, we analyzed the correlation
among the strengths of the nodes (where strength is the sum of the
weights of the links of a node). Two possible kinds of correlations can
be observed: assortative and disassortative mixing. In the case of an
assortative mixing, hubs tend to be connected to other hubs and spokes
to other spokes. In the case of disassortative mixing, hubs tend to be
connected to spokes. An assortative mixing is typical of social systems

such as coauthorship networks, whereas a disassortative mixing is ty-
pical of technological and biological systems such as the Internet or
protein interaction networks (Newman, 2002).

To derive a quantitative measure of this phenomenon, a common
approach is to estimate the average degree of the nearest neighbors of
the nodes of degree k, for each degree (Pastor-Satorras et al., 2001). If
this quantity is positively correlated with k, then an assortative mixing
is observed; on the contrary, if the correlation is negative, the system is
disassortative. In our case, since we are dealing with a directed
weighted network, such metric must be generalized by considering the
strength. Given a network with N nodes and si→, the out-strength of
node i, we can compute:

=
=

s
w
s

si nn
j

N
ij

i
j,

1 (1)

that is the weighted average of the strength of the nearest neighbors of
node i. An equivalent metric can be computed for the in-strength s←. In
the case of the absence of the above mentioned correlation, the ex-
pected si, nn→ is a constant value:

=
=

E s s s
L

[ ]i nn
i

N
i i

,
1 (2)

where L is sum of all link weights. This value refers to the expected
value of si, nn→ in a random network that preserves the strengths si← and
si→ of the original network.

Fig. 6. (a) Scatter plot with marginal distribution of the Page Rank for the vertices with a degree larger than zero for both sets. A significant weak Person correlation
is reported in the legend. (b) Graphical representation of the Gini coefficient for the considered locations, the dotted line is the hypothetical homogeneous dis-
tribution of the trips over the locations.

Fig. 7. Both figures plot the average out-strength of the nearest neighbors of nodes of out-strength s→. The values of out-strength are grouped in logarithmic bins. The
dotted line is the expected null value of no correlation. The figures show that both networks are an assortative mixing.
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The analysis depicted in Fig. 7 shows that the structure of both
networks display clearly an assortative mixing pattern. The same is
observed by considering the in-strength. This behavior differs sub-
stantially from other transportation systems, such as airline networks,
where the spokes are mostly connected to the hubs to improve the
connectivity of the whole system with a small number of direct links
(Bagler, 2008). In the two modes of non-motorized mobility analyzed
here, hubs have a tendency to be connected to hubs, and spokes to be
connected to spokes. A geographical analysis of node strengths in-
dicates that hubs are concentrated in the business and commercial areas
and spokes in the periphery and residential areas.

Another interesting aspect related to directed networks is re-
ciprocity. The reciprocity on an unweighted network is defined as the
fraction of bidirectional links over the total number of links. The re-
ciprocity r is a number in [0,1], where r= 0 indicates a network
composed of only unidirectional links, whereas r= 1 indicates a net-
work composed of only bidirectional links. The reciprocity was gen-
eralized for weighted networks by Squartini et al. (2013) as:

=r
w w
w

min[ , ]i i j ij ji

i i j ij (3)

Using the reciprocity metric we can investigate whether the mobi-
lity flow networks present a commuter behavior – e.g., flows in one
direction in the morning and in the opposite direction in the afternoon –
and to what extent.

To do that, we evaluated the reciprocity during the morning (7 am
to 10 am), during the afternoon (5 pm to 8 pm), and also when ag-
gregating morning and afternoon flows.5 The reciprocity of the morning
network for the pedestrians is 0.13, and for bikes is 0.18. Both values
indicate networks composed mostly by unidirectional links. During the
afternoon the networks show reciprocity of 0.14 and 0.28 for pedes-
trians and bikes respectively. That indicates a slight increase in the
fraction of bidirectional links for the bike networks; this might refer to
bikes being used for running errands such as going to the supermarket.

Interestingly, by aggregating the morning with the afternoon net-
work, the reciprocity of the pedestrian network increases only to 0.14
whereas, for the bikes, the value of reciprocity reaches 0.39. This ob-
servation indicates that cycling is probably used much more for com-
muting than walking as almost 40% of the flows are bidirectional.

To study the local impact of commuting on the top flow links, we
observed the inversion of the flow direction on the 200 links with the
largest number of trips in the morning and afternoon for both pedes-
trian and bikes. Specifically, in Fig. 8 we show the scatter plot of the
values p→, that is the fraction of trips going in a fixed direction on a
specific link, in the morning and the afternoon. In the case of the bike
network (Fig. 8a), a strong anticorrelation of −0.87 between morning
and afternoon of p→ is observed; this confirms our global observation
that the flows of the bike network tend to reverse the direction in the
afternoon. Differently, the p→ for the pedestrian network has a sig-
nificant positive correlation of 0.66, what indicates a strong stability of
the directionality between morning and afternoon, confirming our
global observation. This result confirms recent work on the asymmetry
of pedestrian behavior performed with a different methodology
(Malleson et al., 2018).

The low reciprocity of the pedestrian network does not necessarily
imply that pedestrians are not commuters; in fact, they could select a
different path or mode of transportation in the afternoon. However, the
differences in flow reciprocity observed in our study constitutes a
genuine and relevant difference between the two modes of transpor-
tation.

4.5. Sensitivity to weather conditions

To understand the impact of precipitation on non-motorized mobi-
lity, we must take into account that rainy days are not homogeneously
distributed over the year. In Boston, they are more concentrated during
the Winter period, as shown in Fig. 2b. Since we are interested in
comparing the trip rates during the precipitation hours with the trip
rates during fair (i.e., non-precipitation) hours, we must take into ac-
count the confounding effect of the temperature, which is normally
lower during Winter. In fact, by focusing on all trips occurred between
7 am and 7 pm during weekdays, we observed a significant Pearson
correlation between the number of trips per hour and the temperature
for the bikes of 0.68 (p-value close to 0). Differently, the rate of pe-
destrian trips show a correlation of only 0.25 with the temperature (p-
value of 10−52), showing that walking is less affected by temperature
than cycling.

As depicted in Fig. 2a, trip rate decreases significantly during
winter, which is probably due to a mixed effect involving temperature
and precipitation, the latter, mostly related to a perception of safety. If
we want to compare the reduction of the trip rates due to precipitation
events, first we must quantify the confounding effect coming from other
covariates, such as temperature. If such effect is not negligible, then a
statistical matching technique must be applied to rebalance the sets
under study with respect to the other covariates (Stuart, 2010). One of
the most common metric used to evaluate covariate bias is the stan-
dardized bias (SB) (Pan and Bai, 2015), defined as:

=
+

×SB M M 100%t c
V V
2 2
t c

(4)

where the numerator is the mean difference in the covariate between
treatment and control, and the denominator is the square root of the
average of the variances of the related covariate. Typically, a value of
SB larger than 25% is considered not acceptable. In our case, we
considered the precipitation hours as the treatment and the fair hours
as control. Thus, Mt and Mc are the average temperatures for the fair
and precipitation hours respectively, and Vt and Vc are the related
variances. The SB of the temperature covariate of pedestrians is 53%,
whereas for the bikes is 42%. In both cases the SB is significantly
high, and the comparison of the trip rates between treatment and
control cannot be done directly without incurring in a bias. Thus, we
used a bootstrap matching technique on temperature intervals (bins)
to reduce the standardized bias (Dehejia and Wahba, 1999). In par-
ticular, we split the temperature in bins of 10 degrees Fahrenheit. For
each bin of temperature t, we have four sets: nfb(t) fair hour records
for the bikes, nfp(t) fair hour records for the pedestrians, npb(t) and
npp(t) precipitation hour records for bikes and pedestrian, respec-
tively. To rebalance the sets, we created bootstrap replicas of the
records of the four sets with a sampling with replacement of n
(t) = min {nfb(t),npb(t),nfp(t),npp(t)} elements from each set. We per-
formed 10,000 bootstrap copies of the four sets by aggregating the
bootstrap for every temperature bin. This procedure successfully re-
duced the SB of the temperature for both pedestrians and bikes.
Specifically, the average value SB among the bootstrap copies was
1.5% for pedestrians and 1.4% for bikes, with a 95% confidence in-
terval of (0.2%, 3.1%) and (0.1%, 3.0%) respectively. As a result, the
average trip rates during the precipitation hours was significantly
smaller than during fair hours, both for bikes and pedestrians, as
shown in Fig. 9. In particular, precipitations imply a reduction of 13%
of the pedestrian trip rate with a 95% confidence interval of
(9%,16%). Differently, cycling was much more penalized by pre-
cipitation; for bikes, the reduction was 46% with a 95% confidence
interval of (41%,51%), i.e., independent of the temperature, about
half of the people decide not to take a bike trip when there is pre-
cipitation.

5 We repeated this analysis with shorter morning and afternoon intervals
around the rush hour, obtaining very similar results.
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4.6. Sensitivity to variation of temperature

As we pointed out in the previous section, the external temperature
has a strong influence on pedestrian and bike mobility. In this section,
we aim to have a quantitative estimate of the impact on the number of
trips per hour of an increase of temperature with respect to its average
monthly value. It is important to consider variation of temperature with
respect to the average temperature of each month and not the absolute
value because the perception of what is a warm or a cool day varies a
lot throughout the year. For instance, while 15oC might feel cold for a
Summer day, it feels warm for a Winter day. To do that, we estimate,
from our dataset, the average temperature and the average number of
trips for each weekday hour in each month (weekends show a very
different pattern and were not considered in this analysis). Then, for a
fixed month, we compute the Pearson correlation between the per-
centage increment of the number of trips per hour with respect to its
average value and the increase in Celsius with respect to the average
monthly value in the considered hour. Specifically, the increment of the
number of trips per hour is defined as n t E n t

E n t
( ) [ ( )]

[ ( )]
where E[h] is the

average number of trips occurred in the hour of the instant t in the
considered month, whereas the increase in temperature is simply
T(t) − E[T(t)], where T(t) is the temperature in the instant t and E[h] is
the average temperature observed in the hour of the instant t in the
considered month. To remove the effect of the weather, we considered
only fair hours, i.e., without any kind of precipitation.

Fig. 10 depicts the result of this analysis on both systems. To assess
the statistical significance of the metric, we estimate a 95% bootstrap
confidence interval (DiCiccio and Efron, 1996) on the Pearson corre-
lation indicated by the bands in Fig. 10. As result, during the Summer
months, the increment of the number of trips of the pedestrian is ne-
gatively correlated with the increase of temperature, it means that a rise
in temperature implies a decrease of trips; differently, the increment of
the number of bike trips seems to be not significantly correlated with

the temperature increment. During the Autumn and until the beginning
of the Spring, the increment of the number of bike trips is significantly
correlated with the increment of temperature; it means that a rise in
temperature implies an increase of cycling trips. It is worth noticing
that only during the winter period we observed this clear correlation for
pedestrians, whereas during Autumn such association seams less robust.

Table 1 shows the percentage of increment in the number of trips
described by the linear law

=n t E n t
E n t

T t E T t( ) [ ( )]
[ ( )]

( ( ) [ ( )])
(5)

The β parameter measures the average percentage increment of trips
associated with an increment of 1oC. For example, in November, for the
bike system, an increment of 1 °C is associated with an increment of
3.8% in the number of trips in relation to its monthly average. Thus, we
could say that a mild November day – for example, with a temperature

Fig. 8. Both figures show the 200 links with the largest cumulative number of trips in the morning and afternoon. The x-axis represents the fraction of trips occurred
in a certain direction in the morning; the y-axis is the fraction of trips occurred in the same direction during the afternoon. Note the clearly different patterns for bike
sharing (Panel a) and pedestrians (Panel (b).

Fig. 9. Both figures show the average trip rate
during fair and precipitation hours for pedestrians
(a) and for bikes (b). The boxplots were obtained
with bootstrap matching with 10,000 replicas. The
central orange line indicates the median, the box
indicates the 25 and 75 percentile, the whiskers in-
dicates the 1.5 interquartile range.

Fig. 10. The Pearson correlation coefficient between the increment of trips with
respect to the month average and the increment of temperature with respect to
the month average. Bands show the 95% bootstrap confidence interval.
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of 10oC above average – would tend to present an increase close to 38%
in the number of bike sharing trips. It is worth noticing that the
monthly evolution of β seems to be consistent with the observation
drawn for the Pearson correlation coefficient.

In summary, these results show that, on the one hand, during hot
months, people tend to walk less when the temperature increases but
this change does not affect cycling. On the other hand, in colder months
(October to April) people tend to use significantly more bike sharing
when the temperature increases. During these colder months, there is
also an increase, but of smaller magnitude, in pedestrian trips when the
temperature increases.

5. Discussion

Regarding the specific data in the analyzed datasets, we can sum-
marize the most relevant findings as follows:

• The duration of trips in both modes of transportation is similar,
typically from 4 to 14 min, following a log-normal distribution.

• Bike trips are typically longer than the pedestrian ones; bike trips
are often used to connect different parts of the city such as different
neighborhoods, while pedestrian trips are normally used to connect
different blocks within the same or adjacent neighborhoods.

• Pedestrian trips have frequency peaks at morning commute time
(around 9:00 am), afternoon commute time (around 6:00 PM), and
at lunch time (around 12:30 PM). Bike sharing trips present peaks at
similar morning and afternoon commute times but do not present a
significant peak at lunch time.

• The network of pedestrian mobility flows presents and hub-based
structure more pronounced than the bike sharing flow network.
Both networks show assortative mixing.

• The cycling flows present a very significant bidirectional pattern
with opposite directions in the morning and afternoon rush hours,
indicating a heavy use of bike sharing for commuting. For the pe-
destrian flows, this pattern was not present.

• Bike trips are more affected by severe weather conditions (particu-
larly precipitation) than walking. This may hinder the use of cycling
as an alternative means of transportation during certain periods of
harsh weather.

• In the Summer, citizens tend to walk less during hotter days (while
cycling seems not to be affected). In the Winter, cyclists tend to use
bikes significantly more during days in which the temperature is
relatively mild (while pedestrians are less affected by this factor).

• Overall, the strong sensitivity to the weather condition poses a se-
vere limitation to non-motorized mobility, especially during the
winter season.

Thus, if cities wish to promote active modes of transportation as a
means to provide a better environment for its citizens, the sensitivity to

the weather, mainly in the case of cycling, must be somewhat ad-
dressed; otherwise, the benefits would be limited only to a certain part
of the year (around 8 months in the case of Boston).

The fact that pedestrian infrastructure (i.e., sidewalks and cross-
walks) are of much higher quality and pervasive in the area of study
than their cycling counterpart (bike paths and streets shared with cars)
is probably the most important reason why walking is less affected by
rain and temperature. Cyclists probably feel relatively less safe than
pedestrians when riding under rain and when there is snow or ice on
the streets. In fact, there is evidence that improving the cycling infra-
structure make people more willing to use bicycles, in general. In fact,
Bill et al. (2015) experienced with the use of realistic visualizations to
promote active travel modes in a new walking and cycling route in
Glasgow. By working with focus groups, a frequent remark from par-
ticipants was that the quality of the cycling infrastructure, in particular,
the appearance of protection is considered important in encouraging a
wider uptake of cycling. With a different methodology, based on re-
gression modeling with urban morphology and survey variables,
Rybarczyk and Wu (2014) showed that the space syntax of the city built
environment has a influence on bicycle mode choice. A hypothesis to be
tested in future studies is that, even in periods of harsh Winter, when
the cycling infrastructure is very good and unobstructed, a relevant
level of cycling trips are still preserved.

Our finding that the pedestrian flow network presents a more pro-
nounced hub-based structure than the bike sharing network can be
counter-intuitive as the city network of sidewalks is completely point-
to-point and relatively homogeneous throughout the city. Thus, even
though pedestrians can potentially walk anywhere, they do not; they
tend to base their trajectories on anchor points, the “hubs”. Past studies
have investigated the correlation between street network configura-
tions and pedestrian behavior using various methods and showing
different results (Kang, 2017). In particular, studies on street config-
uration have found that diverse street attributes generate higher
walking volume. While early investigations emphasized the physical
features of street networks in relation to walking behavior, later re-
search confirmed the significance of street density and link structures
for walking activities (Cervero and Kockelman, 1997; Crane and
Crepeau, 1998; Lee and Moudon, 2006). Further research is needed to
better understand what characteristics make up these hubs; one can
hypothesize that major points of interest in the city comprise most of
these hubs.

6. Limitations

A limitation of our work is the fact that we are using bike sharing
trips as a proxy to the overall use of bicycles in the urban space. In
many cities, however, bike sharing represent only a fraction of the total
cycling trips. It might be the case that cyclists who have their own bikes
follow different mobility patterns. This could be mitigated in the future
by using image processing on traffic videos to detect bicycle flows. The
difficulty with this approach is that, to have a minimal coverage of a
city, this would require analyzing hundreds, or even thousands, of
video cameras in real-time to detect and count bike flows. To the best of
our knowledge, this has not yet been done on a scale that would allow
any city-wide analysis of mobility flows. Another alternative would be
to use the location service of smart phones to detect bike (and walking)
trips (e.g., based on speed). This would require tracking the location of
millions of people, which has strong privacy implications but, in fact, is
already performed by cell phone carriers and mobile OS vendors.

The pedestrian dataset has some limitations. First, the data was
collected from an activity-oriented mobile phone application, which
makes the sample non-representative of the total population. Second,
we do not have a way to verify whether users activated the app for all
trips they made. Third, to anonymize the data, a distance of 100 m was
erased from the start and end of each trajectory to avoid identification,
which makes the specific origin and destination a little less accurate.

Table 1
The table shows 100 × β, which is the average percentage variation of the
number of trips associated with an increment of 1 °C. CI indicates a 95%
bootstrap confidence interval on β. The number in bold indicates a value of the
β significantly different from 0, according to the CIs reported in the table.

Month % Bike-sharing
trips variation

CI % Pedestrian
trips variation

CI

Aug 0.0 (−0.8, 0.9) −1.5 (−2.7, −0.3)
Sep 0.0 (−0.5, 0.5) −1.0 (−1.7, −0.3)
Oct 1.3 (0.7, 1.8) 0.4 (0.4, 1.2)
Nov 3.8 (3.1, 4.4) 0.8 (0.2, 1.5)
Dec 2.7 (1.4, 3.9) −1.0 (−2.2, 0.2)
Jan 3.1 (1.9, 4.5) 1.2 (0.1, 2.2)
Feb 2.1 (0.7, 3.4) 1.9 (0.8, 2.9)
Mar 3.1 (2.5, 3.8) 1.5 (0.9, 2.1)
Apr 3.2 (1.6, 4.7) 2.3 (1.5, 3.1)
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7. Conclusions and future work

Non-motorized modes of transportation are an essential element for
the quality of life in cities. They have a direct impact on people's health
and help reducing pollution, mainly when replacing car trips. In this
paper, we analyzed two mobility datasets to identify similarities and
differences between walking and cycling characteristics. This was the
first such study analyzing large datasets both from pedestrian and cy-
cling trips in a combined form, contributing to the understanding of the
dynamics of active transportation. These two modes of non-motorized
mobility have a good potential not only to ameliorate the health of
citizens but also to improve the environment of contemporary cities,
making it less noisy, less polluted, and more comfortable for humans.

This study points out that pedestrian trips and bike trips serve dif-
ferent purposes, complementing each other. Walking is less affected by
weather conditions, possibly due to the superior quality of the walking
infrastructure. Potentially, these findings have a strong spatial impact
for a variety of constituents, including policy makers, planners, and
traffic managers. Higher exposure to car traffic and to environmental
conditions are probably some of the most influential elements to inhibit
bike mobility: a matter that indicates the need of redesigning streets to
facilitate bike mobility. In particular, dedicated bike lanes, covered by
trees or artificial canopies as well as safely lit and detached from mo-
torized mobility, are measures that urban planners and policy makers
could propose for increasing the sense of safety and thus making the use
of bikes more attractive. These interventions have a strong impact on
the design of street sections and could be combined with specific reg-
ulations such as speed and access limitations for motorized vehicles.
These interventions should also take into account the spatial distribu-
tion of the focal nodes of certain neighborhoods, where walkability and
transit availability aspects, such as density of retail destinations, density
of recreational open space, intersection density, residential density and
density of subway stops are higher (Duncan et al., 2013). Also, expert
recommendations and educational campaigns about using bikes during
cold and rainy seasons as well as about appropriate equipment could
expand its use during these periods of the year.

As future work, it would be interesting to analyze the evolution of
pedestrian and bike sharing mobility over longer periods of time (e.g.,
10 years), and relate it to changes in the city socio-economic variables.
It would also be valuable to extend the analysis to other cities and to
assess to which extent the results can be generalized. In addition, it
would be worth investigating what portion of car trips would be
amenable to a switch towards non-motorized mobility and what actions
could be taken by policy makers to enable that change. For informing
policy making processes, it would be essential to highlight the com-
plementarity of non-motorized transportation modes and the relation to
the bike infrastructure and to the street section, in particular with re-
gard to safety, which might be a major issue in facilitating bicycle use.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

We are grateful for the feedback from our colleagues of the MIT
Senseable City Lab. Fabio Kon, a professor from the University of São
Paulo, participated in this research while a visiting professor at the MIT
Senseable City Lab funded by a Fulbright Visiting Professor Fellowship.
This research is part of the INCT of the Future Internet for Smart Cities
funded by CNPq proc. 465446/2014-0, Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –
Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/
24485-9.

References

Alderighi, M., Cento, A., Nijkamp, P., Rietveld, P., 2005. Network competitionthe coex-
istence of hub-and-spoke and point-to-point systems. J. Air Transp. Manag. 11 (5),
328–334.

Austwick, M.Z., OBrien, O., Strano, E., Viana, M., 2013. The structure of spatial networks
and communities in bicycle sharing systems. PLoS One 8 (9), e74685.

Bagler, G., 2008. Analysis of the airport network of India as a complex weighted network.
Phys. A Statistical Mech. Appl. 387 (12), 2972–2980.

Bill, E.M., Baker, G., Ferguson, N.S., Drinkwater, D., Mutrie, N., 2015. Representing active
travel: a formative evaluation of a computer visualization tool demonstrating a new
walking and cycling route. Environ. Plan. B Plan. Des. 42 (3), 450–467.

Cervero, R., Kockelman, K., 1997. Travel demand and the 3Ds: density, diversity, and
design. Transp. Res. Part D: Transp. Environ. 2 (3), 199–219.

Corburn, J., 2007. Reconnecting with our roots: American urban planning and public
health in the twenty-first century. Urban Aff. Rev. 42 (5), 688–713.

Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., Mateo-Babiano, D., 2014. Spatio-
temporal patterns of a public bicycle sharing program: the effect of weather and
calendar events. J. Transp. Geogr. 41, 292–305.

Crane, R., Crepeau, R., 1998. Does neighborhood design influence travel?: a behavioral
analysis of travel diary and GIS data. Transp. Res. Part D: Transp. Environ. 3 (4),
225–238.

Crucitti, P., Latora, V., Porta, S., 2006. Centrality measures in spatial networks of urban
streets. Phys. Rev. E 73 (3), 036125.

De Nazelle, A., et al., 2011. Improving health through policies that promote active travel:
a review of evidence to support integrated health impact assessment. Environ. Int. 37
(4), 766–777.

Dehejia, R.H., Wahba, S., 1999. Causal effects in nonexperimental studies: reevaluating
the evaluation of training programs. J. Am. Stat. Assoc. 94 (448), 1053–1062.

DiCiccio, T.J., Efron, B., 1996. Bootstrap confidence intervals. Stat. Sci. 11 (3), 189–212.
Duncan, D.T., Aldstadt, J., Whalen, J., Melly, S.J., 2013. Validation of walk scores and

transit scores for estimating neighborhood walkability and transit availability: a
small-area analysis. GeoJournal 78 (2), 407–416.

Faghih-Imani, A., Eluru, N., El-Geneidy, A.M., Rabbat, M., Haq, U., 2014. How land-use
and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI)
in Montreal. J. Transp. Geogr. 41, 306–314.

Forsyth, A., 2015. What is a walkable place? The walkability debate in urban design.
Urban Des. Int. 20 (4), 274–292.

Forsyth, A., Hearst, M., Oakes, J.M., Schmitz, K.H., 2008. Design and destinations: factors
influencing walking and total physical activity. Urban Stud. 45 (9), 1973–1996.

Gini, C., 1936. On the measure of concentration with special reference to income and
statistics. Colorado College Publ. 208 (9), 73–79.

Griffin, G., Nordback, K., Götschi, T., Stolz, E., Kothuri, S., March 2014. Monitoring
Bicyclist and Pedestrian Travel and Behavior: Current Research and Practice.
Transportation Research Circular E-C183.

Handy, S.L., Boarnet, M.G., Ewing, R., Killingsworth, R.E., 2002. How the built en-
vironment affects physical activity - views from urban planning. Am. J. Prev. Med. 23
(2), 64–73.

Kang, hD, 2017. Measuring the effects of street network configurations on walking in
Seoul, Korea. Cities 71 (September 2016), 30–40.

Krizek, K.J., Handy, S.L., Forsyth, A., 2009. Explaining changes in walking and bicycling
behavior: challenges for transportation research. Environ. Plan. B Plan. Des. 36 (4),
725–740.

LAB, 2018. The Bicycle Friendly America Award Database. Tech. Rep. The League of
American Byciclists URL. www.bikeleague.org/sites/default/files/bfareportcards/
BFC_Fall_2017_ReportCard_Boston_MA.pdf.

Lee, C., Moudon, A.V., 2006. The 3Ds + R: quantifying land use and urban form corre-
lates of walking. Transp. Res. Part D: Transp. Environ. 11 (3), 204–215.

Litman, T., 2015. Evaluating Active Transportation Benefits and Costs. Tech. Rep.
Victoria Transportation Policy Institute, Victoria URL. www.vtpi.org/nmt-tdm.pdf.

Malleson, N., Vanky, A., Hashemian, B., Santi, P., Verma, S.K., Courtney, T.K., Ratti, C.,
2018. The characteristics of asymmetric pedestrian behavior: a preliminary study
using passive smartphone location data. Trans. GIS 22 (2), 616–634.

Marchetti, C., 1994. Anthropological invariants in travel behavior. Technol. Forecast. Soc.
Chang. 47 (1), 75–88.

McKenzie, G., 2019. Spatiotemporal comparative analysis of scooter-share and bike-share
usage patterns in Washington, D.C. J. Transp. Geogr. 78, 19–28.

Newman, M.E., 2002. Assortative mixing in networks. Phys. Rev. Lett. 89 (20), 208701.
Newman, M., 2018. Networks. Oxford University Press, pp. 168–234.
Newson, P., Krumm, J., 2009. Hidden Markov Map Matching through Noise and

Sparseness. Proc. 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems - GIS ‘09. pp. 336.

O’Brien, O., Cheshire, J., Batty, M., 2014. Mining bicycle sharing data for generating
insights into sustainable transport systems. J. Transp. Geogr. 34, 262–273.

O’Kelly, M.E., Miller, H.J., 1994. The hub network design problem: a review and synth-
esis. J. Transp. Geogr. 2 (1), 31–40.

Page, L., Brin, S., Motwani, R., Winograd, T., 1999. The Pagerank Citation Ranking:
Bringing Order to the Web. Tech. Rep. Stanford InfoLab URL. http://ilpubs.
stanford.edu:8090/422/1/1999-66.pdf.

Pan, W., Bai, H., 2015. Propensity Score Analysis: Fundamentals and Developments.
Guilford Publications.

Pastor-Satorras, R., V’azquez, A., Vespignani, A., 2001. Dynamical and correlation
properties of the internet. Phys. Rev. Lett. 87 (25), 258701.

Pikora, T., Giles-Corti, B., Bull, F., Jamrozik, K., Donovan, R., 2003. Developing a fra-
mework for assessment of the environmental determinants of walking and cycling.

C. Bongiorno, et al. Journal of Transport Geography 80 (2019) 102501

12

http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0005
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0005
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0005
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0010
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0010
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0015
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0015
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0020
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0020
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0020
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0025
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0025
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0030
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0030
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0035
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0035
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0035
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0040
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0040
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0040
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0045
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0045
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0050
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0050
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0050
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0055
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0055
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0060
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0065
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0065
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0065
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0070
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0070
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0070
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0075
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0075
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0080
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0080
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0085
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0085
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0090
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0090
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0090
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0095
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0095
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0095
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0100
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0100
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0105
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0105
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0105
http://www.bikeleague.org/sites/default/files/bfareportcards/BFC_Fall_2017_ReportCard_Boston_MA.pdf
http://www.bikeleague.org/sites/default/files/bfareportcards/BFC_Fall_2017_ReportCard_Boston_MA.pdf
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0115
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0115
http://www.vtpi.org/nmt-tdm.pdf
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0125
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0125
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0125
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0130
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0130
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0135
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0135
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0140
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0145
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0150
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0150
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0150
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0155
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0155
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0160
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0160
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0170
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0170
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0175
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0175
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0180
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0180


Soc. Sci. Med. 56 (8), 1693–1703.
Pucher, J., Komanoff, C., Schimek, P., 1999. Bicycling renaissance in North America?

Recent trends and alternative policies to promote bicycling. Transp. Res. A Policy
Pract. 33 (7–8), 625–654.

Pucher, J., Buehler, R., Merom, D., Bauman, A., 2011. Walking and cycling in the United
States, 20012009: evidence from the National Household Travel Surveys. Am. J.
Public Health 101 (SUPPL. 1).

Quercia, D., Schifanella, R., Aiello, L.M., 2014. The shortest path to happiness:
Recommending beautiful, quiet, and happy routes in the city. In: Proceedings of the
25th ACM Conference on Hypertext and Social Media. ACM, pp. 116–125.

Rietveld, P., oct 2001. Biking and Walking: The Position of Non-Motorized Transport
Modes in Transport Systems. Tinbergen Institute, Tech. Rep.

Rojas-Rueda, D., de Nazelle, A., Teixid’o, O., Nieuwenhuijsen, M.J., 2012. Replacing car
trips by increasing bike and public transport in the greater Barcelona metropolitan
area: A health impact assessment study. Environ. Int. 49, 100–109.

Rybarczyk, G., Wu, C., 2014. Examining the impact of urban morphology on bicycle mode
choice. Environ. Plan. B Plan. Des. 41 (2), 272–288.

Saelens, B.E., Ph, D., Frank, L.D., Ph, D., Med, A.B., 2003. Environmental correlates of
walking and cycling: findings from the transportation, urban design, and planning
literatures. Environ. Phys. Activity 25 (2), 80–91.

Santucci, D., Fugiglando, U., Li, X., Auer, T., Ratti, C., 2018. Methodological framework
for evaluating liveability of urban spaces through a human centred approach. In:
Windsor Conference - Rethink Comfort, pp. 789–797.

Sarkar, A., Lathia, N., Mascolo, C., 2015. Comparing cities’ cycling patterns using online

shared bicycle maps. Transportation 42 (4), 541–559.
Southworth, M., 2005. Designing the Walkable City. J. Urban Plan. Dev. 131 (4),

246–257.
Squartini, T., Picciolo, F., Ruzzenenti, F., Garlaschelli, D., 2013. Reciprocity of weighted

networks. Sci. Rep. 3, 2729.
Stuart, E.A., 2010. Matching methods for causal inference: a review and a look forward.

Statistical Sci. 25 (1), 1.
USDOT, 2018. U.S. Department of Transportation National Household Travel Survey.

Available online at: https://nhts.ornl.gov/vehicle-trips (web archive
link, 18 December 2020) and https://nhts.ornl.gov/person-trips, ac-
cessed: 2018-12-20. Washington, D.C.: USDOT.

Vanky, A.P., Verma, S.K., Courtney, T.K., Santi, P., Ratti, C., 2017. Effect of weather on
pedestrian trip count and duration: City-scale evaluations using mobile phone ap-
plication data. Prev. Med. Rep. 8, 30–37.

Wang, X., Lindsey, G., Schoner, J.E., Harrison, A., 2016. Modeling bike Share Station
activity: effects of nearby businesses and jobs on trips to and from stations. J. Urban
Plan. Dev. 142 (1), 04015001.

Winters, M., Brauer, M., Setton, E.M., Teschke, K., 2013. Mapping bikeability: a spatial
tool to support sustainable travel. Environ. Plan. B Plan. Des. 40 (5), 865–883.

Zhang, Y., Brussel, M.J., Thomas, T., van Maarseveen, M.F., 2018. Mining bike-sharing
travel behavior data: an investigation into trip chains and transition activities.
Comput. Environ. Urban. Syst. 69, 39–50.

Zhou, X., 2015. Understanding spatiotemporal patterns of biking behavior by analyzing
massive bike sharing data in Chicago. PLoS One 10 (10).

C. Bongiorno, et al. Journal of Transport Geography 80 (2019) 102501

13

http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0180
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0185
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0185
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0185
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0190
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0190
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0190
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0195
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0195
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0195
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0200
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0200
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0205
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0205
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0205
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0210
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0210
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0215
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0215
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0215
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0220
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0220
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0220
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0225
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0225
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0230
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0230
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0235
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0235
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0240
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0240
https://nhts.ornl.gov/vehicle-trips
https://nhts.ornl.gov/person-rips
https://nhts.ornl.gov/person-rips
https://nhts.ornl.gov/person-trips
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0245
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0245
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0245
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0250
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0250
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0250
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0255
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0255
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0260
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0260
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0260
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0265
http://refhub.elsevier.com/S0966-6923(19)30087-0/rf0265

	Comparing bicycling and pedestrian mobility: Patterns of non-motorized human mobility in Greater Boston
	Introduction
	Related work
	Datasets and methods
	Comparative analysis
	Distance and duration
	Time of the day
	Spatial flows
	Network analysis
	Sensitivity to weather conditions
	Sensitivity to variation of temperature

	Discussion
	Limitations
	Conclusions and future work
	mk:H1_14
	Acknowledgements
	References




