
The “Bootstrap” and “Split Personality” AntiPractices –

eXPeriences Teaching eXtreme Programming∗

Alexandre Freire1, Fabio Kon1, Alfredo Goldman1

1Departamento de Ciência da Computação (IME-USP)

ale@ime.usp.br, kon@ime.usp.br, gold@ime.usp.br

Abstract. This article provides insight into two simple and common problems

when teaching XP: the “Bootstrap” and “Split Personality” antipractices.

Bootstrap describes how teams have difficulties starting a project with little or

no code base. Split Personality describes difficulties experienced when one as-

sumes both the Coach and Customer roles. We present these organizational

antipatterns as antipractices we have identified while teaching XP in different

contexts. We discuss simple solutions to the antipatterns based on reflections

from these experiences and describe concrete situations where they were effec-

tive.

Resumo. Este artigo apresenta reflexões sobre dois problemas simples e co-

muns no ensino de XP: as anti-práticas “Bootstrap” e “Split Personality”.

Bootstrap descreve dificuldades de equipes que começam um projeto com uma

base de código pequena ou inexistente. Split Personality descreve dificuldades

que uma pessoa enfrenta ao assumir ambos os papéis de Treinador e Cliente

em um projeto. Apresentaremos estes anti-padrões organizacionais como anti-

práticas que identificamos ensinando XP em diferentes contextos. Iremos discu-

tir soluções simples para estes anti-padrões baseadas em reflexões sobre nossa

experiência e descrever situações concretas onde as soluções foram efetivas.

1. Introduction

While teaching XP many problems arise that have to be dealt with, mostly due to different

contexts and heterogeneous teams that have to learn practices and adapt them to their

reality. We have had extensive teaching experience in academic and business contexts,

trying different solutions to common problems by adapting practices and refactoring XP

rules to fit local realities.

From these experiences, we identified two very common, simple and recurrent

antipatterns. One deals with the time a team takes to start being productive and picking

up project velocity using all of XP’s practices. We show that having little or no code base

to build upon can be the source of difficulties and propose concrete solutions so a team

can start to work in parallel as soon as possible. The other concerns the difficulties some

teams have to deal with when the same person plays the Coach and Customer roles in an

XP project.

Just as many agile practices (e.g., “Stand Up Meetings” or “Developing In Pairs”)

have been cataloged as organizational patterns by [Coplien and Harrison 2004],

∗Uma versão mais detalhada deste artigo pode ser encontrada no Relatório Técnico RT-MAC-2007-03

do IME/USP

1



many organizational and process antipatterns have been observed as well

[Brown and Thomas 2000]. Antipatterns are apparent solutions commonly ap-

plied to solving a problem, but that in fact create a bigger problem. Antipatterns

propose a refactored solution to the problem. Having observed these apparent solu-

tions in our projects and in other research papers relating experiences teaching XP

[Mugridge et al. 2003, Jackson 2004, Tomek 2002], we will define them as antipatterns

and present refactored solutions that might be of use to the agile community. We will use

“AntiPractices” as a metaphor to present these organizational antipatterns, as proposed

by [Kuranuki and Hiranabe 2004], having slightly refactored the pattern template used

there, to allow a simple and quick exposition of this pattern language.

In the next section we will describe the context of projects where we tried different

approaches to solve each antipractice. We will then introduce the antipractices, presenting

different contexts and countermeasures in a narrative story format, and later generalizing

them in a pattern-like format, proposing solutions. Finally we will conclude recommend-

ing the use of some of the proposed solutions in specific contexts where they have been

proven useful.

2. Projects and contexts - The XP Lab and Paggo

The XP laboratory course at IME/USP has had success teaching Computer Sci-

ence students how to eXtreme Program while developing real world projects

[Goldman et al. 2004, Freire et al. 2004]. We will look into one project realized during

the 4th edition of the lab.

The project, “Cigarra” [Freire et al. 2005a], was built in a partnership with the

Ministry of Culture in Brazil, the requested system solves the need of Cultural Hotspots

to distribute multimedia artifacts. The team was composed of twelve members: eleven

students and a teaching assistant for the course, who also worked as a Ministry of Culture

consultant; thus, he played both the Coach and Customer roles in the team. Since we

had no code to start with, we chose to use a few existing free and open source tools and

frameworks to develop the system.

Having acted as industry consultants as well, we experimented implementing XP

at Paggo, a startup venture in the credit card business in Brazil [Freire et al. 2005b]. The

first author worked there as a consultant coaching a 6 person team in XP practices, frame-

works, and OO concepts. The main objective was to have an XP proficient team ready to

be independent from the coach within 6 months. One of the company’s founders played

an in-house customer and was present daily.

3. Bootstrap - “We want to do XP, but can’t get all practices going, we are

waiting for code that doesn’t exist yet”

The Bootstrap antipractice describes how teams learning XP have difficulties when start-

ing an XP project with little or no code base, which is common when teaching XP. In our

experience, developers in large XP teams tend to have a hard time to start integrating a

system or even test-first when there is no code to build upon. It is hard for pairs to move

people around because the pair that started coding a component is reluctant to let other

pairs work on it, fearing what a new person might think of their tests or their work, or

even because they want to be the ones to continue developing upon the code they started

2



to build. Task coordination is complicated, specially for the bootstrap story (the first story

a team implements) [Andrea 2001], getting the team to work in parallel is complicated

since many stories depend on other stories that are not yet developed or completed.

Techniques have been proposed to help scale the bootstrap and other stories. How-

ever, we found that when a project begins, and little or no code exists, programmers that

have no experience with XP have many difficulties to start being productive, and the team

takes a while to establish a good project velocity and adopt all practices fully.

We note that this problem is simple to solve in some cases, specifically if the

team is mature and has had previous experience with agile methods. Among the possible

solutions one can find, (1) breaking up the bootstrap stories using storyotypes1, (a pat-

tern language that defines different types of stories, some which are easier to bootstrap

[Meszaros 2004]) or by creating specific tasks to focus on setting up development infras-

tructure or researching new technologies, (2) building upon an existing free and open

source code base, (3) developing bootstrap code with a pair or smaller team using TDD.

When the team is learning XP, and specially if they are also learning how to test and refac-

tor, we propose that some of the rules of XP be relaxed, such as allowing integration of

untested code for a short period of time, just to bootstrap the code base, so that everyone

can then work in parallel. We know this goes against XP values, but in exceptional cases,

like the ones we’ll observe, we think that this relaxation can be beneficial.

3.1. Cigarra

The Coach was having trouble with the team developing “Cigarra”, he was under pressure

from his team and the course professor: they were the only team in the XP lab that had to

push back the deadline for their first release.

The coach observed that two developers waited around for others to work so that

they “had something to do”. The story they had accepted during the planning game was

dependent on another pair finishing a story before they could proceed. Two other devel-

opers were reluctant to integrate their code; they had finished their story, but were not

convinced they had enough tests. As they had little testing experience they were afraid of

committing their code until they were sure they had good tests and all of them passed.

3.1.1. Action

The coach saw that action had to be taken so the team would remain motivated; they

had to deliver their first release soon. Talking with the developers, he decided to split

stories into development and testing tasks, and to refactor the bootstrap story written by

consultants for the Ministry into smaller stories using storyotypes. We found that many

stories, of the variation or new business rule storyotypes, depended on other stories, of

the new functionality or infrastructure storyotypes, being completed, we prioritized the

second set, so that code would exist to be worked on.

The coach also created research tasks related to free and open source software

and frameworks that were going to be used in the project. These tasks were aimed at

1Storyotypes define four different types of concrete stories, which (1) help set up the infrastructure, (2)

create new functionality in the system, (3) alter existing functionality, and (4) create new business rules.

3



testing functionality we planned on using, or even code we wanted to refactor into our

application. Some of the developers mention that they did not see the point in writing

tests for 3rd party code, but after some negotiation agreed that it was better to do that than

just waiting around for dependencies to clear up with no work to do. A temporary rule

was agreed upon, that after each lecture period, everyone would commit their code, even

it was not fully tested. We made it clear that this was an exceptional agreement, valid for

just enough time to get a code base with which everyone could work in parallel. After

that, continuous integration would depend on passing tests.

3.1.2. After effect

The decisions seemed to work. No one would just wait for others to finish stories to work

on dependencies. The team was glad that new test tasks where created. The developers

that were afraid of committing their code with few tests, now felt comfortable with that,

and finally integrated their code into the repository, allowing other developers to start

working. They also had an opportunity to try test-first programming, committing their

tests before any code was created. It helped to have the coach review the code and reassure

that their tests were good, and to have the rest of the team to help develop the code to pass

tests, not necessarily working with the same pairs that created the tests. They were proud

to learn how to test effectively.

Confidence on code quality rose and the teammanaged to deliver their first release.

As a side-effect from testing the free and open source frameworks and software, the team

was confident on the choices and grew knowledgeable on their use. Team members also

saw a great opportunity to give back to the open source community, submitting patches to

projects with the test-suites we created.

3.2. Paggo

At Paggo, the customer had a small project he would like to use as a test for introducing

XP. One of the developers did not want to pair program, and wanted to code all his stories,

only integrating the code when he finished everything. Two other team members had

never written tests and delayed committing their stories, holding back others. The coach

was also worried about the quality of the code being produced and resistance from some

team members to embrace change. Again, we saw that some team members were too

comfortable in the position of waiting for others to finish their work so they could start

working.

Developers were frustrated that progress was slow and were conscious that not all

practices were being followed throughly; “we want to do full XP, but we are slow because

we don’t have enough code, we have to wait for others to finish their stories so that we

can proceed; because we are new to XP, some are reluctant to integrate their code, and we

can’t start working in parallel”.

3.2.1. Action

The coach reached an agreement with the customer: they decided that the first application

would be treated as a prototype, its main objective would be to teach XP practices and

4



would probably be discarded after it was finished. We explained this to the team and

got them to focus on improving their practices. We wrote many tests and team members

were glad to have a chance to explore possibilities. They knew that even tough some tests

did not seem good enough, this would not be a problem because the application was not

critical. The programmer that did not want to do pair programming was convinced to try

it as an experiment, and a commit rule was created. All code would be committed twice

a day, once before lunch and once before leaving the office, even if everything was not

tested; again, this rule had an expiration date, after which code could only be integrated

if all tests passed.

3.2.2. After effect

Developers managed to incorporate all XP practices after the first prototype project. They

evolved their testing and continuous integration skills. Some were conscious that many

tests written during the prototype project were not necessary and code quality was not

very high, but the customer was comfortable with this. When the project was completed,

we found that it was good enough to pass the customer’s acceptance tests, and it was even

put into production.

3.3. Crystalize

We named this AntiPractice “Bootstrap” and have suggestions for avoiding trouble in the

future. Causes for the problem are directly related to the size of the team, available code

base upon starting the project and developers lack of fluency in XP. When starting a new

project we now try these alternative approaches: (1) allowing a pair or a small subset of

the team to write the base business model classes overnight with TDD, so that everyone

can start working in parallel in new business rule or variation storyotypes, (2) building

upon an existing free and open source code base to allow the team to strengthen other

techniques, such as testing, and (3) allowing a short period of time, where the team can

integrate code that is not completely tested. The third option is a solution to pick up speed

bootstrapping the project code base, we feel that this no longer breaks XP rules, as long

as testing is done early enough.

Using storyotypes to split large stories in the first iteration, creating tasks for set-

ting up continuous integration, development environments, writing build scripts, and re-

searching technologies (specially if looking for free and open source projects to build

upon) so as to occupy all of the team even if it is not yet possible for everyone to write

code, are good countermeasures for this antipractice of starting XP learning projects with

no code base.

4. Split Personality - “Who am I? Coach or Customer?”

Studies point out that one of the challenges of teaching XP is practicing on-site cus-

tomer correctly [Mugridge et al. 2003, Tomek 2002]. The Split Personality antipractice

describes the difficult task one has to endure when assuming both the Coach and Cus-

tomer roles in an XP project, this antipractice should not be observed in vanilla XP envi-

ronments, however it is very common solution applied in academic contexts. Having the

same person act as Customer and Coach may lead to schizophrenic results, it confuses

5



the team and makes it hard to distinguish business and development forces in day-to-day

activities and specially in the planning game.

It is hard for developers to establish when one is guiding the team, and making

sure everyone follows the rules of the game, as a Coach; or when he/she is trying to re-

quest stories, validate them, or give clear feedback about the requirements, acting as a

Customer. It is also difficult for this person to avoid introducing a Customer’s concerns

into his coaching duties, and vice versa. It has been reported that both the Customer

role [Martin and Noble 2004] and the Coach role [Hedin et al. 2003] are complex, chal-

lenging, and time consuming, they should not overload a single person. When trying

to address this issue we will discuss different solutions such as using someone from the

team as a Customer Proxy2, or, when it’s not possible to get another person, something as

simple as clearly distinguishing when one is acting as Coach or Customer by using a hat.

Straight forward solutions are proposed for controlled contexts. In the XP lab, the ideal

practice is to simply have coaches for the whole period, using graduate students or senior

students and a real Customer that can at least participate in weekly meetings.

4.1. Story

The coach for the Cigarra project, was having trouble addressing the Customer role with-

out taking into account his Coaching desires. It was not clear to developers when he

expressed Customer’s concerns, or when he was giving advice as a Coach. Even for him-

self it was not clear when he decided something because he knew the Customer wanted it,

or because he saw that it would be best to Coach the team. Difficulties were augmented by

the fact that the team was large (twelve people), and that it was difficult to communicate

clearly to everyone what the Customer intended and what the Coach wanted.

During the planning game of the exploratory phase, the team tried to convince

the Coach that it was best to code spikes to try out different peer-to-peer technologies

such as BitTorrent, JXTA, or CORBA. The team wanted to test all of these interesting

technologies and the Coach thought it might be a good opportunity to allow the team

to explore possibilities. However, he was confused: was he representing his customer

or giving a coach’s advice? Could he do both at the same time? In retrospective, this

choice wasted precious time, added difficulty to bootstrap the project, and made the team

change the date for their first release. He now believes that he, as a Coach, should have

backed himself as a Customer (knowing that BitTorrent was by far the best choice and

not wanting to waste precious time with an exploration that would lead to a foreseeable

result) instead of going along with the team.

4.2. Action

The Coach decided to try different approaches with his team. He invited other Ministry

consultants to come act as proxy customers during Planing Games and to run acceptance

tests when a release was delivered. He also started bringing a hat and some gadgets to the

lab. He would put on the hat when he wanted to act as a customer, making it clear to the

team when he was addressing business rules from the client’s perspective, or what part he

was playing during a Planing Game. He even managed to stage conversations between

2A person responsible for interacting with the customer regularly and representing his needs for the

team.

6



the Coach and the Customer, addressing his multiple personalities with gadgets, to both

organize things in his mind and communicate more clearly with the team.

4.3. After effect

Using proxy customers other than himself and a hat when he had no other choice, really

made the difference for the Coach. He found that at important moments, such as accep-

tance testing of a release, it was very valuable to have a proxy customer, so that he could

be completely concentrated on his coaching activities and the team would feel that they

were facing someone that would really benefit from the system they were developing.

When a proxy could not be present, he found it really useful to use a hat and other

gadgets acting both as coach and customer. He could understand what he had to do better,

and it was easier to keep the coach locked away in his mind when he had the customer hat

on. It was also fun for the team, and added a healthy schizophrenic dynamic to planing

games and stand up meetings.

4.4. Crystalize

We called this antipractice “Split Personality”. Having to act both as Customer and Coach

is stressful and can be quite confusing to developers and the person in question. This

problem is not that hard to solve if one has courage and discipline, or if the team is small.

When possible, using proxy, or real customers, can be of great help and alleviates load.

When all else fails and the person coaching has to act as Customer, using a hat

and gadgets to clearly distinguish the Coach from the Customer can be a good humored

way to carry this burden, and it was very useful for us, helping the person clear his mind

into acting the appropriate way. These are proven solutions to the common antipractice

of having the same person act as Coach and Customer.

5. Summary and Conclusions

We have identified two organizational antipatterns that are common and recurrent both

in industrial and academic environments based on our experiences in these contexts. We

have presented “Bootstrap”, “Split Personality” in the form of a small antipattern language

and discussed different solutions to these antipatterns based upon reflections from our

experience.

Bootstrap addresses the issue of a team that starts to learn XP in a project with

little or no code base. The team is new to XP and needs to be quickly productive. When

starting a project from scratch, we have shown that allowing a small subset of the team

to bootstrap the code base with the business model classes and then focusing on new

business rules or variation storyotypes, is a simple solution to bootstrap. Using free and

open source software as a initial code base is also a solution that can help teams strengthen

other practices and techniques, such as testing. When the team is learning XP and other

techniques, using storyotypes to split up the bootstrap story, and allowing code to be

committed without complete test coverage, only during a short period of time, is a solution

to bootstrap.

Split Personality addresses the issue of a person on the team being overloaded

with the roles of Coach and Customer. When there is the possibility, one should use

7



one or more Customer Proxies or a real Customer. When everything else fails, rely on

the simple solution of using a hat or gadgets to distinguish clearly when one is acting as

Coach or as Customer.

We believe the proposed solutions will be valuable to the community. In our

ongoing work, we are looking for more antipractices and their refactored solutions as to

make the adoption of agile methods easier in a wider variety of contexts.

References

Andrea, J. (2001). Managing the Bootstrap Story in an XP Project. In Proceedings of XP

2001, North Carolina,.

Brown, W.J., H. M. and Thomas, S. (2000). AntiPatterns in Project Management,. John

Wiley & Sons.

Coplien, J. and Harrison, N. (2004). Organizational Patterns of Agile Software Develop-

ment. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Freire, A., Gatto, F., and Kon, F. (2005a). Cigarra-A Peer-to-Peer Cultural Grid. In Anais

do 6o Workshop sobre Software Livre (WSL 2005), pages 177–183.

Freire, A., Goldman, A., Ferreira, C. E., Asmussen, C., and Kon, F. (2004). Mico -

university schedule planner. In Anais do 5o Workshop sobre Software Livre (WSL

2004), pages 147–150, Porto Alegre.

Freire, A., Kon, F., and Torteli, C. (2005b). Xp south of the equator: An experience

implementing xp in brazil. In Proceedings of the XP 2005 Conference, volume 3556

of Lecture Notes on Computer Science, pages 10–18. Springer.

Goldman, A., Kon, F., Silva, P. J. S., and Yoder, J. W. (2004). Being Extreme in the

Classroom: Experiences Teaching XP. Journal of the Brazilian Computer Society,

10(2):1–17.

Hedin, G., Bendix, L., and Magnusson, B. (2003). Coaching Coaches. In Proceedings of

4th International Conference on Extreme Programming and Agile Processes in Soft-

ware Engineering (XP 2003), volume 2675, pages 154–160. Springer.

Jackson, A., e. a. (2004). Behind the Rules: XP Experiences. In Proceedings of the 2004

Agile Development Conference, Salt Lake City.

Kuranuki, Y. and Hiranabe, K. (2004). AntiPractices: AntiPatterns for XP Practices. In

Proceedings of the 2004 Agile Development Conference, Salt Lake City.

Martin, A., R. B. and Noble, J. (2004). The XP Customer Role in Practice: Three Studies.

In Proceedings of the 2004 Agile Development Conference, Salt Lake City.

Meszaros, J. (2004). Using Storyotypes to Split Bloated XP Stories. In Proceedings of

the XP/Agile Universe 2004, volume 3134, pages 73–80, North Carolina,. Springer.

Mugridge, R., MacDonald, B., Roop, P., and Tempero, E. (2003). Five Challenges in

Teaching XP. In Proceedings of 4th International Conference on Extreme Program-

ming and Agile Processes in Software Engineering (XP 2003), volume 2675, pages

406–409. Springer.

Tomek, I. (2002). What i Learned Teaching XP. In Proceedings of the 2002 OOPSLA

Educators Symposium, Seattle.

8


