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Abstract. In these short notes we introduce and study a few basic concepts concerning
Riemannian submersions. We exhibit some geometric features of these geometric objects by
looking at the properties of two tensor fields defined in terms of vertical and horizontal sections.
All geometric information concentrated on a Riemannian submersion may be described by those
tensor fields as it can be seen when working with curvature invariants of the ambient spaces.
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1. Introduction

It is well known that immersions and submersions, both of them viewed as special tools in
differential geometry, also play an important role in Riemannian geometry, especially when
the involved manifolds carry an additional structure. Although submersions are, in a certain
sense, a counterpart of immersions, the corresponding theories are quite different, even from a
historical point of view. The theory of isometric immersions, started with the work of Gauss
on surfaces in the Euclidean 3-dimensional space, is classical and strongly explained in many
books, whereas the theory of Riemannian submersion goes back to four decades ago, when B.
O’Neill in [8, 9] and A. Gray in [1], independently, formulated the base of such theory, which
has hugely been developed in the last two decades.

Riemannian submersions also appear in physics providing several applications. For instance,
they are useful to explain extensions of important aspects of theoretical particle physics in the
presence of non-Abelian gauge theories. An evidence of this phenomena was given by B. Watson
who studied the relations between Riemannian submersions and instantons, the latter of which
are critical functionals of the Yang–Mills action; see [11]. Other applications in physics where
Riemannian submersions are widely used are generalized nonlinear sigma models in curved
spaces, the Dirac monopole, Einstein equations, among others. See for example [2, c. 8] as well
as the references therein.
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One of our main reasons that encouraged us to study Riemannian submersions is because
they are needed to define a notion of Riemannian stack; visit [5, 6]. These geometric objects
generalize both notions of Riemannian manifold and Riemannian orbifold, thus allowing the
study of Riemannian geometry over more general singular spaces. It can be evidenced with the
recent study of geodesics on Riemannian stacks [4].

The notes are divided as follows. In Section 2 we define Riemannian submersions and introduce
the basic terminology we will be using throughout this work. We also exhibit here three classical
examples. In the spirit of O’Neill seminal papers [8, 10], in Section 3 we define two tensor
fields in terms of vertical and horizontal sections which will essentially determine the geometry
that brings us a Riemannian submersion as well as the foliation determined by its vertical
distribution. To describe the curvature relations of the involved spaces where we are working on
we strongly study horizontal geodesics and holonomy fields. Finally, Section 4 is devoted to cite
a few classical results appearing in this setting. The main references that we will be using to
develop these notes are [3, 2]. We mainly adopt both notation and approach from [3].

2. Basic notions and examples

Let us start by defining the geometric object this work is concerned with. Let (M, gM) and
(B, gB) be two Riemannian manifolds.
Definition 2.1. A surjective submersion π : M → B is said to be Riemannian if dπp is a linear
isometry from (kerdπp)⊥ onto Tπ(p)M for all p ∈ M . Here (kerdπp)⊥ denotes the orthogonal
complement of kerdπp with respect to gM .

For every p ∈ M we define the vertical V and horizontal H distributions in TM respectively
as

Vp = kerdπp and Hp = (kerdπp)⊥, p ∈ M.

Note that they are such that TM = V ⊕ H for which each element X ∈ TM may be written as
X = Xv + Xh where Xv ∈ V and Xh ∈ H are respectively called the vertical and horizontal
components of X. It is worth noticing that as every surjective submersion is transverse to any
submanifold in its base then π � {π(p)} which implies that π−1(π(p)) is a submanifold in M of
codimension dim(B) and

Tpπ−1(π(p)) = dπ−1
p (Tπ(p){π(p)}) = dπ−1

p (0) = kerdπp.

Therefore, our vertical distribution V is integrable since it is tangent to the regular foliation
Fπ = {π−1(x) : x ∈ B}. This is regular because π is a surjective submersion. Nevertheless, the
horizontal distribution may be not integrable.

A vector field X ∈ X(M) is said to be vertical (resp. horizontal) if it is section of the canonical
vector bundle V → M (resp. H → M). That is, Xp ∈ Vp (resp. Xp ∈ Hp) for all p ∈ M . Let us
denote by Xv(M) and Xh(M) the set of vertical and horizontal vector fields on M , respectively.
Since V is integrable then as consequence of the Frobenius’ theorem we have that the vertical
distribution is involutive so that Xv(M) is actually a Lie subalgebra of X(M).

A vector field X ∈ X(M) is called projectable if there exists a vector field X ∈ X(B) such that
X and X are π-related. Moreover, X is defined to be basic if it is horizontal and projectable. It
is important to notice that for all Y ∈ X(B) there exists a unique horizontal vector field Y h

such that Y h and Y are π-related. This vector field Y h is called horizontal lift of Y and it is
defined by using the linear isomorphisms dπp|Hp : Hp → Tπ(p)B as

Y h
p = dπ−1

p (Y π(p)), p ∈ M. (1)
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It is simple to check that Y h is indeed smooth by rewriting (1) in local coordinates and by using
the fact that every surjective submersion locally looks like a linear projection; see for instance [3,
p. 10]. Observe that the set of projectable vector fields is a subalgebra of X(M) since if X1 and
X2 are projectable over X1 and X2, respectively, then the identity dπ ◦ [X1, X2] = [X1, X2] ◦ π
holds true. Furthermore, Xv(M) is actually a Lie algebra ideal of this Lie algebra of projectable
vector fields since any vertical vector field clearly is π-related with the zero vector field on B.

Let us denote by B the set of basic vector fields on M . Using the horizontal lift operation
it is simple to see that B and X(B) are isomorphic only as vector spaces since H may be not
integrable and

[B,Xv(M)] ⊂ Xv(M) ⇐⇒ [X, U ]h = 0, X ∈ B, U ∈ Xv(M). (2)
We also denote by v : TM → V and h : TM → H the canonical vertical and horizontal
projections with respect to the splitting TM = V ⊕ H , respectively. Clearly, these two
maps induce canonical vertical and horizontal projections on section v : X(M) → Xv(M) and
h : X(M) → Xh(M) which shall be equally denoted by v and h only if there is no risk of
confusion. Finally, let gh = gM ◦ (h × h) denote the horizontal component of the metric tensor
gM . We are now in conditions to give an answer to the question: given a surjective submersion
with total space a Riemannian manifold, under what conditions is there a Riemannian metric
on its base making of such submersion a Riemannian submersion?

Proposition 2.2. Let π : M → B be a surjective submersion with connected fibers where
(M, gM) is a Riemannian manifold. Then there exists a Riemannian metric on B for which
π becomes a Riemannian submersion if and only if the Lie derivative LUgh vanishes at any
vertical direction U .

Proof. Let us first suppose that LUgh = 0 for all U ∈ Xv(M). If X, Y ∈ X(B) with respective
horizontal lifts X, Y ∈ X(M) then we set gB(X, Y ) = gM(X, Y ) ◦ π. More precisely, for all
x ∈ B we define

gB
x (Xx, Y x) = gM

p (Xp, Yp), for some p ∈ π−1(x).
To see that this expression is well defined we have to prove that gM (X, Y ) is constant along the
fibers of π. Note that as consequence of Identity (2) we obtain

0 = (LUgh)(X, Y )
= U · gh(X, Y ) − gh(LU(X), Y ) − gh(X, LU(Y ))
= U · gM(X, Y ) − gM([U, X]h, Y ) − gM(X, [U, Y ]h)
= U · gM(X, Y ).

since X and Y are horizontal vector fields. Therefore, U · gM(X, Y ) = 0 holds true for every
U ∈ Xv(M) but the fibers of π are connected so that we get that gM(X, Y ) is constant
along the fibers. This implies that gB is a well defined Riemannian metric on B and from
the defining formula of it we easily see that π is a Riemannian submersion. Conversely, if
π : (M, gM ) → (B, gB) is a Riemannian submersion then for all p, q ∈ M belonging to the same
fiber of π and for all pair of horizontal vector fields X, Y ∈ X(M) we have that

gM
p (Xp, Yp) = gB

π(p)(dπp(Xp), dπp(Xp)) = gB
π(q)(dπq(Xq), dπq(Xq)) = gM

q (Xq, Yq),
since π(p) = π(q). On the other hand, from Equation (2) we get that for every U ∈ Xv(M)
it holds (LUgh)(X, Y ) = U · gM(X, Y ). But gM(X, Y ) is constant along the fibers of π, thus
obtaining that LUgh = 0. �
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Some interesting examples come in order.

Example 2.3 (Hopf fibration). If we think of S3(1) ⊂ C2 and S2(1
2) ⊂ C × R then the smooth

map π : S3(1) → S2(1
2) defined by

π(z, w) =
�1

2(�w�2 − �z�2), zw
�

,

provides us with an example of Riemannian submersion. Indeed, note that the fiber containing
(z, w) consists of the points (eitz, eitw) for which i(z, w) is tangent to the fiber. Thus, the
tangent vectors that are perpendicular to those vectors are of the form λ(−z, w) with λ ∈ C.
Let α(t) = (z(t), w(t)) be a smooth curve in S3(1) such that α(0) = (z, w) and α�(0) = λ(−w, z).
Then

dπ(z,w)(λ(−z, w)) = d

dt
|t=0π(α(t)) =

�
Re(�w�(0), w(0)� − �z �(0), z(0)�), z �(0)w(0) + z(0)w�(0)

�

= (Re(�λz, w� + �λw, z�), −λw2 + λz2) = (2Re(λzw), −λw2 + λz2).
It is simple to check that the previous expression and λ(−w, z) have the same length |λ| as we
required.

The Hopf fibration is a particular case of a more general example.

Example 2.4 (Equivariant setting). Let (M, g) be a Riemannian manifold and assume that
there exists a Lie group G acting freely, properly, and by isometries on (M, g). If G is compact
the properness of the action is immediate. It is well known that as consequence of Godement’s
theorem there exists a unique structure of smooth manifold for the orbit space M/G making of
the canonical projection π : M → M/G a surjective submersion. Besides, as the action is by
isometries we have that M/G can be equipped with a Riemannian metric turning π : M → M/G
into a Riemannian submersion. In particular, if H is a closed subgroup1 of G then we know that
G/H is a manifold. If we endow G with a metric such that right translation by elements in H
act by isometries, then there is a unique Riemannian metric on G/H making of the projection
G → G/H a Riemannian submersion. If in addition the metric is also left invariant then G acts
by isometries on G/H (by the left) thus making of G/H a homogeneous space. For instance,
if M = S2n+1 is equipped with its canonical Riemannian metric which is induced from Cn+1

and G = S1 is acting on S2n+1 by complex multiplication then S2n+1/S1 = CP n admits a
Riemannian metric, called the Fubini–Study metric, such that S2n+1 → CP n is a Riemannian
submersion. The case n = 1 is precisely the Hopf fibration.

Example 2.5 (Vertical warping). Any Riemannian submersion can be used to generate new
ones by deforming the metric in the vertical direction. More precisely, let π : (M, g) → B be a
Riemannian submersion and let µ : M → R be a smooth function. We define a new metric gµ

on M by setting
gµ(X, Y ) = e2µ(p)g(Xv, Y v) + g(Xh, Y h), X, Y ∈ TpM, p ∈ M.

Note that the horizontal metric gh is unchanged so that π : (M, gµ) → B is still a Riemannian
submersion called vertical warping of π with respect to µ.

An exhaustive study of the geometry immersed in the previous example as well as more
interesting examples can be found for instance in [3, c. 2].

1By the closed-subgroup Cartan’s theorem we know that H is a Lie subgroup of G.
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3. The fundamental equations of a submersion

In this section we will see that there are two tensor fields measuring the complexity of a
Riemannian submersion. They will allow us to find relations between the curvature invariants
of the ambient spaces as well as to study the so called horizontal geodesics and holonomy fields,
the latter of which are special cases of projectable Jacobi fields. If π : (M, gM) → (B, gB) is a
Riemannian submersion then we denote by ∇M and ∇B the Levi–Civita connections on (M, gM )
and (B, gB), respectively. Let us start by establishing a relation between ∇M and ∇B.
Lemma 3.1. If X and Y are basics vector fields then so is (∇M

X Y )h.
Proof. Let X and Y be vector fields on B that are π-related with X and Y , respectively. We
claim that (∇M

X Y )h and ∇B
X

Y are π-related. Firstly, note that gM(X, Y ) = gB(X, Y ) ◦ π since
π is a Riemannian submersion. Furthermore, it follows that [X, Y ]h is a basic vector field with
dπ ◦ [X, Y ]h = [X, Y ] ◦ π. This is because

dπ ◦ [X, Y ]h = dπ ◦ ([X, Y ]v + [X, Y ]h) = dπ ◦ [X, Y ] = [X, Y ] ◦ π.

Secondly, observe that for another basic vector field Z that is π-related with Z we obtain
gB(dπ ◦ (∇M

X Y )h, Z ◦ π) = gB(dπ ◦ ∇M
X Y, dπ ◦ Z) = gM(∇M

X Y, Z).
Thus, by using the Koszul formula we get

2gB(dπ ◦ (∇M
X Y )h, Z ◦ π) = 2gM(∇M

X Y, Z)
= X · gM(Y, Z) + Y · gM(Z, X) − Z · gM(X, Y )
+ gM(Z, [X, Y ]) + gM(Y, [Z, X]) − gM(X, [Y, Z]).

However, we may rewrite
X · gM(Y, Z) = X(gB(Y , Z) ◦ π) = dπ ◦ X · gB(Y , Z) = X · gB(Y , Z) ◦ π,

and
gM(Z, [X, Y ]) = gB(dπ ◦ Z, dπ ◦ [X, Y ]) = gB(Z ◦ π, [X, Y ] ◦ π) = gB(Z, [X, Y ]) ◦ π.

Therefore, after replacing these identities in the expression above we have that
2gB(dπ ◦ (∇M

X Y )h, Z ◦ π) = {X · gB(Y , Z) + Y · gB(Z, X) − Z · gB(Y , X)
+ gB(Z, [X, Y ]) + gB(Y , [Z, X]) − gB(X, [Y , Z])} ◦ π

= 2gB(∇B
X

Y , Z) ◦ π = 2gB(∇B
X

Y ◦ π, Z ◦ π).
Hence, as gB is nondegenerate we obtain that dπ ◦ (∇M

X Y )h = ∇B
X

Y ◦ π as desired. �
If ∇ = ∇M denotes the Levi–Civita connection on (M, gM) then:

Lemma 3.2. The expression A : H × H → V given by

AXY = ∇v
XY = 1

2[X, Y ]v X, Y ∈ Xh(M),

defines a skew-symmetric tensor field on M .
Proof. Let X, Y ∈ Xh(M) and U ∈ Xv(M) be arbitrary. From the Koszul formula we get that

2gM(∇v
XY, U) + 2gM(∇h

XY, U) = 2gM(∇XY, U)
= X · gM(Y, U) + Y · gM(U, X) − U · gM(X, Y )
+ gM(U, [X, Y ]) + gM(Y, [U, X]) − gM(X, [Y, U ]).
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Thus, as consequence of Formula (2) and the fact that gM (X, Y ) is constant along the fibers of
π we conclude that

2gM(∇v
XY, U) = gM([X, Y ], U) = gM([X, Y ]v, U).

In particular, for all Z ∈ X(M) we have that 2gM(∇v
XY, Z) = gM([X, Y ]v, Z) so that ∇v

XY =
1
2 [X, Y ]v since gM is nondegenerate. Now, note that the map [·, ·]v : Xh(M) × Xh(M) → Xv(M)
is C∞(M)-bilinear

[fX, Y ]v = (f [X, Y ] + Y (f)X)v = f [X, Y ]v + Y (f)Xv = f [X, Y ]v,

for all f ∈ C∞(M) because of having that X is horizontal. The formula [X, fY ]v = f [X, Y ]v
follows from the last one since [·, ·]v is skew-symmetric. Analogously, by using the same trick with
the Leibniz formula of ∇, it is simple to check that ∇v : Xh(M) × Xh(M) → Xv(M) is C∞(M)-
bilinear. So, the expression AXY = ∇v

XY = 1
2 [X, Y ]v actually gives us a skew-symmetric tensor

field on M . �
We are now in conditions of setting up the following definition.

Definition 3.3. Let π : M → B be a Riemannian submersion. The A-tensor of π is defined to
be

AXY = ∇v
XY = 1

2[X, Y ]v X, Y ∈ Xh(M).
The S-tensor of π is the tensor field S : H × V → V given as

SXU = −∇v
UX X ∈ Xh(M), U ∈ Xv(M).

Firstly, note that the horizontal distribution H associated to π is integrable if and only if
A ≡ 0 in which case the respective foliation is said to be flat. Secondly, by arguing with the
Leibniz formula of ∇ as we did above it is easy to see that S is indeed a tensor field. Observe that
SX is of course just the second fundamental tensor of a fiber of π in direction X. In particular,
S ≡ 0 if and only the fibers of π are totally geodesic2; see for instance [10, p. 104]. Thirdly, it is
important to notice that the definition of A-tensor that we are taking under consideration here
differs from that initially introduced in [8] where the author defines

AEF = ∇v
EhF h + ∇h

EhF v.

Note that the two expressions only agree on horizontal vector fields. This reference also introduces
a tensor field T instead of S defined by

TEF = ∇h
EvF v + ∇v

EvF h.

We will study the tensor fields A and S from Definition 3.3 since they essentially determine
the geometry that brings us a Riemannian submersion as well as the foliation determined by
its vertical distribution. So, let us start by exhibiting a relation between the curvature tensors
R := RM and RB associated to ∇ := ∇M and ∇B, respectively. Given AX : H → V we denote
by A∗

X : V → H its adjoint map with respect to gM , that is, the unique map verifying the
formula

gM(A∗
XU, Y ) = gM(U, AXY ), X, Y ∈ H, U ∈ V.

Lemma 3.4. If X is basic then the following identity holds true
A∗

XU = −∇h
UX = −∇h

XU.

2A submanifold ι : N �→ (M, gM ) is named to be totally geodesic if any geodesic in (N, ι∗gM ) is also a geodesic
in (M, gM ).
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Proof. Recall that Identity (2) implies that [X, U ] is vertical for all U ∈ V . Thus, as ∇ is torsion
free we get that ∇h

XU = ∇h
UX. Therefore, if Y is horizontal

gM(A∗
XU, Y ) = gM(U, AXY ) = gM(U, ∇v

XY ) = gM(U, ∇h
XY + ∇v

XY )
= gM(∇XY, U) = X · gM(Y, U) − gM(∇XU, Y )
= −gM(∇h

XU + ∇v
XU, Y ) = −gM(∇h

UX, Y ).
Hence, if Y ∈ TM is arbitrary then we have obtained that

gM(A∗
XU, Y ) = gM(A∗

XU, Y h) = −gM(∇h
UX, Y h) = −gM(∇h

UX, Y ),
so that A∗

XU = −∇h
UX = −∇h

XU since gM is nondegenerate. �
With the previous formulas in mind we get:

Proposition 3.5. [1],[8] For every p ∈ M and x, y, z ∈ Hp we have
dπR(x, y)z = RB(dπx, dπy)dπz + dπ(2A∗

zAxy − A∗
xAyz − A∗

yAzx).

Proof. If we extend x, y and z locally to basic vector fields X, Y and Z, respectively, and denote
by X, Y and Z their π-related vector fields on B, then the fact that V = ker(dπ) implies

dπ ◦ R(X, Y )Z = dπ ◦ (∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z)
= dπ ◦ (∇h

X∇Y Z − ∇h
Y ∇XZ − ∇h

[X,Y ]h+[X,Y ]vZ)
= dπ ◦ {∇h

X∇h
Y Z + ∇h

X∇v
Y Z − ∇h

Y ∇h
XZ

− ∇h
Y ∇v

XZ − ∇h
[X,Y ]hZ + ∇h

[X,Y ]vZ}.

On the one hand, as consequence of Lemma 3.1 we have that each term of the form dπ(∇h
X∇h

Y Z)
agrees with (∇B

X
∇Y Z) ◦ π. On the other hand, from both Lemma 3.2 and Lemma 3.4 we obtain

∇h
X∇v

Y Z = ∇h
XAY Z = −A∗

XAY Z,

and
∇h

[X,Y ]vZ = −A∗
Z [X, Y ]v = −2A∗

ZAXY.

So, the result follows after replacing these formulas in the first expression we got above. �

3.1. Geodesics and Jacobi fields. Before going further we will introduce some interesting
results addressing relations between geodesics as well as Jacobi fields when we are working with
Riemannian submersions. It is well known that if c : I → B is a smooth curve then for any
t0 ∈ I and any p ∈ π−1(c(t0)) there exist � > 0 and a horizontal lift3 c : [t0, t0 + �) → M of
c|[t0,t0+�) with c(t0) = p. Moreover, any two of such lifts agree in their common domain. Namely,
let us assume that c is regular4 and let us choose a vector field X on B such that X ◦ c = ċ on
some neighborhood of t0. Consider the horizontal lift X on M of X. As X take values in H we
have that the integral curves c of it are horizontal and moreover they project down over integral
curves of X since

˙(π ◦ c)(t) = dπc(t)(ċ(t)) = dπc(t)(X(c(t))) = X(π(c(t))).
3By horizontal lift we mean a smooth curve c on M such that π ◦ c = c and ċ(t) ∈ Hc(t) for all t where it is

defined.
4We may assume it since if it is not so we consider the graph curve c1 : I → I × B which is defined by

c1(t) = (t, c(t)). It is clear that c1 is always regular and a TI ⊕ H-horizontal lift of c1 for the Riemannian
submersion (idI , π) : I × M → I × B has the form c1(t) = (t, c(t)) where c(t) is the desired lift of c.
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Therefore, as the restriction of c and π ◦ c are integral curves of X with c(t0) = π(p) = π(c(t0))
they locally agree by uniqueness.

So, we set up our next result which tells us that if M is complete then any Riemannian
submersion is a locally trivial fiber bundle.

Theorem 3.6. [9] Let π : M → B be a Riemannian submersion. If c : I → M is a geodesic with
c(t0) ∈ H for some t0 ∈ I, then c(t) ∈ H for all t ∈ I and π ◦ c is a geodesic in B. Furthermore,
if M is complete, then

(1) B is complete,
(2) π is a submetry meaning that π maps the closure of the metric ball Br(p) onto the closure

of Br(π(p)) for any p ∈ M ,
(3) fibers of π are equidistant, that is, for any two fibers F0 and F1 with p ∈ F0, the distance

between p and F1 equals that between F0 and F1,
(4) π is a locally trivial fiber bundle meaning that any point b in B has a neighborhood U

such that π−1(U) is diffeomorphic to U × F where F = π−1(b).

Proof. Let us suppose that c : I → M is a geodesic and t0 ∈ I is such that ċ(t0) ∈ H. On
the one hand, we know that there exists a geodesic cB in B defined on some interval J ⊆ I
containing t0 such that cB(t0) = π(c(t0)) and ċB(t0) = dπc(t0)(ċ(t0)). On the other hand, there
also exists a horizontal lift cM in M of cB with cM (t0) = c(t0) defined on some subinterval J � ⊆ J .
If α : [a, b] → M is another curve on M with the same endpoints as cM and we decompose
α̇ = α̇v + α̇h then gM(α̇, α̇) ≥ gM(α̇h, α̇h) so that

L(α) =
� b

a
�α̇� ≥

� b

a
�α̇h� =

� b

a
�dπα̇h� =

� b

a
�dπα̇� = L(π ◦ α) ≥ L(cB),

where last inequality holds true because cB is a geodesics and thus it is length-minimizing. Note
that the fact that cM is a horizontal lift of cB plus the fact that π is a Riemannian submersion
imply that L(cB) = L(cM). Thus, L(α) ≥ L(cM) meaning that cM is length-minimizing. As
consequence, we get that cM is a geodesic and by uniqueness of geodesics cM = c|J � . This
immediately implies that c is horizontal and that π ◦ c = π ◦ cM = cB is a geodesic.

Let us assume now that M is complete. Firstly, it is clear that items (1) and (2) follows
directly from what we just proved. Secondly, if b0 = π(F0) and b1 = π(F1) then there exists a
minimizing geodesic c joining b0 and b1 since B is complete. We may assume that such geodesic
is parametrized by arc length. Note that π is distance-decreasing since it is a Riemannian
submersion. Namely, this follows from the inequality

gM(α̇, α̇) ≥ gM(α̇h, α̇h) = gB(dπα̇h, dπα̇h).
Therefore, the distance between any point of F0 and any point of F1 is at least as large as the
length of c and then d(F0, F1) ≥ L(c). Furthermore, for any p in F0 we have that the horizontal
lift of c starting at p is a curve that ends at some point of F1 and has the same length as c so
that d(F0, F1) ≤ d(p, F1) ≤ L(c). In consequence,

d(F0, F1) = d(p, F1).
Finally, let us take b ∈ B and denote F = π−1(b) the fiber of π at b. Consider a normal
neighborhood Ub of b in B such that expB

b |Bb(0,�) : Bb(0, �) ⊆ TbB → Ub ⊆ B is a diffeomorphism
for some � > 0. For each x ∈ Bb(0, �) we consider its unique horizontal lift X and set
h : F ×Bb(0, �) → π−1(Ub) as h(p, x) = expM

p (X). As consequence of (1) this map is well defined
and moreover differentiable. Given q ∈ π−1(Ub) we consider the unique minimizing geodesic
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c : [0, a] → B from π(q) to b. If cM denotes the horizontal lift of c starting at q, then cM(a) is
well defined by completeness of M , and π(cM(a)) = c(a) = b so that p := cM(a) ∈ F . Note
that c(a − t) is a geodesic from b to π(q) verifying x = ċ(a − t)|t=0 = −ċ(a) thus obtaining
X = ċM(a − t)|t=0 = −ċM(a). Then h(p, x) = expM

p (−ċM(a)) = cM(a − t)|t=a = cM(0) = q
concluding that h is surjective. Furthermore, h is injective because of the uniqueness of horizontal
lifts. As h is defined in terms of the exponential map it follows that h has maximal rank so that
the composition of idF × expB

b : F × Bb(0, �) → F × Ub and h−1 : π−1(Ub) → F × Bb(0, �) is a
diffeomorphism and we are done. �

A geodesic curve verifying first part of Theorem 3.6 is called horizontal geodesic. From now
on we assume that M is complete so that every Riemannian submersion π : M → B is a locally
trivial fiber bundle. Last property allows us to speak about holonomy. Namely, if c : [0, 1] → B
is a piecewise smooth curve then we define the holonomy diffeomorphism associated to c as
the map hc : π−1(c(0)) → π−1(c(1)) sending a point p in the first fiber to the endpoint of the
horizontal lift of c that starts at p. Note that the inverse of hc is h−c where −c(t) = c(1 − t).

Definition 3.7. The holonomy group Hol(b) of a Riemannian submersion π : M → B at b ∈ B
is the group of holonomy diffeomorphisms hc : π−1(b) → π−1(b) of the fiber over b where c is a
piecewise smooth closed curve at b.

It is worth noticing that if b0 and b1 are points in B and c is a curve joining b0 to b1, then the
map Hol(b0) → Hol(b1) defined as hα �→ hc ◦ hα ◦ h−c is an isomorphism of holonomy groups.

Lemma 3.8. Let π : M → B denote a Riemannian submersion and h : F0 → F1 the holonomy
diffeomorphism induced by the geodesic c : [0, 1] → B where c(0) = π(F0) and c(1) = π(F1).
Take p ∈ F0 and let cp denote the horizontal lift of c starting at p. Then for u ∈ TpF0 we have

dh(u) = J(1)
where J is the Jacobi field along cp with J(0) = u and J �(0) = −A∗

ċp(0)u − Sċp(0)u.

Proof. Set x := ċ(0) and denote by X = ċp. Let γ : I → F0 be a curve defined on some
neighborhood I of 0 such that γ̇(0) = u and consider the variation along the geodesic cp

H : [0, 1] × I → M, H(s, t) = expM(s(X ◦ γ)(t)).
Note that (h ◦ γ)(t) = expM((X ◦ γ)(t)) = H(1, t) so that

dhp(u) = d

dt
|t=0(h ◦ γ)(t) = d

dt
|t=0H(1, t) = dH(1,0)

�
∂

∂t

�
= dH

�
∂

∂t

�
(1, 0) = ∂

∂t
(1, 0).

Since the variation H is by geodesics we have that its associated variational vector field along cp

J(s) = dH

�
∂

∂t

�
(s, 0) = ∂

∂t
|t=0,

is a Jacobi field along cp verifying dhp(u) = J(1). Furthermore,
∇
ds

J(0) = J �(0) = ∇ ∂
∂s

∂

∂t
|t=0 = ∇ ∂

∂t

∂

∂s
|t=0 = ∇uċp = ∇uX,

and from Definition 3.3 and Lemma 3.4 we get ∇uX = ∇h
uX + ∇v

uX = −A∗
ċp(0)u − Sċp(0)u as

required. �
Previous result motivates the following definition.
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Definition 3.9. A Jacobi field J along a horizontal geodesic c : [0, a] → M that is vertical at 0
and satisfies J �(0) = −A∗

ċ(0)J(0) − Sċ(0)J(0) is called a holonomy field.
It is important to notice that a holonomy field is always vertical and is identically zero if it

vanishes at only one point. This is because the holonomy transformations defining it, according
with Lemma 3.8, are diffeomorphisms5. Furthermore, observe that as consequence of this for
t0 ∈ (0, a), the restriction J |[t0,a] is again a holonomy field along c|[t0,a] so that

J �(t) = −(A∗
ċ(t) + Sċ(t))J(t), t ∈ [0, a]. (3)

Recall that a submanifold ι : N �→ (M, gM) is named to be totally geodesic if any geodesic in
(N, ι∗gM) is also a geodesic in (M, gM). So,
Lemma 3.10. If π : M → B is a Riemannian submersion with totally geodesic fibers and M is
complete then the holonomy diffeomorphisms between fibers are isometries.
Proof. Consider a holonomy field J along a geodesic c : [0, 1] → M with J(0) = u as above.
Since J is vertical and the fibers are totally geodesic (i.e. S ≡ 0) then Formula (3) implies that

d

dt
gM(J, J) = 2gM(J, J �) = 2gM(J, (J �)v) = −2gM(J, SċJ) = 0,

thus obtaining that �J� is constant. If h is the associated holonomy diffeomorphism, then the
previous fact implies that

�dh(u)� = �J(1)� = �J(0)� = �u�.

�
Theorem 3.11. Let π : M → B be a Riemannian submersion with M complete and such that
the fibers are totally geodesic. If the A-tensor is identically zero then π splits. More precisely,
each point b ∈ B has a neighborhood U such that π−1(U) is isometric to a metric product
U × F where F := π−1(b). Moreover, if Φ : U × F → π−1(U) denotes such a isometry, then
π ◦ Φ : U × F → U is projection onto the first factor.
Proof. Let U be a normal neighborhood around b. Since U is the diffeomorphic image under
expB

b of some ball around 0 in TbB them we directly assume that U is simply connected. Let us
consider the local trivialization (π, φ) : π−1(U) → U × F from Theorem 3.6 which is defined
as q �→ (π(q), cq(1)) where cq : [0, 1] → F is the shortest geodesic from q to F . It is worth
noticing that if b̂ ∈ U then from what we proved above we know that φ|π−1(b̂) is a holonomy
diffeomorphism so that, as consequence of Lemma 3.10, it is an isometry. As the A-tensor is
identically zero we have that the horizontal distribution H is integrable. Therefore, if p ∈ π−1(U),
then the restriction of π to the connected component V ⊂ π−1(U) of the leaf of the associated
foliation on M induced by H that contains p is a covering map and hence a diffeomorphism
since U is simply connected and π is a surjective submersion. This implies that V intersects
F in exactly one point, namely, φ(p). Fix x ∈ Hp and take a horizontal geodesic γ such that
γ̇(0) = x. As γ is contained in V then φ ◦ γ = φ(p). So,

dφp(x) = d

dt
|t=0(φ ◦ γ)(t) = d

dt
|t=0φ(p) = 0.

Let z ∈ TpM = Hp ⊕ Vp be arbitrary. On the one hand, as π is a Riemannian submersion we
get that that �dπp(z)� = �dπp(zh)� = �zh�. On the other hand, as φ|π−1(b̂) is an isometry then

5Uniqueness of a Jacobi field given certain initial conditions
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the above identity implies that �dφp(z)� = �dφp(zv)� = �zv�. Therefore, �d(π, φ)p(z)� = �z�
meaning that our trivialization (π, φ) is an isometry. �

An interesting fact derived from the previous result is the following:

Corollary 3.12. Assume that π : M → B is a Riemannian submersion with M complete and
of nonpositive sectional curvature. Then, M splits locally as a metric product. In particular, a
negatively curved manifold admits no Riemannian submersions with totally geodesic fibers.

Proof. If J is a Jacobi field along a geodesic c in M , then
gM(J, J)�� = 2(gM(J ��, J) + gM(J �, J �)) = 2(�J ��2 − gM(R(J, ċ)ċ, J)) ≥ 0.

If the fibers of π are totally geodesic, then by Lemma 3.10 the holonomy Jacobi fields have
constant norm so that the preceding inequality implies that they are parallel. Thus, from
Equation (3) we get that that A∗

ċJ = 0 for a holonomy field along a horizontal geodesic c.
Since ċ and J are arbitrary taken we get that A = 0 and therefore M splits locally as a metric
product. �
Remark 3.13. A similar result holds true if one removes the sectional curvature condition on M
and assumes instead that the fibers are compact and have negative Ricci curvature. A theorem
of Bochner asserts that such a fibers cannot admit nontrivial Killing fields and the previous
assertion follows by proving that AXY is always a Killing vector field. Indeed, as consequence of
Identity (2), if U is a vertical field then we have that the Lie derivative LXU = (LXU)v = ∇v

XU
since ∇v

UX = −SXU = 0 because of having totally geodesic fibers. Let us further assume that
U is unitary. So, we have to prove that gM (∇UAXY, U) = 0 or, equivalently, since the A-tensor
is skew-symmetric and ∇ is torsion free, we may check that

gM(L[X,Y ]vU, U) = 2(gM(∇AXY U, U) − gM(∇UAXY, U)) = −2gM(∇UAXY, U) = 0.

Form the first comment regarding the Lie derivative we obtain that gM (L[X,Y ]hU, U) = 0 so that

gM(L[X,Y ]vU, U) = gM(L[X,Y ]U, U) = gM(LXLY U, U) − gM(LY LXU, U)
= gM(∇v

X∇v
Y U − ∇v

Y ∇v
XU, U)

= gM(R(X, Y )U, U) − gM(∇v
X∇h

Y U − ∇v
Y ∇h

XU, U).
Last equality is obtained by similar computations as those we did before. But gM (R(X, Y )U, U) =
gM(R(U, U)X, Y ) = 0 and therefore

gM(L[X,Y ]vU, U) = −gM(∇v
X∇h

Y U − ∇v
Y ∇h

XU, U)
= gM((P − P ∗)(U), U) = gM(P (U), U) − gM(U, P (U)) = 0,

where −P (U) = ∇v
X∇h

Y U = AX∇h
Y U = −AXA∗

Y (U), that is, P = AXA∗
Y with P ∗ = AY A∗

X . In
conclusion, gM(∇UAXY, U) = 0 thus obtaining that AXY is a Killing vector field.

Let us return to our initial purpose. In order to investigate the curvature relations for one or
more vertical vector fields we extend the tensor fields A and S on all TM by setting

AEF = AEhF h and SEF = SEhF v, E, F ∈ X(M).
The covariant derivative ∇

dt
B of a tensor field B along a curve c will be just denoted by B�. Thus,

for example, in the particular case that B is a tensor field of type (1, 1) and E is a vector field,
both of them along c, we shall use below the Leibniz rule B�E = (BE)� − BE � without making
any special mention. To relax notation we denote by g := gM . Having in mind Formula (3),
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for a holonomy Jacobi field J and for a vertical vector field T , both of them along a horizontal
geodesic c, we get

g(R(T, ċ)ċ, J) = g(R(J, ċ)ċ, T ) = −g(T, J ��) = g(T, (A∗
ċJ)�) + g(T, (SċJ)�)

= g(T, A∗
ċJ)� − g(T �, A∗

ċJ) + g(T, SċJ)� − g(T �, SċJ)
= −g(∇ċT, A∗

ċJ) + g(SċT, J)� − g(SċT
�, J)

= g(−∇v
ċT, A∗

ċJ) + g((SċT )�, J) + g(SċT, J �) − g(SċT
�, J)

= g(A∗
ċT, A∗

ċJ) + g(S �
ċT, J) − g(SċT, A∗

ċJ + SċJ)
= g((AċA

∗
ċ + S �

ċ − S2
ċ )T, J).

Given any t0 we assume that the holonomy Jacobi fields may be chosen so that they form an
orthonormal basis of the vertical space at c(t0) which immediately implies that the vertical
component of R(T, ċ)ċ is given by

Rv(T, ċ)ċ = (AċA
∗
ċ + ∇v

ċSċ − S2
ċ )T.

Equivalently, as the geodesic we are working with is horizontal, we obtain the formula
Rv(u, x)x = (AxA∗

x + (∇v
xS)x − S2

x)u, x ∈ H, u ∈ V.

With similar computations as we did above, if X is a horizontal vector field along c then
g(R(X, ċ)ċ, J) = g(X, (A∗

ċJ)�) + g(X, (SċJ)�).
On the one hand,

g(X, (SċJ)�) = g(X, SċJ)� − g(X �, SċJ) = −g(X �, SċJ) = −g(∇v
ċX, SċJ)

= −g(AċX, SċJ) = −g(SċAċX, J).
On the other hand, from Identity (3)

g(X, (A∗
ċJ)�) = g(X, A∗

ċJ)� − g(X �, A∗
ċJ) = g(AċX, J)� − g(AċX

�, J)
= g((AċX)�, J) + g(AċX, J �) − g(AċX

�, J)
= g(A�

ċX, J) − g(AċX, A∗
ċJ + SċJ)

= g((∇v
ċAċ − SċAċ)X, J).

Therefore, by arguing as above we obtain Rv(X, ċ)ċ = (∇v
ċAċ − 2SċAċ)X or equivalently

Rv(y, x)x = ((∇v
xA)x − 2SxAx)y, x, y ∈ H.

It is simple to check that ∇v
xA is skew-symmetric meaning that (∇v

xA)yz = (∇v
xA)zy. Thus,

by applying polarization identities together with the first Bianchi identity, from the previous
expression we obtain

3Rv(x, y)z = Rv(x, y + z)(y + z) − Rv(y, x + z)(x + z) − Rv(x, y)y − Rv(x, z)z
+ Rv(y, x)x + Rv(y, z)z
= (∇v

yA)zx − (∇v
xA)zy + (∇v

zA)yx − (∇v
zA)xy − 2SyAzx + 2SxAzy + 4SzAxy.

As consequence of the Jacobi identity for the Lie bracket of vector fields, by looking at 0 = 1
2 �

[X, [Y, Z]]v = 0 after extending x, y, z ∈ Hp to basic fields X, Y, Z with vanishing horizontal Lie
bracket at p, it is simple to derive the formula � (∇v

xA)yz+ � SxAyz = 0 so that
3Rv(x, y)z = � (∇v

xA)yz − (∇v
zA)xy + 2(∇v

zA)yx − 2SyAzx + 2SxAzy + 4SzAxy

= −3(∇v
zA)xy + 3SzAxy − 3SyAzx − 3SxAyz.
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Therefore
Rv(x, y)z = −(∇v

zA)xy + SzAxy − SyAzx − SxAyz, x, y, z ∈ H.

Let us now compute Rv(x, u)y for x, y ∈ H and u ∈ V . As usual, we extend these vectors to
basics fields X, Y and vertical field U , respectively. Then, by using Formula (2) and covariant
derivative of tensor fields we get

Rv(X, U)Y = ∇v
X∇UY − ∇v

U∇XY − ∇v
[X,U ]Y

= ∇v
X∇v

UY + ∇v
X∇h

UY − ∇v
U∇v

XY − ∇v
U∇h

XY − ∇v
[X,U ]vY

= −∇v
XSY U − ∇v

XA∗
Y U − ∇v

UAXY + S∇h
XY U + SY [X, U ]v

= −∇v
XSY U − AXA∗

Y U − ∇v
UAXY + S∇h

XY U + SY ∇v
XU − SY ∇v

UX

= −AXA∗
Y U − (∇v

XS)Y U + SY SXU − ∇v
UAXY.

Observe that
−(∇v

UA)XY = −∇v
UAXY + A∇v

U XY + AX∇v
UY = −∇v

UAXY + AY A∗
XU − AXA∗

Y U,

since A is skew-symmetric. Hence,
Rv(X, U)Y = −(∇v

UA)XY − AY A∗
XU − (∇v

XS)Y U + SY SXU.

Using this expression together the first Bianchi identity Rv(x, y)u = Rv(x, u)y − Rv(y, u)x and
the fact that ∇v

uA is skew-symmetric we obtain
Rv(x, y)u = −2(∇v

uA)xy − (∇v
xS)yu + (∇v

yS)xu + [Sx, Sy]u + (AxA∗
y − AyA∗

x)u,

for all x, y ∈ H and u ∈ V , where [Sx, Sy] denotes the usual commutator. Recall that by
mimicking the de Rham differential, the connection ∇ allows us to define an exterior covariant
differential d∇ which provides us with a cochain complex if and only if ∇ is flat; see for instance
[3]. So,

(d∇S)XY = ∇X(SY ) − ∇Y (SX) − S[X,Y ] = (∇XS)Y + (∇Y S)X .

Summing up, with those computations above we have obtained a complete description of the
curvature tensor in terms of the tensor fields A and S.

Theorem 3.14. [1],[8] Let π : M → B be a Riemannian submersion with dimB ≥ 2 and R,
RB, and RF denoting the curvature tensors of M , B, and a fiber F , respectively. Let p ∈ M ,
x, y, z ∈ Hp, and u, v, w ∈ Vp. Denote by σ the second fundamental tensor of the fiber π−1(π(p))
at p which is defined as σ(U, V ) = ∇h

UV . Then
dπR(x, y)z = RB(dπx, dπy)dπz + dπ(2A∗

zAxy − A∗
xAyz − A∗

yAzx)
Rv(x, y)z = −(∇v

zA)xy + SzAxy − SyAzx − SxAyz

Rv(x, u)y = −(∇v
uA)xy − AyA∗

xu − (∇v
xS)yu + SySxu

Rv(x, y)u = −2(∇v
uA)xy − ((d∇S)xy)(u) + [Sx, Sy]u + (AxA∗

y − AyA∗
x)u

RF (u, v)w = Rv(u, v)w + Sσ(v,w)u − Sσ(u,w)v

Rv(u, w)x = (∇v
wS)xu − (∇v

uS)xw.

Last two identities are the so-called Codazzi equations for the fibers of π. Using the fact
that ∇v

uA is skew-symmetric we immediately get the following expressions for the sectional
curvatures:
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Corollary 3.15. [1],[8] With the notation of the previous theorem we have

K(dπx, dπy) = K(x, y) + 3�Axy�2

KF (u, v) = K(u, v) + σ(u, u)σ(v, v) − σ2(u, v)
K(x, u) = g((∇v

xS)xu, u) + �A∗
xu�2 − �Sxu�2.

The second equation in the previous corollary is nothing but the Gauss equation.

4. Some miscellany results

In search of completeness, in this short section we cite some other interesting results concerning
Riemannian submersions. For more details about the assertions we shall present below the
reader is recommended to visit the O’Neill’s seminal papers [8, 9].

• [8] Let π and π be two Riemannian submersions of a connected Riemannian manifold M
onto B. If π and π have the same tensor fields A and S and their derivative maps agree
at one point of M , then π = π.

Note that this result generalizes the well known case in which is required that both π and π are
local isometries coinciding at least at order 1 at one point of M .

A related result to Theorem 3.11 is the following. The simplest type of submersion is the
projection of a Riemannian product manifold on one of its factors. Motivated by what we
proved in the previous section we say that a submersion π : M → B is trivial if it differs for
such a projection only by an isometry of M . Equivalently, π : M → B is trivial if there exists a
Riemannian manifold F and a submersion φ : M → F dual to π in the sense that the horizontal
distribution of φ is the vertical distribution of π (hence vice-versa). So, we have:

• [8] Let π : M → B be a Riemannian submersion of a complete Riemannian manifold M .
Then π is trivial if and only the tensor A and all holonomy groups of π vanish.

Let us now exhibit a comparison of the index forms. Let π : M → B be a Riemannian submersion
and let c be a horizontal geodesic in M . If E is a vector field along c then the derived vector filed
of E is defined to be D(E) = E �v + SċE

v + 2AċE
h; compare [9] with [3, p. 32]. As it was shown

in [9], there is a relation of the Jacobi fields along c on M to those along π ◦ c on B. Namely, a
Jacobi field E along c projects to a Jacobi field along π ◦ c if and only if A∗

ċ(D(E)) = 0. Besides:
• [9] Let c be a horizontal geodesic in M . Given a vector field E∗ along π ◦ c and a vertical

vector u at c(0) there exists a unique vector field E along c such that: dπ(E) = E∗,
D(E) = 0, and E(0) = u. Furthermore, E is a Jacobi field if and only if E∗ is so.

Note that a piecewise differentiable vector field E along a horizontal geodesic c : [a, b] → M
will have projection E∗ along π ◦ c if and only if E is orthogonal to c and vertical at a and b.
The set Ev,v of such vector fields constitute the linear space appropriate to the study of c as a
geodesic segment joining the fibers Fa and Fb through its end points. Accordingly:

• [9] Let π : M → B be a Riemannian submersion and c a horizontal geodesic in M . If I
denotes the index form of M restricted to E v,v and IB is the index form of B then

I(E, F ) = IB(E∗, F∗) +
� b

a
g(D(E), D(F )) dt.

The numerical invariants concerning both conjugacy and index which may be derived from the
previous results are explained in detail in Theorem 4 from [9].
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Lots of interesting results that appear when studying Riemannian submersions where the in-
volved manifolds carry an additional structure as for instance of contact, Hermitian, quaternionic
type, among others, can be found in [2].

Acknowledgments

I would like to thank professor Claudio Gorodski for the dedication and commitment shown
when teaching the Riemannian geometry course. During the development of these notes the
author was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
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