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EQUIVARIANT BIFURCATIONS IN A NONLOCAL EVOLUTION
MODEL

Abstract. In this work we study the bifurcations from the trivial equilibrium of the
equation

∂u

∂t
(x, t) = −u(x, t) + tanh(λ(J ∗ u)(x, t)),

in the space of 2τ periodic functions. This is accomplished with the help of the equi-
variant branching lemma, which allows us to take into account the simmetries present in
the model. We show that the phenomenon of ‘spontaneous simmetry-breaking’ occurs
here, that is, the bifurcating solutions are less simmetric than the trivial one.

1. Introduction

We consider here the non local evolution equation

(1)
∂u(r, t)

∂t
= −u(r, t) + tanh (λJ ∗ u(r, t) + βh) ,

where u(r, t) is a real function on R×R+, h, β are non negative constants and J ∈ C1(R)
is a non negative even function with compact support and integral equal to 1. The ∗
above denotes convolution product, namely:

(J ∗m)(x) =

∫
R
J(x− y)m(y)dy.

Nonlocal convolution models appear in the modelling of many phenomena, including
population dynamics ([17], [13], [14]) and neuronal activity ([2], [4], [7], [10], [18], [19],
[30] and [37]

In particular, equation 1 arises as a continuum limit of one-dimensional Ising spin
systems with Glauber dynamics and Kac potential (see [24] and references therein); u
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represents then a magnetization density and β−1 the temperature of the system. Though
‘local’, e.g. reaction-diffusion, differential equations have also been used in this context,
equation (1) seems to be the ‘right’ one to use, especially if one is interested in phase
transitions and metastability properties (see ).

It is not difficult to obtain well posedness of the problem (1) in various function
spaces since the right-hand-side of (1) usually defines a global Lipschitz map. On the
other hand, the investigation of qualitative properties of the associated flow seems to be
harder. To begin with, the equilibria are given by the solutions of a nonlinear integral
equation for which many methods used to analyze, for example, the boundary value
problems that appear in the case of semilinear parabolic problems are not available.
Furthermore, as it is shown in [11], nonlocality can give rise to complicated dhynamics
even in the case of scalar parabolic equations.

In the last years several works dedicated to the analysis of (1) appeared in the litera-
ture. In [21] and [27], the existence and uniqueness (modulo translations) of a travelling
front connecting the equilibria m−β and m+

β is proved. In the case h = 0 the existence
of a ‘standing’ wave as well as its stability properties are analysed in [22] and [23]. In
this case, many equilibria periodic in x also exist, as shown in [1] and [3]. The existence
of a non-homogeneous stationary solution referred to as the ‘bump’ or ‘critical droplet’
in the literature, was proved in [25] for h ‘sufficiently close’ to 1. Another proof, which
is simpler and does not require the above restriction in h is given in [28]. In the same
work, the existence of a global compact attractor in L2(R) with a convenient weighted
measure is obtained.

We considerer here the equation (1) restricted to the subspace P2τ of 2τ periodic
functions

(with support of J contained in [−τ, τ ]). The existence and continuity of global
attractors with respect to parameters was proved for a slightly more general class of
equations in [31] and [32].

Our aim here is to investigate the (families of) solutions bifurcating from the trivial
solution of 1 (or, more precisely, its restriction to P2τ ). This equation has a natural O(2)
equivariance. As it is well-known, after the work of many workers in the late seventies,
this may have profound consequences on the bifurcation of its equilibria as explained in
the now classical book of Golubstiky at all [12]. In particular, the trivial solution has
full O(2)-symmetry, but as we shall see, the bifurcating solutions are less symmetric,
that is, they are symmetric under a proper subgroup of O(2), a phenomenon known
as spontaneous symmetry breaking in the literature. Similar situations, for the case of
semilinear elliptic equations, have been discussed by many authors, among which we
cite [34], [6], [36] and [20]. The main tool used is the Equivariant Branching Lemma
proved independently in [35] and [9] in a version given in [8]. This result may be seen as
an equivariant version of the famous Crandall-Rabinowitz theorem on the bifurcation,
giving sufficient conditions for bifurcation to occur in the presence of symmetries and
information on the type of symmetry enjoyed by the bifurcating solutions.
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Falar agora da bifurcao global que usa tecnicas essencialmente diferentes do s teoremas
de Sturm-Liouville. The main idea is the preservation of symmetry type along each
branch. VEr artigo Smoller.

This paper is organised as follows.

2. Preliminaries

2.1. Some concepts from group representation theory. We first recall some defi-
nitions from the representation theory of compact groups. We follow the exposition in
[8] with some adaptations (see also [16]).

Definition 2.1. Let G be a topological group. A representation of G in a Banach space
X is a group homomorphism Γ : G → GL(X), where GL(X) is the group (under
composition) of invertible continuous linear operators in X.

Remark 2.2. Alternatively, the map

(g, x) → Γg(x)

G×X → X

is called a (linear) action of G in X and Γg(x) is then denoted by g · x or simply gx.

We say that the representation Γ is (strongly) continuous if limg→e Γgξ = ξ for any
ξ ∈ X. (Here and in the sequel, we often use the notation Γg for the image of g under
Gamma).

If X is a complex (resp. real) Hilbert space the representation Γ is called unitary
(resp. orthogonal) if Γg, is an unitary (resp. orthogonal) operator, for any g ∈ G. A
closed subspace Y ⊂ X is invariant for Γ if ΓgY ⊂ Y for any g ∈ G. In this case the
representation of G in Y defined by restriction is called a subrepresentation of Γ. The
representation Γ is irreducible if it admits no nontrivial subrepresentation.

Suppose now that F : X → X is a Ck, k ≥ 1 map.

Definition 2.3. We say that F is equivariant with respecto to the action Γ if F(Γgx) =
ΓgmathbbF (x), for every g in G and every x ∈ X.

Given a subgroup Σ of G, we may consider the points in X which are fixed by the
action, restricted to Σ. Reciprocally, if x is a point in X we may consider the elements
of G which fix x. More precisely, we introduce the following concepts.

Definition 2.4. Let Σ be a closed subgroup of G. We say that a point x ∈ X is fixed
under Σ, with respect to the representation Γ, if (Γgx) = x, for every g in Σ. The
subspace of X consisting of all such points is denoted by FixΓΣ. (We will often write
simply FixΣ when no misunderstandig seems likely).

Definition 2.5. Let x be a point in X. The largest subgroup of G which fixes x, that is
is the isotropy subgroup (or stabilizer) of x, which we denote by Stab(x).
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Definition 2.6. If H is a subgroup of G, we define its normalizer by

N(H) = {g ∈ G|gHg−1 = H} .

2.2. Lyapunov-Schmidt decomposition and equivariance. The Lyapunov-Schmidt
decomposition is a procedure used to reduce an equation to as few variables as possible,
after ‘solving’ the part that can be dealt with by the Implicit Function Theorem. The
symmetries presented in the equation can be preserved int the reduced equation, called
the ‘bifurcation equation’. We refer to [12] or [35] for details and s.

Definition 2.7. Let X and Y be Banach spaces. A bounded linear operator L : X → Y
is called a Fredholm operator if its kernell K(L) is finite-dimensional and its range
R(L) has finite codimension (and is therefore closed). The index of L is then the integer
ind(L) = ker(L)− codimR(L).

The following result is the main information we need about Fredholm operators.

Proposition 2.8. If L : X → Y is a Fredholm operator, then there exist closed subspaces
M and N of X and Y respectively such that X = ker(L)⊕M and Y = N ⊕R(L).

Suppose now that Λ, X and Y are Banach spaces with X ⊂ Y and F : M ×X → Y
is a Ck, k ≥ 1 map. We write F (λ, u), u ∈ X and λ ∈ Λ. We may suppose, after a
change of coordinates, that F (0, 0) = 0. We want to solve the equation F (λ, u) = 0 in a
neighborhood of t (0, 0 ∈ X × Λ. Suppose that L := DuF (0, 0) is a Fredholm operator.
We can then define continuous projections P on X onto Ker(L), with M = ker(P ) and
Q on Y onto R(L), with N = ker(P ) . The equation to be solved is then equivalent to
the system

QF (v + w, λ) = 0(2)

(I −Q)F (v + w, λ) = 0,

where we have set v = Pu and w = (I − P )u.
Let G : Λ× ker(L)×M → R(L) be defined by

G(λ, v, w) = Q(F (X, v + w)) .

Then DwG(0, 0, 0).w = L.w is an isomorphism from M into R(L). By the Implicit
Function Theorem, the first equation can be solved for w, that is, there exists a Ck

function W and neighboorhoods of the origin in Λ × ker(L) and M on which QF (v +
w, λ) = 0 if and only if w = W (λ, v).

The problem reduces than to solving the second equation, which now has (locally) the
form

(3) ϕ(λ, v) = (I −Q)(F (λ, v +W (λ, v)) ,

where ϕ is a Ck map from (a neighboorhood of the origin in) Λ× ker(L) into N .
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It is often convenient to write equation (3) ‘in coordinates’. For this, let {v1, v2, . . . , vm}
be a basis of ker(L), {u1, u2, · · · , um} a basis of N and {v∗1, v∗2, . . . , v∗m} its dual basis
and define
ψi(λ, (x1, x2, . . . , xm)) = 〈v∗i , ϕ

(
λ,
∑m

j=1 xjvj

)
〉, for i ∈ {1, . . . ,m}.

The bifurcation equation becomes

(4) ψi(λ, (x1, x2, . . . , xm)) = 0, ψ = (ψ1, . . . , ψm).

We will need to compute derivatives of the bifurcation function. Write ϕ̃(λ, x1, x2, . . . , xm) :=

ϕ

(
λ,

m∑
j=1

xjvj

)
. Using that

(5) Q

(
F

(
λ,

m∑
j=1

xjvj +W

(
λ,

m∑
j=1

xjvj

)))
= 0

and W (0, 0) = 0 we obtain, after a straighforward, though somewhat lenghty computa-
tion:

• ∂ϕ̃

∂xi
(0, 0) = 0

• ∂2ϕ̃

∂xi∂xj
(0, 0) = (I −Q)(D2

uF (0, 0).(vi, vj));

•
∂3ϕ̃

∂xi∂xj∂xl
(0, 0) = (I −Q)(L(D2

vW (0, 0)(vi, vj, vl))) +

+ (I −Q)(D2
uF (0, 0)(vi, D

2
vW (0, 0).(vj, vl))) +

+ (I −Q)(D2
uF (0, 0)(vj, D

2
vW (0, 0).(vi, vl))) +

+ (I −Q)(D2
uF (0, 0))(vl, D

2
vW (0, 0).(vi, vj))) +

+ (I −Q)(D3
uF (0, 0).(vi, vj, vl));

• ∂ϕ̃
∂λ

(0, 0) = (I −Q)(DλF (0, 0) +DuF (0, 0).(dλW (0, 0)));

• ∂2ϕ̃

∂xi∂λ
(0, 0) = (I −Q)(D2

uF (0, 0).(vi, DλW (0, 0)) +D2
uλF (0, 0).(vi)).

Using again (5), W (0, 0) = 0 and DvW (0, 0) = 0, we obtain

D2
vW (0, 0).(vi, vj) = −L−1(Q(D2

uF (0, 0).(vivj)))

and

DλW (0, 0) = −L−1(Q(DλF (0, 0))) .

Therefore

• ∂ψi
∂xi

(0, 0) =

〈
v∗i ,

∂ϕ̃

∂xi
(0, 0)

〉
= 0 ;
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• ∂2ψi
∂xi∂xj

(0, 0) =

〈
v∗i ,

∂2ϕ̃

∂xi∂xj
(0, 0)

〉
=
〈
v∗i , D

2
uF (0, 0).(vi, vj)

〉
;

• ∂2ψi
∂xj∂xl

(0, 0) =
〈
v∗i , D

2
uF (0, 0).(vj, vl)

〉
;

• ∂2ψi
∂xi∂xl

(0, 0) = 〈v∗i , D2
uF (0, 0).(vi, vl)〉 ;

• ∂3ψi
∂xi∂xj∂xl

(0, 0) =

〈
v∗i ,

∂3ϕ̃

∂xi∂xj∂xl
(0, 0)

〉
= 〈v∗i , V angle , where

V = D3
uF (0, 0).(vi, vj, vl) +D2

uF (0, 0).(vi, D
2
uW (0, 0).(vj, vl)

+D2
uF (0, 0).(vj, D

2
uW (0, 0).(vi, vl))

+D2
uF (0, 0).(vl, D

2
uW (0, 0).(vi, vj)) ;

• ∂ψi
∂λ

(0, 0) =

〈
v∗i ,

∂ϕ̃

∂λ
(0, 0)

〉
= 〈v∗i , DλF (0, 0)〉 e

•
∂ψi
∂xj∂λ

(0, 0) =

〈
v∗i ,

∂2ϕ̃

∂xj∂λ
(0, 0)

〉
= 〈v∗i , D2

uλ
(0, 0).vj〉+

+ 〈v∗i , Du
2F (0, 0).(vj,−L−1(Q(DλsF (0, 0))))〉.

Suppose we now make the additional assumption that the operator F (λ, ·) : X → X is
equivariant with respect to a representation Γ in X. Then, if the projections P and Q are
also chosen to be Γ-equivariant, the equivariant property propagates to the bifurcation
equation. This is easily proved using the uniquennes of solutions in the first equation of
(2) and equivariance of the projections (see [8]).

2.3. The equivariant branching lemma. Suppose the equivariant Lyapunov-Schmidt
decomposition has been applied to the equation F (λ, u) = 0, where F (λ, ·) : X → X is a
Ck map which is equivariant with respect to a representation Γ in X. As explained above,
we may then suppose that the function ϕ(λ, ·) appearing in the bifurcation equation

ϕ(λ, u) = 0

is a Γ equivariant map.
We can now state the ‘Equivariant Branching Lemma’ (see [8]).

Theorem 2.9. Suppose Γ is a continuous representation of a compact group G in the
Banach space X and F : Λ×X → x is a Ck map , k > 1, with respect to a representation
Γ in X. Suppose also that

(i) F (0, 0) = 0,
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(ii) L = DuF (0, 0). has zero as an isolated eigenvalue with finite multiplicity. Then,
for each isotropy subgroup Σ of G with respecto to Γ, such that dim Fix(Σ) = 1
in ker(L), either one of the following situations occur (where g(λ, u) = 0 denotes
the bifurcation equation in Fix(Σ) ∩ ker(L):

(I) If Σ = G and gλ(0, 0) 6= 0, there exists one branch of solutions u(λ). If, in
addition , g′′uu(0, 0) 6= 0, then u2 = O(‖λ‖) (‘saddle-node’ bifurcation);

(II) If Σ < G and the normalizer N(Σ) of Σ in G acts trivially in Fix(Σ) ∩ ker(L)
then g(λ, u) = uh(λ, u). If, in addition, guλ(0, 0) 6= 0, then there exists a branch
of solutions node u(λ). If, furthermore, g′′uu(0, 0) 6= 0, then u = O(‖λ‖) (‘trans-
critical’ bifurcation);

(III) If Σ < G and N(Σ) of Σ acts as −1 in Fix(Σ) ∩ ker(L) then g(λ, u) = uh(λ, u),
with h and even function of u. If, in addition, guλ(0, 0) 6= 0, then there exist two
branchs of solutions ±u(λ). If, furthermore, guuu(0, 0) 6= 0, then u = O(‖λ‖)
(‘pitchfork’ bifurcation).

3. Local bifurcations from the trivial solutions

We observe first that the subspace P2τ of of (spatially) periodic functions is invariant
for the flow of (1) and u is a 2τ periodic equilibrium of (1) if and only if v(y, t) = u( τ

π
, t)

is a 2π periodic equilibrium of the problem

∂v(y, t)

∂t
= −v(y, t) + tanh

(
λJ̃ ∗ v(y, t)

)
,

where J̃(ξ) = τ
π
J( τ

π
ξ) is still a non negative even function supported in the interval

[−π, π] with integral equal to 1.
We therefore may and, in order to simplify the notation, will suppose that τ = π.
Consider the space P2π of 2π of (measurable) functions of period 2π. and let

L2
per := {u ∈ P2π |

∫ π

−π
u2 dx <∞, }

endowed with the norm ||u|| := (
∫ π
−π u

2 dx)1/2. It is clear that L2
per is isometric to L2(S1)

but the former setting is more convenient for our purposes. It is easy to prove that the
function F : L2

per → L2
per defined by F (u) = −u + tanh(λJ ∗ u) is globally Lipschitzian

continuous and, therefore, the Cauchy problem for (1) is well-posed in L2
per (see [3]).

In order to prove our main result of this section, we will need some auxiliary results.
Consider now the operator

T : L2
per → L2

per

u → J ∗ u(6)

We then have the following result:

Lemma 3.1. T is a compact self-adjoint operator. Furthermore, the following assertions
are equivalent.
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(a) ν ∈ R is an eigenvalue of T ;

(b) There exists n ∈ N such that ν = Ĵ(n), where

Ĵ(n) =

∫ π

π

J̃(x) cos(nx) dx

is the n-th Fourier coefficient of the J multiplied by 2π.

In this case, if Ĵ(m) 6= Ĵ(m) for for all m ∈ N, m 6= n, then the corresponding eigenspace
is generated by un(x) = cosnx and vn(x) = sinnx.

Proof. The compactness of T is a consequence of the Sobolev imbedding theorem
and the selfadjointeness follows from the eveness of J and properties of the convolution
operator.

The assertions concerning the eigenvalues and eigenfunctions of T are obtained by
taking Fourier tranformation on both sides of the equality J ∗ u = νu.

Remark 3.2. Suppose the eigenvalues of T are enumerated in decreasing order, that is
λ0 ≥ λ1, · · · , λn, · · · From the properties of j it follows that λ0 = 1 and |λn| < λ0. Also,
from the Riemmann-Lebesgue lemma, λn → 0 as n→∞. Without further properties on
J it is not true, in general, that λn = J(n) nor that λn > 0. This last property, however,
holds true if we suppose that J(x) is decreasing for positive x (is it?), a property that
will be assumed in the sequel.

We now define a representation of the orthogonal group G = O(2) in L2
per. G can

be identified with the group of symmetries of S1 := R
2πZ . generated by the translations

gθ(x) = x + θ (mod 2π) and the ‘reflexion’ gs(x) = −x (mod 2π). We define Γ : G→
GL(L2

per) by giving its value at the generators.

Γgθu(x) = u(x− θ)
Γgsu(x) = u(−x)(7)

Lemma 3.3. The transformation Γ defined by 7 above can be extended to a strongly
continous orthogonal representation of G in L2

per.

The next result expresses precisely the simmetry properties of (1).

Lemma 3.4. The function given by the right-hand-side of equation (1) that is, Fλ :
L2
per → L2

per defined by Fλ(u) = −u + tanh(λJ ∗ u) is equivariant with respect to the
representation Γ of lemma 3.3 (for any value of the parameter λ).

We now want to study the bifurcation of equilibria of 1 around the ‘trivial’ curve of
equilibria (λ, 0). The linearization of F (λ, u) = −u + tanh(λJ ∗ u) at (λ̄, 0) is given by
DuF (λ, 0) = −I + λ̄T . From theorem 3.1 it follows that this is a Fredholm operator of
index 0 and therefore, an isomorphism if 0 is not one of its eigenvalues. Thus, the only
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possible bifurcation points are of the form (µn, 0) where µn = (λn)−1, and λn is one of
the eigenvalues of T . By lema (3.1), λn

2π
must be one of the Fourier coefficients of J , and

un(x) = cosnx, vn(x) = sinnx form a basis of Ker(DuF (µn, 0)).

Lemma 3.5. Let P : L2
per → ker(DuF (µn, 0)) be the orthogonal projection on Ker(DuF (µn, 0)).

Then P is equivariant with respect to the representation Γ defined by (7).

Proof. Let L := DuF (µn, 0). Since F is Γ- equivariant, by lema 3.4, so is L.
Therefore

Γg(Ker(DuF (µn, 0))) ⊂ Ker(DuF (µn, 0))), for any g ∈ G. Since Γ is orthogonal, it
also follows that Γg(Ker(DuF (µn, 0))⊥) ⊂ Ker(DuF (µn, 0))⊥.

Therefore, for any g ∈ G and u ∈ L2
per, we have

P (Γgu) = P (Γg(P (u) + (u− P (u))))

= P (Γg(P (u))) + P (Γg(u− P (u)))

= Γg(P (u)).

Remark 3.6. Since L := DuF (µn, 0) is self-adjoint, it follows that R(L) = ker(L)⊥ and
Q = (I − P ) is also Γ equivariant with range R(L). Thus, as observed at the end of
section 2.2, in the bifurcation equation, the function

ϕ : R× V → ker(L)

where V is a neighborhood of the origin, is also Γ equivariant.

In order to apply the equivariant lemma, we need some information on the represen-
tation Γ.

Lemma 3.7. Let µn, un and vn be the eigenfunctions of the operator T given by lemma
3.1, λn the corresponding eigenvalue, and µn = (λn)−1. Then, we have

(i) Stab(un) = {gθ | θ = 2kπ
n
k ∈ Z} ∪ {gs ◦ gθ | θ = 2kπ

n
k ∈ Z} and

Stab(vn) = {gθ | θ = 2kπ
n
k ∈ Z} ∪ {gs ◦ gθ | θ = (2k+1)π

n
k ∈ Z};

(ii) N(Stab(un)) = {gθ | θ = kπ
n
k ∈ Z} ∪ {gs ◦ gθ | θ = kπ

n
k ∈ Z} and

N(Stab(vn)){gθ | θ = kπ
n
k ∈ Z} ∪ {gs ◦ gθ|θ = kπ

n
k ∈ Z};

(iii) Fix(Stab(un)) ∩ ker(Duf((µn, 0)) = [un] and
Fix(Stab(vn)) ∩ ker(Duf(µn, 0)) = [vn];

(iv) The normalizers N(Stab(un)) and N(Stab(vn)) act as −1 in Fix(Stab(un)) ∩
ker(Duf((µn, 0)) and Fix(Stab(vn)) ∩ ker(Duf(µn, 0)) respectively.

Proof. We prove only the assertions about un, since the arguments for vn are very
similar. Let g ∈ Stab(un). If g = gθ for some θ, then cos(n(x + θ)) = cos(nx) for any
x ∈ R which happens if, and only if θ = 2kπ

n
. If g = gs ◦ gθ, then cos(n(x + θ)) =

cos(−n(x+ θ) = cos(nx) and the same conclusion above holds for θ. This proves (i).
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To prove (ii), we first observe that, since H = Stab(un) is finite

N(H) = {g ∈ G | gHg−1 = H} = {g ∈ G | gHg−1 ⊂ H}.

Also, for any θ, τ in S1, gτ ◦ gθ = gθ ◦ gτ and gs ◦ gθ = g−θ ◦ gs.
We analyze two cases for g ∈ G: g = gθ and g = gsgθ. If gθHg−θ ⊂ H, then for

any gsg−τ ∈ H, we must have gθgsgτg−θ = gsgτ−2θ ∈ H, which happens if and only
if θ = kπ

n
for some k ∈ Z. Reciprocally, if θ = kπ

n
then, for any gsgτ ∈ H, we have

gθgsgτg−θ = gsgτ−2θ. which belongs to H, since τ − 2θ = 2kπ
n

for some k ∈ Z. If gτ ∈ H,
then gθgτg−θ = gτ ∈ H.

Therefore gθ ∈ N(H) if and only if θ = kπ
n

, for some k ∈ Z.
If gsgθHg−θgs ⊂ H, then for any gsg−τ ∈ H, we have gsgθgsgτg−θgs = gsg2θ−τ ∈ H,

which happens if and only if θ = kπ
n

for some k ∈ Z. Reciprocally, if θ = kπ
n

then, for

any gsgτ ∈ H, we have gsgθgsgτg−θgs = gsg2θ−τ . which belongs to H, since 2θ − τ = 2kπ
n

for some k ∈ Z. For gτ ∈ H gsgθgτg−θgs = g−τ , which clearly belongs to H.
Therefore gsgθ ∈ N(H) if and only if θ = kπ

n
, for some k ∈ Z, proving (ii).

By lemma 3.1, ker(Duf(µn, 0)) = [un, vn]. Furthermore, gs ∈ Stab(un) by (i) and
Γgsvn(x) = vn(−x) = −vn(x). Thus vn /∈ Fix(Stab(un)). This proves (iii).

Finally, observe that if g = gθ, with θ = kπ
n

, we have

Γgun(x) = un(x− θ) =

{
un(x) if 2|k,
−un(x) if 2 6 | k ;

If g = gsgθ, with θ = kπ
n

, we have

Γgun(x) = un(−x+ θ) =

{
un(x) if 2|k,
−un(x) if 2 6 | k ;

This proves (iv).
Consider the equation

(8) F (λ, u) = −u+ tanh (λJ ∗ u) = 0,

for the equilibria of 1 in a neighboorhod of (µn, 0).
Let L = DuF (µn, 0), P : L2

per → ker(DuF (µn, 0) be the orthogonal projection on
ker(DuF (µn, 0)

We set v = Pu and w = (I − P )u.
As observed in (3.6), the corresponding bifurcation equation

(9) ϕ(λ, v) = P (F (λ, v +W (λ, v)) ,

defined for v in a neighboorhod of ker(L), is also Γ equivariant.
We can now state the main result of this section.
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Theorem 3.8. The bifurcation points of the equation (8) with respect to the ’trivial
curve’ of solutions (λ, 0), are the points (µn, 0), where µn = (λn)−1 and λ−1 is one
of the eigenvalues of the operator T defined in (6). More precisely, if Σ = Stab(un)
and g(λ, x) is the bifurcation equation (9) derived from (8) restricted to Fix(Σ), then
g(λ, x) = xh(λ, x) in a neighborhood of (µn, 0), where h is an even function of x, and
there exist two branches of solutions ±u(λ), such that x2 = O(‖λ − µn‖) (‘pitchfork
bifurcation’).

Proof. As already observed after lemma 3.4, DuF (λ, 0) is an isomorphism if µn 6=
(λn)−1, so the necessity conclusion follows immediately.

To prove the sufficiency, we have to check that the hypotheses of Theorem (2.9)
are met . Now, F (µn, 0) − 0 so (i) is satisfied (the fact that µn 6= 0 is, of course,
irrelevant). Also, L = DuF (µn, 0) has 0 as a (double) eigenvalue by Theorem (3.1).
Let Σ := Stab(un). Then dim Fix(Σ) ∩ ker(L) = 1, by lemma 3.7. We then need to
show that the conditions of alternative III of Theorem (2.9) hold. Clearly Σ < G and
N(Σ) acts as −1 in Fix(Σ)) ∩ ker(L) by lemma 3.7. It remains only to prove the
nonvanishting conditions on the derivatives of the bifurcation function g(λ, x), where

g(λ, x) = 〈un , P (F (λ, xun +W (λ, xun)))〉.

Firstly, observe that

DuF (λ, u).u̇ = −u̇+ λsech2(λJ ∗ u)J ∗ u̇ ;

D2
uF (λ, u).(u̇, v̇) = −2(λ)2(J ∗ u̇)(J ∗ v̇)sech2(λJ ∗ u). tanh(λJ ∗ u);

D3
uF (λ, u).(u̇, v̇, ẇ) = −2(λ)3(J ∗ u̇)(J ∗ v̇)(J ∗ ẇ)sech4(λJ ∗ u)

+4(λ)3(J ∗ u̇)(J ∗ v̇)(J ∗ ẇ)sech2(λJ ∗ u) tanh2(λJ ∗ u) ;

DλF (λ, u).λ̇ = sech2(λJ ∗ u)J ∗ u ;

D2
uλF (λ, u).un = sech2(λJ ∗ u)J ∗ un

−8τ 2λ(J ∗ u)(J ∗ un)sech2(λJ ∗ u) tanh(λJ ∗ u).

With (λ, u) = (µn, 0), we obtain

DuF (µn, 0).u̇ = −u̇+ λ−1
n J ∗ u̇ ;(1)

D2
2F (µn, 0).(u̇, v̇) = 0 ;(2)

D3
uF (µn, 0).(u̇, v̇, ẇ) = −2λ−3

n (J ∗ u̇)(J ∗ v̇)(J ∗ ẇ) ;(3)

DλF (µn, 0).λ̇ = 0 ;(4)

D2
uλF (µn, 0).u0 = 2τJ ∗ u0 .(5)

Using the computations at the end of section 2.2, we obtain
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DuW (µn, 0).un = DuW (µn, 0).vn = 0 ;(6)

D2
vW (µn, 0).(un, un) = −L−1(Q(D2

uF (µn, 0).(0, un))) ;(7)

D2
vW (µn, 0).(vn, vn) = −L−1(Q(D2

uF (µn, 0).(vn, vn))) .(8)

From (6), (7) and (8) it follows that

(9) D2
vW (µn, 0).(un, un) = D2

vW (µn, 0).(vn, vn) = 0 .

From (1),(2),(3),(4),(5),(6), (9) and the computations at the end of section 2.2, we
obtain

∂2g

∂x∂λ
(µn, 0) = 〈un, 2τλnun〉

= 2τλn‖un‖2

= 2τ 2λn ;

∂3g

∂x3
(µn, 0) = 〈un,−2P (u3

n)〉

= −2〈un, P (u3
n)〉

= −2

τ
〈un, 〈u3

n, un〉un〉

= −2〈un, u3
n〉

= −3

2
τ ;

4. Global bifurcations

In this section we prove that, under certain conditions, the curve of equilibria bifur-
cating the trivial curve (λ, 0) can be globally continued. To achieve this we introduce
some subspaces of L2

per, related to the fixed point spaces Fix(un) and Fix(vn) of the
previous section.

4.1. Invariant subspaces.
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Proposition 4.1. For any n ∈ N, let

Xn = {u ∈ L2
per |u(x+

2π

n
) = −u(x) and u(−x) = u(x)} ,

Yn = {u ∈ L2
per |u(x+

2π

n
) = −u(x) and u(−x) = −u(x)} ,

Zn = {u ∈ L2
per |u(x+

2π

n
) = u(x) and u(−x) = u(x)} ,

Wn = {u ∈ L2
per |u(x+

2π

n
) = u(x) and u(−x) = −u(x)} , .

Then Xn, Yn, Zn and Wn are closed subspaces of L2
per, which are invariant for the flow

of (1).

Proof. We only sketch the simple proof.
Let (uk)k∈N be a sequence in Xn converging to u0 em L2

per. Then, there exists a
subsequence (uks)s∈N, (uks)s∈N converging to u0 uniformly, except in a set of null measure
in −[π, π]. The closedness property follows then easily from uniqueness of the limit. The
invariance property is a consequence of uniqueness of solutions of (1).

The subspaces Xn, Yn, Zn and Wn are related to the Fix spaces which played an
important role in the equivariant bifurcation result of section 3 as described in the next
result.

Proposition 4.2. Let un and vn be the eigenfunction of the operator T of lemma 3.1
and Xn, Yn e Zn as in lemma 4.1. Then, we have

(i) un ∈ Xn and vn ∈ Yn;
(ii) Fix(Stab(un)) = Xn ⊕ Zn;

(iii) Fix(Stab(vn)) = Yn ⊕ Zn.

Proof. The assertion (i) is immediate. If u ∈ Fix(Stab(un)), define v1, v2 by v1(x) =
u(x)−u(x+π/n

2
and v2(z) = u(x)+u(x−π/n

2
. One easily checks that v1 ∈ Xn and v2 ∈ Zn. If u ∈

Xn ∩ Zn, then u(x) = −u(x) for any x ∈ R and thus u = 0. Therefore Fix(Stab(un)) ⊂
Xn ⊕ Zn The converse inclusion is immediate, so the assertion (ii) follows. The proof o
(iii) is completely analogous.

Now, consider the operator T defined in 6. From the properties of the convolution, it
follows that the subspaces Xn, Yn, Zn and Wn are left invariant by T . Concerning the
spectral properties of L := T∣∣Xn , we have the following result whose proof can be given

along the same lines of (3.1).

Lemma 4.3. L is a compact self-adjoint operator. Furthermore, the following assertions
are equivalent.

(a) ν ∈ R is an eigenvalue of T ;

(b) There exists k ∈ N such that ν = Ĵ(k), where k ∈ N is of the form k = (2l+ 1)n

and Ĵ(k) is as in lemma 3.1.
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In this case, if Ĵ(k) 6= Ĵ(s) for for all k, s ∈ N, k 6= s, then µ is a simple eingevalue
with corresponding eigenfunction by un(x) = cosnx.

The linearization of F (λ, u) = −u+ tanh(λJ ∗u) restricted to Xn at (λ̄, 0) is given by
DuF (λ, 0) = −I + λ̄L. It follows that the only possible bifurcation points of F (λ, u) =
−u + tanh(λJ ∗ u) = 0 restricted to Xn, along the trivial curve of equilibria (λ, 0) are
the points (µk, 0) where µk = (λk)

−1 and λk is one of the eigenvalues of L. By lemma
(4.3) λk

2π
is one of the Fourier coefficients of J , k ∈ N is of the form k = (2l + 1)n and

Ker(DuF (µk, 0)) = [uk(x)].
In fact, one can prove the converse assertion, using the Crandall-Rabinowitz theorem.

More precisely:

Theorem 4.4. The bifurcation points of the equation (8) restricted to the invariant
subspace Xn with respect to the ’trivial curve’ of solutions (λ, 0), are the points (µk, 0),
where µk = (λk)

−1 and λ−1
k is one of the eigenvalues of the operator L. Furthermore, the

nontrivial solutions of (8) in a neighborhood of (µk, 0) are C1 close to the corresponding
eigenfunction uk of L.

Remark 4.5. Similar results are obtained substituting Yn, Zn or Wn for Xn.

4.2. Global bifurcation in Xn. Our global continuation result is based on the follow-
ing result.

Theorem 4.6. Let X be a Banach space, U ⊂ R×X an open set and f a differentiable
map from U into X. Suppose that f(λ, 0) ≡ 0 and (λ, 0) is a bifurcation point of
f(λ, u) = 0 with respect to the trivial curve (λ, 0). Let S denote the closure of the set of
nontrivial zeros of f . Then there exists a connected component C of S containing (λ0, 0)
satisfying one and only one of the following assertions:

(i) C is not compact (if U = R×X, then C is unbounded);
(ii) C meets the line {(λ, 0)|λ ∈ R} at (µ, 0), where µ 6= λ0 is another bifurcation

point.

Proof. See [29] e [34].
The next two lemmas will be needed in the proof of the main result of this section.

Lemma 4.7. Let J be a C1, nonnegative even function in R with support contained in
[−2π/n, 2π/n] and is stricly decreasing in [0, π/n[∩ suppJ . Suppose u ∈ Yn, u ≥ 0 in
[0, π/2n[ and there exist x0 ∈ [0, π/2n[ and δ > 0 such that u > 0 in [x0 − δ, x0[. Then
(J ∗ u)(x0) > 0.



EQUIVARIANT BIFURCATIONS IN A NONLOCAL MODEL 15

Proof. We have

(J ∗ u)(x0) =

∫
J(x− x0)u(x)dx =

∫ π/n+x0

−π/n+x0

J(x− x0)u(x)dx

=

∫ x0

0

J(x− x0)u(x)dx+

∫ π/n

π/n−x0
J(x− x0)u(x)dx

+

∫ π/2n

x0

J(x− x0)u(x)dx+

∫ π/n−x0

π/2n

J(x− x0)u(x)dx

+

∫ 0

−x0
J(x− x0)u(x)dx+

∫ π/n+x0

π/n

J(x− x0)u(x)dx

+

∫ −x0
−π/2n

J(x− x0)u(x)dx+

∫ −π/2n
−π/n+x0

J(x− x0)u(x)dx .(10)

We prove that

(11)

∫ x0

0

J(x− x0)u(x)dx+

∫ π/n

π/n−x0
J(x− x0)u(x)dx > 0.

Making the change of variables y = x − π/n and z = −y and using that u(y + π/n) =
−u(y), u(z) = u(−z) we obtain, for the second integral in (11)

∫ π/n

π/n−x0
J(x− x0)u(x)dx =

∫ π/n

−x0
J(y + π/n− x0)u(y + π/n)dy

= −
∫ 0

−x0
J(y + π/n− x0)u(y)dy

=

∫ 0

x0

J(−z + π/n− x0)u(z)dz

= −
∫ x0

0

J(π/n− z − x0)u(z)dz

Since 0 ≤ x0 − x < π/n − x − x0 for all x ∈ [0, x0], we have J(x − x0) = J(x0 − x) >
J(π/n− x− x0) > 0. Furthermore J(x− x0)u(x) > 0 for all x ∈ [x0 − δ, x0[. Thus∫ x0

0

J(x− x0)u(x)dx >

∫ x0

0

J(π/n− x− x0)u(z)dx

= −
∫ π/n

π/n−x0
J(x− x0)u(x)dx.

This proves (11).
The positivity of the other integrals in (10) is similarly proved.
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Lemma 4.8. Suppose J is as in lemma 4.7 and let u ∈ Yn, u ≥ 0 em [0, π/2n[ and u
not identically zero in [π/2n− δ, π/2n[ for δ > 0. Then (J ′ ∗ u)(π/2n) < 0.

Proof. Since J ′ is supported in ] − π/n , π/n[ ,J ′ is odd (??) and u(x − π/2n) =
−u(x+ π/2n), for all x ∈ R, we have

(J ′ ∗ u)(π/2n) =

∫
J ′(x)u(x− π/2n)dx = −

∫ π/n

−π/n
J ′(x)u(x+ π/2n)dx

= −
∫ 0

−π/n
J ′(x)u(x+ π/2n)dx−

∫ π/n

0

J ′(x)u(x+ π/2n)dx

= −
∫ 0

−π/n
J ′(x)u(x+ π/2n)dx+

∫ π/n

0

J ′(x)u(x− π/2n)dx.

Using that J ′ ≥ 0 in ] − π/n, 0], suppJ ′ ⊂ [−π/n , π/n], u ≥ 0 in [−π/2n, π/2n] and
u 6≡ 0 [π/2n− δ, π/2n[, we obtain

(12)

∫ 0

−π/n
J ′(x)u(x+ π/2n)dx ≤ 0.

Since J ′ ≤ 0 in [0, π/n[ , suppJ ′ ⊂ [−π/n , π/n] and u ≥ 0 em ]− π/2n, π/2n[, it follows
that

(13)

∫ π/n

0

J ′(x)u(x− π/2n)dx) < 0.

From (12) and (13) (J ′ ∗ u)(π/2n) < 0, as claimed (acho que os sinais estao trocados!).

We are now in a position to prove our main result of this section.

Theorem 4.9. Let J be as in , Xn as in proposition 4.1. and (µk, 0) one of the
bifurcation points of (8) restricted to Xn, given by theorem 4.4. Then (µk, 0) is a global
bifurcation point of (8). More precisely, there exists a connected component C of the
closure of the set o nontrivial zeroes of (8) containing (µk, 0) and contained in Xn,
which intersects {λ} ×Xn, for any λ ≥ µk.

Proof. By theorem 4.6, there is a connected component Ck of the closure of the set o
nontrivial zeroes of (8) containing (µk, 0), which is either noncompact or meets the line
{(λ, 0)|λ ∈ R} at (µs, 0), where µs 6= µ0 is another bifurcation point in Xn. We show
that the second alternative is not possible.

Let

Fk = {(λ, u) ∈ Ck |u > 0 in [0, π/2k[ andu′(π/2k) < 0} ∪ {(µk, 0)}.
We prove that Fk is both open and closed in Ck (in the C1 topology).
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We first show closedness.
Let (λj , uj)j∈N be a sequence in Fk with λj → λ and uj → u. Since uj > 0 in

[0, π/2k[ , for all j ∈ N, then u ≥ 0 in [0, π/2k[). We prove that u cannot be identically
zero, unless e λ = µk .

In fact, suppose λ 6= µk and u ≡ 0. By theorem 4.6, λ must then be one of the
bifurcation points µs given by Theorem 4.4. We may suppose that s > k. But then, it
follows fom theorem 4.4 that u < 0 in an open set of [0, π/2k] which is a contradiction.

We show that (λ, u) ∈ Fk. If there exists x0 ∈ ]0, π/2k[ such that u(x0) = 0, then
u > 0 in [x0 − δ, x0[ for some δ > 0 since u 6≡ 0. Thus, by lemma 4.7, (J ∗ u)(x0) > 0
which cannot happen, since u is an equilibrium. By lemma 4.8, u′(π/2k) > 0. Thus,
(λ, u) ∈ Fk and Fk is closed in Ck .

We now show that Fk is open in Ck .
Let (λ0 , u0) ∈ Fk . If (λ0 , u0) = (µk, 0), there exists a neighborhood of it in R×Yn∩Ck

contained in Fk by Theorem 4.4. Suppose λ0 6= µk. Let ε > 0 and δ > 0 be such that
δ < inf

x∈ [0,π/2k−ε]
u0(x) andu′0 < −δ em ]π/2k − ε, π/2k]. Let u ∈ C1([−π/k , π/k]) such

that ||u− u0||C1([−π/k ,π/k]) < δ. Then

(14) |u(x)− u0(x)| < δ, for all x ∈ [0, π/2k − ε]

and

(15) |u′(x)− u′0(x)| < δ, for all x ∈ ]π/2k − ε, π/2k].

From (14, u(x) > 0, for all x ∈ [0, π/2k − ε] and, by (15) u′(x) < 0, for all x ∈
]π/2k − ε, π/2k]. Thus u′(π/2k) < 0 and u is strictly decreasing in ]π/2k − ε, π/2k].
Since u > 0 in [0, π/2k − ε] and strictly decreasing in ]π/2k − ε, π/2k[, it follows that
u > 0 in [0, π/2k[, showing that Fk is open in Ck . Finally Fk is not empty by Theorem
4.4. Thus Fk = Ck does not intersect the λ axis and so, by Theorem 4.6 cannot be
compact. From results in [31], the second component of Ck must be in a compact set.
Also, there are no nontrivial equilibria if λ ≤ 1. From this, the claimed result follows
immediately.
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