
DYNAMICAL ATTRACTION TO STABLE PROCESSES

ALBERT M. FISHER AND MARINA TALET

Abstract. We apply dynamical ideas within probability theory, proving an almost-sure invariance
principle in log density for stable processes. The familiar scaling property (self-similarity) of the
stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli
flow. We prove that typical paths of a random walk with iid increments in the domain of attraction
of a stable law can be paired with paths of a stable process so that, after applying a non-random
regularly varying time change to the walk, the two paths are forward asymptotic in the flow except
for a set of times of density zero. This implies that a.e. time-changed random walk path is a generic
point for the flow, i.e. it gives all the expected time averages. For the Brownian case, making use of
known results in the literature, one has a stronger statement: the random walk and the Brownian
paths are forward asymptotic under the scaling flow (now with no exceptional set of times), at an
exponential rate given by the moment assumption.

1. Introduction

In this paper we explore and bridge notions of attraction stemming from probability and dynam-
ical systems theory.

Let ⌫ be an invariant probability measure for a flow ⌧
t

acting on a topological space ⌦. Hence,
⌫ is a fixed point for the flow ⌧ ⇤

t

, the induced action on the space of all probability measures on ⌦
defined by ⌧ ⇤

t

(µ) = µ � ⌧�t

.

The stable manifold of this fixed point ⌫, written W s(⌫), is the set of probability measures µ such
that ⌧ ⇤

t

(µ) converges weakly (or in law) to ⌫ as t increases to infinity. We shall see that the stable
manifold of the measure ⌫ can be viewed as a dynamical counterpart of the domain of attraction
of a law.

For a first example we take ⌫ to be the Wiener measure; this is a probability measure on C, the
space of continuous functions from R+ to R. With the topology of uniform convergence on compact
subsets C is a Polish space, i.e. a separable topological space for which there exists a complete
metric. By a theorem of Rochlin [Roc49] therefore, the measure space (C, ⌫) is a Lebesgue space
(as it is measure-isomorphic to the unit interval with Lebesgue measure) which is a good situation
for applying ideas from ergodic theory.

The Brownian self-similarity states that the Wiener measure ⌫ is preserved by ⌧
t

, the scaling flow
of index 1/2 acting on ⌦ ⌘ C by:

(⌧
t

f)(x) =
f(etx)

et/2

.
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In fact, ⌧
t

is an ergodic flow on (⌦, ⌫) and is isomorphic to the translation (left-shift) flow on a
stationary ergodic Gaussian process, the Ornstein-Uhlenbeck velocity process V defined as V (t) =
B(et)/et/2, where B is a standard Brownian motion.

Now suppose (X
i

) is a sequence of independent and identically distributed (i.i.d.) random vari-
ables with finite second moment, centered and of variance unity. We embed the random walk path
S

n

with S
0

= 0, S
n

= X
0

+ · · · + X
n�1

for n � 1 in a continuous path S(t) 2 C through polygonal
interpolation between S

n

and S
n+1

.
Donsker’s Theorem, or the Functional Central Limit Theorem, see e.g. [KS88] p. 70, states that

the rescaled random walk paths (S(n·)/
p

n) converge weakly to a Brownian motion as n ! 1.
This also holds for rescaling continuously instead of by n.

Denoting by µ the measure on ⌦ = C corresponding to the polygonal process (S(·)), Donsker’s
Theorem says, precisely, that for each ' 2 CB(⌦), the continuous and bounded real-valued func-
tions,

h', ⌧ ⇤
t

(µ)i ⌘

Z

⌦

' d(⌧ ⇤
t

(µ)) =

Z

⌦

'(⌧
t

x) dµ(x) !

Z

⌦

' d⌫ = h', ⌫i as t ! +1. (1.1)

In dynamical terms, this says that the probability measures ⌧ ⇤
t

(µ) converge weakly to ⌫ as t goes
to infinity, written ⌧ ⇤

t

(µ) ) ⌫; in other words, the polygonal random walk measure µ is in the stable
manifold W s(⌫).

This notion of attraction is defined through convergence of space averages, which raises the
question of time averages.

Space averages meet time averages in Birkho↵’s ergodic theorem. A strong form of this is given
by Fomin [Fom43], who proved that for a continuous flow ⌧

t

on a Polish space with ergodic invariant
probability measure ⌫, then for ⌫-almost every x,

1

T

Z
T

0

'(⌧
t

x)dt ! h', ⌫i as T ! +1, for all ' 2 CB(⌦), (1.2)

and so equivalently in terms of weak convergence:

1

T

Z
T

0

�
⌧tx dt ) ⌫, as T !1,

where � denotes a Dirac mass.

In ergodic theory terminology, an element x of ⌦ satisfying (1.2) is said to be a generic point for
the measure ⌫; so Fomin’s theorem says exactly that ⌫-almost every x in ⌦ is a generic point for ⌫.

By combining the previous notion of attraction with Cesáro time averaging we are led to a
weaker notion of attraction. Writing µ

T

⌘

1

T

R
T

0

⌧ ⇤
t

(µ)dt, and '
T

= 1

T

R
T

0

'� ⌧
t

dt, we say that ⌧ ⇤
t

(µ)
Cesáro-weakly converges to ⌫, in short ⌧ ⇤

t

(µ) ) ⌫ (Cesáro), if and only if given any ' 2 CB(⌦),

h', µ
T

i =
1

T

Z
T

0

h', ⌧ ⇤
t

(µ)i dt =
1

T

Z
T

0

h' � ⌧
t

, µi dt = h'
T

, µi ! h', ⌫i as T !1. (1.3)

The set of all such µ’s, the Cesáro stable manifold of ⌫, written W s
Ces

(⌫), contains W s(⌫).

Now if µ-almost every x is a generic point for ⌫, we have '
T

! h', ⌫i a.s., and so by the
Lebesgue Dominated Convergence Theorem (henceforth LDCT), h'

T

, µi ! h', ⌫i. Then from the
above expression, µ

T

) ⌫ and µ belongs to W s
Ces

(⌫).
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We recall that to show weak convergence it is equivalent to check this on uniformly continuous
functions, since by [Bil68] p. 12, having convergence for each ' in CB(⌦) is equivalent to convergence
for each ' in the space UCB(⌦, d) of uniformly continuous and bounded functions for any chosen
metric d which gives the topology.

A link between metric and measure comes from the notion of the stable manifold of a point
x, now in ⌦ rather than the space of measures on ⌦ and in general no longer a fixed point. By
definition W s,d(x) is the set of all points y 2 ⌦ which are d-forward asymptotic to x, i.e. such that
d(⌧

t

x, ⌧
t

y) ! 0 as t !1; we observe that if x is a generic point, then any such y will have the same
time averages for ' 2 UCB(⌦, d), and so as just remarked this will pass over to CB(⌦). Hence
y 2 W s,d(x) also will be a generic point.

The use of time averages again leads us to a weaker notion: if there exists a set of times B = B

(x,y)

of Cesáro density zero such that

d(⌧
t

x, ⌧
t

y) ! 0, t !1, t /2 B

then we abbreviate this as lim
t!1 d(⌧

t

x, ⌧
t

y) = 0 (Cesáro), and write W s,d
Ces

(x) for the set of such
points y. Note that y 2 W s,d

Ces

(x) has the same ergodic averages as x for any ' 2 UCB(⌦, d); this
again passes to CB(⌦), so the generic point property is true for all of W s,d

Ces

(x) as well.

The main focus of this paper will be on the stable manifolds W s,d(x) and the larger sets W s,d
Ces

(x)
for certain flows arising in probability theory, and in particular on the link between stable manifolds
and almost sure invariance principles, hereafter abbreviated asips.

We illustrate this again with the Brownian case, adopting the same notation as before.

In the case where the common law F of the i.i.d sequence X
i

has finite second moment (equal
to one), Strassen’s asip (see [Str64], [Str65]) states that a standard Brownian motion B and the
polygonal random walk S can be redefined to live on the same probability space, in such a way that

|S(n)�B(n)| = o(
p

n log log n), a.s.

where f(t) = o(g(t)) means that f(t)/g(t) ! 0 as t goes to infinity.

Assuming that F has finite rth moment for some r > 2 (and is centered with variance one),
Strassen’s bound was improved by Breiman [Bre67] to o(n1/r

p

log n), which is stronger than

|S(n)�B(n)| = o(
p

n), a.s.

This extends to continuous time:

||S �B||1
[0,T ]

def

= sup
t2[0,T ]

|S(t)�B(t)| = o(
p

T ), a.s. (1.4)

Defining du

1

on path space C by du

1

(f, g) = ||f � g||1
[0,1]

, then one has this equivalent dynamical
version of (1.4): there exists a joining (or coupling, see Definition 3.7) of the two processes S and
B such that for almost every pair (S,B) with respect to the joining measure,

lim
t!+1

du

1

(⌧
t

S, ⌧
t

B) = 0. (1.5)

where as before ⌧
t

denotes the scaling flow of index 1/2. We would like to have the similar state-
ment for an actual metric (rather than pseudometric) on C which gives the topology of uniform
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convergence on compacts; to do this we set first du

t

(f, g) = ||f � g||1
[0,t]

and then define:

du

1(f, g) =

Z
+1

0

e�t

du

t

(f, g)

1 + du

t

(f, g)
dt. (1.6)

One can verify that du

1 is complete and that (1.5) holds also for this metric.
So dynamically speaking, (1.4) says that S is in the du

1

- and hence du

1-stable manifold of B.

Now by Fomin’s theorem applied to the flow ⌧
t

, for almost every path B, the time average for any
' in CB(C) equals the space average (the expected value) h', ⌫i; making use of UCB(C, du

1), this
passes to the rest of the stable manifold, in particular to S. We conclude that under the assumption
of finite rth moment, µ�almost every path S is a generic point for the Wiener measure ⌫.

In fact in this case of higher than second moments, Breiman’s upper bound can be improved
still further: Komlós, Major, Tusnády, [KMT75], [KMT76], and Major [Maj76b], see also [CR81]
pp. 107 and 108, were able to demonstrate a bound of o(n1/r). This yields the following dynamical
statement: there exists a joining of the polygonal paths S and a standard Brownian process B, such
that for almost every pair (S,B),

du

1

(⌧
t

S, ⌧
t

B) = o(e(1/r�1/2)t),

and also for the metric du

1.

We mention that one can embed the random walk S
n

in a second (discontinuous) path by S(t) =
S

[t]

and that the previous results also hold for this step path extension, though the polygonal
extension S(t) is more appropriate in this context as it belongs to the space C; step path extensions
will be more natural below, when we deal with stable non-Gaussian processes.

There remains the intriguing question as to whether Strassen’s bound o(
p

n log log n) can also
be improved when F has finite second moment but all higher moments are infinite. However
counterexamples, first by Breiman [Bre67] and then by Major in [Maj76a] showed that Strassen’s
upper bound is indeed sharp; see especially [CR81], p. 93. We draw the following dynamical
conclusion from this result: there exists F (centered and with variance 1) such that for any Brownian
motion B and any joining of S and B, then for almost every pair (S,B),

lim sup
t!+1

du

1

(⌧
t

(S), ⌧
t

(B)) = +1 (1.7)

and similarly for du

1.

How, then, can we understand this apparent discrepancy between Donsker’s theorem, which tells
us that µ 2 W s(⌫), and Strassen’s sharp upper bound, which says that S does not belong to the
stable manifold of B, W s,du

1(B)?

An explanation is given in [Fis], where we proved by way of Skorokhod’s embedding that in the
case where F has finite second moment, there exists a joining of B and S such that for almost every
pair (S,B),

du

1

(⌧
t

S, ⌧
t

B) = ||⌧
t

S � ⌧
t

B||1
[0,1]

! 0 (Cesáro), (1.8)

that is, convergence takes place o↵ a set of times B of Cesáro density zero. The same holds for the
metric du

1 (see the proof of Lemma 3.6). So S belongs to W
s,du

1
Ces

(B).

Statement (1.8) gives, after an exponential change of variables:

||S �B||1
[0,T ]

= o(
p

T ) (log), (1.9)
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which means that the convergence holds o↵ a set (this is just exp(B)) which has log density zero.
We call (1.9) an almost-sure invariance principle in log density or asip (log) for short.

In summary, for most times, in the sense of log density, Strassen’s upper bound can be improved
to o(

p

n); there are, however, exceptional times where o(n log log n)
1
2 is the best one can do.

We have addressed the situation when F has finite second or higher moments, so now in the
same line of thought, what can be said when the variance is infinite? This splits into two cases: the
so-called non-normal domain of attraction of the Gaussian law, and the stable non-Gaussian case.

Here we recall that a distribution function F is in the domain of attraction of G if and only if
there exists an i.i.d. sequence (X

i

) with common distribution function F , a centering sequence (b
n

)
and a normalizing sequence (a

n

), with a
n

> 0, such that the following convergence in law holds:

1

a
n

(S
n

� b
n

)
law

�! G as n !1. (1.10)

As Lévy showed, the only possible non-trivial attracting laws G are the ↵-stable laws, 0 < ↵  2.

In this framework, Berkes and Dehling in [BD93] (Theorems 4 and 5, p. 1658) proved the following,
extending a result of [Fis] to laws with infinite variance:

Theorem A. Let (X
i

)
i�0

be an i.i.d. sequence of random variables of distribution function F in

the domain of attraction of an ↵-stable law with 0 < ↵  2. Then after enlarging the probability

space there exist an i.i.d. sequence of ↵-stable random variables (Y
i

) and a slowly varying sequence

(�
i

) such that:

sup
1kn

|S
k

� c
k

� ⌃k�1

i=0

�
i

Y
i

| = o(a
n

) a.s. (log), (1.11)

where (a
n

) is the normalizing sequence in (1.10) and (c
k

) a centering sequence, which can be taken

equal to zero for 0 < ↵ < 1 and to kE(X
0

) for ↵ > 1.

For ↵ = 2, we replace ⌃k�1

i=0

�
i

Y
i

(k � 1) by B(a2

k

) with B a standard Brownian motion.

However for our purposes, this statement lacks in several respects. First, the rescaling used
for the general regularly varying case acts on the stable increments Y

i

, and so does not exhibit
the connection with dynamics of the scaling transformations. Second, one would like to unify the
statements for the Gaussian and the stable non-Gaussian cases, replacing the weighted sum ⌃k�1

i=0

�
i

Y
i

with Z(a↵
k

) where Z is the corresponding ↵-stable process.
In our approach, we construct a joining by sampling via a specially chosen continuously di↵erentiable
and increasing time change (see §5.1) directly from the continuous-time stable process Z (see (5.5))
rather than beginning with an i.i.d. stable sequence (Y

i

) as in [BD93]; this enables us to resolve
both problems simultaneously. We transfer this time change to the random-walk path, and then
can use the scaling flow on the stable paths. This gives the dynamical result we are really after.

To carry out this program we need first a dynamical framework: a Polish space, a topology, a
flow ⌧

t

and a flow-invariant probability measure.

As for ↵ 6= 2 the paths are highly discontinuous, we can no longer use the space C. Thus we
replace C by D ⌘ DR+ , the collection of càdlàg (continuous from the right and such that the limits
from the left exist) paths defined on R+.

We describe a topology which makes D a Polish space; this was shown by Billingsley (Theorem
14.2 of [Bil68]) for Skorokhod’s space D

I

, the càdlàg functions on the unit interval I, by defining a
complete metric d

1

for Skorokhod’s J
1

topology on D
I

. We first extend d
1

to the space D = DR+ ;
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we rescale that to obtain a pseudometric d
t

on the interval [0, t] for each t > 0 (see Lemma 3.4).
What we would like to do now is to imitate the topology on the space C of uniform convergence
on compact sets. One can define such a metric directly, as in Whitt [Whi80], though we choose a
slightly di↵erent definition than that given there. Integrating as done above for du

1, we define:

d1(f, g) =

Z
+1

0

e�t

d
t

(f, g)

1 + d
t

(f, g)
dt. (1.12)

By mimicking Whitt’s argument, one can verify that this metric is complete; we give an alternative
proof in Lemma 7.2.

For any chosen ↵ 2 (0, 2], we define the scaling flow ⌧
t

of index 1/↵ on D by:

(⌧
t

f)(x) =
f(etx)

et/↵

. (1.13)

We write ⌫ for the stable measure on D, the law of Z (the corresponding stable process). For
↵ 6= 1 this measure is ⌧

t

-invariant but the Cauchy case ↵ = 1 requires special attention; for the
nonsymmetric case (⇠ 6= 0, see Definition 2.1), ⌫ is no longer invariant and we replace Z by

eZ(t) = Z(t)� ⇠t log t, (1.14)

giving a 1-self-similar process (see Lemma 3.2) with independent but not identically distributed
increments. Writing ⌫̃ for the corresponding measure on path space, this is ⌧

t

-invariant.
We then show that for all ↵ the flow is d1-continuous (Proposition 7.3) and that just as for

Brownian motion, the flow ⌧
t

on the Lebesgue space (D, ⌫) (with e⌫ for ↵ = 1) is ergodic (and
indeed is a Bernoulli flow of infinite entropy), see Lemma 3.3.

We are now ready to state the main result of this paper:

Theorem 1.1. (An asip (log) for stable processes) Let (X
i

) be an i.i.d. sequence of random

variables of common distribution function F in the domain of attraction of an ↵-stable law with

↵ 2 (0, 2]. For ↵ > 1 assume also for simplicity that the X
i

are centered. Then there exists a C1

,

strictly increasing, regularly varying function a(·) of index 1/↵ with regularly varying derivative,

which is explicitly defined from F in Proposition 5.1 and for which a(n) gives a normalizing sequence,

such that there exists a joining of the process S with an ↵-stable process Z satisfying: for almost

every pair (S, Z) with respect to this joining, then (for ↵ 6= 1),

lim
t!1

d
1

(⌧
t

(S � (a↵)�1), ⌧
t

Z) = 0 (Cesáro), (1.15)

with d
1

Billingsley’s complete metric on D
[0,1]

and ⌧
t

the scaling flow of index 1/↵. Equivalently,

for d
T

this metric rescaled to [0, T ] (see §3.3), we have the asip (log)

d
T

(S � (a↵)�1, Z) = o(T
1
↵ ) (log). (1.16)

Statement (1.15) also holds with d1, the metric on DR+
defined in (1.12), replacing d

1

. As a

consequence the time-changed path S � (a↵)�1

is in the ⌧
t

-Cesáro stable manifold of the path Z:

S � (a↵)�1

2 W s,d1
Ces

(Z).

All the above stays valid for ↵ = 1 upon replacing Z by

eZ, defined in (1.14), and S by S � %

where %(t) = t
R

a(t)

�a(t)

xdF (x).

In the case where ↵ = 2, d
1

is replaced by du

1

(or du

1), and B replaces Z.
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We start by proving statement (1.15) in several steps. First (Lemma 4.1) we find a step path
approximation to self-similar processes; this result applies not only to stable processes for ↵ 6= 1,
but for ↵ = 1 to the process eZ which is not Lévy. Next we show, using the ergodicity of the scaling
flow, that the step path Z

a

↵
(Q)

over the partition a↵(Q) with Q ⌘ ([n; n + 1))
n�0

is an element

of W s,d1
Ces

(Z), then we prove our extension of Theorem A, see Propositions 4.2 and 5.1. From this
we deduce in Proposition 5.2 a step path version of the asip (log). Combining these results proves
(1.15); we then derive from that the corresponding statement for d1.

In Theorem 1.1 the time change a(·) is constructed from F ; we are interested in how modifying
a(·) for fixed F or modifying the distribution F itself might a↵ect the previous results:

Proposition 1.2. (Comparison of paths/ alternate time changes) Under the assumptions

and notation of Theorem 1.1, we have:

(i) If ea(·) is a C1

, strictly increasing function with regularly varying derivative which is asymptot-

ically equivalent to the time change a(·) for F , then we can replace a(·) by ea(·) in the statements

of Theorem 1.1. In particular this is true for a smoothed polygonal interpolation of a normalizing

sequence for F , see Lemma 5.3.

Moreover, for ↵ 6= 1 there exists a joining of two copies S
(1)

, S
(2)

of the random walk process S

for F so that for almost every pair (S
(1)

, S
(2)

), the paths S
(1)

� (a↵)�1

and S
(2)

� (ea↵)�1

are elements

of the same Cesáro stable manifold W s,d1
Ces

(·).

(ii) Let F and

eF be two distribution functions in the domain of attraction of an ↵-stable law for

↵ 6= 1 such that they have equivalent truncated variances. Then there exist equivalent smooth time

changes a(·) and ea(·) constructed from F and

eF as in Proposition 5.1, and a joining of S and

eS
for F and

eF respectively, so that for almost every (S, eS),

||S � eS||1
[0,T ]

= o(a(T )) a.s. (log), (1.17)

and furthermore there is a joining of the four processes S � (a↵)�1

,

eS � (a↵)�1

, S � (ea↵)�1

and

eS � (ea↵)�1

with Z such that a.s. the four paths are all elements of the same Cesáro stable manifold

W s,d1
Ces

(Z). The above statements hold for ↵ = 1 upon centering S and

eS.

Next we see how to derive pathwise limit theorems from flow ergodicity together with an asip (log),
first in a general context of a self-similar process, then specializing to the case of Theorem 1.1.

Proposition 1.3. (i) Let � > 0, Y 2 D an ergodic �-self-similar process with law ⇢ and U 2 D
another process with law e⇢. Assuming that there exists a joining b⇢ of Y and U such that for b⇢-
a.e. pair (Y, U), we have U 2 W s,d

Ces

(Y ) for ⌧
t

the scaling flow with � = 1/↵ and d some metric

which gives D the Skorokhod topology. Then:

(a) e⇢-a.e. U is a generic point for ⌧
t

and ⇢, i.e. for all � 2 CB(D, d),

lim
T!1

1

T

Z
T

0

�(⌧
t

(U))dt = h�, ⇢i . (1.18)

(b) For e⇢-a.e. U , writing ⇢
1

for the distribution of Y (1), we have that for all  2 CB(R),

lim
T!1

1

log T

Z
T

1

 

✓
U(t)

t1/↵

◆
1

t
dt =

Z

R
 d⇢

1

. (1.19)
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(ii) Under the assumptions of Theorem 1.1, then for ↵ 6= 1: (1.18) and (1.19) hold for µ�a.e. S
with Z replacing Y and S � (a↵)�1

replacing U , with d any metric giving the Skorokhod topology.

Moreover: defining (⌧a

t

f)(x) = f(etx)/a(et), then for µ�a.e. S, we have ⌧a

t

(S) ) ⌫ (Cesáro); that

is, for any � in CB(D, d1) = CB(D, d),

lim
T!1

1

T

Z
T

0

�(⌧a

t

(S))dt = lim
T!1

1

log T

Z
T

1

�

✓
S(t·)

a(t)

◆
1

t
dt = h�, ⌫i . (1.20)

For ↵ = 1, these statements hold true with Z replaced by

eZ defined in (1.14) and with S replaced

by S � % where %(·) is the centering function defined in Theorem 1.1.

The proofs we give of the proposition bring up some special points we wish to emphasize. The
argument for the proof of (1.19) highlights an important di↵erence between the spaces D and
C = C(R+). For C the projection to one-dimensional distributions is continuous, so (1.19) would
follow automatically from (1.18). However this is no longer true for the space D. We circumvent
this di�culty by “convolving along the flow ⌧

t

”, as seen in Lemma 6.2. We mention that this step
was inspired by a key idea in Ambrose and Kakutani’s proof that any ergodic measurable flow can
be represented by a flow built over a cross-section map [AK42].

Let us say that a process with paths in D is asymptotically self-similar if a.e. path is a generic
point for some self-similar process; part (ii) first tells us that this is true for the time-changed
random walk process, then converts this into a statement for the random walk path S without the
time change. However now the transformations ⌧a

t

form a nonstationary dynamical system, only
giving an actual flow when a(t) is t1/↵ (in which case ⌧a

t

= ⌧
t

).

Deriving (1.20) from (1.18) will involve not just the complete metric d1 but also two noncomplete
metrics denoted by d0

1 and d̃0

1, both of which give the same topology as d1. We construct d0

1
from Billingsley’s noncomplete metric d0

1

on D
[0,1]

by integration as for d1. The definition for d̃0

1
is quite di↵erent, and is inspired by Stone’s original definition of the J

1

topology; see §8.

Taking U = S � (a↵)�1, (1.19) (after a change of variables and Karamata’s theorem) gives a
continuous-time version of the pathwise CLT known for the Gaussian case, see [Lev36], [Sch88],
[Bro88], [Fis87], [Fis], [LP90], and for the stable case, Cor. 1 of [BD93]. We emphasize that a
corresponding continuous-time statement does also follow from the discrete-time Cor. 1 of [BD93].

We note that Berkes and Dehling in Cor. 2 of [BD93] and Major in Theorem 3 of [Maj00] (with
part of the proof in [Maj98]) give discrete-time versions of (1.20) and of the specialization to S of
(1.18) respectively, in both cases for the metric d

1

. Corollaries 1, 2 of [BD93] were proved in that
paper not only for their own interest but as steps in the proofs of Theorems 4, 5 there.

We can picture the relationship between Proposition 1.3, Proposition 1.2 and Theorem 1.1 as
follows. Write M for the collection of all probability measures on D, with the topology of weak
convergence. Given a law F in the domain of attraction of a stable distribution, with measure µ for
its step-path process S, write (temporarily) Sa for the path S � (a↵)�1 and µa

2M for the measure
on D of these time-changed paths. Then by (1.18), using the same notation as in (1.3) above, we
have that for all ' 2 CB(D, d1), '

T

! h', ⌫i µa-a.s. , so by the LDCT h'
T

, µa

i ! h', ⌫i, which
in turn says that for the flow ⌧ ⇤

t

acting on M, then µa is in W s
Ces

(⌫).
We consider the product space M⇥D, thinking of it as a fiber bundle over M, with the metric

d1 on the fibers and with each fiber D carrying the corresponding measure; this is acted on by the
product flow (⌧ ⇤

t

, ⌧
t

). Now fixing a stable measure ⌫ on D, we restrict attention to the collection
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�

µa

µ̃a

Sa

�Sa

Z

��t (µa)

�t(Sa)

(D, �µa)
(D,µa)

(D, �)

Figure 1. Action of the scaling flow on the fiber bundle M
F

⇥D: since ⌫ is a fixed
point, ⌧

t

moves Z within its fiber (D, ⌫), with the dotted lines indicating part of its
Cesáro stable manifold.

M

⌫

of all measures µa on D coming from the domain of attraction of its law, together with their
rescalings ⌧ ⇤

t

(µa) for all t 2 R. Then Theorem 1.1 says that the statement just derived from
Proposition 1.3 (that µa

2 W s
Ces

(⌫)) can be lifted to the fibers of M
⌫

⇥ D, via a joining. This is
depicted in the first vertical rectangle of Fig. 1.

Now we fit the last statement of Proposition 1.2 into this picture: we partition M

⌫

into equiv-
alence classes such that the laws F have equivalent truncated variances. As a consequence of the
proposition, then for two equivalent laws F, eF we have not only that µa, eµa

2 W s
Ces

(⌫), but that
this statement also lifts to the fibers via a joining, with all three paths Sa, eSa, Z in the same Cesáro
stable manifold, see Fig. 1; here a(·) in fact represents any of the equivalence class of time changes
from the first part of the proposition.

The outline of the paper is as follows. In §2, we list known results on stable laws, their domains
of attraction and log averaging which will be of use throughout the paper. In §3, we describe the
dynamical setting, define d

T

and show how to pass the asip (log), from d
1

to d1, following which we
develop the needed background material on joinings. The main result is Th. 1.1, proved in §5; two
key steps in the proof are Prop. 4.2 and Prop 5.1. At the end of §5 we give the proof of Prop 1.2,
and in §6 we prove Prop. 1.3. In §7 we present proofs of the completeness of (D, d1) and of the
continuity of ⌧

t

on that space. In §8 we focus on the noncomplete metrics d0

1 and d̃0

1.

Acknowledgements. We thank Artur Lopes for conversations which led to a project regarding
certain maps of the interval; this work is a first part for that study, see [FT09] and [FLT09] where
this circle of ideas is completed. We dedicate this paper to Walter Philipp, whom we warmly
remember for conversations about these and related matters.
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2. Preliminaries

In this section we first recall some properties of stable laws and of regularly varying functions
which will be of use throughout the paper, after which we give the characterization of the domain
of attraction of a stable law; we refer the reader to [Fel71] and [BGT87]. Then we consider how the
log average behaves with respect to regular variation.

2.1. Attraction to stable laws and regular variation. In defining stable laws, we fix the
specific conventions to be used throughout. Several di↵erent versions of these formulas appear in
the literature, with other choices of signs and constants (and sometimes with errors! [Hal81]).

Definition 2.1. (See [Fel71] p. 570) A random variable X has a stable law if there are parameters

↵ 2 (0, 2], ⇠ 2 [�1, 1], b 2 R, c > 0 such that its characteristic function has the following form:

E(eitX) =

8
><

>:

exp
⇣
ibt + c · �(3�↵)

↵(↵�1)

|t|↵
�
cos ⇡↵

2

� sign(t)i⇠ sin ⇡↵

2

�⌘
for ↵ 6= 1,

exp

✓
ibt� c · |t|

�
⇡

2

+ sign(t)i⇠ log |t|
�◆

for ↵ = 1,

where sign(t) = t/|t| with the convention sign(0) = 0. The parameters ↵, ⇠, c and b are called the

exponent or index, symmetry (or skewness), the scaling and the centering parameters respectively.

We write G
↵,⇠,c,b

for the distribution function of X.

We write G
↵,⇠

or simply G
↵

for G
↵,⇠,1,0

, the (↵, ⇠)-stable or just ↵-stable when it is clear from
the context which ⇠ is intended.

Two functions f, g : R+

! R are asymptotically equivalent at +1 (written f ⇠ g) i↵ they are
eventually nonzero and f(t)/g(t) ! 1 as t ! +1. We make the similar definition for sequences.

An eventually positive and measurable function l is slowly varying i↵ 8x > 0, l(xt) ⇠ l(t). It
follows from p. 12 of [BGT87] that log l(x) = o(log x). A function f is regularly varying with
exponent (or index) � 2 R i↵ f(x) = x�l(x) for l some slowly varying function.

Theorem 2.2. (See [BGT87] pp 12-28) (i) (Karamata’s Theorem, first part) Let f be regularly

varying with exponent �, with � > �1. Then

R
x

0

f is regularly varying with exponent � + 1:

g(x) ⌘

Z
x

0

f(t)dt ⇠
1

(� + 1)
xf(x). (2.1)

(ii) Let f be an invertible and regularly varying function with exponent � > 0. Then its inverse f�1

is regularly varying with exponent 1/�.

Lévy’s characterization of the distributions F which are in the domain of attraction of G
↵,⇠

is
given in terms of the tail of F ; see [Fel71] pp 312-315 (XVII.5, IX.8) and also [BGT87] pp 346-347:

Theorem 2.3. (i) A distribution function F is attracted to a non-normal stable law G
↵,⇠

with

0 < ↵ < 2 and ⇠ uniquely written as p � q with p, q 2 [0, 1] and p + q = 1 i↵ for a slowly varying

function L
1� F (t)

1� F (t) + F (�t)
! p and V (t) ⌘

Z
t

�t

x2dF (x) ⇠ t2�↵L(t). (2.2)

(ii) F is attracted to a normal law G
2

i↵ the truncated variance V (·) is slowly varying.

In all cases, the function L and the normalizing sequence a
n

of (1.10) with G = G
↵,⇠

are related by:

a↵
n

⇠ nL(a
n

). (2.3)
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2.2. Log density and regularly varying changes of scale. The Cesáro average of a locally
integrable function f is one’s usual notion of time average, lim

T!+1 1/T
R

T

0

f(x)dx. The logarithmic

average of f is

log average(f) = lim
T!1

1

log T

Z
T

1

f(x)

x
dx. (2.4)

The logarithmic density of a set A in R is the log average of �
A

, its indicator function.

We mention first a lemma regarding Cesáro averages which will be needed later.

Lemma 2.4. Let f : R+

! R be a locally integrable function. Then these are equivalent:

(a) 8" > 0, {t : |f(t)| > "} has Cesáro density zero,

(b) there exists a set B ✓ R of Cesáro density 0 such that lim
t!1,t/2B

f(t) = 0.

See Theorem 1.20 of [Wal82]. Next we prove that the log average is preserved by composition with
a positive regularly varying parameter change, if in addition this has a regularly varying derivative:

Proposition 2.5. Assume ⇣ : R+

! R+

is regularly varying with exponent � > 0, strictly increasing

and that it is di↵erentiable with regularly varying derivative. Let M be a subset of R+

. Then M
has log density equal to c i↵ the image ⇣(M) does.

(This easily follows from parts (i) and (ii) of Theorem 2.2.)

We do need here the strong hypothesis that ⇣ 0 (exists and) is regularly varying: even though that
is always the case up to asymptotic equivalence, this will not be enough to prove invariance of log
averages. Indeed, for a counterexample, let M = [

k�0

[2k, 2k +1]; this has Cesáro hence log density
1/2 in R+. We shall find ⇣ satisfying the assumptions of Proposition 2.5 with � = 1 and such that
the log density of ⇣(M) is di↵erent from 1/2.

To this end, let " > 0, " 6= 1/2, and let g be a 2-periodic function equal to 2 � " on [2k, 2k + 1]
and " on [2k + 1, 2k + 2], for all k � 0. Now let f be a smoothed version of g.

Next, taking ⇣(t) =
R

t

0

f(x)dx, one can check that ⇣ is regularly varying of index 1 (as ⇣(t) ⇠ t),
that its derivative is 2-periodic (and nonconstant), so it cannot be slowly varying and that the
Cesáro (hence the log) average of ⇣(M) is 1� " 6= 1/2, as claimed.

3. Flows on Skorokhod space and the asip (log)

Our point of view will borrow both from ergodic theory and probability theory. For this purpose
it is most convenient to use what we call the path space model for a stochastic process. To speak
of a stochastic process X with paths in D means that we are given an underlying probability space
(⌦, P) and a measurable function X : ⌦ ! D. Choosing some ! 2 ⌦, then X

!

= X
!

(·) = X(!, .)
is a path of X. Let ⌫ denote the measure on D which is the push–forward of P via the measurable
function X. For the path space model, we take for the underlying space (D, ⌫) itself, with the
identity map I; then a path is I(X) = I

X

= I

X

(·) which we write simply as X(·). So now we can
think of an element X of D interchangeably as a path X(·), as a point in a dynamical system (D
acted on by the scaling flow, for instance) or as the entire stochastic process.

3.1. J
1

�topology on path space. The relevant choice for the present paper is Skorokhod’s J
1

-
topology for D

[0,1]

, and its extension to the domain R+ introduced by Stone [Sto63] (which we shall
also call the J

1

-topology). We begin with the unit interval I, where we follow [Bil68] pp. 112-116.
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Let ⇤ = ⇤
1

be the collection of strictly increasing continuous maps of I onto itself (so in particular,
�(0) = 0 and �(1) = 1). Billingsley in fact defines two equivalent metrics on D

I

; we start with the
simplest which however fails to be complete. For f, g 2 D

I

, we set:

d0

1

(f, g) = inf{" : there exists � 2 ⇤ with ||�� I||

[0,1]

 " and with ||f � g � �||1
[0,1]

 "}. (3.1)

Billingsley’s complete metric makes use of elements of ⇤ which are bounded with respect to the
following measurement. For a function � 2 ⇤, write:

|||�|||
1

= sup
0s 6=t1

����log
�(t)� �(s)

t� s

����. (3.2)

Similarly now for f, g 2 D
I

, we set:

d
1

(f, g) = inf{" : there exists � 2 ⇤ with |||�|||
1

 " and with ||f � g � �||1
[0,1]

 "}. (3.3)

Either metric can be extended to R+ as folllows. First we define the corresponding metrics on
D

[0,A]

; to define d0

A

we simply replace [0, 1] by [0, A] in (3.1), while d
A

is defined by rescaling d
1

as
we now explain. In both cases d1 (respectively d0

1) are then defined by integration as in (1.12).

Let ⇤
A

be the collection of strictly increasing continuous maps of [0, A] onto itself, with the
notation ⇤ ⌘ ⇤

1

for A = 1. For a function � 2 ⇤
A

,

|||�|||
A

= sup
0s 6=tA

����log
�(t)� �(s)

t� s

����.

Fix � > 0; for a self-similar process � will be the scaling exponent. For f, g 2 D we define

d�
A

(f, g) = inf{" : 9�
A

2 ⇤
A

with |||�
A

|||

A

 " · A�� and ||f � g � �||1
[0,A]

 "}. (3.4)

3.2. Stable flows. Recalling from (1.13) the definition of the scaling flow ⌧
t

, of index �, and
defining for each t � 0 the increment (semi-)flow ✓ on D = DR+ by:

(✓
t

f)(x) = f(x + t)� f(t),

we have, expressing a basic fact about stable processes, in more dynamical terms:

Proposition 3.1. For each choice of ↵ 2 (0, 1) [ (1, 2] and ⇠ 2 [�1, 1], there is a unique Borel

probability measure ⌫ on D satisfying:

(i) ⌫ is invariant for the scaling flow ⌧
t

of index � = 1/↵, and for the increment semiflow ✓
t

;

(ii) the process Z has independent increments; and for ⌫-a.e. path Z, Z(0) = 0 and Z(1) has

distribution G
↵,⇠

.

The nonsymmetric Cauchy process Z, i.e. the (↵, ⇠) stable process with ↵ = 1 and ⇠ 6= 0, needs to
be treated as a special case as it is not self-similar but rather self-a�ne in a sense we now explain.
We define the a�ne scaling flow with parameter ⇠ on D by:

⌧ ⇠
t

: f(·) 7! f(et

·)/et

� ⇠t·

One checks that this is a flow. The reason for the name is that, in its action on the space of functions
from R to R, the maps ⌧ ⇠

t

are indeed a�ne, and only linear for the symmetric case (⇠ = 0).

Recalling from (1.14) the definition of eZ, we have:
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Lemma 3.2. The a�ne flow of index one ⌧ ⇠
t

on D preserves the Cauchy stable measure ⌫. Equiv-

alently, the index-one scaling flow preserves the corresponding measure e⌫ for

eZ, that is

eZ is 1-self-

similar. The correspondence Z 7!

eZ gives a flow isomorphism. The process

eZ vanishes at 0 and

has independent nonstationary increments. The measure ⌫ is the unique ⌧ ⇠
t

-invariant measure with

i.i.d. increments, such that a.s. Z(0) = 0, and with distribution G
1,⇠

for Z(1).

In our proofs below, rather than use the a�ne flow on Z, we use eZ with the scaling flow of index
one, as this allows us to give a unified treatment for all ↵.

Next we prove that the scaling flow (D, ⌫, ⌧
t

) (or (D, e⌫, ⌧
t

) for ↵ = 1) is ergodic, and indeed
Bernoulli. The ergodicity (i.e. that all invariant sets have either zero or full measure) is all we
actually use in this paper; it provides a key ingredient for our proof of the asip (log).

A Bernoulli flow is, by definition, a measure-preserving flow of a Lebesgue space whose time-one
map is measure-theoretically isomorphic to a Bernoulli shift. As Ornstein showed, two Bernoulli
flows are isomorphic if and only if they have the same entropy; this can be a strictly positive number
or +1. Ornstein then came up with a su�cient condition for the Bernoullicity of transformations
or flows, very weak Bernoulli, which is easily verified in many examples. See [Orn73], [Shi73].

Lemma 3.3. For every ↵ 2 (0, 2],↵ 6= 1 and ⇠ 2 [�1, 1], the scaling flow ⌧ of the (↵, ⇠)-stable
process Z is ergodic, and indeed is Bernoulli of infinite entropy. For ↵ = 1 this holds (equivalently)

for the flows ⌧ ⇠ on Z and ⌧ on

eZ.

Proof. We follow the proof for Brownian motion, the case ↵ = 2, given in [Fis87]. We claim first
that for ↵ 6= 1:

lim
t!1

⌫({Z : a < Z(1) < b ; c < (⌧
t

Z)(1) < d}) = ⌫({Z : a < Z(1) < b}) ⌫({Z : c < Z(1) < d}),

for all a < b and c < d and that the same holds with e⌫, and eZ replacing ⌫ and Z.
This follows from Z having independent increments together with the fact that ⌧ preserves ⌫ for

↵ 6= 1 and that it preserves e⌫ for ↵ = 1.
The above claim shows mixing of this process for one-cylinders; that extends by the same rea-

soning to finite-dimensional cylinder sets and thus proves mixing, from which ergodicity follows.
Ornstein’s property of very weak Bernoulli follows from the same observation: since D is Polish,

(D, ⌫) is a Lebesgue space, and hence one has Bernoullicity of the flow by Ornstein’s theorem. ⇤

3.3. Flow approximation in the d1-metric. We now show how to pass from an asip for d
1

on
D to an asip for the complete metric d1, as needed for the proof of the main theorem.

For each r > 0 define �
r

the scaling transformation of order � on path space by

(�
r

f)(x) ⌘
f(rx)

r�
. (3.5)

Since ⌧
t

= �
e

t , the maps (�
r

)
r>0

give an action of the group of multiplicative positive real
numbers, and so a multiplicative version of the scaling flow of index �.

We have defined d
A

(see (3.4)) so as to have the following scaling property:

Lemma 3.4. For f, g 2 D, we have for all A > 0,

d
A

(f, g) = A�

· d
1

(�
A

f, �
A

g). (3.6)
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Lemma 3.5. Given f and g in D, the following are equivalent:

(i) d
1

(⌧
t

f, ⌧
t

g) ! 0 (Cesáro),

(ii) d
1

(�
T

f, �
T

g) ! 0 (log),

(iii) d
T

(f, g) = o(T �) (log).

(3.7)

Next we consider a consequence of the convergence described in Lemma 3.5.

Lemma 3.6. The equivalent statements in Lemma 3.5 imply:

d1(⌧
t

f, ⌧
t

g) ! 0 (Cesáro). (3.8)

We remark that were the convergence in (i) (and hence in (3.9) below) true for all t then (3.8)
(without the “Cesáro”) would be a direct consequence via the LDCT. But since it only holds o↵ a
set of t of density zero, we need the more careful argument which follows.

Proof. We begin with (i), so there exists B
1

⇢ R+ of Cesáro density zero such that d
1

(⌧
t

f, ⌧
t

g) goes
to zero as t !1, for t /2 B

1

. We claim that then in fact:

8A > 0, d
A

(⌧
t

f, ⌧
t

g) ! 0 (Cesáro). (3.9)

Indeed, from Lemma 3.4 we have d
A

(⌧
t

f, ⌧
t

g) = A1/↵ d
1

(⌧
t+log A

(f), ⌧
t+log A

(g)), for all A > 0.
Taking t 2 B

A

⌘ B

1

� log A implies that d
A

(⌧
t

f, ⌧
t

g) ! 0 o↵ B

A

. But since the Cesáro density of a
set is invariant under the action of a translation, B

A

is of Cesáro density zero, proving (3.9).

Next we reword (3.9) with the help of Lemma 2.4 as follows: for all A > 0 and for all " > 0,

lim
T!1

1

T

Z
T

0

�
dA(⌧tf,⌧tg)>"

dt = 0. (3.10)

Recalling from (1.12) the definition of d1, then again by Lemma 2.4, (3.8) is equivalent to showing
that for all " > 0, the Cesáro average of �

d1(⌧tf,⌧tg)>"

a.s. goes to zero. Since d1 is a metric bounded
by 1, " · �

d1>"

 d1  "+ �
d1>"

; thus it is equivalent to prove that

lim
T!1

1

T

Z
T

0

d1(⌧
t

f, ⌧
t

g) dt = 0.

On the other hand, again from (1.12) it is immediate that for all " > 0,

d1(⌧
t

f, ⌧
t

g) 

Z 1

0

e�A�
dA(⌧tf,⌧tg)>"

dA + ". (3.11)

So we are done so long as we prove that

1

T

Z
T

0

✓Z 1

0

e�A �
dA(⌧tf,⌧tg)>"

dA

◆
dt =

Z 1

0

e�A

✓
1

T

Z
T

0

�
dA(⌧tf,⌧tg)>"

dt

◆
dA

approaches zero, as T !1. From (3.10) and then LDCT, it does, finishing the proof of (3.8). ⇤

Later in the paper we shall encounter measure-theoretic versions of the equations in Lemmas 3.5
and 3.6, for two stochastic processes f and g which are paired together by their joint distributions
having been specified in some consistent way. We discuss these pairings in the next section, first in
the general setting. See e.g. [Gla03] for further background and references.
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3.4. Underlying probability spaces and the composition of joinings.

Definition 3.7. Given two measure spaces (X,A, µ) and (Y,B, ⌫), then a joining (or coupling)
of the two spaces is a measure ⌫̂ on X ⇥ Y which has marginals µ, ⌫, i.e. which projects to those

measures.

We recall that a measure space (Y,B, ⌫) is a factor of (X,A, µ) when there is a measure-preserving
map f from X onto Y ; in this case one also says that (X,A, µ) is an extension of (Y,B, ⌫).

Thus, a joining gives a common extension of the two spaces. There is a converse; the proof follows
directly from the definitions:

Lemma 3.8. Suppose (X,A, µ) and (Y,B, ⌫) have (Z,D, ⇢) as common extension via maps ↵ :
Z ! X, � : Z ! Y ; defining ' : Z ! X ⇥ Y by '(z) = (↵(z), �(z)) and ⌫̂ on (X ⇥ Y,A ⇥ B) to

be the pushed-forward measure ⌫̂ = ⇢ � '�1

, then ⌫̂ is a joining measure.

For an example, the probability idea of “redefining two processes so as to live on a common
probability space” (this just means the two path space models are given a common extension) is
equivalent to defining a joining of these two measure spaces.

Now suppose that rather than having a common extension, our spaces have a common factor. In
this case, there is a unique joining, the relatively independent joining, which exhibits the maximum
possible independence while respecting the common factor. Thus, given two probability Polish
spaces (X,A, µ), (Z,D, ⇢) and measure preserving maps ↵ : X ! Y , � : Z ! Y to the factor space
(Y,B, ⌫), we define the relatively independent joining ⌫̂ = µ⇥

Y

⌫ by the formula

⌫̂(A⇥B) =

Z

Y

µ
y

(A) ⇢
y

(B) d⌫(y), A 2 A, B 2 B (3.12)

where µ
y

, ⇢
y

are the disintegrations of the measures with respect to the factor map, the existence
of which is guaranteed by the Disintegration Theorem, see §1 of [Aar97]. This respects the common
factor in that ↵ � ⇡

X

= � � ⇡
Z

almost surely, where ⇡
X

, ⇡
Z

are the coordinate projections, see
Prop. 5.11 of [Fur81].

We now arrive at the composition of two joinings; see Def. 6.9 of [Gla03]. We shall need the next
result in the proof of Propositions 1.2 and 5.1.

Proposition 3.9. Suppose that we are given a measurable equivalence relation R on a Polish space

X with Borel ��algebra A. We define a relation

bR on M

1

(X), the collection of probability Borel

measures on X, by µ is related to ⌫ (written µ bR⌫) i↵ there exists a joining ⌫̂ of µ with ⌫ such that

⌫̂(R) = 1. Then

bR is an equivalence relation on M

1

(X).

This is an immediate consequence of the following lemma. We leave out the �-algebras for
simplicity of notation:

Lemma 3.10. Suppose we have three probability measures µ, ⌫, ⇢ on the Polish measure space

(X,A), and are given joinings ⌫̂
1

of (X, µ) with (X, ⌫) and ⌫̂
2

of (X, ⌫) with (X, ⇢). Then there

exists a joining ⌫̂
3

of (X, µ) with (X, ⇢) called the composition of joinings ⌫̂
3

= ⌫̂
2

� ⌫̂
1

and defined

below, such that, assuming that ⌫̂
1

(R) = ⌫̂
2

(R) = 1 then ⌫̂
3

(R) = 1.

Proof. Noting that (X ⇥ X, ⌫̂
1

) and (X ⇥ X, ⌫̂
2

) have as a common factor (X, ⌫), we denote by
(X ⇥X ⇥X ⇥X, b⌫) their relatively independent joining.

This is a common extension of (X, µ) and (X, ⇢), and so by Lemma 3.8 it determines a joining ⌫̂
3

of (X, µ) and (X, ⇢). This by definition is the composition ⌫̂
3

= ⌫̂
2

� ⌫̂
1

of the joinings. We observe
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that the relatively independent joining provides a common probability space for all three joinings,
⌫̂

1

, ⌫̂
2

and ⌫̂
3

.

Now, denote by ⇡
i

the projection to the ith coordinate of X ⇥ X and ⇡
i,j

the projection to the
product of the ith and jth coordinates of X ⇥ X ⇥ X ⇥ X. By assumption, ⌫̂

1

(R) = ⌫̂
2

(R) = 1.
So defining G

1

= ⇡�1

1,2

(R) and G

2

= ⇡�1

3,4

(R) we have b⌫(G
i

) = ⌫̂
i

(R) = 1 for i = 1, 2. On the
other hand, recall that the common factor is respected by b⌫; indeed the two factor maps ↵ = ⇡

2

and � = ⇡
1

satisfy ↵ � ⇡
1,2

= � � ⇡
3,4

. Accordingly, since the equivalence relation R is transitive,
G

1

\ G

2

✓ ⇡�1

1,4

(R). Therefore b⌫(⇡�1

1,4

(R)) = ⌫̂
3

(R) = 1 as well, finishing the proof. ⇤
Remark 3.1. We note that the notion of relatively independent joinings extends naturally to a finite
sequence of n spaces which are joined two-by-two; we proceed inductively to adjoin the next space.
The result is a common extension of all n spaces, which projects to a joining of the spaces, i.e. a
measure on their product which has the correct marginals.

For a concrete example of the proposition, and of the remark just made, see the proof of Propo-
sition 1.2; there we take the equivalence relations on the space D defined in Lemmas 3.5 or 3.6, and
used in stating an asip(log) for d

1

or for d1.

4. A step path approximation in the space D

Here we develop a key tool needed for the proof of our main theorem; this is valid in a general
context of self-similar processes with paths in D, and shows that the paths can be J

1

-approximated
by step paths. The statement is in Proposition 4.2; first we need the following lemma.

Let Z 2 D and let P be a locally finite partition of R+ (i.e. it is finite on any bounded interval)
with endpoints 0 = x

0

< x
1

< · · · We write |P| ⌘ sup
i�0

(x
i+1

� x
i

) for the mesh of the partition
and we define ZP to be the step function over that partition, so

ZP(t) ⌘ Z(x
i

) for x
i

 t < x
i+1

. (4.1)

In the following lemma d
1

denotes the pseudometric on D = DR+ which comes from the complete
metric d

1

on D
I

. This lemma will be applied to ↵-stable processes for ↵ 6= 1 and to the 1-self-similar
modified Cauchy process eZ.

Lemma 4.1. Let ⌫ be a probability measure on D which has zero mass on the set D
?

def

= {Z 2 D :
Z has a jump at 1}. Then for all " > 0, we have:

⌫{Z 2 D : 8P with |P| < � then d
1

(ZP , Z) < "}! 1, as � ! 0.

Proof. The first task is to prove the pointwise statement:

8Z 2 D \D
?

, d
1

(ZP , Z) ! 0, as |P|! 0, (4.2)

uniformly over all partitions of R+. The measure statement then will follow from the monotonicity
property of ⌫ (i.e. that ⌫([A

i

) = lim ⌫(A
i

) for nested increasing sets).
Note that for the case when the measure ⌫ happens to be supported on the continuous paths

then (4.2) stated for the sup norm instead of for d
1

, follows immediately from uniform continuity
of continuous paths on compact intervals.

So we need only prove (4.2) for the case where Z has jumps. The proof will be carried out in
several steps. We begin by showing that a type of uniformity still holds away from a finite set where
Z has “big” jumps.



DYNAMICAL ATTRACTION TO STABLE PROCESSES 17

Choose Z 2 D \D
?

and fix 1/2 > " > 0. Since there can be at most finitely many points t in any
compact interval at which the jump |Z(t)� Z(t�)| exceeds ", it follows that

F
"

⌘ {t 2 R+ : |Z(t)� Z(t�)| � "}

can be written as (b
i

) with 0 = b
0

< b
1

< b
2

< · · · , such that b
q

< 1 < b
q+1

for some nonnegative
finite q = q("). Let J�

x

(resp. J+

x

) denote the largest open interval immediately to the left (resp.
right) of x which does not intersect F

"

.

On our road to (4.2), we begin by showing there exists 0 < �
0

= �
0

(") such that 8x 2 I = [0, 1]:

|Z(t)� Z(t
0
)| < " for all t, t

0
2 B(x, �

0

) \ J±
x

, (4.3)

with B(x, �) denoting the open ��ball centered at x and J±
x

meaning that the previous statement
holds for both J+

x

and J�
x

. Since Z 2 D then for all x 2 I, (4.3) holds for �(x) = �(x, ") replacing
�
0

and (4.3) follows from a compactness argument.

Now suppose P is a locally finite partition of R+ with mesh |P| < �
00

< �
0

, with �
00

to be further
specified in what follows; we write 0 = x

0

< x
1

< · · · < x
p

< 1 for the endpoints of P in [0, 1).

Recalling from (3.3) and (3.2) the definitions of ||| · |||
1

and of Billingsley’s metric, proving (4.2)
reduces to defining �, a continuous, strictly increasing parameter change onto [0, 1] satisfying both

|||�|||
1

< " and ||ZP � �� Z||1
[0,1]

< ".

Now as long as [x
j

, x
j+1

] contains no element of F
"

, so [x
j

, x
j+1

] ✓ (b
k

, b
k+1

) for some k, then
[x

j

, x
j+1

] ✓ B(x
j

, �
0

) \ J+

xj
and so by (4.3) this gives

|ZP(t)� Z(t)| < ", 8t 2 [x
j

, x
j+1

]. (4.4)

Hence on these intervals we can simply take �(t) = t. The idea therefore is to begin with �(t) = t
on [0, 1] and then modify it near each point in F

"

, in the following fashion.

First, let r be such that

0 < r < inf

✓
�
0

2
,
min

0iq

(b
i+1

� b
i

)� �
0

2
, 1� b

q

◆

with �
0

given in (4.3); we note that by construction, �
0

< min
0iq

(b
i+1

� b
i

). And for that choice
of r pick �

00

such that

�
00

<
r

3
(1� e�").

For a chosen point a = b
i

2 F
"

, a is in an interval [x
m

, x
m+1

) for some m  p. Let l and n be
such that x

m

� r < x
l

< x
m

� r + �
00

and x
m

+ r � �
00

 x
n

< x
m

+ r. We define � to be linear on
the intervals [x

l

, a] and [a, x
n

] connecting the points (x
l

, x
l

), (a, x
m+1

) and (x
n

, x
n

). We define � in
this way at the vicinity of each a 2 F

"

, and on the remaining intervals keep the definition �(t) = t.
Thus � is continuous and strictly increasing and, from the way we have chosen ", �

0

, r and �
00

, it
is easily checked that

|||�|||
1

 max

✓
log

r � 3�
00

r � 2�
00

, log
r

r � �
00

◆
< "

The e↵ect of � is to move the jumps in ZP so that they line up exactly with the big jumps in Z.

We check the resulting spatial error: we have ZP � �(t) = Z(x
i

) for all t 2 [x
l

, a) and some
i 2 [l, m], and for all t 2 [a, x

n

), and some i 2 [m + 1, n). Next, one can check that for all
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t 2 [x
l

, x
n

), by (4.3), |ZP � �(t) � Z(t)| = |Z(t0) � Z(t)| < ", where t0 = x
i

is defined as above for
the two cases.

We claim that in fact
||ZP � �� Z||1

[0,1]

< ". (4.5)

First we note that for x
l

, x
n

, x
m

assigned to b
i

and x
l

, x
n

, x
m

assigned to b
i+1

, then x
m

+r < x
m

�r
and so x

n

< x
l

. Thus the modifications made to � near b
i

and near b
i+1

do not interfere with each
other, as �(t) = t on [x

n

, x
l

]. Also, r < 1 � b
q

so for the point x
n̂

assigned to b
q

, x
n̂

< b
q

+ r < 1;
thus the rightmost modification does not interfere with the definition of �(t) = t near 1.

Next by (4.4), (4.5) holds on all the intervals [x
j

, x
j+1

] where we still have �(t) = t.

Furthermore, for all t 2 [x
l

, a), ZP � �(t) = Z(x
i

) for some l  i  m, and |t � x
i

| < r < �
0

by
the previous construction and the choice of r. Hence |ZP � �(t)�Z(t)| = |Z(t0)�Z(t)| < ", by the
estimate (4.3). For t 2 [a, x

n

), the same reasoning holds. This completes the proof of (4.2).

Lastly we show how to get the measure statement from this. By (4.2) For fixed " > 0,

G"

�

= {Z 2 D \D
?

: for each P with |P| < �, d
1

(ZP , Z) < "},

increases to D \ D
?

as � # 0. Hence, due to the monotonicity of measure, as � # 0, ⌫(G"

�

) !
⌫(D \D

?

) = ⌫(D) = 1, since ⌫ gives no mass to D
?

. This finishes the proof of Lemma 4.1. ⇤

The argument in the next proposition is where the dynamics first comes in, and it is also here
that one clearly sees the interplay between density and measure.

Proposition 4.2. Let Z be an ergodic self-similar process of index � > 0 with paths in D; equiv-

alently, assume we are given an invariant ergodic probability measure ⌫ on D for the scaling flow

⌧
t

of index �. Let ⌘ be a positive strictly increasing regularly varying function of index 1 and define

Q to be the partition of R+

with integer endpoints. Then for ⌫-a.e. Z 2 D,

(i) d
1

(⌧
t

Z
⌘(Q)

, ⌧
t

Z) ! 0 (Cesáro),

and equivalently,

(ii) d
T

(Z
⌘(Q)

, Z) = o(T �) (log).

Proof. By Lemma 3.5, (i) and (ii) are equivalent; we prove (i). Since ⌘ is a positive and strictly
increasing function, we have

Z
⌘(Q)

= (Z � ⌘)Q � ⌘
�1; (4.6)

in fact, this is true for Q any partition of R+. Now as one checks from the definitions,

⌧
t

(Z
⌘(Q)

) = (⌧
t

Z)
e

�t
(⌘(Q))

. (4.7)

Accordingly, taking f(t) ⌘ d
1

(⌧
t

Z
⌘(Q)

, ⌧
t

Z) = d
1

⇣
(⌧

t

Z)
e

�t
(⌘(Q))

, ⌧
t

Z
⌘

in Lemma 2.4 tells us that

demonstrating (i) will reduce to showing that for all " > 0, the Cesáro average

lim
T!1

1

T

Z
T

0

�{t:f(t)>"}dt = lim
T!1

1

T

Z
T

0

�{U :d1(UQt ,U)>"}(⌧tZ)dt = 0,

with Q

t

= e�t(⌘(Q)) and where �
A

denotes the indicator function of a set A.

Now, since ⌘ is regularly varying of index 1, it follows that ⌘(n) ⇠ ⌘(n�1); therefore the diameter
of the rescaled partition Q

t

⌘ e�t(⌘(Q)) on [0, 1], written |Q

t

|

[0,1]

, vanishes as t !1.
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Hence, for any � > 0, there exists some large T
0

such that for all t > T
0

, we have |Q
t

|

[0,1]

< �.
This implies that the set of paths

{U : d
1

�
UQt , U

�
> "} ⇢ {U : 9P such that |P| < � and d

1

�
UP , U

�
> "} ⌘ A

",�

.

Thus, for Z in a set of full ⌫�measure G
",�

, we have for T > T
0

0 
1

T

Z
T

T0

�{t:f(t)>"} dt 
1

T

Z
T

T0

�
A",�

(⌧
t

Z) dt ! ⌫(A
",�

) as T !1

with convergence given by the Birkho↵ ergodic theorem. From Lemma 4.1 we know that for all
" > 0, ⌫(A

",�

) ! 0 as � ! 0, which implies (i) and finishes the proof of Proposition 4.2. ⇤

5. Proof of Theorem 1.1

5.1. Defining the time change. The statement of Berkes and Dehling (Theorem A) for the
general stable case di↵ers from the Gaussian case in that the weighted sum

P
in�1

�
i

Y
i

replaces
the time-changed Brownian path B(a2(n)). For our dynamical theorem, we wish to use a time-
changed sequence for the non-Gaussian case as well. A unified statement is given in the following:

Proposition 5.1. Let (X
i

) be an i.i.d. sequence of common distribution function F in the domain

of attraction of G
↵,⇠

, ↵-stable with 0 < ↵  2. In the case where ↵ > 1, assume without loss of

generality that the X
i

’s are centered. Then there exists a C1

normalizing function a(t), explicitly

constructed from F , strictly increasing, regularly varying of index 1/↵ and with regularly varying

derivative, such that a(n) gives a normalizing sequence for F , and such that there is a joining

between S and the (↵, ⇠)-stable process Z, so that

for ↵ 6= 1 : sup
0kn

|S(k)� Z(a↵(k))| = o(a(n)) a.s. (log), (5.1)

for ↵ = 1 : sup
0kn

|S(k)� kv(a(k))� eZ(a(k))| = o(a(n)) a.s. (log), (5.2)

where v(x) =
R

x

�x

tdF (t), and

eZ is the centered Cauchy process, see (1.14).

Proof. For ↵ = 2, in the finite variance case we choose a(t) = �
p

t with var(X
0

) = �2, and statement
(5.1) is proved in [Fis].

In all other cases, to define the time change a(t) from F , we first improve the distribution function
F by convolution and then show that proving Proposition 5.1 for the smoothed law will be su�cient.
To define the smoothing, we begin with the independent joining of the process (X

i

) with a sequence
of i.i.d. standard normal variables (X⇤

i

); that is, writing ⇧ = ⇧1
0

R, with (⇧, µ) the path space
model of the process (X

i

) and (⇧, µ⇤) that for (X⇤
i

), we let µ̂ denote the product measure on ⇧⇥⇧.
Set eX

i

= X
i

+ X⇤
i

. Since (⇧ ⇥ ⇧, µ̂) serves as an underlying space for both (X
i

)
i�0

and the
smoothed process ( eX

i

)
i�0

, by Lemma 3.8 this determines a joining of (X
i

)
i�0

and ( eX
i

)
i�0

.

Since a process (X
i

)
i�0

and its partial sums (S
k

)
k�0

(both given by measures on ⇧) are measure-
theoretically isomorphic via the map (x

i

)
i�0

7! (
P

k�1

i=0

x
i

)
k�1

, the joining of (X
i

)
i�0

and ( eX
i

)
i�0

equivalently gives one of (S
k

)
k�0

and (eS
k

)
k�0

.

Now the relation R on the Polish space ⇧1
0

R defined by (f, g) 2 R i↵

sup
0kn

|f(k)� g(k))| = o(a(n)) a.s. (log) (5.3)
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is an equivalence relation. We first show that the joining of (S
k

)
k�0

with (eS
k

)
k�0

satisfies (5.3);
then from Proposition 3.9 it will follow that if (eS

k

) satisfies (5.1) or (5.2) then so does (S
k

).

To this end, let (a
n

) be any regularly varying sequence of order 1/↵. First we consider the case

↵ = 2 with infinite variance; then S⇤
n

def

= X⇤
0

+ · · ·+ X⇤
n�1

= o(a
n

) in probability. From Corollary 4
of [BD93], this tells us that max

kn

|S⇤
n

| = o(a
n

) a.s. (log). Then since for a.e. pair with respect to
the joining measure we have |S

n

�

eS
n

| = |S⇤
n

|, the relation (5.3) holds for that case.
For the case ↵ < 2, the law of the iterated logarithm delivers that S⇤

n

= o(a
n

) a.s., and the same
reasoning holds a fortiori.

Thus all we have to prove is that Prop. 5.1 holds true for the smoothed distribution eF ; then there
exists a joining of (eS

k

)
k�0

with the process Z and hence with Z(a↵(k)) (resp.
�
�kv(a(k))� eZ(a(k))

�
)

such that (5.1) (resp. (5.2)) holds. By Prop. 3.9 the composition of the joining of (S
k

)
k�0

with
(eS

k

)
k�0

and that of (eS
k

)
k�0

with Z will give the desired joining of (S
k

)
k�0

with Z.

The smoothed eF has the following properties: it is still in the domain of attraction of G
↵,⇠

, by
construction is C1, and has a strictly positive density on the reals hence is strictly increasing.

Remark 5.1. We note that if (a
n

) is a normalizing sequence for F , then it is also a normalizing
sequence for eF , the smoothed version of F . Moreover, the centering sequences di↵er up to o(a

n

).
This follows from convergence of types, [BGT87] p. 328.

Accordingly, we shall assume without loss of generality that we begin with F already smoothed,
so it is a C1 function with continuous, positive density on the reals. We start by constructing a(t)
from this F . Defining

bL(t)
def

= t↵�2

Z
t

�t

x2dF (x), t � 0, (5.4)

we see from (2.2) that bL ⇠ L, some slowly varying function, hence is slowly varying as well.

Next, we set

â(t)
def

= ↵

Z
t

0

u↵�1

bL(u + 1)
du and a(t)

def

= â�1(t), for t � 0.

By (i) then (ii) of Theorem 2.2, a(·) is regularly varying of index 1/↵. Moreover, a(·) is a strictly

increasing function on R+, with a(0) = 0; it is easily checked that a0(t) =
b
L(a(t)+1)

↵ a

↵�1
(t)

. So a0(·) has a

regularly varying derivative and that a↵(t) ⇠ tbL(a(t)).

We observe that (a(n)) satisfies (2.3) and is in fact also a normalizing sequence for F . To see this,
first note that by definition of bL, we have bL ⇠ L, with L as in (2.2). It follows that a(n) satisfies the
condition nV (a(n)x) ⇠ a(n)2x2�↵ for all x > 0 for V the truncated variance for F . From [BGT87],
(8.3.7) on p. 346 and top of p. 347, it then follows that a(n) is a normalizing sequence for F .

For ↵ = 2 with infinite variance, we make use of Berkes and Dehling’s joining, which is produced
via Skorokhod embedding, but with our a(n) as the normalizing sequence.

Now we move to the case ↵ < 2. Taking µ
i

= (a↵(i + 1)� a↵(i))1/↵, then since the process Z has
independent increments, writing �

1,↵

= 1 if ↵ = 1, and �
1,↵

= 0 if ↵ 6= 1,

Y
i

=
1

µ
i

✓
Z(a↵(i + 1))� Z(a↵(i))� �

1,↵

⇠µ
i

log µ
i

◆
for i � 0 (5.5)
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defines an independent sequence of random variables; by the scaling property of Z for ↵ 6= 1 and of
eZ for ↵ = 1, each Y

i

has distribution G
↵,⇠

. Hence the above equation defines a measure-preserving
function from the path space of Z with stable measure to the path space of (Y

i

), an i.i.d. sequence
of ↵-stable variables. Thus, with the convention

P�1

0

= 0,

Z(a↵(n)) =
X

0in�1

µ
i

Y
i

+ �
1,↵

⇠
X

0in�1

µ
i

log µ
i

, for all n � 0.

Next we define an i.i.d. sequence (X
i

) of distribution F via the quantile transform

X
i

= F�1(G
↵,⇠

(Y
i

)), for i � 0.

This is a measure-preserving map from the path space of (Y
i

) to the path space of (X
i

). In fact
this map is one-to-one: indeed, from [ST94], we have that G

↵,⇠

is an invertible function from R to
(0, 1) for 1  ↵ < 2 (and ⇠ arbitrary in [�1, 1]) and also for 0 < ↵ < 1 when ⇠ 6= ±1. From the
invertibility of F , therefore, G�1

↵,⇠

(F (X
i

)) = Y
i

, giving a bijection as claimed. Note that this last
identity remains true for 0 < ↵ < 1 with ⇠ = ±1. Indeed, for ⇠ = 1 for instance, the case with
⇠ = �1 being similar, the Y

i

’s are a.s. strictly positive, while G
↵,1

is invertible from (0,1) to (0, 1).

Now the measure isomorphism from (Y
i

) to (X
i

) gives a joining of the two path spaces. Berkes
and Dehling’s result (1.11) then holds with Y

i

= G�1

↵,⇠

(F (X
i

)), c
k

some centering sequence we shall

describe later and with �
i

= L(a
i+1

)1/↵. (Since they use the same joining, that given by the quantile
transform, we can make use of their result here). We remark that (1.11) was proved for any

normalizing sequence a
n

for F , and any L(t) slowly varying such that (2.2) holds. So (1.11) also
holds with a

n

replaced by a(n).

We note that a key ingredient in the proof of (1.11) in [BD93] was to first show that as n !1

S(n)�
P

in�1

�
i

Y
i

a(n)
�

c
n

a(n)
P
�! 0, (5.6)

where
P
�! denotes convergence in probability, then to apply Corollary 4. We prove (5.1), following

a similar strategy. Here ↵ 6= 1 so we have
P

in�1

µ
i

Y
i

= Z(a↵(n)) and thus (5.6) is equivalent to:

S(n)� Z(a↵(n))

a(n)
+

P
in�1

(µ
i

� �
i

)Y
i

a(n)
P
�! 0.

The second term above is a normalized stable sum; computing its parameters gives G
↵,⇠n,dn,0

where

d
n

= d
n

(↵) ⌘
1

a↵(n)

X

0in�1

|�
i

� µ
i

|

↵ =

P
0in�1

µ↵
i

|1� �i
µi
|

↵

P
0in�1

µ↵
i

.

We claim here that µ
i

⇠ �
i

which implies that d
n

! 0 as n ! 1. As we have seen, a(·) has a
regularly varying derivative of exponent > �1 and so it follows that

µ↵
i

=

Z
i+1

i

d

ds
a↵(s)ds =

Z
i+1

i

↵
sa

0
(s)

a(s)

a↵(s)

s
ds ⇠

Z
i+1

i

a↵(s)

s
ds ⇠

a↵(i)

i
⇠ L(a(i)) = �↵

i

where we have used Theorem 2.2 (ii) in deriving the first equivalence. Hence, indeed, µ
i

⇠ �
i

and

G
↵,⇠n,dn,0

P
! 0. Putting all this together says indeed that for ↵ 6= 1, (S(n)� Z(a↵(n))) /a(n)

P
�! 0,

which by Corollary 4 of [BD93] gives (5.1).
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We move on to the case ↵ = 1. Here we know from [Fel66] p. 305 that since F lies in the

domain of attraction of G
1,⇠

, one has (S(n) � nv(a(n)))/a(n)
law

�! G
1,⇠

, where v(x) =
R

x

�x

t dF (t)

is the truncated mean of F . Having in mind the definition of eZ (1.14) and then recalling thatP
in�1

µ
i

Y
i

= Z(a(n))� ⇠
P

in�1

µ
i

log µ
i

, (5.6) is equivalent to:

S(n)� nv(a(n))� eZ(a(n))

a(n)
+

P
in�1

(µ
i

� �
i

)Y
i

a(n)
+ ⇠

X

in�1

µ
i

a(n)
log

µ
i

a(n)
+

nv(a(n))� c
n

a(n)
P
�! 0.

As for the case ↵ 6= 1, the law of the second term of the above sum is G
1,⇠n,dn,bn = b

n

+ G
1,⇠n,dn,0

,
where d

n

= d
n

(1) ! 0 as n !1. So G
1,⇠n,dn,0

goes to 0 in probability and denoting by u
n

the last
two terms of the above sum plus b

n

we have

S(n)� nv(a(n))

a(n)
�

eZ(a(n))

a(n)
� u

n

P
�! 0, n !1. (5.7)

But since the first term in (5.7) converges in law to G
1,⇠

, while the second eZ(a(n))/a(n) has a
constant law G

1,⇠

, one can check that u
n

converges to 0 and so could be omitted in (5.7). This in
conjunction with Corollary 4 of [BD93] yields (5.2) and completes the proof of Prop. 5.1. ⇤

5.2. From discrete time to step paths. Proceeding toward Theorem 1.1, we next prove:

Proposition 5.2. Under the conditions of Theorem 1.1, there exists a joining of S and Z such

that, for ↵ 6= 1:

||S � (a↵)�1

� Z
a

↵
(Q)

||

1
[0,T ]

= o(T 1/↵) a.s. (log) (5.8)

and equivalently

||⌧
t

(S � (a↵)�1)� ⌧
t

(Z
a

↵
(Q)

)||1
[0,1]

! 0 a.s. (Cesáro), (5.9)

where Q = ([n, n + 1))
n�0

and Z
a

↵
(Q)

denotes the step path over the partition a↵(Q), see (4.1).

The previous results still hold true for ↵ = 1 with S � % replacing S and

eZ replacing Z.

Proof. From Proposition 5.1 we know that there exists a set B ✓ N of times n of integer log density
zero such that for a.e. pair (S, Z) (or equivalently (S, Z)) with respect to the joining measure,

sup
0jn

|S(j)� Z(a↵(j))| = o(a(n)), (n /2 B).

Therefore for B ⌘ {t 2 R+ : [t] 2 B}, which has real log density zero,

sup
0tR

|S(t)� Z � a↵Q(t))| = o(a(R)), (R /2 B).

We observe using (4.6) that

||S � (a↵)�1

� Z
a

↵
(Q)

||

1
[0,a

↵
(R)]

= ||S � Z � a↵Q||
1
[0,R]

= o(a(R)), (R /2 B).

Since a↵(·) is regularly varying of index 1, invertible and with regularly varying derivative, by

Prop. 2.5, e
B

def

= a↵(B) also has log density zero. This proves (5.8). Lastly, it is easily checked that
(5.9) holds o↵ log( eB), which has Cesáro density zero. This finishes the proof of Proposition 5.2. ⇤

We have done all the preparatory work, and are now ready to put these pieces together.
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5.3. End of proof of Theorem 1.1. For ↵ 6= 1, by Lemma 3.3 the scaling flow of the stable
process Z is an ergodic flow. Since a↵(·) is positive, strictly increasing and regularly varying of
index one, we can apply Proposition 4.2(i) and we have for a.e. pair (S, Z) with respect to the
joining of Proposition 5.2:

d
1

(⌧
t

(S � (a↵)�1), ⌧
t

(Z))  d
1

(⌧
t

(S � (a↵)�1), ⌧
t

(Z
a

↵
(Q)

)) + d
1

(⌧
t

(Z
a

↵
(Q)

), ⌧
t

(Z))

 ||⌧
t

(S � (a↵)�1)� ⌧
t

(Z
a

↵
(Q)

)||1
[0,1]

+ d
1

(⌧
t

(Z
a

↵
(Q)

), ⌧
t

(Z)) ! 0 a.s. (Cesáro)

where the set of zero Cesáro density is the union of the two sets from Propositions 5.2(ii) and 4.2(i).

Concluding, this gives (1.15) which by Lemma 3.5 is equivalent to (1.16).
Replacing Z by eZ and S by S�%, the previous proof runs exactly in the same way for ↵ = 1 since

the scaling flow of eZ is ergodic, while Proposition 4.2 holds for any ergodic self-similar process.
This proves (1.16) and (1.15) of Theorem 1.1, and together with Lemma 3.6 (which extends the

result to the metric d1) completes the proof of the theorem.

5.4. Comparing paths, and alternative time changes. First we give an alternate definition
of time change, as promised in Proposition 1.2.

Lemma 5.3. Let F be an element of the domain of attraction of G
↵

and let (a
n

) be a normalizing

sequence for F (satisfying (2.3)). We denote by a(t) the polygonal interpolation of (a
n

). Then setting

ã(t) = ↵
R

t

0

a(s)

s

ds, this defines a C1

, strictly increasing function with regularly varying derivative

such that ã(n) is a normalizing sequence for F .

Next we come to:

Proof of Proposition 1.2. We begin by proving (i). Let a(·) be the smooth time change con-
structed explicitly from F in Proposition 5.1, that is, after first smoothing the distribution if
necessary. By assumption ea(t) ⇠ a(t) so ea(n) is also a normalizing sequence for F . Then an exam-
ination of the proof of Proposition 5.1 shows that its conclusion holds with ea(n) taking the place
of a(n). Now ea(·) is invertible and has a regularly varying derivative, which are the only additional
properties of the time change needed for the rest of the proof of Theorem 1.1 to go through; hence
the statements of the theorem are also true for ea(·).

Next we consider two copies S
(1)

, S
(2)

of the random walk process S for F . From Theorem
1.1 there exists a joining of S

(1)

with Z, and a joining of Z with S
(2)

, such that almost every
pair (S

(1)

� (a↵)�1, Z) lies in the same Cesáro stable manifold and similarly for almost every pair
(Z, S

(2)

� (ea↵)�1)). The composition of these two joinings therefore gives a joining of the processes
S

(1)

and S
(2)

for which the last part of (i) holds.

We move to the proof of (ii). We associate to F and eF (again these may be non-smoothed
distributions!) two smooth time changes a(·) and ea(·); this can be any time change satisfying the
conditions of (i) in the proposition, so it can for instance be explicitly constructed as in the proof
of Proposition 5.1 after first smoothing the distribution, or as in Lemma 5.3.

By assumption, the slowly varying functions L and eL associated to F and eF given in (i) of Th. 2.3
are equivalent. This together with (2.3) written for a(·) and ea(·) easily gives that a(t) ⇠ ea(t).

We now turn to the last part of (ii). First by part (i) for F we join S � (ea↵)�1 with S � (a↵)�1,

then by Theorem 1.1 we join S � (a↵)�1 with Z, and Z with eS � (ea↵)�1; then once more by part (i)
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but now for eF , we join eS � (ea↵)�1 with eS � (a↵)�1. From Remark 3.1, we have common underlying
space for these five processes, and hence four joinings, such that by Proposition 3.9 they are a.s. all
simultaneously in the same Cesáro stable manifold.

We keep with the notation of the proof of Proposition 5.1, taking first the case ↵ 6= 1. We recall
that using the quantile transform, we joined (S

n

) for F with (
P

in

µ
i

Y
i

) where (Y
i

) is an i.i.d.
sequence of ↵-stable variables and µ↵

i

= a↵(i + 1)� a↵(i), and then proved the asip (log) of (5.1).

By the same scheme, there exists a joining of (eS
n

) for eF with (
P

in

eµ
i

eY
i

) and a corresponding

asip (log). Now the two processes (Y
i

) and (eY
i

) have the same law, hence so do (
P

in

µ
i

Y
i

) and

(
P

in

µ
i

eY
i

); this correspondence defines a third joining. On the other hand, since eµ
i

⇠ µ
i

we have
P

iN

(eµ
i

� µ
i

)eY
i

= o(a(N)) a.s. (log), as shown at the end of the proof of Prop. 5.1. As a result,

taking the composition of these joinings produces a joining of (S
n

) with (eS
n

) such that (1.17) is
satisfied. This finishes the proof for ↵ 6= 1; all of the above then holds for ↵ = 1 upon centering. ⇤

6. Proof of Proposition 1.3: generic points and pathwise limit theorems

In the passage from the asip (log) of our main theorem to the pathwise limit theorems of Prop. 1.3,
we shall need the two lemmas which follow. First, as we saw in the introduction, the Cesáro average
of a continuous bounded observable is constant on an equivalence class W s,d

Ces

(g) for g 2 D. We now
come to this related statement:

Lemma 6.1. Let ⌫ be an ergodic invariant probability measure for the flow ⌧
t

on D. Suppose that

µ is a probability measure on D, with b⌫ a joining of µ and ⌫ such that for b⌫-a.e. pair (f, g) we have

f 2 W s,d1
Ces

(g); then µ-a.e. path f is a generic point for the flow (D, ⌫, ⌧
t

). This statement holds

with d1 replaced by any metric d which gives the same topology.

Proof. By assumption there is a set bG ✓ D ⇥D of ⌫̂-measure one, such that for every (f, g) 2 bG,
then there exists a set B of Cesáro density zero such that d1(⌧

t

f, ⌧
t

g) ! 0 as t !1 for t /2 B.

Let � 2 UCB(D, d1). By the uniform continuity of �,

H(t) ⌘
���(⌧

t

f)� �(⌧
t

g)
��
! 0, as t !1, for t /2 B.

Then since � is bounded, the Cesáro average of H is zero and hence the Cesáro averages of �(⌧
t

g)
and �(⌧

t

f) are the same.

By Lemma 7.2 (D, d1) is a Polish space, so by ergodicity of the scaling flow (D, ⌧
t

, ⌫) we can
apply Fomin’s theorem. This guarantees that there is a set G

2

✓ D of measure one of generic
points. Thus, for every � 2 CB(D, d1), then for all g 2 G

2

,

lim
T!1

1

T

Z
T

0

�(⌧
t

g) dt =

Z

D

� d⌫ ⌘ h�, ⌫i . (6.1)

We show how to pass this on to the paths f .

Since bG \ (D ⇥ G
2

) has ⌫̂- measure one, therefore its projection G
1

to the f -coordinate has
µ-measure one. (A theorem of Rochlin [Roc49] guarantees the forward image is a measurable set;
this uses the fact that we have Lebesgue spaces). For any f 2 G

1

there exists (f, g) 2 bG; for any
such pair, we know that f 2 W s,d1

Ces

(g) with g a generic point for ⌧
t

.
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We conclude that for a set of µ-measure one of paths f , then for all � 2 UCB(D, d1), (6.1) holds
with f replacing g. Then, by p. 12 of [Bil68] for each such f the same holds for � 2 CB(D, d1),
finishing the proof for d1. Note lastly that the proof just given works for any equivalent metric. ⇤

Next we see how to smooth a function in UCB(D, d
1

) to one in CB(D, d1), by convolution along

the flow.

Lemma 6.2. Let � 2 UCB(D, d
1

) for D = DR+
. For all b > 0, and all f in D, define

b�(f) ⌘ �
b

(f) =
1

b

Z
b

0

�(⌧
t

f) dt.

Then

b� is in CB(D, d1). The space averages of � and

b� agree, and moreover if the time average

of � exists for a given f 2 D then the same is true for

b� (with the same value).

Proof. We start by proving the d1-continuity of b�. To this end, we prove its sequential continuity:
for any sequence of elements (f

n

) of D that d1-converges to f 2 D, b�(f
n

) converges to b�(f).

From d1(f
n

, f) ! 0 one gets that for all � > 0,
R1

0

e�s �
ds(fn,f)>�

ds ! 0 as n ! 1. Thus, for
any 0 < b < c we have

R
c

b

�
ds(fn,f)>�

ds goes to zero as n !1.

Next, recalling that �
s

= ⌧
log s

, then after a change of variables we have, for all � > 0,

|

b�(f
n

)� b�(f)| 

1

b

Z
e

b

1

|�(�
s

f
n

)� �(�
s

f)|
ds

s



2||�||1
DR+

b

Z
e

b

1

�
ds(fn,f)>�

ds +
1

b

Z
e

b

1

|�(�
s

f
n

)� �(�
s

f)| �
ds(fn,f)�

ds

s
.

Hence, at fixed b > 0, the first term above goes to zero as n !1. We turn to the second integral.

We know � is d
1

-uniformly continuous: for all " > 0, there exists �̂ > 0 such that for all f, g in
D satisfying d

1

(f, g) < �̂, we have |�(f)� �(g)| < ".

So, choosing � < �̂, then remembering that d
s

(f
n

, f) = s1/↵d
1

(�
s

f
n

, �
s

f), we get that d
s

(f
n

, f) 
� implies d

1

(�
s

f
n

, �
s

f) < �̂ (for s � 1). By the uniform continuity of �, the second integral above
is less than ". This proves that b�(f

n

) goes to �(f), as n !1.

Hence b� is bounded and continuous with respect to d1. Next we compare the time and space
averages of b� with those of �.

From the definition of b�, with the help of Fubini’s theorem, we have

1

T

Z
T

0

b�(⌧
t

f) dt =
1

bT

Z

0uvb

�(⌧
v

f) du dv +
1

T

Z
T

b

�(⌧
v

f) dv +
1

bT

Z
T+b

T

�(⌧
v

f) (T + b� v) dv.

Since � is bounded, the first and the last terms of the above sum go to 0 as T !1. Therefore the
time averages of b� and � for a given f agree. Lastly,

R
D

b� d⌫ =
R

D

� d⌫ since ⌫ is ⌧�invariant. ⇤
Proof of Proposition 1.3. The proof of (ia) follows from the asip for Y and U , for the metric
d1, together with Fomin’s theorem applied to the scaling flow and Lemma 6.1 for d1.

Proving (ib): First we show that (ia) also holds true for � 2 UCB(D, d
1

). To this end we construct
a new function b� 2 CB(D, d1) by “convolving � along the flow” ⌧

t

, as carried out in Lemma 6.2;
we then apply (ia) just proved to b�, and as shown in the lemma, the averages of � and b� agree.
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Lastly, we apply this to a specific �. Starting with  2 UCB(R), define � : D ! R by
�(g) =  (g(1)). From the definition of the pseudometric d

1

, see (3.3), � is in UCB(D, d
1

); indeed,
all one needs to check is that for all f, g 2 D such that d

1

(f, g) < � then |f(1)� g(1)| < � (this is
so because in the definition of d

1

, �(1) = 1 with � the change of parameter). And (ib) is proved.

Proof of (ii): To this end, we first rewrite (ia), using for simplicity the notation f = S, h = a↵ and
bh = h�1 and changing variables with s = et, and so for µ-a.e. f , for any � 2 CB(D, d1), we have

lim
T!1

1

log T

Z
T

1

�

✓
f(bh(s·))

s1/↵

◆
ds

s
= h�, ⌫i . (6.2)

A key step will be proving that, for the noncomplete metrics d0

1

and d̃0

1 (defined in §8),

lim
s!1

d0

1

(f
s

, g
s

) = 0 and lim
s!1

d̃0

1(f
s

, g
s

) = 0, (6.3)

with

f
s

(x) =
f(bh(sx))

s1/↵

and g
s

(x) =
f(bh(s)x)

s1/↵

.

We define �
s

(x) = bh(sx)/bh(s) for x � 0. From the definitions of f
s

and g
s

one can see that �
s

was
chosen in such a way that ||f

s

(x) � g
s

� �
s

(x)||1
[0,T ]

= 0 for any T > 0. Thus proving (6.3) reduces
to proving that �

s

converges uniformly to the identity on [0, T ] as s !1.

And indeed, it is easily checked that �
s

is increasing and continuous, with �
s

(0) = 0 and that �
s

converges uniformly to the identity on any compact interval [�
0

, T ] with 0 < �
0

 T , see [BGT87]
p. 22. Now, from the increasingness of �

s

we get that ||�
s

(x) � x||1
[0,�0]

 �
s

(�
0

) + �
0

. This implies

that ||�
s

(x)� x||1
[0,T ]

! 0, as s !1. Then (6.3) follows from the definition of d̃0

1.

Next we see how to use that to deduce (1.20) from (6.2). Beginning with � 2 UCB(D, d̃0

1), since
d̃0

1(f
s

, g
s

) ! 0, then from (6.3) �(g
s

) has the same log average as �(f
s

), which equals h�, ⌫i by (6.2).
Changing variables (t = bh(s)), then using Theorem 2.2, we have proved (1.20) for � 2 UCB(D, d̃0

1).
By p. 12 of [Bil68] this holds also for � 2 CB(D, d̃0

1) = CB(D, d1), since by Prop. 8.3 these metrics
give the same topology. This completes the proof of (1.20).

Note that for the case ↵ = 1 we use the self-similar measure e⌫ rather than the Cauchy measure
⌫ itself, and replace paths S � bh by (S � %) � bh where % is the centering from Theorem 1.1; for this
it is important that our lemmas were stated for general ergodic scaling flows. ⇤

7. Completeness of D and continuity of ⌧

Having a Polish space is of crucial importance in this paper; this follows from [Whi80], Theorem
2.6, where it is shown that (D, d1) is complete. We begin this section with an alternative proof of
Whitt’s result. Following that, we show that the scaling flow ⌧ is J

1

-continuous.

Lemma 7.1. Let f 2 D; then the set of continuity points of f has a countable complement.

Proof. For any " > 0, the points where the jump is > " cannot have an accumulation point
(otherwise a one-sided limit of f will not exist contradicting the definition of D) so this is finite on
any compact interval and the claim follows. ⇤
Lemma 7.2. (D, d1) is a complete metric space.
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Proof. Let (f
n

)
n�1

be a Cauchy sequence for d1; we shall find f 2 D to which (f
n

) converges. Let

( ef
k

)
k�0

be a subsequence ef
k

= f
nk

for n
0

< n
1

· · · such that d1( ef
k

, ef
k+1

) < 2�2k.

We set
E

k

= {A 2 R+ : d
A

( ef
k

, ef
k+1

) > 2�k

}, k � 0.

By Markov’s inequality P(g > a)  1

a

E(g); for g(A) = d
A

( ef
k

, ef
k+1

) and P the exponential distribu-
tion on R+, we have

P(E
k

)  2kE(g) = 2kd1( ef
k

, ef
k+1

)  2k2�2k = 2�k.

By Borel-Cantelli, G = lim inf Ec

k

is a set of full P- (hence Lebesgue-) measure. Thus for each
A 2 G, d

A

( ef
k

, ef
k+1

)  2�k for k � k
0

(A) and hence by the triangle inequality, d
A

( ef
k+1

, ef
k+l

)  2�k

for any l � 1. Thus ( ef
k

)
k�1

is a d
A

-Cauchy sequence for all A in G.
Since d

1

is a complete metric on D
[0,1]

, so is d
A

on D
[0,A]

. Thus for each A 2 G there exists f
A

2 D

to which ( ef
k

) converges for d
A

. Now let G
A

denote the intersection of G with the set of continuity
points in [0, A) of f

A

, which by Lemma 7.1, is dense and of full Lebesgue measure in [0, A).
Choose A

0

< A with A
0

2 G

A

. We know that d
A

( ef
k

, f
A

) ! 0 and we claim that d
A0( efk

, f
A

) ! 0
as well. Indeed, letting � be the coordinate change for d

A

( ef
k

, f
A

), we define �
0

on [0, A
0

], by
modifying � on a small interval to the left of A

0

; on this interval �
0

is defined to be linear increasing
with �

0

(A
0

) = A
0

. Since |||�|||
A

is small and A
0

is a continuity point of f
A

, we see that d
A0( efk

, f
A

)
is small. Hence f

A

= f
A0 on the interval [0, A

0

].

Now consider A, B 2 G with A < B. We repeat the argument just given for A
0

2 G

A

\ G

B

,
and have that f

A

= f
B

on the interval [0, A
0

]. It follows that f
A

= f
B

on [0, A), and hence,
G

A

= G

B

\ [0, A). We let e
G be the nested union of G

A

over A 2 G; there is thus a unique f 2 D

such that d
A

( ef
k

, f) ! 0 for all A 2

e
G, with this set dense and of full measure in R+. Hence, by the

LDCT, d1( ef
k

, f) ! 0 as k !1 and by the triangle inequality indeed, d1(f
n

, f) ! 0. ⇤
Proposition 7.3. The scaling flow ⌧ is (jointly) continuous on D for the J

1

topology on D = DR+
.

Proof. We give the proof for the metric d1, though by Lemma 8.1, d0

1 could be used instead.
By definition for the flow ⌧ to be continuous means it is continuous as a function ⌧ : D⇥R ! D.

That is for all t
0

2 R and f 2 D, if t is close to t
0

and g is d1-close to f then ⌧
t

g is d1-close to
⌧
t0(f). By the triangle inequality,

d1(⌧
t

g, ⌧
t0f)  d1(⌧

t

g, ⌧
t

f) + d1(⌧
t�t0(⌧t0f), ⌧

t0f). (7.1)

We first show the time continuity of ⌧
t

at 0: that for all ef 2 D, s 7! �
s

ef = ⌧
log s

ef is continuous

at 1 for d1. By LDCT, it su�ces to prove that for every continuity point of ef , that is almost every
A > 0, d

A

(�
s

ef, ef) goes to 0 as s ! 1.
To this end, pick " > 0 and assume that s is close enough to 1 so that A�" < sA. Set �

s

(x) = sx
on [0, (A � ")/s] and linear on [(A � ")/s, A] so that �

s

(A) = A. The aforedefined function is
continuous, strictly increasing of [0, A] onto itself and it is easily checked that |||�

s

|||

A

goes to 0 as
s ! 1. The same holds for ||�

s

ef � ef � �
s

||

1
[0,A]

since ef is assumed to be continuous at A.

Next we show that the first term in (7.1), or equivalently d1(�
s

f, �
s

g) with s = et, is small for
g d1-close to f , and s close to et0 . Note that for all N > 0 and any su�ciently small �, we have

d1(f, g) >

Z
N

0

e�A

d
A

(f, g)

1 + d
A

(f, g)
dA >

�

2

Z
N

0

e�A �
dA(f,g)>�

dA, (7.2)
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where � is the indicator function. From Lemma 3.4, we get d
A

(�
s

f, �
s

g) = s�1/↵d
As

(f, g), so

d1(�
s

f, �
s

g) =

✓Z
N

0

+

Z 1

N

◆
e�A

d
As

(f, g)

s1/↵ + d
As

(f, g)
dA



Z
N

0

e�A �
dAs(f,g)>�

dA +
�

s1/↵

+ e�N (7.3)

as x 7! x/(s1/↵ + x) is strictly increasing and bounded by 1. Now, choose N large enough.

For s  1, e�A < e�As and we are done by first changing variables in (7.3) and then using (7.2).
As for s > 1, by Hölder’s inequality, one has

Z
N

0

e�A �
dAs(f,g)>�

dA  N1�1/s (

Z
N

0

e�As �
dAs(f,g)>�

dA)1/s,

and we conclude just as for s  1.Thus, d1(�
s

f, �
s

g) is small, as claimed. ⇤

8. Noncomplete metrics for the J
1

topology on DR+

In this section we define two noncomplete metrics on D, which both give the same topology as
d1. The first of these, d0

1 (see §3.1) is easier to compare with d1; the second d̃0

1, which is closer to
Stone’s original definition of the topology on D, is better adapted for use in the proof of Prop. 1.3.

Lemma 8.1. The complete and incomplete metrics d1 and d0

1 on D are equivalent.

Proof. It is su�cient to prove that sequential convergence corresponds for the two metrics. We start
by showing that if d1(f

n

, f) ! 0 for f
n

, f 2 D then d0

1(f
n

, f) ! 0.
Having the definition of d1 in mind, we write d1(f

n

, f) = E(X
n

), the expected value with respect
to the exponential law of parameter one of the function X

n

(A) ⌘ dA(fn,f)

1+dA(fn,f)

.

As a result, d1(f
n

, f) ! 0 implies that X
n

! 0 in L1. Thus there exists a subsequence �(n) such
that for a.e. A > 0, d

A

(f
�(n)

, f) ! 0. Since by Theorem 14.1 of [Bil68] the metrics d
1

and d0

1

on
D

I

give the same topology, then so do d
A

and d0

A

on D
[0,A]

. Hence for a.e. A > 0, d0

A

(f
�(n)

, f) ! 0
which by LDCT implies that d0

1(f
�(n)

, f) ! 0. We claim that d0

1(f
n

, f) ! 0.

We have just proved that 0 is an accumulation point for the nonnegative and bounded (by 1)
sequence (d0

1(f
n

, f)). Suppose that l 6= 0 is another accumulation point. Then d0

1(f
 (n)

, f) ! l for
a subsequence  (n). But since a fortiori d1(f

 (n)

, f) ! 0, running the above reasoning shows that

there exists a subsequence b (n) for which d1(f
 (

b
 (n))

, f) ! 0. This contradicts d0

1(f
 (n)

, f) ! l 6= 0

and proves that d0

1(f
n

, f) ! 0, as desired. Reversing the argument, d0

1-convergence implies d1-
convergence, so the two metrics give the same topology. ⇤

In fact historically the first definition of a J
1

topology on D was due to Stone [Sto63]: for
⇤1 = {� : R+

! R+ continuous, increasing, onto} then f
n

! f i↵ there exists �
n

2 ⇤1 such that

8T > 0, ||�
n

(x)� x||1
[0,T ]

! 0 and ||f
n

� f � �
n

||

1
[0,T ]

! 0 as n !1.

We next see it is possible to define a metric on D which is more closely based on Stone’s idea,
that is, allowing for parameter changes � which do not necessarily fix the endpoints of a compact
interval [0, A]. This metric, denoted d̃0

1, is used in the proof of part (ii) of Proposition 1.3.

The interesting point in finding an appropriate definition will be to somehow achieve the triangle
inequality; in the case of d

A

or d0

A

that was easy exactly because the � 2 ⇤
A

leaves the endpoints
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fixed. Here we borrow a nice idea from Kalashnikov’s presentation [Kal89] of a complete metric on
D, though things are simpler in the present case.

Definition 8.2. For fixed f, g 2 D, then for a chosen � 2 ⇤1, we define

t
�

= t
�,f,g

= sup{t � 0 : ||f � g � �||1
[0,t]



1

t
and ||�(x)� x||1

[0,t]



1

t
}. (8.1)

We then define

⇢(f, g) = min
�1

2
; ( sup

�2⇤1

t
�

)�1

 
and

ed0

1(f, g) = ⇢(f, g) + ⇢(g, f).

Proposition 8.3. ed0

1 defines a metric on D.

Proof. We note that ⇢(f, g) = 0 i↵ f = g; this passes on to ed0

1, which is defined so as to be
symmetric. All that is left to do is to show the triangle equality for ⇢, since this property will pass
on to ed0

1 as well. So it su�ces to show: for f, g, h 2 D, ⇢(f, h)  ⇢(f, g) + ⇢(g, h).
We assume that both ⇢(f, g) and ⇢(g, h) are < 1/2 (as it is trivial otherwise). This is equivalent

to saying that there exist �, µ 2 ⇤1, such that t
�

= t
�,f,g

and t
µ

= t
µ,g,h

are > 2.

Fixing such a � and µ, we define t̃ by

1

t̃
=

1

t
�

+
1

t
µ

,

and have 1 < t̃  min{t
�

, t
µ

}. We easily check that �(t̃)  t
µ

.

Setting ⌫ = µ � �, we have:

||f � h � ⌫||1
[0,

˜

t ]

 ||f � g � �||1
[0,

˜

t ]

+ ||g � h � µ||1
[0,�(

˜

t)]

 ||f � g � �||1
[0,t�]

+ ||g � h � µ||1
[0,tµ]

,

and similarly
||⌫(x)� x||

[0,

˜

t ]

 ||�(x)� x||
[0,t�]

+ ||µ(x)� x||
[0,tµ]

.

So both ||f�h�⌫||1
[0,

˜

t ]

and ||⌫(x)�x||
[0,

˜

t ]

are  1

t�
+ 1

tµ
= 1

˜

t

. Thus t̃  t
⌫

= t
⌫,f,h

and so 1

t⌫


1

tµ
+ 1

t�
.

This implies that ⇢(f, h)  ⇢(f, g) + ⇢(g, h), completing the proof that ed0

1 is a metric. ⇤
Next we relate d̃0

1 to the other metrics, which were defined from integration of metrics on D
[0,A]

.

Proposition 8.4. The metrics d̃0

1 and d0

1 are equivalent; they give the same topology as Stone’s.

Proof. By considering sequential convergence, it is clear that Stone’s topology is the same as that
given by d̃0

1.

Now assume that d0

1(f
n

, f) ! 0. Then for any ", T > 0, 9A > T such that d0

A

(f
n

, f)  " for n
large enough, i.e. there exists µ

n

2 ⇤
A

such that both ||f
n

� f � µ
n

||

1
A

and ||µ
n

(x)� x||1
A

are  ".
Defining �

n

to be the extension of µ
n

to R+ by taking �
n

(x) = x for x > A, then a fortiori
||f

n

� f � µ
n

||

1
T

and ||µ
n

(x)� x||1
T

are  ". This shows that f
n

! f in Stone’s sense.

Conversely, if f
n

! f in Stone’s topology then there exists �
n

on R+ such that 8T > 0, ||f
n

�

f � �
n

||

1
[0,T ]

and ||�
n

(x)� x||1
T

! 0, as n !1. By Lemma 7.1, a.e. A 2 R+ is a point of continuity
of f ; let A 2 [0, T ] be such a point. Then, as argued in the proof of Lemma 7.2, by making a small
change in �

n

near A to get �̃
n

so that �̃
n

(A) = A, we can achieve d0

A

(f
n

, f) < 2". This works for
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Lebesgue-a.e. A > 0, hence d0

A

(f
n

, f) ! 0 for a.e. A and so by LDCT, d0

1(f
n

, f) ! 0. This finishes
the proof of Proposition 8.4. ⇤
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