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Abstract. We show that a rational function of degree > 2 admits an invariant line
field with respect to some measure pu, which is an equilibrium state of a Holder continuous
potential whose topological pressure is greater than its supremum, only in very special cases
when the Julia set is either a geometric circle or an interval or it is totally disconnected
and contained in a real-analytic curve.

Let f : @ — @ be a rational function of degree > 2 and let ¢ : J(f) — IR be a Hélder
continuous potential defined on the Julia set such that P(¢) > sup(¢), where P(¢) is the
topological pressure of ¢ with respect to the map f : J(f) — J(f). For the definition
and various properties of topological pressure the reader may consult [Bo], [Ru], [Wa] or
[PU] for example. It is true (see the same sources as above) that P(¢$) has the following
metric-theoretical characterization, called the variational principle.

P(¢) = sup{h, (/) + / by},

where the supremum is taken over all Borel probability f-invariant measures supported
on J(f) and h,(f) is the metric entropy of f with respect to the measure p; hence one
can take this as the definition of pressure. A Borel probability f-invariant measure p on
J(f) is said to be an equilibrium state for ¢ if h,(f) + [ ¢dp = P(¢). One knows that
for each continuous potential on J(f) there exists at least one equilibrium state; this is
due to M. Lyubich in [Ly]. For Hélder continuous potentials which satisfy the condition
P(¢) > sup(¢), the equilibrium state is in fact unique, as shown in [DU] (see also [Pr]). We

ISupported by TARP Grant



denote this unique equilibrium state by pe. It is ergodic; further dynamical and ergodic
theoretic properties, including metric exactness and the Central Limit Theorem, have been
established in [DU], [Pr], [DPU] and [Ha).

The main result of this paper is contained in the following.

Theorem 12. Let f : @ — @ be a rational function of of degree > 2 and let ¢ : J(f) — IR
be a Holder continuous potential satisfying P(¢) > sup(¢). Suppose that there exist £ > 1
and a measurable function u : J(f) — S* such that for pg-a.e. z € J(f)

) < 1'(2) )"’ _ulf(2).
/'(2)] u(z)
Then the map f is critically finite and either
(a) f has a superattracting fixed point with a preimage at which f has a different degree.
(b) f is critically finite with parabolic orbifold.
(¢) The Julia set J(f) is a geometric circle and f is biholomorphically conjugate to a
finite Blaschke product.

(d) The Julia set J(f) is a real-analytic closed segment and f is biholomorphically con-
jugate to a 2-to-1 factor of a finite Blaschke product.

(e) J(f) is totally disconnected and J(f) is contained in a real-analytic curve with self-
intersections (if any) lying outside of the Julia set.

The reader may wish to keep in mind the following examples of Julia sets which are
exceptional in the sense of (b)-(e):

(b) f is the Lattes map z — (22 + 1)2/42(2%> — 1). The Julia set is now the whole
sphere and the map is covered by the conformal Anosov endomorphism of the torus
z — (1L +14)z. So, an invariant vector field is is the projection of any constant line
field. This projected line field is well-defined and in fact smooth except at the orblifold
points.

(c) f(z) = 2% for which e.g. the vector field of unit vectors tangent to the unit circle is
invariant.

(d) f(z) = 22 — 2. The Julia set is the interval [—2,2] and any constant direction (line)
field is invariant.

(e) f(2) = 22 4+ /3. The Julia set is a Cantor subset of IR and any constant direction
(line) field is invariant.

We note that in the above examples the invariant line fields are in fact smooth except at
finitely many points. Something like this holds in general and plays a key role in the proof:
a main step is to show that a measurable invariant line field can be improved to one that
is smooth on a large set (see Proposition 6).

2 After this paper has been submitted for publication we received the preprint [Ma] where
this theorem has been proved for the measure of maximal entropy and the case (a) was
ruled out.



The present result is a strengthening of a lemma in [BFU], where we showed that in the
special case of hyperbolic rational maps and Hausdorff measure, for a dense G4 set in
parameter space, there is no (Hausdorff) measurable invariant line field. That lemma was
then applied in proving the ergodicity of the scenery flow of the Julia set.

The basic structure of the proof of this theorem is the same as that in the paper [Zd].
It consists of several steps. For the first one let us recall the notion of good inverse
branches of iterates of f. We work with the natural extension (.J, fip, f). Recall that
J = {{z.}2 € J(f) : n = f(vny1)} and that iy is the only measure on J such
that fig o w1 = p, where 7 : J — J(f) is the projection onto the Oth coordinate. The
mapf : J — J is then the lift of f, defined by the formula f({z,}2%,) = {f(zn)}>,.
Fix the numbers L,0 > 0. Given a ball B centered at a point in .J, an inverse branch
f;™:2B — @ of f™ is said to be good if

(2) diam(f,™(B)) < Le™"™.

Given 1 < g < o0 let

CVy = | rrcrit(f))

k=1

be the set of all critical values of f up to order g, where Crit(f) is the set of all critical
points of f in €. The following lemma motivated by [FLM] has been essentially proved in
[PUZ].

Lemma 2. As in Theorem 1 let p14 be the (unique) equilibrium state for a Hélder contin-
uous potential ¢ : J(f) — IR satisfying P(¢) > sup(¢). Then for every € > 0 there exists
a number M > 1 such that if B is an open ball centered at a point of the Julia set and
2B N CVy = 0, then there exists a subset F(¢) C 7~'(B) such that the following three
properties are satisfied.

(a) fig(F(e) N7~ (A)) > (1 — &) pg(A) for every Borel set A C B

(b) for every element {2, }n>0 of F(e) there exists {f2 tn>0, a compatible sequence of

good inverse branches defined on 2B (compatible means that fo fw_n(f1+1) = fz.') such
that z, = f;"(xo) for all n = 0,1,2,....

(c) If {zp}n>0 € ﬁ’(s), then for every y € B, {f;"(y)}n>0 € F(s)

In the next step we will “bootstrap” the function u, showing that it can be improved. We
know that it is pg-measurable. We shall show that it has a continuous version, i.e. it can
be changed on a set of measure zero so as to be continuous (while satisfying equation (1)).
Here again f and ¢ satisfy the assumptions of Theorem 1.

Our first step directly concerning equation (1) aims to improve the function u. We
shall prove the following.

Lemma 3. Assume the same as in Theorem 1 and Lemma 2. Then the function « has a
continuous version on J(f)\ CVys and (1) is satisfied on (J(f)\CVar)Nf=H(J(f)\CVr).
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Proof. Take for U a ball B centered at z such that 2B contains no critical values up to
order M. Consider a sequence {f"}n>0, {2n}n>0, produced in Lemma 2. Then it follows
from (1) that for all z,y € B and every n >0

uly) (U@ N\ (U @ wfL W)
u(w) <|(fz2")’(y)l> < (£ () ) u(f57 ()

Now, from the strong version of the Koebe distortion theorem there exist a constant K > 0
and a function 7 : [0, diam(B)] — [0, K] such that lims 0 7(t) = 0 and

(/=)' .
e | e
for all ,y € B. Hence
UYWL
i | <t )

and since

G @) (o (@) o) (o) (@)
”( 1>+<|< )] 1)

(f20) W) (f27) (=) (f2.") (x)

these two estimates give us

(£ () (") (@) ‘ 2
= Tvrasevar=—n =1 < 2n(jz = y[) +n°(lz —y]) < 3n(jz —y)).
‘(fzn )'(@) 1(f2") ()]
Since |(1 + 2)* — 1| < 2k|z| for every 2z € @ of sufficiently small modulus, we therefore
conclude that

1| < 6kn(|lz —yl)

(3)

(f2) (=) 1(F=20) (W)
provided that |y — z| is sufficiently small.

‘ ((f;,?)’(y) |(f;”)’(w)|>k ~

uw(fo ()
u(fz," (@)

a delicate matter: we do this only for an infinite subsequence of n’s (which is enough!)
and for almost all pairs z and y. To show this we begin with two points x,y € B. By
properties (a) and (c), 71 (z) N F(e) # 0 and 7= (y) N F(e) # 0. By property (b) and (c)
there exists a bijection H, , : 7~ (x) N F(e) — n~(y) N F(e) given by the formula

Hy y({zn}n>0) = {12 (¥) }n>0-

Let {p1z : © € B} be the system of conditional measures of the measure py on the leaves
7~ (x) N F(g), x € B. We shall prove the following.

We want to estimate from above of the number 1|. This turns out to be

Sublemma. For pg-almost all z,y € B, H,, maps the measure class of p, onto the
measure class of p,.



Proof. First observe that there exists a constant C' > 0 such that for all & € F(e), all
y,2€ Bandalln >0

(4) Z¢ o fr(y Z¢ o fr(2)| <

Indeed, let « > 0 be a Holder exponent of ¢ and let H be a Holder constant. Using (2) we
therefore get

S dofiiy)— S o fii2) <Z\¢ [l () = b0 f:7(2)]
j=1 j=1
()| < B (Lemye

—6a

@ —daj __ @
<HL Ze J =HL T

1=1

Thus the proof of formula (4) is complete. Applying some appropriate results from [DU]
we conclude that there exists a constant ) > 1 such that for all Z € F(g), all n > 1 and
all Borel sets A C B

Q exp Z¢<xj>—P<¢>n 1g(A) < pg(f5M(A)) <

(5) <Qexp | Y ¢(z;) = P(p)n | py(A).

j=1
Given now an element # € 7~ () N F(¢) and an integer n > 0 define the cylinder set
(20, %1,y ) = {Z €T (@) N F(e) & 25 = j Yo<j<n}-

Note that [xg,z1,...,2z,] is independent of coordinates of & larger than n. Now, us-
ing the property (c) of Lemma 2 we see that for pg4-a.e. z € B and for every cylinder
['T07'T17 RS xn] - 7T_1(.’17) N F(€)

no(fed (Bla,r)
r—)O ,LL¢( I(B(JJ,T')) N F(é‘))

,U,m([.’lfo,xl,.. .I'n])

Applying property (a) of Lemma 2 and (5) we therefore get

1 pa ([20, 1, - -, T Q

) < .
" exp(Ljy élag) ~P(9)n) ~ 1-¢
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Hence, for pg-a.e. x € B and py-a.e. y € B

1—¢
Q2

exp(3_ 6(ay) — o) < et ) By (5 0(0) - 6),

poy(Hy ([0, T1, .. 2n])) — 1—¢ =

where y; = fw_jj(y), 0 < j < mn, and, let us recall Hy ,([x0,2Z1,-..,%n]) = [Y0, Ty, -, Yn]-
So, applying (4) we conclude that

1_86_0 /,Lm([.’lfo,.’lfl,...,l'n]) < Q2 eC
Q? = by(Hay([z0, 21, .. 20]) — 1—¢

Therefore, the Sublemma is proved.

Now, in order to conclude the proof of Lemma 3 notice that by Luzin’s theorem there exists
a compact set G C J(f) such that u(G) > 1/2 and p|g is continuous, hence uniformly
continuous. In view of Birkhoff’s ergodic theorem there exists a Borel set Fy(¢) C F(e)
such that jig(Fy(e)) = fig(F(€)) and for all Z € F(e)

PN (EF DU B i [0 R=F s 1) St M 1)

n—00 n

NN

Since fig(Fi(e)) = fip(F(g)), for pg-a.e. © € B, py(Fi(e) N7~ (z)) = 1. It then follows
from the Sublemma that for pg-a.e. y € B,

py(Fi(e) N~ (y) N Hyy (Fi(e) N (z))) = 1.

So, for any such a pair z,y € B there exists at least one point Z € Fi(e) N~ (z) such
that H, ,(2) € Fi(e) N7 (y). By (6) there then exists an increasing to infinity sequence
{n;}32, such that for every j > 1, both F7(2), f™(H, (%)) € 7=1(G). This implies that
S, () = 2zn; = 7(f~™(%)) € G and S, (y) = 7((f~™(H, (%)) € G, where f, :2B — C,
n > 0, are good inverse branches. Therefore, using (2) and uniform continuity of u|g we
conclude that limsup,_, ., [u( z_n?J (y)) — u( z_n?J (x))] = 0. Using this, (3), and letting in
(3), n = nj — oo, we obtain

uly) —1\ < 6kn(jz — y)).

Since lim;_,o7n(t) = 0, the proof of the first part of our lemma is finished. The second
part is now an immediate consequence of the first part, formula (1), and the fact that the
topological support of p is the whole Julia set J(f). B

From now on fix

(7) 0 <e < Q" exp(inf(¢) — P(¢)),
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We now want to produce extensions of w on some neighborhoods of points in J(f)\ CVy
and we want these extensions to satisfy the cohomological equation of Theorem 1. We
begin with the following.

Definition 4. Let J, C J be the set of all sequences & = {x,}°%, € J such that
zo ¢ CVeo, {z,}52, has at least one accumulation point in J(f)\ CVys and such that
there exist two open connected sets U C U C V with zyp € U such that the inverse branches
[l of f™ sending x to x, are defined on V for all n > 1. Then by B(Z) we denote the

maximal open ball centered at zo such that all the inverse branches [ " are well-defined

on 2B(Z).

It immediately follows from this definition that if Z = {z,}52, € Jy, then f~1(z) =
{Zn41}52, also belongs to J,. Our next step is to prove the following.

Lemma 5. Let u: J(f)\ CVa — S! be a continuous function that satisfies the following
cohomological equation,

f'(z) k_M S
<|f’(z)|> u(2) for all z, f(z) € J(f) \ CVar.

Let & = {z,}5%, € Jp and let U be one of the neighborhoods of g considered in Defini-
tion 4. Then the formula

®) :“(“’”°)nlir%o<|ifn;: ; |/ f : )

defines a real-analytic function from U to S* which coincides with u on J(f) N U \ CV 4,
is independent of U (in the sense that if U’ is another set with the properties required

above, then the corresponding extensions agree on the intersection U NU’), and such that
if § = f~%(Z) then

f’(z) k_uj(f(z)) or all » 1 .
<|f/(z)|> B Ug(z) f 1l Efﬂﬁl (B( ))

Proof. Let V be the set produced along with U in Definition 4. In order to check
that the limit in (8) exists, notice first that the family {f;™ : 2B(&) — @} is normal
by Montel’s theorem (cover V by countably many open balls so small that the sets @'\ B
contain at least one periodic orbit of period > 3). Additionally, lim,,_, o, diam(f;"(B)) =0
since xg € J(f). Therefore, looking at the second formula defining uz (partial products),
applying the chain rule and the stronger version of Koebe’s distortion theorem we conclude
that the partial products of the product defining u; form a Cauchy sequence. Then

7



independence of uz on U is obvious. The cohomological equation claimed in the lemma is
an easy calculation based on (8) and we have only left to demonstrate that uz coincides
with w on J(f) N B(&) \ CVe. Towards this end, fix & € Jy and z € (J(f)NU) \ CVo.
Then there exists a subsequence n; such that z,, converges to a point in J(f)\ CVyy,.
Since lim;_, dist(f;n’}’ (2),zpn,) =0, in view of Lemma 3,

lm fu(f;,"(2)) — w(zn,)| = 0.

l—o00
Therefore, using Lemma 3, and since no points z,, f;"(z) belong to CV

uz(z) = u(zo) ll_lglo

= u(xp) lim ( ¢

[—o00

= u(2)
annd the proof of Lemma 5 is complete. B

We state now our main technical result.

Proposition 6. Let the functions uz be as defined by (8). Then either (a) or (b) holds
depending on whether (i) or (ii) holds, where

(i) uz = ug on B(&) N B(y) for all ,§ € J, with zo = yo € J(f).
(ii) uz # ug on B(Z) N B(§) for at least one pair #,§ € J, with o = yo € J(f).
(a) The function u : J(f)\ CVay — S! extends in a real-analytic fashion to an open

connected set G whose complement is contained in a closed countable set contained
in the union of CV 4, and the set of (at most two) exceptional points of f. In addition

(e ) ()
' (2)] u(z)
(b) J(f) D fP(«) for some p > 0 and «, a real-analytic open arc such that a N J(f) is

an open subset of J(f). Moreover, all the self-intersections of the set J,,~, f™(c) lie
outside the Julia set. -

for all z € G N f~1Q).

Before proving this proposition let us derive from it the dynamical and structural conse-
quences claimed in Theorem 1. The first structural consequences of (i) are the following.

Lemma 7. If (i) holds then
(a) If f™(x) = f"(y) for some z,y € G, then deg,(f™) = deg, (f").

(b) If ¢ is a critical point of f in @ and f™(c) = f(w) for some w, then w is either a
critical point or w € CV .



(¢) The trajectories of all critical points of f are finite.

Proof. Let ¢ = deg,(f™). Then there exists an analytic function g defined on a neigh-
borhood of = such that g(x) # 0 and on this neighborhood

(9) f"(2) = " (x) + (2 — 2)9(2).

Hence (f™)'(z) = q(z — )7 'g(z) + (z — z)9¢'(2) and therefore

U g ) 9E) 4 01z — )

|2 — x|

. fm’z (z—a:) _ 4 9(=) c st
2= / Z | |Z—-77| |Q| |g($)|

Let u : G — S! denote the real-analytic function produced in item (a) of Proposition 6.

") \ F
Since “u{Z()Z) = (|fc,gzg|> on GN [~HQG), we get

(m) m Mk —(guz—uﬂﬁ .
zh—I)I.'lE (u(f (Z))/<|(fm)/(z)|> >_z1—>:n ()_ ( )687

In particular

where lim™ means that the limit is taken for z € GN¢~1(G) N ... f~™(G). Combining
these two formulas we conclude that the limit

Z{% (u(fm(z))/ <|z - i| > k(q_1)>

exists and belongs to S!. And since by (9)

w (22) ) -3l

we conclude that the limit

(m) M) — fM(q k(a=1)
Ly = lim (u"(fm(z))/ < e )|> )

—w [fm(2) = fm (=)

exists and belongs to S'. Since f™ maps a neighborhood of x onto a neighborhood of

f™(x), we can write
(c) w— f™(z) >k(q—1) B
v PR (“q(w)/ <|w = ()] i
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where 1im'® means that w avoids a countable set (in fact in our case the set T\ N~ (G) N
. f7™(G)). Let now s = deg,, f". Similarly we get

(c) ; w—f(y) \*CV\
w—1>1fn’}(y) (u (w)/ <|w — f"(y)|> ) = bn

for some number L,, € St. Since f™(x) = f*(y), these last two displays imply that

<c> w—fm(af)>8k(q_1) /(w—fm(y)>qk(s_1) _rpmie gt
wi}%)((m—fm(xﬂ o= /() = Ikt €S

Let d = sk(qg—1) —qk(s—1). If d # 0, then there is z € S! such that 2% # L L 9. But we
may choose w — f™(x) such that %

the proof of (a). Let us now demonstrate that (b) follows from (a). Indeed, if the forward
orbit of ¢ forms a periodic cycle which is backward invariant, then w belongs to this orbit,
and therefore w € CV,. Otherwise, one can find two points =,y € G and integers k,n > 1
such that ¢ = f¥(z) and w = f"(y). Then fm+k(z) = " (y), and it follows from (a)
that deg, (f'") = deg, (f™**) > deg,. f > 2. Since deg, (f't") = deg,, [ - deg, (f"), we
therefore conclude that either w is a critical point of f or w € CV,, C CV . Since f is of
degree > 2 and the number of critical points of f is finite, (¢) follows in turn from (b). H

— 2z, achieving a contradiction which finishes

As an immediate consequence of Lemma 7 we have the following.

Corollary 8. If (i) is satisfied and if f has no superattracting periodic point with a
preimage at which f has a different degree, then f is critically finite with parabolic orbifold.

Next we derive some consequences from item (ii) of Proposition 6(b), beginning with the
following.

Lemma 9. If (ii) of Proposition 6 is satisfied and the Julia set J(f) is not totally discon-
nected, then the Julia set is either a geometric circle and f is biholomorphically conjugate
with a finite Blaschke product, or the Julia set J(f) is a closed subarc of a geometrical
circle (considered in @) and f is biholomorphically conjugate with a 2-to-1 factor of a finite
Blaschke product.

Proof. Let v = fP(«a) be the curve produced in Proposition 6(b). Since J(f) is not totally
disconnected and « has no self-intersections in J(f), at least one connected component of
Int j(5)(yNJ(f)) is a non-degenerate segment of y. Consider one such component and call it
(. By the topological exactness of f : J(f) — J(f), f4(B) = J(f). Since 5 C v = fP(«w), it
therefore follows from the second part of Proposition 6(b) that f7() has no self-intersection
points, that is J(f) = f2(5) has only points of topological order < 2. So, 3 is either a
simple closed curve or is homeomorphic with the closed segment [0, 1] whose endpoints, call
them a and b, satisfy f({a,b}) C {a,b}. Suppose first that J(f) = f2(0) is a simple closed
curve (Jordan curve) and let D; and Ds be the two connected components of @'\ f4(3).

10



Since f4(f) is obviously rectifiable, if f(D;) = D;, i = 1,2, then it follows from Theorem A
of [UV] (which includes Jordan curves without parabolic points) that f is conjugate with
a finite Blaschke product and the conjugating map is given by a Mobius transformation
(note that @ = J(f) may contain a parabolic fixed point of f). In particular 5 = J(f) is
a geometric circle. If f(D;) = Dy and f(D3) = Dy, then all this holds true for f2. We
therefore may assume that 3 = 9D; = St and f(S!) = S'. The classification theorem
of such maps then tells us that f must be a finite Blaschke product. Suppose now that
fiUB) = J(f) is a closed interval joining the points a and b. Without losing generality
we may assume that @ = 1, b = —1, and oo ¢ f9(3). Consider a two-sheeted cover of @
ramified over 1 and —1, given by the map m, where y

Z—|—Z_1
5 .

m(z) =

Since 7~1(f3) is a closed smooth Jordan curve dissecting [ ‘into two topological disks D1
and Dy and since f, a lift of f via 7, preserves 7~ Y(B) = J(f), it follows from the previous
case that f is, up to biholomorphic conjugacy, a finite Blaschke product. So the proof of

Lemma 9 is complete, and all the cases (a)—(d) of Theorem 1 are taken care of. W

If condition (b) of Proposition 6 is still satisfied but J(f) is totally disconnected, then
it immediately follows from Proposition 6.b that item (a) of Theorem 1 holds. Thus the
proof of Theorem 1 is complete. In view of part (e) of Theorem 1, in the case of a totally
disconnected Julia set J(f) it makes sense to speak of an accumulation point of J(f) as
being either a one-sided or two-sided accumulation point of J(f) in the curve fP(«). If
we can describe the nature of one-sided accumulation points in this (totally) disconnected
case this will help us to better understand the structure of these Julia sets; this is carried
out in the next two lemmas.

Lemma 10. Each critical value (of any order) of f in J(f) is a one-sided accumulation
point of J(f) in fP(«).

Proof. Suppose that w is a critical value of f which is a two-sided accumulation point of
J(f). Let 2 € @ and n > 1 be such that f?(z) = w and (f*)'(z) = 0. But then z € J(f)
and we would need at least two arcs passing through z in order to cover any neighborhood
of z in J(f). This, however, is a contradiction, since no such point exists. H

Lemma 11. Every one-sided accumulation point of J(f) in fP(«) is eventually periodic.

Proof. Let x be an arbitrary one-sided accumulation point of J(f) in fP(«). First note
that all the forward iterates of x are also one-sided accumulation points of J(f). Passing to
a sufficiently high iterate we may assume that {f™(x) : n > 0} contains no critical points
of f. Suppose now on the contrary that x is not eventually periodic. Then the w-limit set
of x is infinite and therefore there exists y € J(f), an w-limit point of = which is not a
periodic parabolic point. We have

(10) y = lim f™(z)

k—o0
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for some sequence {nx}z2; which is increasing to infinity. Let wy be the maximal arc
contained in fP(a) N (@'\ J(f)) one of whose endpoints is f*(z). It follows from (10) that

(11) lim diam(wg) =0

k—o0

and that the arcs wy are mutually disjoint. Since y is not a rationally parabolic periodic
point, the arcs wg do not contain critical values of any order for all k sufficiently large,
say for k > ky. Since x is not a critical point of f™* there then exist for all £ > kg well-
defined inverse branches f-™ : wp U {f™ (2)} — @ of f™ mapping f™*(z) to z. Since
moreover each inverse branch f ™ extends to an open neighborhood of f"*(x), f ™ (wx)
is a real-analytic arc C fP(a) N (@'\ J(f)) joining x and some other point of J(f). Since
x is a one-sided accumulation point of J(f) in fP(«), this arc is independent of k. Call
it w, and take an arbitrary point z € w. By (10) and (11) y = limg_, oo f™ (2). Since z
belongs to the Fatou set @'\ J(f), it follows that y must be a rationally parabolic point.
This contradiction finishes the proof. M

Thus we have:
Corollary 12. Each critical point in J(f) is eventually periodic. B

We now turn our attention to the proof of Proposition 6. We precede it with the following.

Lemma 13. If & € Jy, § € J, yo € U(d) \ CVo and y, = f;"(yo) for all n > 0, then
j € Jp and uz = ug on U(Z) N U(§), where U(Z) and U(§) are the sets U described in
Definition 4.

Proof. Clearly § € J,. In order to prove that uz = uy on U(2)NU (9), take z € U(Z)NU ().
Since f;"(z) = f,."(2), and by Lemma 5 uz(yo) = u(yo), we get

f'(f—%z))/ff(mj) ¢
I=L N/ (2] (NI 1 (=5)]

FUZE) ) ) )"’
|

I=L\NF (fy Nl 1 ()]

I
~—
8]
(e
N—
—8
N
=
—
&
C~
i
0
o
N—

f’(fﬂj)|>k

R !

The proof is complete. H

Proof of Proposition 6(a). Given z € J(f)\ CVy let B(z) = B(z, 1dist(z, CVay)).
Define

W =J5B@\J3B@)n (5B LOS(EB().
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where the first union is taken over all x € J(f) \ CV4 and the second one over all pairs
z,y € J(f)\ CVy such that

B(z) N B(y)nJ(f) =0,

for all pairs =,z € J(f) and all connected components Cf~1(3B(z)) of f~*(3B(z)) for
which

B(z) N Cf_l(%B(z)) NI(f) = 0.

We want to demonstrate first that
(?7) J(F)\ (CVae N f7HCVs)) C W.

Indeed, take w € J(f)\ (CVs N f71(CV4)) and suppose on the contrary that w ¢ W.
This means that either there exist sequences x,, € J(f)\ CVeo, yn € J(f)\ CVy and
$n € 3B(2,) N 3B(yn) such that B(z,) N B(y,) N J(f) =0 and lim,_, s, = w, or there
exist sequences z, € J(f)\ CVeo, 2, € J(f) \ CVs and ¢, € 3B(z,,) N f~H(2B(z,) such
that B(x,) N Cf~Y(B(z,)) N J(f) = 0 and lim,, o t, = w, where Cf~1(B(z,)) is the
connected component of f~1(B(z,)) containing t,. If the first possibility occurs, then
passing to a subsequence we may assume that =, — x € J(f) and y,, —» y € J(f). In fact
z,y € J(f)\ CVys since otherwise, if say € CVyy, then lim,,_,, diam(B(z,)) = 0 which
implies that w = limy, 00 S, = € CVyy C CV4. Hence liminf, . diam(B(z,)) > 0,
liminf,_, diam(B(y,)) > 0, and as s, € 3B(z,) N 3B(yn) converges to w, we therefore
conclude that w € B(x,) N B(y,,) for all n large enough. This is in contradiction with the
facts that w € J(f) and B(x,) N B(y,) N J(f) = 0. If the second possibility happens,
then passing to a sequence we may assume that =z, — = € J(f) and 2, — y € J(f).
Similarly as in the previous case x,z € J(f)\ CVy. Indeed, if x € CV),, then as above,
lim,, o diam(B(z,,)) = 0 which implies that w = limy,_, 0 t,, = limy 00 2, =2 € CVyy C
CV oo, a contradiction. If, on the other hand, z € CVy;, then lim,, ., diam(B(z,)) = 0,
and therefore, w = lim,, o0 t, € f71(2) € f7H(CVy) C f7H(CVy), again a contradiction.
Hence liminf,,_,, diam(B(zy,)) > 0, liminf,,_,, diam(B(z,)) > 0, and the latter formula
implies that lim inf,_,., diam(Cf~*(B(z,))) > 0. Since t, € 3B(zn) N Cf(3B(z,) it
therefore follows that w € B(z,) N Cf~1(B(z,)) for all n large enough. This contradicts
the fact that w € J(f) and B(z,) NCf 1 (B(2,)) N J(f) = 0. Thus (12) is proved.

We now extend u to W as follows: Fix w € W and choose z € J(f) \ CV such that
w € B(z). In view of Lemma 2, B(z) C B(&) for some & € J, with 2o = 2. Then define

u(z) = ug(w).

In order to check that u is well-defined, choose another point y € J(f)\ CVy and y €
7~ (y)NJp such that w € B(z) and B(y) C B(y). Sincew € W, B(z)NB(y)N(J(f)\CVoo),
there exists s € B(z)NB(y)N(J(f)\CVo). Define a = {f;"(s)}n>0 and b = {f, " () }n>o0-

Then by Lemma 13, uz = uz on B(Z) N B(a), uj; = ug on B(§)NB(b), and, by (i), us = u;

on B(a) N B(b). Thus uz = uy on B(z) N B(y) N B(a) N B(b), and since this intersection
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is a non-empty (containing s) open subset of B(xz) N B(y), we conclude that uz = uj on
B(z) N B(y). In particular uz(w) = ug(w).

Our next step is to check that (1) holds on W N f=Y(W). So, fix w € W N f=H(W).
Then there exist z,y € J(f)\ CVo and & € 7~ Y(z) N Jy, § € 7 (y) N Jp such that
w € $B(z) C 1B(%) and f(w) € $B(y) C 3B(y). By the definition of B(y), there
exists a holomorphic inverse branch fJ! : B(y) — € of f sending f(w) to w. In view
of (7) that is the choice of &, Lemma 2, and (i) there exists & € 7= (y) N J, such that
vy = f; (y) and B(y) C B(?). We now proceed in a similar way as before. Since w € W
and w € $B(z) N f -1 (3B(y)) (where f,-t = fo 1), B(z) N f,.1(B(y)) N J(f) # 0. We can
therefore fix p € B(z) N ;-1 (B(y)) N J(f) \ CVoo. Define now & = {f;"(p)}n>o and 3 =
{fu_(nﬂ)(f(p))}nzo. Both &, 3 € J,. In view of Lemma 13, uz = ug on B(Z)NB(&). Since

n+1 »

[t (f(p)) = p, it follows from property (i) of Proposition 6 that us = ug on B(a) N B(B).

Finally, using Lemma 13 with U(8) = B(b) and U(f~'(0)) = f,,}(B(?)), we see that
u(b) = tj1 (5 on B(O)N f,H(B(D)). Thus uz = uj_i 5 on B(&)NB(@)NB(b)N f,,' (B(9)),
and since this intersection is an open subset of B(z)N f,.'(B(v)) containing p, we conclude
that uz = uf . on B(Z) N fo:}(B(0)). Therefore, it follows from Lemma 5 and the

definition of u that
( f'(w) )  wp(f(w) _ u(f(w))
|f"(w)] UF=1(5)(w) u(w)

Hence, (1) holds on W N f=1(W).

Now, by (12), J(f) \ W is a compact set contained in the countable set CVo, U
S7H(CVy). Hence W N J(f) # 0 and we can find an open ball B C W and an integer
q > 1such that BNJ(f) # 0 and f?(B) D B. We want to extend u in a real-analytic fashion
from B to @\ (CV;UCVu \ J(f)), where [ = gp and p > 0 is so large that f9(B) D J(f).
The first step is to define real-analytic functions u, : By, := f9(B)\ CV4, = S', n >0
such that

Un|BnnB = U|BnnB~

So, let U C B, be the set of all points w € B,, for which there exists an open simply
connected set Sy, C B, such that w € Sy, Sy NJ(f) #0, and if z € BN f~7"({w}), then
f79(Sy) C B, where f;79% : S,, — @'is the analytic inverse branch of f" sending w to
z. Notice first that U D (f(B) N J(f)) \ CV4n. Hence U # (. We shall now prove that
U is an open subset of €. We fix w € U. Since all the analytic inverse branches {f, 9"}
of f2" are well-defined on S,, and are (obviously) continuous, there exists » > 0 so small
that if v € B(w,r) and f,;7"(v) € B, then f,9"(w) € B. Therefore, putting S, = S, we
have concluded the proof of the openness of U.

A little bit harder is to demonstrate that U is a closed subset of B,, (in the topology
relative to By). Let us consider a converging sequence {wy}r>1 of points in U such
that w = limg_oo wr € B,. We need to show that w € U. First, since w € B,, C
T\ CV,,, there exists R > 0 so small that all the analytic inverse branches {f; %" }of
f9" are well-defined on B(w,r) and f; " (B(w,r)) C B whenever f; ?"(w) € B. Take
now k > 1 so large that wy € B(w,r). Without loss of generality we may assume that
Sw, is the d-neighborhood of an analytic closed arc and 0 > is so small that the union
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B(w,r) U S, is simply connected. The set B(w,r) U S, is our candidate for S,. And
indeed, we just stated that B(w,r)US,,, is simply connected. Since B, NJ(f) # 0, we get
(B(w,r)USy, )NJ(f) # 0. Suppose now that f; ¥ (w) € B. Then f; ?"(B(w,r)) C B and
J. " extends uniquely in an analytic fashion to B(w,r)U Sy, since this union is simply
connected. Since f; " (wy) € fi " (B(w,r)) C B, we conclude that f; ?"(S,,) C B. Thus
w € U, completing the argument that U is a closed subset of B,,. Since B,, is connected
we conclude that U = B,. In order to simplify notation, for every 57 > 1 and every

z & Crit(f7) set
; k
o (D))
w0 = () -
Fix now w € B, and z € BN f~9({w}). Define then the function u, : S, — S! by
setting

ug(2) = w(fy " (2)) g (f74"(2))-
We shall demonstrate that if y is another point in B N f~9"({w}), then

Uy = Uy.

Indeed, since S,, is an open set, since J(f) N S, # 0, since J(f) is completely invariant,
and since J(f)\ W is a compact countable set, there exists a non-empty open set H C W
such that

frTH) U H) CW NI W) N LN W),

Multiplying formula (1) by gn we conclude that for every z € H

uz(2) = u(fy " (2)gn(f; " (2)) = w(f*" ([ " (2)) = u(2)

and that similarly u,(z) = u(z). Thus u;|g = u|g. Since H is a non-empty open subset
of an open connected set S, and since both functions u, and u, real-analytic we therefore
conclude that u, = u,. Hence we can speak about the function u,, = u, independent of the
preimage z. We now choose a sequence {w;}32, of points in B,, such that B, = J;5; Su,
and we define the function u, : B, — S! by setting

un(2) = Uy (2)

if 2 € Sy,. In order to check that this procedure defines a real-analytic function on B,
we need only verify that if 2 € Sy, NSy, , then uy,(2) = uy, (2). Choosing two points
v € BN f™"(w;) and y € BN f"(wyg), let fr9" : 8, — € and f/" : 85, — ¢ be
the two corresponding inverse branches. Since f;9"(z) € f; 9" (Sw,) C B and f, 9"(z) €
[y 7 (Sw,) C B, we conclude that there exist g, : S, — € and g, : S, — @, two analytic
inverse branches of f9" determined by the conditions g, (2) = f; 9" (2) and gy(2) = f;1"(2).
Making use of what we have already proved, we write

ww; (2) = w(fz " (2))Hgn(fz 4" (2)) = w(g2(2))gn(92(2)) = w(gy(2))gn(gy(2))
u(fy (2 Hgn(fy 7 (2)) = vy (2)-
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Therefore, the real-analytic function u,, : B, — S is well-defined.
Now for every n > 0 let,

W,=BnWnftW)n...0f~™W))\ CVy, # 0

Then W, has non-empty intersection with the Julia set. It follows from our construction
that u|w, = u|lw,. Since additionally, W,, C BN B, is an open set and BN B, is connected,
we conclude that

(13) Un|BnB, = U|BNB, -

Therefore un41|BnB,.NB.:: = U|BAB.ABny1 = Un|BnB,NB, .- Since BN B, N By =
f7*(B)\ CVg(n+1) is a non-empty open set contained in the open connected set B, N By, 1,
we thus get

(14) un+1|Bn|"|Bn+1 — un|BnﬂBn+1~

Suppose now that m < n. Since B, N B,, = f9(B)\ CV,, C f%*(B)CVy = By, for
every ¢ < k < n, we conclude by induction from (13) that the formula

u(z) = un(2), z € By,

defines a function from G' = J,,~, B to S1. Since each set B,, is open, so is G. Since each
set B,, is connected and (),5, C B\ CVs # 0, G is connected. The function w: G — S;
is real-analytic since all the functions u,, are and all the sets B,, are open. Suppose now
that z € €\ G and z is not an exceptional point of f. Since |, 5, f?(B) is equal to €
minus the set of exceptional points of f, z € f9(B) for some n > 0. Since z ¢ B,,, this
implies that z € CV,. Thus the complement of G is a closed countable set contained in
the union of CV,, with the set (at most two) exceptional points of f. We are left to show
that wo f = u -1l on G N f~1(G). Using (13) we conclude that

(15) Ulgnp = u.

Hence, we have
wo fl=wuofl=u-1l,=u-1l,

on GNf U G)NBNf~4B)Nf~W)n f2(W)n...f~49W). Since f4(B) C B and
since J(f)\ W is a compact countable set, this last intersection is not empty. Since it is
obviously open, we conclude that

(16) uo fi=1w-1Il,

on the connected set G N f~2(G). Our aim is to replace ¢ by 1 in (16). In order to
accomplish this, let W, be the union of all connected components of W which intersect
J(f). We shall first show that

(17) Ulaaw. = ulanw. -
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We fix a connected component V' of W.. Then V is open and J(f) NV # (. Since
f4:J(f) — J(f)is topologically exact, there exists a transitive point w € J(f) NV for f4.
In particular, there exists n > 1 such that f9" € GNB and, by continuity of f9" there exists
an open ball D(w) C V centered at w such that f9"(D(w)) C GNB. Take now an arbitrary
point z € Di(w) = D(w) NW.Nf W )Nn...0nf~m(W)NnGN f~HG)N...Nn f~1"(G).
Using (1) gn times, (16) n times, and (15), we then get that:

w(2)gn(2) = u(f*"(2)) = u(f*"(2)) = u(2)gn(2).

Hence, u(z) = u(z). Since D;(w) is a non-empty open subset of G NV, this implies that
Ulenv = ulgnv (notice that the intersection G NV is connected). In conclusion, (17) is
satisfied. Applying now (17) and (1) we have that for every z € GN fH{(G)NW.N f~L(W,)

u(f(2)) = u(f(2)) = u(2)B(z) = u(z) B(2)-

Since this last intersection is a non-empty subset of the connected set G N f~1(G), we
finally conclude that
Gof=mu-BonGNfHG).

The proof of Proposition 6(a) is complete. B

Proof of Proposition 6(b). First notice that since J(f) is a perfect set and since,
by Lemma 5, uz = ug on B(Z) N B(y) N J(f) \ CVu, the set T' = {2z : B(z) N B(y) :
uz(2z) = ug(z)} consists of finitely many real-analytic curves and isolated points whose
union contains B(z) N B(g) N (J(f) \ CVar). Let v be a connected component of I' which
meets J(f). By the structure of I', Int jz)(y N J(f)) # 0, and therefore there exists an
open real-analytic arc a C 7 such that a N J(f) is a non-empty open subset of J(f). By
the topological exactness of f : J(f) — J(f) there exists p > 0 such that fP(«) D J(f).
This proves the first part of Proposition 6(b). For proving the second part, let us suppose
that z € J(f) is a self-intersection point of the set |J,,~, f"(c). Then there would exist
two open arcs ay,as C a and two numbers m,n > 1 such that f™(aq) N f™(as) = {z}.
Since the map f : J(f) — J(f) is open and J(f) is totally invariant this would imply that
{z} = f™(J(f) N a1) N f"(J(f) N asg) is an open subset of J(f). This however gives a
contradiction, since J(f) is perfect. With this observation the proof of Proposition 6(b)
and hence of the whole of Proposition 6 is complete.
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