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Abstract.

We define the scenery flow at a point z in the Julia set J of a hyperbolic rational map
T : CI → CI with degree ≥ 2, and more generally for T a conformal mixing repellor.

We prove that, for hyperbolic rational maps, except for a few exceptional cases listed

below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing
repellors; here the statement is that the scenery flow is ergodic for the repellors which are

not linear nor contained in a finite union of real-analytic curves, and furthermore that for

the collection of such maps based on a fixed open set U , the ergodic cases form a dense open
subset of that collection. Scenery flow ergodicity implies that one generates the same scenery

flow by zooming down toward a.e. z with respect to the Hausdorff measure Hd, where d =

dimension (J), and that the flow has a unique measure of maximal entropy.
For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entopy

≤ d. Moreover the flow at a.e. point is the same up to a rotation, so as a corollary, one has
an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a

theorem of Falconer.

§1. Introduction.
Fractal sets often come equipped with a discrete dynamics, like the map T (z) = z2 + c

on its Julia set J . Since this map is conformal (infinitesimally orientation- and angle-
preserving) whenever the derivative DT is a non-zero complex number, one can use the
nonlinear scaling given by the map itself to study the geometry of J . Thus for instance
assuming for a rational map T the additional hypotheses that degree T ≥ 2 and that T is
hyperbolic, i.e. that for some n ≥ 1, there exists α > 1 such that for every z ∈ J

|DTn(z)| > α
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or more generally for a conformal mixing repellor (see §4.3, also [Rue1] or [PUZ,I,II] and
[PU] for the definition and further properties), one can prove that the set is quasi self-
similar, that the Hausdorff dimension is strictly between 0 and 2, that the Hausdorff mea-
sure at this dimension d is positive and finite, and moreover that µ = Hd |J is geometric
in the sense that ∃c1, c2 > 0 with c1ε

d < µ(Bε(z)) < c2ε
d for all sufficiently small ε (work

of Bowen, Ruelle, Sullivan: [Bo2], [Rue1], [Su2] (see also [PU]); for general background on
Julia sets see also [Be], [CG], and [Mi]).

In this paper we will study a linear, continuous-time dynamics which is constructed
directly from the geometry of the set J . We imagine zooming toward some chosen point
z ∈ J . Now for a fractal object like J , one will see a continuously changing scenery.
This suggests the question which motivated this paper. Can one, at least for certain
well-behaved fractal sets, model that process with the continuous dynamics of a measure-
preserving ergodic flow?

To approach this question, we begin with some definitions. We will change the scale at
a constant exponential rate and call {es(J − z) : s ∈ R} the scenery at the point z. This
collection of sets is an orbit of a flow (i.e. additive R-action) on the Borel subsets of the
tangent space CI. The scenery flow at z will be simply the collection of limit points as
s → +∞ (i.e. the omega-limit set) of (J − z), the Julia set translated so as to be centered
at z, in an appropriate topology to be defined in a moment.

We want to think of the scenery flow at z as some sort of derivative or tangent object
to the set; this interpretation will be made precise below. Note that for a differentiable
manifold embedded in Rn, this does agree with the usual notion, since the scenery flow
will then consist of a single point (the tangent space at z).

By contrast, for a fractal set the scenery keeps changing. As we will see, for some points
z ∈ J the scenery is periodic or almost periodic; however for almost every z (with respect
to the Hausdorff measure µ = restriction of Hd to J), one gets a random set-valued process.
In fact this flow is loosely Bernoulli, has entropy ≤ d and is, up to a rotation, the same
flow for µ – a.e. z. Furthermore, for almost all the repellors, in a strong sense explained
below, the scenery flow is rotation- invariant, and is therefore exactly the same, for a.e. z.

Our first task is to construct the scenery flow. We topologize the collection of Borel
sets of CI by two natural pseudo-metrics, which will become metrics when restricted to
the subclasses of sets of interest here. Limits will be proved to exist in both metrics. The
topology for the measure metric ρ(E,F ) is defined by associating to E ⊆ CI the restriction
µE of Hd to E, and then testing against continuous real-valued functions with compact
support, i.e. for the corresponding measures this is the weak-∗ topology in C∗c (CI). To define
the local Hausdorff metric ρ̂(E,F ) on the closed subsets of CI we fix a conformal map
(the inverse of a stereographic projection) from CI onto the Riemann sphere S2\{∞}, add
the point ∞ to the images of both sets, and then use the Hausdorff metric coming from
the Euclidean metric on S2 (see §1).

Now the idea for the construction of the scenery flow is (in retrospect!) extremely easy.

We form the shift space
∞∏
−∞

J , with the product topology and left shift σ, and restrict

to the subset
∏

0 = {z = (. . . z−1z0z1 . . . ) : T (zj) = zj+1}. Note that choice of a string
z corresponds to choice of an initial point z0 (which of course determines uniquely the
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“future” z1, z2, . . . ) together with an infinite branch of preimages z−1, z−2, . . . . Now for
each choice of z0 and branch of pasts, we will define a Borel set Lz ⊆ CI. This will simply
be the limit (in either metric) of the Julia set centered at each z−n and then expanded
and rotated by that derivative:

Lz ≡ lim
n→∞

DTn(z−n) · (J − z−n).

Convergence will be proved from a strong form of the Bounded Distortion Property (The-
orem 2.11). We call Lz a scene or limit set. It is a countable holomorphic cover of the
Julia set, and as such is analogous to the imaginary axis wrapping infinitely many times
around the circle via the exponential map. Indeed, for the map T (z) = z2 the Julia set J
is the circle, the scenery of J − 1 at the point 0 is its tangent line, the imaginary axis, and
the above limiting procedure yields the covering map z 7→ ez − 1 (see Theorem 2.14).

The limit set will be forward asymptotic to the scenery at z0, in the sense that, for any
choice of pasts, dist (esLz, e

s(J − z0)) will converge to 0 (in either metric) as s →∞. But
what we have done by constructing Lz is to define a point in the scenery flow itself. To
see this we have to understand the relationships between the limit sets as the initial point
changes by an application of the map T . The idea is that, roughly speaking, the linear
flow E 7→ esE will have, as cross-section map, the derivative map DT , lifted to a bundle
over J whose fiber at z is that scenery flow. This fact will enable us on the one hand to
use the dynamics of T itself to study each scenery flow, and on the other hand to interpret
this scenery bundle as a tangent object (as with the circle example), since it transforms
properly.

To explain this more precisely, note that from the construction one sees immediately
that the limit sets Lz and Lσz are related by

Lσz = DT (z0)Lz.

Let us assume for simplicity that T is strictly hyperbolic, i.e. 1 < α < |DT | < β < ∞.
(Otherwise, replace T by Tn). Now, defining r : J → (0,∞) and θ : J → S1 ≡ [0, 2π) by
r(z) = log |DT (z)| and θ(z) = arg DT (z), and taking z = z0, we can write the right-hand
side as:

DT (z0)Lz = eiθerLz.

That is, up to a rotation, the orbit of the scenery flow at z returns after time r(z0) to
the shifted coordinates σz. This return map is modelled by a skew product over the shift
(
∏

0, σ) with circle fiber S1 = R/Z and skewing function ϕ(z) = θ(z0)/2π. We write this
transformation as (

∏̂
0, σ̂), where

∏̂
0 =

∏
0×S1 and σ̂(z, s) = (σ(z), s + ϕ(z)). We build

the special flow with this base and with return time r((z, s)) ≡ r(z0). This is the symbolic
model for the full scenery flow of J ; the scenery flow at a point z0, which was defined
above, will then be shown to be a closed invariant set which is exactly the image of the
orbit closure of the point (z, 0) under the continuous map defined by (z, 0) 7→ Lz.

What now works out beautifully is that the symbolic version of the flow with base
(
∏

0, σ) and return height r (i.e. where we forget about angles), has as a natural invariant
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measure ν (indeed as its unique measure of maximal entropy) a measure which on the
cross-section is equivalent to the Hausdorff measure µ on J . This is, in fact, exactly the
Bowen-Sinai-Ruelle Gibbs state for the function −dr. The uniqueness of this measure
passes to the skew product, by some analysis based on a method of Furstenberg. This is
described in the next paragraph. The fact that µ – a.e. scenery flow is (up to rotation)
the same now follows from ergodicity of (

∏̂
0, σ̂) with respect to this measure. For the

same reason (now with no need to worry about rotations) one has, by the Birkhoff ergodic
theorem, an analogue of the Lebesgue Density Theorem for the set J (see [B-F 1]): there
is a constant c > 0 (the “order-two density”) such that for µ – a.e. z ∈ J ,

lim
T→∞

1
T

∫ T

0

µB(z, e−t)
e−td

dt

exists and equals c (see Proposition 4.2). This is an average density of the Hausdorff
measure, sandwiched between the upper and lower bounds c1 and c2 mentioned before for
the geometric measure µ. Finally, Bowen’s well-known formula for dimension [Bo], [Rue1]
now implies the upper bound of dim(J) for the topological entropy of the scenery flow.

When we analyze measures of maximal entropy for the scenery flow, it is sufficient to
consider ergodic measures on

∏̂
0 which project to the Gibbs state ν on

∏
0, since the

circle fibers add no entropy. Now there is a dichotomy: either ν × m is ergodic (where
m = Lebesgue measure on S1), or the ergodic measure sits on k copies of the graph of
a measurable function from

∏
0 to S1, for some k in Z, and is unique up to rotation.

Equivalently, kϕ is measurably cohomologous to zero. This is proved using a Fourier series
method of Furstenberg [Fu], see Theorem 4.4.

In this second case, using the fact that the map T , being a conformal mixing repellor,
is hyperbolic, we can, by two theorems of Livsic (see [Li] and [PUZ,I]) reduce the analysis
to a study of the periodic points. The first theorem (when reproved for the present case
of circle fibers) allows one to show the measurable cohomology is actually continuous. In
other words, the measure sits on the graphs of k continuous functions. By the second
theorem, this is equivalent to having argDTn(z0) be some multiple of 2π/k, for each z0 of
period n.

Now this last condition allows us to analyze how the rotational symmetries of the
scenery flow change as T varies in an appropriate space of conformal mixing repellors. By
some basic complex analysis (the implicit function theorem and open mapping theorem for
several complex variables) and Theorem 3.1 from [MPU] the case with discrete symmetry
can at most happen for the repellors which are linear or are contained in a finite union of
real-analytic curves. Moreover, these exceptional cases are negligible in the sense of Baire
category, as their complement forms a dense open subset with respect to appropriate
topology for the repellors; see Theorem 4.8.

For the case of hyperbolic rational functions, in view of results from [FU], we have more
specific information. Some examples of rational maps with discrete symmetries which
easily come to mind are: z 7→ z2 and more general Blaschke products (for which the line
field tangent to the circle is invariant); the Lattés map z 7→ (z2 + 1)2/4z(z2 − 1), which is
covered by the conformal Anosov endomorphism of the torus z 7→ (1 + i)z, hence its Julia
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set is the sphere and the image of any constant line field is invariant, the map f(z) = z2−2,
whose Julia set is the interval [−2, 2], and f(z) = z2 + c for c real and of sufficiently large
modulus, which has for its Julia set a Cantor subset of IR (take e.g. c =

√
3); in these last

two cases any constant line field is invariant. As we show in Theorem 1 from [FU], this is
essentially all that can happen in the general case: the discrete symmetry forces the map
into a limited number of exceptional classes corresponding to these examples (plus one
more for which we know of no concrete example). In our hyperbolic case the exceptional
classes are even fewer in number (see Theorem 4.9).

So in conclusion, for both hyperbolic rational maps and conformal mixing repellors, for
all T not in the corresponding exceptional set, we know that for ν− (hence µ−) a.e. z0 and
w0, their scenery flows are identical. For all T , including the exceptional cases, we know
the following: the scenery flows are the same up to a fixed rotation. Moreover µ− almost
surely the scenery flow at z0 has a unique measure of maximal entropy, bounded above by
dim(J). And finally, applying theorems of Rudolph [Rud], this flow is loosely Bernoulli
(has a measure-theoretically Bernoulli cross-section).

We conjecture that for the fractal case (dim(J)6= 1), one always has equality of dimen-
sion and entropy, and moreover, that the continuous map from the symbolic model to the
scenery flow is at most finite-to one.

One can also construct a scenery flow at a point x in e.g. a Brownian zero set [BF1], the
middle-third set and more generally a hyperbolic C1+γ Cantor set [BF2, 3], and in a Fuch-
sian or Kleinian limit set [F2]. Scenery flows of certain families of circle diffeomorphisms
are studied in [AF]. (To make the transition from [BF1], [F1] to the present perspective,
note that the scaling flow on local times with local uniform topology corresponds exactly
to the scenery flow on sets with the measure topology).

For the present example of a hyperbolic Julia set, the dynamics of the map T : J → J is
used in studying the scenery flow, as we have described. The same is the case for hyperbolic
Cantor sets. We mention that for the Fuchsian case, one can take a similar approach, using
the discrete dynamics of the group action on the limit set. However in this setting there
is also a natural continuous-time dynamics (the geodesic flow on the unit tangent bundle)
and it is much simpler to use this directly to study the scenery flow. By contrast, for the
Brownian example, the scenery flow makes sense even though there is no natural dynamics
on the zero set itself.

Meanwhile, Tan Lei [Ta], also see [Mi, Appendix A] has also studied rigorously the
scaling structure near a point in certain fractal sets. Her theorem states, in the language
of the present paper, that for a Misiurewicz point c, the scenery flows at c in Jc (for the
map z2 + c) and at c in ∂M (the boundary of the Mandelbrot set) are identical, and are
topologically congugate to either a single periodic orbit or an irrational flow on a torus.
Misiurewicz points form a countable dense subset of ∂M . Thus a general point z ∈ ∂M is
approximated by points whose scenery flow is known to exist and to be periodic or almost
periodic, with T−periods going to infinity. In light of this observation, combined with the
fact that the measure theory of the Julia sets corresponding to these points z is still far
from worked out, it is an intriguing problem to try to understand the scenery flow for these
points.
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For a beautiful application of our limiting construction of the scenery flow see [LM].
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§2. Convergence to limit sets.

Note. We assume until §4.3 that T is a rational map; aside from Theorem 2.14, all con-
structions, statements and proofs are valid without essential change for conformal mixing
repellors, except for those statements which refer to parameter space, which is discussed
in that section.

Thus, we now fix the notation and assumptions on T made in the Introduction. That
is, T : CI → CI is a hyperbolic rational map of degree ≥ 2, the constants α, β, c1, c2 are as
defined there, d = dim(J), and µ = Hd |J .

For simplicity of notation, we again assume strict hyperbolicity. We call µ the confor-
mal measure; the reason for this name is that it satisfies the conformal transformation
property: if for some E ⊆ CI,T : E → CI is 1− 1, then µ(TE) =

∫
E
|DT (z)|ddµ(z). This

follows from the fact that Hausdorff measure Hd transforms by that same formula, with
respect to any 1 − 1 conformal map f : U → CI defined on some domain (i.e. open set)
U ⊆ CI. For conformal there are several equivalent definitions. The first is that f is 1− 1
and complex differentiable (synonyms are: holomorphic, complex analytic) with non-zero
derivative Df . By the open mapping and inverse function theorems, this is equivalent
to f : U → V ≡ f(U) being biholomorphic. From Rouche’s theorem, moreover, f is
conformal if and only if it is holomorphic and 1− 1.

In the next section we will describe the ergodic theory of µ (or rather of the Gibbs state
ν, its T -invariant version) but at present all we need are the facts (originally proved, by
Bowen and Ruelle, from that ergodic theory) that 0 < d < 2 and that µ is a geometric
measure.
Topologies. We first define a topology T on the collection Ω of closed subsets of CI, the
conformal map topology. Convergence here will imply convergence in the two weaker
topologies mentioned in the Introduction, which will be given by metrics when restricted
to relevant subcollections of sets. This topology is also a uniformity (see the statements
preceding Lemma 2.2), so we can e.g. speak of the uniform convergence of functions from
another uniform space to this one.

Let BR(z0) denote the open disk about z0 of radius R. A neighborhood base for our
topology will be indexed by R, ε > 0, with smaller neighborhoods given by large R and
small Rε. For E ⊆ CI, we say F ⊆ CI is (R, ε)-close to E if ∃ f : BR(0) → CI, (1 − 1 and)
conformal, such that

‖f(z)− z‖∞ ≤ Rε

(i.e. f is uniformly close to the identity map) and

f(BR(0) ∩ E) = (f(BR(0))) ∩ F.

Sometimes we will instead need C1-closeness to the identity. The next lemma shows this
follows from uniform closeness of either f or its derivative. We note that for f(z) defined
on BR, to be Rε-close to the identity is scaling invariant, in the sense that if we conjugated
f by g(z) = Rz so as to transfer it to the unit ball, then the resulting function g−1 ◦ f ◦ g
would be ε-close to the identity.
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Lemma 2.1. Let f : BR(0) → CI be holomorphic. Then:
(i) If |f(z)− z| < Rε for all z ∈ BR, then

|Df(z)− 1| < 4ε for all z ∈ BR/2.

(ii) If

f(0) = 0 and

|Df(z)− 1| < ε ∀z ∈ BR(0) then we have :

|f(z)− z| < Rε.

Proof.
(i) We write g(z) = f(z)− z. By the Cauchy Integral Formula,

Dg(z) =
1

2πi

∫
∂BR

g(z)
(w − z)2

dw.

For w ∈ ∂BR and |z| < R/2, |w − z| > R/2. Therefore

|Dg(z)| ≤ 1
2π

Rε4
R2

2πR = 4ε.

(ii) Since the domain BR(0) is simply connected, the path integral is well-defined and we
have:

|f(z)− z| = |
∫ z

0

Df(ζ)− 1dζ| ≤
∫ z

0

|Df − 1|dζ ≤ ε|z| ≤ Rε.

�

Although (R, ε)-closeness does not quite define a metric, one does have the following:
(a) (approximate symmetry): If F is (R, ε)-close to E, then E is ((1− ε)R, ε)-close to F .
(b) (approximate triangle inequality): If F is (R, ε1)-close to E, and G is (R, ε2)-close to

F , then G is ((1− ε1)R, ε1 + ε2)-close to E.
It is also easy to check (recalling that these sets are assumed to be closed):

(c) If E is (R, ε)-close to F for all R, ε > 0, then E = F .
(d) T is a uniformity, using (R, ε) closeness

Furthermore we have the following natural analogue of completeness, i.e. that “Cauchy
sequences” converge:

Lemma 2.2. Let Ei be a sequence of closed subsets of CI satisfying: for each R, ε > 0, ∃n
such that for all m ≥ n, Em is (R, ε)-close to En. Then there exists a unique closed set
E ⊆ CI such that En → E in T . Moreover for all m ≥ n, E is (R, ε)-close to Em.

Proof. Given R, ε > 0, by hypothesis there exists n such that for all m ≥ n, there is
a 1 − 1 holomorphic function fm : BR ≡ BR(0) → CI with ‖fm(z) − z‖∞ ≤ εR and
fm(BR ∩ En) = (f(BR)) ∩ Em. Now since {fm}∞m=0 is uniformly bounded and hence is
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a normal family, there exists a subsequence fmk
and a holomorphic function f : BR → CI

such that for any given ε̄ > 0, ‖fmk
− f‖∞ ≤ ε̄R for all k large. By part (i) of Lemma 2.1,

|Df | > 0 hence f is 1− 1. Therefore so is f ◦ f−1
mk

, which is defined on B(1−ε)R(0).
Writing w = fmk

(z), we have for any w ∈ B(1−ε)R,

|f ◦ f−1
mk

(w)− w| = |f(z)− fmk
(z)| < ε̄R.

Therefore defining E(R) = f(BR∩En), we have shown that given ε̄ > 0,∃k such that E(R)
is ((1− ε)R, ε̄)-close to Emk

. Let Mk also be large enough that, by the Cauchy property,
for all j > mk we have that Ej is (R, ε̄)-close to Emk

. Then by (a) and (b) above, E(R)
is ((1− ε)(1− ε̄)R, 2ε̄)-close to Ej . Therefore by (a), (b) and (c), the (closed) set E(R) is
uniquely defined in B(1−ε)R independent of the initial choice of n or the subsequence mk.
For the same reason, for R′ > R the sets E(R′) and E(R) agree in B(1−ε)R. Now since
‖fmk

(z)− z‖∞ ≤ εR and ‖f(z)− fmk
(z)‖∞ < ε̄R for z ∈ BR and all ε̄ > 0, we have that

‖f(z)− z‖∞ ≤ εR and hence E(R) is (R, ε)-close to En.
Therefore defining E = ∪

R>0
E(R), also E is (R, ε)-close to En. We conclude that

En → E in T ; note that E is a closed set. By (c), the limit is unique. Finally, repeating
the entire argument for each m ≥ n, we have that E is (R, ε) close to Em, as claimed. �

Next, the measure topology is defined on the collection of Borel sets E ⊆ CI such that
Hd is locally finite, i.e. for every R > 0, Hd(E ∩ BR(0)) < ∞. In that case µE ≡ Hd |E
defines a continuous linear functional on Cc(CI), the continuous real-valued functions with
compact support; indeed, by the Reisz representation theorem, C∗c is exactly the locally
finite signed measures. The measure topology on sets will then be that given by the weak-∗
topology for C∗c , on the corresponding measures.

To get a pseudo-metric, however, we need to further restrict the class of sets. First, for
fixed b > 0, let Bb denote the collection of all Borel subsets E of CI such that for all R > 0,

µE(BR(0)) < bRd.

Proposition 2.3. There is a bounded pseudo-metric ρ on Bb which is equivalent to the
measure topology.

Proof. For f ∈ Cc, we first define the pseudometric ρf by

ρf (E,F ) = |
∫

fdµE −
∫

fdµF |.

Since Cc has a countable dense subset {fi}∞i=1 (in the sup norm), we can (because of the
bound on measure) find weights ai > 0 such that for F = ∅ and for any E ∈ Bb we have

ρ(E,F ) ≡
∞∑

i=1

aiρfi
(E,F ) < K

for some K < ∞.
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Now we define ρ(E,F ) by that sum for all E,F ∈ Bb. This is clearly symmetric and
satisfies the triangle inequality. By the triangle inequality we have for any E,F ∈ Bb

ρ(E,F ) < 2K < ∞,

so ρ is a bounded pseudometric, as claimed. �

Next, let J be our Julia set. Define D = {a(J − z) : z ∈ J, a > 0} and let D denote the
closure in the measure topology. We will now see that D ⊆ Bb:

Lemma 2.4. There exists b > 0 such that for every E ∈ D,

µE(BR(0)) < bRd.

Proof. A basic fact is that J is compact. Therefore there exists b > 0 such that for every
z ∈ J , and all ε > 0 (not just ε sufficiently small), for µ ≡ µJ we have, since µ is a
geometric measure,

µ(Bε(z)) < bεd.

Now if E ∈ D and so by definition can be written E = a(J − z), then

µ(E ∩BR(0)) = µ(a((J − z) ∩BR/a(0))) ≤ ad(b(R/a)d) = bRd.

This inequality passes immediately over to E in the closure D. �

To prove the next lemma, we need the C1-closeness to the identity proved in (i) of
Lemma 2.1. For g : BR(z0) → CI, we write

‖g‖C1 ≡ max{‖g‖∞, ‖Dg‖∞}.

Lemma 2.5. Let Ei ∈ D be closed sets such that Ei → E in the conformal map topology.
Then E ∈ D and Ei → E in the measure metric.

Proof. We first claim that for each f ∈ Cc, the sequence converges in the pseudometric
ρf . We want to show that given ε > 0 then, for all n large enough,

|
∫

En

fdHd −
∫

E

fdHd| < ε.

Now ∃R > 0 such that supp(f) ⊆ BR(0), and in fact such that supp(f) ⊆ (1− ε)BR(0) ≡
B(1−ε)R(0). By the hypothesis, for any δ > 0 we have for all n sufficiently large that
there exists ϕn : BR(0) → CI with ‖ϕn(z) − z‖C1 < δ and such that ϕn(En ∩ BR(0)) =
ϕn(BR(0)) ∩ E. In particular, ‖ϕn(z) − z‖∞ < δ and so ϕn(BR(0)) ⊇ (1 − ε)BR(0).
Therefore, using the integral form of the conformal transformation property for Hd,∫

E

fdHd =
∫

ϕn(En)

fdHd =
∫

En

f ◦ ϕn|Dϕn|ddHd.
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With δ chosen small enough that |w − z| < δ ⇒ |f(w) − f(z)| < ε̄, for the difference we
have a bound of ε̄(1+δ)dHd(En∩BR(0)). So with ε̄ chosen appropriately, this is less than
ε, as we claimed.

The same estimate shows that E ∈ D, which finishes the proof. �

Next, we define the local Hausdorff metric ρ̄ on the collection of all closed subsets of
CI as follows. We fix an invertible holomorphic map P from CI onto S2\{∞}, the Riemann
sphere minus a point. (In other words, P−1 is a stereographic projection.) Then we define
ρ̄(E,F ) to be the distance between P (E)∪{∞} and P (F )∪{∞}, in the Hausdorff metric
on closed subsets of S2 determined by its usual sphere metric.

Lemma 2.6. Let Ei ⊆ CI be closed sets such that Ei → E in the conformal map topology.
Then E is closed, and Ei → E in the local Hausdorff metric.

Proof. This is obvious from the definitions, since to get Ei to be inside a ε-neighborhood
of P (E), if P (E) contains ∞ we can add to all sets ans ε-ball Bε(∞) around ∞ in S2, and
in CI let R be such that the map ϕ : BR(0) → CI satisfies that ϕ is ε-close to the identity
and P ((1− ε)BR(0)) ⊇ S2 \Bε(∞). Note that all we need is ‖ϕ− z‖∞ ≤ ε; control of Dϕ
is not necessary here. �

Bounded Distortion Property.
Our main next goal is a geometrical version of bounded distortion, which will measure

nearness exactly as needed for the conformal map topology on sets. We give two proofs,
one of which is very short, based on two well-known estimates from complex analysis due
to Koebe and Bieberbach, and the other (which is self-contained and despite that only
slightly longer) making use of a complex version of a basic principle from real dynamics.
We refer to this theorem as the analytic form of the bounded distortion property. The
proof basically follows the well-known geometric series argument from the real C1+γ case
(see e.g. [SS], [Su1]). We mention that there are two points where one should be slightly
careful when extending the proof in [SS] to CI. The first is that the logarithm is many-
valued; a simple way of dealing with series estimates for this case is to define log to take
values in the cylinder. The second point is that Mean Value Theorem estimates for R
are replaced by the complex Fundamental Theorem of Calculus (i.e. the Cauchy Integral
Theorem), and so must always check that domains are simply connected.

Theorem 2.7. (Bounded Distortion Property, analytic version). For a compact set E ⊆ CI
and map T : E → E which is complex differentiable (i.e. T is defined and differentiable in
some neighborhood V of E), assume ∃α, β such that 1 < α < |DT | < β < ∞ on E. Then
given ε > 0,∃δ (independent of n) such that if U ⊆ V is open and simply connected, Tn |U
is 1− 1, and diam(TnU) < δ then ∀z, w ∈ U ,∣∣∣∣ DTn(z)

DTn(w)
− 1

∣∣∣∣ < ε.

To prove this we need several simple lemmas.
First, we define the logarithm to take values on the cylinder CI/2πiZ ≡ R × S1. Thus

for z ∈ CI\{0} with z = reiθ for r > 0 and 0 ≤ θ < 2π, we define log(reiθ) = log r + iθ ≡
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(log r, θ). The cylinder is an additive group and the metric inherited from CI, written
dist(a, b), is translation-invariant. Our series estimates will be easily handled using this
metric.

Lemma 2.8. log DT is Lipschitz, i.e. ∃c > 0 such that ∀a, b ∈ E, dist(log DT (a),
log DT (b)) < c|a− b|.

Proof. Since E is compact, there exists K > 0 such that the magnitude of the second
derivative D2T is bounded by K on some ball containing all of E. Since the ball is simply
connected the line integral is well-defined and we have for all a, b ∈ E:

|DT (a)−DT (b)| = |
∫ b

a

D2T (z)dz| ≤
∫ b

a

|D2T (z)|dz ≤ K|b− a|.

Now cylindrical distance has the formula dist(log a, log b) = inf
γ

∫
γ

1
z dz where the infimum

is taken over all paths γ from a to b. For a rough worst-case estimate on | 1z |, we take
γ to lie outside the disk of radius α (the lower bound for |DT |). Therefore certainly for
|a|, |b| > α we have

dist(log a, log b) ≤ π

α
|a− b|.

Combining the estimates therefore,

| log DT (z)− log DT (w)| ≤ Kπ/α|z − w| for all z, w ∈ E. �

Lemma 2.9. Let U, T be as in the Theorem. For w, z ∈ U , define wk = T k(w), zk = T k(z)
for k = 0, . . . , n. Then

|wk − zk| < α−(n−k)δ.

Proof. First, we claim that for k = 0 and n = 1, i.e. for T 1 − 1 on U simply connected,
we have for all w, z ∈ U ,

α|w − z| < |Tw − Tz| < β|w − z|.

To prove this note that for U simply connected the path integral is well defined, so we
have

|T (w)− T (z)| = |
∫ w

z

DT (ζ)dζ| ≤ β|w − z|.

Since T is 1− 1, T (U) is also simply connected, and we can apply the same reasoning to
T−1 to get the lower bound. To prove the Lemma we actually only need the lower bound.
We have:

α|w − z| < |T (w)− T (z)| < δ.

Applying the same estimate to wk, zk and iterating the map (n − k) times completes the
proof. �



THE SCENERY FLOW FOR HYPERBOLIC JULIA SETS 13

Proof of Theorem 2.7. We wish to show∣∣∣∣ DTn(z)
DTn(w)

− 1
∣∣∣∣ < ε.

Since exp : R × S1 → CI is uniformly continuous on [log α, log β] × S1, it is enough to
show that dist(log Tn(w), log DTn(z)) < ε̄ for the appropriate ε̄. Now since dist(·, ·) is a
translation-invariant on the additive group of the cylinder, one has the triangle inequality
in this form: given a, ã, b, b̃ ∈ CI/2πiZ, dist(a + b, ã + b̃) ≤ dist(a, ã) + dist(b, b̃). Therefore
for wk = T k(w), zk = T k(z) as in the Lemma, we have from the Chain Rule together with
the fact that log is a homomorphism from the multiplicative group CI\{0} to the cylinder:

dist(log DTn(w), log DTn(z))

= dist(
n−1∑
k=0

log DT (wk),
n−1∑
k=0

log DT (zk))

≤
n−1∑
k=0

dist(log DT (wk), log DT (zk)).

By Lemmas 2.8 and 2.9,

dist(log DT (wk), log DT (zk)) <
kπ

α
|wk − zk| <

kπ

α
α−(n−k)δ.

So the bound we want is

kπδ

α

n−1∑
k=0

α−(n−k) =
kπδ

α

n∑
j=1

α−j ≤ kπδ

α− 1
.

Thus δ = ε̄ (α−1)
kπ will do. �

We need one more basic ingredient.

Lemma 2.10. Given T : E → E satisfying the hypotheses of Theorem 2.7, there exists
δ > 0 such that for all z0 ∈ E and for all n ≥ 1, T−n(Bδ(z0)) is a disjoint union of open
sets U(z−n) containing an nth preimage z−n, such that |z−n − w| < δ for all w ∈ U(z−n)
and Tn : U(z−n) → Bδ(z0) is 1− 1.

Proof. If we prove this for T−1, we will be done for e.g. n = 2 by considering the compo-
sition T−2 = T−1 ◦ T−1, since the diameters decrease, and so by induction for all n.

We can assume without loss of generality that the bounds α < |DT | < β hold on
a δ0-neighborhood of E. By the inverse function theorem for holomorphic maps, plus
compactness, ∃δ < δ0 such that for all w0 ∈ E, T is 1− 1 on Bδ(w0). Now we claim that
α|w−w0| < |Tw− Tw0| < β|w−w0| for all w ∈ Bδ(w0). This is shown as in the proof of
Lemma 2.9. We can restate this as:

Bαδ(Tw0) ⊆ T (Bδ(w0)) ⊆ Bβδ(Tw0).
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Finally we define δ = αδ̃. Now if z−1 is such that T (z−1) = z0, we have: T is 1 − 1
on Bδ̃(z−1) so certainly on U(z−1) ≡ Bδ̃(z−1) ∩ T−1(Bδ(z0)). And by the same estimate
applied to T−1, |w − z−1| < 1

α δ̃ < δ̃ for all w ∈ U(z−1) which finishes the proof. �

We need a bit more notation and then will be ready to state our Theorem. Hypotheses
will be the same as in Theorem 2.7. If Tn(z−n) = z0 (i.e. a choice of the nth inverse image
is understood) then we write D̃T

n
for the affine map on CI defined by:

z 7→
(
(DTn(z−n))(z − z−n)

)
+ z0.

Theorem 2.11. (Bounded Distortion Property, geometric version). For T : E → E as in
Theorem 2.7, given ε > 0 there exists δ > 0 such that for any z0 ∈ E and any n ≥ 0, for
any choice of preimage z−n ∈ E with Tn(z−n) = z0, then

D̃T
n
◦ T−n defines a function on Bδ(z0)

which is δε-close to the identity.

First Proof. We fix z0, z−n ∈ E such that Tn(z−n) = z0, and choose δ less than the deltas
in Theorem 2.7 (but for ε/2) and in Lemma 2.10. The composition in any case defines a
set map, but by that Lemma it is a well-defined function, f(z) ≡ D̃T

n
◦T−n : Bδ(z0) → CI.

We claim that f(z) is δε-close to the identity. Now f(z0) = z0 and f is 1−1. By Theorem
2.7, for any z ∈ Bδ(z0), writing w = T−n(z) for its unique preimage in U(z−n), we have:

|Df(z)− 1| =
∣∣∣∣ DTn(z)
DTn(w)

− 1
∣∣∣∣ < ε.

Hence by Lemma 2.1, ‖f(z)− z‖∞ ≤ εδ and we are done. �

For the second proof we need Lemmas 2.1, 2.10 above plus the following lemma. A
proof follows immediately from the two facts that |Df | is close to 1 (Koebe’s Distortion
Theorem) and that arg(DF ) is close to zero (Bieberbach’s Rotation Theorem). See e.g.
(3) and (6) of §2.3 in [Du].

Lemma 2.12. Assume f : B1(0) → CI is holomorphic and 1−1, and let it satisfy f(0) = 0
and Df(0) = 1. Then given ε > 0, ∃r > 0 such that (for all such f)

|Df(z)− 1| < ε for all |z| < r.

�

Second Proof of Theorem 2.11. We fix δ̃ less than the delta in Lemma 2.7. As in the first
proof, given a choice z−n and z0, we define the map

f : Bδ̃(z0) → CI

by f = D̃T
n
◦ T−n. By conjugating f with a translation and dilation so it is defined on

B1(0), we see from Lemma 2.9 that given ε > 0 ∃r > 0 such that for all z with |z−z0| < rδ̃,

|Dg(z)− 1| < ε.

Defining δ ≡ rδ̃, by Lemma 2.1 (ii) we conclude that ‖f(z)− z‖∞ < εδ which finishes the
proof. �
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Limit Sets. Now for our hyperbolic Julia set (J, T ), let the shift space (
∏

0, σ) be de-
fined as in the Introduction. We note that

∏
0 is compact, and that the left shift σ is a

homeomorphism of
∏

0; this is topologically the natural invertible version of (J, T ).
Given z = (. . . z−1z0z1 . . . ) ∈

∏
0, we define

Lz,n ≡ DTn(z−n) · (J − z−n).

Here is the theorem we have been leading up to.

Theorem 2.13. For each z ∈
∏

0, there exists a unique closed set Lz ⊆ CI such that
Lz,n → Lz in the conformal map topology. The convergence is uniform in z, and the
function z 7→ Lz is continuous.

Proof. By Lemma 2.2 it will be enough, for proving convergence, to show the sequence is
Cauchy in the sense given there. We are to show that for this z, given R, ε > 0, there
exists n such that for all m ≥ n, Lz,m is (R, ε)-close to Lz,n. Let δ be good in Theorem
2.11 for error equal to ε

β . Let n be the least integer such that R ≡ DTn(z−n) · δ > R. This
implies that

R < R < βR.

Now define the affine map g from BR(0) to Bδ(z−n):

g(z) = (δ/R) · z + z−n.

Writing k = m − n, from Theorem 2.11 the map ϕ ≡ D̃T
k
◦ T−k : Bδ(z−n) → CI is

δε/β-close to the identity. Therefore the conjugate

Φ ≡ g−1 ◦ ϕ ◦ g : BR(0) → CI

is Rε/β-close to the identity. The restriction of Φ to BR ⊆ BR is thus certainly Rε > Rε/β-
close to the identity. Now from the definitions,

Φ(Lz,n ∩BR(0)) = Lz,m ∩ Φ(BR(0)).

So Lz,m is (R, ε)-close to Lz,n, as claimed. Hence by Lemma 2.2 there exists a unique
closed set Lz such that Lz,n → Lz in T .

To prove this convergence is uniform (in the sense of (R, ε)-closeness), we do the above
argument for each z ∈

∏
0. That is, we choose δ from Theorem 2.11 for error equal to

ε/β, and define n = n(z) to be the least integer such that |DTn(z−n)|δ > R. Now since
α < |DT |, this is bounded above by some n0. By the last sentence in the statement of
Lemma 2.2, not only is Lz(R, ε)-close to Lz,n(z), but we have that for all z, Lz is (R, ε)-close
to Lz,n0 . This proves uniform convergence.

Finally, to prove Lz is a continuous function of z (from the product topology on
∏

0 ⊆
∞∏
−∞

CI to T ), note that for each fixed n, the function z 7→ Lz,n is continuous in z. Since a

uniform limit of continuous functions is continuous, we are done. �
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We have constructed the scenery Lz as a limit of the sets Lz,n, showing these are a
Cauchy sequence by considering maps defined on successively larger balls B(R, 0). These
maps are individually holomorphic but were defined only locally, because of the necessity
to choose branches, so they do not in themselves form a Cauchy sequence of maps on CI.
This method has the advantage of working equally well for the conformal repellors.

Once we have constructed Lz in this way, we can however (for the rational map case)
reverse the point of view, studying a sequence of maps which is inverse to those above but
now globally defined.

For fixed z, we define for n ≥ 0 a map Φz,n : CI → CI by:

Φz,n(w) = Tn
(
zn + (DT (zn))−1 · w

)
− z0.

Theorem 2.14. For each n, Φz,n(Lz,n) = (J − z0). This is a holomorphic cover of degree
(degree T )n. The limit Φz = limn→∞ Φz,n converges uniformly on compact sets and Φz :
CI → CI restricted to Lz is a countable holomorphic cover of (J−z0). The following diagrams
commute:

Lz
w 7→DT (z0)·w−−−−−−−−−→ Lσ(z)

φz

y yφσz

J
w 7→T (w)−−−−−→ J

and
CI

w 7→DT (z0)·w−−−−−−−−−→ CI

φz

y yφσz

CI
w 7→T (w)−−−−−→ CI

Proof. A point w ∈ Lz,n can be expressed as w = DTn(zn)(x− zn) for some point x ∈ J .
Applying the above definition, it follows that Φz(w) = T k(x)−z0 ∈ J−z0, as claimed. The
maps Φz are locally inverse to the maps used to prove convergence to Lz. By those same
estimates, the sequence Φz is Cauchy in the C1-norm on arbitrarily large balls. Hence
the limit exists, and restricted to Lz gives a countable infinity-to-one holomorphic cover
of J − z0. �

Example. Let z0 be a fixed point for Tn. Then writing λ = DTn(z0) (the multiplier at
that periodic point), the commutative diagram above simplifies, since for Φ ≡ Φz = Φσnz,
and we have Tn ◦ Φ(w) = Φ(λ · w).

This is a globalization (to all of CI) of Koenig’s classical linearization theorem [Mil]; thus
the construction of scenery can be seen as giving a type of Koenig’s theorem for general
(non-periodic) points.

Consider the particular case T (z) = z2, and choose z−n = z0 = 1 for all n. The scenery
at the fixed point 1 is the tangent line to the circle at that point, which wraps around the
circle via R → R/Z. So our countable holomorphic cover should be the exponential map
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z 7→ ez, shifted over to have as image the circle centered at −1. And this indeed is the
case: the formula yields

Φz,n(w) + 1 =
(
1 + w · 2−n

)2n

;

for real w by taking logs, we can verify the classical formula (1+w/n)n → ew; since we know
Φz,n → Φz which is holomorphic, this equality extends to CI. Therefore Φz(w) = ew − 1,
as it should be.

We remark that the covering maps for other Julia sets are therfore a kind of general-
ization of the exponential map, and so may be of interest in their own right.

§3. The symbolic model and the scenery flow.
As in §2, we write Ω for the collection of all closed subsets of CI, topologized by the

conformal map topology T . We define the magnification flow τt on Ω to be the flow
(action of the additive reals) given by dilation by the real exponential factor et. That is,
τt(E) = et · E for E ∈ Ω. Note that the flow is (jointly) continuous. For z ∈ J we write
Ωz for the τt omega-limit set of the translated Julia set J − z (thought of as a point in the
space Ω). That is,

Ωz ≡
+∞⋂
t=0

cl
( +∞⋃

s=t

τs(J − z)
)

where cl denotes T -closure. This set is closed and is flow-invariant. We write

ΩJ =
⋃
z∈J

Ωz.

Definition. (ΩJ , τt) is the scenery flow of J , and (Ωz, τt) is the scenery flow of J at
z. The full scenery flow of J , denoted by (Ω̂J , τt), is τt acting on the closure of ΩJ under
rotations, E 7→ eiθ · E.

The symbolic model.
We will next define a special flow, which as we will show maps homomorphically onto

the full scenery flow of J . This symbolic representation will provide the key to studying
the ergodic theory of the scenery flow, carried out in the next section.

We move to an abstract setting, recalling the standard definitions for a general map. A
special flow is constructed from an invertible transformation on a set called the base of
the flow, and a strictly positive function defined on the base. For the resulting flow, the
base will be a Poincaré cross-section, and the function will give the time of return to
the base. One says the flow is built under the function and over the base map.

Our base will be a compact topological space X, with base map a homeomorphism F
and with continuous return time function r. The flow space XF,r is the compact
topological space which is the quotient of the space X × R by the equivalence relation
generated by the identification

(x, s + r(x)) ∼ (F (x), s).
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Finally the flow τt on XF,r is defined by

τt(x, s) = (x, s + t).

Remark.

(1) We mention that to a topologist, what we are calling the base of the flow will
instead be a fiber of a fiber bundle. The topological conventions are as follows.
In the special case where r ≡ 1, one calls (XF,r, τt) the suspension flow. If
one interested in only the topology of the flow space, one might as well make this
assumption since the topology is the same for all r positive. The suspension can
be thought of as a fiber bundle over the circle R/Z with fiber X; note that then
the circle is the base of the fiber bundle (so XF,r “fibers over the circle”) while X
is the base of the flow. (We will follow the dynamical rather than the topological
usage of “base”).

(2) We note that the usual picture of the special flow depicts a fundamental domain for
a group action. The group is Z, acting on X×R, with the natural action generated
by the identification.

It is important to note that the identification space, and the flow, make sense for
arbitrary functions r. This function is a return time to a cross-section exactly when it
is positive. Positivity guarantees the existence of a nice (e.g. connected) fundamental
domain.

In our particular case, the positivity of r will be a consequence of (indeed equivalent
to) the strict hyperbolicity of the rational map T .

The map T is however not invertible; we make it so in a canonical way described by
the following simple lemma. We are just transfering to the topological category a familiar
notion of ergodic theory, the natural extension. To a topologist this will be recognized as
an inverse limit construction. We state this in the abstract setting.

Lemma 3.1. Let F be a continuous map on (and not necessarily onto) a topological space
X. Then (up to homeomorphism) there is a unique space X̂, with homeomorphism F̂ ,
which factors onto (X, F ).

Here smallest means any other such space factors through (X̂, T̂ ). By definition a
factor map or homomorphism is a continuous onto map which semiconjugates the
transformations.

As in the measure-theoretic category, we will call this the natural extension of the
transformation.

Proof. Define Π = Π∞
−∞ X with the product topology, and let Π0 be the subset of all

x = (. . . , x−1, x0, x, . . . ) such that F (xj) = xj+1. One easily checks that this is home-
omorphism, and that the projection Π : x 7→ x0 is a factor map from (X̂, F̂ ) to (X, F ).
Finally the proof of the universal property stated above is also absolutely clear: by conju-
gacy, preimages of a point w to x0, in a third space (W,S) which maps to x0, must map
onto specific preimages of x0. This defines the canonical projection from W to X̂. �
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Note: In some applications (e.g. for expanding maps which define Cantor sets, or for
Douady-Hubbard polynomial-like maps) one may begin with a map F which does not fit
the assumption of the above lemma, since its range strictly contains its domain. In that
case one should replace F by the restriction to its eventual domain X0, (those points x
with Fn(x) defined for all n > 0), and state the universal property for (X0, F ).

Now we return to our rational map T . The base transformation for the special flow T̂
can be defined geometrically, as follows. The derivative map acts naturally on the unit
tangent bundle of J (by renormalizing the length of the vector); T̂ denotes the natural
extension of this map, i.e. its (unique) invertible version given by the above Lemma. Note
that this definition is coordinate-free, i.e. it makes sense for a map on a differentiable
manifold with a Riemannian (or Finsler) metric, independent of charts. First however we
define this base transformation more concretely, as a skew product over a shift map. As
in the Introduction, we write Π0 for the compact subset of Π ≡ Π∞

−∞J consisting of those
allowed strings of complex numbers z = (. . . , z−1, z0z1, . . . ) such that T (zj) = zj+1. We
write Π̂0 = Π0 × S1, and setting ϕ(z) = arg DT (z0), we define the homeomorphism σ̂ on
Π̂0 to be the skew product transformation with shift base and skewing function ϕ.

It is clear that the map σ̂ is naturally conjugate to T̂ as defined above, by Lemma 3.1.
We will from now on use the notation (and explicit representation) (Π̂0, σ̂) for T̂ .

Definition. The symbolic model for the scenery flow of J is the special flow (Ω̂, τ̂t)
with base map (Π̂0, σ̂) and return time function r(z) = log |DT (z0)|.

We define a map Φ from Π̂0 × R = Π0 × S1 × R to Ω (the closed subsets of CI) by
(z, θ, t) 7→ eiθ et Lz.

Theorem 3.2. The full scenery flow (ΩJ , τt) is a factor of the symbolic flow (Ω̂, τ̂t), with
factor map given by Φ.

Proof. We will first verify that Φ is well-defined as a map from Ω̂ to Ω, i.e. that it respects
the identifications, and that it is continuous. Then we will show the image is (the rotation
closure of) that collection of closed sets which forms the omega-limit set of some (J − z).

The argument that Φ respects the identifications which define the flow space Ω̂ has
already been given in the Introduction. Continuity of Φ restricted to the base Π̂0 (embed-
ded in Ω as (ẑ, θ, S) with θ, S = 0) has been proved in Theorem 2.13. Since rotation and
dilation are continuous operations in the topology T , this continuity immediately extends
to all of Ω̂. �

For the rest of the proof we need the following lemma.

Lemma 3.3. For any z0 in J and all z in Π0 with that zeroth coordinate, (J − z0) is
forward asymptotic to Lz under the magnification flow τt on Ω (the closed subsets of CI),
in the topology T .

Proof. From the uniform convergence of Theorem 2.13, given R, ε > 0 there exists n0 such
that for all z, for all n > n0,

Lz,n is (R, ε) -close to Lz.
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Therefore, writing ”∼” for (R, ε)-closeness,

DTn(z0) (J − z0) ∼ Lσn(z) = STn(z0) Lz.

Setting t = log |DTn(z0)| and dividing both sides by ei arg DT n(z0), this gives

τt(J − z0) ∼ τt Lz and we are done. �

Now we finish the proof of the Theorem.
By the Lemma, the omega-limit set of (J−z0) coincides with the omega-limit set of Lz.

Therefore Ω̂J equals the union of the omega-limit sets of the range of Φ, Φ(Ω). This shows
that Ω̂J ⊆ Γ(Ω). For the reverse containment we are to show that given z, ϕ and S in Π0,
[0, 2π] and R, there exists ω and θ such that eiθ τt(Lω) comes infinitely often arbitrarily
close to eiϕ es Lz as t → +∞. It will be enough to show this for ϕ = 0, s = 0. Now since
there exists a point with a dense T -orbit in the Julia set, the same is true for the shift map
σ on Π0. Let ω be such a point. By continuity of Φ there is a sequence of flow times tn
such that τtn(Lω) comes arbitrarily close to eiθn Lz for some angles θn. By compactness of
the circle {θn} has a limit point θ ; we replace tn bn this subsequence. Thus e−iθ τtn

Lµω

has Lz as a limit point, and we are done. �
Remark. Since the symbolic model ΩJ is a compact space and the map from there to the
closed sets Ω is continuous, the image is compact. Thus, the set of all scenes is compact
in the topology T , hence is a compact metric space in the local Hausdorff and measure
metrics.

§4 Ergodic theory and rotational behavior.

§4.1 Gibbs states and the projected flow.
We begin by considering the ergodic theory of the special flow built over the base

(Π0, σ) with return time function r(z) = log |DT (z0)|. That is, we for now are ignoring all
angular information. This projected flow (Ω, τ̄t) is a factor of the symbolic model via
the projection (ẑ, s) 7→ (z, s). For an expanding C1+α map on a Cantor set in [0, 1] the
same flow played a key role in the analysis of density properties of the Cantor set, see §3
of [BF1]. Indeed it was a close reanalysis of the convergence proof given there which led
us to the “linearization” construction of the scenery used in §2 above and in [BF3]. The
existence of order-two density now follows as a corollary (see Proposition 4.2).

The following theorem, describing the ergodic theory of the projected flow, follows from
the fundamental work of Bowen, Ruelle and Sinai. Some of the main points in the develop-
mant of the “BRS theory” relevant here are: Lemma 10 of [Bo2] (for Bowen’s formula for
Hausdorff dimension); §8 of [Si] and Proposition 3.1 of [BR] (for the relationship between
measures of maximal entropy for flows and Gibbs states on a cross-section).

For completeness we include the proof. In summary, two separate results from the BRS
theory (the relationship between Gibbs states and the Hausdorff measures on the one hand,
and a Gibbs state on the cross-section and the measure of maximal entropy for a flow on
the other) are brought together, linked by the scenery flow.
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For further details and background see [BF1-3], [Fi]. For exposition on Bowen’s formula
see [PU]. See [Bo1], [Bo2], [PP], [PU] and [Rue2] for treatments of the theory of Gibbs
states.

Theorem 4.1. Let µ be Hausdorff d-dimensional measure Hd restricted to the hyperbolic
Julia set J . Then writing ν for the (unique) T -invariant probability measure which is
absolutely continuous with respect to µ and extended to the invertible map (Π0, σ), the
product ν̄ of ν with Lebesgue measure on R (and normalized) gives the unique measure of
maximal entropy for the projected flow (Ω, ν̄, τ̄t). This flow is ergodic. The flow entropy
equals dim(J).

Proof. Bowen’s theorem [Bo2] states that there exists a unique positive number d such that
the pressure P (ϕ) = 0 for ϕ(z) = −d log |DT (z)|, that d is the Hausdorff dimension of J
and that d-dimensional Hausdorff measure µ is equal to the Ruelle eigenmeasure (times a
constant). This measure is ergodic for the shift map hence the flow built over it is also
ergodic. Now from the variational principle [Bo1], [Rue2] (see also [PU]) using the fact
that

P (ϕ) = 0, 0 = sup
(
h(m) +

∫
J

ϕ dm

)
where the sup is taken over invariant probability measures m on J . The sup is achieved
uniquely by the Gibbs state ν (which is the unique invariant measure equivalent to the
eigenmeasure µ ). This equation holds for ϕ, m, ν extended to the invertible map σ on
Π0. Because there is a zero on the left side, we can then rewrite the equation as:

h(v)∫
−ϕ dv

= 1. Hence,
h(v)∫

Π0
log |DT |dv

= d.

Now Abramov’s formula [Ab] states that the measure theoretic entropy for a special flow is
equal to (base entropy divided by expected return time). This is exactly the left-hand side
of the equation. Conversely, working through the equations in the other direction, from
the variational principle this gives the maximum entropy and is the unique such measure.
Hence the flow entropy (by which we mean the topological entropy and equivalently the
maximal measure theoretic entropy) for (Ω, τ̄t) is the Hausdorff dimension of J , and the
unique measure of maximal entropy is ν̄. �

The next theorem now follows as a corollary. Part (iii) is due, with a different proof, to
Falconer [Falc].

Proposition 4.2. For a rational map T with hyperbolic Julia set (or, more generally, for
a conformal mixing repellor),

(i) for ν−a.e. z ∈ Π0, the order-two density at 0 ∈ CI of Hd restricted to Lz exists, and this
value is a.s. constant on Π0.

(ii) If for some z ∈ Π0, the order-two density at 0 of Lz exists, then the same holds for J
at z, with equal value, where z = z0 is the zeroth coordinate of z.

(iii) For µ – a.e. point z ∈ J , the order-two density exists, and the value is a.s. constant.
(iv) for all z ∈ Π0, the order-two density exists and is the same at Hd – a.e. point z ∈ Lz.
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Proof. The basic idea is simple, though there is a subtle analysis point we remark on later,
so we will be careful with the details. Part (i) is a consequence of the Birkhoff ergodic
theorem applied to the projected flow (which is ergodic); (ii) holds because the two sets
are forward asymptotic under scaling; (iii) follows from (i) together with (ii), and (iv)
will be proved from (iii).

For z ∈ Π0 and for t ∈ R, write

At = Az,t = etLz = τtLz;

here τt is the magnification flow τt on Ω, the collection of closed subsets of CI. Define

f(z, t) =
∫

At

χBdHd =
Hd

(
B(z, e−t) ∩ Lz

)
e−td

.

Here we have used the conformal transformation proprty of Hd. Thus

lim
T→∞

1
T

∫ T

0

f(z, t)dt

is the order-two density at 0 ∈ CI of Lz. Note that f(z, t) would be unchanged if we
rotated Lz. Hence the function f is well-defined on the projected flow space Ω. We claim
f ∈ L1(Ω, ν̄). Indeed, it is bounded away from 0 and ∞: from Theorem 2.14, Lz is locally
a conformal image of a piece of J , hence Hd|Lz is also a geometric measure, which implies
boundedness. Alternatively, the bounds for Lz follow directly from those for J by the
estimates to follow.

From this we know by the Birkhoff ergodic theorem that since the projected flow is
ergodic, the limit exists and is ν-a.s. constant:

lim
T→∞

1
T

∫ T

0

f(z, t + s)dt = lim
T→∞

1
T

∫ T

0

f(τt(z, s))dt =
∫

Ω

f(z, s)dν.

Taking, in particular, s = 0, we see that the order-two density of Lz at 0 is equal to this
value for ν-a.e. z, proving (i).

Next, suppose we are given that the above limit exists for some Lz and some z. Fixing
z = z0, the zeroth coordinate of z, define Ãt = et(J − z) = τt(J − z), writing this time

f̃(t) = f̃(z, t) =
∫

Ãt

χBdHd.

We wish to show the time average for f̃ exists and takes on the same value as for f(t) =
f(z, t).

For δ > 0, let ϕδ be a continuous function from CI to [0, 1] such that ϕδ = 1 on
B = B(0, 1) and = 0 outside of B(0, eδ). Write f̃δ(t) =

∫
Ãt

ϕδ(w)dHd and fδ(t) =∫
At

ϕδ(w)dHd. Note that ϕδ(w · eδ) ≤ χB(w) ≤ ϕδ(w) for all w ∈ CI. Hence, again by
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the conformal transformation property of Hd, e−δfδ(t + δ) ≤ f(t) ≤ fδ(t) for all t, δ; the
analogous inequalities hold for f̃δ, f̃ . We have

e−δ lim inf
T→∞

1
T

∫ T

0

fδ(t)dt = e−δ lim inf
T→∞

1
T

∫ T

0

fδ(t + δ)dt ≤ lim inf
T→∞

1
T

∫ T

0

f(t)dt

≤ lim sup
T→∞

1
T

∫ T

0

f(t)dt ≤ lim sup
T→∞

1
T

∫ T

0

fδ(t + δ)dt = lim sup
T→∞

1
T

∫ T

0

fδ(t)dt.

Now by the proof of Lemma 3.3, the closed sets (J − z) and Lz are forward asymptotic in
the magnification flow τt with respect to the measure metric. Since this allows sampling
against continuous functions with compact support, it applies to ϕδ. By our assumption
the time average of fδ(z, t) exists, so this implies the average for f̃δ also exists, with the
same value, equal to

∫
Ω

fδdν.
Thus

e−δ

∫
Ω

fδdν = e−δ lim inf
T→∞

1
T

∫ T

0

f̃δ(t) ≤ lim inf
T→∞

1
T

∫ T

0

f̃(t)

≤ lim sup
T→∞

1
T

∫ T

0

f̃(t) ≤ lim sup
T→∞

1
T

∫ T

0

f̃δ(t) =
∫

Ω

fδdν.

Since this is true for every δ > 0, the limit for f̃ exists and equals that for f . This proves
(ii). Part (iii) follows immediately. Finally, for (iii), when the set Lz is shifted to be
centered at a point w ∈ Lz by Lz −w, then from the definitions, Lz −w is eiθLw for some
angle θ and choice of preimages for w. Thus since the order-two density exists at 0 for Lz

for a.e. z, for every z it will exist Hd-almost surely in that scene Lz. �

Remark. The subtle analysis point we referred to above is this. Since the function χB

is not continuous, we cannot apply directly convergence in the measure metric. One’s
first attempt is probably to argue that the boundary of the disk is however a negligible
set. So one covers it by n balls of radius 1/n, estimating their measure from the geometric
measure property. And indeed, this method will work fine for d =dimension(J)≥ 1; but for
d ∈ (0, 1) the estimate blows up for large n. Our way out is to create bounds by dilating;
since this corresponds to shifting the time, it does not matter after the time average is
taken.

§4.2 Rotational behavior: Furstenberg’s lemma.
The main result of this and the next section will be that the scenery flow is ergodic for

the repellors which are not linear nor contained in a finite union of real-analytic curves and
which form a dense open subset. The same will be proved for all hyperbolic rational maps,
except for a few exceptional cases listed in Theorem 4.8. Furthermore, the full scenery
flow is equal to the scenery flow at µ-almost every point in J .

Ergodicity of a special flow is equivalent to ergodicity of a cross-section map, since
invariant subsets correspond. In this sub-section we will study equivalent conditions for
ergodicity of the base map (Π̂0, σ̂). To prove this we make use of two methods, one due
originally to Furstenberg and one to Livsic. These form part of the general developing



24 TIM BEDFORD, ALBERT M. FISHER AND MARIUSZ URBAŃSKI

theory of group-valued cocycles for group actions. For completeness, we give full proofs of
what we need. Once we have shown the conditions equivalent, one of them (the periodic
point condition) will then be verified by methods from complex analysis, in the next
subsection.

We begin with a general skew product with circle fiber. Let F be a (not necessarily
invertible) measure-preserving map of a measure space X with invariant ergodic probability
measure ρ. We assume that the skewing function ϕ : X → S1 = R/Z, is measurable,
and that X is a compact metric space.

We write X̂ = X × S1 and define F̂ on X̂ by F̂ (ω, θ) = (F (ω), θ + ϕ(ω)). Lebesgue
measure on S1 will be denoted by m.

Proposition 4.2. The product measure ρ̂ = ρ×m is invariant for F̂ .

Proof. The idea will be that since fibers are rotated by ϕ and then simply exchanged
according to the measure-preserving map F , the skew product should preserve ρ̂ by Fubini’s
theorem. To make this precise, following the proof of Lemma 2.1 in [Fu], test against a
fuction f in L1(ρ̂); interchanging the order of order of integration proves invariance. �

We will write Mρ for the collection of F̂ -invariant measures with marginal ρ (i.e. which
project to ρ). We are interested in finding equivalent conditions such that there is only
one such measure (i.e. Mρ is the singleton {ρ̂}), in which case we will say F̂ is ρ-uniquely
ergodic. First we discuss some other forms that an invariant measure can take. Suppose
there exists a measurable function u : X → S1 such that

(∗) ϕ(x) = u ◦ F (x)− u(x) (for ρ-a.e. x).

In this case one says ϕ is a coboundary, or is cohomologous to zero. Now notice that
the graph of u is a F̂ -invariant subset of X̂. Hence there exists an invariant measure which
is not ρ̂: just lift ρ to a measure supported on that graph (or more generally, add parallel
bands of mass).

We mention another interpretation of equation (*). Via the map (w, u(w)+θ) 7→ (w, θ),
F̂ is isomorphic to F × (identity), i.e. to a skew product which does nothing in the fibers.
This isomorphism can be viewed as a fiber-preserving change of coordinates on X̂, given by
choosing a new origin for each circle; the new origin is u(w). Conversely, a fiber-preserving
isomorphism defines such a function u.

So far we have, therefore:

Proposition 4.3. The following are equivalent, for ϕ : X → S1 measurable:
(a) there exists u measurable with ϕ(x) = u ◦ F (x)− u(x)
(b) there exists a fiber-preserving isomorphism from F̂ to F × (identity)
(c) there exists a measurable function from X to S1 whose graph is invariant. �

It is clear that the example described above of an invariant measure different from ρ̂ will
generalize to that of a map which instead of fixing the circle, permutes k equal intervals.
In fact conversely, as we will now see, this is all that can happen.
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This represents a generalization of Lemma 2.1 from [Fu]. (Furstenberg considers the
case where the base transformation itself is uniquely ergodic).

Theorem 4.4. The following are equivalent for F̂ as above.
(a) ρ̂ is not ergodic.
(b) F̂ is not ρ-uniquely ergodic.
(c) There exist k ∈ Z and u : X → S1 measurable such that

(∗∗) kϕ = u ◦ F − u.

Proof. (b) =⇒ (a). We will show that if ρ̂ is ergodic, then Mρ = {ρ̂}. We learned this
argument from Eli Glasner; another nice argument can be given using generic points,
following [Fu]. We recall that since X̂ is a compact metric space, the F̂ -invariant measures
form a weak*-compact convex set, with the ergodic measures as the extreme points. Let
ρ̃ ∈ Mρ. Now if we average the measure ρ̃ along each circle fiber by Lebesgue measure
on S1, we get the measure ρ̂. Therefore, ρ̂ is a convex combination of the rotated (and
invariant) measures Rθ ρ̃. Hence if ρ̂ is ergodic, then ρ̃ = ρ̂.

(a) =⇒ (b). Supposing ρ̂ is not ergodic, it can be written as a convex combination
of two invariant measures, ρ̂1 and ρ̂2. The only thing to check (to contradict ρ-unique
ergodicity) is that they project to ρ. But whatever measure they project to must be
absolutely continuous with respect to the projection of ρ̂, i.e. ρ; hence by ergodicity of ρ
it equals ρ.

(a) =⇒ (c). We cannot improve on Furstenberg’s beautiful little argument, which we
include for completeness. (He uses multiplicative notation i.e. S1 is the set of complex
numbers with modulus one).

Assume that ρ̂ is not ergodic for F̂ . Then (see e.g. [Wa]) there exists a non-constant
(real or complex)-valued function G in L2(X̂, ρ̂). By Fubini’s theorem, for ρ-a.e. circle
fiber, G is in L2 of that fiber. So there are Fourier coefficients an(w) for the fiber over w,

with G(x, θ) =
∞∑
−∞

an(x) einθ. Now calculating G◦ F̂ , uniqueness of the Fourier coefficients

implies that an(w) = an(Fw) einϕ(w) for each n. By ergodicity of F , the modulus of each
an(w) is ρ-a.s. constant. Since G is assumed non-constant, for some k 6= 0, |ak| 6= 0 (ρ-
almost surely). So for that k, we can normalize ak in the equation above. Then, changing
to additive notation, we define u(w) by e−iu(w) = ak(w)/|ak|. The equation then becomes
kϕ = u ◦ F − u, proving (c).

Finally it is clear that (c) =⇒ (a), from the previous Proposition, by putting mass on
the graph of u. Or, we note that the function Hk(w, θ) ≡ ak(w) eikθ is F̂ -invariant, which
contradicts ergodicity. �

Remark 4.5. The set of k such that (c) holds is an ideal in Z. If, say, ` generates this
principal ideal, we can describe the collection of all F̂ -invariant functions: they can be
expressed as some combination of the Hk just defined, for all multiples k of `.
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§4.3 Ergodicity of the scenery flow.
First we consider the case of a conformal mixing repellor (X, T ). We recall the

definition [Rue1], [PUZ,I,II], [PU]: let X ⊆ V ⊆ U ⊆ M where M is a surface with complex
structure, V and U are open, X is compact, and we have a conformal map T : U → M
satisfying:
◦ T (X) = X;
◦ T is hyperbolic on X;
◦ ∩(T |V )−n(V ) = X;
◦ for any W open in X, there exists n with Tn(W ) ⊇ X.

We recall that (X, T ) is called real-analytic if X is contained in a finite union of
real-analytic curves. Recall also from [Su3], [Pr], and [MPU] that a conformal mixing
repellor (X, T ) is said to be linear if the conformal structure on X admits a conformal
linear refinement so that f is linear, that is, if there exists an atlas {ϕt} that is a family
of conformal injections φt : Ut → CI, where

⋃
t Ut ⊃ X such that all the maps φtφ

−1
s and

φtfφ−1
s are affine Möbius transformations.

We mention that while conformal mixing repellors clearly include the hyperbolic rational
maps, they are much more general. They contain for example local (in a neighbourhood of
the Julia set) analytic perturbations of hyperbolic rational functions and the limit sets of
Kleinian groups of Schottky type. Other nontrivial linear examples come from generalizing
the map x 7→ 3x(mod 1) mapping [0, 1/3] ∪ [2/3, 1] → [0, 1]; notice that this particular
example is biholomorphially conjugate with an appropriate invariant set of the map f(z) =
z3, which is linear (!) in the sense defined above.

The results from [Pr] and [MPU] contain the following.

Theorem 4.6. Let (X, T ) be a conformal mixing repellor. Then the following conditions
are equivalent.

(1) The repellor (X, T ) is linear.
(2) The Jacobian of T with respect to the Gibbs measure µ equivalent to the Hausdorff

measure Hd on X, is locally constant.
(3) There exists a cover {Bλ}λ∈Λ of X consisting of open disks, a family of continuous

functions γλ : Bλ → IR, λ ∈ Λ, and constants c
(1)
λ.λ′ , c

(2)
λ.λ′ such that for all λ, λ′ ∈ Λ

γλ − γλ′ = c
(1)
λ.λ′

on Bλ ∩Bλ′ and
argλ(DT )− γλ + γλ′ ◦ T = c

(2)
λ.λ′

on Bλ ∩ T−1(B′
λ), where argλ(DT ) : Bλ → IR is a continuous branch of the argument

of DT defined on the simply connected set Bλ.

In order to provide the reader with a more complete picture, which will be used in the
proof of Theorem 4.8 we quote here Remark 2 from the proof of the implication (ec) ⇒ (d2)
of Theorem 3.1 of [MPU].



THE SCENERY FLOW FOR HYPERBOLIC JULIA SETS 27

Remark 4.7. In case X is not real-analytic, having equations in item (3) and functions
γλ respectively holding and defined on X itself (rather than on an open cover of X) would
already be sufficient to prove item (1).

Theorem 4.8. Let U be an open set in CI. Let RU denote the collection of all conformal
mixing repellors f : U → CI. Then the full scenery flow is ergodic for the repellors which are
not linear nor contained in a finite union of real-analytic curves. Furthermore the ergodic
maps form a dense open subset of RU , with respect to the C1− topology on RU .

Sketch of proof. From Livsic theory [Li1,2], [PUZ, I] the following are equivalent, given a
hyperbolic map f and a real-valued Hölder continuous observable ϕ:

(1) ϕ is cohomologous to zero in the class of Hölder continuous functions
(2) ϕ is cohomologous to zero in the class of measurable functions
(3) Snϕ(x) = 0 for each periodic point (where n is the period of x).

In [Li1,2] this is proved for real-valued ϕ; one can show, using a method from [PUZ,I]
that for a circle-valued function the analogous statements hold: for some k ∈ Z,

(1′) kϕ is cohomologous to zero in the class of Hölder continuous functions
(2′) kϕ is cohomologous to zero in the class of measurable functions
(3′) kSnϕ(x) = 0 for each periodic point (where n is the period of x).

Passing to the multiplicative notation, it follows from Theorem 4.4 that nonergodicity
of the full scenery flow is equivalent to the following: that the function

z 7→
(

DT (z)
|DT (z)|

)k

is a measurable coboundary (in S1) for some integer k. This is exactly condition (2′)
above. Since this is equivalent with condition (1′), we conclude by Remark 4.7 that if the
scenery flow is not ergodic, then the repellor (T,X) is forced to be either linear or real-
analytic. Furthermore, as is easy to see (by a standard argument using the open mapping
and implicit function theorems), condition (3′) is closed and removable by arbitrarily small
perturbations in the C1− topology on RU . This completes the proof. �

Lastly, combining Theorem 4.4 and Theorem 1 from [FU], in the case of hyperbolic
rational functions we have the following. Examples of (2) and (3) were given in the
Introduction. (We do not know at present if (1) can in fact occur, as we have no specific
example.)

Theorem 4.9. The full scenery flow of a hyperbolic rational function is ergodic unless
(1) T has a superattracting fixed point with a preimage at which T has a different degree.
(2) The Julia set J(T ) is a geometric circle and T is biholomorphically conjugate to a finite

Blaschke product.
(3) The Julia set J(T ) is totally disconnected and J(T ) is contained in a real-analytic curve

with self-intersections (if any) lying outside of the Julia set. �
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