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Abstract
We analyse the correlation and limit behaviour of partial sums for the
stationary stochastic process (f (T t (x)), µ), t = 0, 1, . . . , for functions f of
superpolynomial variation, the class SP defined below (which includes the
Hölder functions), where T : 
+ → 
+ is the left shift map on
+ = �∞0 {0, 1}
and µ is the non-atomic equilibrium measure of a non-Hölder potential g = gγ
belonging to a one-parameter family, indexed by γ > 2.

First, using the renewal equation, we show a polynomial rate of
convergence for the associated Ruelle operator for cylinder set observables.

We then use these estimates to prove the following theorems:

• We extend the polynomial convergence for the Ruelle operator to functions
f ∈ SP .

• We show that the measure is weakly Bernouilli and the bounds are
polynomial.

• We calculate the decay of correlation of the stationary stochastic process
described above, for f ∈ SP . This decay is polynomial with t : we show
in theorem 4.1 an upper bound of the order of Ct2−γ when γ > 2; this
estimate is sharp in the sense that for each γ there exist functions f (in
fact f = I[0] gives an example) for which one has the lower bound of
ct2−γ for the decay of its autocorrelation (see theorem 2.8). For the lower
bound we use Tauberian theorems. For this example the coefficients decay
monotonically, which is important for proving the lower bound.

• Again using Tauberian theorems together with the upper–lower bounds we
show that for each 3 > γ > 2 one has the phenomenon of 1/f noise for
the spectral density of the function I[0] (see theorem 2.8).
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• We prove the central limit theorem (CLT) and functional CLT for the case
where f is in SP and for γ > 3 (theorem 6.5). For this we apply Gordin’s
method in the setting of a polynomial rate of convergence.

From the perspective of differentiable dynamical systems µ is the unique
invariant measure which is absolutely continuous with respect to the Lebesgue
measure for an associated doubling map of the circle with an indifferent fixed
point. This map T1 = T1,γ is a piecewise linear version of the Manneville–
Pomeau map, and the potential gγ is equal to − logDT1,γ .

We emphasize that our class SP is larger than the classes studied elsewhere.

Mathematics Subject Classification: 37E05

1. Introduction

This work is related to that in ‘Invariance principles in log density and convergence to stable
flows’ (see [FLa]) and ‘Self-similar return sets for some maps with an indifferent fixed point’
(see [FLb]). We refer the reader to those companion papers for general background, exposition
and motivation, and for further references.

We analyse the correlation and limit behaviour of partial sums for the stationary stochastic
process (f (T t (x)), µ), t = 0, 1, . . . , for functions f of superpolynomial variation, the
class SP defined at the start of section 2 (which includes the Hölder functions), where
T : 
+ → 
+ is the left shift map on 
+ = �∞0 {0, 1} and µ is the non-atomic equilibrium
measure [Wal75, Lop93] of a non-Hölder potential g = gγ belonging to a one-parameter
family, indexed by γ > 2 and described below. These potentials are also not of summable
variation (cf [Pol]).

Using renewal theory we calculate the decay of correlation of the stationary stochastic
process described above. This decay is polynomial with t : we show in theorem 4.1 for f ∈ SP
an upper bound of the order of C1t

2−γ in the case γ > 2; this estimate is sharp in the sense
that for each γ there exist functions f (in fact I[0] is an example) for which we show the lower
bound of C1t

2−γ (see theorem 2.8). In proving the lower bound we make use of Tauberian
theorems.

This generalizes some results in [Lop93] (see the appendix of [Lop90]).
Note that, in principle, having a polynomial upper bound does not preclude that the decay

is exponential. Indeed, for the expanding map T one can find a Hölder function f such that
the stochastic process Xt = f (T t (x)) is independent for the measure µ and therefore the
correlation is zero for all t . This is the reason for considering in the exact bound ‘some’ f and
not ‘any’ f .

For γ > 3 we prove the central (CLT) limit theorem for functions f in SP with respect
to these equilibrium measures (theorem 6.5). We use a Gordin–Liverani-type argument
(see [Via97, Bra88, Liv95]).

The potential gγ can be viewed as the log-derivative − logDT1 of a transformation
T1 = T1,γ which is a piecewise linear version of a one-dimensional smooth doubling map
T2 = T2,γ for γ > 2 with an indifferent fixed point [Lop90, Lop93, CF90, CG93, CGS92,
Bro94, Bro96, Man80]. For further explanation see [FLa]. In figure 1 we show the graphs of
the transformations T1 and T2. The map T2 depicted in figure 1 is the Manneville–Pomeau
map T2,γ : x 	→ x + x1+s (mod 1) where s = 1/(γ − 1).
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Figure 1. T1 is the linear by part version of T2.

Some papers which have results related to those presented here are [BFG99a, BFG99b,
Che95,You99,KMS97,Pol,PY,PS92,Mor93,Yur97,Bro94,Bro96,CF90,BG95,FS79,FS88,
CG93, CGS92, Pop79, LSV93, LSV99, Lop90, Lop93, LSV99, Iso99, Aar97, ADF92, AF,
ADU93].

We mention especially the nice paper [You99] where exact bounds for the convergence
to equilibrium (for observables and the Gibbs measure) for maps of Manneville–Pomeau type
are proved. Here in order to prove the exact bounds for the correlation coefficients we need a
more delicate estimate, see theorem 2.8. We note that this part of the proof makes use of some
form of monotonicity.

We refer the reader to [Hof77, Lop90, Lop93] for general properties of the potentials like
those studied here. Hofbauer’s work was part of the original inspiration for this paper.

In section 6 we show the central limit theorem (with Gaussian limiting distribution;
theorem 6.5), for γ > 3. The method breaks down for γ � 3.

There is a good reason for this: for the cases 2 < γ < 3 and 1 < γ < 2 one obtains
as limiting distributions the completely asymmetric stable laws of index α = γ − 1 and the
Mittag–Leffler laws, respectively (see [FLa, FLb] and also [Fel49]). In fact, for the transition
value γ = 3 the central limit theorem also holds (see [FLa]); however, we are not able to prove
this using the techniques of the present paper.

For these potentials (for γ > 2), unlike the classical (Hölder) case, there is no unique
equilibrium state: there are two such probability measures, the measure we are interested in,
denoted µ, and point mass at the point (111 . . .) ∈ 
+ [Hof77, Lop93].

From our point of view, for γ ∈ (1, 2), the natural measure is infinite and sigma-finite;
it is the unique invariant absolutely continuous measure (up to multiplication by a constant),
however, it no longer fits the usual definition of an equilibrium state (of which only one now
exists, the point mass [Hof77]). For this natural measure, logarithmic averages are known to
exist [ADF92], as well as invariance principles in log density (for all γ > 0) (see [FLa]); in
this paper we restrict attention to the finite measure case and hence to γ > 2.

A key tool we use in obtaining our principal estimates is renewal theory [KT75]; in one part
of the proof we also need a more delicate control via Tauberian theorems (see the comments
before theorem 2.8).

An application of the polynomial decay of correlation is the following: a classical result
in trigonometric series relates the rate of decay to the zero of the Fourier coefficients an of a
function F(λ) = ∑

n�0 an cos(nλ), λ ∈ [−π, π ] with the property of F being Hölder or at
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least in class Lp as a function of the variable λ. In [Bar], section 10 and [Pos79] this question
is studied.

Consider a function h with µ-mean zero and an, n � 0 the correlation coefficients
of the stationary stochastic process Xn = h(T n) with respect to µ, that is an =∫
h(T n(x))h(x) dµ(x). In this case the function F(λ) = ∑

n�0 an cos(nλ) is called the
spectral density function associated with h and µ (see, for example, [KT75]). From the
precise estimates obtained for our example and Tauberian theorems we show that for each
3 > γ > 2 then for the function h(x) = I[0](x) − µ[0], the spectral density F(λ) has the
‘ 1
f

-noise’ property. Precisely, we show that F(λ) is of the order of λ−β, β = 3 − γ > 0,
for λ approaching zero. For full details see theorem 2.8. The terminology 1/f used in
the literature is perhaps a bit confusing; f there denotes frequency, which in our notation
is denoted instead by λ; in that other notation, we are, in fact, showing the ‘1/f 3−γ -noise’
property.

2. Polynomial convergence of the Ruelle operator

Shift space; superpolynomial variation

We introduce a new class of functions more general than the Hölder functions.
We define 
+ = �∞0 {0, 1} and denote the left shift map on 
+ by T . We write z =

(z0z1 . . .) for a point in 
+ and define [w0w1 . . . wk] = {z: z0 = w0, z1 = w1, . . . , zk = wk};
this is called a k-cylinder set. The collection of all k-cylinder sets will be denoted by Ck . We
give the space 
+ the product topology, and define the (compatible) metric d(x, y) = 2−n,
where n is the greatest integer such that x, y lie in the same n-cylinder set. The Borel σ -algebra
of 
+ is denoted by B. We write C(
+) for the set of continuous real-valued functions on 
+.
We define the kth variation of f ∈ C(
+),

vark(f ) = sup{|f (x)− f (y)|: x, y ∈ C ∈ Ck}.
For α ∈ (0, 1), we define the class of functions whose variation is exponentially small as a
function of k, for base α:

Hα ≡ {f : ∃c > 0 with vark f � cαk}, for all k � 0}.
These are the Hölder functions with exponent − logα/ log 2 with respect to the metric d. We
write ‖ · ‖∞ for the sup norm on C(
+), and define a norm on Hα ⊆ C(
+) by

‖f ‖α ≡ ‖f ‖∞ + c

where c is the inf of the possible Hölder constants for that exponent (or equivalently, for that
base α); thus,

c = sup
k

{vark f · α−k}.

In the standard setting [Bow75], Hölder functions appear in two ways: as potential functions,
which are then used to define a Ruelle operator and from that the relevant invariant measure on
the space (the Gibbs or equilibrium state), and as an observable, making a measurement
on the system and for which one wants to study time averages, correlations and so on.
In our case, the potential will come from a specific one-parameter family of non-Hölder
potentials g = gγ for γ > 2. Our allowed observables will come from a class SP , the
functions with superpolynomial variation, defined as follows. First, for a > 0, we define
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ca = ca(f ) = lim supk(vark f/k−a) and write for the functions with polynomial variation of
exponent a

P(a) ≡ {f : ca(f ) <∞}.
Thus for f ∈ P(a) we have that for every δ > 0, vark f � ca(1 + δ)k−a , for all k larger than
a number which depends on δ and f . For the choice δ = 1, we will write ka = ka(f ) for this
number.

We define a norm on P(a) by

‖f ‖(a) ≡ ‖f ‖∞ + ca.

Next, we write

SP = {f ∈ C(
+): sup
a>0
{‖f ‖(a)} <∞}.

This is larger than the collection of all Hölder functions; one has

∪α∈(0,1)Hα � SP � ∩a>0P(a).

We define on SP
‖f ‖SP ≡ sup

a>0
{‖f ‖(a)}

which is clearly a norm.
Note that we have for f ∈ SP , for each a > 0,

vark f � 2‖f ‖SPk−a (1)

for all k > ka(f ).

Invariant measures and the Ruelle operator

Notation. We write an ≈ bn if limn→∞ an/bn = 1.
We will also use the following notation: the statement, an < C2n

δ+
means ‘for δ + ε, for

every ε > 0’, and an > C2n
δ− means ‘for δ − ε, for every ε > 0’.

We write IA for the indicator function of a set A; thus IA(z) = 1 if z ∈ A and = 0 if
z /∈ A.

We denote by Mk ⊂ 
+, for k � 1, the cylinder set [111 . . . 11︸ ︷︷ ︸
k

0] and by M0 the cylinder

set [0]. The ordered collection (Mk)
∞
k=0 is a partition of 
+; in other words these sets are

disjoint and their union is the whole space (minus the point (111 . . .)). Note that T maps
Mk bijectively onto Mk−1 for k � 1, and onto 
+ for k = 0. This partition therefore
gives a second nice symbolic dynamics for the map T , as a countable state Markov chain
(see [FLa]).

For γ > 1 a fixed constant, we consider the potential g(x) such that g(111 . . .) = 0,

g(x) =
{

ak = −γ log
(
k+1
k

)
for x ∈ Mk with k �= 0

a0 = − log(ζ(γ )) for x ∈ M0

where ζ is the Riemann zeta function. Note that g is a continuous function on 
+, since
g(x)→ 0 as x → (111 . . .) in 
+.

We observe that 0 < eg(x) < 1 for all x ∈ 
+ except for (111 . . .), where eg(x) = 1.
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By definition, ζ(γ ) = (1−γ + 2−γ + · · ·) and so the reason for the above apparently
mysterious value of a0 becomes clear: this choice just guarantees that the ak are normalized
in the following sense. Defining sk = a0 + a1 + · · · + ak , note that

esk = ea0(k + 1)−γ = (k + 1)−γ

ζ(γ )
(2)

hence
∑∞

k=0 esk = 1. This normalization has a geometrical meaning: it implies that the
potential can be derived in a natural way from a piecewise linear map of the interval (see [FLa]).

These potentials are not Hölder and, in fact, are not of summable variation. It is
known [Hof77] that the pressure P(g) = 0 and that there exist two equilibrium states for
such a potential g: point mass (the Dirac delta) at (111 . . .), and a second measure which
we shall denote by µ. Note that in [FLa] the roles of 0 and 1 have been reversed, to make
the correspondence with Manneville–Pomeau maps clearer; here we are sticking closer to the
usage of [Hof77].

We write partial sums as

S0φ(x) = 0, S1φ(x) = φ(x), . . . , Snφ(x) = φ(x) + φ(T (x)) + · · · + φ(T n−1(x)).

We recall that the Ruelle operator Lφ is defined by Lk
φf (z) =

∑
y: T k(y)=z eSkφ(y)f (y).

The dual operator L∗φ acts on a measure m by (L∗φm)(f ) = m(Lφf ) =
∫ Lφf dm. One

knows that the following are equivalent for a measure µ and a measurable function φ on 
+

(see [Kea72, Led74, PP90]).

(a) µ is invariant;
(b) the local Radon–Nikodym derivative (dµ ◦ σ)/dµ = e−φ = 1/p is normalized, i.e.∑

y: T k(y)=z p(y) = 1 (this is a g-measure in the terminology of Keane, for g = p);
(c) for a normalized potential φ, L∗φ(µ) = µ.

We shall need the following:

Lemma 2.1. Let φ be a continuous non-zero potential which is constant on the sets
M0,M1, . . . . Assume m is a probability measure such that L∗φm = m. Then for any cylinder
set [w0 . . . wk] = [w0 . . . wk−10],

m[w0 . . . wk−10] = eSkφ(w0...wk−10)m[0] (i)

and for all t � k,

Lt
φI[w0...wk−10] = eSkφ(w0...wk−10)Lt−k

φ I[0]. (ii)

Proof. Note that any set of the form [w0 . . . wk−10] is completely contained in some Mi ,
hence by the assumption φ is constant there. Now for y = (y0y1 . . .), T k(y) = z iff
(ykyk+1 . . .) = (z0z1 . . .), so therefore I[w0...wk ](y) = 1 and T k(y) = z iff y = (w0 . . . wkz1 . . .)

and z0 = wk . Hence

Lk
φI[w0...wk ](z) ≡

∑
y: T k(y)=z

eSkφ(y)I[w0...wk ](y) = eSkφ(w0...wkz1...)I[wk ](z)

= eSkφ(w0...wk−10)I[wk ](z) = eSkφ(w0...wk−10)I[0](z).

Therefore, m[w0 . . . wk] = (L∗kφ m)[w0 . . . wk] = m(Lk
φI[w0...wk ]) = eSkφ(w0...wk−10)m[0],

giving statement (a).
The above includes a proof of (b) for the case t = k; for t > k the result then follows,

since Lt
φ = Lt−k

φ ◦ Lk
φ . �
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Theorem 2.2 (Perron–Frobenius theorem for the potentials gγ). Assume γ > 2. There
exists a unique probability measure ν on 
+ which satisfies L∗gν = ν.

There is a unique continuous extended-real-valued function h with Lgh = h, normalized
so ν(h) = 1; h is finite except at (111 . . .) where it has value +∞.

Proof. First we prove uniqueness of a measure satisfying the above conditions. As a first step
we show that such a ν can have no atomic part, i.e. can contain no point masses. We write
ν = νa + νc for the atomic and continuous parts; we want to show νa = 0.

L∗g acts on point masses as

L∗g(δx) = eg(y)δy + eg(w)δw (3)

where T −1(x) = {y,w}. Now ν = L∗g(ν) = L∗g(νa + νc) = L∗g(νa) + L∗g(νc), hence L∗g
preserves νa and νc. If νa has some mass at the point w = (w0w1 . . .), it also has mass at all
points in the grand orbit ofw, all the pre- and forward images ofw, by 1. Now from lemma 2.1
since eg(z) < 1 for all z �= (111 . . .) in 
+, where the value is 1, the measures of cylinders
ν[w0 . . . wk−10] → 0 as k→∞, unless wi is eventually 111 . . . , i.e. unless w is in the grand
orbit of (111 . . .). Therefore, if νa �= 0, it has positive mass at that fixed point. We have

νa(111 . . .) = L∗gνa(111 . . .) = eg(0111...)νa(0111 . . .) + eg(111...)νa(111 . . .)

= eg(0111...)νa(0111 . . .) + νa(111 . . .)

yet we know eg(0111...) > 0 and νa(0111 . . .) > 0, giving a contradiction. Hence νa = 0 and
the measure is purely continuous.

From lemma 2.1, for any cylinder set of the form [w0 . . . wk−10], we have

ν[w0 . . . wk−10] = eSkg(w0...wk−10)ν[0].

Hence (since all cylinders are unions of sets of that form) we will know that ν is unique if we
can show that ν[0] is uniquely defined by the conditions. Now in particular the above equation
says that, writing for k � 0,

νk ≡ ν(Mk) = ν[11 . . . 1︸ ︷︷ ︸
k

0]

we have

νk = exp
{
Sk+1g(11 . . . 1︸ ︷︷ ︸

k−1

0)
}
ν[0] = esk−a0ν0.

By assumption, ν is a probability measure; we have equivalently (since, as we now know, there
is no mass at (111 . . .)),

∑∞
k=0 νk = 1. Hence

1 =
( ∞∑
k=1

esk−a0

)
ν0 + ν0 = ν0

( ∞∑
k=0

esk
)

e−a0 .

Therefore,

ν0 = ν(M0) = es0 = ea0 = 1

ζ(γ )
.

Hence ν is determined and the eigenmeasure is unique. Note that the above formula therefore
tells us that, using (2),

νk = ν(Mk) = esk = (k + 1)−γ

ζ(γ )
for k � 0. (4)
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Next we prove existence. We define ν as above on cylinder sets of the form [w0 . . . wk−10];
for sets ending in a 1, i.e. of the form [w0 . . . wk−11], we note that

[w0 . . . wk−11] = [w0 . . . wk−110] ∪ [w0 . . . wk−1110] ∪ · · ·
and define the measure to be the sum of these. To prove existence it is sufficient to show
that this definition is additive on k-cylinder sets, for each k. In fact, the argument just given
contains the proof that ν[0] + ν[1] ≡ ν[0] + ν[10] + ν[110] + · · · = 1, so ν is additive on
1-cylinders. One can show inductively that this calculation applies to the case k � 1; we leave
details to the reader (see also [FLa]).

Next we construct an eigenfunction h for Lg , with eigenvalue 1. We will write hk for the
value of h onMk . From the equation Lgh = hwe know that h is an eigenfunction iff it satisfies
this sequence of equations: ea0h0 + ea1h1 = h0, ea0h0 + ea2h2 = h1, ea0h0 + ea3h3 = h3, . . . and
so h1 = (h0 − ea0h0)e−a1 , and for k � 1, hk = (hk−1 − ea0h0)e−ak .

We define such a function h̃ by choosing arbitrarily

h̃0 = (1−γ + 2−γ + · · ·) = e−a0 ≡ ζ(γ ) > 1

and then setting

h̃1 = 2γ (2−γ + 3−γ + · · ·)
h̃2 = 3γ (3−γ + 4−γ + · · ·)

and so on. This defines h̃ on 
+ \ {(111 . . .)}; we set h̃(111 . . .) = ∞. Then h̃ is an
eigenfunction, satisfying Lg(h̃) = h̃; what we need to check at the point (111 . . .) is that

(Lgh̃)(111 . . .) = eg(0111...)h̃(0111 . . .) + eg(111...)h̃(111 . . .) = h̃(111 . . .).

This is indeed valid, since h̃(111 . . .) = ∞.
Next we will verify that h̃ is a continuous extended-real-valued function; for this we

estimate its values near (111 . . .); we will also need these computations later on.
Our formula for h̃(x), for x ∈ Mt , is

h̃(x) = h̃t = ν−1
t

∞∑
i=t

νi . (5)

Since (for γ > 1)∫ ∞

t+1
x−γ dx �

∞∑
i=t

i−γ �
∫ ∞

t

x−γ dx

one has

(t + 1)1−γ

γ − 1
�

∞∑
i=t

i−γ � t1−γ

γ − 1
� t1−γ (6)

with the last inequality holding for γ > 2.
Since (t + 1)/t → 1, we have that

∞∑
i=t

i−γ ≈ t1−γ

γ − 1
≈ (t + 1)1−γ

γ − 1
. (7)

Therefore,

h̃t ≡ (t + 1)γ
∞∑

i=t+1

i−γ ≈ t + 1

γ − 1
. (8)
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Thus h̃(x)→∞ as x → (111 . . .), so h̃ is continuous, as claimed. Finally, we note that
the integral

∫
h̃(x) dν(x) is finite if and only if γ > 2 (since h̃nνn ≈ (n + 1)1−γ ). For γ > 2,

one can normalize h̃, multiplying by a constant u to obtain h = uh̃ with
∫
h dν = 1.

This completes the proof of the theorem. �
The value of the above constant is

u = 1∑∞
t=1 tνt−1

= ζ(γ )∑∞
t=1 t

1−γ =
ζ(γ )

ζ(γ − 1)
. (9)

Note that uζ(γ ) = h0 = h(x),∀x ∈ M0.
Consider now the invariant probability measure µ = hν. We have, from (4), (5) and (9),

that for t � 0,

µt = µ(Mt) = µ[111 . . . 11︸ ︷︷ ︸
t

0] = νt u h̃t = u

∞∑
i=t

νi = 1

ζ(γ − 1)

∞∑
i=t+1

i−γ . (10)

Note that

µ(M0) = ζ(γ )

ζ(γ − 1)
.

From (6) we have therefore the following upper and lower bounds: for all t � 1,

(t + 2)1−γ

(γ − 1)ζ(γ − 1)
� µt � (t + 1)1−γ

(γ − 1)ζ(γ − 1)
� t1−γ

(γ − 1)ζ(γ − 1)
. (11)

For γ > 2 the constant is < 1 so this gives

µt � (t + 1)1−γ � t1−γ . (12)

As Lg(h) = h, then∑
T (x)=y

eg(x)h(x) = h(y)

and therefore ∑
T (x)=y

eg(x)
h(x)

h(y)
=

∑
T (x)=y

eg(x)
h(x)

h(T (x))
= 1. (13)

We define a second potential ψ by:

ψ(x) = g(x) + logh(x)− logh(T (x)) (14)

where we define∞−∞ = 0, and write

p(x) = eψ(x) = eg(x)
h(x)

h(T (x))
(15)

we note that p(111 . . .) = 1 and p(0111 . . .) = 0.
Replacing the potentialg by the cohomologous potentialψ does not change the equilibrium

state (Gibbs state). This makes some of our calculations easier, but some also harder, as the
potential now depends on two symbols of the process generated by the partition (Mk)

∞
k=0.

Theorem 2.3. Let γ > 2. The measure µ = h · ν is an invariant probability measure. It is the
unique normalized eigenmeasure for eigenvalue 1 for L∗ψ , and is a p-balanced measure for
p = eψ . There is a unique normalized eigenfunction for eigenvalue 1, the constant function 1.
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Proof. A simple computation using lemma 2.1 shows µ = hν is invariant. (For other proofs
see lemma 1.13 in [Bow75], or for the present case, [FLa].) �

Theorem 2.4 (See [Hof77]). There are exactly two equilibrium states for the potential gγ ,
γ > 2 : the measure µ and point mass at (111 . . .).

Remark 2.1. The point mass at (111 . . .) is T -invariant and does satisfy the definition of an
equilibrium state, but it is not invariant for L∗ψ , as a consequence of theorem 2.2 above.

Note that h(x) and g(x) are constant in each interval Mt and that the value ψ(x) depends
on g(x), h(x) and h(T (x)).

Lemma 2.5. For the potential ψ , for any cylinder set [w0 . . . wk−10] where k � 1,

µ[w0 . . . wk−10] = eSkψ(w0...wk−10)µ[0] (i)

and for all t � k,

Lt
ψI[w0...wk−10] = eSkψ(w0...wk−10)Lt−k

ψ I[0]. (ii)

Hence

µ[w0 . . . wk−10]

µ[0]
= eSkψ(w0...wk−10) (iii)

and

Lt
ψI[w0...wk−10] − µ[w0 . . . wk−10] = µ[w0 . . . wk−10]

µ[0]

(Lt−k
ψ I[0] − µ([0])

)
. (iv)

We now calculate explicitly ψ(x), which now depends on which element of (Mk)
∞
0 the

point x lies in at time 1 as well as at time 0.
Recall that for x ∈ Mn where n � 1, we know that T (x) ∈ Mn−1. Therefore, ψ(x) is

constant on Mn when n � 1; we shall write ψn ≡ ψ(x) in this case. For x ∈ M0 on the
other hand, all possible future states M0,M1, . . . can occur. There we write ψk

0 = ψ(x) for
this value, when x ∈ M0 ∩ T −1(Mk) where k �= 0. We shall also use a second notation for
these values: since [00] = M0 ∩ T −1M0, [010] = M0 ∩ T −1M1, [0110] = M0 ∩ T −1M2,
and [10] = M1, [110] = M2, . . . , we write, for example, ψ(110) = ψ2 = ψ(110 . . .), and
ψ(0110) = ψ2

0 = ψ(0110 . . .).
Assume first that x ∈ Mn where n � 1. Since

h

h ◦ T =
h̃

h̃ ◦ T
we have, using (7):

eψn ≡ exp
{
ψ(11 . . . 1︸ ︷︷ ︸

n

0)
}
≡ egn

hn

hn−1
=

(
n + 1

n

)−γ
h̃n

h̃n−1

≈
(
n + 1

n

)1−γ
. (16)

For x ∈ M0 ∩ T −1(Mk) with k �= 0 we have

eψ
k
0 ≡ exp

{
ψ(0 11 . . . 1︸ ︷︷ ︸

k

0)
}
≡ ea0

h̃0

h̃k
= 1

h̃k
≈ γ − 1

k + 1
(17)

again using (7).
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Lastly, for x ∈ M0 ∩ T −1M0,

eψ(x) ≡ eψ
0
0 = eg0

h̃0

h̃0

(18)

= eg0 = ea0 = 1

ζ(γ )
. (19)

Recall that γ + by definition means: for γ + ε, for every ε > 0.
Now we come to the main results of this section, where we describe the behaviour of the

Ruelle operator, at points in Ms , when applied to the indicator function of a cylinder set.

Estimates for the cylinder set [1]

We will show:

Theorem 2.6.

(a) For γ > 2, there exists a constant ĉγ such that for all z ∈ Ms , for s � 0,

|µ[1]− Lt
ψI[1](z)| � ĉγ

(
(s + t)2−γ + B(s, t)

)
(20)

where

B(0, t) = 0 and B(s, t) =
(
s + t

s

)1−γ
for s � 1.

(b) For z ∈ M0, we have furthermore that ∃C1, C1 > 0 such that

C1t
2−γ � µ[1]− Lt

ψI[1](z) � C1t
2−γ . (21)

Proof. For t � 1, we have

(Lt
ψI[1])(z) =

∑
y0...yt−1

eStψ(y0...yt−1z)I[1](y0 . . . yt−1z)

=
∑

y1...yt−1

eStψ(1y1...yt−1z)

=
1∑

yt−1=0

eψ(yt−1z)
1∑

yt−2=0

eψ(yt−2yt−1z) . . .

1∑
y1=0

eψ(y1...yt−1z)
(
eψ(1y1...yt−1z)

)
. (22)

Let t be fixed with t � 1.
We claim that the function Lt

ψI[1](z) is constant on M0, i.e. that for z = (z0z1z2 . . .) =
(0z1z2 . . .) the value does not depend on z1, z2, . . . . We have previously seen that ψ(x) is
constant on any cylinder of the form [∗ ∗ ∗0], where the ∗ denotes 0 or 1 and the number of ∗s
is � 1. Consequently, for each quantity in the above expression, if z0 = 0 one need look no
further to ascertain the corresponding value; this verifies the claim.

For z /∈ M0, the same reasoning applies: now we need look no further than the first 0
which occurs in z = (z0z1z2 . . .). Supposing z is of the form z = (11 . . . 1︸ ︷︷ ︸

s

0zs+1 . . .), then any

part of the above expression of the form eψ(yl ...yt−1z) does not depend on zs+1, zs+2, . . . (Note
that if a 0 already occurs in the yi , then we can of course stop earlier.) The points z of that
form are exactly those in Ms for s � 1.

In summary, for t fixed, and t � 1, Lt
ψI[1](z) is constant on each Mn for n � 0.

We write this value as follows, where z ∈ Ms for s � 0:

As
t = Lt

ψI[1](z). (23)

For s = 0 we shall also write At ≡ A0
t . �
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Figure 2. Geometrical view of the renewal equation.

The case z ∈ M0

From (22) and figure 2 one can see that At ≡ A0
t with t � 1 satisfies

At = At−1(e
ψ0

0 ) + At−2(e
ψ1

0 eψ1) + At−3(e
ψ2

0 eψ2 eψ1) + · · ·
+A1(e

ψt−2
0 eψt−3 eψt−4 · · · eψ1) + (eψt eψt−1 · · · eψ1). (24)

Recalling that for n � 1

eψn =
(
n + 1

n

)−γ
h̃n

h̃n−1

and for n � 0,

eψ
n
0 = ea0

h̃0

h̃n

we calculate for the coefficient in (24) of, for instance, At−4:

eψ(01110)eψ(1110)eψ(110)eψ(10) = eψ
3
0 eψ3 eψ2 eψ1

=
(

ea0
h̃0

h̃3

)(
4

3

)−γ
h̃3

h̃2

(
3

2

)−γ
h̃2

h̃1

(
2

1

)−γ
h̃1

h̃0

= ea0 4−γ . (25)

To calculate the last term of (24), note that since h̃0 = e−a0 , and

h̃n = (n + 1)γ
∞∑

i=n+1

i−γ
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eψneψn−1 · · · eψ1 = (n + 1)−γ
h̃n

h̃0

= ea0

∞∑
i=n+1

i−γ .

Therefore, continuing the equation (24) above we have

At = At−1ea0 1−γ + At−2ea0 2−γ + At−3ea0 3−γ + · · · + A1ea0(t − 1)−γ + ea0

∞∑
i=t+1

i−γ . (26)

This is valid for all t � 1; we note that, in particular, for t = 1 one has only the final term,
and so

A1 = eψ1 = ea0

∞∑
i=2

i−γ = L1
ψI[1](z)

z in M0.
Equation (26) is a recurrence relation; thus, since A0 = 0 and A1 are specified (as above),

At is then determined recursively for all t > 1.
Formulae of this type come up in Tauberian theory, with applications to complex

analysis, harmonic analysis, number theory and renewal theory. The latter is part of
probability theory, which deals with counting the number of events when one has an
independent identically distributed positive waiting time between occurrences of the events.
What we want is to describe the asymptotic behaviour of At for t � 1. Standard
results from this theory will help us in carrying out our calculation. For background see
[KT75, GS92, Fel49, Fel71, Bar, Bre68, Pos79].

For γ > 1, now consider the probability measure on the line with distribution function F ,
defined by

dF = ea0

∞∑
i=1

i−γ δi = 1

ζ(γ )

∞∑
i=1

i−γ δi (27)

where δi is point mass (the Dirac delta) at i (and where the measure is written above in Stieltjes
form as dF ). In the probabilistic interpretation, dF is the distribution of waiting times.

We set

fi = i−γ

ζ(γ )
i � 0. (28)

The expected waiting time is the expected value of this probability measure which we
write as

E ≡
∞∑
i=1

ifi = 1

ζ(γ )

∞∑
i=1

i1−γ = ζ(γ − 1)

ζ(γ )
≡ u−1 > 1 (29)

with the last equality coming from (9).
We write, for t � 1, the last term in (26) as at ; thus

at ≡ 1

ζ(γ )

∞∑
i=t+1

i−γ . (30)

From (6), we have for all t , and all γ > 2:

(t + 2)1−γ

ζ(γ )(γ − 1)
� at � (t + 1)1−γ

ζ(γ )(γ − 1)
� (t + 1)1−γ � t1−γ . (31)
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We note that

A1 = ea0

∞∑
i=2

i−γ = a1.

Equations (24) and (26) can therefore be rewritten in the form

At =
t−1∑
i=1

At−i
1

ζ(γ )
i−γ + at = at +

∫ ∞

−∞
At−x dF(x)

where we take At = 0 and at = 0 for t � 0. (The limits of integration could of course
be replaced by 1 and t − 1.) This is an arithmetic renewal equation; it can be written as a
convolution equation: A = a + A ∗ dF . Here a and dF are fixed and one wishes to solve
for A, i.e. to find a fixed point for this affine map on sequence space. See also equation (40)
below.

The solution of this equation in renewal theory proceeds as follows. Defining Fj to
be the distribution function of the j th convolution of F with itself, i.e. the distribution
of the independent random walk generated by F after j steps, one defines the renewal
function

Wn ≡
∞∑
j=0

Fj (n).

Another interpretation of Wn is that it is the expected number of events up to time
n [GS92, KT75]. One then shows that W is the unique solution to a second renewal
equation:

W = F + W ∗ dF. (32)

In our case, W0 = 0 and Wn for n > 0 solves

Wn = 1

ζ(γ )

n∑
i=1

i−γ +
1

ζ(γ )

n∑
i=1

Wn−i i−γ .

(This is, again, a recurrence relation, so the specification of W0 determines Wn for n �
1.)

For γ > 2, then the sum
∑∞

t=1 at is finite so theorem 5.1 in [KT75] applies. Therefore,
the solution to the related equation above, A = a + A ∗ dF , is given by A = a + a ∗ dW , i.e.
for integers t (recall At = 0 for t � 0):

At = at +
t−1∑
i=1

at−i dWi = at +
t−1∑
i=1

at−i (Wi −Wi−1). (33)

Now one sees (cf [KT75]) that

lim
t→∞At = 1

E

∞∑
j=1

aj (34)

which by definition equals

1

E

∞∑
j=1

(
ea0

∞∑
i=j+1

i−γ
)
= ea0

E

∞∑
j=1

j (j + 1)−γ . (35)
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Meanwhile, from (10), we have

µ[1] =
∞∑
j=1

µ([11 . . . 1︸ ︷︷ ︸
j

0]) ≡ u

∞∑
j=1

∞∑
i=j

νi ≡ ea0

E

∞∑
j=1

j (j + 1)−γ . (36)

So, combining (34)–(36),

µ[1] = lim
t→∞At . (37)

Remark 2.2. One part of the renewal theorem states that limi→∞Wi+1 −Wi = 1
E
= u. To

estimate the difference µ[1]−At we shall need a precise estimate of this rate of convergence.
Note first that

0 � (Wi+1 −Wi)− 1

E
(38)

(see pp 191–2 in [KT75]). Moreover, making use of a theorem of Nagaev, theorem 4′, p 98
in [Pos79], one can prove this stronger statement: ∃c̄0 > 0 such that for all i,

0 < (Wi+1 −Wi)− 1

E
< c̄0i

(2−γ )+
. (39)

This last expression can then be used to give a proof of part (a) for the case z ∈ M0. Indeed,
this argument can be extended to a statement like (a) for a more general class of potentials
similar in nature to ours. However, this approach using Nagaev’s estimate (39) is not enough
for the lower bound in part (b). Therefore, we will proceed in another way which will yield
directly both the upper and lower estimates, for z ∈ M0.

Thus, at this point we move on to the proof of (b).

Proof of theorem 2.6, part (b). We mention that our proof of the lower bound will, in a very
strong way, use the special form of our potential, that is, of the sequence fi defined in (28)
above.

For this part we make the assumption that γ > 2. We summarize the definitions from
above that we need, together with some basic properties of our example.

The sequence at defined in (30) satisfies

at = 1∑∞
n=1 n

−γ

∞∑
j=t+1

j−γ t = 1, 2, . . .

is positive, summable and monotonically decreasing. By convention we take a0 = 0.
The sequence fn from (28) is

n−γ∑∞
j=1 j

−γ γ > 2 n > 0

is also positive, summable and is monotonically decreasing; it is a probability sequence, with
finite expected value:

∑∞
n=1 tft <∞. By convention f0 = 0.

We observe that for the sequence At = Lt
ψI[1](z), z ∈ M0 defined following (23), we

have A0 = a0 = 0, A1 = a1; for t > 1, At satisfies the renewal equation

At = at + At−1f1 + At−2f2 + · · · + A0ft . (40)

Let Wt be the solution of the renewal equation (32): then W0 = 0,W1 = f1 and for t > 1

Wt =
( t∑

j=1

fj

)
+ Wt−1f1 + Wt−2f2 + · · · + W0ft .
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From [KT75], p 184, theorem 4.1 and p 191, theorem 5.1 we have thatA1 = a1+A0f1 = a1

and for t > 1, the term At can be written as

At = at + at−1(W1 −W0) + at−2(W2 −W1) + · · · + a1(Wt−1 −Wt−2)

and At converges to∑∞
n=1 at∑∞
n=1 tft

= µ[1].

Next, we shall show that At is increasing; this will be essential for the lower bound
estimation in part (b) of the theorem.

Lemma 2.7. The At are positive and for t > 1 monotonically increasing in t .

Proof. First, note that At is positive by induction in the renewal equation (40).
Now we will show monotonicity of At . Consider Bt = At+1 − At for t � 0. Remember

that f0 = 0, a0 = 0, A0 = 0, W0 = 0 and A1 = a1 (therefore B0 = a1).
It follows from equation (40) (considering the difference At+1 −At ) that for t > 0 the Bt

satisfy

Bt = (at+1 − at ) + Bt−1f1 + Bt−2f2 + · · · + B1ft−1 + B0ft .

Note that for t > 0, at+1 − at = −ft+1.
Define bt = (at+1 − at ) = −ft+1 < 0, for t > 0 and b0 = a1. Then Bt satisfies for t > 0

Bt = bt + Bt−1f1 + Bt−2f2 + · · · + B1ft−1 + B0ft (41)

and B0 = b0 = a1.
We want to show that Bn > 0, for all n.
Consider now the following power series in the complex variable z for |z| < 1:

B(z) =
∞∑
n=0

Bnz
n and f (z) =

∞∑
n=1

fnz
n.

From relation (41) and bt = −ft+1 it follows that

B(z) = a1 +
f1z− f (z)

z
+ B(z)f (z).

Therefore,

B(z) = 1

1− f (z)

(
a1 +

f1z− f (z)

z

)
.

We define cn to be the coefficients of the power series

1

1− f (z)
=

∞∑
n=0

cnz
n. (42)

Using the fact that

(1− f (z))

∞∑
n=0

cnz
n =

(
1−

∞∑
n=1

fnz
n

) ∞∑
n=0

cnz
n = 1

we obtain for n > 0 the relations c0 = 1,

cn −
n∑

j=1

fjcn−j = 0
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or equivalently

−
n∑

j=2

fjcn−j = f1cn−1 − cn.

Now we compute the sum

B(z) =
∞∑
n=0

cnz
n

(
a1 +

f1z− f (z)

z

)
=

∞∑
n=0

cnz
n (f2 − f2z + f3 − f3z

2 + f4 + f4z
3 + · · ·)

= c0(f2 + f3 + · · ·) +
(
c1(f2 + f3 + · · ·)− c0f2

)
z

+
(
c2(f2 + f3 + · · ·)− (c1f2 + c0f3)

)
z2 + · · ·

+

(
cn−1(f2 + f3 + · · ·)−

( n∑
j=2

fjcn−j

))
zn−1 + · · · .

Using the fact that
∑∞

j=1 fj = 1, the last expression is

B(z) = (f2 + f3 + · · ·) +
(
c2(f2 + f3 + · · ·) + c2f1 − c3

)
z +

(
c3(f2 + f3 + · · ·)

+(c3f1 − c4)
)
z2 + · · · + (

cn(f2 + f3 + · · ·) + (cnf1 − cn+1)
)
zn−1 + · · ·

= (f2 + f3 + · · ·) +
(
c2 − c3

)
z +

(
c3 − c4)

)
z2 + · · · (cn−1 − cn

)
zn−1 + · · · .

The last expression gives a new form for the coefficients Bn of the power series for B(z).
Thus in order to demonstrate that Bn > 0 for all n all we have to show is that the sequence cn
is monotonically decreasing.

It follows from a statement in Brietzke [Bri00] (using [Kal28]) that for the sequence fj
as above, the coefficients cn of the power series in (42) are decreasing.

This result follows from a more general result: if
∑∞

j=1 fj = 1 and if the sequence fj
extends to some function F defined on the reals so that fj = F(j) is > 0 and decreasing and
such that logF(x) is convex, and if also f2 � (1− f1)f1, then the above claim is true, that is
the cn are decreasing. Taking F(x) = x−γ gives this result for our example (see [Bri00] for a
full explanation).

Finally, from the fact that the cn are monotonically decreasing we conclude that the
sequence At is monotonically increasing, concluding the proof of the lemma. �

Now we recall what we wish to prove, part (b) in theorem 2.6: that there exist C1, C1 > 0
such that C1n

2−γ � µ[1] − An � C1n
2−γ . To prove this we shall make use of two classical

theorems of Fourier analysis; see p 230 of [Bar], vol II and also [Har49].

Theorem A. Suppose g(θ) = ∑∞
n=1 bn sin(n θ), where bn converges to zero. If a > 0 and

g(θ) is Hölder of order a then there exists a constant c such that bn < cn−(1+a).

This has a converse:

Theorem B. Suppose g(θ) =∑∞
n=1 bn sin(n θ), where bn is monotonically decreasing to zero.

If a > 0 and there exists a constant c such that bn < cn−(1+a), then g(θ) is Hölder of order a.

We will also need a theorem from [Pos79, p 33].



1088 A M Fisher and A Lopes

Theorem C. Let
∑∞

n=1 bnz
n be a power series converging for |z| < 1. Suppose that the

coefficients bn are non-negative and non-increasing. Suppose in addition that

∞∑
n=1

bnz
n = 1

(1− z)β
+ o

(
1

(1− t)β

)

for some β, 0 < β < 1. Then

lim
n→∞;(β)n1−βbn = 1.

There is a converse of theorem C as well (see theorem 2, p 12 [Pos79]).

Theorem D. Let δ > 0, A be constants and let

SN =
N∑
n=1

bn ≈ ANδ

;(1 + δ)

as N goes to∞, then

lim
x→1−0

(1− z)δ
( ∞∑

n=1

bnz
n

)
= A.

We note that by taking z = eiθ in the last two theorems one sees the relationship to the first
two; the value θ = 0 corresponds to z = 1. Theorems A–D are Tauberian theorems, which
describe different aspects of the behaviour of the series

∑∞
n=1 bnz

n for z close to 1, in terms of
the rate of convergence of the bn to zero.

Setting Vt = µ[1]− At , then from the renewal equation (40), it follows that

Vt = µ[1](ft + ft+1 + · · ·)− (ft+1 + ft+2 + · · ·) +
t−1∑
j=1

Vt−j fj .

Note that since At is monotonic, so is Vt .
Setting Kt = µ[1](ft + ft+1 + · · ·)− (ft+1 + ft+2 + · · ·), the last equation can be written as

Vt = Kt +
t−1∑
j=1

Vt−j fj .

Note that Kt goes to zero with order t1−γ , since µ[1] < 1. Moreover, SN =
∑N

t=1 Kn ≈
CNγ−2.

Consider the power series

V (z) =
∞∑
n=1

Vnz
n f (z) =

∞∑
n=1

fnz
n and K(z) =

∞∑
n=1

Knz
n.

From the equation of the Vt above

V (z) = K(z) + f (z)V (z)

and therefore,

V (z) = K(z)

1− f (z)
.

We study first the case 3 > γ > 2.
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Considering now z = eiθ = cos θ + i sin θ , bn = nfn and a = γ − 2 in theorems A and B,
then

f ′(z) =
∞∑
n=1

nfnz
n−1

exists and is Hölder of class a. We know from theorem B (taking there bn = Kn) that K(z) is
Hölder of class γ − 2 since Kn is of the order of n1−γ .

Dividing by (1− z)γ−3 in both sides of the last equation we obtain

V (z)

(1− z)γ−3
= K(z)

(1− z)γ−2

1− z

1− f (z)
.

It is important to note that these limits exist:

lim
z→1−

1− z

1− f (z)
and lim

z→1−

K(z)

(1− z)γ−2
.

The first is due to the fact that f is differentiable at 1 (see [Bar]) and the second follows from
theorem D. We note that SN =

∑N
t=1 Kn ≈ CNγ−2.

From theorem C we see that for 2 < γ < 3, taking β = 3−γ and bn = Vn, the coefficients
Vn = µ[1]−An satisfy the condition we wish to prove, of part (b) in theorem 2.6. Indeed, the
limit of

µ[1]− An

n2−γ = Vn

n2−γ

asn→∞ exists (this follows from considering the series
∑∞

n=1 dVn z
n with a suitable constant

d and applying theorem C). We emphasize the important role played here by the monotonicity
of the Vn (which followed from that of the An); this guaranteed the hypothesis of theorem C.

For the case γ > 3 the last relation is also true. This is obtained using the fact that K(z)

is differentiable of class Cγ−2. Taking the k-derivative of K(z), where k is the integer part of
γ − 2, we obtain a (γ − 2− k)-Hölder function and we apply a similar argument to that used
before.

This concludes the proof of part (b) of theorem 2.6. �

We shall continue the proof of theorem 2.6 after we show how part (b) of the theorem can
be applied to prove lower as well as upper decay of autocorrelation estimates for a specific
function, and show the relation of this to ‘1/f -noise’; see also the explanation and definition
given in the introduction.

Theorem 2.8. (Lower and upper bounds for decay of autocorrelation and ‘1/f -noise’
phenomenon for I[0]).
(a) For γ > 2 and ϕ(x) = φ(x) = I[0](x), there exist c, C > 0 such that

c t2−γ �
∫

(ϕ ◦ T t ) φ dµ−
∫

ϕ dµ
∫

φ dµ � C t2−γ . (43)

(b) For γ ∈ (2, 3), the sequence of random variables φ ◦ T t exhibits 1/f 3−γ -noise.

Proof. Recall that At = Lt I[1](z) for z ∈ M0, where this function is constant. We
define Xt = Lt

ψI[0](z) for z ∈ M0 (where, similarly, this is constant). Next note that
Lt I[0] + Lt I[1] = Lt I
+ ≡ 1 and µ[0] + µ[1] = 1. Therefore, the rate of convergence of
At to µ([1]) is the same as the rate of convergence of Xt to µ([0]). That is, the monotonicity
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of the sequence of numbers At implies that of the Xt , and from part (b) of theorem 2.6 we
have:

C1t
2−γ � Xt − µ[0] � C1t

2−γ . (44)

By proposition 6.1 below we have that
∫
(ϕ ◦ T t )φ dµ = ∫

ϕ Lt
ψ (φ) dµ.

Therefore, we have∫
(ϕ ◦ T t )φ dµ =

∫
φ Lt

ψ (φ) dµ =
∫

[0]
Lt
ψ (φ) dµ =

∫
[0]

Xt dµ = µ([0]) ·Xt (45)

and so: ∫
(ϕ ◦ T t )φ dµ−

∫
ϕ dµ

∫
φ dµ = µ([0]) · (Xt − µ([0])

)
. (46)

Hence from (44), we have proved part (a), taking c, C to be µ([0]) times C1, C1.
It follows from this that the spectral measure (see theorem 7.3 and definitions in section 9.7

in [KT75]),

F(λ) =
∞∑
t=0

( ∫
(φ ◦ T t )φ dµ−

∫
φ dµ

∫
φ dµ

)
cos(t λ)

then (by the theorems A–D above) F is Hölder for γ > 3 and F(λ) ≈ λγ−3, when λ ≈ 0,
for 3 > γ > 2 (that is, there exists c, C such that cλγ−3 � F(λ) � Cλγ−3). For this last
statement apply theorem D above, with z = eitλ. Note that z = 1 corresponds to λ = 0. �

We mention that a similar result proved using other methods appears on p 163 in [Lop93].
Now we return to the proof of theorem 2.6, part (a). For the rest of the proof (and the rest

of the paper) we shall have no further need for the lower bound given in part (b).

Proof of theorem 2.6 (The case z ∈ Ms for s � 1). Next we will consider z of the form
z = (11 . . . 1︸ ︷︷ ︸

s

0zs+1 . . .), i.e. where z ∈ Ms, for s � 1. We know from [Hof77] that for γ > 2,

writing

As
t ≡ Lt

ψI[1](z) (47)

then As
t converges to µ[1] as t →∞; we will show more precisely that there exists a constant

ĉγ such that for z as above,

|µ[1]− As
t | � ĉγ

(
(s + t)2−γ +

(
s + t

s

)1−γ)
.

Recall that we are writing ψn
0 ≡ ψ(0 11 . . . 1︸ ︷︷ ︸

n

0), ψn ≡ ψ(11 . . . 1︸ ︷︷ ︸
n

0). From figure 3 it follows

that

As
t = At−1eψ

s
0 + At−2(e

ψs+1
0 eψs+1) + At−3(e

ψs+2
0 eψs+2 eψs+1) + · · ·

+A1(e
ψt+s−2

0 eψt+s−2 . . . eψs+1) + (eψs+t eψs+t−1 . . . eψs+1).

The coefficient for At−1 is, from (17),

eψ
s
0 = ea0

h̃0

h̃s
= 1

h̃s
=

(
s + 1

s + 1

)−γ 1

h̃s
.
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So by (16) and (17) we can write the above expression as

As
t = At−1

(
s + 1

s + 1

)−γ 1

h̃s
+ At−2

(
s + 2

s + 1

)−γ 1

h̃s
+ · · · + A1

(
s + t − 1

s + 1

)−γ 1

h̃s

+

(
s + t + 1

s + 1

)−γ
h̃s+t

h̃s

= (s + 1)γ

h̃s

(
At−1(s + 1)−γ + · · · + A1(s + t − 1)−γ +

h̃s+t

(s + t + 1)γ

)
. (48)

Recalling from (8) that

h̃n = (n + 1)γ
∞∑

i=n+1

i−γ

we have

As
t =

1∑∞
i=s+1 i

−γ

(
At−1(s + 1)−γ + · · · + A1(s + t − 1)−γ +

∞∑
i=s+t+1

i−γ
)

= 1∑∞
i=s+1 i

−γ

( t−1∑
j=1

At−j (s + j)−γ +
∞∑

i=s+t+1

i−γ
)
. (49)

Now

µ[1]− (Lt
ψI[1])(z) = lim

j→∞
As
j − As

t = µ[1]− As
t

=
(
µ[1]− 1∑∞

i=s+1 i
−γ

t−1∑
j=1

At−j (s + j)−γ
)
−

∑∞
i=s+t+1 i

−γ∑∞
i=s+1 i

−γ . (50)

To study the first part of (50), recall from part (b) of theorem 2.6 that C1 · t2−γ � µ[1]−At �
C1t

2−γ .
We define ct by the equation µ[1]− At = ct t

2−γ ; note that therefore 0 < C1 < ct � C1

for all such t ; in what follows we shall only make use of the upper bound here. We will
substitute µ[1]− ckk

2−γ for Ak in the first part of the expression (50). Thus we have for this
first part:

µ[1]− 1∑∞
i=s+1 i

−γ

( t−1∑
j=1

At−j (s + j)−γ
)
=

(
µ[1]− 1∑∞

i=s+1 i
−γ

t−1∑
j=1

µ[1](s + j)−γ
)

+
1∑∞

i=s+1 i
−γ

t−1∑
j=1

ct−j (t − j)2−γ (s + j)−γ .

The first term here is

= µ[1]∑∞
i=s+1 i

−γ

( ∞∑
i=s+1

i−γ −
s+t−1∑
i=s+1

i−γ
)
= µ[1] ·

∑∞
i=s+t i

−γ∑∞
i=s+1 i

−γ . (51)

Thus the quantity we want to estimate from above, equation (50), is equal to the modulus of

µ[1] ·
∑∞

i=s+t i
−γ∑∞

i=s+1 i
−γ −

∑∞
i=s+t+1 i

−γ∑∞
i=s+1 i

−γ +
1∑∞

i=s+1 i
−γ

t−1∑
j=1

ct−j (t − j)2−γ (s + j)−γ . (52)

Let us write this as (a)− (b) + (c). First we analyse terms (a) and (b).
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Figure 3. Geometric visualization for the equation of As
k .

Note that since s and t � 1,

s + t + 2

s + 1
� 2

s + t

s
and

s

s + 2
� 1

3
(53)

so for the lower and upper bounds of (a) and (b) we have, using (53):

21−γ
(
s + t

s

)1−γ
�

(
s + t + 1

s + 1

)1−γ
� (a)

µ[1]
�

(
s + t

s + 2

)1−γ
� 3γ−1

(
s + t

s

)1−γ
(54)

and

21−γ
(
s + t

s

)1−γ
�

(
s + t + 2

s + 1

)1−γ
� (b) �

(
s + t + 1

s + 2

)1−γ
� 3γ−1

(
s + t

s

)1−γ
. (55)

Thus for the difference (a)− (b) we have

21−γ (µ[1]− 1)

(
s + t

s

)1−γ
� (a)− (b) � 3γ−1(µ[1]− 1)

(
s + t

s

)1−γ
. (56)

The last term of (52) is

(c) ≡ 1∑∞
i=s+1 i

−γ

t−1∑
j=1

ct−j (t − j)2−γ (s + j)−γ (57)
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which has, by (6), an upper bound of

(c) � C1
(γ − 1)

(s + 2)1−γ

t−1∑
j=1

(t − j)2−γ (s + j)−γ . (58)

Applying lemma A4 from the appendix with c̄3 ≡ ĉα,β for α = −γ, β = 2− γ we have,
taking first the case γ > 3 (so β < −1), and setting c̄5 = (γ − 1)c̄3C1, that (c) is bounded
above by

c̄5

(s + 2)1−γ
(
s1−γ (s + t)2−γ + (s + t)−γ

)
� c̄5

((
s

s + 2

)1−γ
(s + t)2−γ +

(
s + t

s + 2

)1−γ)
. (59)

Hence

(c) � c5

(
(s + t)2−γ +

(
s + t

s

)1−γ)
(60)

where c5 = c̄5 · 3γ−1, using (53).
Next consider the case γ = 3, so β = −1. Then from lemma A4, using (60),

(c) � c̄6

s1−γ

(
s1−γ (s + t)2−γ + (s + t)−γ log(s + t)

)

= c̄6

(
(s + t)2−γ +

(s + t)−γ

s1−γ log(s + t)

)
� c̄6

(
(s + t)2−γ +

(
s + t

s

)1−γ)
where c̄6 = (γ − 1) · 3γ−1C1.

For γ ∈ (2, 3), so β ∈ (−1, 0), we have from lemma A4 that (c) satisfies

(c) � c̄6

s1−γ

(
s1−γ (s + t)2−γ + (s + t)3−2γ

)
� c̄6

(
(s + t)2−γ +

(
s + t

s

)1−γ)
.

Combining this with (56) we therefore have these upper and lower bounds for (52):

21−γ (µ[1]− 1)

(
s + t

s

)1−γ
� (a)− (b) � (a)− (b) + (c)

� (a) + (c) � c̄γ

(
(s + t)2−γ +

(
s + t

s

)1−γ)
where c̄γ = max{c5, c̄6} + 3γ−1µ[1].

Finally, therefore, for the modulus of (52) we have this upper bound:

|µ[1]− (Lt
ψI[1])(z)| � ĉγ

(
(s + t)2−γ +

(
s + t

s

)1−γ)
(61)

where ĉγ = max{c̄γ , 21−γ (1 − µ[1])}. This is valid for each γ > 2, for all z ∈ Ms , for all
s, t � 1. This completes the proof of part (a) of theorem 2.6. �

Remark 2.3. For t fixed, when s goes to infinity (s + t)2−γ goes to zero and(
s + t

s

)1−γ

goes to 1. This indicates that uniform convergence should not hold true. (For a rigorous proof
of this we would need to extend our lower bound estimates to other points z.)
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Next we use the result of theorem 2.6 (for the zero-cylinder set P = [1]) to study arbitrary
k-cylinder sets, for k � 0. Each P = [w0 . . . wk] ∈ Ck can be written uniquely in the form

P = [w0 . . . wj−10 11 . . . 1︸ ︷︷ ︸
m

] (62)

where j + m = k, and where we allow m = k + 1, j = 0 (so P = [11 . . . 1︸ ︷︷ ︸
k+1

]), and also m = 0

(so P = [w0 . . . wk−10]). For general cylinders we have the following; see the preprint version
at http://ime.usp.br/∼afisher for the proof.

Theorem 2.9. Let γ > 2. There exist c̄, d̄ > 0 such that for all k, for all P ∈ Ck , with

P = [w0 . . . wj−10 11 . . . 1︸ ︷︷ ︸
m

]

|Lt
ψIP (z)− µP | � c̄

µ[w0 . . . wj−10]

µ[0]

(
(s + t − k)(2−γ )

+
+ (k + 1)B(s, t − k)

) (63)

for all t > k and for all z ∈ Ms , s = 0, 1, 2, . . . , where

B(0, l) = 0 and B(s, l) =
(
s + l

s

)1−γ
for s � 1.

3. Mixing and weak Bernouilli

Next we use theorem 2.9 to analyse the rate of mixing:

Theorem 3.1. Let γ > 2, and let µ be the invariant measure defined from the potential gγ .
Then we have, for every k � 1,∑

P,Q∈Ck

∣∣µ(P ∩ T −tQ)− µPµQ
∣∣ � c̄(k + 2)2(t − k)(2−γ )

+
.

Proof. The sum is taken over all k-cylinder sets, i.e. all P,Q ∈ Ck . For summing over the sets
P , we split Ck into (k + 2) subcollections: all sets P of the form [w0 . . . wj−10 11 . . . 1︸ ︷︷ ︸

m

], with

j + m = k + 1, m = 0, 1, 2, . . . , k + 1.
For each m we denote this subcollection by Ck,m; thus Ck = ∪k+1

m=0Ck,m.
We note first that for j fixed,

∑
w0...wj−1

µ[w0 . . . wj−10] = µ[∗ ∗ ∗ . . . ∗ 0︸ ︷︷ ︸
j

] = µ[0] since

µ is invariant (where ∗ denotes ‘no restrictions’).
Now since the Ruelle operator is the dual of the Koopman operator (see proposition 6.1 of

section 6), i.e. U ∗ = L, for f, g measurable we have
∫ Lf ·g dµ = ∫

f ·g ◦T dµ. Therefore,

µ(P ∩ T −tQ)− µPµQ =
∫

IP · (IQ ◦ T t ) dµ− µP

∫
IQ dµ

=
∫
(Lt

ψIP ) · IQ − µP · IQ dµ =
∫

IQ(Lt
ψIP − µP) dµ. (64)

Now for P ∈ Ck,m and z ∈ Ms , s � 0, we know from (63) that∣∣Lt
ψIP (z)− µP

∣∣ � c̄
µ[w0 . . . wj−10]

µ[0]

(
(s + t − k)(2−γ )

+
+ (k + 1)B(s, t − k)

)
(65)

� c̄
µ[w0 . . . wj−10]

µ[0]

(
(t − k)(2−γ )

+
+ (k + 1)B(s, t − k)

)
. (66)
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Using this together with the estimate (11) (that is, for a constant zγ , we have µ(Ms) �
zγ (s + 1)1−γ ) we conclude that for any fixed k-cylinder set P ,∫ ∣∣Lt

ψIP (z)− µP
∣∣ dµ(z) �

∞∑
s=0

µ(Ms)c̄
µ[w0 . . . wj−10]

µ[0]

×(
(t − k)(2−γ )

+
+ (k + 1)B(s, t − k)

)
� c̄ (k + 2)

µ[w0 . . . wj−10]

µ[0]

(
t − k

)(2−γ )+

(67)

where we have used (6) to estimate the sum.
Putting these facts together, we have∑

P,Q∈Ck

∣∣µ(P ∩ T −tQ)− µPµQ
∣∣ �

∑
P,Q∈Ck

∫

+
IQ

∣∣Lt
ψIP − µP

∣∣ dµ

=
∑
P∈Ck

∫

+

∣∣Lt
ψIP − µP

∣∣ dµ (68)

�
k+1∑
m=0

∑
P∈Ck,m

c̄ (k + 2)
µ[w0 . . . wj−10]

µ[0]

(
t − k

)(2−γ )+

= c̄ (k + 2)2
(
t − k

)(2−γ )+

(69)

as claimed. �
We therefore have immediately the following analogues of the classical theorems from

Bowen’s book [Bow75]:

Corollary 3.2. Let γ > 2. The shift map T with the measure µ is mixing

and

Corollary 3.3. T with µ and with the standard generating partition {[0], [1]} is weak
Bernouilli. Hence (by Ornstein’s theorem) the transformation is measure-theoretically
isomorphic to a Bernouilli shift of the same entropy.

4. Polynomial decay of correlation for SP observables

We will use the following notation: f (t) � c · ta++
means that for each δ > 0, there exists

Rδ > 0 such that f (t) � c · ta+δ for all t > Rδ . This is slightly weaker than f (t) � c · ta+
,

where there are no lower restrictions on the variable t .

Theorem 4.1. For γ > 2, there exists C > 0 such that for all f, g ∈ SP ,∣∣∣∣
∫

f · g ◦ T t dµ−
∫

f dµ
∫

g dµ

∣∣∣∣ � C(‖f ‖SP + ‖g‖SP)2 t (2−γ )
++
. (70)

Proof. We adapt the proof of lemma 1.14 in [Bow75] (for Hölder functions and exponential
decay) to the present situation. Let fk denote the conditional expectation of f on the σ -algebra
generated by the k-cylinder sets Ck . That is, for z ∈ P ∈ Ck ,

fk(z) ≡ 1

µP

∫
P

f dµ.
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Hence ∫
P

fk dµ =
∫
P

f dµ

for all P ∈ Ck; and fk is a step function, a k-cylinder approximation to f . Writing aP for the
value of fk on P and bQ for the value of gk on Q, we have

fk =
∑
P∈Ck

aP IP gk =
∑
Q∈Ck

bQIQ.

Since f is in SP , by (1) we have ‖f − fk‖∞ � vark f � 2‖f ‖SPk−a, for all a > 0 and
for all k > ka(f ).

Now note first that (writing integrals
∫
f dµ = µf ) we have, by theorem 3.1,∣∣µ(fk · gk ◦ T t )− µfk · µgk
∣∣ = ∣∣ ∑

P,Q∈Ck
aP bQ(µ(P ∩ T −tQ)− µPµQ)

∣∣
� ‖f ‖∞‖g‖∞c̄ (k + 2)2

(
t − k

)(2−γ )+

. (71)

Hence we have∣∣µ(f · g ◦ T t )− µfµg
∣∣ = ∣∣(µ(fk · gk ◦ T t )− µfk · µgk) + µ((f − fk)g ◦ T t ))

+µ(fk · ((g − gk) ◦ T t ))
∣∣.

For the last equality we have used the fact that µ(f − fk) = µ(g − gk) = 0. We write
Ca = max{ca(f ), ca(g)} and Ka = max{ka(f ), ka(g)}. Hence, using the definition of the SP
norm and (71), this expression is

�
∣∣µ(fk · gk ◦ T t )− µfk · µgk

∣∣ + ‖f − fk‖∞ · ‖g ◦ T t‖1 + ‖g − gk‖∞ · ‖fk‖1

� ‖f ‖∞‖g‖∞c̄ (k + 2)2
(
t − k

)(2−γ )+

+ 2Cak
−a‖g‖∞ + 2Cak

−a‖f ‖∞
� 2(‖f ‖SP + ‖g‖SP)2

(
c̄ (k + 2)2

(
t − k

)(2−γ )+

+ k−a
)
.

This holds for all a > 0 and for all t and k with t > k > Ka .
Now choose δ ∈ (0, 1), and let a > (2/δ)((2 − γ )+). Then for k = [t δ/2] + 1 where [·]

indicates the integer part, and k > Ka , we have k > tδ/2, so k−a < t(2−γ )
+

and

k

t
<

tδ/2 + 1

t
= t δ/2−1 + 1/t

which is < 1
2 for δ < 1 and t > 9.

Hence (1− k/t) > 1
2 , so (1− k/t)(2−γ )

+
<

(
1
2

)(2−γ )+ = 2γ
+−2.

Therefore, (t − k)(2−γ )
+ = (

(t − k)/t
)(2−γ )+

t (2−γ )
+ � 2γ

+−2t (2−γ )
+
.

Finally, (k + 2)2 = k2
(
(k + 2)/k

)2
< k2(1 + 4/k + 4/k2) < 4 for k � 4.

So we have, for δ < 1, t > 9 and k > 4:(
(k + 2)2

(
t − k

)(2−γ )+

+ k−a
)

�
(
2γ

+−2t (2−γ )
+
t δ + t (2−γ )

+)
.

In summary we know the following: given a choice of δ ∈ (0, 1), for a defined from δ as
above, for any t > Ka

2/δ , then∣∣∣∣
∫

f · g ◦ T t dµ−
∫

f dµ
∫

g dµ

∣∣∣∣ � 2c̄ (‖f ‖SP + ‖g‖SP)2
(
2γ

+−2t (2−γ )
+
t δ + t (2−γ )

+)
.

(72)
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This is true for any such δ, with the number Rδ = Ka
2/δ depending only on δ (and on f

and g). Thus, setting C = 2c̄ (2γ
+−2 + 1), we conclude that (72) is

� C(‖f ‖SP + ‖g‖SP)2 t (2−γ )
++

(73)

as stated. �

5. Convergence of the Ruelle operator for SP observables

We next prove an estimate which will provide the key to the CLT: polynomial convergence of
the Ruelle operator in L1- and L2-norms, for γ > 3 and 4, respectively.

Theorem 5.1. Let γ > 2; for c̄ as above, for f ∈ SP , we have∥∥Lt
ψf − µf

∥∥
1 � c̄‖f ‖SP t (2−γ )

+
.

Proof. The argument will combine elements from the proofs of weak Bernouilli, and of
the polynomial decay of correlation for SP . Let fk =

∑
P∈Ck aP IP be the k-cylinder

approximation to f , as in the proof of theorem 4.1. We have∥∥Lt f − µf
∥∥

1 �
∥∥Lt (f − fk)− µ(f − fk)

∥∥
1 +

∥∥Lt fk − µfk
∥∥

1.

The first term here is

= ∥∥Lt (f − fk)
∥∥

1 �
∥∥Lt (f − fk)

∥∥
∞ � ‖f − fk‖∞ � vark f � ‖f ‖SP · k−a

for all a > 0. For the second term,∥∥Lt fk − µfk
∥∥

1 =
∥∥ ∑
P∈Ck

aP (Lt IP − µP)
∥∥

1 (74)

� ‖f ‖∞
∑
P∈Ck

∥∥Lt IP − µP
∥∥

1 (75)

� c̄‖f ‖SP(k + 2)2(t − k)(2−γ )
+

(76)

where the passage from equation (75) to (76) is exactly that of steps (68) through (69) in the
proof of theorem 3.1. So∥∥Lt f − µf

∥∥
1 � ‖f ‖SP

(
k−a + c̄(k + 2)2(t − k)(2−γ )

+)
for all t > k > ka(f ) and for all a > 0.

As in the end of the proof of theorem 5.1, this implies∥∥Lt f − µf
∥∥

1 � c̄‖f ‖SP t (2−γ )
+

as we wished to show. �

For the next theorem we need a lemma, for the proof of which see the preprint version of
this paper referred to earlier. This is the L2-version of (67).

Lemma 5.2. Let γ > 2, then for any fixed k-cylinder set P ,∫ ∣∣Lt
ψIP (z)− µP

∣∣2
dµ(z) �

(
c̄
µ[w0 . . . wj−10]

µ[0]

)2

2(k + 1)2(t − k)(2−γ )
+
.
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Theorem 5.3. Let γ > 2; for c̄ as above, for f ∈ SP , we have∥∥Lt
ψf − µf

∥∥
2 � c̄‖f ‖SP t (1−γ /2)++

.

Proof. This will be similar to the proof of theorem 5.1. As there, we have two terms; the first
is handled just as before. For the second, using the lemma∥∥Lt fk − µfk

∥∥
2 � ‖f ‖∞

∑
P∈Ck

∥∥Lt IP − µP
∥∥

2 (77)

�
√

2(k + 1)2c̄(t − k)(1−γ /2)+

. (78)

The rest of the proof is just the same as for theorem 5.1. �

Corollary 5.4.

(a) Assume γ > 4; for c̄ as above, for f ∈ SP , we have

∞∑
t=1

∥∥Lt
ψf − µf

∥∥
2 �∞.

(b) If γ > 3; for c̄ as above, for f ∈ SP , we have

∞∑
t=1

∥∥Lt
ψf − µf

∥∥
1 �∞.

Also, the series

(i)
∞∑
t=1

(Lt
ψf − µf

)
converges in L1 and L2 for (a) and (b), respectively, and in either case,

(ii)
∞∑
t=1

∣∣Lt
ψf − µf

∣∣(x)
converges for µ-a.e. x.

Proof. We give the proof with assumption (b), that for (a) being similar, but using instead
theorem 5.3. From theorem 5.1 we know that for any δ > 0, there exists Rδ such that for all
t > Rδ , ∥∥Lt

ψf − µf
∥∥

1 � c̄‖f ‖SP t2−γ+δ

we choose δ so small that γ − δ > 3. Hence the series in (b) converges. Since∥∥∥∥ ∞∑
t=m

Lt
ψf − µf

∥∥∥∥
1

�
∞∑
t=m

∥∥∥∥Lt
ψf − µf

∥∥∥∥
1

< ε

form large enough, the first sequence of partial sums is a Cauchy sequence and hence converges.
The same argument works for ‖ · ‖2.

Now (ii) follows from a simple real analysis argument: assuming (b) (which is implied by
(a)), if gi are measurable with ct

∑ ‖gi‖ < C and AM = {x :
∑ |gi(x)| > M}, then certainly

the measure of AM < C/M → 0 as M →∞, so ∩AM has measure 0, completing the proof.
�
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6. The central limit theorem

We will now show how to use the above estimates to prove the central limit theorem, for
functions of class SP and γ > 3.

We write B for the Borel σ -algebra of 
+, and define Bk = T −kB. We write F for the
collection of B-measurable functions and Fk for the Bk-measurable functions. Note that, for
example, f ∈ F1 ⇐⇒ f (x) = f (y) when T (x) = T (y); hence F1 is exactly the collection
of measurable functions which are of the form f ◦T with f a B-measurable function. Defining
U : F → F by U : f 	→ f ◦ T , we note that U(Fk) = Fk+1. Since T preserves the measure
µ, for L2 = L2(
+, µ), U : L2 → L2 ∩ F1 is an isometry.

The following is well known (see [PP90, p 27]) and is not hard to prove using the fact that
Lφ
∗(µ) = µ (see the beginning of section 2 or [Hof77]).

Proposition 6.1. For a normalized (measurable) potentialφ, with eigenmeasureµ, the adjoint
U ∗: L2 → L2 is equal to the Ruelle operator Lφ .

What this means is that, when Lφ is extended from the continuous functions to L2, then
it equals U ∗. In other words, Lφ is the L2-dual of U .

Remark 6.1. The orthogonal projection Pk onto L2 ∩ Fk is often written as

Pk(f ) = E(f |Bk).

This is the expected value of f with respect to the σ -algebra Bk [Bil68]. All the statements
of [Via97,Liv95] are formulated in this language, which is natural and useful from the point of
view of probability theory; we have chosen instead to emphasize here instead the connections
with the Ruelle operator.

We point out that the next result under the hypothesis
∞∑
n=1

‖Ln
φf ‖2 <∞

was proved by Gordin [Gor69, Roz79, Bra88]. An improvement by Liverani (see [Liv95])
assumes less. We will need this weaker assumption (next theorem) for the case γ > 3
(otherwise using [Gor69] we would have only the result for γ > 4).

Theorem 6.2 (See [Via97, Liv95]). Assume thatµ is an invariant ergodic probability measure
on 
+, with corresponding normalized potential φ (see before lemma 2.1), let f be a
measurable function with mean 0 (

∫
f dµ = 0) such that

(a)
∑∞

n=1 |
∫
(f ◦ T n) f dµ| <∞ and

(b)
∑∞

n=1 ‖Ln
φf ‖1 <∞.

Setting u = −∑∞
n=1 Ln

φf , and defining f̃ = f − u + u ◦ T then f̃k ≡ f̃ ◦ T k is an

orthogonal sequence of random variables. The variance (‖f̃ ‖2)
2 of f̃ satisfies

‖f̃ ‖ 2
2 = ‖f ‖ 2

2 + 2
∞∑
n=1

∫
f · (f ◦ T n) dµ.

This is 0 if and only if f = v ◦ T − v for some v ∈ L2(µ).

We note that, in fact, theorem 1.1 in [Liv95] requires less than the above condition that∑∞
n=1 ‖Ln

φf ‖1 <∞.

An immediate corollary of the orthogonality (see [Via97]) is that f̃k ≡ f̃ ◦T k is a (reversed)
martingale difference sequence with finite variance. The central limit theorem is known for
such processes. This is due independently [Bil68] to Billingsley and Ibragimov [Bil61,Ibr63];
see also [DG86]. The functional version is true as well as the standard CLT [Bil68].
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Theorem 6.3 (Central limit theorem for martingales; Billingsley and Ibragimov). LetXi

be a stationary, ergodic stochastic process such that the partial sumsSt form a martingale. Then
the central limit theorem (and functional CLT) hold for Xi with variance σ 2 = variance(Xi).

This result is then transferred from f̃ to f via the cohomology equation (see [Liv95]),
and we have:

Theorem 6.4. Under the assumptions of theorem 6.2, the central limit theorem and functional
CLT hold for the sequence fk ≡ f ◦ T k .

Theorem 6.5. For γ > 3, the central limit theorem and functional CLT hold for mean-zero
observables f in SP; the variance is

σ 2 =
∫

f 2 dµ + 2
∞∑
n=1

∫
f · (f ◦ T n) dµ

and this is 0 if and only if f = v ◦ T − v for some v ∈ L2(µ).

Proof. Theorems 4.1 and corollary 5.4(b) give us conditions (a) and (b) of theorem 6.2. Hence
combining that result with theorem 6.4 finishes the proof. �

Remark 6.2. It is instructive to see a direct proof of the key hypotheses (a) and (b) of
theorem 6.2 for the specific case of f = I[1] − µ[1], using only estimate (20), that for all
z ∈ Ms ,

|Ln
ψf (z)| � ĉγ

(
(s + n)2−γ + B(s, n)

)
(79)

where

B(0, n) = 0 and B(s, n) =
(
s + n

s

)1−γ
for s � 1.

To prove (a), note that∣∣∣∣
∫

(f ◦ T n) f dµ

∣∣∣∣ =
∣∣∣∣
∫

f Ln
φf dµ

∣∣∣∣ �
∫
|f Ln

φf | dµ �
∫
|Ln

φf | dµ.

And we have, since µ(Ms) = µs � s1−γ while also
∑

µs = 1, that

1

ĉγ

∫
|Ln

φf | dµ �
∞∑
s=0

µs

(
(s + n)2−γ + B(s, n)

)

�
∞∑
s=0

µs(s + n)2−γ +
∞∑
s=1

(
s + n

s

)1−γ
s1−γ

�
∞∑
s=0

µsn
2−γ +

∞∑
s=1

(s + n)1−γ � 2n2−γ .

To prove (b), we have that

1

ĉγ

∞∑
n=1

‖Ln
φf ‖1 �

∞∑
n=1

∞∑
s=0

(s + n)2−γ s1−γ +
∞∑
n=1

∞∑
s=1

(
s + n

s

)1−γ
s1−γ

�
∞∑
s=0

s1−γ (s + 1)3−γ +
∞∑
s=1

∞∑
n=1

(s + n)1−γ

�
∞∑
s=0

s4−2γ +
∞∑
s=1

(s + 1)2−γ <∞.
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Note added in proof. After this paper was submitted we were informed by the referees about papers with results
of a similar nature [Iso99, Huy, Che95]. A long version of the present paper with full details can be found in
http://ime.usp.br/∼afisher.
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Appendix. An integral estimate

Let α, β < 0 and define

cn = 1α(n− 1)β + 2α(n− 2)β + · · · + (n− 1)α1β =
n−1∑
k=1

kα(n− k)β =
n−1∑
k=1

kβ(n− k)α.

(A1)

We set

f (x) = xα(1− x)β

and write
∫
f for

∫ 1
0 f (x) dx. Note that this function is integrable exactly for α, β ∈ (−1, 0).

Lemma A1. Suppose α, β ∈ (−∞,−1). Then

cn ≈
(∫

f

)
nα+β+1

i.e. for čα,β ≡
∫
f , and any constants č+

α,β, č
−
α,β with č−α,β < čα,β < č+

α,β ,

č−α,β · nα+β+1 �
n−1∑
k=1

kα(n− k)β =
n−1∑
k=1

kβ(n− k)α � č+
α,β · nα+β+1

for n large enough.

When the function f is not integrable, for an upper estimate of cn, the first and last terms
in that sum dominate; these are (n − 1)β and (n − 1)α . We see this by a truncated lower
Riemann sum estimate, as follows.

Lemma A2. Suppose α < β < 0 and that α < −1. Then there exists a positive constant c̄α,β
such that for all n:

cn =
n−1∑
k=1

kα(n− k)β =
n−1∑
k=1

kβ(n− k)α � c̄α,β(n− 1)β .

The proof of the next statement is similar, except simpler because we only need to deal
with the singularity at 0.
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Lemma A3. Let α < −1 and α < β < 0 and assume k + 1 � t · λ = t · α/(α + β). Then

k+1∑
j=2

jα(t − j)β � c̄α,β t
β .

Note. For α = (1 − γ ) and β = (2 − γ ), for γ > 2, λ = (1 − γ )/(3 − 2γ ) < 2 and the
condition k + 1 < λt becomes t > (k + 1)/2. When we apply this lemma, this is satisfied since
we have, in fact, t � k + 1 > (k + 1)/2.

Lemma A4. Let α < β < 0 and assume α < −1. Then ∃ ĉα,β > 0 such that for all s, t � 1,
we have

t−1∑
j=1

(s + j)α(t − j)β

respectively

� ĉα,β
(
sα+1(s + t)β + (s + t)α

)
for β < −1

� ĉα,β
(
sα+1(s + t)β + (s + t)α log(s + t)

)
for β = −1

� ĉα,β
(
sα+1(s + t)β + (s + t)1+α+β

)
for β ∈ (−1, 0).

Definition of constants. We use the following notation in the paper:

c̄1 = c̄α,β for α = (1− γ ) β = (2− γ )

c̄2 = c̄α,β for α = −γ β = (2− γ )

c̄3 = ĉα,β for α = −γ β = (2− γ ).

All the other constants which appear in the paper are derived from these basic constants.
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