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Abstract Given aC*” hyperbolic Cantor se€, we study the sequenag, , of Cantor
subsets which nest down toward a painin C. We show thatC, . is asymptotically
equal to an ergodic Cantor set valued process. The values of this processliatled
sets are indexed by a élder continuous set-valued function defined on Sullivan’s dual
Cantor set. We show the limit sets are themsel¥&s’, C* or C* hyperbolic Cantor
sets, with the highest degree of smoothness which occurs ig'the conjugacy class

of C. The proof of this leads to the following rigidity theorem: if tw*”, C> or C®
hyperbolic Cantor sets a@ conjugate, then the conjugacy (with a different extension)
is in fact alreadyC**”, C> or C®. Within oneC**” conjugacy class, each smoothness
class is a Banach manifold, which is acted on by the semigroup given by rescaling
subintervals. Smoothness classes nest down, and contained in the intersection of them
all is a compact set which is the attractor for the semigroup: the collection of limit sets.
Convergence is exponentially fast, in t6& norm.

0. Introduction

Consider the sequenag, , of Cantor subsets which nest down toward a pairih a
hyperbolic Cantor sef C [0, 1], and which have been affinely rescaled to have left and
right endpoints at 0 and 1. We wish to describe how the geometry of these sets changes
asn increases. IfC is a linear set like the middle-third set this is not so difficult to

do (we always get just another copy 6f) but, as we shall see, with nonlinearity the
behavior of this ‘scenery process’ gets much more interesting.

A different way to describe the small-scale structureCois by thescaling function
introduced by Feigenbaum for a specific class of examples, and studied by Sullivan in
the present setting at'*” hyperbolic Cantor sets.

A third approach is to define a flow, the continuous dynamics of which reflect the
geometrical notion of zooming continuously down toward a point. Ergodicity of the flow
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implies analogies of the Lebesgue density theorem, proveBeFifl] for Brownian zero
sets and hyperboli€'*” Cantor sets; the number that one obtains (order-two density) is
a conformal invariant and provides a measure ofl#wrinarity of the fractal; compare
[Mand]. This scenery flowis constructed for hyperbolic Cantor sets BeFi2], [BeFi3],

for hyperbolic Julia sets inHeFiU], and for limit sets of geometrically finite Fuchsian
and Kleinian groups inHi4]. The associated translation (rather than dilation) scenery
flows are studied for hyperbol@*” Cantor sets and the Fuchsian limit setsFig] and
[BuF], where theorems like those oFiB] are proved (an order-two ergodic theorem,
and infinite-measure unique ergodicity).

In this paper we will take a viewpoint close to that of Sullivan 8ufl], constructing
the scenery process in a similar way to the scaling function. It is also possible to work
in the other direction; in the later papeBdFiZ], [BeFi3] we show how to derive the
scaling function from the scenery flow, and conversely how to construct the scenery flow
from the scaling function. From this point of view the scenery process will be seen as
an intermediate object, serving to connect the scenery flow with the scaling function.

Sullivan’s main motivation in$ul] was to develop an understanding of the geometry
of hyperbolic Cantor sets for use in a new, more ‘conceptual’ approach to the
Feigenbaum—Coullet-Tresser conjectures (Sae][and [deMvS]). (Lanford’s proof
[Lan] uses (rigorous) computer-assisted estimates.)

The first of these conjectures is the existence and uniqueness of a fixed point for the
action of the renormalization operator on a certain space of analytic folding maps (see the
discussion under ‘Related work’ below). A further conjecture states that for any folding
map which converges to this renormalization fixed point, the small-scale structure of its
attracting Cantor set will be the same.

To prove this last statement, Sullivan uses the following observation (which is
attributed by RandRa] to Misiurewicz): for the particular case of the folding map which
is the renormalization fixed point, the Cantor set not only has the folding dynamics, which
is a bijection when restricted there, but also a two-to-6H&* dynamics, for which it
is arepeller. This second, hyperbolic, dynamics is much easier to work with in certain
respects. Indeed, the existence of this map led Sullivan to a separate question, which is
the subject 0§§1-3 of [Sull: for general hyperboli€'*® Cantor sets, can one classify
differentiable structures? He shows that this can be done with a bounalddrtécaling
function providing a complete smooth conjugacy invariant. This, in turn, as will be
explained below, is equivalent to knowing the small-scale structure of the Cantor set.
In this way the hyperbolic dynamics helps answer a question about the original folding
map.

Our own main focus is somewhat different to that of Sullivan$u]]. We want to
describe theexact geometry, at small scales, of the Cantor sets, whereas with respect
to the differentiable structure, all smoothly equivalent Cantor sets will look the same.
However, for this purpose the scaling function also contains precisely the information
one needs.

Our main theorems (Theorems 5.4, 7.4 and 7.5) concern the scenery process, the
smoothness of limit sets, ar@f*” rigidity respectively. We summarize the totality of
the resulting picture. Given on@**” hyperbolic Cantor set, consider the collection of



Hyperbolic Cantor sets 533

all Cantor sets which aré'*” conjugate to it. Within this collection is a distinguished
subcollection, its limit sets. The free semigroup on two generators acts on the conjugacy
class (by rescaling subsets of the next level); the limit sets are an attractor for this
action, and the scenery process can be described as what one sees when walking out
a branch of the tree of the semigroup. Limit sets are exactlyrdtie sets (see§2)

built from the associated scaling function. Within the big collection are subcollections
with higher degrees of smoothness. The big collection forms an infinite-dimensional
Banach manifold, naturally identified with a factor of td&" diffeomorphisms of the
interval, after one Cantor set has been chosen as a base point (the diffeomorphisms are the
conjugacies to this set). The subcollections nest down as smoothness increases, and by
rigidity these smoothness classes are also conjugacy classes. Contained in the intersection
of them all is the collection of limit sets, with the highest possible smoothness. Choosing
one of them as a common base point, these subcollections are naturally identified with the
C*tr diffeomorphisms of the interval. Each is a Banach manifold in its own topology,
and is dense in a larger collection with respect to its topology. The free semigroup
acts on each manifold. Its points are drawn exponentially fast irCtheorm toward

the common attractor: the collection of limit sets, which form a compact subset of the
Banach manifold.

In the course of our paper we give careful proofs of several of Sullivan’s theorems
([Su]] is extremely sketchy). In some cases our different point of view leads us to
different arguments from those indicated Bufl]. We will describe our approach and
results more fully after a further explanation of Sullivan’s ideas.

Sullivan’s differentiable structures.We begin with an ordered topological Cantor set, i.e.
a space which is homeomorphic and order isomorphic to the usual middle-third Cantor set.
For convenience we use* = T13°{0, 1}, together with the product topology, and with
the lexicographic orderCharts are defined to be order-preserving homeomorphisms into
R; two chartsz, £ areCk+” compatibleif ¢ o&~* extends, with that degree of smoothness,
to a diffeomorphism defined on neighborhoods of the embedded sdisedk C(k, )
differentiable structureon =+ will be a maximal atlas(a maximal compatible collection

of charts). Here, following$ull, C(k, «) denotes all maps which a@&*” for some

y € (0,1]. Therefore, aC(k,«) linear differentiable structure determines and is
determined by a class of Cantor sets embedded in the real line, equivalélik lay)
changes of coordinates.

For simplicity, we are restricting our attention to charts which are order preserving
and globally defined. We mention that the word ‘linear’ is being used in two ways:
when dynamics is introduced on these sets, it will usually be nonlinear; the differentiable
structures are called linear because they come from embeddings in the line. (Alternative
theories might have charts mappiy~ to a product of Cantor sets, or to a subset of
some fractal curve!)

Via the homeomorphism front*, an embedded saf comes equipped with the
dynamics of the shift map on ©*. The set also inherits frol@* a nested hierarchy
of intervals, corresponding to finite wordsy(inder set$ in ©*. Sullivan uses the shift
map to defineC(1, «) hyperbolic Cantor set¢see§l below) and the nested intervals to
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define theratio geometryof a Cantor set. This assigns to each interval the triple, r)

of length ratios of the left subinterval, middle gap and right subinterval respectively. The
hypothesis that an embedded Cantor@ds hyperbolicC(1, ) is enough to show that

a limiting ratio geometry, recorded by tlsealing function exists. The ratio geometry

is bounded away from 0 and 1, a condition callEinded geometrihence the limiting
values(a, b, ¢) are also in the interior of the simplex = {(a,b,c) : a + b+ ¢ = 1}.
Convergence to the scaling function is taken along inverse branches which are
indexed by points of an abstract topological Cantor set calleditia¢ Cantor set Thus

the scaling function maps the dual Cantor seftoonto a compact subset of its interior.
Convergence is exponentially fast, and the scaling functiondiglét continuous.

Locations in the Cantor set correspond to forward images usdeaince the digits
of =1 tell whether the orbit of a point lies in the left or right third 6f. To study
smoothness of a conjugacy or an expanding map, one expects of course to use the
locations to estimate difference quotients. However, since convergence to the scaling
function is taken alongnversebranches otr, as the scale gets smaller and smaller, the
locations jump all over the set.

The first remarkable result frorf§§1-3 of [Sul] is that while indeed one cannot
compute the derivative of the shift map from the scaling function, nevertheless this
function contains complete information abdll, «) differentiable structures.

More precisely, one has the following. As we have already mentioned, (1) a hyperbolic
C(1, @) Cantor set has a boundedilder scaling function. Next, (2) this depends only
on the differentiable structure, i.e. it is the same €d, «) conjugate Cantor sets.
Conversely, (3) an embedded Cantor set which has a boundiel@i-scaling function is
in fact C(1, o) hyperbolic. Finally, (4) in this case th&1, «) differentiable structure is
determined by the scaling function. In other words, two hyperb®{it; ) Cantor sets
with the same scaling function aé¥1, @) conjugate. In summary, the boundedlter
scaling function gives an intrinsic characterization of the differentiable structure, in the
sense that no embedding need be specified.

Furthermore, quotingjul]: ‘... if the structure admits &(k, ) refinement so that the
shift is C(k, o), this structure is also determined uniquely by the same scaling function

'. Stated as a result about representatives instead of the entire equivalence class,
this can be interpreted as a rigidity theorem: if t@, o) hyperbolic Cantor sets are
conjugate by a map which (1, @), then that map (possibly with a different extension
to the gaps) is in fact already(k, «).

Summary of results. We include in this paper careful statements and proofs, in particular,

of (1), (2) and (4) above, and @f(k, «) rigidity (we mention that our use of the term

‘rigidity’ is different from that in §5 of [Sul]). Since we are interested in the geometry

of representatives rather than the equivalence class, all these results are stated in terms of

the conjugacy of embedded sets rather than the classification of differentiable structures.

As we said above, the reason for this emphasis is that our primary goal is to study the

scenery process, and all the sets in the scenery process are the same up to conjugacy.
A small technical difference toSul] is that we useC**” rather thanC(k, y)

throughout. We do this because it gives sharper statements. Thus, for example, for
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rigidity we show thatC! conjugacy implies**” conjugacy.

In part because of our change in focus, we give a different proof from that suggested
in [Sul] of (4). Each approach has its own advantages. Sullivan’s method, a direct
estimate of the derivative by difference quotients using sums of gap lengths, gives a
unified way of proving (3) as well as (4). However, one also needs to cite an extension
lemma, which is not included irSul]. On the other hand, our approach gives a unified
treatment ofC! conjugacy and rigidity, and avoids calling on the separate extension
lemma. We do not prove (3) here, but will give a full proof (along the linesSaf1])
elsewhere.

Our proof of rigidity is intimately connected to the study of the scenery process. We
proceed as follows.

First we use limiting conjugacies to construct a set-valued analogue of the scaling
function. This function,y — C”, is defined fory in the dual Cantor set, is dider
continuous with respect to a metric derived from the corresponding Hausdorff measures
and has as its range a compact subset of the collection of all subsetslfiriOthat
measure metric, and also in the Hausdorff metric on sets. The scaling dynamics enters by
interpreting the dual Cantor set as the past of the natural extension of the expanding map
on C; the scenery process, . is then asymptotically given by evaluating the shift on
any extensionr = (y, x) of x € C. Since the limit sets were constructed by conjugacies,
one can apply a lemma from the appendix 8] to help determine their degree of
smoothness: we show they have the highest degree of smoot@fiesddr somek > 1,

C> or C®) which occurs in thee'*” conjugacy class of.

Next, the proof of rigidity follows as a corollary. Given two hyperbafit"” Cantor
sets, if they ar&* conjugate they have the same scaling function. Hence they have the
same limit sets, which aretio Cantor setsconstructed from this function. Choosing
one of these to act as an intermediary, the composition should al€&tte However,
the maps may be defined differently on the gaps, which would lead back to the extension
problem mentioned before. But now one has a simpler solution: a choice is made on
the middle third, and the rest of the definition follows automatically from the dynamics.
This completes the proof of rigidity. In summary: if tw@*”,C> or C® hyperbolic
Cantor sets ar€' conjugate, then this conjugacy (with a different extension) is already
Ck*7,C> or C® respectively.

This leads, then, to the overall picture which is summarized at the end of the first part
of the Introduction.

Note on doubling maps.We next discuss, more completely, the relation®ii]] and the
present paper to Sullivan’s work on renormalization theory. We have already described
one aspect of this: for the fixed point folding map, one can introduce a se®grd
hyperbolic map on its attracting Cantor set, and thus can apply hyperbolic methods
(the bounded distortion property, symbolic dynamics, Gibbs theory) in the study of its
small-scale geometry.

However, in Sullivan’s theory, in addition to this hyperbolic map on the Cantor set, a
second expanding map is also of key importance. Thiglisubling map of the circleby
which we mean a degree-two map of the circle, i.e. one which is topologically conjugate
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to z — z2. This map is defined, up to smooth conjugacy, by (roughly speaking) the
action on external angles to its Julia set of the complex extension of the folding map
(for more precision segVI.4 of [deMvS)]).

In fact, all the results of the present paper also holddbr* hyperbolic doubling
maps. A scenery process enters the picture as follows. Preimages of the fixed point
partition the circle into two intervals. Pulling back this partition gives a hierarchy of
nested tilings of the interval, which can be thought of as having a fractal geometry: the
tiled interval is like a Cantor set which has been expanded to close the middle gaps, with
the tilings marking where these gaps had once been.

A scaling function is defined from the tilings in the obvious way. With an appropriate
Hausdorff-type metric on the space of nested tilings, one has an analogue of limit sets
and can define the scenery process and flow. Be€iB] and also the related work of
Pinto and Rand discussed below.

The doubling map plays the following role in Sullivan’s theory. Sullivan’s idea for
proving the first Feigenbaum—Coullet—Tresser conjecture on the existence and uniqueness
of a renormalization fixed point is to show that the renormalization operator acts locally
as a contraction on a Teiclitter space of folding maps. This space is a given topological
conjugacy class of folding maps modulo an identification: one associates to each of the
folding maps its smooth conjugacy class of doubling maps, which induces an equivalence
relation on the folding maps.

The next step is to classify invariant differentiable structures for doubling maps. This
classification is in terms of an invariant which can serve as a ‘modulus’ of the structure.
The idea is to then put a complex structure on the set of moduli as in classical Téishm
theory, and next to use Teicliter theory in the proof of contraction. For the parallel
theory of hyperbolic Cantor sets, this ‘modulus’ is the boundétter scaling function.

For the doubling maps (se8(iJ) the modulus can be nicely linked with classical surface
theory: it is again given by a scaling function, but equivalently it is given by a conformal
structure on &Riemann surface laminationra compact laminated space with solenoidal
cross-section.

The point we wish to emphasize is the following. In Sullivan’s development of
renormalization theory, two very different hyperbolic maps become associated to the
renormalization fixed point folding map: a doubling map of the circle, defined up
to smooth conjugacy, and a speciti¢*® hyperbolic map on the Cantor set. Then,
remarkably, much the same machinery gets used, in different ways, in the proofs of
these two very different conjectures.

It is important to mention here that things are not quite so simple away from the fixed
point. For this case one still has a single doubling map; however now the hyperbolic
Cantor set map should be replaced bgemuenceof maps along a sequence of Cantor
sets: aMarkov familyin the sense of Rand (see the discussion below).

Related work. One knows, from the rigidity theorem, that the maximum degree of
smoothness occurring in th@*” conjugacy class should be encoded somehow in the
scaling function. Work of Tangerman and Przytycki gives one way of recovering that
information [TPr]. Pinto and Rand #R2, §5] and personal communication) and Sullivan
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(personal communication) have suggested other approaches, in a related situation. It
would be nice to understand these different points of view in a unified way.

The rigidity theorem is also stated by Tangerman and Przytycki; it is proved as
a corollary of their main result. Their approach is quite different from ours and, in
particular, does make use of an extension lemma (a version of Whitney's extension
theorem).

We have already mentioned the notion of Markov family and its role in renormalization
theory. Rand introduced this notioR#] to help study the relationship between scaling
functions and smooth conjugacy in a general situation where one has a sequence of
expanding maps of the interval, rather than a single map. SeeRilsarid [PR1, Z:
our Theorems 5.3, 5.4 and 5.9 below (concerning limit conjugacies) are closely related
to Theorem 26 of Pinto’s thesi${]. What we call the scenery process ($@ebelow)
corresponds inRi] to the following. Given a Markov family, Pinto defines a limiting
family called arenormalization Markov familyfPi]. For the special case of a constant
Markov family, i.e. for a single hyperbolic map, the sequence of Cantor sets on which
this limiting family is defined is a patlt'(¢”(x)) in the scenery process. The choice of
a pointx in the shift space determines a particular renormalization family. (We became
aware of Tangerman and Przytycki’'s preprint and of Rand and Pinto’s work after the
first version of the present paper—an IHES preprint, July 1992—was completed.)

Markov families provide a flexible and general framework for approaching a variety
of problems. Interesting examples of Markov families come from both renormalization
theory and from random dynamics and, indeed, this notion provides a link between these
two fields (seeAFi]). In Pinto and Rand’s papers, the focus is on constructing smooth
conjugacies of Markov families given by the renormalization of one-dimensional maps,
including certain circle diffefomorphisms and folding maps: for instance, the folding
maps discussed above which are not a fixed or periodic point under renormalization.
For an example from random dynamics one can think of a Cantor set generated by a
sequence of random perturbations of a single hyperbolic map. In this paper we consider
only constant families, i.e. Cantor sets generated by one hyperbolic map. In fact, all the
results and methods of this paper hold for (two-sided) Markov families, including such
random hyperbolic Cantor sets. This is explained more fullyBaHi3].

These ideas fit into a broader context. As we show Afi], the basic notion
of mapping families (by which we mean a sequence of maps along a sequence of
spaces) makes sense for higher dimensions, with much of the standard theory of a
single hyperbolic transformation (possibly with singularities, as for pseudo-Anosov maps)
carrying through for hyperbolic mapping families: shadowing, the stable manifold
theorem, structural stability, and the existence of Markov partitions. These code the
family to a nonstationary symbolic dynamics; one can then prove the Ruelle—Perron—
Frobenius theorem and hence develop Gibbs theory (see Bdgs]) and apply this in
turn, for families on surfaces, when classifying differentiable structures.

Interesting work on the small-scale geometry of certain fractal sets, in quite different
settings, has been done by Furstenberg and Tan Lei. Tan L&] iprfves the beautiful
theorem that certain nonhyperbolic Julia sets, corresponding to Misiurewicz points in
the boundary of the Mandelbrot séiM, are asymptotically the same a3/ at that
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point. These points form a countable dense subseétdf yet the general case is still

far from completely understood. This type of asymptotic limit, as well as what we have
here called limit sets, provide examples of Furstenberg’'s general notion ofithesets

of a subset of Euclidean space (lectures and personal communication). These are by
definition all the limiting sets given by rescaling nested subsets by a sequence of affine
expansions. Furstenberg applies this in a continuation of the analysis bedtu ifof
determining the Hausdorff dimension of certain sets: intersections of generic translates
of linear Cantor sets, and intersections of linear Cantor sets in the plane with foliations of
straight lines at a generic slope. His study of these matters is related to the ‘times 2 times
3’ circle of problems in ergodic theory. An interesting and important area of research is
to develop similar results in a nonlinear setting, e.g. for general smooth foliations or for
nonlinear Cantor sets.

1. Two ways of building Cantor sets

1.1. Hyperbolic Cantor sets, Hausdorff and Gibbs measuré&le start with the usual
middle-third Cantor set. Lef denote the 2-1 map on the middle-third getdefined

by x — 3x (mod 1). The Hausdorff dimension df is d = log2/log3. Writing H¢

for d-dimensional Hausdorff measure apdfor the restrictionuw = H¢|c, we recall
that 1 is a Borel probability measure (total mass 1) which is invariant unders.

The triple (C, S, ) is canonically isomorphic to the one-sided Bernoulli left shifon

=+ = IP{0, 1}, with infinite (%, %) coin-tossing measure; the correspondence is given
by 7 : (xox1...) = x, wherex € C has ternary expansion

X = i ZX,'B_i.
i=1

A hyperbolicC**” Cantor setC by definition also has an expanding dynamscsC —
C, but now instead of having straight lines as far @nod 1), the graph of may be
nonlinear (see Figure 1).

To construct such a set, one defin@sas a limit from two contraction mappings
wo, p1 . I —> I. We first consider the case where these maps are orientation-preserving,
and arestrict contractions in the sense that the derivatives satistyd < Dg; < 8 < 1.
We also require that

0=¢0(0) < @o(1) < ¢1(0) < p1(D) = 1.

This implies that the intervalé, = ¢o(1), Iy = ¢1(I) are disjoint. We assume that
@0, p1 areC*” maps for some € (0, 1]. HereC**” means thekth derivative D*¢; is
Holder continuous with exponent note thatC*+! meansDy; is Lipschitz, saC? implies
C*1 (by compactness) but not conversely. (Exponent 1 is excluded because in that
case, since the domaihis connectedy; is identically constant hence immediately of
orderC*, while the whole purpose of &lder conditions is to havantermediategrades
of smoothness.) Our convention fordlder continuity will be: if we are given thaf
satisfies| f (x) — f(y)| < colx — y|¥, then we sayf is Holder continuouswith Holder
constantcy and Holder exponenty. We remark that Sullivan inJul] works instead
with C(k, o) maps; these are defined to be the collectiod’d? maps for ally < (0, 1].
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FIGURE 1.

We defineS : IoUI; — I to be the map with inverse branchgs ¢;. Note that since
Dg; are bounded away from 0 anb, it follows that S is C*” with the same Hlder
exponent, but with different dlder constant. Inductively, form

Ixo...x,, = @¥xp ((Px1 “e (wx,, (1))),

where x; € {0,1}; (JI.., (union over all choices, with: fixed) is thenth level
approximation to the Cantor sef, defined as

00
C= ﬂ U 1x0...x,l~
n=0

The restriction of the map to C mapsC to itself and is (just as for the middle-third
set) conjugate to the Bernoulli shif*, o) via the mapr : (xgx1...) = x, wherex is
the unique element afi?® I, . .

A setC together with mag : IoUI; — I defined in this way from strict contractions
@0, 91, Will be called astrictly hyperbolicC**” Cantor set (with map)

Sometimes we are only interested in the dynamicsCoitself. Knowledge of this
restricted mapS|¢ is equivalent to knowing hov€ is coded by *. We will refer to
a set together with this labeling asnaarked Cantor set. When we forget about this
coding, C will be referred to as theinderlying Cantor set of(C, S).

More generally, ahyperbolic C**” Cantor set is defined as follows. (Again we
assume thaipg, ¢, : I — [ are order-preserving*” diffeomorphisms such that
00(0) = 0,¢01() = 1, andgo(l) < ¢1(0). We also assume, as before, that there
existsa with 0 < @ < D¢; < 1. However now the upper bound is replaced by one of
the two equivalent conditions which follow. We wriig, . = ¢y, 0 -0 @y, .)
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PropPosITION1.1. The following are equivalent:
(i) 38 <landN > 0such that for alln > N, for anyxg...x,, Doy, », < B
(i) 3c > 0andp < 1 such that for alln, for anyxg. .. x,, D@y, x, < cp”.

Proof. To pass from (ii) to (i), any8 which satisfies8 < 8 < 1 will work. For the
converse, take = max{(Dg,,. ) - |n < N} andp = B. O

Two C**7 hyperbolic Cantor set6, C with mapss, S will be said to becontinuously
conjugate or C° conjugate if there is an order-preserving homeomorphlsm I —1
such that for allx € IoU I, S o ®(x) = ® o S(x). We sayC, C are Ck+r, >, C®
conjugateif ® and its inverse have that degree of smoothness. Note that from the
definition, for eachn, ® (I, ) = INXO.“xn. Therefore the conjugacy induces the identity
map on the corresponding shift spaces.

When @ is defined (as above) on all df we will also call it afull conjugacy. A
restricted conjugacy is a conjugacy between the Cantor sets which can be extended to a
full conjugacy.

We immediately have the following lemma.

LEMMA 1.2. Let (C, S) be a hyperbollc Cantor set, and assude: I — I is aC*
dlffeomorphlsm Define se6 = D (0), I = cI)(I) for i = 0,1, and define the map
S:IoULL > IbyS=d0Sod L Then(C, ) is also a hyperboli©+” Cantor set.

Note that in this lemma, using condition (jJ, stays the same but the constarrhay
change. Similarly, using (ii)N may change whilgg remains the same.

Thus, in particular, th€'t” conjugate of a strictly hyperbolic set is still hyperbolic,
though strictness may be lost. We remark without proof that a converse holds: by a
well-known theorem due in its original form to Mather, any hyperbolic Cantor set is
conjugate to a strictly hyperbolic set (without changing the order of differentiability); see
for example HP]. Therefore, if one is studying properties invariant with respect to the
equivalence relation given by conjugacy, one might as well begin with the assumption
thatc = 1 in (ii); this situation occurs often in the dynamical systems literature. The
new metric on/ is referred to as aadapted metridor the hyperbolic mags. However,
for our purposes it will be important to use the original metric, otherwise the notion of
the scenery process will lose its meaning. This will become cle§bin

We recall from the theory of Bowen and Ruell8{1, 7, [Ru]; see also Be]) that
the dimension? of a hyperbolicC**” Cantor sefC is strictly between 0 and 1 and that
Hausdorff (or conformal) measure = H¢|c has a unique normalized invariant version
v, called theGibbs measuréor Gibbs statg¢. For the middle-third set. = v; in general
they are boundedly equivalent (i.e. the Radon—Nikodym derivative is bounded away from
0 andoo); v is defined so as to be a probability measure whilenay have total mass
# 1. As in [BeFil] we will need to use both measures.

We remark that all the results in this paper generalize with minor notational changes to
the following situation. The mapg; are also allowed to be orientation-reversing; there
may be more than two mapeg;, ..., ¢, and the Cantor set is constructed by selecting
the maps with respect to some subshift of finite t¥peon & symbols instead of the full
two-shift .
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1.2. Ratio Cantor sets. As before,=* denotesl1°{0, 1} and we now defineX~ =
M-L{0,1}, & = % {0,1}. We will write y = (...y_py_3) for y € 7, x =
(xpx1...) € Tt andx = (y,x) = (... x_px_1.x0x1...) = (...y_2y_1.x0x1...) for a
point in . We will let o denote both the (full) left shift orE and the left shift (with
truncation) onx*. Xt is known as thduture of =, and X~ as itspast

Write A for the unit simplex inR3 and intA for its interior. LetR be a continuous
function fromX~ to intA, and write the components &= (R|, Rg. R;). These letters
will stand for left, gap andright respectively; by definition they add to 1 and each is
strictly positive. Forx = (y,x) € £ we will also think of R as a function onx by
defining R(x) = R(y).

Given the functionk, we will define for eacly € X~ theratio Cantor setC” C [0, 1]
S0 as to satisfy the following: at each stage subintervals will have length ra0Sx)).
Thus, we first definedy = [0, Ri(»)], I; = [1 — Ri(y),1]. The left intervallj has
subintervalsly, 13; which are defined to have lengths in the ratios

250l 754
v =Ri(..y_2y_10), 5 =R y_oyql)
g 1|

and left and right endpoints the same as thoseof respectively. Inductively, for
v

x € &t andx = (y, x), I}, »,,, IS a subinterval of’, ., with length ratio

IIX};)---Xqu' n
v = R.(0"x).
|Ixomx,,|
Herex = |, i.e. this is the left subinterval, i, 1 = 0, andx = r, i.e. the right subinterval,

if Xn+1 = 1.

Note that the fact thaR depends only on the past coordinates X~ of x is what
makes this well-defined, since therefore the ratio is the same for each other point in that
subinterval.

Finally we form the seC” as before, defining

00
Yy — y
¢ = m U ]xo...x,,‘
n=0
111

The simplest example is again the middle-third set: takiig) = (3, 3, 3) for all
y € X7, C” is the middle-third seC for eachy.

SinceR is a continuous map from a compact set into the interiot dfy assumption,
hence strictly into the interior, these intervdls,, . nest down to a single point in [Q].
Hence eaclC” inherits fromX* the dynamics of the shift mag (we will also writeo
for this map onC").

For R assumed to be &lder continuous with some exponeant> 0 (which will be
the case in this paper) it turns out that each ratio CantoiCgeis also a hyperbolic
CY7 Cantor set. (What needs to be shown is thais C**” on CY for somey with
0 < y < 1, which follows by a bounded distortion argument, and that it can be extended
to a mapsS on Iy U [; without losing any smoothness and which is hyperbolic. This
can be proved from a lemma of Sullivan, (3) in the Introduction above. For a full proof
see BeFi3].) Therefore it also has a Gibbs measure equivalent to Hausdorff measure.
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The dimensions of”> and the Gibbs state, viewed as a measurezdn are the same
for eachy € X~ for the following reason: fory, w € £~, C¥ and C” have the same
scaling function and hence af*” conjugate (se7).

2. Statement of the problem: bounded distortion
Let C be a hyperbolic Cantor set. We wish to describe the geometry of the sequence of
nested Cantor sets one sees along the way when zooming down towards a point.

The notation will be as follows. For € C with x = w(xx1...), let C, . be the set
C N1, ., affinely rescaled to the unit interval, so as to have endpoints at 0 and 1.

Write u, . for the corresponding Hausdorff measure, the restrictiof 6fto the set
C.... Thus we want to see how the sequence of sets, and of the corresponding measures,
varies as1 — oo.

The first obstacle we encounter is that you do not get from the intdgyal to its
subintervall,, ..., by one application ofyg (or ¢1). Instead you have

IXD...X,H,]_ = @Pxp .- (pxnﬂ(l) = Qxp - Py ((px_”l cee (px_ol(lxo...x,,))a

and since the maps do not commute, you have to go all the way back up and down the
tree again, with more nonlinearity introduced each time. To control this nonlinearity we
will use the well-known bounded distortion property in the following variation. For a
proof see $hSy, [Mafig or Lemma 6.4 below. We learned this version of bounded
distortion from M. Urbanski.

THEOREM 2.1. (Classical)With S as abovedK > 0 such that for alln, for anys > 0,
if J is an interval such thas™|, is one-to-one and the imag®"(J) has diameter less
than s, then for allx, y € J,

K&

DS™x
— Y
Kor ‘ <e

DS™y

We mention that one sees from the proof that i§ the Hilder constant for logD S|,
then the constank is given by K = ¢g? /(1 — B7).

As a consequence of this theorem, since<Ox < D¢; < B < 1 implies that
o" < |1y, .| < B" for any w, we have the following corollary.

COROLLARY 2.2. For any m,n > 0 and anyw € II§°{0, 1} one has for allx,y €
I WO Wy ?

kg _ IDS" O] _ g
IDS™(y)|

The setC, . belongs to the collection of‘Zantor sets at levdl in the tree (rescaled).
We want to understand the geometry of the sets in this collection.

A first approximation is the original set itself (at level 0). But by bounded distortion,
for n large the 2 sets at leveh provide much better models for thé'2' sets at level
k = m + n and, moreover (and this is the strength of bounded distortion) this is true for
all m simultaneously. The reason is that since by definition

m —
S (Iyo...y,,,xo...x,,) - IX[)...X,,v



Hyperbolic Cantor sets 543

and sincel,, ,, has small diameter, by the corollary the derivativeSsf is close to
constant, hencé™ is close to linear.

In summary, consider all the Cantor subsets which have this same imageStintter
be grouped in one equivalence class. The@s at levek are split into 2 equivalence
classes, each with"2members which all have approximately the same geometry (but
whose locations are scattered throughout the space!). As we scale down toward a point
x, We are seeing sets given by these approximations.

Note that the equivalence class of a given interval at levedlepends on the
immediately previous: branches, rather than on its initial branching structure. We
will see in the next section how Sullivan uses this observation to study the asymptotics,
associating to the Cantor set a functi@inlike that used to define the ratio Cantor sets
in the previous section. Then, b, we will show that the sequence of sets one sees in
C is asymptotically the same as that for the ratio Cantor 6étsand for the seC” the
nested sequence of subsets has an exact description.

Remark. The scenery process of a ratio Cantor Bath subset in this sequence is itself
a ratio Cantor set. Moreover, the sets change in the following way. Wriihg for
the setC” N I3, ., affinely rescaled to [01] as above, one has (immediately from the
definition) thatC; , = C"® for all n > 0.

With the Gibbs measure on the full shift, this gives a stationary, set-valued process
which in forward time describes exactly what one sees as one zooms down toward
Hausdorff-almost every point in the ratio Cantor 68t See§t4 and 5 below.

3. Sullivan’s scaling function

Now we return to the study of a hyperbolic Cantor etinstead of treating the structure

of the entire set,, ,, N C, which is what we have been emphasizing so far, Sullivan
focuses on the information contained in the first step of its construction, given by the
relative lengths of the subintervals bf _,,. These subintervals are the left thifg._ . o,

right third 7, .1 and middle gap writterG,, . . We normalize the lengths of these
three intervals, defining far € C andn > 0, wherex = (xpx1...),

Rn,x = (|Ix0...x,,0|v |Gx0...x,,|a |Ix0...x,ll|)/|1xo...x,,|~

Sullivan calls this theatio geometry functiorof C; it mapsN x C to the interior of the
unit simplexA € R3 and determine€’ uniquely (one simply constructs to have these
ratios).

Next we write, fory = (... y_2y_1) in C= n-o,1j,

Rn (Y) = (|Iy,,,...y,10|» |Gy7n...y,1|v |Iy,,,...y,1l|)/|nyn...yfl|~

Following Sullivan, it is nice to think off as a distinct Cantor set, dual © (and
called thedual Cantor sét Later for the dynamical interpretation we will instead view
C as¥, that is, as the past coordinates of the full shift= I1*_{0, 1}. We will use
whichever symbol(f or X7) is most appropriate in the context.

As in [Bo1], for any 8 € (0, 1), the g-metric on X~ (which defines what is meant
below by Hlder continuity) is taken to bés (v, w) = g", wheren is the greatest positive



544 T. Bedford and A. M. Fisher

integer such thay_,,...y_1 = w_,...w_1. When X~ is thought of asC, i.e. as the
dual to a specific hyperbolic Cantor st we chooses to be (as before) the upper bound
on Dy;. We mention that if8 is replaced by some other numbgre (0, 1), then the
metrics are related by i

dB — (dﬁ)bgﬂ/bgﬂ’

and the Hlder exponeny for R in the statement of the next theorem would change to
y - (logg/logB).

THEOREM 3.1. (Sullivan) Let C be a hyperbolic**” Cantor set. For every in the dual
Cantor setC,

R(y) = nILmoo R,(y)

exists. The convergence is of orde(s"”), uniformly iny, and the functiorr is Holder
continuous with exponent in the 8 metric. R takes values strictly in the interior af.

Definition. R is called thescaling functionof C.

Proof. We will first show that for eachy, R,(y),n = 1,2,..., is a Cauchy sequence.
Since

m _
Sy iy 1) =Ly oy

and similarly for the subintervals, applying the mean value theorem and bounded
distortion property (Corollary 2.2) we have for all > 0 that

R, (y) = Rn+m (y)e:tKﬂ”V .

Therefore, R, (y) is Cauchy sequence (i.e. each of its three coordinates is a Cauchy
sequence) and hence it converges; call the liRit). Next, if y, w € T1_%, {0, 1} agree
on the coordinates-n, ..., —1, then sincer,(y) = R(y)e**?"” and R,(y) = R,(w),
we have
R(y) = R(w)e™2KF"

Writing || - || for the sup norm irR3, this implies that, with the log taken by components,
[log R(y) —log R(w)|| < 2K (dg(y, w))”,
i.e. logR is Holder continuous with exponemt and therefore so i®. O

Thus (since the normalized lengths add to oRerhapsf onto a compact subset of
the interior of the unit simplex ifR3,

4. Dynamical versions of Sullivan’s theorem
In this and the next two sections we return to the original motivating question: what
does the sequence of s&ls, look like? This is exactly what one sees for thih level
Cantor set as one zooms down toward The answer will be given in several forms
which can be thought of as dynamical versions of Sullivan’s theorem. We begin by
describing the behavior of the sequence of rafgs asn — co.

First we state Theorem 3.1 in a dynamical form. Here it will be crucial to think of
the dual Cantor sef as the pask~ of X. We extend the functio® to X by defining
R(x) = R(y) for x = (y, x). This function depends only on the past coordinates x.



Hyperbolic Cantor sets 545

COROLLARY 4.1. For eachx € C, for any choice ofw € ¥ such that3k > 0 with
Wk, Wil .. = Xk, Xkt1 - - - (Wherex = m(xpxy...)) then

IR, — R(c"w)| — 0 asn —> oo.

The proof is immediate from the definitions, and in fact if thélder constant folR
is ¢ > 0 so that

[R(x) = R(2)|| < cdp(x, 2),

one has
IRy x — R(c"(w))| < B

here theg-metric has been extended B in the natural way, with points, w having
to agree on coordinates fromn to n.

We note that, equivalently, if andw are in the same stable set (@, S), then the
sequencer, . (with any past) is in the stable set (in the shift on sequence space) of
the sequence given b sampled along the shift orbit of, with an exponential rate of
convergence.

Probabalistic interpretation: the scaling processAs we will see, we find that for the
guestion we have asked (how does the sequence of ratios behave), which begins as a
geometrical question, the natural answer, in Corollary 4.2, will be stated in the language
of probability theory. Indeed the reader with a background in probability theory as well
as dynamics will immediately see that the last statement above can be interpreted as
giving a pathwise convergence theorem for a stochastic process.

We remark that despite this use of probability concepts, in fact no probabalistic
methods at all will be used in the proof; all the actual work is just analysis and hyperbolic
dynamics, and has already been carried out in Theorem 3.1 above.

In order to clarify these points for the reader without a background in probability
theory, we bring in some basic concepts from probability theory, and then review the
fundamental connection of probability theory with ergodic theory. Especially good
introductions to probability theory arégm] and [GSH]; for the link with ergodic theory
see Bi].

The main objects of study in probability theory are stochastic processes (the word
stochasticjust meangandon). We recall that astochastic procesis simply a (one- or
two-sided) sequence of measurable functigngnown asrandom variable} defined on
some probability spacé&?, v). This is the analyst's interpretation. However, it is also
important to understand the probabilist’s viewpoint.

A probabilist thinks of the sequence of valugs= f; (w) as the primary object, with
o unknown but distributed according to the measuren 2. Thus, if one knows the
present value of the ‘variablef, that is f;, one has various possibilities for its next
value, fi1.

From this point of view only the process is important, not the underlying space
In fact, usually one does not give the measure explicitly, or even specify what exactly
the space is. Rather one specifies certain attributes of the variables, e.g. the initial
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distribution of values off, how that changes in time, and dependence properties such
as independence or the Markov property.

However, to put things on a firm foundation one has to move back to the analysis
setting and at least prove the existence of such a space and measure which will ‘carry’
the process. Kolmogorov's consistency theorem gives a way of doing that. Assume for
simplicity that the values of lie in a compact metric spadd. We take the spac® to be
the space ofample pathg(. .., fi(w),...)}. Thisis a subset dfi’ M, and inherits from
that space the product topology and the product Beralgebra. Kolmogorov’'s theorem
says that if the description of the procegsas specified the finite joint distributions (i.e.
the measures afylinder set$ in a consistent way, then this defines a unique measure
on Q. (The proof uses weak-compactness of the space of probability measures which
follows from the compactness of the product space.) In this way one shows that there
exists a concrete model for the process. Moreover, this particular choieésafanonical
in that it is thesmallestsuch space, in the following precise sense: for any other such
space, the random variables will factor through

There is a technical point: note that by the compactness assumption on \@lues,
is, in particular, a Polish space (a complete separable metric space). Therefore it is a
Lebesgue spacda the sense of Rochlin, i.e. it is measure-isomorphic to the unit interval,
plus (possibly) countably many atoms (points). This becomes important for the ergodic
theory interpretation; see the discussion Hi].

We remark that of course one reason why dynamical systems has developed into
such a rich and interesting area is that so many different fields can be brought to bear:
geometry, topology, ergodic theory, probability theory and information theory. Each
of these contributes not only its own collection of tools but also its unique developed
intuition together with a natural set of questions to ask.

The main objects from the point of view of ergodic theory are of course measure-
preserving transformations of a Lebesgue space.

Therefore the basic picture (and hence one’s basic intuition) is geometrical. So even
if the map is not given to us in a geometrical form, if, say, it does not originate from
some algebraic or geometric model, we visualize it as a transformation moving points
around in a measure space. Concepts such as generic points, mixing, and entropy follow
naturally from this point of view.

So if we can place this probabalistic object (a stochastic process) into the ergodic
theory setting, we will have a new set of questions to ask and tools to work with. We
recall how this translation is made.

Suppose we are given a stochastic process. For definiteness we tekde path
space as described above. Then if the process is invariant in some way, we interpret this
invariance as a transformation—and then we have the ergodic theory setup.

We will now give the most basic and important example of an invariance (for other
examples, seeFj1, 2], [BeFi3]). A stochastic process is, by definitiogtationary if
a time-change does not alter the probability of an event. Equivalently, as is easy to
see, the space of paths, acted on by the shift transformation, is a measure-preserving
transformation of a probability space.

Now if we are given a measure-preserving transformation, we can conversely move to
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the probability setting. Indeed, a transformatibn X — X determines many stationary
stochastic processes. Take the underlying probability spate be justX and choose
any measurable functiofi, and evaluate it along orbits; this defines a stationary process
filw) = f(T"(w)).

The example we are interested in her®i®"”w), which as we will see is aX-valued)
stationary stochastic process. We will call this #ealing processIn the next section
we will encounter set- and measure-valued versions of this.

We recall the definition of ageneric pointx for an ergodic measure-preserving
transformationT on a compact metric spacé with probability measuren. For each
continuousf : X — R, which can be thought of as abservablex satisfies

1=
A!inooN;f(T x):/xfdm.

That is,x samples each continuous observable well with respect to time averages. If

is a Polish space, complete metric but not necessarily compact—this will occur in the
next section—then we instead sample the continuous functions with compact support. By
the remarks in the previous paragraphs, this definition also makes sense for a stationary
ergodic stochastic process if the path space has been given the topology of a Polish
space. In the definition of a generic point we only take time averages towasdso

in the case of a two-sided stochastic process, it will also be natural to allow a one-sided
sequence as a generic point.

If the measure lives in a compact part of the space (which will always be the case in
this paper) then by an ergodic theorem of Kryloff and Bogliouboff (i.e. by the Birkhoff
ergodic theorem plus compactnessylmost everyx is a generic point.

Now u is equivalent to the Gibbs measuve which is invariant and has a unique
invariant natural extensiof on (X, o). Hence by Kryloff and Bogliouboff, applying
the previous corollary, we have the following.

COROLLARY 4.2. For u-a.e.x € C, the (one-sided) sequené ,, Rz, ... iS a generic
point for the ergodicA-valued processR(c”(w)) for n € Z, given byw € T being
distributed likev.

5. Conjugacies and the scenery process

In this section we will construct a set-valued version of the scaling function, and use it to
prove analogues of Corollaries 4.1 and 4.2 which will describe how the sequence of sets
C,.. approximates the scenery process. We will make use of three different metrics on
collections of Cantor sets. One metric, which is derived from@henorm on the space

of conjugaciesof Cantor sets, is well suited to proofs and is natural from an abstract
point of view. There we will prove properties (convergence at an exponential rate and
Holder dependence) which will then pass over to two geometrically defined metrics: the
Hausdorff metric, and a metric derived from the Hausdorff measures.

Three metrics. Our metrics will be defined on several different spaces. Fix a hyperbolic
CYr Cantor set with magC, S). We write X" = £17(C) for the collection of Cantor
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sets (with maps) which aré'*” conjugate to(C, S) (from Lemma 1.2 these are also
hyperbolicC**” Cantor sets). We write; " for the quotient space of'*”, where

(C, S) and(C, §) are identified ifS = S on C. This is the collection of marked Cantor

sets conjugate t@ or, equivalently, the pair¢C, S|c) with restricted mapsé’,}*+ Y will

denote the collection of underlying Cantor sets. We write Difffor the C*” order-
preserving diffeomorphisms af. Given a choice of the pai(C, S), Diff'*” projects

onto £X7(C) in a natural way: f is mapped taCy, Sy) = (f(C), foSo f~1). This is
many-to-one because there is some freedom given by the gaps; see Proposition 8.3. We
note that the projection frori'*” to N7 is also many-to-one.

The scenery process can be thought of as taking valués'ih, the marked Cantor
sets, or in the space of underlying s&%”. We will first prove convergence in the
space of conjugacies, DHf”; this will then imply convergence in the other spaces.

First we consider two metrics l*“’. We recall the definition of thédausdorff
metric on the collection of closed subsets of the inter¥al

dy(A,B) =infle : A+ (—€,€) D B and B + (—¢, €) D A}.

This defines a metric ofiL,”, and a pseudo-metric on the other spaces defined above.
Next, we define the following metric on the set of finite Borel measures on [0,

1], denotedM. We enumerate in some fixed wa¥,, E», ..., E, ..., the countable

collection of binary intervals. For example, takihg=1,2,...andj =0,...,2¢ -1,

we setn =21 4 ... + 2=V 4 j and definekE, = [j27%, (j + 1)27¥]. Then forvy, v,

in M, set

d(vi,v2) = Y |va(Ey) — va(En)|/27".
n=1
This metric induces a topology equivalent to the weak topologyéin the language of
probability theory; in analysis terminology this is the weakspology onM, the dual
of the space of continuous functions.
On 5*1;”’ we define theneasure metriely, from this, setting

dy(C, D) =d(H"|c, H|p),

where H? is d-dimensional Hausdorff measure (s&&] for definitions and background
on Hausdorff dimension and measure). On the other spaces, this again defines a pseudo-
metric.

Next, recall that the&t-norm of f : I — R is

I fller = I1flloc + 1Df llcc-

We |dent|fy Diff'*” with the collection of trlples(Cf Sg, f) for f e Diff1*”, to be
written as€ 1+ (as we noted above, the map frdit” to E47 is not one-to-one). The
cl-norm on Diff*” determines a metric o1+ as follows. Forf, g in Diff 17, we
write

dc(Cy, Co) = |If — gllea-

We call this theC* metric on £+7.
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Note.The metricdc keeps track of the mag on all of its domain/y U I3, while dy and
dy only see the Cantor sets. Thus, for i€ metric, writing Z for the identity map,
(C,S,7) and (C, S¢, f) will be a positive distance apart unless, in particulgu= S,

on all of Io U I; (of course one also need¢s= 7).

The definition ofdc depends on the initial choice of the g&t, S) (with the identity
map). The next proposition shows how the metric varies if we change this ‘base point’
of £1+7. As we will see in§8, Diff'*” is a Lie group and this is also a statement about
bounded invariance of a metric on that group.

PROPOSITION5.1. Let D € EY7, with D = ®(C) and with® e Diff 1*”. We have
1 dl) < dc < KdD,
K

whereK = 2max||D®|, | D(® 1)1}

Proof. We note that from the definition of thé'-norm one has that iff : I — I with
f©O =0, then| fllex < 2IDfll~. Therefore if alsog(0) = 0, then|lg o fllcx <

2llgllcall fllca
Now for f, ¢ and® as in the statement of the Proposition, we have

dp(Cs,Cy) = [lfodt—god Yer=(f -8 o® e
21 f = gleall® Hier = de(Cr, CHN D ler

which gives one of the inequalities. The other is proved in the same way. O

IA

Next we will look at how (onf”?’) the pseudo-metricgy andd,, compare to the
metric dc. First we recall how the Hausdorff measure transforms under mappings.

Definitions.Given a one-to-one differentiable malp: M — N between open subsets
of R, and given a Borel measureg on M and a real number > 0, we write
(W*w)(E) = n(¥E) and

B u)(E) = / DU dp,

V-lg

Thus, W* is the usualpush forwardof 1, and Wy is the (¥, d)-conformal transform
of u.

Hausdorff measure has taenformal transformation propertyith respect ta€* maps:
for ¥ : R — R aC* diffeomorphism,

HY = U(HY.

PROPOSITIONS.2. With dy, dy andde denoting the Hausdorff, measure, a@itimetrics
respectively, for alC;, C, € £,

du(Cy, Cg) <dc(Cy, Cy),
and for ¥ (x) = 5x + 4x2, we have for aliC; € £(C),

du(C, Cyp) = W(dc(C, Cp)).
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Proof. For the Hausdorff (pseudo)-metric this is immediate usingltPfenorm, since
du(Cy, Co) = |If — gllos = dc(Cy, Co).
For the second inequality, writing for the identity map o/, we have
dc(C,Cr) =11 f —Llica,
and writingw = H¢, uy = Hc,,

du(C.Cp) = Y |uEy — pupEyl27"

S| oot [ aue
n fYE, E,

< 2Af-ThpfL Y2+ 2 [ s - idu
n n fTENNE,

(here the first term bounds the contribution, for each intefgal of its two ends not
matching up exactly withf 1E,; we used the fact that sincg is a diffeomorphism of
1, |Dfllec = 1).

Next, we note that for alt > 0, |x? — 1] < [x — 1|. Hence||Df|? — 1| < ||Df| —1],
so the above is

< 2| f = Tlloo@+ 1Df1 = Loo) + IIDFI = Lo Y 1EaI27"

n

< 4NDSI = UleoQ+ IDfI = o) + DS = Lo
<41+ 1Df] = Lo + DUIDS] = Lloo) = BIIDS| = Lo + 4N DS | = L)
= V(dc(C, Cy)),

as claimed. O

We define thergstricted) C* metric on EMY 1o be

dei(Cr, Co) = If — gller,c

where this indicates that the sup norms are taken over the Cantdr. s€bviously,
dcy < dc on gy,
The first theorem that we are aiming for is the following.

THEOREM 5.3. Given aC'*” hyperbolic Cantor setC, S), for everyy = (...y_,...y_1)
€ X7, the limit
Cy= lim Cy .y,

exists. Convergence is exponentially fast, &h@) is Holder continuous with exponent
y (for both metrics orf*l*+ ¥, and for the restricted’! metric on the marked Cantor sets
5*1“’). Moreover,C(y) = C?, the ratio Cantor set built from the scaling function of
(C,9).

Thus, C(y) is a set-valued version of the scaling functiaR(y) (compare
Theorem 3.1). To prove Theorem 5.3, we first construct, in Theorem 5.9, certain
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conjugacies, proving convergence in ifie metric. Convergence in the Hausdorff and
measure metrics then follows from Proposition 5.2. Before giving this construction, we
state several further consequences of Theorem 5.9.

In the same way as for the scaling functifify), we also define(-) on the full shift
spacey, settingC(x) = C(y) for x = (y, x).

THEOREM 5.4. For everyx € C, the sequenc€, , = C,,_, IS asymptotic taC(c"(x)),
with an exponential rate of convergence, for anin X with the same future coordinates

(x0, X1, ...).

This is like Corollary 4.1. We will writeL¢ for the (compact) subset rinind (with
respect to all three metrics) which is the range of the functior C(x). This is the
collection of fnarked limit sets Since the function is continuous and the domziris
compact, we then have the following.

ProPOSITIONS.5. The collection of limit sets is compact.

Definition. Given aC**” hyperbolic Cantor se€, the set-valued scenery procest C
is the proces€ (" (x)) = C°"™, with x € %, distributed according to the meastire

Note that stationarity and ergodicity of this process follow immediately from
invariance and ergodicity of the measture

The space of paths is a compact subset of the Polish Spage?l, (or XL for
the marked sets) with the product topology determined by the topologies of any of the
three metrics; see the proof of Corollary 5.6.

We mention why we use probability terminology—tbeenery process-for the map
C(x) — C(ox). Note that this dynamics is not in fact given by a map £ itself.
Indeed, at every stage you have two choices: the right- or left-hand subsets from the
next level of the ratio Cantor seéf(x), with the choice of left or right depending on
whetherxg is 0 or 1. Or, from a different viewpoint, one has the dynamicsCgnof a
semigroup action; see the note at the end of the paper.

The next result is like Corollary 4.2.

COROLLARY 5.6. For p-a.e.x € C, the sequence of (rescaled) Cantor s€fs, which
nest tox is a generic point for the stationary ergodic set-valued pro€@ss$® determined
by (2, o, D).

In §2 we definedu,, to be the sequence of Hausdorff measui€sc, .. Convergence
of C, , to C(y) in the measure metric can be rephrased as follows.

COROLLARY 5.7. For everyy = (... y_,...y_1) € 7, the limit
MGy)= lim py, v,
n—o0o
exists, and is dlder continuous with exponenpt

The support of the measu (y) is the setC(y), and M(y) is a measure-valued
version of the scaling function.
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As we did for the set-valued process, we defilgx) = M(y). We define the
measure-valued scenery procek8n, x) = M(c"(x)), again withx € X, distributed
like b. We have the following.

COROLLARY 5.8. For p-a.e.x € C, the sequence,, ,, IS a generic point for the
stationary ergodic measure-valued procégsc™(x)) determined by(X, o, »).

Now we proceed to the proofs. For each interfig| ,,, with w; = 0 or 1, we write
Ay,..w, fOr the affine map which expands the interval to the unit intefvalVe then set
A = Ay, y,forye C. This expands the intervdl,_, , , to I affinely. Next, define
mapsg; , : I — I for k > n by

¢, =identity and ¢, =gy 00y sy, fork=n.

We will also write gy for ¢ .
For 0<n <k, we defined; , : I — I by

@, = A7 g, 0 (AD

It follows that:

(1) for eachn, @; , = identity;

(2) forallm >k >n, @, =P, , od;,; and
3) ®lo=Alopn. '

We will also write ®; for @, .

The sequence;, is, to use Sullivan’s words, ‘a sequence .of compositions (of
contractions) .. renormalized by post composition with linear maps to obtain mappings
between unit intervals.” (Appendix of [Sul]). As Sullivan states, and as we will prove
in the next section, such a sequence is precompa€tine) if the original hyperbolic
Cantor set i€ (k, «).

This gives convergence along some subsequdnge Unfortunately, however, this
is not enough for our goal of proving an ergodic theorem for Cantor sets and measures
(i.e. Corollaries 5.6 and 5.8)—for that purpose we want to prove that the sequence itself
converges. We do this in the next theorem, using bounded distortion, and then in the
next section we return to Sullivan’s idea to prove smoothness of the resulting limiting
conjugacy.

THEOREM 5.9. Let (C, S) be aC**”-hyperbolic Cantor set. For eachin the dual Cantor
setC,

P’ = lim @)
n—o0o
exists. This is an order-preserving diffeomorphism frbo /. Convergence is of order
O(B") in the C* norm, uniformly iny, and the functiory — & is Holder continuous
of order y, in the 8-metric.

Proof. We will show, using bounded distortion, that ferlarge and fork > n arbitrary,
@}, is close to the identity. Then sinck, , = ®; , o P, , this will imply convergence.
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Now, since the mapd are affine they have constant derivative. So for each/,
for m = k — n, we have

DA]

y = Yo (S™~to - =
(D@, = Do oD@ = ) e,

for z = (A) ()

DS™(z0)
= DS (2) for somezg e I,y ,,

by the mean value theorem. Therefore, by Corollary 2.2
e kP < D@,{,n(a) < KB

forall k > n, y € C and alla € 1. This implies the sequenc®®), n = 0,1,2..., is
Cauchy, hence converges. Sinbg(0) = 0 for all n, it follows from the fundamental
theorem of calculus that the limib? = lim,_ ., ®; exists, and thaD®* = lim D®;,,.
By Corollary 2.2,D®” is bounded away from 0 ansb by ¢*X#"; in particular, ®” is
an order-preserving diffeomorphism fromto 7, as claimed.
We define for eacl,
o), = lim @ ;
= O ks

the limit exists by the above arguments, and this maglislose to the identity map
Z:1— I. We have for eaclh that

Y — @Y Y
o = q)oo,n © q)n,O’

and that:
(1) 3ko > 0 such that
(@2, — Zller < koB™" .

The constank, here only depends oK from Corollary 2.2, which in turn depends
on B, the upper bound fofDgy;|. Here is the calculation. We have
P25, — Zller < IDPy, , — Llleo

oo,n

and we know that
e—K < e_[(/gw < Dq)g‘;on < e[(ﬂnv < eK

for all n. Now, since forx in the interval =X, ¢X] one hasle* — 1| < kox + 1, where
we takeky = (exp(exp(K)) — 1)/(exp(K)), statementl) holds true.

Now recall from the proof of Proposition 5.1 that fgr ¢ : I — I with f(0) =0
andg(0) = 0, then|ig o fllc1 < 2lgllcall fllcz- From this, it follows that statemergti)
is equivalent to:

(2) 3k1 > 0 such that
[®; — D|lex < k1"

(here we can takeé; = (eX)kg).

Both statements express, in different ways, thais close tod)fl',o, with exponentially
fast convergence(2) is what we stated in the theorem. Finally, it is now also easy to
check Hblder continuity:
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(3) 3k, > 0 such that for ally, w € C,
@ — ®[lc1 < ka(dp(y, w))”. U

Proof of Theorem 5.3Writing C; for ®;(C) = C,, ,,, andC’ = ®’(C), statement
(2) above says exactly that
de(CY, C7) < k™.

n?

Hence we have convergence in temetric. By Proposition 5.2, thereford, has the
same bound. For the measure metric, we have

du(C),CY) < W(des(CY,C)))
U(||®L,, — Zllc1)
< W(kop")

by (1), and this is< k3B8"", whereks = ko(5 + 4ko). Next we show Hlder continuity.
Now dc(CY, C¥) = [|[®Y — ®¥|l¢1, SO (3) proves Hblder continuity for theC! and
Hausdorff metrics. Then, applying Proposition 5d1;(C”, C*) < W(d¢y(C?, C")) <
W(dc(CY, C DY) < W(eXkB™) < kaBf"Y, Whereks = 5a + 4a? anda = eXk,.
Finally, it is clear from the constructions thél(y) has ratio geometry given bR(y),
henceC(y) is indeed equal t@”. O

Proof of Theorem 5.4From the proof of Theorem 5.3, since the exponential bound is
uniform over all sets of levet, we have that thé-distance fromC(c"x) to Cy,. ., iS
bounded byk;8"". The bounds foey andd,, then follow as above. O

Proof of Corollary 5.6.We give the proof for the process which takes values in
the collection of marked sets. Here the space will &, _E1(C), with the shift
transformation; this is a Polish space (singkis a Polish space; we usg' rather

than X so as to have a complete space). Therefore we know from our definitions
what it will mean for the one-sided sequen€g, to be a generic point. Now the map
x+ (...C(67x), C(x), C(ox)...) from ¥ has as its image a compact invariant subset
of M L C N%_E£L(C); this image is the space of paths of the scenery process, and
is the support of the image of the meastiteThe ergodicity of(Z, ¥, o) passes over

to the scenery process, hence a.e. the pathC (o ~1x), C(x), C(ox)...) is generic for

the shift on path space. Finally, since by Theorem 5.4 we know the seqdgnces
forward asymptotic t@ (0" x), we will compute the same time average for the continuous
functions. ThusC, . is generic forv-a.e.x and hence fopi-a.e.x. O

6. Smoothness of conjugacies
Now we will see how to prove that the conjugacie$6fin fact have higher smoothness
properties.

The basic idea will be to imitate what one knows about analytic mapg4or or
C(k,y) maps. Thus Lemma 6.2 is a version of Leibnitz’ formula, and Lemma 6.3 is
one step in showing*t” maps are morphisms in a category. This means they can be
used to define equivalence relations on sets, and to give the analogue of differentiable
structures. One also imitates the Arzela—Ascoli theorem in Lemma 6.4; as Sullivan says
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in the Appendix of Bul], and quoted in the previous section, the sequebtawill be
precompact irC(k, o). (As usual, instead we do our proofs@it”.)
Here is the main theorem we are aiming for.

THEOREM 6.1. Let C be aC**” hyperbolic Cantor set, and l&” : I — I be defined as

in §5. We claim:

() ifk=12,..., thend is Ck” (with the same Hider exponent, but a different
Holder constant);

(i) if k = oo or w, then®” is C*™ or C® respectively.

First we need a few lemmas.

LEMMA 6.2.For A C R, if f : A - Randg : A — R are bounded,y-Holder
continuous with tdlder constants, d, then:

(i) f + gisy-Holder with constant + d; and

(iiy f -gisy-Holder with constant||glle + d|l f llco-

Proof. (i) is immediate. The argument for (ii) comes by imitating the proof of Leibnitz
rule in the calculus:

[f(x)g(x) — fFOgWI I[f(x) = fDM]gx) + fFWIgx) — g]

clx = yI"lIglloe +dlx = yI” [l flloo-

IA

O

LEMMA 6.3.Fixk > 1. For A,B C R,letf: A — Bandg : B — R be such that
DX(f), D*(g) are bounded angr-Holder. ThenD*(g o f) is y-Holder.

Proof. This now follows by induction from the chain rule plus Lemma 6.2. O

The next lemma is basically the same as the ‘bounded variation’ lemma, Lemma 1.15
from [Bo1], except it is written in the reverse direction with the contractipnsstead of
the inverse ma. For the special casg = ¢, andh; = log|Dg,, |, wherei + j = n,
one gets exactly the bounded distortion property (Theorem 2.1). The formulation given
here is from the Appendix ofjul]; the key idea for proving our Theorem 6.1, which is
also in that Appendix (the sentence immediately preceding the corollary there) will be
how to use this lemma to control higher-order derivatives of the composition. One can
summarize the idea as follows: do not look at [6§¢,. |, but instead aD*~1log | De,.|.
Then we are applying the linear operatf to a sum, which leads to the proof.

As usual, for notational simplicity, we assume strict hyperbolicity.

LEMMA 6.4. Consider a composition of contractions o --- o f1, with f; : J; — Ji11
for intervals J; C R, and such thatDf;| < 8 < 1. For a pointx € J, write x; = x,
xiv1 = fi(x;). Leth; : J; — R be Hilder continuous with the same exponent (0, 1]
and the same constaat Then fori(x) = hi(x1) + ... + h,(x,), h is also y-Holder
continuous, with constany = ¢ /(1 — B7) (independent of).

Proof. Immediate from the geometric series, sinceifoy € J; we havelx; —y;| < 1.0
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The next lemma is more subtle than one might at first think. We wish to thank
Z. Nitecki and M. Urbanski for discussions which resulted in a first proof, and Y. Kifer
for then finding the much simpler argument given here.

LEMMA 6.5. Let f, : I — I be continuous functions with continuokth derivative and
assume that there exist functiofisg such that:

@) f.— fiand
(i) D*f, — g, uniformly asn — oc.
ThenD*f = g.

Proof. We define, for each & j < k, functionsg;, and sequences of functiorfs ; and
Pn,j by

t
gr=¢ and gj71(1)=/ 8js
0

faxk=D"f, and f, (1) = /0 ' i
Pnj =D’ fu = fuj-
Thus
Pni =0,

Prk-1(t)j = (D21 (1) — (DL £) (1) — (DML £,)(0) = (DF1£,)(0),
Pui—2(t) = D*72£,(0) + 1 (D*1 £,)(0),

and similarly (for each:) p, ; is for all j a polynomial of degreé¢ — j — 1, such that
Dp, j = pn, j+1. Now for eachyj, lim,_ f, ; = g;. In particular,

8o = lim fn,O = lim (fn - pn,O) = f — lim Pn,0-
n—00 n—00

Hence, lim_  pn.0 converges (uniformly) to some polynomigy with degree at most
k — 1, and we haveg = f — po. Therefore,

g = D'go=D'f — D"po=D'f
as claimed. O

Proof of Theorem 6.1Since D*¢, and D*¢, are y-Holder, by Lemma 6.3 so is
D*~1log Dg;, with some Holder constant,. Now we apply Lemma 6.4 to

fao-rofi=@y 0-00, =@

and
hj = D% Plog Dg,,.

Forx e I, writing x; = x, xo = h1(x), etc as in Lemma 6.4, since

n
D Plog Dy} = h;(x)),
=1
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we conclude thaD %Y log Dg; is y-Holder, with some different constant which is,
however, independent af.

Now to prove the theorem, first consider the cdse> 2. Here we have
D% Vlog D®; = D*Vlog Dy, since the constant derivative df, disappears upon
higher differentiation. Fok = 1 these are not equal; they differ by the constantZieg,
(which increases witlw). However, these cancel upon subtraction, so in either case we
have, for anya, b € 1,

[log D®}(a) — log D®; (b)| = |log Dy, (a) — log Dy} (b)|.

Therefore for allk > 1, D*"*log D®,, is a sequence of bounded functions whichyis

Holder with the same constant,. Also, this sequence is uniformly bounded. Kot 1

this follows from bounded distortion, as in the proof of Theorem 5.4, and in fact a bound

is eX?”. Fork > 1, we argue as follows. If it were unbounded, then tijidér continuity

with the same constant, some subsequence goes uniformly to eitkeor —oco. By
integration (k — 1) times, by induction this contradicts the boundednesskfce 1.

This implies equicontinuity. Now by boundedness and equicontinuity, there is some
convergent subsequence, using the standard diagonalization argument as in the proof of
the Arzela—Ascoli theorem. At the same time, fr¢Bwe know that limD®;, = D®Y

exists which implies lo@ ®; converges to lo@®>. Calling the subsequence

logD®; = fj,

we are in the situation of Lemma 6.5 — f, D*"1f; — g, henceD*~1f = g. Thus
D*llog D®” is a uniform limit of y-Holder functions with the same constagt hence
the limit is y-Holder with constant,. From Lemma 6.3D*®? is alsoy-Holder and
we are done fok =1,2,....

Finally, note that fork = oo we are done by part (i), and fdr = » we can apply
Arzela—Ascoli to see thgkd;} is a normal family, hence the limib? is also analytic]

Remark.We emphasize again the subtle point in the logic of this argumént”
convergence ofd; to &> is not known. What wedo know is convergence in the
C* norm (from Theorem 5.9) and convergence alonguhsequencén the C**” norm,
as just shown. This is enough to prove the claim of the theorem.

7. Smoothness of limit sets and rigidity

Given twoC*” hyperbolic Cantor set&’, S) and(C, S), recall that the (full) conjugacy

® is an order-preserving map defined on alllof This map is uniquely determined on

C by the conjugacy equation, since, as one sees, the symbolic dynamics is preserved.
Note that for any two topological Cantor sets, once they have been coded by the two-
shift ©* in an order-preserving way, this conjugacy on the Cantor sets extends to a
homeomorphism ori. The issue, therefore, is what types of conjugacies preserve what
type of structure. As is well known and not hard to show, for instance, a biLipséhitz

will preserve the Hausdorff dimension. We noted BeFil] that C* maps preserve the
order-two density. Furthermore, fé* conjugacy from $ul] one has the following.

LEMMA 7.1. If two CY*” hyperbolic Cantor sets ai@' conjugate, then they have the same
scaling function.
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Proof. By uniform continuity of the derivatives, since we already know the scaling
functions exist from Theorem 3.1, this is immediate. d

Hence under the same assumption, by Corollary 5.3 we have the following.
COROLLARY 7.2. They have the same collection of limit sets.
To prove our rigidity theorem, we will need the following.

LEMMA 7.3.Let (C, S) be a hyperbolic**” Cantor set. LefS : Io U I; — I be ack?
map such that = S on C. ThenS and S are C¥*” conjugate.

Proof. The conjugacy is the identity map ai; what we want to do is define it on the
gaps. We begin by defining to be the identity also on the gap betweenly and 1.

The conjugacy is then uniquely defined from the conjugacy equation by the dynamics.
That is, writing G,..x, = ¢x,..x, (G), we have fora € G,,_,,,

®(a) = Pry.r, @1, (@) = Prg..x, (8" ().

One immediately checks that with this definitidnis a conjugacy.

This map isC¥*” on the interiors of all the gaps. At points @, to checkC**” one
must be careful because these points are also limits of interior points in the gaps.

Here is one way of provingb is everywhereC**”. Define a sequence of maps
@, : I — I, whered, = the identity,®; = & on G andg,, o S everywhere else (i.e.
on Ip U I7) and, inductively, set, to be equal tab,_1 everywhere except op) I,,. »,
where it is defined to b&,, , o S".

These maps converge uniformly . So if we can show that for each D*®, is
y-Holder with a constant independent iaf this will carry over to the limit and we will
be done (here we will use the fact that the maps ., o S" are y-Hdlder with a fixed
constant).

The advantage of this method is that we must only check smoothness at each stage,
and so each time at only finitely many points.

Now consider the mag = ¢,,. ., oS" onCNlI,, . . Itis the identity there, and since
C is dense in itselfDf = 1 on that set. Since it is twice differentiabld? f = 0 there
and similarly for D* f. Therefore when we defing, by gluing togethe,, . , 05"t
andg,, , o S" at an endpoinip, the two functions agree at for all derivatives< k.
Also, D* is y-Holder for each piece. Hence, for all ®, is C¥*7 with a fixed Holder
constant, as we wanted to show, and so we are done. O

This produces one conjugacy. 48 we will return to this proof in order to studyow
many such mapsb there are.
We are now ready to prove the following.

THEOREM 7.4. (Highest smoothnes&jven aC'*” hyperbolic Cantor se€, its limit sets
have the highest degree of smoothness of any hyper@btic Cantor set in theC+”-
conjugacy class of .
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Proof. Let (C, 5) be ack*7, ¢ or C hyperbolic Cantor set which i§! conjugate to

C. By Corollary 7.2,C andC have the same limit sets, and by Theorem 6.1, the map
®Y : I — I defines a dynamic§® : I UL — I by conjugation with the mags, which

has that same degree of smoothness. O

THEOREM 7.5. (Rigidity)If (C, S) and (C, S) are twoC*+”, C* or C® hyperbolic Cantor
sets which either (a) aré! conjugate by a mag, or (b) have the same scaling function
R, then they are in fact conjugate by a ma’pc I — I which for (a) agrees witlb on C

or for (b) agrees with the coding; this map@&+*”, C* or C* respectively.

Proof. By either hypothesis they have the same limit sets. Choose®nheAgain by
Theorem 6.1, the map®’, ®* have the same smoothness $sS. Now let §¥, S
denote the maps defined @iu I; by these conjugacies. We are exactly in the situation
of Lemma 7.3, and have a conjugagyof S” and$>. Composing the three maps

@) Lodod

finishes the proof. O

8. Banach space structure

Fix a hyperbolicC**” Cantor set(C, §). Forr =k + y, wherey € (0,1], k > 1 or for

r =00, w, we writeE" = £"(C) for the collection of Cantor sets (with maps) which are
C’ conjugate to(C, S). (From Lemma 1.2 these are also hyperbdli¢” Cantor sets.)
The spaces Diff e, Erand &, are defined as they were §b for the case =1+ y.

In this section we will see how’ can be viewed as a Banach manifold, in fact a
Banach Lie group. We will also define a natural topology€énand show that” factors
nicely over£” as a topological space.

We first define the” norm on the Hlder functionsC? (1, R) to be

1£lley = I fle + sup T = SO

x,yel |)C - y|”

Forr =k + y, wherey € (0,1], k > 1, theC” norm will be

k-1
D ID flloo + 1D* flicy-
=0

For C*, we define
I fllco = S?q”le”oo}v

and forC® we will use the sup norm (since it is equivalent to all the otiémorms
there).

By definition a Banach manifold is a manifold which is locally modelled on a Banach
space, and a Lie group is a group which is als6°@ manifold modelled on a complete,
locally convex vector space (see e.yli]). Recall that Diff denotes theC” order-
preserving diffeomorphisms af. Now the choice of a set ifi” identifies the collection
& with Diff”, as we have seen fi5. Diff is an open subset @k, (1, R), which is how
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we will write the set of allC” functions from/ to R such thatf(0) = 0 and f (1) = 1.
This in turn is a closed affine subspacedf/, R). To see this, note that, defining

Bo(ILR) ={f eC'(I,R): f(O)=0=f(D},

two functions inCp , differ exactly by an element ofj ;. Now B, is a Banach space
with the C" norm. Hencef’ is a Banach manifold: it is identified with Diff which in
turn corresponds to an open subse3gf. Now Diff" is a group, hence it (and therefore
5’) is a Banach Lie group. Two choices have been made: the choice of a Cantor set in
&", and of a special point (the identity) in Diff These choices determined the maps to
By , and hence the metric (inherited from ti&norm). Both choices, moreover, amount
to the same thing: changing to D in £ (as in Proposition 5.1, for = 1) corresponds
to a right translation in the group Diff

Now in a Lie group one ideally would like to work with a (left- or right-) invariant
metric. If the group is compact (or, more generally, amenable) one can make a given
metric invariant (while keeping equivalence) by averaging over translations. In our case,
however, one cannot get an equivalent invariant metric—0sffnot only non-compact
but non-amenable! The (non-uniform) bounded equivalence proved in Proposition 5.1
is, nevertheless, enough for what we needed for the proof of Theorem 5.3.

In summary, we have the following proposition.

PROPOSITIONS.1. & is a Banach manifold. It is naturally identified up to right
composition with the Banach Lie grodiff ”, and with an open subset of a closed affine
subspace of” (I, R).

An estimate similar to that shown in Proposition 5.1 foe= 1 holds forr > 1.
Therefore one has, for=k + y, oo, w, the following proposition.

PROPOSITIONS.2.

(&) TheC" metric onDiff " is right-invariant up to (non-uniform) bounded equivalence.

(b) The C" metric on & is base-point independent up to (non-uniform) bounded
equivalence.

We note that£, the space of marked Cantor sets, is also a Banach manifold by the
same reasoning as for Diffit is an open subset of a closed affine subspac® @f, R).

Next we will describe more fully the relationship between the spa‘?feand &
Forr = k + y, we write Diffy(7) for the collection ofC" diffeomorphisms of the unit
interval I whose firstk derivatives are 10, ..., 0 at the endpoints. This is also a Banach
manifold.

PROPOSITIONS.3. Given the choice of a Cantor sef, & factors naturally, set
theoretically and topologically, as

£ =& x Diffy(I),

with the topology or£” defined below.
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Proof. First, let us consider how margf maps from/ to I there are, conjugating, S)

with (C, 5) (the Cantor sets are the same, but the maps may be different off of the Cantor
sets). In the proof of Lemma 7.3, note that instead of starting @idgual to the identity

on the gapG we could have taken ang‘*” diffeomorphism fromG to itself which

has derivatives that agree with the identity at the endpoints, up to érdéonversely,

any conjugacy is specified by its values 6n since elsewhere it is then determined by
the dynamics. Therefore we see that the se€’otonjugacies from(C, §) to (C, )
correspond naturally to D§f7) (this is also true wher§ = §!).

Next we consider how many differerit” conjugacies are possible in the rigidity
theorem from(C, S) to (6, §). Given the existence of one such map and hence a
restricted conjugacy, we can define (all the) other extensions by a method like that used
in the proof just given. That is, we first define the conjugacy arbitrarily on the first-level
gaps (but with the correct derivatives of orderk at the endpoints), then we extend by
the dynamics. Or we can quote that statement directly, making use of a ratio Cantor set
as intermediary as in the proof of Theorem 7.5, and now replaihg one of the more
general maps described above.

This shows we have a product of sef8.has not yet been given a topology. However,
from the product decomposition, we can define a family of metrics as follows. Choosing
one element of Diff defines an embedding in®’, and we just use thé” metric there.

(One would like to get a more natural definition by taking the infimum over all such
choices; however, it is then not clear that the triangle inequality will hold.) At any rate,
the metrics are equivalent and so this defines a natural topolody.on

We will show that theC” metric on&" is equivalent to the product of the metrics on
&" and Diff;.

It is easy to see that the map frofi to each factor is continuous (to Cfffit is
also affine). For the converse, given the base p@hts), first let f, g € Diff” be such
that (Cy, Sy) = (Cq, S,). Write fo, go for the corresponding elements of Giffi.e. the
restrictions off andg to the middle gap of” (rescaled in the range). We claim that if
fo andgo are close in Diff, then f and g are close in Diff. The formula forf on an
nth level gap ofC is

f@=9l . ofoopl, (@.

Here,p, ¢/ denote inverse branches férand S, respectively. By assumption, = ¢¥.
Now by bounded distortion (Lemma 6.4) fér= 1, and for generak by the proof of
Theorem 6-1,D"<pro...x,, is uniformly y-Holder with constant independent af This
proves| f — gllc1 is small, which is what we wanted to show.

Next we drop the assumption thatand g give the same maps. We have chosen an
element of Diff to define the metric of". Let f, & denote the maps in Diffsuch
that fo = go is that element with(Cy, Sy) = (Cs. Sp) and similarly forg. Now, by
definition, the distance between the pairséhis ||f — gllc1. So we just apply the
triangle inequality using the previous case to conclude dpaCy, C,) = || f — gllc1 is
also small. O

Remark.In a conversation about the proof of Lemma 7.3, Yair Minsky pointed out to
us an interesting parallel between that argument and Sullivan’s ‘flexibility and rigidity’
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theorem for Kleinian groups. Sullivan showed, for a finitely generated Kleinian group
I, that the limit setA of the group itself is ‘rigid’, i.e. a quasiconformal conjugacy (to
another Kleinian group) which lives (Lebesgue almost-surely)Acomust be Mbbius.

This is a consequence of Sullivan’s lemma thatcarries no measurablE-invariant

line fields. (Note that by contrast, for hyperbolic Cantor sets, quasisymmetric conjugacy
does not imply smooth conjugacy; as we have seen, one also needs to know the scaling
function.)

Sullivan used this to show that a quasiconformal conjugacy is determined by a Beltrami
differential on2/ ', where is the domain of discontinuity. Thus, in a sense one has
rigidity on the limit set and flexibility off it. The group actions correspond to the two
(not restricted) expanding maps, and the surfael’ or, equivalently, a fundamental
domain for the action of" on Q is analogous to the gag of the Cantor set. As is
the case there, the conjugacy is then specified elsewhere by the dynamics. Sullivan’s
theorem can then be stated as follows: Téith= Teich(2/T"), where this refers to the
Teichmilller space of a group and of a surface respectively; this formulation led to the
statement in Proposition 8.3.

Concluding remarks: limit sets as the attractor of a semigroup actiaf*” denotes the

C*r equivalence class of a givat*” hyperbolic Cantor set. The nested subclasses
& for maps of smoothness = k + y, oo, w, are also conjugate with that higher
degree of smoothness. Thus, smoothness classes are also conjugacy classes. Choosing
one set in€” as a base pointg” is naturally identified with a topological factor of

the C" orientation-preserving diffeomorphisms of the interval, Diffvhich is a Banach
manifold. Moreover, we can choose one Cantor set as a common base point for all the
&", since by Theorem 7.4 the smoothest Cantor sets exist. Then the nested collections
EWr o ... D & ... are naturally identified with factors of Diff” > ... D Diff” ...

(Each is a Banach manifold with its own topology, and is a dense subset of the larger
collections with respect to their topologies.) The spaces of marked Cantdl sats also
Banach manifolds. The free semigroup on two generafidisacts on each submanifold

Er by replacing it with its left or right Cantor subset. From Theorem 7.4, the limit sets
are in the intersection of th&,. From Theorem 5.3, because the bounds are uniform
over all Cantor subsets of level the collection of limit sets is an attractor for this
action. This convergence is exponentially fast in denorm. (Warning: we have only
shown convergence ithis norm; see the Remark at the end §&.) The semigroup
action on the attractor itself, and the relationship of that action to the scenery process,
can be described symbolically very simply as follows. Recall the map C” for y in

the dual Cantor seL~ andC”, the corresponding ratio Cantor set. Now just concatenate

y on the right with a finite string of symbolgx; ...x,. A path in the scenery process

is determined by infinitely many such choices of 0 and 1; these are successively added
onto y as the bi-infinite wordx = (y, x) (wherex = xgx1...) is shifted to the left in

the proces<C?" ™. The geometrical meaning abx; ... is this: when zooming down
toward the locationr (x) specified by those digits, in any limit set or, indeed, in any set

in that Ct-equivalence class, by Theorem 5.4 this is asymptotically the sequence of sets
which we see.
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