Ergod. Th. and Dynam. Sys. (1997), 17, 531-564

Tim Bedford and Albert Fisher Delft University and SUNY Stony Brook

Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets.

Abstract.

Given a $\mathcal{C}^{1+\alpha}$ hyperbolic Cantor set C, we study the sequence $C_{n,x}$ of Cantor subsets which nest down toward a point x in C. We show that $C_{n,x}$ is asymptotically equal to an ergodic Cantor set valued process. The values of this process, called limit sets, are indexed by a Hölder continuous set-valued function defined on Sullivan's dual Cantor set. We show the limit sets are themselves $\mathcal{C}^{k+\alpha}$, \mathcal{C}^{∞} or \mathcal{C}^{ω} hyperbolic Cantor sets, with the highest degree of smoothness which occurs in the $\mathcal{C}^{1+\gamma}$ conjugacy class of C. The proof of this leads to the following rigidity theorem: if two $\mathcal{C}^{k+\alpha}$, \mathcal{C}^{∞} or \mathcal{C}^{ω} hyperbolic Cantor sets are \mathcal{C}^1 conjugate, then the conjugacy (with a different extension) is in fact already $\mathcal{C}^{k+\alpha}$, \mathcal{C}^{∞} or \mathcal{C}^{ω} . Within one $\mathcal{C}^{1+\gamma}$ conjugacy class, each smoothness class is a Banach manifold, which is acted on by the semigroup given by rescaling subintervals. Smoothness classes nest down, and contained in the intersection of them all is a compact set which is the attractor for the semigroup: the collection of limit sets. Convergence is exponentially fast, in the \mathcal{C}^1 norm.