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The interval-censored survival data appear very frequently, where the event of interest is not observed
exactly but it is only known to occur within some time interval. In this paper, we propose a location-
scale regression model based on the log-generalized gamma distribution for modelling interval-censored
data. We shall be concerned only with parametric forms. The proposed model for interval-censored data
represents a parametric family of models that has, as special submodels, other regression models which are
broadly used in lifetime data analysis. Assuming interval-censored data, we consider a frequentist analysis,
a Jackknife estimator and a non-parametric bootstrap for the model parameters. We derive the appropriate
matrices for assessing local influence on the parameter estimates under different perturbation schemes and
present some techniques to perform global influence.

Keywords: log-generalized gamma regression; generalized gamma distribution; interval-censored data;
maximum likelihood; regression model; sensitivity analysis

1. Introduction

In several studies, survival response can be interval-censored such that the event of interest is not
observed exactly, but it is only known to occur within some time intervals that may overlap and vary
in length. The literature presents many applications of survival models for interval-censored data
by taking the Weibull family of distributions [1]. This family is very suitable in situations where
the failure rate function is constant or monotone. However, it is not suitable in situations where the
failure rate function presents a bathtub or a unimodal shape. To cope with these situations, several
distributions were derived from the Weibull distribution to exhibit bathtub-shaped or unimodal
failure rate functions, one of which is the generalized gamma (GG) distribution [2].

In some situations, the times of the events of interest T may only be known to have occurred
within an interval of time, say [U, V ], where U ≤ T ≤ V . This can occur in a clinical trial, for
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2 E.M. Hashimoto et al.

example, when patients are assessed only at pre-scheduled visits. If the event has not occurred at
one visit (at time U) but has by the following visit (at time V ), T is known only to be within the
interval [U, V ]. These are known as interval-censored data. Note that exactly observed, right- and
left-censored data are special cases of interval-censored data, with U = V for exactly observed
data, V = ∞ for right-censored and U = 0 for left-censored observations.

In this paper, we examine some statistical inference aspects for modelling interval-censored
data based on the log-GG (LGG) regression model. The inferential aspects were carried out using
the asymptotic distribution of the maximum-likelihood estimators (MLEs), where the normality
is more difficult to be justified when the sample size is small. As an alternative to the frequentist
analysis, we explore the use of the Jackknife estimator for the LGG regression model for interval-
censored data.A punctual and an interval estimation methodology, based on bootstrap re-sampling
methods, are also proposed.

After modelling, it is important to check the model assumptions and conduct sensitivity studies
to detect possible influential or extreme observations that can cause distortions in the results from
the analysis. In this paper, we discuss the influence diagnostics based on case deletion [3], in which
the influence of the ith observation on the parameter estimates is studied by removing the case
from the analysis. We propose diagnostic measures based on case deletion for the LGG regression
models for interval-censored data in order to determine which subjects might be influential in the
analysis. This methodology has been applied in various statistical models. See, for instance [4–6].

Nevertheless, when case deletion is used, all information from a single subject is deleted at
once and, therefore, it is hard to say whether that subject has some influence on a specific aspect
of the model. A solution for the earlier problem can be found in the local influence approach,
where we discuss how the results from the analysis are changed under small perturbations in
the model or data. Cook [7] proposed a general framework to detect the influence of observa-
tions which indicates how sensitive is the analysis when small perturbations are provoked on
the data and the model. Some authors have investigated the assessment of local influence in sur-
vival analysis models. For instance, Pettitt and Bin Daud [8] investigated the local influence in
proportional hazard regression models, Escobar and Meeker [9] adapted local influence methods
to regression analysis with censoring, Ortega et al. [10] considered the problem of assessing
the local influence in LGG regression models with censored observations. Further, Magnus and
Vasnev [11] confronted sensitivity analysis with diagnostic testing with applications in econo-
metrics and Xie and Wei [12] developed the application of influence diagnostics in censored
generalized Poisson regression models based on the case-deletion method and the local influence
analysis. More recently, Fachini et al. [13] adapted local influence methods to poly-hazard mod-
els under the presence of explanatory variables, Carrasco et al. [14] investigated the influence
diagnostics in log-modified Weibull regression models with censored data, Silva et al. [15] per-
formed the global and local influence methods in log-Burr XII regression models with censored
data and Ortega et al. [16] derived curvature calculations under various perturbation schemes in
regression models with the cure fraction. Here, we propose a similar methodology to detect influ-
ential subjects as the one in the log-exponentiated Weibull regression model for interval-censored
data [17].

The paper is organized as follows. In Section 2, we present the LGG regression model for
interval-censored data in addition to maximum-likelihood estimation, the Jackknife estimator
and bootstrap re-sampling methods. The score functions and the observed information matrix are
derived, and the process for estimating the regression coefficients and the remaining parameters
is discussed. In Section 3, we perform a simulation study for the proposed model. In Section 4, we
adopt some diagnostic measures considering the case deletion and the normal curvatures of local
influence under various perturbation schemes in the LGG regression model with interval-censored
data. In Section 5, a real data set is analysed to show the usefulness of the techniques described.
Finally, in Section 6, we offer some concluding remarks.
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Statistics 3

2. The LGG regression models for interval-censored data

From now on, let T be a random variable having the GG probability density function (pdf) with
parameters (α, τ , k)� given by

f (t; α, τ , k) = τ

α�(k)

(
t

α

)τk−1

exp

[
−
(

t

α

)τ]
, t, α, τ , k > 0, (1)

where �(·) is the gamma function, α and τ are the shape parameters and k is a scale
parameter. The survival function reduces to S(t; α, τ , k) = 1 − Q[k, (t/α)τ ], where Q(k, x) =
�(k)−1

∫ x
0 uk−1 e−u du is the incomplete gamma integral. The GG family is a very flexible model

since it includes several well-known distributions as submodels [18]. The main submodels of the
GG distribution are: the exponential (k = τ = 1), the gamma (τ = 1) and the Weibull (k = 1) dis-
tributions. The log-normal distribution is also obtained as a limiting distribution when k → ∞. If
τ = 2, we obtain the generalized normal (GN) distribution, say GN(2k, α). The GN distribution
is itself a flexible family that includes the half-normal (k = 0.5), Rayleigh (k = 1), Maxwell–
Boltzmann (k = 3

2 ) and Chi (k = ν/2, ν = 1, 2, . . .) distributions. The GG hazard function is
simply given by h(t; α, τ , k) = f (t; α, τ , k)/S(t; α, τ , k). The great flexibility of this model to
fit lifetime data is due to the different forms that the hazard function can take, that is: (i) if
τ > 1 and k = 1, the hazard function is monotonically increasing; (ii) if τ < 1 and k = 1,
the hazard function is monotonically decreasing; (iii) if 1 < τ < 1/k and k < 1, the hazard
function is bathtub-shaped and (iv) if 1/k < τ < 1 and k > 1, we have a unimodal hazard
function.

Applications of the GG distribution in reliability and survival studies were investigated
by Lawless [1]. Cox et al. [19] proposed a parametric survival analysis and the taxon-
omy of hazard functions for the GG distribution, Almpanidis and Kotropoulos [20] pre-
sented a text-independent automatic phone segmentation algorithm based on the GG distri-
bution, Nadarajah [21] analysed some incorrect references with respect to the use of this
distribution in electrical and electronics engineering, Ortega et al. [22] proposed deviance
residuals in generalized log-gamma (LG) regression models with censored observations and
Gomes et al. [23] developed a study on the parameter estimation of the GG distribution.
Recently, Ortega et al. [16] developed generalized LG regression models with the cure
fraction.

The random variable Y = log(T) defined from the GG random variable T has an LGG density
function, parametrized in terms of μ = log(α) + τ−1 log(λ−2), σ = (τ

√
k)−1 and λ = (

√
k)−1,

given by

f (y; λ, σ , μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|λ|

σ�(λ−2)
(λ−2)λ

−2
exp

{
λ−2

[(
y − μ

σ

)
λ − exp

{(
y − μ

σ

)
λ

}]}
if λ �= 0,

1√
2πσ 2

exp

[
−1

2

(
y − μ

σ

)2
]

if λ = 0,

(2)

where −∞ < y < ∞, −∞ < λ < ∞ is the shape parameter, σ > 0 is the scale parameter
and −∞ < μ < ∞ is the location parameter. The corresponding survival function can be
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4 E.M. Hashimoto et al.

expressed as

S(y; λ, σ , μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q

{
λ−2, λ−2 exp

[
λ

(
y − μ

σ

)]}
if λ > 0,

1 − Q

{
λ−2, λ−2 exp

[
λ

(
y − μ

σ

)]}
if λ < 0,

1 − 	

(
y − μ

σ

)
if λ = 0,

where 	(·) is the standard normal cumulative distribution and Q(·, ·) was defined before. Plots
of the density function (2) for selected parameter values are given in Figure 1.

The standardized random variable Z = (Y − μ)/σ has a density function given by

f (z; λ, σ , μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|λ|(λ−2)λ

−2

�(λ−2)
exp[λ−1z − λ−2 exp(λz)] if λ �= 0,

1√
2π

exp
(
− z2

2

)
if λ = 0.

(3)

The extreme value of standard distribution corresponds to the particular choice λ = 1.
We hardly need to emphasize the necessity and importance of moments in any statistical anal-

ysis, especially in applied work. Some of the most important features and characteristics of a
distribution can be studied through moments (e.g. tendency, dispersion, skewness and kurtosis).
Now, consider the following theorem:

Theorem 1 If Y ∼ LGG(λ, σ , μ), the rth moment of Y for λ > 0 is given by

μ′
r = E(Y r) = 1

�(w)

r∑
j=0

(
r

j

)
[2σ log(w−1/2)w1/2 + μ]r−jσ jwj/2�(j)(w),

where w = λ−2, �(j)(w) = ∂ j�(w)/∂wj.

Proof The rth moment of the LGG distribution is

μ′
r =

∫ ∞

−∞
yrλ

σ�(λ−2)
(λ−2)λ

−2
exp

{
λ−2

[(
y − μ

σ

)
λ − exp

{(
y − μ

σ

)
λ

}]}
dy.

Setting x = λ−2 exp{λ[(y − μ)/σ ]}, μ′
r can be reduced to

μ′
r = 1

�(λ−2)

∫ ∞

0

{σ

λ
[log(x) + 2 log(λ)] + μ

}r
xλ−2−1 e−x dx. (4)
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(c)

Figure 1. Plots of the LGG density function. (a) For λ < 0 and σ = 6, (b) for λ = 0 and σ = 6 and (c) for λ > 0 and
σ = 6.
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Statistics 5

Applying the binomial expansion in Equation (4) and after some algebra, we obtain

μ′
r = 1

�(λ−2)

r∑
j=0

(
r

j

)
[2σ log(λ1/λ) + μ]r−j

(σ

λ

)j
∫ ∞

0
xλ−2−1 e−x[log(x)]j dx. (5)

The integral in Equation (5) can be expressed as∫ ∞

0
xλ−2−1 e−x[log(x)]j dx = ∂ j�(λ−2)

∂(λ−2)j
.

Substituting the previous result in Equation (5) and setting w = λ−2, we have

μ′
r = 1

�(w)

r∑
j=0

(
r

j

)
[2σ log(w−1/2)w1/2 + μ]r−jσ jwj/2�(j)(w). �

Hence, for λ > 0, E(Y) = μ + σλ−1[ψ(λ−2) − log(λ−2)] and Var(Y) = λ−2σ 2ψ ′(λ−2),
where ψ(·) and ψ ′(·) denote the digamma and trigamma functions, respectively. Following similar
steps of Theorem 1, the rth moment of the LGG distribution for λ < 0 can also be determined.

In many practical applications, the lifetimes are affected by explanatory variables such as
the cholesterol level, blood pressure and many others. Let x = (x1, . . . , xp)

� be the explanatory
variable vector associated with the response variable y. Based on the LGG density function, we can
construct a linear regression model linking the response variable yi and the explanatory variable
vector xi as follows:

yi = x�
i β + σ zi, i = 1, . . . , n, (6)

where the random error zi has the density function (3), β = (β1, . . . , βp)
T, σ > 0 and λ > 0

are unknown parameters and x�
i = (xi1, . . . , xip) is the explanatory variable vector modelling

the location parameter μi. Hence, the location parameter vector μ = (μ1, . . . , μn)
� of the LGG

regression model can be expressed as a linear model μ = Xβ, where X = (x1, . . . , xn)
� is a known

model matrix.
From the log-linear model (6), the survival function of Yi|x can take three different forms:

S(yi|x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q

{
λ−2, λ−2 exp

[
λ

(
yi − x�

i β

σ

)]}
if λ > 0,

1 − Q

{
λ−2, λ−2 exp

[
λ

(
yi − x�

i β

σ

)]}
if λ < 0,

1 − 	

(
yi − x�

i β

σ

)
if λ = 0.

For interval-censored data, the observed data consist of an interval (log(ui), log(vi)) for
each individual, where such intervals are known to include yi = log(ti) with probability 1, i.e.
P[log(ui) ≤ yi ≤ log(vi)] = 1 and if log(vi) = ∞, then it is a right-censored time for yi. This
model will be referred to as the LGG regression model for interval-censored data. It is an extension
of an accelerated failure time model using the GG distribution for interval-censored data.

Setting λ = 1 in model (6), we obtain the log-Weibull (LW) (or extreme value) regression model
for interval-censored data. Further, if in addition, σ = 1, model (6) reduces to the log-exponential
(LE) regression model for interval-censored data. If λ = −1, we obtain the log-reciprocal Weibull
(LRW) regression model for interval-censored data. Finally, if τ = 1, we have the LG regression
models for interval-censored data.
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6 E.M. Hashimoto et al.

2.1. Maximum-likelihood estimation

Given a set of interval-censored observations and explanatory variables (log(u1), log(v1), x1), . . . ,
(log(un), log(vn), xn) of n observations, where (log(ui), log(vi)) is the observed data and xi

the explanatory variable vector, the full log-likelihood function for the parameter vector θ =
(λ, σ , β�)� can be expressed as

l(θ) =
∑
i∈F

l1(λ, zui, zvi) +
∑
i∈C

l2(λ, zui), (7)

where

l1(λ, zui, zvi) =

⎧⎪⎨⎪⎩
log{Q{λ−2, λ−2 exp[λ(zui)]} − Q{λ−2, λ−2 exp[λ(zvi)]}} if λ > 0,

log{Q{λ−2, λ−2 exp[λ(zvi)]} − Q{λ−2, λ−2 exp[λ(zui)]}} if λ < 0,

log[	(zvi) − 	(zui)] if λ = 0

and

l2(λ, zui, zvi) =

⎧⎪⎨⎪⎩
log{Q{λ−2, λ−2 exp[λ(zui)]}} if λ > 0,

log{1 − Q{λ−2, λ−2 exp[λ(zui)]}} if λ < 0,

log[1 − 	(zui)] if λ = 0,

where F denotes the set of individuals with interval censoring, that is, yi ∈ (log(ui), log(vi)], C
denotes the set of individuals with direct censoring, that is, yi ∈ (log(ui), +∞), zui = [log(ui) −
x�

i β]/σ and zvi = [log(vi) − x�
i β]/σ . The maximization of Equation (7) follows the same two

steps for obtaining the MLE of θ under the uncensored case. In general, it is reasonable to
consider that the shape parameter λ is in the interval [−3, 3]. We fixed, in the first step of the
iterative process, different q values in this interval. Then, we obtain the MLEs σ̃ (λ) and β̃(λ),
and the maximized log-likelihood function Lmax(λ) is then determined. We use, in this step, the
matrix programming language Ox, subroutine MAXBFGS (see, for instance, [24]). In the second
step, the log-likelihood Lmax(λ) is maximized, and then λ̂ is obtained. The MLEs of σ and β are
σ̂ = σ̃ (λ̂) and β̂ = β̃(λ̂), respectively.

The procedures discussed in this work are developed by assuming q fixed. The estimate of
the covariance matrix of the MLEs θ̂ can also be defined by the Hessian matrix. Under standard
regularity conditions [25], confidence intervals (CIs) and hypothesis tests can be conducted by
using the large sample multivariate normal distribution of the MLEs, where the covariance matrix
is given by the inverse of the information matrix. More specifically, the asymptotic covariance
matrix of θ̂ is simply I(θ)−1, where I(θ) = E[L̈(θ)] and L̈(θ) = −∂2l(θ)/∂θ∂θT.

We cannot compute the expected information matrix I(θ) due to censored observations (censor-
ing is random and noninformative), but it is possible to use minus the matrix of second derivatives
of the log-likelihood, L̈(θ), evaluated at the MLE θ = θ̂, which is a consistent estimate of I(θ).
The asymptotic normal approximation for θ̂ may be expressed as θ̂ ∼ N(p+2){θ, L̈(θ)−1}, where
L̈(θ) is the (p + 2) × (p + 2) observed information matrix given by

L̈(θ) =
⎛⎝Lλλ Lλσ Lλβj

· Lσσ Lσβj

· · Lβjβs

⎞⎠ ,

whose submatrices are determined in Appendix 1.
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Statistics 7

2.2. Jackknife estimator

The idea of jackknifing is to transform the problem of estimating any population parameter into
the problem of estimating a population mean. So, what is done when estimating a mean value is
performed in this method, but from an unusual point of view. An important work of implementing
the Jackknife method is given by Lipsitz et al. [26], who suggest an alternative robust estimator of
the covariance matrix based on the jackknife for analysing data from repeated measures studies.
Here, we use this method as an alternative to estimate the population parameters.

Suppose that T1, . . . , Tn is a random sample of n values and T̄ =∑n
i=1 Ti/n is the sample mean

used to estimate the mean of the population. The sample mean calculated with the lth observation
missing out is

T̄−l =
∑n

i=1 Ti − Tl

n − 1
,

for which

Tl = nT̄ − (n − 1)T̄−l. (8)

In a general situation, suppose that θ is a parameter estimated by Ê(T1, . . . , Tn), and for ease
of notation, we drop (T1, . . . , Tn). Thus, Ê−l is calculated when the observation Tl is missed out.
It follows, from Equation (8), that the pseudo-values can be determined by

Ê∗
l = nÊ − (n − 1)Ê−l, l = 1, . . . , n.

The average of the pseudo-values is the Jackknife estimate of θ given by

Ê∗ =
∑n

l=1 Ê∗
l

n
.

Manly [27] suggested that an approximate 100(1 − α)% CI for θ is given by Ê∗ ± tα/2,n−1 s/
√

n,
where s is the standard deviation of the pseudo-values, tα/2,n−1 is the upper (1 − α/2) point of
the t-distribution with n − 1 degrees of freedom, which has the effect of removing the bias of
order n−1.

The Jackknife estimate calculations for the LGG regression model for interval-censored data
are performed for λ, σ and βj (j = 1, . . . , p) and CIs are calculated separately for each parameter.

2.3. Bootstrap re-sampling method

The bootstrap re-sampling method, proposed by Efron [28], considers that the observed sample
represents the population. From the information obtained from such sample, B bootstrap samples
of similar size to that of the observed sample are generated, from which it is possible to estimate
various characteristics of the population, such as the mean, variance, percentiles and so on.

According to the literature, the re-sampling method may be non-parametric or parametric. In
this study, the non-parametric bootstrap method is addressed for which the distribution function
F can be estimated by the empirical distribution F̂.

Let T = (T1, . . . , Tn) be an observed random sample and F̂ the empirical distribution of T.
Thus, a bootstrap sample T∗ is constructed by re-sampling with the replacement of n elements
from the sample T. From the B generate bootstrap samples, T∗

1 , . . . , T∗
B , the bootstrap replication

of the parameter of interest for the bth sample is given by

θ̂
∗
b = s(T∗

b ),

that is, the value of θ̂ for sample T∗
b with b = 1, . . . , B.
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8 E.M. Hashimoto et al.

The bootstrap estimator of the standard error [29] is the standard deviation of these bootstrap
samples. It is denoted by ÊPB and can be obtained by the following result:

ÊPB =
[

1

(B − 1)

B∑
b=1

(θ̂∗
b − θ̄B)2

]1/2

,

where θ̄B = (1/B)
∑B

b=1 θ̂∗
b . Note that B is the number of generate bootstrap samples.According to

[29], assuming B ≥ 200, it is generally sufficient to present good bootstrap estimators. However,
to achieve greater accuracy, a reasonably high B-value should be considered. We describe the
bias corrected and accelerated (BCa) method for constructing approximated CIs based on the
bootstrap re-sampling method. For further details on bootstrap intervals, see [29–31].

2.3.1. BCa bootstrap interval

The bootstrap interval based on the BCa method assumes that the percentiles used in delimiting
the bootstrap CIs depend on the corrections to tendency â and acceleration ẑ0. The bias correction
value ẑ0 is generated based on the proportion of estimations of bootstrap samples that are smaller
than the original estimate θ̂. Equation for ẑ0 is given by

ẑ0 = 	−1

(
�(θ̂

∗
b < θ̂)

B

)
, b = 1, . . . , B.

Here, 	−1(·) is the inverse of the standard normal cumulative distribution, B the number of
generated bootstrap samples, θ̂ the MLE of the observed sample and θ̂

∗
b the MLE of the bth

bootstrap sample.
Let θ̂(i) be the MLE of the sample without the ith observation. Then, â is given by

â =
∑n

i=1[θ̂(·) − θ̂(i)]3

6{∑n
i=1[θ̂(·) − θ̂(i)]2}3/2

.

Note that θ̂(·) =∑n
i=1 θ̂(i)/n and n is the sample size.

Hence, the BCa bootstrap interval of coverage 100(1 − 2α)% can be reduced to

[θ̂∗
(Bα1)

, θ̂
∗
(Bα2)

],
where

α1 = 	

{
ẑ0 + ẑ0 + 	−1(α)

1 − â[ẑ0 + 	−1(α)]
}

and α2 = 	

{
ẑ0 + ẑ0 + 	−1(1 − α)

1 − â[ẑ0 + 	−1(1 − α)]
}

.

The quantities α1 and α2 are simple corrections to the bootstrap percentiles [29].

3. Simulation study

We conducted a Monte Carlo simulation study to assess on the finite sample behaviour of the
MLEs of σ , β0 and β1. All results were obtained from 1000 Monte Carlo replications. The
simulations were carried out using the matrix programming language Ox [24]. In each replication,
we generated event times of the GG distribution with parameters λ = 1 and 3. In our simulations
we have one binary covariate with values drawn from a Bernoulli distribution with parameter 0.5.

D
ow

nl
oa

de
d 

by
 [

U
SP

 U
ni

ve
rs

ity
 o

f 
Sa

o 
Pa

ul
o]

 a
t 0

2:
46

 1
7 

A
ug

us
t 2

01
1 



Statistics 9

Table 1. Averages of the MLEs and their standard errors (SD), CP, MCI and square RMSE for
the parameters of the LGG regression model for interval-censored data.

λ n Parameter Mean RMSE CP MCI SD

1 50 σ 0.463 0.152 0.937 0.572 0.147
β0 −1.054 0.456 0.941 1.658 0.453
β1 0.762 0.710 0.929 2.490 0.707

100 σ 0.481 0.105 0.939 0.402 0.104
β0 −1.030 0.313 0.946 1.177 0.312
β1 0.746 0.463 0.931 1.744 0.461

300 σ 0.494 0.059 0.949 0.231 0.059
β0 −1.010 0.178 0.945 0.679 0.176
β1 0.755 0.260 0.946 1.002 0.255

3 50 σ 0.469 0.141 0.949 0.551 0.137
β0 −0.961 0.398 0.951 1.474 0.396
β1 0.712 0.600 0.935 2.190 0.600

100 σ 0.479 0.101 0.942 0.387 0.099
β0 −0.961 0.276 0.940 1.044 0.273
β1 0.684 0.396 0.944 1.539 0.396

300 σ 0.491 0.057 0.946 0.223 0.056
β0 −0.970 0.154 0.950 0.604 0.151
β1 0.717 0.223 0.956 0.889 0.222

The censoring times were sampled from the uniform distribution on the interval (0, φ), where φ

was set in order to control the proportion of censored observations. In this study the proportion
of censored observations was on average approximately equal to 20%. The intervals of each
occurrence time were calculated following the same method proposed by Hashimoto et al. [17].
The BFGS method (see, for example, [32]) has been used by the authors to maximize the log-
likelihood. The true parameter values for the data-generating processes are: τ = 0.5, β0 = −1.0
and β1 = 0.7. We consider sample sizes equal to 50, 100 and 300. For each configuration, we
conducted 1000 replicates and then we averaged the estimates of the parameters and obtained the
standard errors (SD), mean of the CI (MCI), coverage probability (CP) of the 95% CI and the
square root of the mean square error (RMSE). The figures in Table 1 show that:

• the biases and RMSEs of the MLEs of τ , β0 and β1 decay towards zero as the sample size
increases, as expected;

• future research should be conducted to obtain bias corrections for these estimators, thus reducing
their systematic errors in finite samples;

• the empirical coverage probabilities are close to the nominal coverage level when the sample
size increases;

• the MCIs decrease when the sample size increases;
• the MLEs were consistent.

4. Sensitivity analysis

4.1. Global influence

The first tool to perform sensitivity analysis, as previously stated, is by means of global influence
by starting from case deletion [3]. Case deletion is a common approach to study the effect of
dropping the ith case from the data set. Case deletion for model (6) is given by

Yl = xT
l β + σ zl, l = 1, . . . , n, l �= i. (9)
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10 E.M. Hashimoto et al.

In the following, a quantity with subscript ‘i’ means the original quantity with the ith observation
deleted. For model (9), the log-likelihood function is denoted by l(i)(θ).

Let θ̂(i) = (λ̂(i), σ̂(i), β̂
�
(i))

� be the MLE of θ obtained by maximizing l(i)(θ). To assess the

influence of the ith observation on the MLE θ̂ = (λ̂, σ̂ , β̂
�
)�, the basic idea is to compare the

difference between θ̂(i) and θ̂. If deletion of an observation seriously influences the estimates, more
attention should be paid to that observation. Hence, if θ̂(i) is far from θ̂, then this case is regarded
as an influential observation. A first measure of global influence is defined as the standardized
norm of θ̂(i) − θ̂ (generalized Cook distance)

GDi(θ̂) = (θ̂(i) − θ̂)T{L̈(θ̂)}(θ̂(i) − θ̂).

Another alternative is to assess values GDi(β) and GDi(σ ), which reveal the impact of the ith
observation on the estimates of β and σ , respectively. Another popular measure of the difference
between θ̂(i) and θ̂ is the likelihood displacement

LDi(θ̂) = 2{l(θ̂) − l(θ̂(i))}.
Further, we can also compute βj − βj(i)(j = 1, 2, . . . , p) to calculate the difference between β̂ and
β̂(i). Alternative global influence measures are possible. One could think of the behaviour of a test
statistic, such as the Wald test for explanatory variable or censoring effect, under a case-deletion
scheme.

To avoid the direct model estimation for all observations, we can use the following one-step
approximation to reduce the burden

θ̂
1

(i) = θ̂ + L̈(θ̂)−1 l̇(i)(θ̂),

where l̇(i)(θ̂) = ∂l(i)(θ)/∂θ is evaluated at θ = θ̂ [33].

4.2. Local influence

Another approach is suggested by Cook [7] giving weights to the observations instead of removing
them. Local influence calculation can be carried out for model (6). If likelihood displacement
LD(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where θ̂ω denotes the MLE under the perturbed model, the
normal curvature for θ at direction d, ‖d‖ = 1, is given by Cd(θ) = 2|dT�T[L̈(θ)]−1�d|, where
� is a (p + 2)n matrix that depends on the perturbation scheme, whose elements are given by
�vi = ∂2l(θ|ω)/∂θv∂ωi, for i = 1, 2, . . . , n and v = 1, 2, . . . , p + 2, evaluated at θ̂ and ω0 and ω0

is the no perturbation vector. The elements of L̈(θ) in the LGG regression model with interval-
censored data are given in Appendix 1. We can also calculate normal curvatures Cd(λ), Cd(σ )

and Cd(β) to construct various index plots, for instance, the index plot of dmax, the eigenvector
corresponding to Cdmax , the largest eigenvalue of the matrix B = −�T[L̈(θ)]−1� and the index
plots of Cdi(λ), Cdi(σ ) and Cdi(β), called the total local influence (see, for example, [34]), where
di denotes an n × 1 vector of zeros with one at the ith position. Thus, the curvature at direction
di takes the form Ci = 2|�T

i [L̈(θ)]−1�i|, where �T
i denotes the ith row of �. It is usual to point

out those cases such that Ci ≥ 2C̄, where C̄ = (1/n)
∑n

i=1 Ci.
Next, we calculate, for five perturbation schemes, the matrix

� = (�vi)(p+2)×n =
(

∂2l(θ|ω)

∂θi∂ωv

)
(p+2)×n

, v = 1, . . . , p + 2 and i = 1, . . . , n,

for model (6) and its associated log-likelihood function (7). Consider the vector of weights ω =
(ω1, . . . , ωn)

T.
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Statistics 11

• Case-weight perturbation: In this case, the log-likelihood function takes the form l(θ|ω) =∑
i∈F ωil1(λ, zui, zvi) +∑i∈C ωil2(λ, zui), where 0 ≤ ωi ≤ 1 and ω0 = (1, . . . , 1)� and l1(·)

and l2(·) are defined in Equation (7). The matrix � = (�λ, �σ , �β)
� is determined numerically.

• Response perturbation (log(ui)): Here, we consider that each ui is perturbed as uiw = ui + ωiSu,
where Su is a scale factor that may be equal to the estimated standard deviation of U, ωi ∈ R.
Here, the perturbed log-likelihood function can be expressed as l(θ|ω) =∑i∈F l1(λ, zu∗

i , zvi) +∑
i∈C l2(λ, zu∗

i ), where zu∗
i = [log(u∗

i ) − x�
i β̂]/σ̂ , u∗

i = [log(ui) + ωiSu], ω0 = (0, . . . , 0)T and
l1(·) and l2(·) are defined in Equation (7). The matrix � = (�λ, �σ , �β)

� is determined
numerically.

• Response perturbation (log(vi)): Here, we consider that each vi is perturbed as viw = vi + ωiSv,
where Sv is a scale factor that may be equal to the estimated standard deviation of V , ωi ∈ R.
Then, the perturbed log-likelihood function can be expressed as l(θ|ω) =∑i∈F l1(λ, zui, zv∗

i ) +∑
i∈C l2(λ, zui), where zv∗

i = [log(v∗
i ) − x�

i β̂]/σ̂ , v∗
i = [log(vi) + ωiSv], ω0 = (0, . . . , 0)� and

l1(·) and l2(·) are defined in Equation (7). The matrix � = (�λ, �σ , �β)
� is obtained

numerically.
• Simultaneous response perturbation (log(ui), log(vi)): We consider that each of the ui and vi is

perturbed as uiw = ui + ωiSu, viw = vi + ωiSv, respectively, where Su and Sv are scale factors
that may be equal to the estimated standard deviation of U and V , ωi ∈ R. So, the perturbed log-
likelihood function can be expressed as l(θ|ω) =∑i∈F l1(λ, zu∗

i , zv∗
i ) +∑i∈C l2(λ, zu∗

i ), where
zu∗

i = [log(u∗
i ) − x�

i β̂]/σ̂ , log(u∗
i ) = (log(ui) + ωiSu), zv∗

i = [log(v∗
i ) − x�

i β̂]/σ̂ , log(v∗
i ) =

[log(vi) + ωiSv], ω0 = (0, . . . , 0)� and l1(·) and l2(·) are defined in Equation (7). The matrix
� = (�λ, �σ , �β)

� is determined numerically.
• Explanatory variable perturbation: Now, consider an additive perturbation on a particu-

lar continuous explanatory variable, namely Xt , by taking xitω = xit + ωiSx, where Sx is
a scale factor, ωi ∈ R. This perturbation scheme leads to the following expression for
the log-likelihood function: l(θ|ω) =∑i∈F l1(λ, zu∗∗

i , zv∗∗
i ) +∑i∈C l2(λ, zu∗∗

i ), where zu∗∗
i =

[log(ui) − x∗�
i β]/σ , zv∗∗

i = [log(vi) − x∗�
i β]/σ , x∗�

i β = β1 + β2xi2 + · · · + βt(xit + ωiSx) +
· · · + βpxip, ω0 = (0, . . . , 0)� and l1(·) and l2(·) are defined in Equation (7). The matrix
� = (�λ, �σ , �β)

� is obtained numerically.

All the programmes for estimating and for calculating the diagnostic measures are available
from the authors upon request.

5. Application

We consider a data set on the AIDS cohort study of haemophiliacs discussed in [35,36]. This study
consists of individuals with Type A or B haemophilia, who were at risk for HIV infection through
the contaminated blood factor they received for their treatment. The subjects were classified into
two groups, lightly and heavily treated groups, according to the amount of blood they received and
age indicators that indicate whether the age of a subject was below 20 at his or her HIV infection.
There were 257 individuals in the original study. In the following, we will focus on 256 subjects
who were known to be infected by HIV before the end of the study. Note that, in the original data
set, most of the observations for AIDS diagnosis are exact or right-censored and the remainder
are interval-censored with only two time points included in each interval. One objective of the
study is to test and estimate the possible difference of the AIDS incubation distributions between
the two groups. The covariates considered in the models are: xi1, age (0 = above 20, 1 = below
20) and xi2, treated group (0 = lightly, 1 = heavily).
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12 E.M. Hashimoto et al.

5.1. Estimation

5.1.1. Maximum-likelihood and Jackknife estimation

The MLEs of the parameters in the LGG regression model for interval-censored data are calculated
using the subroutine MAXBFGS in Ox, whose results are listed in Table 2.Additionally, in Table 2,
we report the Jackknife estimates. To obtain MLEs of parameters of the LGG regression model,
we fix different values for λ. We choose the value the maximizes the likelihood function over
several values of λ ∈ (−0.5, 5), obtaining λ = 1.1 (see, Figure 2). Hence this value is assumed
as the MLE of λ.

We can observe that the explanatory variable x2 is significant (at 5%) for the log-survival time.
Note that the estimates in Table 2 from the two methods seem very similar. From this table, we note
that β̂1 is close to zero thus indicating that the values of x1 do not explain the estimated survival
probability. On the other hand, the negative value of β̂2 indicates that the survival probabilities
for the patients in the lightly treated group (x2 = 0) are greater than those of the probabilities for
patients in the heavily treated group (x2 = 1).

5.1.2. Bootstrap re-sampling method

We considered B = 3000 bootstrap samples of the LGG regression model with interval censoring.
Using the bootstrap method described in Section 2.3, we obtain the estimated bootstrap and the
BCa CIs given in Table 3.

The estimates from the three methods are quite close. The MLEs seem more conservative (the
standard errors are smaller). Then, since normality for the Jackknife estimator is expected for this
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Figure 2. Profile log-likelihood.

Table 2. Maximum-likelihood and Jackknife estimates for the parameters of the LGG regression model for inter-
val-censored fitted to haemophilia data.

MLEs Jackknife estimates

θ Estimate SE p-Value 95% CI Estimate SE 95% CI

σ 0.247 0.018 – (0.211; 0.283) 0.247 0.020 (0.286; 0.208)
β0 2.774 0.031 0.000 (2.714; 2.835) 2.775 0.033 (2.839; 2.711)
β1 0.047 0.040 0.247 (−0.032; 0.125) 0.047 0.044 (−0.039; 0.133)
β2 −0.217 0.039 <0.001 (−0.293; −0.141) −0.216 0.039 (−0.294; −0.138)
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Statistics 13

Table 3. Bootstrap estimate and CIs based on the non-parametric bootstrap
re-sampling method for haemophilia data.

Bootstrap estimates

θ Estimate SE 95% CI (BCA)

σ 0.246 0.020 (0.221; 0.285)
β0 2.774 0.023 (2.737; 2.813)
β1 0.047 0.045 (−0.026; 0.122)
β2 −0.216 0.035 (−0.275; −0.161)
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Figure 3. Product-limit estimator for the survival function for haemophilia data. (a) For heavily and lightly treated
group and (b) for age.

sample size (n = 256), we can consider that the MLEs should follow a symmetric distribution with
heavy tails. We will continue the analysis using the MLEs and considering the LGG regression
models.

For the sake of illustration, Figure 3 shows the estimations by product-limit estimator [37]
for the survival function by treatment (heavily and lightly treated groups) and age separately.
The algorithm of the product-limit estimator for interval-censored data used in this analysis was
described by Colosimo and Giolo [38]. There is no evidence for the difference of the empirical
survival functions for the two groups of ages. Such difference is more accentuated between heavily
and lightly treated groups. The plots in Figure 3 show that the curves do not have significative
differences at the beginning of the study. However, for individuals with times event up to 8, we
note that the survival function decreases considerably for the patients in the heavily treated group.
Further, there is no difference for the survival times for individuals with age less than and greater
than 20 years old.

Therefore, based on these estimates, we obtain the final regression equation

yi = β0 + β2xi2, i = 1, . . . , 256. (10)

The MLEs for the parameters in the final model (10) are listed in Table 4.

5.2. Sensitivity analysis

In this section, we use Ox to compute the case-deletion and local influence measures for the
haemophilia data set using the LGG regression model (10).
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14 E.M. Hashimoto et al.

Table 4. MLEs from the fit of the LGG regression model for interval-censored fitted to
the haemophilia data.

θ Estimate SE p-Value 95% CI

σ 0.248 0.018 – (0.212; 0.284)
β0 2.793 0.027 0.000 (2.739; 2.846)
β2 −0.222 0.039 <0.001 (−0.298; −0.146)
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Figure 4. (a) Index plot of GDi(θ) (generalized Cook’s distance) and (b) index plot of LDi(θ) (likelihood distance).

The case-deletion measures GDi(θ) and LDi(θ) are presented in Section 4.1. The results of
such influence measure index plots are displayed in Figure 4. From this figure, we note that the
cases �50 and �156 are possible influential observations.

5.2.1. Case-weight perturbation

By applying the local influence theory discussed in Section 4.2, where case-weight perturbation is
used, the value Cdmax = 1.25 was obtained as a maximum curvature. In Figure 5(a), the plot of the
eigenvector corresponding to dmax is presented, and the total influence Ci is shown in Figure 5(b).
The observations �50 and �156 are very distinguished in relation to the others.
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Figure 5. (a) Index plot of dmax for θ (case-weight perturbation) and (b) total local influence for θ (case-weight
perturbation) from the fit of the LGG model to the haemophilia data.
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Statistics 15

5.2.2. Response variable perturbation

Next, the influence of perturbations on the observed survival times will be analysed (simultaneous
response perturbation (log(Ui), log(Vi))). The value for the maximum curvature was Cdmax = 1.54.
In Figure 6(a), we plot dmax versus the observation index which shows that the observation �156
is more salient in relation to the others. Figure 6(b) provides plots for the total local influence
(Ci), where again the observation �156 stands out.

5.3. Impact of the detected influential observations

Hence, the diagnostic analysis (global influence and local influence) detected the observations
�50 and �156 as potentially influential. The observation �156 presents a high lifetime value (right-
censored). Moreover, the observation �50 represents the lowest interval-censored data. To reveal
the impact of these two observations on the parameter estimates, we re-fitted the model under
some situations. First, we individually eliminated each one of these two cases. Next, we removed
the totality of potentially influential observations from the set ‘A’ (original data set).

In Table 5, we give the relative changes (in percentage) of each parameter estimate, defined
by RCθj = [(θ̂j − θ̂j(I))/θ̂j] × 100, parameter estimates and the corresponding p-values, where
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Figure 6. (a) Index plot of dmax for θ (simultaneous response perturbation) and (b) total local influence for θ
(simultaneous response perturbation) from the model fitting to the haemophilia data.

Table 5. Relative changes [-RC- in %], estimates and the corresponding p-values
in parentheses for the regression coefficients to explain the log-survival time.

Set{I} σ β0 β2

None – – –
0.248 2.793 −0.222
(−) (0.000) (<0.001)

Set I1 [3] [0] [1]
0.240 2.793 −0.220
(−) (0.000) (<0.001)

Set I2 [17] [2] [−37]
0.207 2.739 −0.304
(−) (0.000) (<0.001)

Set I3 [5] [0] [−3]
0.235 2.792 −0.228
(−) (0.000) (<0.001)
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16 E.M. Hashimoto et al.

θ̂j(I) denotes the MLE of θj after the set ‘I’ of observations being removed. Table 5 provides
the following sets: I1 = {�50}, I2 = {�156} and I3 = {�50, �156}. From Table 5, we note that the
MLEs from the LGG regression model for interval-censored are highly robust under deletion
of the outstanding observations. In general, the significance of the parameter estimates does not
change (at the level of 1%) after removing the set I . Therefore, we do not have inferential changes
after removing the observations handed out in the diagnostic plots.

6. Concluding remarks

In this paper, we introduce and study the LGG regression model for interval-censored data. We
adopt the quasi-Newton algorithm to obtain the MLEs and use likelihood ratio tests for testing the
model parameters. On the other hand, as an alternative analysis, we discuss the use of the Jackknife
estimator and non-parametric bootstrap for the LGG regression model for interval-censored data.
The required matrices for the application of the techniques were obtained by taking into account
some usual perturbation in the model/data. By applying the procedures in a data set from the
medical area, we can assess the sensitivity aspects of the MLEs under the perturbation schemes
and check the goodness of fit of the postulated model.Although the diagnostic plots detected some
possible influential observations, their deletion does not cause inferential changes in the results.
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Appendix 1: Matrix of second derivatives L̈(θ)

Here, we provide the elements of the observed information matrix. After some algebraic manipulations, we can obtain
the following:

For λ > 0:

Lλλ =
∑
i∈F

{
[g̈(λ, zui)]λλ − [g̈(λ, zvi)]λλ

g(λ, zui) − g(λ, zvi)
−
[ [ġ(λ, zui)]λ − [ġ(λ, zvi)]λ

g(λ, zui) − g(λ, zvi)

]2
}

+
∑
i∈C

{
[g̈(λ, zui)]λλ

g(λ, zui)
−
[ [ġ(λ, zui)]λ

g(λ, zui)

]2
}

,

Lλσ =
∑
i∈F

{ [g̈(λ, zui)]λσ − [g̈(λ, zvi)]λσ

g(λ, zui) − g(λ, zvi)
− {[ġ(λ, zui)]λ − [ġ(λ, zvi)]λ}{[ġ(λ, zui)]σ − [ġ(λ, zvi)]σ }

[g(λ, zui) − g(λ, zvi)]2

}

+
∑
i∈C

{ [g̈(λ, zui)]λσ

g(λ, zui)
− [ġ(λ, zui)]λ[ġ(λ, zui)]σ

[g(λ, zui)]2

}
,

Lλβj =
∑
i∈F

{ [g̈(λ, zui)]λβj − [g̈(λ, zvi)]λβj

g(λ, zui) − g(λ, zvi)
− {[ġ(λ, zui)]λ − [ġ(λ, zvi)]λ}{[ġ(λ, zui)]βj − [ġ(λ, zvi)]βj }

[g(λ, zui) − g(λ, zvi)]2

}

+
∑
i∈C

{ [g̈(λ, zui)]λβj

g(λ, zui)
− [ġ(λ, zui)]λ[ġ(λ, zui)]βj

[g(λ, zui)]2

}
,

Lσσ =
∑
i∈F

{
[g̈(λ, zui)]σσ − [g̈(λ, zvi)]σσ

g(λ, zui) − g(λ, zvi)
−
[ [ġ(λ, zui)]σ − [ġ(λ, zvi)]σ

g(λ, zui) − g(λ, zvi)

]2
}

+
∑
i∈C

{
[g̈(λ, zui)]σσ

g(λ, zui)
−
[ [ġ(λ, zui)]σ

g(λ, zui)

]2
}

,
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Lσβj =
∑
i∈F

{ [g̈(λ, zui)]σβj − [g̈(λ, zvi)]σβj

g(λ, zui) − g(λ, zvi)
− {[ġ(λ, zui)]σ − [ġ(λ, zvi)]σ }{[ġ(λ, zui)]βj − [ġ(λ, zvi)]βj }

[g(λ, zui) − g(λ, zvi)]2

}

+
∑
i∈C

{ [g̈(λ, zui)]σβj

g(λ, zui)
− [ġ(λ, zui)]σ [ġ(λ, zui)]βj

[g(λ, zui)]2

}
,

Lβjβs =
∑
i∈F

{ [g̈(λ, zui)]βjβs − [g̈(λ, zvi)]βjβs

g(λ, zui) − g(λ, zvi)
−
[ [ġ(λ, zui)]βj − [ġ(λ, zvi)]βj

g(λ, zui) − g(λ, zvi)

]2
}

+
∑
i∈C

{ [g̈(λ, zui)]βjβs

g(λ, zui)
−
[ [ġ(λ, zui)]βj

g(λ, zui)

]2
}

.

For λ < 0:

Lλλ =
∑
i∈F

{
[g̈(λ, zvi)]λλ − [g̈(λ, zui)]λλ

g(λ, zvi) − g(λ, zui)
−
[ [ġ(λ, zvi)]λ − [ġ(λ, zui)]λ

g(λ, zvi) − g(λ, zui)

]2
}

−
∑
i∈C

{
[g̈(λ, zui)]λλ

1 − g(λ, zui)
−
[ [ġ(λ, zui)]λ

1 − g(λ, zui)

]2
}

,

Lλσ =
∑
i∈F

{ [g̈(λ, zvi)]λσ − [g̈(λ, zui)]λσ

g(λ, zvi) − g(λ, zui)
− {[ġ(λ, zvi)]λ − [ġ(λ, zui)]λ}{[ġ(λ, zvi)]σ − [ġ(λ, zui)]σ }

[g(λ, zvi) − g(λ, zui)]2

}

−
∑
i∈C

{ [g̈(λ, zui)]λσ

1 − g(λ, zui)
− [ġ(λ, zui)]λ[ġ(λ, zui)]σ

[1 − g(λ, zui)]2

}
,

Lλβj =
∑
i∈F

{ [g̈(λ, zvi)]λβj − [g̈(λ, zui)]λβj

g(λ, zvi) − g(λ, zui)
− {[ġ(λ, zvi)]λ − [ġ(λ, zui)]λ}{[ġ(λ, zvi)]βj − [ġ(λ, zui)]βj }

[g(λ, zvi) − g(λ, zui)]2

}

−
∑
i∈C

{ [g̈(λ, zui)]λβj

1 − g(λ, zui)
− [ġ(λ, zui)]λ[ġ(λ, zui)]βj

[1 − g(λ, zui)]2

}
,

Lσσ =
∑
i∈F

{
[g̈(λ, zvi)]σσ − [g̈(λ, zui)]σσ

g(λ, zvi) − g(λ, zui)
−
[ [ġ(λ, zvi)]σ − [ġ(λ, zui)]σ

g(λ, zvi) − g(λ, zui)

]2
}

−
∑
i∈C

{
[g̈(λ, zui)]σσ

1 − g(λ, zui)
−
[ [ġ(λ, zui)]σ

1 − g(λ, zui)

]2
}

,

Lσβj =
∑
i∈F

{ [g̈(λ, zvi)]σβj − [g̈(λ, zui)]σβj

g(λ, zvi) − g(λ, zui)
− {[ġ(λ, zvi)]σ − [ġ(λ, zui)]σ }{[ġ(λ, zvi)]βj − [ġ(λ, zui)]βj }

[g(λ, zvi) − g(λ, zui)]2

}

−
∑
i∈C

{ [g̈(λ, zui)]σβj

1 − g(λ, zui)
− [ġ(λ, zui)]σ [ġ(λ, zui)]βj

[1 − g(λ, zui)]2

}
,

Lβjβs =
∑
i∈F

{ [g̈(λ, zvi)]βjβs − [g̈(λ, zui)]βjβs

g(λ, zvi) − g(λ, zui)
−
[ [ġ(λ, zvi)]βj − [ġ(λ, zui)]βj

g(λ, zvi) − g(λ, zui)

]2
}

−
∑
i∈C

{ [g̈(λ, zui)]βjβs

1 − g(λ, zui)
−
[ [ġ(λ, zui)]βj

1 − g(λ, zui)

]2
}

.

For λ = 0:

Lλλ = 0, Lλσ = 0, Lλβj = 0,

Lσσ =
∑
i∈F

{
[	̈(zvi)]σσ − [	̈(zui)]σσ

	(zvi) − 	(zui)
−
[ [	̇(zvi)]σ − [	̇(zui)]σ

	(zvi) − 	(zui)

]2
}

−
∑
i∈C

{
[	̈(zui)]σσ

1 − 	(zui)
−
[ [	̇(zui)]σ

1 − 	(zui)

]2
}

,
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Lσβj =
∑
i∈F

{ [	̈(zvi)]σβj − [	̈(zui)]σβj

	(zvi) − 	(zui)
− {[	̇(zvi)]σ − [	̇(zui)]σ }{[	̇(zvi)]βj − [	̇(zui)]βj }

[	(zvi) − 	(zui)]2

}

−
∑
i∈C

{ [	̈(zui)]σβj

1 − 	(zui)
− [	̇(zui)]σ [	̇(zui)]βj

[1 − 	(zui)]2

}
,

Lβjβs =
∑
i∈F

⎧⎨⎩ [	̈(zvi)]βjβs − [	̈(zui)]βjβs

	(zvi) − 	(zui)
−
[ [	̇(zvi)]βj − [	̇(zui)]βj

	(zvi) − 	(zui)

]2
⎫⎬⎭

−
∑
i∈C

⎧⎨⎩ [	̈(zui)]βjβs

1 − 	(zui)
−
[ [	̇(zui)]βj

1 − 	(zui)

]2
⎫⎬⎭ .

Note that

zui = [log(ui) − x�
i β]

σ
, zvi = [log(vi) − x�

i β]
σ

, g(λ, zui) = Q[λ−2, hui],

g(λ, zvi) = Q[λ−2, hvi], hui = λ−2 exp(λzui), hvi = λ−2 exp(λzvi),

aui(λ) =
∫ hui

0
wλ−2−1 exp(−w) dw, avi(λ) =

∫ hvi

0
wλ−2−1 exp(−w) dw,

[ġ(λ, zui)]λ = {[ȧui(λ)]λ − ψ(λ−2)aui(λ)}
�(λ−2)

, [ġ(λ, zvi)]λ = {[ȧvi(λ)]λ − ψ(λ−2)avi(λ)}
�(λ−2)

,

[ȧui(λ)]λ = exp(−hui)(hui)
λ−2

(zui − 2λ−1) − 2λ−6
∞∑

k=0

(−1)k

k! J(hui, λ
−2 − 1 + k, 1),

[ȧvi(λ)]λ = exp(−hvi)(hvi)
λ−2

(zvi − 2λ−1) − 2λ−6
∞∑

k=0

(−1)k

k! J(hvi, λ
−2 − 1 + k, 1),

J(hui, λ
−2 − 1 + k, 1) =

∫ hui

0
wλ−2−1+k log(w) dw, J(hvi, λ

−2 − 1 + k, 1) =
∫ hvi

0
wλ−2−1+k log(w) dw,

[ġ(λ, zui)]σ = −
[

(λσ−1zui)

�(λ−2)

]
exp(−hui)(hui)

λ−2
, [ġ(λ, zvi)]σ = −

[
(λσ−1zvi)

�(λ−2)

]
exp(−hvi)(hvi)

λ−2
,

[ġ(λ, zui)]βj = −
[

(xijλσ−1)

�(λ−2)

]
exp(−hui)(hui)

λ−2
, [ġ(λ, zvi)]βj = −

[
(xijλσ−1)

�(λ−2)

]
exp(−hvi)(hvi)

λ−2
,

[	̇(zui)]σ = −[f (zui)zui]
σ

, [	̇(zvi)]σ = −[f (zvi)zvi]
σ

,

[	̇(zui)]βj = −[xij f (zui)]
σ

, [	̇(zvi)]βj = −[xij f (zvi)]
σ

,

[g̈(λ, zui)]λλ = {[äui(λ)]λλ − ψ ′(λ−2)aui(λ) − 2ψ(λ−2)[ȧui(λ)]λ + [ψ(λ−2)]2aui(λ)}
�(λ−2)

,

[g̈(λ, zvi)]λλ = {[ävi(λ)]λλ − ψ ′(λ−2)avi(λ) − 2ψ(λ−2)[ȧvi(λ)]λ + [ψ(λ−2)]2avi(λ)}
�(λ−2)

,

[äui(λ)]λλ = q(λ, zui) + 12λ−7
∞∑

k=0

(−1)k

k! J(hui, λ
−2 − 1 + k, 1) − 2λ−6

∞∑
k=0

(−1)k

k! J(hui, λ
−2 − 1 + k, 2),

[ävi(λ)]λλ = q(λ, zvi) + 12λ−7
∞∑

k=0

(−1)k

k! J(hvi, λ
−2 − 1 + k, 1) − 2λ−6

∞∑
k=0

(−1)k

k! J(hvi, λ
−2 − 1 + k, 2),

q(λ, zui) = exp(−hui)(hui)
λ−2 {2λ−2 − hui(zui − 2λ−1)2 + λ−2(zui − 2λ−1)[zui − 2λ−1(log(hui) + 1)]},

q(λ, zvi) = exp(−hvi)(hvi)
λ−2 {2λ−2 − hvi(zvi − 2λ−1)2 + λ−2(zvi − 2λ−1)[zvi − 2λ−1(log(hvi) + 1)]},

J(hui, λ
−2 − 1 + k, 2) =

∫ hui

0
wλ−2−1+k[log(w)]2 dw, J(hvi, λ

−2 − 1 + k, 2) =
∫ hvi

0
wλ−2−1+k[log(w)]2 dw,
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[g̈(λ, zui)]λσ = exp(−hui)(hui)
λ−2

σ�(λ−2)
{zui[1 − λhui(2λ−1 − zui) − λ−1[zui − 2λ−1(log(hui) + 1)]]

+ λzuiψ(λ−2)},

[g̈(λ, zvi)]λσ = exp(−hvi)(hvi)
λ−2

σ�(λ−2)
{zvi[1 − λhvi(2λ−1 − zvi) − λ−1[zvi − 2λ−1(log(hvi) + 1)]]

+ λzviψ(λ−2)},

[g̈(λ, zui)]λβj = − xij exp(−hui)(hui)
λ−2

σ�(λ−2)
{1 + λ−1[hui(2λ−1 − zui) + zui − 2λ−1(log(hui) + 1)] − λψ(λ−2)},

[g̈(λ, zvi)]λβj = − xij exp(−hvi)(hvi)
λ−2

σ�(λ−2)
{1 + λ−1[hvi(2λ−1 − zvi) + zvi − 2λ−1(log(hvi) + 1)] − λψ(λ−2)},

[g̈(λ, zui)]σσ =
[

(σ−2zui)

�(λ2)

]
exp(−hui)(hui)

λ−2 [zui(1 − λhui) + 2λ],

[g̈(λ, zvi)]σσ =
[

(σ−2zvi)

�(λ2)

]
exp(−hvi)(hvi)

λ−2 [zvi(1 − λhvi) + 2λ],

[g̈(λ, zui)]σβj =
[

(xijσ
−2λ

�(λ2)

]
exp(−hui)(hui)

λ−2 [1 + zuiλ(hui − λ−2)],

[g̈(λ, zvi)]σβj =
[

(xijσ
−2λ

�(λ2)

]
exp(−hvi)(hvi)

λ−2 [1 + zviλ(hvi − λ−2)],

[g̈(λ, zui)]βjβs =
[

(xijxisσ
−2λ)

�(λ2)

]
exp(−hui)(hui)

λ−2 [λ(λ−2 − hui)],

[g̈(λ, zvi)]βjβs =
[

(xijxisσ
−2λ)

�(λ2)

]
exp(−hvi)(hvi)

λ−2 [λ(λ−2 − hvi)],

[	̈(zui)]σσ =
( zui

σ 2

)
[f ′(zui)zui + 2f (zui)], [	̈(zvi)]σσ =

( zvi

σ 2

)
[f ′(zvi)zvi + 2f (zvi)],

[	̈(zui)]σβj =
( xij

σ 2

)
[f ′(zui)zui + f (zui)], [	̈(zvi)]σβj =

( xij

σ 2

)
[f ′(zvi)zvi + f (zvi)],

[	̈(zui)]βjβs =
[

(xijxis)

σ 2

]
f ′(zui), [	̈(zvi)]βjβs =

[
(xijxis)

σ 2

]
f ′(zvi).
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