
http://journals.cambridge.org Downloaded: 21 Nov 2011 IP address: 192.75.139.254

Ergod. Th. & Dynam. Sys. (1992), 13, 45-64
Printed in Great Britain Copyright © 1993 Cambridge University Press

Integer Cantor sets and an order-two
ergodic theorem

ALBERT M. FISHER
University of Gottingen, Lotzestr. 13, D3400 Gottingen, Germany

(Received 1 December 1989 and revised 1 December 1991)

Abstract. Let M c f ] ^ {0,1} denote the orbit closure, under the left shift a, of the
sequence . . . (all zeroes)... 101000101000000000101 . . . corresponding to the integer
Cantor set [C] = {£"0 a,3': a<=0 or 2, NeN}. We prove that with respect to the
infinite invariant measure p, which is the unique normalized non-atomic invariant
measure on M, for every fe Ll(M, p), for p-a.e. xe M,

1 ~ Sk(f(x))HN-CO log N kt, k"
where d = log 2/ log 3, and c is the almost-sure value of the right-hand order-two
density of the middle-third Cantor set. The proof uses renormalization to a scaling
flow, plus identification of (M, a) as a tower over the Kakutani-von Neumann
dyadic odometer.

1. Introduction
In this paper we prove an almost-sure ergodic theorem for a certain infinite measure-
preserving transformation. The proof uses the Hopf ratio ergodic theorem plus a
renormalization argument, based on the fractal-like structure of the return times to
a set of finite measure. This idea has its roots in [Be-Fi] and the notion introduced
there of order-two density for Cantor sets.

Related theorems have thus far been proved for several examples: some random
walk and Markov-like examples, and also Boole's transformation [Aa-De-Fi], and
for the horocycle flow for a Fuchsian group of second type [Fi 3]. The example of
the present paper is closely connected to that of the horocycle flow (as explained
in the last section); the other examples are handled by quite different methods.

Infinite measure transformations exhibit much more varied behavior than the
finite case, and so one should not expect a single general theorem of this type to
hold. Instead it seems one needs to closely study specific examples, and then perhaps
move toward a more general theory. Basic references on the variety of behavior are
Aaronson's papers [Aa 1, Aa2, Aa3]; see the remarks in § 2.

For all the examples mentioned previously the theorem has this form: first one
normalizes by the 'dimension' of return times, and then one applies a strong averaging
method, in this case the Hardy-Riesz log average. Since this is an order-two averaging
method in the sense of [Fi 1,2], we call the theorem an order-two ergodic theorem.
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Here is our example. Let a = ... a^.aQa... denote the sequence
...0000.101000101... in l ^ f l - c o R *}> associated with the integer Cantor set
[C] = {1,^0 cf3'": NeN, c,=0 or 2}. Now let M be the orbit closure in 2 of the
sequence a, under the left shift cr. We will show that there is a unique non-atomic
ergodic invariant measure p on M, up to multiplication by a constant; we normalize
by setting p([l]) = 1 where [l] = {be M:bo= 1}, and note that p(M) = oo.

Now we describe the theorem. Let d = log 2/log 3, which is the (integer) dimension
of [C], denned to be

limlog#([C]n[0,n])/logn
rt-*OO

and let c be the almost-sure value for the one-sided order-two density of the
middle-third Cantor set C c [0,1]. See [Be—Fi] for an introduction to the properties
of integer dimension and for the proof of the existence of c.

We will prove the following.
THEOREM. (An order-two ergodic theorem.) For every / e L\M, p), we have for a.e.
xe M,

1 f
k JM

1 £ Sk(f(x)) 1 f
I —d T=c f(x)dp(x).

k k JMHere Sk denotes the partial sum, Sfc(/(x)) = £j=0'/(o-'x). The log average is
consistent with the Cesaro average but stronger, and is a natural choice for averaging
any object with some self-similarity, since it is the exponential conjugate of the
Cesaro average; see [Fi 1,2] for background.
Acknowledgments. We wish to thank Jon Aaronson, Tim Bedford, Mariusz Urbanski,
Michel Dekking and Manfred Denker for discussions, and Dan Rudolph for supply-
ing a key observation: that the base of the tower could be coded as the Kakutani-von
Neumann odometer. This allows one to prove the type of unique ergodicity men-
tioned above, and also leads to the horocycle example, which is briefly described
at the end of the last section and will be treated more fully elsewhere.

2. The ratio ergodic theorem, dimension and order-n density
In this section we develop some basic material which is also needed in [Aa-De—Fi,
Fi 3]. First we recall Hopf's ratio ergodic theorem, then use it to prove properties
for dimension and order-n density.
2.1. Ratio theorem. We will use the abbreviation cempt for a conservative, ergodic
measure-preserving transformation T, of an infinite measure space {M, si, p) which
is non-atomic and cr-finite.

Hopf's ratio ergodic theorem ([Ho], ch. 4) states, that for a cempt one has the
following.
THEOREM 1. (Hopf.) Let f, geL\M,p) with \Mgdp*0. Then for a.e. xeM,

lim I
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Note. For the special case of A, Be si and /=XB, S~XA this turns out to be
surprisingly easy to prove. Assume B c A (otherwise replace Abyf iu A), and build
the tower (or Kakutani skyscraper) M = Au (T(A)\A)u • • • over A. Since T is
ergodic, so is the induced map (A, TA, pA) where pA = p/p(A) is the normalized
measure. By the Birkhoff ergodic theorem applied to TA, the frequency x e A spends
in B is pA(B) = jf/\g. This is also the relative frequency of B to A along the full
orbit in the tower. Finally, the conclusion passes immediately from a.e. x e A over
to a.e. x e M.

Remarks. In one sense this is a good analogue in the infinite measure setting for
the finite measure ergodic theorem (Birkhoff's theorem), since it is also valid for
the finite measure case and moreover there, taking g=\ (if pM = l), it reduces
exactly to Birkhoff's theorem. But from a philosophical point of view it is quite
different, since it says nothing about the time average behavior of the sequence
f(T'x). One does almost get a time-average statement from the ratio theorem as
follows. Taking g(x) = XA(X) where A c M has measure one, and setting a{x, n) =
L"=i g(T'x), the theorem reads: for every fe L\ for a.e. x,

(
J M

fdp.

The problem with this however is that the normalizing sequence a(n, x) is very
definitely x-dependent. In fact, by a theorem of Aaronson ([Aa 2] Theorem 2), for
a cempt there can never exist a universal sequence a(n) which gives a.s. convergence.
Nevertheless one can make further progress for some classes of cempts (a notable
exception being the 'squashable' transformations of Hajian, Ito and Kakutani
[Ha-I-K, Aa3]; see Proposition 7 below).

One has the following positive results, for certain cempts, given a careful choice
of a(n): distributional limits of (S"f)/a(n) [Aa4], upper and lower envelopes
[Aa-De 1,2] and the following sort of Cesaro-average version of convergence in
measure: V/e L1, V subsequence nk, there exists a further subsequence nt such that
((Sn'f)(x))/a(n,) converges Cesaro a.s. to \M fdp [Aa3, Aa-S]. When this latter
property holds for some sequence a(n), (M, p, T) is called weakly homogeneous,
and a(n) is termed the asymptotic type of T (defined up to asymptotic equivalence,
i.e. up to ratios converging to 1).

To move closer to the time-average spirit of the Birkhoff theorem, our idea is to
begin with the sequence S"f/a(n) for an appropriate choice of a(n), and then to
smooth out the fluctuations by applying a strong form of averaging method. The
Hardy-Riesz log averages fit that role perfectly since they extend in a natural way
one's usual intuitive notion of time average, given by the Cesaro average (see the
discussion in [Fi 1,2]).

This seems to be an especially suitable method when the normalizing sequence
is of the form a(n) = cnd, because one then has a strong analogy with Hausdorff
dimension and measure, which can in turn suggest a strategy for proving convergence.
In this case we choose to normalize by nd rather than cnd, for reasons explained
at the end of this section. In the present paper we restrict attention to this case;
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some examples which instead fit the closely related situation where a(n) is regularly
varying will be studied in [Aa-De-Fi].
2.2. Dimension. We recall from [Be-Fi] that the dimension dim (F) of F g N is

lim^oolog Nn/logn (if the limit exists), where JVn = Na(F) = # ( F n { l , 2 , . . . , «} ) .
(Note that 0 < r f < l , since this is true for each n).

Let (M, si, p, T) be a cempt. Associate with a set A e si and a point x e M the
0-1 sequence Yk(A, x) = xA(Tkx), and the integer set F(A, x) = {k: Yk = 1}. We will
show the following.

PROPOSITION 2. If for some fixed Aesi with 0 < pA < oo, //ie dimension of F(A,x)
exists for p-a.e. xeA, then:
(i) it is a.s. constant (= d) on M

(ii) for any set Be si of finite positive measure, dim (F(B, x)) = d for a.e. x e M.
Proof. The statement dim (F) = d is equivalent to: for every e > 0, 3n0 such that for
all n> n0,

nd'e<Nn<nd+e and therefore to:
lim NJnd+*=0 lim NJn11'' =+oo.

n-*oo

Now the set of x such that either of these holds for some fixed d is invariant and
measurable. Hence by ergodicity the dimension is a.s. constant, proving (i). And
by the ratio ergodic theorem, for n large, Nn(x, A) = Nn{x, B){\±e) so dividing by
nd+e and nd~\ both go to zero or infinity together, proving (ii). •

In this situation we will say the dimension exists for the return sequence of (M, T, p).
We will use the terms measure-preserving homomorphism or m.p. factor map to

mean a measurable map of infinite mpts which preserves the measure and is a.s.
onto. Following Aaronson [Aa 1,5], on the other hand a homomorphism is also
allowed to multiply the measure by a constant, and two infinite mpts are similar if
there is a third mpt which has each as a factor (or equivalently, if there is a joining
of the two transformations). Note: by a theorem of Aaronson and Furstenberg,
similarity is an equivalence relation [Aa5].

PROPOSITION 3. If the dimension exists for a cempt (M, si, T, p), then:
(i) it exists for (M, si, T, a- p) where a is any positive real number; and it has the

same value
(ii) it exists with the same value for any similar cempt.
Proof. Immediate from Proposition 2, if the joining given by the similarity happens
to be ergodic. If not, following the proof of Theorem 2.4 in [Aa 1] (similarity
invariance for asymptotic type), one first applies a theorem of Krengel to produce
an ergodic decomposition of the joining, each of whose components is a joining of
factors of the two maps. •

Therefore the existence of dimension, and its value if it exists, are invariants for
similarity of transformations. Next we study a finer invariant.
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2.3. Order-n density

THEOREM 4. Let (M, si, p, T) be a cempt. Assume that there exists d>0 such that
for some geV(M, p) with j M g # 0,

,. _ J _ £ (sk(g(x)) Ilim 2. Td 7 converges, for a.e. x e M.7v-.cc log N k=\ k k

Then
(i) this limit is constant a.s., and writing it as c-\M g,

(ii) for every / e L\M, p), for a.e. x, for the same constant c,

1 ^ SJ(x) 1 _

Proof. This is nearly the same as for Proposition 2. (i) Constancy follows from
ergodicity, since the limit is an invariant measurable function of x. (ii) For fixed x,
given e>0 , 3n0 such that for all fc> n0, (Sfc/")(je) = ( l±e)-((S tg)(x))-(J / /Jg) .
The same holds upon division by nd, and convergence for / follows
immediately. •

We recall from [Fi 2] that the Hardy-Riez log averaging operator is the discrete-
time version [A2

V] of the order-two averaging operator A\ where <p(x) = e~*x[0oo)(x)
and where in general, for ^ > 0 with integral one, (A(^)h)(t) =
(¥* (Jj°exp(n)))°log ("V), for h e LX{U). Therefore by Wiener's Tauberian Theorem,
and Lemma 2.2 of [Fi 1], once one has convergence for A^"' it follows automatically
for A\£'), for all m>n. Something similar is true here, although since the function
h(k) = Sk(f)/kd may be unbounded one must restrict ^ to be in the Wiener
class—and this is the hypothesis needed for Pitt's extension of Wiener's theorem
to that case [Wid]. Lemma 2.2 also requires a new proof for unbounded functions;
to describe all of this rigorously would take us too far afield at the moment, so we
defer those details to a later paper. At any rate, one has the following more general
statement:

THEOREM 5. Let (M, si, p, T) be a cempt with a-finite infinite measure. Assume there
exists d>0 such that for some ge V with J g # 0, for fixed x,

(N) converges for a.e. x,

then:
(i) this limit is constant a.s., and writing it as c-\M g,

(ii) for every m a n , for every ty in the Wiener class, for every fe L1,

When this holds, we call it an order-n ergodic theorem.
And as was the case for dimension, one has therefore the following.
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COROLLARY 6. Let (M,s4,p, T) be as above; assume the dimension d exists and
that for some n, the order-n ergodic theorem holds. Let c be the order-n density of
F(A,x) for some Aesi with measure one. This number is the same for any image
{or pre-image) under a measure-preserving homomorphism. For (M, si, a- p, T), the
value is c/a. •
Remarks. Note that in stating Theorem 5, we could have instead normalized by
a(k) = ckd instead of by kd. This is the natural thing to do up to homomorphism,
since one has then essentially replaced p by 1/c- p, and the constant c then pleasantly
turns into 1.

From the geometrical point of view, however, it is probably better not to lose the
information given by this constant, and to stay in the category of measure-preserving
homomorphisms. As mentioned in [Be-Fi], integer order-n density of dimension d
can be thought of as coming from a finitely-additive integer version of Hausdorff
d-dimensional measure, and so changing c into 1 is equivalent to choosing for each
transformation a different normalization for Hausdorff measure (compare [Fa] § 1.4).
Note. The least order, n, of averaging operator giving convergence is also a similarity
invariant; more generally so is the class of convex changes of scale (see [Fi 1])
whose associated averaging methods converge.

In contrast to the present type of example, for Hajian, Ito and Kakutani's
squashable transformations no such time average ergodic theorem will be possible.
For a squashable transformation T of {M,s4,p) by definition there exists a map
Q:M->M satisfying two properties: on the one hand 3a ^ 1 such that p°Q ' = ap,
and on the other hand TQ = QT. The point is (as will be seen in the proof below)
that the first property says Q changes the measure, while the second guarantees
that Q preserves the return-time structures. Hence no statement of the form 'time
average = space average' can hold.

Our proof is based on Aaronson's proof that squashable transformations are not
weakly homogeneous (Lemma 2.1 in [Aa3]).

PROPOSITION 7. For a cempt T which is squashable, for any sequence a(n)>0 and
any averaging operator [Ain)] one has either:
(i) for all nonnegative f e Ll,

(ii) for all such f,

Moreover, the same is true with A" replaced by any averaging operator A^ where
c is a convex change of scale, or for any of these averages taken along any fixed
subsequence Smk.
Proof. If the lim sup in (i) is for s o m e / not a.s. oo, then by ergodicity and translation
invariance it is a.s. = c for some finite c > 0.
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Assume for simplicity that J / = l . Then by the Hopf theorem, for any other
positive ge V the lim sup is c- J g. In particular for A s M with pA = 1, the lim sup
for XA is c. Now on the one hand the lim sup for XQ'A is c- (/ iQ' '(A)) = ca ^ c, but
on the other hand since TQ = QT, the sequence of visits of a point x to the set A
is identical to the visits of yeQ~*{x} to Q~lA, so the time averages must be
unchanged, giving a contradiction. The proof is the same for subsequences, and for
operators A^. •

3. Natural extensions and the scaling flow
We recall from [Fi 1,2, Be-Fi] the definition of the scaling flow of dimension d: let
fi = {g:R+-»R continuous with g(0) = 0}, with topology ST{D.) given by uniform
convergence on compact sets and Borel a-algebra 38, and with maps TS : ft -> ft for
seU defined by {rsg)(t) = g{e~st)/e~sd. We will now define a certain TS-invariant
Borel measure on ft, which is associated with the geometry of the middle-third
Cantor set; the dimension is fixed as d = log 2/log 3.

First recall that every measure-preserving transformation of a Lebesgue space has
a canonical invertible version, unique up to measure theoretic isomorphism, called
its natural extension [Ro]. Let C g [ O , l ] be the middle-third Cantor set, /x the
Hausdorff d -dimensional measure restricted to C, and S:C -» C the ergodic measure-
preserving map defined by S(x) = 3x(mod 1). The natural extension of S can be

A .A <A A

represented as the map S:C-*C with C = C xC, defined by:

= ( 3 x - 2 , \ y + \) for x e [ | , l ] .
Geometrically this is a sort of 'baker's transformation'.

Recall that S is canonically isomorphic to the left shift (with truncation) a on
n + —FIST {0,2}, via the map xi-»(x0, x l 5 . . . ) e l l + where x has ternary expansion
x = Zi lo x i /3 ' + I - With this notation, the map is written x = (.xox,. . .)>-»(xo,x1,.. .)€
Il+. The invariant measure for 5 is fi = /JL X y,, and the corresponding tr-invariant
measure on n + is Bernoulli (5,5) infinite product measure. The map S:C^>C
corresponds to the full left shift a on II = n^oo {0. 2}, which in turn is the natural
extension of cr on n + . For a point x = ( x , y ) e C x C , with x = ( .xox, . . . ) and
y = (-yo)>\- • •), t n e m a p from C to II is xi-»(.. .x_2, x_i, x0, x,, x 2 , . . . ) where
(x_, ,x-2 , • • •) -(yo,yi,y2, • • •)• We will also write (.. .X-JX^.XQX, . . . ) for the point
x in C.

Now let Y = C x [0, log 3] with the topological identification (x, log 3) = (S(x), 0),
and let <I>, denote the special flow (suspension flow) on Y; that is, one flows up
with unit speed and then jumps back via the map S on the Poincare cross-section
C x {0}. The measure we use is the product of {i with Lebesgue measure; we denote
this by m. So (Y, <£,, m) is an ergodic flow.

Next we define a continuous bounded function on Y. Set

where x = (x, y). Boundedness is automatic, but continuity at the cross-section needs
to be shown.
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1 2
FIGURE 1. The extended Cantor function

2-,

1-

FIGURE 2. The function L;(t)
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First, for each x we define the function f£: R -» U by fx( t) =f(x, t) for t e [0, log 3),
and/*(f) =f(Sk(x), t) for t e [fc log 3, {k +1) log 3). Note that via this map, the flow
<&, on Y corresponds to the left-shift flow a, on functions from U to U.

Next, define L^t) = ^ ( - l o g f) for t> 0, and 0 for / = 0, which by boundedness
of/ is the limiting value. Now for t e [0,1], we claim that L$(t) = fi[x,x+t]. This
is because of the conformal transformation property of d -dimensional Hausdorff
measure plus the fact that S is measure-preserving on (C, fj.) (see § 3 of [Be-Fi]).
Therefore L$ is continuous for t e [0,1] and in particular at the points f,|,... which
correspond to the cross-sections of Y. Therefore it is continuous for all t, and so f$
is also continuous, hence in CB(U), the space of continuous bounded functions.

Now write v for the measure on (ft, 38) which is the image of m on the special
flow Y. Write ft, •= ft for the image of Y under the map x^Lx, and CB1 for the
image of the map x^f^. Give CB the topology ST{CB) of uniform convergence on
compacts.

The next proposition summarizes what has been done so far. The proof of this
is now straightforward from the definitions.

PROPOSITION 2.1. ft, is a compact rs-invariant subset of ft, and CB, is a compact
o-s-invariant subset of CB. The maps xt-^-fz and x^>Lt are homeomorphisms from Y
onto CBX and ft,, and are measure-theoretic flow isomorphisms. •

Here is an alternative description of the scaling flow (ft,, TS, V): for x = (x, y),
and re[0,1], L<;(t) is, as we have said, equal to fi[x, x+t]. (In [Be-Fi] we called
this the local time of /* ar x, in analogy with P. Levy's local time for Brownian zero

-1

1 2

FIGURE 3. The function Ls(t) for JC = ( | , | ) .
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sets.) This gives a semiflow on the factor space of (I which is the restriction to
domain [0,1]. The path Lx(t) is extended to L^(t) successively on the intervals
[1,3], [ 3 , 9 ] . . . , [3*, 3fc+1] by choosing a preimage of x in the 3x(mod 1) map, taking
its local time on [1/3,1], and rescaling. These choices are indexed by the ternary
expansion y0, yx,... of the point y from the pair x = (x, y).

Examples. Let x = 0 = (0,0) = (x,y). Then L§(t) is the usual Cantor function for
t G [0,1], and for t > 1 is the extended Cantor function corresponding to the extended
Cantor set C = VJ^=x7>kC; this satisfies Io(3f/2) = Le(f) for all t, i.e. L& is a fixed
point for T|Og3. See Figure 1 for a graph of LQ.

Other periodic examples correspond to x = {\,\) and x = {\,\), i.e. to the two
periodic sequences x = (.. .202.020...) and its shift; see Figures 2 and 3.

4. Random integer Cantor sets
Here we will define random versions of the integer Cantor set [C], and prove the
order-two density exists for [C] , and for a.e. random integer Cantor set.

For an arbitrary non-decreasing function Leil, set N(t) = [L(t)], where the
brackets give the integer part. Now define a sequence w for k = 0 ,1 ,2 , . . . by

Note that 7V(0) = 0, that \N(t) - L(t)\ < 1 for all t, and that the function N(t) can
be recovered from wk by the formulas:

N(n) =
k=0

With a sequence w+ = (w0, w , , . . . ) e 2 + = Y\^ {0,1} we associate a subset A of the
non-negative integers Z+ so that XAW = wk, i.e. k e A if and only if wk = 1.

Note, for example, that the integer Cantor set [C] = {L,=o
 x^': x> = 0 or 2, M e N}

is associated in this way with the extended Cantor function L(00)(0-
More generally for x e C = C x C, let Ax denote the subset of Z+ corresponding

to L^t). To define random integer Cantor sets we condition x to be zero; this is
equivalent to having 0eAx. The measure /A on C induces a probability measure
on subsets of Z+ via the map y>->Ai0>v) and therefore a measure on S+, via A^>\A-
We write (I for this measure; this defines the random version of [C].

THEOREM 4.1. For p-a.e. y e C, and for every rationaly, setting x- (0, >>), the order-two
density of dimension d of A$ exists, and is constant almost surely.
Proof. Since for any xe C, 1 ^ ( 0 - - M 0 I - 1, we have that lim \\TsNi- TSL£\\^OI]^0
as s ^ - o o , i.e. JV* and L^ are in the same unstable set in the scaling flow (are
backwards asymptotic). Now by ergodicity of (O, v, TS), one has for a.e. x, by the
Birkhoff ergodic theorem,

\J= \ f{x,t)dvJ
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which is the expected value. By [Be-Fi] this is the one-sided order-two density, c,
at ju,-a.e. point of C. For y rational, one also has convergence since one is averaging
a periodic function. Both limits pass over to N^ since the points Lx, Nxefl are
backward asymptotic. •

THEOREM 4.2. For ix-a.e. y, and for every rational y which does not end in a sequence
of all 2's, the dimension d of A^ exists, and equals Iog2/log3.
Proof. We wish to show that for x = (0, y), we have for every e > 0,

n~e •£ Nx(n)/nd <n+c eventually.

Because N$ is backwards asymptotic with Lx, it is equivalent to show

for t large enough, or equivalently,

e" ^Ms)
Now for te[l, 1], Lx-(j)< Ls(t)/td < 21^(1); so equivalently, for / e [0 , log3] ,

Similarly, for te [k, k + l],

y(Sk+ix,0)<f(x, t)<2f(Skx) for all keZ.

Now for all x, f{x, 0 ) s l which is certainly less than e~se as s -» -co, proving the
upper bound. To prove the lower bound,

f-iy- -2f(Sk+1x, 0) < ese infinitely often},

for k < Ko, for s e [k, k +1], is zero by the Borel-Cantelli Lemma. The reason is that

when Sk+I(x) is near the right endpoint of the Cantor set C, and this event has
probability 2( k + 1 ) f . Since jZx 2(/<+1)£ <oo for all e > 0 , we are done. (The proof for
rational y is clear.) •

The connection of integer with real fractal sets is also made through the following
definition of the dimension of a measure at a point. This is based on Young,
Ledrappier, and Misiurewicz [Y], [L-M]:
Definition. Let /xbea regular Borel measure on a metric space. Then the dimension
of n at x is limr_0 log /t(Br(x))/log r if the limit exists, where Br(x) is the ball of
radius r. On IR, we also define the one-sided dimensions, replacing e.g. B by

PROPOSITION 4.3 For the measure ft on C, the symmetric and one-sided dimensions
a.s. exist and equal log 2/log 3. For every rational yeC, the same is true for symmetric
dimension, and for e.g. right-hand dimension if y does not end in a string of 2's.
Proof. It is sufficient to consider the right-sided case, and to show that for every
e > 0, ed+c < fj.[y, y + r] < ed~e when r is sufficiently small. The rest of the proof is
just like that given above. •
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5. The tower and the odometer
Now, as in the Introduction, let a = .. .a_x.aQax... denote the sequence
.. .0000.101000101... in 2 = n " o o R 1}, where on the left we have all zeros, and
on the right we have X[c](n) for [C] the integer Cantor set. (We use the decimal
point to indicate the location of the zero coordinate in 2.) Let M be the orbit closure
of a in S, under the left shift cr.

First we will establish some basic facts about points be M. We write 0<0> = 0,
1«»=1; 0(1) = 000, l(1) = 101; 0(2) = 0(1)0(1)0(1), 1(2) = l ( I )0 ( I ) l ( I )= 101000101 and so
on. We call 0<n), l (n ) blocks of rank n. One sees that
(1) Every 1 is preceded and followed by a zero.
(2) No 1 is both preceded and followed by two zeroes.
(3) The same is true for blocks of rank n.

We will now show that these rules characterize points in M.
First, note that 6 = . . .000. . . is in M. Next, assume that bs[l] = {be M: bo=\}.

We associate with b a sequence w = .w0wlw2.. . e W=f]^{£, R} according to the
following construction:

By Rules 1 and 2, we either see 000.101000= b_ 3 b 2 b ,.606,62b3b4ft5, or
00010.1000= b_sb 4fc-3b 2b-i.boblb2b3. If the decimal point occurs next to the left
1, we write L (as in the first case); if next to the right 1, we write R.

One continues in this way for higher order blocks. It is clear that each sequence
we W determines a sequence in [!"?<» {0> 1} (indeed, at stage n one has added at
least 3"+ l symbols on each side). Furthermore since a contains all the blocks l(n)

(with the decimal place immedately to the left), each such 0-1 sequence is in the
orbit closure M, hence in [1] since bo= 1.

Let a denote this map from [1] to W. We have just shown that a is a bijection.
Next we define a map a[U on [1]. This will be nearly the induced map a[{] of cr

on [1], but is better behaved.
We know b0 = 1. If b,, b2,... are all = 0, then define aw(b) = a. Otherwise, let k

be the least positive integer such that bk = 1, and define <rm(b) = crk(b).
We will show that o-[l} is isomorphic to the Kakutani-von Neumann dyadic

odometer (also called the adding machine) T on W. But first we recall the definition
and some basic properties of (W, T). W = \\^ {L, R} is a compact group (with the
product topology) under coordinate-wise addition L+ L= L, R + L= R, R + R = L
and carry R to the right. T(w) is defined by adding . RLLL... to w, so T is a rotation
of the group. With the binary representation 0 ~ L, 1 ~ R of w as a point in the unit
interval, T has the graph (except for countably many points):
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The transformation (W, T) is uniquely ergodic, i.e. it has unique invariant proba-
bility measure TJ, which is Bernoulli (\,\) measure on \[^ {R, Q- There is a commuta-
tion relation of the (invertible) transformation T with the non-invertible left shift
a on W, which also preserves r\ (but which is certainly not uniquely ergodic): for
every we W, Ta(w) = aT2(w). (This is easily verified directly, and one can also see
it by drawing the graphs). The importance of this commutation relation becomes
clear later. But first we have:

LEMMA 1. The map a :[1]-* W is a bijection which conjugates a^ and T.
Proof. We have shown a is a bijection, and so now are to show that for every b e [1],
a(a[n(b)) = T(a(b)). But this is easily checked by induction on the rank of the
block containing the first 1 to the right of b0, and by the observation that for the
sequence b corresponding to w = .RRR..., the definition that <T[,](6) = a corres-
ponds to the odometer turning over completely. •

Next, given a (possibly infinite) invariant measure f on (M, a), let £( denote the
relative measure on [1], with the relative cr-algebra. We claim that f is cr^-invariant.
It is sufficient to verify this for cylinder sets, e.g. [.101] or [10.1], and one simply
writes the inverse image as a (countable) disjoint union of cylinder sets, proving
the claim. This leads to:

THEOREM 2. There is a unique non-atomic invariant measure p on (M, a) such that

Proof. Let p on M be non-atomic, invariant, with p([l]) = l. The relative measure
p, on [1] is an invariant probability measure; hence by Lemma 1, and unique
ergodicity of T, it must be Bernoulli (i,i) measure under the correspondence
a :[l]-> W. But px uniquely determines p, since given cr-invariance, if you know the
measure of a cylinder set in M with b0 = 1 you know the measure of its translates,
thus covering the case of all cylinders containing a 1; and the fixed point 0 has zero
mass by non-atomicity. This proves uniqueness. Finally, the Bernoulli measure on
[1] does give a tr-invariant measure on M, again by looking at cylinder sets. •

We mention that drawing a picture of the tower can help one to visualize the
cylinder-set argument, and that moreover such a picture is mathematically valid for
the following reason: since the orbit of .LLL... has measure zero, and this is the
only place where &\^ does not equal the induced map o^i], the measure p\ is also
an invariant probability measure for crm.

Now we come to the last ingredient of our proof. Recall from § 4 how y e C
determines a random integer Cantor set A$ c Z+, where x = (0, y), with 1 e A$, and
that y maps to z+ e1+ = Y\^ {0,1} where Z+ = (z0, z,,...) is the characteristic
function of Af. In this way Hausdorff measure fi determines a probability measure
fi+ on 2+. Let /3 denote the map from y to z+.
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LEMMA 3. The following diagram commutes:

W< [1] w-

where TT(. . .b-x.bQbx.. .) = (.bobxb2...), and where the map i from weTl^{L, R} to
yeII^{0, 2} is given by the substitution L-»O, R->2. Furthermore n is a bijection
between [1] and the image fl(C). Also, TT is measure-preserving.
Proof. Note that a and fi are by definition measure-preserving. Also the map / is,
since it is just a relabeling of the (5,5) Bernoulli shift. Furthermore a, i and ft are
bijections, so once we verify the diagram commutes, we will be able to conclude
that TT is a bijection and is measure-preserving.

Now it will be enough to show that for any fixed n, w0... wn and yo...yn determine
the same initial sequence z+ G S+. One could write down a proof by induction but
it is probably more useful to consider an example:

Say y®,y\,y2 = 2,2, 0, so w0, w,, w2 = R, R, L. Now LiOy)(t) is determined for
re [0,27] and equals A,/27(Lr(f)) where reC has expansion r = .y2yty0000.. .=
.022000... . Taking the integer part and the increments, we have the sequence

z+ = . zozxz2... z27 = .1000 000 000 101 000 101 000 000 000,
which is the same as the right half of that for . RRL. •

Finally we are ready for the main theorem.

THEOREM 4. For the unique normalized non-atomic invariant measure p, for every
feLl(M,p), we have for p-a.e. x e M,

. 1 ~ sk(f(x)) 1 r

Proof. Since p is ergodic (via Theorem 5.2), we know from Theorem 2.2 that it is
sufficient to verify the theorem for one function in L1. We take f(x) =X[\](x). By
ergodicity it is sufficient to check this for xe [ l ] . But since, by Lemma 5.3, the
relative measure p, agrees with that for the random Cantor sets (Theorem 4.1), we
are done. •

6. Renormalization to a horocycle flow
Now we will see how the transformation (M, T) renormalizes to a flow on path
space which also satisfies the order-two ergodic theorem. This is, by analogy to
Fuchsian groups, a sort of 'horocycle flow', as explained in the notes at the end of
the section.

Let ft denote {/:R->IR continuous with /(0) = 0}, the two-sided version of ft.
Recall that any word x in the base of the tower (M, T) is uniquely defined on both
sides by one half (x0xtx2...). In exactly the same way, a path in ft, eft extends

A A

uniquely to a path in a subset ft] £ ft.
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The scaling flow TS extends naturally to tl; we write v for the corresponding
Tj-invariant measure. Here is a second flow, which we call the increment flow (for
reasons explained at the end of the section): define (xs:n-»fl by (cr,/)(f) =
f{s +1)-f(s), for seU. These satisfy the commutation relation a-bTs = Tsae-'b; thus
via the substitution a = e\ one has an action of the (ax + b) group.

We define horocycles for (Q, rs) in the natural way, as the stable and unstable
sets Ws(f), W(f) of a po in t /en .

Let ftc be that subset of D.i corresponding to the base C x {0} of the height-log 3
A A A

suspension flow of § 3. Write ClH0 for the cr-invariant set generated by flc. Let ilH
be the r-invariant set generated by Q.H,o- Alternatively, ClH is the cr-invariant set
generated by &i, and also it is the joint (T, cr)-orbit closure of the extended Cantor

A

function. We call the restriction of a to ilH the (negative) horocycle flow. One has
the following picture: (flHfi,a-) is the height-one suspension flow over the tower
(M, cr). This is one ergodic component of the horocycle flow (OH, <x). Here we give
A

ilH the natural cr-invariant measure /JL. The other ergodic components are the
continuum of slices ClHa = Ta(OH0) for a e [0, log 3). Each component is uniquely
ergodic in the sense that it has a unique normalized (infinite) non-atomic invariant
measure. The flow TS permutes these components, via the commutation relation;
however it does not preserve the measure ft. For that correspondnence one needs
a subflow of & (by which we mean to move in an order-preserving way along a
measured subset of the orbit):

For fefl any non-decreasing function, define the inverse of/ to be / " ' ( ' ) =
sup {s: f(s) = t}. On this subset Ci+ of O, define for s e U, (aj) = <?/-•(/).
LEMMA 1. &s is a flow on ft+ and satisfies &aTs = rsare-*>a.
Proof. It is easily checked that d5+, = vs°&,. Next, (arars){f) = &(Tj)-'(a)(Tsf) =
Ts^e-'arJ)-'(a))(f) = (rs^r'(e-«'a))(f)=(Ts&e—'a)(f). •
THEOREM 2. &s is a measure-preserving flow on (ft, p). Its ergodic components are
the sets O.a corresponding to C x{a}, for a e [0, log 3). For each keZ, (Cl0, oy) is
isomorphic to the dyadic odometer. Each component flow is uniquely ergodic in the
usual sense.
Proof. One sees first that a1, is the odometer, and for other k it follows from the
commutation relation, with Tfc|Og3. The rest is clear from the construction. •

We call (O, v, <rs) the (negative) horocycle subflow.
Note that now the relationship between the one-sided shift a and the odometer

T of § 4, To- = aT2, corresponds exactly to:
^ l T - log3 = T-\Oii^2-

Furthermore, we remark that since r and & preserve the same measure, the time-s
and time-/ maps as and cr, are isomorphic via the conjugacy T; this corresponds to
the fact that T is isomorphic to Tk for any k. Of course, both T and <x are zero entropy.

And we have, in summary the following.
THEOREM 3. The horocycle flow (OH, cr,/A) splits into a continuum of ergodic com-
ponents ClH,a, permuted by the scaling flow rsfor s £ [0, log 3). Each of these is uniquely
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ergodic in the sense that it has a unique non-atomic (infinite) invariant measure. The
orbit ofeachfetlH under & is exactly the unstable set Wu(f)ntlH. Each component
satisfies the order-two ergodic theorem. •

Finally, we will describe the content of Theorems 2 and 3 pictorially. First, consider
the ergodic component (ftH,0) of h,. One can view h, as the suspension flow of
height one over the tower transformation (M, p, a), and so ftH>0 = M x [0,1] modulo
identification of the top and bottom of the flow. See Figure 4.

Note that the tower heights are, indeed, coded from the odometer by the formula:
(return time to base) = 3* +1 where a>k is the first occurrence of the symbol L in
(o = (a>0,(Oi,...)e W. Next let h, denote the induced flow of h, on the subset
Wx[0,1] of nH,o- This flow is exactly the suspension flow of the odometer, and
preserves Lebesgue x Bernoulli measure. An h, is a sub flow of h,, which is also like
a suspension flow of the odometer, except that one now jumps along a Cantor set
of times. See Figure 5.

Note that h, and h, are naturally isomorphic, via the singular time change given
by the Cantor function: C -»[0,1]. Now the scaling flow TS is a height log 3 suspension
flow over (C xC, S), which we draw horizontally. Vertical slices give the ergodic
components of h,. See Figure 6.

However we see from the relation cre°Ta = raax that the levels in the slice ClHa are
separated by distance e". So the entire picture looks like this, where the arrowed
rectangle denotes the commutation relation of TS and h,. Note that TS acts on the
whole tower, but compresses the infinite measure toward its finite invariant
measure. See Figure 7.
Concluding remarks. In summary, one can now see clearly the role of the commutation
relation Tcr = aT2. Fractal sets are created from an interplay of two structures:
scaling and translation; and here the map T corresponds to translation, while a
corresponds to geometrical scaling, for the integer Cantor sets. As we have just
seen, the pair (a; T) can be renormalized to a pair of flows on ft, which preserve
the commutation relation, and which reflect the geometry of the middle-third Cantor
set. This renormalization takes place not just as a weak convergence of measures
on path space, but also in a stronger almost-sure form. Almost every point in the

1 -r

0 -1-

t1
W , tx)

(M, a)
L RL RRL RRRL
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tower (M, a), when viewed as an element of Cl, is a generic point under scaling for
(O,, v, r_s); this follows from a well-known theorem of Kriloff and Bogoliouboff,
i.e. from the Birkhoff ergodic theorem plus compactness. Then the horocycle flow
can be recovered from this by shifting via <r; and so a.e. 0-1 sequence in the tower
contains all the information for both flows, and renormalizes in this sense to the
continuous model.

The ideas which led to this paper came from two quite different sources: from
probability theory, and from the geometry of Fuchsian groups. This was written in
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part to serve as an introduction to those examples, which will be studied separately
in later papers. Here is a sketch of the various connections.

The unifying structures are: a joint action of two flows which satisfy the commuta-
tion relation, the renormalization of a discrete model to a continuous one, and a
dichotomy between the cases of finite and infinite measures.

First we look at the probability examples. Let v be a r-invariant measure (for
some dimension d) on a path space SI, which has been given a Polish topology.
Then invariance of v corresponds exactly to what is known as a self-similar process;
see [T] for a wealth of references. What we have called the increment flow <r also
plays a role in this theory (see [V]): the process has stationary increments if and
only if v is cr-invariant.

We studied the scaling flow (with d=\) for two examples, Brownian motion and
Levy's local time, in [Fi 1,2] and [Be-Fi] respectively. In both settings one has the
generic point statement and a.s. renormalization of discrete-time processes, e.g. the
simple random walk Sn for v = Wiener measure, and the number Nn of zeroes of
Sn for local time. The increment flow is also interesting for these examples.

First, for Brownian paths, <rs corresponds to the left shift flow on the derivatives
of the paths, i.e. on white noise. This gives a model for white noise as a Bernoulli
flow (of infinite entropy) on a Lebesgue space.

Restricted to the polygonal paths of Sn e SI, the time-one map <r, corresponds to
left shift on the increments Xt. Since Sn is a generic point for the scaling flow, in
this sense the Bernoulli shift X, renormalizes to white noise. The various time-f
maps of a are conjugated by the scaling flow, and this agrees with the fact from
Ornstein theory that all infinite entropy Bernoulli transformations are isomorphic
(compare Theorem 2 above). Note that for this example, <r and x both preserve the
same (probability) measure v.

For local time, one has a situation closer to the Cantor set case: <r now preserves
an infinite measure, but the subflow a (defined exactly as for the Cantor set)
preserves v. Again, one can prove an order-two ergodic theorem; the key step
(order-two density of random walk zeroes) is done in [Be-Fi]. We mention that
these two examples - the Cantor set scaling flow and the Brownian local time
process - again can be thought of as self-similar processes with stationary increments.
But to do this one must now either use the infinite measures, or look instead at the
corresponding (very discontinuous) processes given by the inverse paths.

In both the Brownian and local time cases, one can show (by a Borel-Cantelli
argument) that the orbits of <r a.s. remain within the stable set of a path. So one
can think of the increment flow as a horocycle flow, because of the geometrical
analogy.

That such an analogy might exist at all could be suggested by the similarity of
the commutation relations. Dan Rudolph made this key observation when we were
discussing the local time and the integer Cantor set examples, and following up on
his idea, one sees that this apparent connection is, indeed, no accident at all.

The classical situation is exemplified by Fuchsian groups of first type; see e.g.
[Bo, M] for background. In that case the geodesic and horocycle flows preserve the
same (finite) measure, and satisfy the commutation relation. For groups of second
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type, however, the horocycle flow would have to jump along a perfect set of times.
But as in the Cantor set case, this is not so intractible: instead one should start with
the full horocycle flow h,, for which the natural invariant measure is infinite; its
subflow h is the object which commutes nicely with the geodesic flow. This is
uniquely ergodic and zero entropy, much like the odometer. And again, one can
prove an order-two ergodic theorem for h,, which is, by interchanging 0 and oo,
dual to proving the existence of order-two density for the Patterson measure on the
limit set. Full details will be given in a later paper; a third paper will treat Kleinian
limit sets with a similar approach.
Postscripts. As Jon Aaronson pointed out to us, the tower can also be built in this
way: take the triadic adding machine on II^{0, T, 2}, and now label the measure
zero subset n^{0,2} with the symbol 1 and its complement with 0. Thus our tower
is the tower of an invariant measure-zero subset of the triadic adding machine over
the dyadic adding machine. This leads to a natural generalization of the present
example: take a fc-adic odometer sitting inside of an w-adic odometer. Again one
has a nice correspondence between real and integer Cantor sets, and one can prove
(by the same method), an order-two ergodic theorem. For some related constructions
see [Aa 6].

Aaronson has shown us how, using a cutting and stacking construction of the
tower, one can find a recurrence formula for a(n) = \A a(n, x) dp where A is the
base [1] of the tower. This leads to an expression for c as the sum of an infinite
series. T. Kamae has also (independently of Aaronson) found a method for
approximating c arbitrarily well.

Note added before publication: We have received a new preprint in which N.
Patzchke and M. Zahle also give the approximate value for c.
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