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Abstract
This survey provides an introductory guide to some techniques used in the design 
of approximation algorithms for circle packing problems. We address three such 
packing problems, in which the circles may have different sizes. They differ on the 
type of the recipient. We consider the classical bin packing and strip packing, and a 
variant called knapsack packing. Our aim is to discuss some techniques and basic 
algorithms to motivate the reader to investigate these and other related problems. 
We also present the ideas used on more elaborated algorithms, without going into 
details, and mention known results on these problems.
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1 Introduction

Problems on packing of objects like circles and spheres have always attracted great 
attention of mathematicians and have been investigated for many centuries.
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One of the most famous packing problems concerns a question on the densest 
possible arrangement of equally sized spheres in the three-dimensional Euclid-
ean space. A solution to this problem was conjectured by Johannes Kepler [38] 
in 1611, but only in 1998 Thomas Hales [31] announced to have found a proof. 
Hales’s proof is based on exhaustive tests making use of complex computer cal-
culations. Several years later, in 2017, a formal proof presented by Hales et  al. 
[32] was published in the journal Forum of Mathematics, Pi.

The corresponding highest-density arrangement of equally sized circles on 
the Euclidean plane was studied by Joseph Louis Lagrange (in 1773) and also 
by Carl Friedrich Gauß (in 1831) and proofs were presented by Axel Thue [52] 
(in 1910) and László Fejes-Tóth [20] (in 1940) that the hexagonal lattice is the 
asymptotically densest of all possible circle packings (yielding a density close to 
�∕

√
12 ≈ 0.9069 ). For results on packing of identical circles, we refer the reader 

to [3, 5, 19, 26, 28, 51].
While these highest-density arrangement/packing problems were object of 

study of mathematicians since many centuries ago, more recently, other types 
of packing problems have been considered in the literature. Since 1970, they 
have attracted more attention of computer scientists, interested both in theoreti-
cal issues concerning their computational complexity, as well as more practical 
issues concerning the design of algorithms to solve them.

Most classical packing problems are NP-hard, in particular, the problems we 
shall focus here. Such negative results lead naturally to question whether it is pos-
sible to obtain efficient algorithms for these problems that provide solutions that 
are reasonably close to the optimal ones.

Of course, to answer this question appropriately, we have to define formally 
what we mean by “efficient” algorithms and “reasonably close” solutions. 
Roughly speaking, we can say that the answer is yes for many packing prob-
lems. In fact, the algorithms we shall consider here—called approximation algo-
rithms—are of this nature. They are required to be polynomial (in the size of the 
instance) and must provide a solution with the guarantee that its value is within 
some factor of the optimum value, for any instance of the problem. Moreover, 
such a guarantee has to be shown with formal proofs, and should not be based on 
experimental results.

The concept of approximation algorithms will be defined formally in the next 
subsection. For the moment, we want to mention that for some NP-hard problems no 
approximation algorithm exists, and for others, they may exist, but with not so good 
approximation factor.

Approximation algorithms for NP-hard problems were investigated even before 
the proof of the existence of NP-complete problems [16, 29], and Garey, Graham, 
and Ullman  [27], as well as Johnson  [37], formalized the concept of approxima-
tion algorithms. Johnson’s PhD thesis [36] on approximation algorithms for the bin 
packing problem contains beautiful and ingenious ideas to analyse relatively sim-
ple algorithms that were proposed for the one-dimensional case. These pioneering 
works opened up an area of research that has become very central in the design of 
algorithms. For surveys on approximation algorithms for packing problems, see [7, 
9, 10, 43].



587

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:585–615 

In this work, we focus on packing problems where items (geometric objects) of 
a certain type (circles, squares, spheres) must be packed inside recipients of pre-
defined types. A packing is a non-overlapping placement of a given set of items 
into one or more recipients in such a way that every item is fully contained in the 
recipient(s). The objective may be, for example, to minimize the number of recipi-
ents (of fixed size) needed to pack a given set of items, or minimize the height of a 
rectangular strip of fixed width (in the two-dimensional case) or to maximize the 
density of the packing. When the items are circles, these problems are known as cir-
cle bin packing problem, circle strip packing problem and circle knapsack problem.

We hope this material will be useful for those who are not familiar with this topic 
and also for those who have worked on packing problems. We present first some 
basic techniques, and then we address a more elaborate approach that has been used 
more recently, discussing the main ideas, without going into much detail.

2  Notation and preliminaries

Given a real-valued function f defined on a discrete set S, we denote by f(S) the value ∑
i∈S f (i) . The diameter of a geometric object X, denoted by diam(X) , is the largest 

distance between any two points of the object. Given two objects X and Y, we say 
that X is small compared to Y if diam(X) = O(�)diam(Y) for a small constant 𝜀 > 0.

Throughout this text, an input set of circles is given by a list of indices 
L = {1,… , n} , where each i ∈ L corresponds to a circle with radius ri and area ai . 
For a subset S ⊆ L , the area of S, denoted by Area (S) , is the sum of the areas of 
the elements in S. We also denote by Area (�) the area of a circle of radius � . The 
recipients, called bins, are usually unit squares or rectangular strips of width 1. 
Without loss of generality, we consider that ri ≤ 1∕2.

A packing of a set of circles L into a two-dimensional (2D) bin B is a function 
that maps the center of each circle i ∈ L into the region that defines B, satisfying the 
following properties: each packed circle must be totally contained within the region 
of B, and the inner region of any two distinct packed circles may not intersect.

The problems to be addressed here can be formally defined as follows:
Circle bin packing ( CBP ): Given a list C of circles, find a packing of C into a 

minimum number of unit square bins.
Circle strip packing ( CSP ): Given a list C of circles, find a packing of C into a 

rectangular strip of width 1 so as to minimize the height of the rectangular area 
that contains the packed circles.

Circle knapsack ( CK ): Given a list C of circles and values vi > 0 for each 
i ∈ C , find a subset S ⊆ C and a packing of S into a unit square bin such that v(S) 
is maximized.

Sometimes, we will use bins of different sizes. In this case, if a bin has width w 
and height  h, we denote an instance for the CBP and CK problems by a tuple 
(L, w, h); and if the strip has width w, we denote by (L, w) an instance of the CSP 
problem. In any case, we consider that w and h are constants.
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The corresponding problems for packing spheres are defined analogously. We 
refer to them as 3D versions of the previous ones. They are called sphere bin packing 
(SBP), sphere strip packing (SSP), and sphere knapsack (SK) problems.

The problems we have mentioned are known to be computationally very complex. 
Additionally, they raise a difficult issue concerning representation of their solutions. 
Later, we shall discuss these issues and possible solutions to deal with them.

In 2010, Demaine, Fekete and Lang [12] proved that the problem of deciding 
whether a set of circles can be packed into a unit square (or into an equilateral trian-
gle) is NP-hard. This implies that the 2D versions of all circle packing problems we 
mentioned above are NP-hard, and therefore, unless P = NP, there is no polynomial-
time algorithm for any of them. Although this does not directly translate to the cor-
responding hardness of their 3D versions, most likely they are NP-hard as well.

In view of these negative results, the design of approximation algorithms is 
highly welcome, especially because packing problems have many applications, and 
efficient algorithms are necessary to deal with medium to large instances. These 
algorithms are defined formally as follows.

Given an algorithm A for a problem � , and an instance I for � , we denote by 
A(I) the value of the solution produced by A , and by OPT� (I) the value of an opti-
mal solution for I. For some � ≥ 1 , we say that a polynomial-time algorithm A , for 
a minimization problem, is an asymptotic �-approximation algorithm if, for every 
instance  I, we have A(I) ≤ �OPT� (I) + O(1) . We also say that A is an asymp-
totic approximation algorithm with factor (or ratio) � . A family of polynomial-time 
algorithms {A�} , for any fixed 𝜀 > 0 , is said to be an asymptotic polynomial-time 
approximation scheme (APTAS) for a problem � if, for every instance I, we have 
A�(I) ≤ (1 + �) OPT� (I) + O(1) . If the constant term O(1) is omitted from the defi-
nitions, then we say that A is an �-approximation algorithm, and {A�} is a poly-
nomial-time approximation scheme (PTAS), respectively. In all cases, the approxi-
mation factor � need not be a constant: it can be a function that depends on I. The 
definitions for maximization problems are analogous (we reverse the inequality sign 
and take � ≤ 1 or (1 − �) ). When the problem � is clear from the context, we simply 
write OPT.

When dealing with packing problems, one is mostly interested in basically two 
types of algorithms: offline or online. An offline algorithm may use information on 
all items to be packed before finding a packing. An online algorithm receives the 
items one after the other, and must pack each item immediately into a bin (at the 
time it appears), without the knowledge of items that will appear in the future (the 
entire input is not available from the start). Moreover, once an item is packed into 
a bin, it cannot be removed from the position where it is packed. There is also the 
notion of semi-online algorithms (see [10]), but the existing approximation algo-
rithms for packing circles focus on offline and online algorithms.

A difficulty that arises when dealing with circle packing problems concerns the rep-
resentation of their solutions (the specification of the position in the bin in which each 
item must be packed). Typically, to measure the computational complexity of a prob-
lem, the time complexity is given in terms of the size of the input instance (number of 
bits used to represent it), which can be handled if the numbers that appear in the input 
and output are rational. But for the circle bin packing problem, for instance, it is not 
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clear whether every instance, with bins and items given by rational numbers, always 
has an optimal solution with center coordinates that are also rational numbers. To 
deal with this problem, we may consider augmented bins (of a very small factor), and 
now, any packing (with possible irrational coordinates) can be rearranged to one using 
rational positions in an augmented bin. Although the algorithms use augmented bins, 
we compare the obtained solutions with the value of optimum packings using unit bins.

As in the CSP and SSP problems we are concerned with packings into one bin of 
unlimited height, and we want to minimize the height of the packing, there is no need 
to consider an augmented bin.

Many algorithms for packing problems subdivide the input list into sublists and gen-
erate specific packings for each sublist, and finally concatenate these packings to obtain 
a final packing of the input list. Given two packings P1 and P2 for a packing problem 
� , we denote by P1‖P2 the concatenation of these two packings. For the CBP prob-
lem, the concatenation is a union of the packed bins of the two packings, and for the 
CSP problem the packing P1‖P2 is a packing containing packings P1 and P2 within the 
same rectangular strip, but with P2 starting at the top of P1.

When we design approximation algorithms, it is important to consider how we can 
compare, for each instance I, the value of a solution returned by the algorithm with the 
value of an optimal solution. For that, we may use some argument (based on a perfect 
packing, even if it is not feasible), or we may exhibit another structure (a feasible solu-
tion) that can be computed efficiently, whose objective value is a bound for the value of 
an optimal solution.

An example of a simple argument, in the two-dimensional case, is one based on the 
area of the items in the input list. As we are considering bins where the bounded edge 
size is equal to 1, the following lemma is straightforward, and will be useful in the 
forthcoming analyses of some area-based algorithms.

Lemma 1 Let � be one of the problems CSP or CBP . Then, for any instance I for 
the problem � , we have Area (I) ≤ OPT� (I).

After presenting some simple area-based algorithms, we discuss why area-based 
arguments may not give very good asymptotic approximation factors.

To obtain an APTAS, one has to use more elaborated ideas. In 2016, Miyazawa, 
Pedrosa, Schoeury, Sviridenko and Wakabayashi [48] presented an APTAS for the 
circle bin packing problem with augmented bins and an APTAS for the strip packing 
problem. In the special case of the circle knapsack problem in which the value of each 
circle is its area, Lintzmayer, Miyazawa and Xavier [41] obtained an APTAS, when 
an augmented bin can be used. They are based on a technique we call here gap-struc-
tured partition, which is central to these algorithms. We discuss the ideas behind this 
technique.
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3  Circle bin packing

Most of the approximation algorithms for packing problems are asymptotic 
approximation algorithms. One of the reasons is because for many of these prob-
lems approximation algorithms with good factors do not exist, under the hypoth-
esis that P ≠ NP. For example, it is not difficult to prove that (under this hypoth-
esis), there is no approximation algorithm with factor smaller than  2 for the 
CBP problem. To see this, suppose there exists a polynomial-time algorithm A 
for CBP with approximation factor 𝛼 < 2 . We can use A to decide in polynomial 
time whether a list of circles L can be packed into a (unit) bin. If the circles in L 
can be packed into a bin, algorithm A applied on L cannot use 2 bins, as 𝛼 < 2 , 
and so it must produce a packing of L into one bin. Thus, we can decide in poly-
nomial time if a list of circles can be packed into a bin, a problem known to be 
NP-hard [12].

On the other hand, asymptotic approximation algorithms with better ratios can 
be obtained. As we will see, for most of the problems mentioned here there are 
asymptotic approximation schemes. In what follows, we will concentrate on the 
asympotic case.

3.1  Area‑based algorithms

As we mentioned, the area of the objects in the input list is a lower bound for an 
optimum value. Thus, it is natural to consider algorithms that can take advantage 
of this fact, guaranteeing a minimum area occupation in each bin, except perhaps 
for a few of them.

A straightforward idea for this problem is to round circles to shapes for which 
known packing algorithms exist. For example, in the literature we find many 
algorithms to pack squares; thus one possible idea is to inscribe each circle in a 
square and use these algorithms to obtain packing for circles. This can be done 
in the d-dimensional case, if algorithms for d-dimensional cubes are available. 
Given an algorithm A for a d-dimensional cube packing problem, we denote by 
A

◦ the corresponding algorithm that encloses each d-dimensional sphere into a 
d-dimensional cube and uses the packing algorithm A to solve the problem.

We exemplify this idea in the 2-dimensional case. For that, let us consider a 
well-known packing algorithm called NFDH (Next Fit Decreasing Height)  [11, 
47], designed for the rectangular strip and bin packing problems. To pack squares, 
this algorithm works as follows: it packs the input items following a non-increas-
ing order of their sizes. The items are packed over shelves (of zero thickness) side 
by side from left to right, starting at the bottom of the bin. As items are sorted 
in non-increasing order of their sizes, the height of each shelf is defined by the 
first item it receives. When an item cannot be packed into a shelf, it creates a new 
shelf over the previous shelf, before placing that item. For the rectangular bin 
packing version, if a shelf cannot be created in the current bin, then it is created 
in the bottom of a new bin (see Fig. 1).
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Modifying the previous algorithm, by changing the idea of “Next Fit” to “First 
Fit”, we obtain an algorithm called FFDH (First Fit Decreasing Height). This 
algorithm first tries to pack the current item in the end of the first existing shelf 
with room to accommodate it; and, if necessary, creates a new shelf (with the 
same height of the item) at the top of the current packing. The description of 
these algorithms are for the strip packing problem, but can be converted to the bin 
packing problem using a one-dimensional packing algorithm to pack shelves into 
bins. In particular, the algorithm called HFF (Hybrid First Fit) uses FFDH to gen-
erate shelves and uses again a first fit approach to pack shelves into two dimen-
sional bins. All these algorithms are offline and were designed for the d-dimen-
sional case; for more details, see [8].

When the items to be packed are squares, each one with side length at most 1/m, 
for an integer m ≥ 1 , it is known that HFF guarantees an area occupation factor in 
each bin of at least ( m

m+1
)2 , except perhaps for the last bin. As the process of inscrib-

ing circles in squares increases the area by a factor of 4∕� ≈ 1.274 , the following 
result holds.

Lemma 2 Let L be a list of circles, each one with diameter at most 1/m, for an inte-
ger m ≥ 1 . Then, HFF◦(L) ≤ 4

�

(
m+1

m

)2

Area (L) + 1.

For the general case of CBP problem, that is, when m = 1 , the above result com-
bined with Lemma 1 gives us that HFF◦ has an asymptotic approximation factor that 
is at most 4 ⋅ 1.274 ≈ 5.093.

Proposition 1 For any list L of circles for the CBP problem, we have that 
HFF◦(L) ≤ 5.093 OPTCBP(L) + 1.

Recently, Fekete et al. [24] showed an algorithm called Split Packing, which we 
denote here by A

SP
 , that packs any set of circles into a square bin if its total area is at 

Fig. 1  Example of a pack-
ing generated by the NFDH 
algorithm
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most a factor of � = 0.5390… of the square bin. This factor is tight and best possi-
ble, and is called critical density [24]. Using A

SP
 , we can design a simple algorithm 

for the CBP problem that has an asymptotic approximation factor at most 2∕� . Let 
us call it, ACBP

SP
 . It proceed as follows:

Sort the items in L in decreasing order of their sizes. Partition the input list L 
into sublists L1, L2,… , obtained by inserting each circle c ∈ L in the first list Li if 
Area (L

i
) + Area (c) is at most � . If there is no such list, insert c in a new empty list Li+1.

Clearly, at the end of this procedure, we have that each list Li has only one circle 
or its total area is at most � . Moreover, each sublist has total area at least �∕2 , except 
perhaps the last one. If a sublist has only one circle, we can pack it in the center of 
the bin, while if the total area is at most � , we can use A

SP
.

Denote by N the number of bins used by ACBP

SP
 . Consider N ≥ 2 , otherwise the 

result is immediate. Since each bin, except perhaps the last one, has an area occupa-
tion of at least �∕2 , we have Area (L) ≥ (N − 1)

�

2
 , and therefore,

If we only consider packing arguments based on the straighforward use of area, we 
cannot expect a better factor. Suppose all circles in the input list have radius �2 + � , 
where 𝜀 > 0 is a small value and �2 =

1

2+
√
2
 . The value of �2 is the largest radius of 

two equal circles that can be packed in a unit square bin. The area of each circle of 
radius �2 + � can be made as close to �∕2 as desired, using a sufficiently small value 
of �.

In general, for small circles we can obtain better area occupation. For example, 
using the algorithm stated in Lemma  2, the area occupation in each bin tends to 
�∕4 ≈ 0.7854 (and for very small equally sized circles we can produce hexagonal 
packings with area occupation that tends to �∕

√
12 ≈ 0.9069 as their sizes become 

smaller). These ideas would lead to better approximation algorithms when circles 
become smaller. But using only area occupation argument, it is not possible to have 
an analysis that will lead to asymptotic approximation schemes, as we may have 
input lists with small circles of the same size and the hexagonal packing is the best 
one can do. To obtain better approximation algorithms, there is a need to analyse 
more closely the structure of optimum packings.

3.2  Packing small circles

Before presenting the APTAS for the circle bin packing problem, we present a 
way to pack small circles guaranteeing an area occupation close to �∕

√
12 (the 

maximum possible circle density, as the circles become smaller). Note that, as the 
squares become smaller, the NFDH algorithm, mentioned in Sect.  3.1, obtains an 
area occupation that approaches 1. On the other hand, if we inscribe each circle in 
a square, we cannot guarantee the mentioned area occupation anymore. A possibil-
ity would be to subdivide the input list of small circles into sublists with similar 
radii and obtain a hexagonal packing shape for each sublist. However, we may not 

A
CBP

SP
(L) ≤

2

�
Area (L) + 1 ≤ 3.7105OPTCBP(L) + 1.
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subdivide the input list in too many sublists, as this would increase the additive term 
� , that appears in the inequality of the asymptotic approximation bound, to a non-
constant value.

To tackle this problem, Hokama et al. [34] presented an algorithm that combines 
the subdivision of the input list with the subdivisions of the bins. Their idea is to 
consider a recursive subdivision of hexagonal or trapezoidal (half hexagons) bins 
into smaller sub-bins of hexagonal or trapezoidal shapes, as in Figs. 2b and 2c. In 
this subdivision, a hexagon of side length � can be partitioned into six smaller hexa-
gons of side length �∕3 and other six trapezoids, each one with three sides of length 
�∕3 and one side with length 2�∕3 . The idea is to subdivide the small circles into 
K types based on their radii and pack them into hexagonal bins of the same type. 
For each type, the first hexagonal bins are obtained by the hexagonal tiling of a unit 
square bin, as in Fig. 2a. Moreover, circles and bins of each type are classified by 
subtypes, also based on their radii, so that a circle of one subtype is packed in a 
hexagonal bin obtained by sudivisions of hexagonal or trapezoidal bins of larger 
subtype. The authors show that the average area loss in each bin, given by the area 
of the bins subtracted by the total area of the circles, is due to the hexagonal tiling 
of the unit square bins and the packing of circles into hexagons. They prove that an 
area occupation in each bin can be made, asymptotically, close to �∕

√
12 , as the 

circles become smaller and the number of types increases.

3.3  Using (quasi‑) optimal subpackings

Although larger circles lead to worse area occupation guarantee, it is easier to obtain 
optimum packings for them. So, a first idea to take advantage of this fact is to sub-
divide the input list into a sublist of large circles and a sublist of small circles and 
obtain a combined packing, consisting of an optimum packing for the first sublist 
and a packing with good area occupation for the second sublist.

To use this idea, we may consider the problem of packing k largest equally 
sized circles into a unit square, for which there is an extensive literature [33, 44, 
51]. We denote by �k the largest radius for which it is possible to pack k circles 
with radius �k into a unit square. Optimum configuration Ck to pack k such circles 
is known for many values of k. The website maintained by Specht [50] presents 

(a) Hexagonal Packing
(b) Subdivision of a
hexagonal bin

(c) Subdivision of a
trapezoidal bin

Fig. 2  Recursive subdivision of hexagonal/trapezoidal bins into smaller hexagonal or trapezoidal shapes
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references and the best known values for �k , for k up to 30 [18, 45]. Recently, val-
ues of �k , for k ∈ {31, 32, 33} , have been obtained by Markót [46]. If we denote 
by Lk the circles in the input list with radii in the interval (�k+1, �k] , an algorithm 
to pack Lk can be obtained by rounding up each circle of Lk to have radius �k and 
then using packing configurations Ck , for each bin, except perhaps for the last bin, 
which may have fewer circles.

Based on the results that tell us the optimum values of �k , we can obtain the 
least area occupation if we pack k circles that belong to the list Lk . For k ≤ 8 , 
these values are shown in Table 1.

In Table 1, we can see that the worst area occupation is given by the (large) 
circles in list L1 that has an area occupation of 0.26951, and the list L2 that has an 
area occupation of at least 0.40643. For the remaining lists, the area occupation is 
at least 0.53901. This is stated in the next proposition. As one can see, in general, 
the area occupation becomes better for small circles.

Proposition 2 In Table 1 it is indicated the least area occupation when one packs k 
circles of radius in the interval (�k+1, �k] in a bin, when k ≤ 8 . For k ≥ 4 , the area 
occupied by k circles in the list Lk is at least 0.53901.

To see an example of an algorithm that takes advantage of optimum configura-
tions for equal sized circles, consider an algorithm that subdivides the input list L 
in two sublists, L′ and L′′ . These lists are defined as follows:

According to Proposition 2, we can obtain a packing P′ of L′ with an area occupa-
tion of at least 0.26951 and a packing P′′ of L′′ with an area occupation of at least 
0.53901, except perhaps in the last bins of each packing. The following inequalities 
can be proved for these packings:

L� = {i ∈ L ∶ 𝜌3 < ri ≤ 𝜌1} and

L�� = L ⧵ L�.

Table 1  Values of �
k
 and the 

least area occupied by k circles 
that belong to L

k

L
k

𝜌
k+1 < radius ≤ 𝜌

k
area of k circles

L
1 �

2
=

1

2+
√
2

≈ 0.292893 0.26951

L
2 �

3
=

2

4+
√
2+

√
6

≈ 0.254333 0.40643

L
3 �

4
=

1

4
≈ 0.250000 0.58905

L
4 �

5
=

√
2−1

2
≈ 0.207107

0.53901

L
5 �

6
=

6

√
13−13

46
≈ 0.187681

0.55330

L
6 �

7
=

4−
√
3

13
≈ 0.174458

0.57369

L
7 �

8
=

1

2+
√
2+

√
6

≈ 0.170541 0.63959

L
8 �

9
=

1

6
≈ 0.166667 0.69813



595

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:585–615 

where �′ and �′′ are constants, given by the number of bins without the given area 
occupation for the corresponding packings.

For the sublist L′ , we can also obtain an optimum packing in polynomial time. To 
see this, note that we cannot pack three circles of L′ in a same bin, as each of these 
circles has radius greater than �3 . So, any bin in an optimum packing of L′ has at 
most two circles. Thus, we can obtain an optimum packing by finding one that maxi-
mizes the number of bins with two circles. For that, we construct a graph whose 
vertices correspond to the circles, and two vertices are adjacent if the corresponding 
circles can be packed in a same bin. The optimum packing can be obtained by com-
puting a matching of maximum cardinality in this graph. Each edge of the maximum 
matching indicates a pair of circles that should be packed together. Therefore, for 
such packing, we have

Let A be the algorithm that generates a packing P obtained by concatenating pack-
ings P′ and P′′ , as we have defined. In the following proposition we show an asymp-
totic approximation factor of this algorithm.

Proposition 3 Algorithm A mentioned above is an asymptotic 2.3553-approxima-
tion algorithm for the CBP problem.

Proof Let N� = |P�| − �� and N�� = |P��| − ��� . The result follows when N′ ≤ 0 or 
N′′ ≤ 0 . Therefore, consider the case when N′ > 0 and N′′ > 0 . As OPT(L) ≥ |P�| 
and OPT(L) ≥ Area (L) , we have

Taking � = �� + ��� , we have

The factor 2.3553 follows by analysing the two possible cases the maximum is 
attained in the denominator. This completes the proof.   ◻

The previous idea can be improved considering that we can obtain an almost opti-
mum packing for any set of circles with radii at least a certain constant �—one of 
the ingredients of the APTAS we consider in the next section—, combined with the 
fact that we can obtain area occupation that approaches the density of equal circles, 
of �∕

√
12 , for sufficiently small circles, using the algorithm mentioned in Sect. 3.2.

|P�| ≤
Area (L�)

0.26951
+ �� and

|P��| ≤
Area (L��)

0.53901
+ ���,

|P�| = OPT(L�) ≤ OPT(L).

OPT(L) ≥max{|P�|, Area (L)}
≥max{N�, 0.2695N� + 0.539N��}.

|P| =N� + N�� + �

≤
N� + N��

max{N�, 0.2695N� + 0.539N��}
OPT(L) + �.
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Using the same technique of the algorithm presented in Proposition 3, and the 
algorithm to pack small circles, it is possible to obtain an algorithm with an asymp-
totic approximation factor that can be made as close as we want to

We have discussed two approaches: the first, based on the idea of subdividing the 
input list; and the second, based on the idea of subdividing the bins. In both cases, 
the analyses were based on the least area occupation and partial optimal packings of 
the used bins.

In the next section, we consider an algorithm that combines ideas of sublists and 
ideas of subdivision of the bins, in a more sophisticated way to obtain an APTAS.

3.4  An APTAS for the CBP problem

In this section, we deal with the main ingredients used in the APTAS for the CBP 
problem that is presented in [48]. One of the main ingredients is a circle packing 
algorithm that, given a list of circles L, with constant number of circles of bounded 
radii, decides if L can be packed into a rectangle of size w × h . This is presented in 
the next section, and is used as a subroutine of the PTAS presented in the subse-
quent section.

3.4.1  Packing a constant number of large circles within a bin

The authors first consider the problem of packing a list of circles L = {1,… , n} , 
with constant number n of items to be packed into a bin of size w × h , where each 
circle i has radius ri that is at least a constant � , and 2ri ≤ min{w, h} . The authors 
model this problem as a semi-algebraic quantifier elimination problem, to find real 
numbers xi, yi ∈ ℝ+ , for each i ∈ L , where (xi, yi) corresponds to the position where 
the center of the circle i is packed, conditioned to the following constraints:

The first constraints guarantee that two distinct circles do not overlap, and the next 
two constraints guarantee that any circle is totally packed within a bin. The set of 
solutions that satisfy the above system is a semi-algebraic set in the field of the real 
numbers. As the number of variables and constraints are constants, the existential 
problem of the above system can be solved in polynomial time by quantifier elimina-
tion algorithms [2, 30]. Since a point in a semi-algebraic set may potentially be irra-
tional, it is possible to obtain an approximate rational solution of arbitrary precision 

N� + N��

max{N�, 0.2695N� + �∕
√
12N��}

≤ 1.8055.

(1)(xi − xj)
2 + (yi − yj)

2 ≥ (ri + rj)
2 for i, j ∈ L, and i ≠ j;

(2)ri ≤ xi ≤ w − ri for i ∈ L; and

(3)ri ≤ yi ≤ h − ri for i ∈ L.
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in polynomial time. To avoid circle intersections or that a circle stays partially out-
side the bin, the authors showed that it is possible to convert this approximate solu-
tion into a feasible packing within an augmented bin. To achieve this, the circles are 
moved by a small amount, and one of the bin sizes (e.g., its height) is increased by 
a small factor 𝜉 > 0 . The time complexity depends polynomially on log 1∕� , and 
the parameter � can be given as part of the problem instance. We do not present 
here the details on how to transform a solution with irrational coordinates to one 
with rational coordinates that corresponds to a packing into an augmented bin by a 
desired small factor 𝜉 > 0 . These results are stated in some of the forthcoming lem-
mas and theorems on augmented bins. We refer the reader to [48] for details on how 
this can be done.

3.4.2  Packing a set of large items with constant number of different sizes

Consider now that the input list L has only “large” circles (that is, ri ≥ 𝛿 > 0 , for 
each i ∈ L ) and the number of different radii s1,… , sk is bounded by a constant (that 
is, each circle in L has radius sj , for some j ∈ {1,… , k}).

We use the term pattern to refer to a packing of a set of circles S ⊆ L into an 
(augumented) bin. For our purpose, we are interested in patterns for different set 
of circles; and we consider that patterns corresponding to a same set of circles 
are equal. As the circles in L are large, the maximum number of circles in a bin is 
bounded by a constant, and therefore, we can enumerate all potential sets of circles 
that can be packed in a bin, and consequently, obtain the patterns, in augmented bins, 
with the algebraic quantifier elimination algorithm for the feasible ones. Denote by 
P1,… ,PK all possible patterns, where K is constant, and by aij the number of circles 
of radius si in pattern Pj . If we define an integer variable xj representing the number 
of patterns Pj used in the solution and by ni the number of circles of radius si in L, 
the following ILP (integer linear program) solves the problem.

As the ILP (4–6) has a constant number of variables, it can be solved in polynomial 
time [14, 40]. In the following lemma we state for what kind of instances the cor-
responding ILP can be solved in polynomial time, and find a packing into an aug-
mented bin.

Lemma 3 Given an instance (L, w, h) for the CBP problem, and a constant 𝜉 > 0 , 
where L consists of circles with radii at least a constant, and the number of different 

(4)min

K∑

j=1

xj

(5)
K∑

j=1

aijxj =ni for i = 1,… , k

(6)xj ∈ℤ+ for j = 1,… ,K.
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radii is bounded by a constant, we can obtain in polynomial time a packing of L 
using at most OPTw×h(L) bins of size w × (1 + �)h.

3.4.3  Packing large items

Let us consider instances containing only large circles, i.e., circles with radius at least 
a certain 𝛿 > 0 . We recall that Area (�) denotes the area of a circle with radius �.

To obtain almost optimum packings, the authors in [48] use the so-called linear 
rounding technique, first presented by Fernandez de la Vega and Lucker  [25], and 
used in the development of many approximation schemes for packing problems.

They combine this technique with the previous algorithm for packing instances 
with large circles and bounded number of different radii and obtain an approxima-
tion scheme for the packing of large items in augmented bins.

Let � be a small positive constant. Before applying this technique, it is first veri-
fied if the number of circles is at most K = ⌈2∕(� Area (�))⌉ , in which case the algo-
rithm returns the packing obtained from the algorithm stated in Lemma 3. Other-
wise, it performs the following steps. 

1. Sort L in non-increasing order of the radii of its n circles, and greedily partition L 
into groups each one with Q = ⌊n� Area (�)⌋ consecutive circles, except perhaps 
the last group, which may have fewer circles.

2. Let L′ the list obtained from L rounding down the radii of the circles in each group 
to the smallest radius in the corresponding sublist.

3. Use the algorithm from Sect. 3.4.2 to obtain an optimum packing P′ in augmented 
bins for the list L′.

4. Except for the circles in the first group, denoted by L0 , it is possible to map each 
circle in L ⧵ L0 to a different circle in P′ , with non-smaller radius. For each circle 
in P′ , replace it with the mapped circle in L ⧵ L0 , removing non-mapped circles. 
Denote by P′′ the obtained packing of L ⧵ L0.

5. Let P0 be a packing of L0 , obtained by packing each circle in L0 in one bin.
6. Return the packing P0‖P′′.

Note that the size of packing P′′ is at most OPT(L) , as it was obtained from 
an optimum packing for the items of L with radii rounded down. For the list L0 , 
note that it has at most �n Area (�) bins and using the area lower bound, we have 
|P0| ≤ �n Area (�) ≤ � Area (L) ≤ �OPT(L) . Therefore, the final packing, which is 
the concatenation of packings P0 and P′′ , uses at most (1 + �) OPT(L) augmented 
bins.

The following lemma can be derived from the previous discussion.

Lemma 4 Given an instance (L, w, h) for the CBP problem, each circle with radius 
at least � , and a constant 𝜉 > 0 , there is a polynomial-time algorithm that packs L 
into at most (1 + �) OPTw×h(L) bins of size w × (1 + �)h.
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3.4.4  An APTAS for the CBP problem

The algorithm presented in the previous subsection obtains almost optimum packings 
for most of the practical situations, as the constant � , that bounds the radii of large cir-
cles can be chosen arbitrarily small. On the other hand, it is difficult to pack the small 
circles in the space not occupied by the large circles and also maintain the packing 
close to optimum. In fact, as the separation of large and small circles are based only on 
a threshold � , the size of large circles may be very close to the small ones. In this case, 
the packing of the large circles may not leave sufficient unused space to accommodate 
the small ones.

The key idea of the mentioned APTAS is to obtain a partition of the input list L 
into a gap-structured partition, defined as follows.

Definition 1 Let I = (L,w, h) be an instance for the CBP problem. We say that L has 
a gap-structured partition if it can be partitioned into sets Ht, S0,… , Sm , and there 
exists bin sizes B0,… ,Bm where B0 has size w × h , such that 

1. OPT(Ht) = O(�) OPT(L).
2. Items in Sj are small compared to bins of size Bj , for j ≥ 1.
3. Bins of size Bj are small compared to circles in Sj−1 , for j ≥ 1.
4. Any circle in Sj has radius at least a constant factor of the size of Bj.

Lemma 5 For any instance I = (L,w, h) for the circle bin packing problem, it holds 
that L has a gap-structured partition (Ht, S0,… , Sm) as defined above.

A gap-structured partition of a list L can be obtained as follows: 

1. Partition the input list L into groups G0,G1,… with (decreasing) radii bounded 
by powers of �2 , that is, Gi = {j ∈ L ∶ �2iw ≥ 2rj ≥ �2(i+1)w} for i ≥ 0.

2. Let r = 1∕� and Hk = {� ∈ Gi ∶ i ≡ k (mod r)} , for 0 ≤ k < r.
3. Let t be an integer such that Area (Ht) ≤ � Area (L) and 0 ≤ t < r.
4. Let Sj =

⋃t+jr−1

i=t+(j−1)r+1
Gi , for j ≥ 0.

5. Def ine bins Bj  with s ize wj × hj  ,  where w0 = w  ,  h0 = h  ,  and 
wj = hj = �2(t+(j−1)r)+1w , for every j ≥ 1.

To see the construction of these sets, the input list L is partitioned into groups 
G0,G1,… , that can be organized in the following way:

Ht :
S0: G0, . . . Gt−1 Gt

S1: Gt+1, Gt+2, . . . Gr . . . Gt+r−1 Gt+r

S2: Gt+r+1, Gt+r+2, . . . G2r . . . Gt+2r−1 Gt+2r

Sj : Gt+(j−1)r+1, Gt+jr+2, . . . G3r . . . Gt+jr−1 Gt+jr

...
...

...

(7)
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The circles in the groups Gi ’s are grouped again according to its group index 
modulo r. These are the sets Hk ’s that contain the groups in the same column. 
Since there are r = 1∕� columns, at least one of the sets Ht has total area at most 
� Area (L) . This implies that OPT(Ht) ≤ �OPT(L).

After removing the set Ht , each set Sj is defined as the set of circles that 
belongs to groups Gi such that t + (j − 1)r < i < t + jr . Note the gap induced by 
the removal of the set Gt+jr ⊆ Ht between sets Sj and Sj+1 . Therefore, the parti-
tion of L ⧵ Ht into sets S0,… , Sm satisfies the remaining gap-structured partition 
conditions.

As wj+1 (resp. hj+1 ) divides wj (resp. hj ), for j ≥ 1 , any bin Bj can be perfectly 
partitioned into bins of size Bj+1 . The APTAS works as follows. 

1. Let Pj be the packing of Sj using the algorithm of Sect. 3.4.3 and using bins Bj of 
size wj × hj , for j ≥ 0.

2. For every j ≥ 0 , do: 

(a) Consider a square grid over each bin of the packing Pj , where each empty 
square cell is considered a bin of size Bj+1.

(b) Pack the bins of Pj+1 , into these empty square cells.
(c) If there is insufficient empty cells to pack the bins of Pj+1 , iteratively sub-

divide an empty cell/bin of size Bj′ , for some j′ < j , into smaller grids until 
obtain a cell/bin of size Bj . If necessary, start this process with a new empty 
unit bin.

3. Return the packing obtained in the previous step, concatenated with a packing 
of Ht of size at most �OPT(L) , e.g. produced by Algorithm A

SP
 (described in 

Sect. 3.1).

In what follows, we discuss how the gap-structured partition (Ht, S0,… , Sm) can 
be used to obtain an APTAS. The packing of the set Ht , built in an independent 
way of the other sets, has small impact in the final solution. As its total area is 
small, we can use Algorithm A

SP
 to obtain a packing that uses O(�) OPT(L) bins.

Let us now consider the sets S0, S1,… , Sm . The absence of circles of Ht in these 
sets leads to a gap between circles of Sj and Sj+1 , such that circles of Sj+1 are small 
compared to bins Bj+1 that are also small compared to circles in Sj . Figure 3 illus-
trate part of a packing with a circle of Sj and the grid Gr j+1 that defines the bins of 
size Bj+1 and circles of Sj+1 packed in them.

Following the ideas behind the APTAS, note that bins of size Bj+1 are much 
smaller than the circles in Sj . And also note that there may exist some cells at 
level j + 1 , that are partially used. This is the case of the cells that are partially 
used by circles of Sj and the algorithm may not use that empty space (these are 
the hatched bins in Fig. 3). In fact, the total area of these partially used cells of 
size wj+1 × hj+1 around a circle c ∈ Sj are small, as they are basically composed by 
the cells that match the border of c, and can be bounded within a factor of � of the 
area of the circle c.
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Also note that although the description of the algorithm considers bins that are 
not augmented, the use of augmented packings does not increase the bins by too 
much, as we are always considering augmented bins by a factor of � larger than the 
original bins. Therefore, if the original bin is augmented by a factor of � , this is also 
sufficient to lead to augmented (sub-)bins obtained from small grid cells.

To show that the packing obtained is indeed almost optimum, we need to show 
that there exists an almost optimum packing that follows the same algorithmic pat-
tern. To do so, we note that there are three important aspects that we have to con-
sider to obtain such an optimum packing. To this end, consider an optimum packing 
P
∗ , and suppose the following happens with respect to this packing. 

 A1. The items of Ht may have been packed mixed with the other circles.
 A2. Bins Bj+1 obtained from a grid over a packing of Sj may have been occupied 

partially by a circle of Sj.
 A3. Circles of Sj+1 may have been packed over the grid lines that define the bins Bj+1.

If A1 happens, remove the circles of Ht from P∗ and concatenate the resulting 
packing with the packing returned by A

SP
(Ht) . As in the algorithm, this will increase 

the resulting packing by a factor of O(�) besides a constant number of bins. If A2 
happens, the circles in a bin of size Bj+1 that partially intersect a circle Sj can be 
moved into a new bin of the same size that does not intersect the circles in Sj . These 
bins intersect the circle in Sj in its frontier, and as bins Bj+1 are very small compared 
to a circle of Sj , the total area of these moved circles is at most O(�) factor of the area 
of the circles in Sj . The total area of the new bins created in this process is at most 
O(�) Area (L).

Let us now consider A3. The circles of a set Sj that intersect their corresponding 
grid lines occupy a small amount of space compared to the area of the bin, once 

Sj

Bj+1Bj+1

Bj+1 Bj+1

Bj+1

Bj+1

Bj+1

Bj+1

Bj+1Bj+1

Bj+1 Bj+1

j+1B

j+1S

Sj

Bj+1Bj+1

Bj+1 Bj+1

Bj+1

Bj+1

Bj+1

Bj+1

Bj+1Bj+1

Bj+1 Bj+1

j+1B

j+1S

Fig. 3  Example of a packing of a circle of Sj , grid Gr j+1 , bins Bj+1 and circles of Sj+1
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such circles are much smaller than the corresponding bins. In fact, the total area 
occupied by these circles in a bin is at most a factor of � of the corresponding bin. 
On the other hand, we cannot allocate new bins by considering each set Sj indepen-
dently, as we may end up allocating too much area. To deal with this situation, the 
algorithm first reserves a certain amount of new space corresponding to bins of size 
B1 (a factor of O(�) of the Area (L) ). Instead of moving circles to the new space, the 
algorithm uses a more sophisticated approach, moving set of circles to a new space, 
but also considering the space freed by large circles as new free space for smaller 
circles.

The APTAS result, proved in [48], can be summarized in the following theorem.

Theorem  1 Let (L,  w,  h) be an instance for the CBP problem, and let 𝜀 > 0 and 
𝜉 > 0 be constants. There exists an asymptotic polynomial-time approximation 
scheme ACBP

�
 for the circle bin packing problem that finds a packing of L into at most 

(1 + �) OPTw×h(L) + O(1) bins of size w × (1 + �)h.

4  Circle strip packing

In this section, we follow the same approach used for the circle bin packing prob-
lem. We start with a more straighforward area-based algorithm and then present an 
approach that uses equal circles. At last, we discuss an APTAS based on the APTAS 
for the circle bin packing problem.

4.1  Area‑based algorithms

As in the previous section, we start with a simple and natural algorithm that rounds 
the given circles by circumscribed squares. Coffman et al. [11] showed that if a list L 
consists of squares with side lengths at most 1/m, for an integer m ≥ 1 , then NFDH 
algorithm (mentioned in the previous section) for the square strip packing problem 
has the following performance: NFDH(L) ≤ (1 + 1∕m) Area (L) + 1∕m.

Based on this result, a first algorithm for the circle strip packing problem is to 
encapsulate each circle within a square and execute the NFDH algorithm. Since a 
circle inscribed in a unit square has area �∕4 , the asymptotic approximation ratio of 
NFDH◦ is at most (4∕�)(1 + 1∕m) . Thus, for m = 1 (the general case), this algorithm 
has an asymptotic factor of 2.5465.

For small circles, it is not hard to obtain a similar result with asymptotic factor 
that tends to 1∕� ≈ 1.1027 as the circles become smaller, where � = �∕

√
12 is the 

factor of the highest-density arrangement of equally sized circles. One can use the 
algorithm we discussed in the end of Sect. 3.3 to pack circles into unit bins and con-
catenate them to obtain a packing into a rectangular strip. This algorithm guarantees 
an area occupation that tends to �∕

√
12 , as the circles become smaller. This same 

guarantee holds for the occupied area in the strip.
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4.2  Subdividing and rounding

In this subsection, we use a strategy to subdivide the input list into sublists, each 
one with similar circles. The radii of the circles in a same sublist are rounded to be 
all equal, and an algorithm to pack equal circles is used to obtain a packing for each 
sublist. The packing for the original instance is obtained by concatenating the pack-
ings obtained for each sublist.

To this aim, we first consider the problem of packing equal circles. The packing 
of congruent circles into an infinite strip has been investigated for many years. In 
the seventies, Fejes-Tóth [21] raised a question about the densest packing of equal 
circles into a strip, and according to Brass et  al. [6] and Fejes-Tóth [17], Molnár 
conjectured that the density d of a packing of unit circles in a parallel strip of width 
w satisfies

If this bound is valid, it is tight, given by constructions of the type given in 
Fig. 4 (see Brass et al. [6], Subsection 1.7). The construction has repeated copies of a 
set T of (n + 1)(n + 2)∕2 unit circles arranged in a triangular shape in a way that the 
convex hull of their centers forms an equilateral triangle of side 2n (in Fig. 4a, we 
have n = 3 ). This set T is repeated alternating its configuration upside down justified 
at the bottom and top of the strip. The conjecture is already proved for some values 
of w, in particular for values of 2 ≤ w ≤ 2 + 2

√
3 [26, 39]. Translating this result 

to packing of congruent circles into a strip of unit width, the worst area density is 
given by �∕

√
27 ≈ 0.6046 for the packing of circles of radius 1/3 (see Fig. 4b). For 

smaller circles, the configuration leads to better area guarantee. Based on this work, 
it is possible to obtain an algorithm with asymptotic approximation factor at most √
27∕� ≈ 1.654 . More precisely, the following holds.

Lemma 6 Given a list L consisting of equal sized circles for the CSP problem, there 
is a polynomial-time algorithm E� such that E�(L) ≤ (

√
27∕� + �) Area (L) + O(�) , 

for any 𝜀 > 0.

Now let us consider the case in which the circles have different sizes. The fol-
lowing algorithm, which we denote by A� , subdivide the input list into sublists with 

d ≤
(n + 1)(n + 2)�

2w

�
n +

�
4 −

�
w − 2 − n

√
3
�2
� , where n = ⌊(w − 2)∕

√
3⌋.

(a) (b)

Fig. 4  Conjectured densest packing of equal circles in a strip
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circles of similar radii, and round up to a same value the radii of the circles in a 
same sublist. Then, it applies the corresponding Algorithm E� for each sublist and 
returns the concatenation of the produced packings. More formally, the steps are the 
following. 

1. Subdivide the input list L into lists L0, L1,… , such that 

2. Generate a packing Pi of Li , using algorithm E1∕(1+�)i and considering that each 
circle has diameter 1∕(1 + �)i , for i ≥ 0.

3. Return the concatenation P0‖P1‖….

As each of the newly obtained radii is at most 1 + � of the original radii, the area of 
each perturbed circle is at most a factor of 1 + 3� of the area of the original circle. 
Summing up the area occupation for each sublist, we obtain an area density that can 
be made as close to 

√
27∕� ≈ 1.654 as desired. This result can be stated as follows.

Proposition 4 Given a list L of circles for the CSP problem, there exists a polyno-
mial-time algorithm E′

�
 such that E�

�
(L) ≤ (1.654 + O(�)) OPT(L) + O(1∕�) , for any 

𝜀 > 0.

It is possible to apply the same idea used in Sect. 3.3, where the input list is par-
titioned into large and small circles, obtaining a (quasi-)optimum packing for the 
large circles and better area guarantee for the remaining circles. This approach leads 
to an algorithm with smaller approximation factor, but its straightforward applica-
tion does not lead to approximation schemes. In the next section, we consider the 
APTAS presented by Miyazawa et al. [48], that is also based on the gap-structured 
partition.

4.3  An APTAS for the CSP problem

In this section we present the main ideas of the APTAS presented by Miyazawa 
et al. [48], and based on the APTAS for the circle bin packing problem. First, we 
observe that the APTAS presented for the bin packing problem can be extended to 
pack circles into bins of size w × h , as long as w and h are constant values.

The APTAS for the circle strip packing problem (on the input list L), which we 
denote by ACSP

�
 , proceed as follows: executes the APTAS ACBP

�
 for the circle bin pack-

ing on the input list L, using bins of size 1 × 1∕� , and then returns a packing that 
concatenates the packed bins one on top of the other. The following result holds for 
this algorithm.

Theorem 2 Given a list L of circles for the CSP problem, there exists a polynomial-
time algorithm ACSP

�
 that packs L into a rectangular strip of unit width and infinite 

height such that ACSP

�
(L) ≤ (1 + �) OPTCSP(L) + O(1∕�).

Li ← {j ∈ L ∶ 1∕(1 + 𝜀)i+1 < 2rj ≤ 1∕(1 + 𝜀)i}.



605

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:585–615 

The proof of the above inequality follows from the close relation between pack-
ings for the circle strip packing and for the bin packing version. Denote the mini-
mum number of bins of size 1 × 1∕� to pack L as OPTB(L) and the minimum height 
of a packing of L into a rectangular strip of width 1 as OPTS(L).

Given an optimum packing P∗
S
 for the strip packing problem, we can obtain a 

packing for the bin packing version with bins of size 1 × 1∕� , in the following way: 
cut the packing P∗

S
 with horizontal lines at height �0,�1,… where �i cuts the pack-

ing P∗
S
 at height i∕� , for i ≥ 0 . Then, generate packings into bins of size 1 × 1∕� 

moving the packing of the circles totally contained between the lines �i−1 and �i 
to a bin Bi , for i ≥ 1 . Now consider the circles crossed by the lines �i’s. For each 
line, the crossed circles ocupy a region of width 1 and height 2, as the diameter of 
each circle is at most one. Therefore, we can group the circles crossed by at least 
1∕(2�) lines into a new bin of size 1 × 1∕� . These last steps cause the use of at most 
⌈2�2 OPTS(L)⌉ new bins. So,

As the size ACSP

�
(L) is basically the concatenation of the bins of size 1 × 1∕� , we have

5  Circle knapsack

In this section, we present two algorithms for the CK problem. The first, is an algo-
rithm with approximation factor 1∕3 − � , for any 𝜀 > 0 , and the second algorithm is 
a PTAS for the version where the value of each circle is its own area.

5.1  A constant factor algorithm for the CK problem

Let us denote by CCK

�
 the (1∕3 − �)-approximation factor algorithm for the CK prob-

lem that is based on the ideas presented by Diedrich et al. [13] for the three-dimen-
sional box knapsack problem. We will describe it formally in what follows, but first 
we sketch the idea behind it.

It first selects a set of circles based only on the area and value of the circles. To 
this end, it uses an algorithm for the 1D Knapsack ( 1K ) problem. Then, the set of 
selected circles are packed into at most three unit bins, and the packing in one of the 
bins with largest value is returned.

OPTB(L) ≤
OPTS(L)

1∕�
+ ⌈2�2 OPTS(L)⌉ ≤ �(1 + 2�) OPTS(L) + 1.

A
CSP

�
(L) =

1

�
A

B
�
(L)

≤
1

�
((1 + �) OPTB

1×1∕�
(L) + 2)

≤
1

�
((1 + �)(�(1 + 2�) OPTS(L) + 1) + 2)

≤(1 + 4�) OPTS(L) +
4

�
.
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For completeness, we recall that in the 1K problem, the input is a triple 
(L, s, v), where L is a set of one-dimensional items, and s and v are functions (size 
and value, respectively): s ∶ L → ℚ+ and v ∶ L → ℚ+ . The objective is to find a 
subset L′ ⊆ L such that s(L�) ≤ 1 and v(L�) is maximum.

Ibarra and Kim [35] designed a Fully PTAS for the 1K problem, which we 
denote by AIK

�
 , which guarantees that AIK

�
(L) ≥ (1 − �) OPT1K(L) for any input 

(L, s, v).
We are now ready to describe Algorithm CCK

�
 for the CK problem. 

1. Let (L, v) be the input to the CK problem. Execute AIK
�

 on the input (L, s, v), 
where s is a function that associates with each circle in L its area. Let L′ ⊆ L be 
the set of circles returned by AIK

�
(L) . Use an augmented bin to allow approximate 

calculations for the area of each circle.
2. Let S1 , S2 and S3 be empty sets.
3. Sort the circles in the list L′ in non-increasing order of their radii. For each x ∈ L� , 

insert x in the first set among S1, S2, S3 that has the smallest total area.
4. Let S be the first set among S1, S2, S3 that has the maximum total value.
5. If S has only one circle, return a packing containing it. Otherwise, return A

SP
(S).

Theorem  3 Algorithm CCK

�
 returns a solution for the CK problem into augmented 

bins such that

This analysis is tight.

Proof Let (L, v) be the input to the CK problem, and let (L, s, v) be the input to AIK
�

 , 
according to step 1 (of the description of Algorithm CCK

�
 ). Let L′ be the set of circles 

obtained by AIK
�
(L) . Clearly, we have v(L�) ≥ (1 − �) OPT

CK
(L) . Let {S1, S2, S3} be 

the partition of L′ produced in step 3. First, we need to prove that any set Si chosen 
in step 4, has only one circle or has total area at most � = 0.5390… (see Sect. 3.1). 
Without loss of generality, suppose that Area (S1) ≥ Area (S2) ≥ Area (S3) . Let j be 
the last circle packed in S1 and y = Area (j) . At the moment j was packed, the other 
two sets have total volume at least x = Area (S1 − j) . As the total area of the circles 
is at most 1 + � , for a constant � , due to the augmented bin, we have 3x + y ≤ 1 + � . 
Since y ≤ x , the maximum value we have for Area (S1) , given by x + y , is when 
y = x . Therefore, Area (S1) ≤ 1∕2 + � ; and thus, S1 can be packed by Algorithm A

SP
 , 

using sufficiently small value of � . Since the set S chosen in step 4 has the largest 
value, we have v(S) ≥ (1∕3)v(L�) ≥ (1∕3)(1 − O(�)) OPT

CK
(L).

To show that the ratio is tight, consider an instance consisting of 4 circles: one 
circle with radius 1/2 and value 1 and three equal circles with radius 0.3 and value 
1∕3 + � . In step 1, it is possible to make the approximation scheme select the three 
equal circles, obtaining value 1 + 3� . Then, these circles are packed in separate 
bins, and the algorithm returns a solution (with one of the 3 equal circles) of value 

C
CK

�
(L) ≥

1

3
(1 − O(�)) OPT

CK
(L), for any input (L, v).
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1∕3 + � . It is immediate that the optimum solution is given by the largest circle that 
has value 1.   ◻

5.2  A PTAS for the area maximization version

When the values of the circles are given by their area, Lintzmayer et al. [41] pre-
sented an approximation scheme for the circle knapsack problem. The algorithm 
also uses (indirectly) the gap-structured partition approach used in the APTAS 
for the CBP problem, presented in Sect. 3.4.4. Since this algorithm uses a similar 
approach, we only mention the main ideas involved in this PTAS. The presentation 
is divided in two parts. One part for the version of multiple bins and large circles, 
and the second part for the main algorithm, that uses the algorithm for the first part 
as a subroutine.

5.2.1  Circle multiple knapsack problem with large circles

An instance of the Circle Multiple Knapsack (CMK) problem [41] consists of a 
tuple (L, w, h, f), where L is a list of circles and we have f bins of size w × h . A solu-
tion is a pair (L�,P�) , where L′ ⊆ L and P′ is a packing of L′ into f bins of size w × h . 
In this case, we will also allow packing into augmented bins of size w × (1 + �)h , 
for a given constant 𝛾 > 0 . In the CMK problem the objective is to find a solution 
(L�,P�) such that Area (L�) is maximum.

Given an instance (L, w, h,  f) for the CMK problem, where each circle i ∈ L is 
large, that is, has radius ri > 𝛿 , Lintzmayer et al. [41] presented an algorithm that 
obtains a solution for large circles into augmented bins using at most OPT

CMK
(L) 

bins.
First, this algorithm runs a preprocessing of the instance so that it obtains a simi-

lar instance with constant number of different radii. To this end, it rounds down each 
circle radius ri to one with radius r�

i
= �(1 + �)k , where 𝛿(1 + 𝜀)k ≤ ri < 𝛿(1 + 𝜀)k+1 , 

and k ≥ 0.
Instead of packing the original circles, the algorithm packs the circles using the 

radii given by r′ , instead of  r. Since the maximum number of circles in a bin is 
bounded by a constant, it is possible to find a value of � sufficiently small so that we 
can obtain a feasible packing for the original circles into augmented bins by shift-
ing the items by a small amount. After rounding down the radii, we end up with 
an instance for the CMK problem consisting only of large circles and a constant 
number of different sizes. The approach used to solve these type of instances fol-
lows closely the one used in Sect. 3.4.2. First, the algorithm generates all possible 
patterns concerning packing of circles into (augmented) bins, where two patterns 
are different if they pack different sets of circles. This is made by enumeration and 
the use of the algebraic quantifier elimination algorithm to obtain feasible packings 
into augmented bins. As the total number of different packing patterns is bounded 
by a constant, and it is possible to obtain an optimum packing in augmented bins 
with an integer linear program similar to the one presented in the model (4)–(6). In 
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this case, the model has one integer variable for each pattern; a constraint to impose 
that each circle is not used more than its demand; and a constraint to impose that 
the total number of patterns is bounded by f. The objective function maximizes the 
total area of the chosen patterns. As this integer linear program has constant number 
of variables, it can be solved in polynomial time [14, 40]. The result presented by 
Lintzmayer et al. [41] can be summarized as follows.

Lemma 7 Given an instance (L,  w,  h,  f) for the CMK problem, where each circle 
i ∈ L has radius at least a constant 𝛿 > 0 , there is a polynomial-time algorithm that 
finds a solution (L�,P�) into augmented bins such that Area (L�) ≥ OPT

CMK
(L,w, h, f ).

5.2.2  The main algorithm

As a first step, Lintzmayer et al. [41] consider that the input list has circles with total 
area at least some constant factor of the bin area. To this end, we can consider that 
the input list has total area at least � = 0.539 (a factor of the unit bin), otherwise it 
is possible to pack all circles in the input list into a unit bin using the Split Packing 
algorithm [24], already mentioned in the Sect. 3.1. From now on, we consider that 
the input list has total area at least � , which implies that the optimum is at least �∕2.

The main idea of this algorithm also relies on the technique of gap-structured 
partition, that we have mentioned to obtain the APTAS for the CBP problem. For 
the latter problem, the gap-structured partition (Ht, S0,… , Sm) , is obtained by par-
titioning the input list into groups G0,G1,… which are also organized into r = 1∕� 
columns, producing sets H0,H1,… ,Hr−1 where Hi contains the set of circles in 
the groups Gj , where j = i (mod r) . The idea to organize in these many sets was to 
obtain a set Ht that could be removed, so that we keep the gap-structured property 
for the remaining sets, and the packing of Ht has a small impact in the final packing.

Similarly, for the CK problem, the organization in these same sets will guarantee 
the existence of a set Ht that will also have small impact in an optimum solution. 
More precisely, if L∗ is an optimum solution, there must exist t ∈ [0, r − 1] such that 
Area (Ht ∩ L∗) ≤ �OPTCK(L) , as we have r = 1∕� sets Hi’s. If we know such set Ht , 
we can simply remove these circles from the input list and the remaining circles will 
still lead to a quasi-optimum solution.

Unlike the CBP problem, we cannot identify the set Ht in advance, as the opti-
mum solution for an instance of the CK problem may not include all circles of the 
input list. On the other hand, we can test each possible t, obtaining a solution Tt 
produced from the set L ⧵ Ht . At last, the algorithm returns the best obtained solu-
tion among the sets T0, T1,… , Tr−1 . Proceeding this way, the algorithm will produce 
a quasi-optimal solution equal to or as good as the solution obtained excluding the 
correct set Ht.

From now on, we assume that the correct set Ht was removed from the input list and 
we are left with the sets S0, S1,… , Sm with the property of gap-structured partition. 
The algorithm also considers bins of sizes B0,… ,Bm , for which circles in Sj are small 
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compared to bins of size Bj , which are small compared to circles in Sj−1 , for j ≥ 1 , as 
made for the APTAS for the CBP problem.

The algorithm starts with a set F0 containing one bin B of type B0 , and setting its 
availability as a0 = 1 . The algorithm iterates for each j ≥ 0 , packing circles of Sj into aj 
bins of size Bj maximizing the area allocation in each iteration. For each iteration j ≥ 0 , 
the algorithm finds an optimum packing of Sj into the aj (augmented) bins of Fj , using 
the algorithm of Sect. 5.2.1. Then, it updates the number aj+1 ≤ n of available bins for 
the next iteration. To this end, the algorithm generates a grid Gr j+1 with cells of size 
Bj+1 over the used bins of Fj and let Fj+1 be the grid cells that do not intersect circles of 
Sj , added with the number of bins of size Bj+1 that can be made available from the pre-
vious iterations. This process stops when all non-empty sets Sj ’s have been processed.

An important aspect to use gap-structured instances is the fact that after packing cir-
cles from the sets S0,… , Sj , the remaining circles of Sj+1,… , Sm and bins Bj+1,… ,Bm 
are like sand that can be more freely alocated around the spaces between the larger 
circles. Moreover, after packing circles in the set Sj , the bins from the grid Gr j+1 that are 
partially covered by circles from Sj may be disregarded, as they will represent a small 
fraction of the packed circles of the set Sj.

To conclude the analysis, it is also needed to show the existence of an optimum or 
quasi-optimum packing respecting this type of structured packing separated into bins. 
We do not need to show the existence of an optimum packing, but a quasi-optimal 
packing whose value differs from the optimum by a factor of at most � . We will not 
go into details, as the process is similar to the one considered to show that an optimum 
packing for the CBP problem packs the selected circles of Sj into bins of size Bj , for 
j ≥ 0 , using a small amount of additional space. For the CK problem, this additional 
space can be discarded, as it represents a small amount of space. The PTAS result can 
be sumarized in the following theorem.

Theorem 4 Given an instance (L, w, h) for the CK problem, and a constant 𝜖 > 0 , 
there exists a polynomial-time approximation scheme ACMK

�
 that obtains a solution 

(L�,P�) in an augmented bin such that v(L�) ≥ (1 − �) OPTCK(L,w, h).

6  Online algorithms

In this section, we present online algorithms for both the circle strip packing and the 
circle bin packing problems, to give a flavour of them. These algorithms are based on 
the algorithms presented in Sects. 4.1 and 4.2 .

6.1  Online circle strip packing

6.1.1  Inscribing each circle in a square

We first consider straightforward algorithms using existing online algorithms to pack 
squares. Baker and Schwarz [1] presented an online version of the Next Fit algorithm 
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for the rectangular online strip packing problem, they called Next Fit Shelf with param-
eter 0 < p < 1 , denoted by NFSp . This algorithm packs, if possible, a rectangle of 
height h, where pk+1 < h ≤ pk , into the last level of height pk . If this is not possible, a 
new empty level of height pk is created on top of the current packing, before packing 
the next rectangle. For the packing of squares, the next result is valid.

Lemma 8 Given a list L of squares, we have that NFSp(L) ≤
2

p
Area (L) +

1

p(1−p)
.

Given an instance for the circle strip packing problem, we can inscribe each circle in 
a square and use the algorithm NFSp . Let us call NFS◦

p
 the resulting algorithm. Since 

the area of a circle inscribed into a square is �∕4 of the square, the NFS◦
p
 algorithm can 

have an asymptotic factor that can be made as close to 8∕� ≈ 2.5465 when p → 1.

6.1.2  Partitioning the list of circles into sublists of circles of fixed size

Now we show that it is possible to adapt the algorithm presented in Sect. 4.2, for the 
(offline) strip packing problem, to the online case. Recall that this algorithm subdivides 
the input list of circles according to their diameters: it rounds up the diameter in the 
interval (1∕(1 + �)i+1 , 1∕(1 + �)i] to 1∕(1 + �)i , for i ≥ 0 . Then, the input list is par-
titioned into sublists, each one with circles of the same size and the final packing is a 
concatenation of packings of equal circles. Although the above description does not 
seem suited for an online algorithm, we may adapt this algorithm to the online case.

The idea is to pre-reserve sufficiently large regions to pack circles of the same size 
in an online fashion within each region and booking new regions whenever a region 
cannot receive more items. More precisely, the adapted algorithm packs equal cir-
cles of diameter 1∕(1 + �)i into active regions, which are bins of width 1 and height 
1∕(�(1 + �)i) . When a region cannot receive another circle, it is closed and a new active 
region is opened for the circles of the same size. When a region becomes closed, its 
area occupation is close to the best possible for circles of the same size. The active 
regions may have small area occupation, but a simple calculation shows that it is pos-
sible to bound the total area of all active regions to O(1∕�2) . Moreover, the unused frac-
tion in each closed bin, due to incomplete packings at the top and bottom of each bin, is 
at most O(�).

Considering the worst area guarantee for the packing of regions of large and small 
circles, it is possible to guarantee an area occupation close to �∕

√
27 ≈ 0.6046 . Thus, 

we obtain an algorithm with asymptotic performance bound 
√
27∕� ≈ 1.654.

Lemma 9 Given a list of circles L, there is an online algorithm A� for the CSP prob-
lem, where 𝜀 > 0 , such that A�(L) ≤ (1.6538 + �) Area (L) + O(1∕�2).

6.2  Online circle bin packing

An important technique used to prove bounds for bin packing problems is the 
use of a weighting function introduced by Ullman [53] and used to prove 
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approximation factors for many packing algorithms [9, 10, 49]. Consider any 
instance (L, B) of a bin packing problem variant, where a list of items L must be 
packed into the minimum number of recipients of type B, and an algorithm A 
for this same problem variant. The idea resumes to obtain a weighting function 
WA ∶ L → ℝ such that 

(a) A(L) ≤ WA(L) + C,
(b) WA(L)∕OPT(L) ≤ �,

where C ≥ 0 and � ≥ 1 are constants. When these two conditions are valid, we 
conclude that A has asymptotic approximation factor � , as we have

Note that to prove an asymptotic approximation factor � for an algorithm A , it is 
sufficient to obtain a weighting function W such that (i) any set of items that is pack-
able in a bin has total weight at most � ; (ii) each bin generated by algorithm A , 
except for a constant number of them, has weight at least 1. In this case, (a) is valid 
because the weight of the packing produced by A is at least 1, except perhaps in a 
constant number of bins, and given an optimum packing O∗ , (b) is valid because 
W(L) =

∑
B∈O∗ W(B) ≤ �OPT(L).

To see a first example of analysis using a weighting function, consider the 
offline ACBP

SP
 algorithm, presented in Sect. 3.1. This algorithm uses Algorithm A

SP
 

to guarantee that each bin has an area occupation of at least �∕2 , except perhaps 
the last bin. Recall that � = 0.5390… is the upper bound area for any list S for 
which A

SP
 is guaranteed to pack S in only one bin [24]. Let W

A
CBP

SP

 be a weighting 
function defined as W

A
CBP

SP

(c) =
2

�
Area (c) , for any circle c. As each bin produced 

by the Algorithm ACBP

SP
 has an area occupation of at least �∕2 , except possibly for 

the last bin, the weighting function guarantees a total weight of at least 1 for any 
bin produced by Algorithm ACBP

SP
 , except possibly for the last bin. Moreover, the 

maximum weight of a bin is at most 2∕� , as the total area of a bin is at most 1. 
This shows that algorithm ACBP

SP
 has asymptotic approximation factor 2∕� ≈ 3.7105 . 

As an exercise, the reader can prove the bounds proved in Sect. 3.3 using appro-
priate weighting functions.

Using this technique, Hokama et  al.  [34] presented an algorithm that sub-
divides the input list L into M sublists, L1,… , LM−1, LM , for a certain constant 
integer M, where Li has the circles in L with radius in (�i+1, �i] , mentioned in 
Sect. 3.3, for i = 1,… ,M − 1 . The last sublist LM has the remaining circles. Here, 
the circles in the sublist LM are called small while the circles in sublist Li , for 
i = 1,… ,M − 1 are called big circles of type i.

For the packing of big circles of type i, the algorithm packs i circles in each 
bin, except perhaps in the last bin. To this end, the algorithm maintains one active 
bin for each type of big circle, and whenever a type i circle cannot be packed in 
the corresponding active type i bin, the algorithm closes this bin and packs the 
circle in a newly created active type i bin. For the circles of sublist LM , it uses the 

A(L) ≤ WA(L) + C ≤ �OPT(L) + C.
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algorithm presented in Sect. 3.2, that can be made to execute in online fashion. 
The weighting function used for this algorithm, gives a weight of 1/i for each big 
circle of type i. This guarantees that each closed bin for these circles has weight 
at least 1, as the algorithm packs i circles of type i in each closed bin of type i.

For each small circle c in sublist LM , the algorithm defines a weight that is a bit 
larger than Area (c)

√
12∕� . As the sublist LM has circles with small radius and the 

algorithm presented in Sect.  3.2 obtains an area occupation that becomes close to 
�∕

√
12 as M becomes larger, it also leads to total weight of at least 1 for each closed 

bin with small circles.
To obtain an upper bound of 2.4394 for the asymptotic approximation factor of this 

algorithm, they used a combined integer programming and constraint programming 
approach to show that any set S that is packable in one bin has total weight at most 
2.4394. The above algorithm can be implemented to use at most a constant number 
of active bins, in which case it is said to be a bounded online algorithm. Using similar 
approach, they also showed that any algorithm using a constant number of active bins 
must have an asymptotic approximation factor at least 2.2920.

Further, Lintzmayer et al. [42], using the same approach and improving the occupa-
tion ratio for a class of small circles, improved the upper bound to 2.3536.

These authors also presented online approximation algorithms for packing circles 
into isosceles right triangle bins, with asymptotic approximation factor bounded by 
2.5490 and a lower bound of 2.1193. They also considered a variant where the items 
must be packed in an online fashion, but are allowed to be reorganized inside the bin 
(but cannot leave the bin where they are packed). For this variant, they presented algo-
rithms that combine large circles of different types and use a generalized form of the 
weighting method  [15, 49], using two weighting functions. They obtained circle bin 
packing algorithms with asymptotic approximation factors bounded by 2.311 for the 
case of square bins and by 2.51 for isosceles right triangle bins.

7  Sphere packing problems

All problems we have considered for circles have a corresponding version for the three-
dimensional case, or higher dimensions. Most of the results we have shown here can be 
extended. In fact, the asymptotic approximation schemes presented by Miyazawa et al. 
[48] are also valid for the d-dimensional bin and strip packing versions, for any constant 
dimension d. Moreover, their work can also be generalized to other bins/items of differ-
ent shapes, like ellipses, regular polygons, or even Lp-norm spheres. Lintzmayer et al. 
[42] also presented online algorithms for the problem of packing spheres into cubes, 
presenting an algorithm with asymptotic approximation factor bounded by 2.5316 and 
a lower bound of 2.7707 for any bounded space algorithm.
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8  Concluding remarks

When considering approximation algorithms for a problem, an important ques-
tion that one may consider is about the best possible factor one can achieve for 
this problem. We recall that for all three packing problems addressed here, we 
presented approximation schemes when augmented bins are allowed, for these 
problems and some corresponding variants. These are the best factors one can 
obtain considering that these problems are NP-hard. On the other hand, most of 
these algorithms are purely theoretical, as they have time complexity given by 
polynomials that are prohibitive in practice for most of the values of � . The other 
algorithms, which we mentioned, and that are not approximation schemes, can be 
implemented to have practical running times, but of course with worse approxi-
mation factors. It would be interesting to have further algorithms with better 
approximation factors but still with practical running times.

It would also be interesting to consider approximation algorithms for other 
packing problems where items and/or bins have circular/spherical shapes. 
There are some interesting results that could be explored in the development of 
approximation algorithms. As we mentioned, Fekete et al. [23] established opti-
mal worst-case density for packing disks into a disk, making use of a number of 
computer-assisted proofs. More recently, Fekete et al.[22] obtained similar results 
for packing squares into a disk. Becker et al. [4] give a good overview of related 
works, and a number of techniques.
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