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DENSITY OF IDENTIFYING CODES OF HEXAGONAL2

GRIDS WITH FINITE NUMBER OF ROWS3
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Abstract. In a graph G, a set C ⊆ V (G) is an identifying code if,
for all vertices v in G, the sets N [v] ∩ C are all nonempty and pair-
wise distinct, where N [v] denotes the closed neighbourhood of v. We
focus on the minimum density of identifying codes of infinite hexag-
onal grids Hk with k rows, denoted by d∗(Hk), and present opti-
mal solutions for k ≤ 5. Using the discharging method, we also
prove a lower bound in terms of maximum degree for the minimum-
density identifying codes of well-behaved infinite graphs. We prove that
d∗(H2) = 9/20, d∗(H3) = 6/13 ≈ 0.4615, d∗(H4) = 7/16 = 0.4375
and d∗(H5) = 11/25 = 0.44. We also prove that H2 has a unique
periodic identifying code with minimum density.

Keywords: identifying code, hexagonal grid, minimum density

Mathematics Subject Classification. 94B65, 68R10, 90C27,
05C69

Introduction6

The concept of identifying code (idcode, for short), was introduced in 1998 by7

Karpovsky et al. [27] to identify a faulty processor in a multiprocessor system.8

The vertices of an idcode correspond to special processors (the monitors) that are9

able to check themselves and their neighbours to identify a faulty processor.10
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Problems on idcodes have been studied on finite and infinite graphs, being of11

great interest both from theoretical as well as practical viewpoint. Particular in-12

terest has been dedicated to grids as many processor networks have a grid topology13

(see [34,35]). Among these, we mention the square grid GS , the triangular grid GT14

and the king grid GK , shown in Figure 1.15

One fundamental problem on idcodes is that of finding idcodes of minimum16

density. The density captures the proportion of vertices in the code with respect17

to the whole graph. For finite graphs, Cohen et al. [7] proved that deciding the18

existence of an idcode of size at most k in a graph is an NP-complete problem. On19

infinite graphs, studies on minimum-density idcodes have considered grids with20

infinite or with a finite number of rows (see [1–6,9,10,12–14,16–21,24,25,27,28]).21

For an updated bibliography covering this topic and related ones, the reader is22

referred to Jean [22].23

(a) Square grid GS (b) Triangular grid GT (c) King grid GK

Figure 1. Partial representation of infinite square, triangular
and king grids, and the corresponding minimum-density idcodes

We denote by d∗(G) the minimum density of an idcode of a graph G. For the24

infinite grids mentioned previously, it is known that d∗(GS) = 7/20 [1], d∗(GT ) =25

1/4 [27] and d∗(GK) = 2/9 [5]. When these grids have a finite number k of rows,26

idcodes of minimum density are known for k ≤ 6, and for larger k only lower and27

upper bounds have been found.28

In this work we focus on infinite graphs, specially the hexagonal grids (see29

Figure 2). We denote these grids by GH when the number of rows is infinite, and30

by Hk when the number of rows is a positive integer k. For GH , new lower and31

upper bounds have been proved in the last years. Just to mention the more recent32

ones: in 2009, Cranston and Yu [9] proved a lower bound of 12/29 ≈ 0.4138, and33

in 2013, Cuckierman and Yu [10] improved the lower bound to 5/12 ≈ 0.4166. In34

2014, Stolee [33] presented a computer-assisted framework showing that d∗(GH) ≥35

23/55 ≈ 0.4181. As for upper bounds, in 2000, Cohen et al. [6] constructed two36

idcodes of GH with density 3/7 ≈ 0.4285. Other idcodes with the same density37

have also been reported in the literature. Recently, breaking the long-standing38

bound of 3/7, Salo and Törmä [29] showed that d∗(GH) ≤ 53/126 ≈ 0.4206. They39

found a periodic idcode using a computer-assisted proof that uses automata theory40

and Karp’s minimum mean cycle algorithm. No results on lower or upper bounds41

have appeared in the literature for d∗(Hk).42



TITLE WILL BE SET BY THE PUBLISHER 3

We prove that idcodes of well-behaved infinite graphs with maximum degree ∆43

have density at least 2/(∆ + 2). This result and another one on infinite graphs44

with maximum degree 3 imply that d∗(Hk) ≥ 2/5 for all k ≥ 2, and that idcodes45

of Hk that do not induce trivial components have density at least 3/7. We prove46

that d∗(H2) = 9/20, and exhibit an idcode with this minimum density, which47

we show to be unique. We also mention how we proved that d∗(H3) = 6/13,48

d∗(H4) = 7/16 and d∗(H5) = 11/25, using computer-assisted tools.49

In Section 1 we define the concepts used in this paper and establish the notation.50

We also present a density result on the infinite 3-regular tree, to show that this51

graph is not so well-behaved as the hexagonal grids, a fact (to be made precise) that52

has caused an erroneous proof in the literature on a related concept called locating-53

dominating set (and perhaps on other closed concepts as well). These preliminary54

comments help understanding the property (named SG) that we require from the55

infinite graphs to guarantee that some density proof techniques work. In Sections 256

and 3, we define SG-property and prove results on the discharging method and the57

mentioned lower bound. In Section 4 we show a minimum-density idcode for H2,58

and prove that it is unique. Section 5 contains results on minimum-density idcodes59

for Hk, k ∈ {3, 4, 5}.60

A preliminary version of this work (an extended abstract) appeared in [30].61

This work contains additional novel results and a simplified and complete proof of62

Theorem 4.6.63

1. Definitions, notation, and the infinite 3-regular tree64

The hexagonal grid, denoted by GH , is an infinite graph with vertex set V =65

Z × Z and edge set E = {{u, v} : u = (i, j), u − v ∈ {(±1, 0), (0, (−1)i+j+1)}}.66

See Figure 2. The hexagonal grid with k rows, k ≥ 2, denoted by Hk, is a graph67

isomorphic to the subgraph of GH induced by the vertex set Z× {1, . . . , k}.
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Figure 2. Hexagonal grid GH

68

Let G be a connected graph. If v is a vertex of G, and r is a natural number,69

then Nr(v) denotes the set of vertices of v at distance at most r from v, and70

Nr[v] = Nr(v) ∪ {v} denotes the closed neighbourhood of v. When r = 1, we71

omit the subscript r and simply write N(v) and N [v]. Given C ⊆ V (G), let72

C[v] = N [v] ∩ C. An idcode of G is a set C ⊆ V (G) such that C[v] ̸= ∅ for every73

vertex v of G, and C[v] ̸= C[w] for any pair of distinct vertices v, w of G. Thus,74
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if a graph G has two distinct vertices v and w such that N [v] = N [w], then G has75

no idcode. Such vertices are called twins. Clearly, a graph has an idcode if and76

only if it is twin-free. If C is an idcode, we say that C[v] is the identifier of v.77

We are interested in minimum-density idcodes of countably infinite connected78

graphs of bounded degree. For such a graph G, the density of a subset C ⊆ V (G),79

denoted by d(C,G), is defined as follows.80

d(C,G) = inf {dw(C,G) : w ∈ V (G)},
where81

dw(C,G) = lim sup
r→∞

|C ∩Nr[w]|
|Nr[w]|

.

The minimum density of an idcode of a graph G, denoted by d∗(G), is defined as82

d∗(G) = inf {d(C,G) : C is an idcode of G}.

Notice that we use inf (infimum) in the definition of d(C,G), instead of min (min-83

imum), since the greatest lower bound does not always belong to the set. This84

definition (with inf) is also given by Jiang [24] to study densities of idcodes of85

Sk (a topic to be mentioned in Section 5). Slater [31] defines density of locating-86

dominating sets (a notion similar to idcode) with min, but the definition of density87

d(C,G) makes sense for any set C. In the proof of Lemma 1.1 we show an example88

of an infinite graph G for which dw(C,G) > 0 for all w ∈ V (G), but d(C,G) = 0.89

This definition of subset density given above has not always been used. In some90

papers, such as [10–13, 23], the density d(C,G) was simply defined as dw(C,G)91

where w is an “arbitrary vertex”. This contains an implicit assumption that92

dw(C,G) = dv(C,G) for any two vertices w, v of G, which is not always true93

as we show in Lemma 1.1. In most of these papers, this problem in the density94

definition did not lead to erroneous results, since the graphs considered were well-95

behaved grids, all of them satisfy an important condition (named SG-property in96

the next section) which guarantees that dw(C,G) = dv(C,G) for any two vertices97

w, v of G (see Lemma 2.1). However, some papers contain erroneous statements,98

as we will see in Theorem 1.2.99

Lemma 1.1. There are infinite bounded degree graphs G with subsets C ⊂ V (G)100

for which there are distinct vertices w, v such that dw(C,G) ̸= dv(C,G).101

Proof. Let us consider the infinite 3-regular tree T , obtained from two infinite102

binary trees T1 and T2 with roots r1 and r2, respectively, by adding the edge r1r2.103

We exhibit two examples of sets C ⊂ V (T ) and vertices w, v of V (T ) for which104

dw(C, T ) ̸= dv(C, T ).105

As a first example, consider C = V (T2). Let w be a vertex of T1 that is a106

neighbour of r1. Then dw(C, T ) = 1/6. (More generally, If w is at distance d107

from r1, we have that dw(C, T ) = 2−d/3.) Let v = r2. Then, dv(C, T ) = 2/3.108

(Note that here d(C, T ) = 0.)109

As a second example, let C be the set consisting of all vertices of T2 together110

with all vertices of T1 whose distance to r1 is even (r1 included). In this case, C111
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is an idcode of T . Let w (resp. v) a vertex in T1 (resp. T2) that is at distance d112

from r1 (resp. r2). It is not difficult to check that dw(C, T ) converges to 2/3 and113

dv(C, T ) converges to 1 when d tends to ∞. □114

Even considering the correct definition of subset density d(C,G), some papers115

calculate it in an informal way, covering the entire graph with periodic patterns116

and assuming that the density of C will be the density of the pattern. As an117

example, consider the infinite 3-regular tree T , used in the proof of Lemma 1.1,118

which is obtained from two infinite binary trees with roots r1 and r2 and the edge119

r1r2. Consider that T is rooted at r1. Let C be the set of vertices in T whose120

distance to r1 is even (r1 included). Then, the vertices of T can be covered by the121

pattern (a matching) formed by a vertex and its leftmost child (being one in C122

and the other not in C), whose density is 1/2. Also, by ignoring r2, the vertices123

of T can be covered by the pattern (a cherry) formed by a vertex in C and its two124

children not in C, whose density is 1/3. Finally, by ignoring r1, the vertices of T125

can also be covered by the pattern (a cherry) formed by a vertex not in C and its126

two children in C, whose density is 2/3.127

Thus, considering three distinct periodic patterns, this method gives three dif-128

ferent values as the density of d(C, T ), indicating that such a method should not129

be used in any graph. We will elaborate more on this in what follows, calling130

attention to a property that the infinite graph should satisfy for this method to131

work (see Lemma 2.1). Unfortunately, this informal way to calculate the density of132

sets on infinite graphs led to some erroneous results in the literature. We will not133

present here the proof (based on the definition we have given) that d(C, T ) = 2/3,134

as it is not so short, but the reader may verify this.135

The next theorem shows that one of the first results on locating-dominating136

sets is wrong. We say that a set C ⊆ V (G) is a locating-dominating set (lds)137

of G if C[v] ̸= ∅, for every v ̸∈ C, and C[v] ̸= C[w], for any two distinct vertices138

v, w ̸∈ C. Notice that every identifying code is also a locating-dominating set139

(the difference is that a locating-dominating set C only cares about the vertices140

outside C). In 2002, Slater [31] stated that “the density of any locating-dominating141

set of a countably infinite d-regular graph is at least 2/(d + 3)”. We present an142

lds of the infinite 3-regular tree whose density is at most 5/16 = 0.3125 (a value143

smaller than 2/(3 + 3)), which is a counterexample to the result stated by Slater.144

Theorem 1.2. The minimum density of a locating-dominating set of the infinite145

3-regular tree is at most 5/16 = 0.3125.146

Proof. Let T be the infinite 3-regular tree with root R, and let layer Li be the set147

of vertices of T at a distance i from the root R. Thus, V (T ) =
⋃

i≥0 Li, L0 = {R},148

and |Li| = 3.2i−1, for i ≥ 1. Thus, for i ≥ 5, |Li| is a multiple of 16, and is149

composed of 3 groups with 2i−1 vertices.150

To construct a set C ⊂ V (T ) which we shall prove to be an lds of T , we label151

first the vertices of T , and then we define which vertices belong to C. The labelling152

procedure is the following.153
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(a) We assign label 1 to all vertices in L0 ∪ L1 ∪ . . . ∪ L4.154

(b) We label the vertices of L5 as follows. We consider that L5 is composed of155

3 consecutive groups of 16 vertices (each of these groups are the leaves of156

the subtree of height 4 rooted at one of the children of root R). We label157

identically these groups of 16 vertices, according to the following pattern:158

-------------------------------------------------------------------159

1 2 3 5 1 2 3 5 2 3 5 5 3 4 5 5160

-------------------------------------------------------------------161

(c) Once the vertices in Li, i ≥ 5, have been labelled, we label the vertices162

in Li+1. For that, we define for each vertex with label j (in Li) which163

are the labels k, l of its children (in Li+1), writing j −→ {k, l}. We let164

1 −→ {3, 4}, 2 −→ {3, 3}, 3 −→ {1, 5}, 4 −→ {5, 5} and 5 −→ {2, 5}.165

Representing this in a tree-like structure, we have:166

1 2 3 4 5167

/ \ / \ / \ / \ / \168

3 4 3 3 1 5 5 5 2 5169

170

Now that V (T ) is labelled, let171

C := {v ∈ V (T ) : v has label 1 or 2}.

Consider a group, say H, of 16 vertices in L5, and let xj be the number of172

vertices in H with label j. Then, x1 = 2, x2 = 3, x3 = 4, x4 = 1, x5 = 6; or in a173

condensed form, x(H) = (2, 3, 4, 1, 6).174

Now, let chld(H) be the group (in L6) formed by the children of the vertices175

in H. Let now x′
j be the number of vertices with label j in chld(H). Then,176

x′
1 = x3 = 4 = 2x1, x′

2 = x5 = 6 = 2x2, x′
3 = x1 + 2x2 = 8 = 2x3, x′

4 =177

x1 = 2 = 2x4, and x′
5 = x3 + 2x4 + x5 = 12 = 2x5. That is, x′

j = 2xj for178

j ∈ {1, 2, . . . , 5}, and therefore, x(chld(H)) = 2x(H). Since, at each layer Li,179

i ≥ 5, there are 3 groups with 2i−1 vertices, and each such group G (by the180

labelling rule) gives rise to a (children) group with x(chld(G)) = 2x(G), in each181

new layer the proportion of vertices with labels 1 or 2 (those in C) is exactly the182

proportion that holds in layer L5. We have |C ∩ L5| = 15 and |L5| = 48. Thus,183

|C ∩ L5|/|L5| = 15/48 = 5/16. Since |Li+1| = 2|Li| and |C ∩ Li+1| = 2|C ∩ Li|,184

for each layer Li the ratio |C ∩ Li|/|Li| = 5/16 holds for all i ≥ 5. Only for the185

initial layers Li, 0 ≤ i ≤ 4, we have |C ∩ Li|/|Li| = 1. Thus, the density dR(C, T )186

is precisely187

dR(C, T ) = lim sup
r→∞

|C ∩Nr[R]|
|Nr[R]|

= lim sup
h→∞

|C ∩ Th(R)|
|Th(R)|

= 5/16,

where Th(R) is the subtree of T with height h rooted at R. Since d(C, T ) =188

inf{dw(C, T ) : w ∈ V (T )}, we conclude that d(C, T ) ≤ 5/16 = 0.3125.189

It remains to prove that C is an lds of T . For that, it suffices to check that190

the vertices with labels 3, 4, 5 have distinct neighbourhood in C. The reader may191
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check that a vertex with label 3 is identified by its parent and one child (with192

label 1); a vertex with label 4 is identified solely by its parent (which has label 1);193

and a vertex with label 5, if it belongs to L5, then is identified by its parent and194

one child (with label 2), and if it belongs to layer Li, i ≥ 6, then it is identified195

solely by one child (the one with label 2). This concludes our proof that C is an196

lds of T with d(C, T ) ≤ 5/16 = 0.3125. □197

We understand that the erroneous proof of Theorem 2 stated in [31] happened198

because the infinite graph under consideration does not satisfy a property that199

would allow the application of the method that was used. The author used a200

measure called share γ(v, C), that is an application of the discharging method (to201

be discussed in the next section) to obtain a lower bound proof for the density of202

a set, say C.203

Roughly speaking, the share method works as follows: each vertex of C starts204

with charge q > 0 and each vertex outside C starts with charge 0. For any vertex205

c ∈ C and u ∈ N [c], the vertex c sends charge 1/|C[u]| to u (this includes the206

case in which u = c). At the end of this procedure, all vertices outside C will207

have charge exactly 1 and every vertex c ∈ C will have charge q + 1 − sh(c),208

where sh(c) =
∑

u∈N [c] 1/|C[u]| is the total charge sent by c. The idea is that, if209

sh(c) ≤ q for every c ∈ C, all vertices in G will have charge at least 1. Then, if G210

is finite,211

1 · |V (G)| ≤
∑
c∈C

sh(c) ≤ q · |C|, and hence d(C,G) =
|C|

|V (G)|
≥ 1

q
.

Now, let G be an infinite connected graph and let v be a vertex of G. To guarantee212

charge at least 1 at every vertex in Nr−1[v], it suffices to consider the vertices in213

C ∩Nr[v]. Thus,214

1 · |Nr−1[v]| ≤
∑

c∈C∩Nr[v]

sh(c) ≤ q · |C ∩Nr[v]|,

which implies that215

dv(C,G) = lim sup
r→∞

|C ∩Nr[v]|
|Nr[v]|

≥ 1

q
· lim sup

r→∞

|Nr−1[v]|
|Nr[v]|

.

As we can see, the share method of [31] will work if lim supr→∞ |Nr−1[v]|/|Nr[v]| = 1,216

which is a consequence (Lemma 2.1(a) with t = −1) of our SG-property, defined217

in the next section.218

2. The use of discharging method to prove lower bounds219

for the density of idcodes220

The discharging method is a proof technique in combinatorics, first used in221

graph theory, that has now been used in many different contexts, such as in graph222



8 TITLE WILL BE SET BY THE PUBLISHER

colouring, decomposition, embedding, geometric and structural problems. For223

a guide on the use of the this method to prove results on colouring and other224

structural properties of graphs see [8].225

To prove results on a graph G, this method involves two phases: charging226

and discharging. In the charging phase, we assign charges (a rational number)227

to certain structures of G using a charging rule, which describes the value of the228

charge and the structures of G which will receive the charge. These structures229

may be vertices, edges, faces (if G is planar), etc. In the discharging phase, we230

re-assign the charges using the discharging rules, which describe the structures231

that will send and/or receive charge from other vertices. The discharging must232

preserve the total charge that was assigned in the charging phase.233

Both the charging and discharging rules are designed to guarantee that, after234

these phases some information on the charges of certain vertices/edges will help235

us prove some property of the graph. In some applications, the initial charges or236

the discharging rules may take into consideration the degree of the vertices.237

The discharging method has been one of the main tools to prove lower bounds238

for density of idcodes. Theorem 2.2, proved in this section, tells how this method239

can be used to obtain density results in infinite graphs, once these graphs satisfy240

certain properties. Before that, we define SG-property and present a general result241

(Lemma 2.1) that is related to this property and is used in Theorem 2.2 and242

Lemma 2.3. (Here, the mnemonic SG stands for “slow growth”, the concept we243

want to emphasize.)244

Definition 1. We say that a graph G satisfies the SG-property if G is connected245

and has a vertex s such that limr→∞
|Nr+1[s]|
|Nr[s]| = 1.246

Notice that, since Nr[s] ⊆ Nr+1[s], then limr→∞
|Nr+1[s]|
|Nr[s]| = 1 if and only if247

lim supr→∞
|Nr+1[s]|
|Nr[s]| = 1. Also notice that the integer t in the item (a) of the248

following lemma may be negative.249

Lemma 2.1. Let G be an infinite connected graph satisfying the SG-property, and250

let s ∈ V (G) be such that limr→∞
|Nr+1[s]|
|Nr[s]| = 1. Then the following hold.251

(a) For every vertex v and integer t, we have limr→∞
|Nr+t[v]|
|Nr[v]| = 1.252

(b) For every vertex v and C ⊆ V (G), we have dv(C,G) = ds(C,G). Thus the253

density of C is d(C,G) = dw(C,G), where w is an arbitrary vertex of G.254

Proof. To simplify notation, let nk[w] = |Nk[w]| for any positive integer k and255

vertex w. For the vertex s stated in the lemma, and any integer t > 0, we have256

lim
r→∞

nr+t[s]

nr[s]
= lim

r→∞

(
nr+t[s]

nr+t−1[s]
· nr+t−1[s]

nr+t−2[s]
. . . · nr+2[s]

nr+1[s]
· nr+1[s]

nr[s]

)
= 1. (1)

It is immediate that limr→∞
nr+t[s]
nr[s]

= 1 also holds when t is negative (as long257

as r + t ≥ 0). Now, to prove (a), consider a vertex v and let d := dist(v, s). First,258

we prove that (for r ≥ d)259
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Nr−d[s] ⊆ Nr[v] ⊆ Nr+d[s]. (2)

To prove the first inclusion, take a vertex y in Nr−d[s]. Thus, dist(y, s) ≤ r−d.260

Since dist(y, v) ≤ dist(y, s)+dist(s, v), it follows that dist(y, v) ≤ r, and therefore,261

y ∈ Nr[v]. The proof of the second inclusion is analogous: take y ∈ Nr[v], which262

means that dist(y, v) ≤ r. Since dist(y, s) ≤ dist(y, v) + dist(v, s), we have that263

dist(y, s) ≤ r + d, and therefore, y ∈ Nr+d[s]. From (2), we have that264

Nr+1−d[s] ⊆ Nr+1[v] ⊆ Nr+1+d[s]. (3)

Combining (3) and (2), we have265

nr+1−d[s]

nr+d[s]
≤ nr+1[v]

nr[v]
≤ nr+1+d[s]

nr−d[s]
. (4)

Since (1) holds for every integer t (see the observation in the paragraph follow-266

ing (1)), it follows that the limit of the fraction on the left (resp. right) side of (4)267

when r tends to ∞ is 1, and therefore,268

lim
r→∞

nr+1[v]

nr[v]
= 1. (5)

From (5), we may conclude that (1) holds when s is replaced by v, and this269

completes the proof of statement (a).270

Now, let us prove (b). For that, we first note that, from (2) we have that271

nr−d[s]

nr[s]
≤ nr[v]

nr[s]
≤ nr+d[s]

nr[s]
. (6)

Since the limit of the fraction on the left (resp. right) when r tends to ∞ is 1,272

it follows that273

lim
r→∞

nr[v]

nr[s]
= 1. (7)

By definition, we have that274

dv(C,G) = lim sup
r→∞

|C ∩Nr[v]|
nr[v]

. (8)

From (2), we obtain275

C ∩Nr−d[s] ⊆ C ∩Nr[v] ⊆ C ∩Nr+d[s].

Thus,276

lim sup
r→∞

|C ∩Nr−d[s]|
nr[v]

≤ dv(C,G) ≤ lim sup
r→∞

|C ∩Nr+d[s]|
nr[v]

. (9)

The lower (resp. upper) bound of dv(C,G) given by (9) is precisely ds(C,G).277

Indeed, for the lower bound, using (8),(1) and (7), we have278
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lim sup
r→∞

|C ∩Nr−d[s]|
nr[v]

= lim sup
r→∞

(
|C ∩Nr−d[s]|

nr−d[s]
· nr−d[s]

nr[s]
· nr[s]

nr[v]
) = ds(C,G).

For the upper bound, the proof follows similarly. Thus, dv(C,G) = ds(C,G),279

and hence d(C,G) = dw(C,G), where w is an arbitrary vertex in G. □280

The SG-property is very important for the forthcoming proofs on the minimum281

density based on the discharging method. Lemma 2.1 guarantees that if a con-282

nected graph G has this property, then the density of a vertex set C in G may be283

calculated by considering dv(C,G) for an arbitrary vertex v.284

It is not difficult to see that the infinite hexagonal grids (GH and Hk), as well285

as the grids mentioned in the introduction (square, triangular, king), and many286

others have the SG-property. In particular, for the grid GH , it is known that287

nr+1[s] = (3(r+ 2)(r+ 1))/2 + 1 for any vertex s, from which we conclude that it288

has the SG-property. (For more information on nr[s], see any reference on the rth289

centered triangular number.) For the grid Hk, as k is fixed, it is easier to conclude290

that it has the SG-property. Recall that we have shown (see Lemma 1.1) that the291

infinite 3-regular tree does not have this property.292

Theorem 2.2 (Discharging Method). Let G be an infinite graph with bounded293

maximum degree which satisfies the SG-property. Let C be a vertex set in G.294

Suppose that the discharging method is applied to G in the following way. In the295

charging phase, charge 1 is assigned to each vertex in C and charge 0 is assigned to296

the remaining vertices. In the discharging phase, among other rules, the following297

one is respected: no vertex sends charge from it to a vertex at a distance greater298

than d, for a fixed integer d. If, at the end, every vertex v of G has final charge299

chg(v) such that q ≤ chg(v) ≤ q′, where q and q′ are rational numbers, then300

q ≤ d(C,G) ≤ q′.301

Proof. Given a set W ⊆ V (G), let chg(W ) =
∑

w∈W chg(w). Let q, q′ and d be302

as in the hypothesis of the lemma, and let s be an arbitrary vertex in G. As in303

the proof of Lemma 2.1, to simplify notation, we let nr[s] = |Nr[s]|. Note that304

q · nr[s] ≤ chg(Nr[s]) ≤ q′ · nr[s].305

Moreover, notice that chg(Nr[s]) is at most |C ∩Nr[s]| plus the charge received306

from vertices outside Nr[s], which are contained in Nr+d[s]. Then, q · nr[s] ≤307

chg(Nr[s]) ≤ |C ∩Nr[s]|+ nr+d[s]− nr[s]. Therefore,308

ds(C,G) = lim sup
r→∞

|C ∩Nr[s]|
nr[s]

≥ q − lim sup
r→∞

nr+d[s]− nr[s]

nr[s]
= q.

The last equality holds because limr→∞ nr+d[s]/nr[s] = 1, by Lemma 2.1(a).309

Moreover, for r > d, chg(Nr[s]) is at least |C ∩ Nr[s]| minus the charge sent310

to vertices outside Nr[s], which comes from vertices in Nr[s] \ Nr−d[s]. Then,311

q′ · nr[s] ≥ chg(Nr[s]) ≥ |C ∩Nr[s]| − (nr[s]− nr−d[s]). Therefore,312
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313

ds(C,G) = lim sup
r→∞

|C ∩Nr[s]|
nr[s]

≤ q′ + lim sup
r→∞

nr[s]− nr−d[s]

nr[s]
= q′.

314

Thus, from Lemma 2.1(b) we conclude that q ≤ d(C,G) ≤ q′. □315

The next lemma shows that the usual method of determining the density of a316

set from periodic patterns, which we showed that is not always valid, works on317

graphs satisfying the SG-property.318

Lemma 2.3. Let G be an infinite connected graph with bounded maximum degree319

that satisfies the SG-property. Let ℓ, c, c′, d be positive integers, and let C be a320

subset of V (G). Suppose that V (G) can be partitioned into subsets V1, V2, . . . of321

size ℓ such that, c ≤ |Vi ∩C| ≤ c′ for each i ≥ 1, and the distance between any two322

vertices of Vi is at most d. Then c/ℓ ≤ d(C,G) ≤ c′/ℓ.323

Proof. We use the discharging method as stated in Lemma 2.2 with q = c/ℓ and324

q′ = c′/ℓ. Recall that every vertex of C starts with charge 1 and the vertices325

outside C starts with charge 0. In the discharging phase, for every part Vi of326

V (G), the set of vertices in C ∩ Vi can guarantee charge at least q = c/ℓ and at327

most q′ = c′/ℓ for every vertex of Vi. Since the distance between any two vertices328

of Vi is at most d, no vertex sends charge to a vertex at a distance greater than d.329

From Lemma 2.2, we conclude that c/ℓ ≤ d(C,G) ≤ c′/ℓ. □330

In particular, for Hk, the above result indicates that to prove a lower bound331

for the density of an idcode C, one can show that if Hk can be covered with a332

periodic pattern H, then H is a pattern (subgraph of Hk containing vertices of C)333

for which the ratio |C ∩ V (H)|/|V (H)| is minimum possible (a result that might334

not be so easy to prove). This would lead us to the conclusion that this ratio gives335

a lower bound for d(C,Hk). In Section 3, we prove a lower bound for d∗(H2) using336

the discharging method, as stated in Theorem 2.2, and we also give another proof337

based on this idea of a pattern H with best possible ratio. The latter idea also338

yields a uniqueness proof of the minimum-density periodic idcode of H2.339

3. Lower bounds for the density of some idcodes of Hk340

Karpovsky et al. [27] proved that for d ≥ 2, every finite twin-free d-regular341

graph G satisfies d∗(G) ≥ 2/(d + 2). This was done using a double counting342

argument on the set of possible idcodes. The next theorem shows that the same343

bound holds for infinite connected graphs with maximum degree bounded by a344

constant d, if the graph has the SG-property. To prove this result, we use the345

discharging method, in a similar way that Cranston and Yu [9] proved the lower346

bound 2/5 for the minimum density d∗(GH) of the hexagonal grid.347
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Theorem 3.1. Let ∆ ≥ 2 be a fixed integer and G be a connected infinite twin-free348

graph with maximum degree ∆. If G has the SG-property, then d∗(G) ≥ 2/(∆+2).349

In particular, d∗(Hk) ≥ 2/5 for every k ≥ 2.350

Proof. Let C be an idcode of G, and let q = 2/(∆ + 2). We apply the discharg-351

ing method with charging rules as stated in Lemma 2.2, and with the following352

discharging rule:353

(R) If v /∈ C and |C[v]| = p, then v receives a charge of q/p from each vertex354

in C[v].355

We note that only neighbouring vertices exchange charges (thus we may apply356

Lemma 2.2 with d = 1). We prove now that chg(v) ≥ q for every vertex v in G.357

Clearly, if v /∈ C, then chg(v) = q; so assume that v ∈ C. If v has no neighbours358

in C, then for all w ∈ N(v) we have |C[w]| ≥ 2, otherwise C[v] = C[w]. Thus,359

vertex v sends a charge of at most q/2 to each vertex in N(v). As a vertex in G360

has degree at most ∆, it follows that chg(v) ≥ 1−∆(q/2) = q.361

Suppose now that v has a neighbour in C. Then for at most one vertex, say w,362

that is a neighbour of v outside C, we have that C[w] = {v}; and for all the363

remaining neighbours x of v outside C, we have that |C[x]| ≥ 2. Thus v sends a364

charge of at most q to w and at most q/2 to the remaining neighbours x in N(v)\C.365

Since the degree of v is at most ∆, it follows that chg(v) ≥ 1−q−(∆−2)(q/2) = q.366

As chg(v) ≥ q for every vertex v in G, by Lemma 2.2 we have that d(C,G) ≥ q.367

As this holds for an arbitrary idcode C, it follows that d∗(G) ≥ q = 2/(∆ + 2).368

When G is the hexagonal grid Hk with k rows, the result we have shown implies369

that d∗(Hk) ≥ 2/5 for every k ≥ 2. □370

If C is an idcode of a graph G, then a component of G[C], the subgraph induced371

by C, is called a cluster of G (w.r.t. C). If a cluster has precisely (resp. at least)372

t vertices, then it is called a t-cluster (resp. t+-cluster). The unique vertex of a373

1-cluster is also called a 1-cluster. Note that G[C] has no 2-clusters, otherwise,374

the 2 vertices in such a cluster would have the same identifier. The idcodes shown375

in Figures 1(B) and 1(C) induce only 1-clusters.376

In what follows, we show that if C is an idcode of a graph G such that G[C]377

has no 1-clusters, and G satisfies certain conditions, then d(C,G) ≥ 3/7.378

Theorem 3.2. Let G be a connected infinite twin-free graph with maximum de-379

gree 3, and with the SG-property. If C is an idcode of G such that G[C] has no380

1-clusters, then d(C,G) ≥ 3/7. In particular, d(C,GH) ≥ 3/7 and d(C,Hk) ≥ 3/7381

for every k ≥ 2.382

Proof. We use the discharging method with charging rules as stated in Lemma 2.2.383

We take q = 3/7, and consider the following discharging rules:384

(R1) If v /∈ C and |C[v]| = p, then v receives a charge of 3/(7p) from each vertex385

in C[v].386

(R2) If c ∈ C and |N [c]∩C| ≥ 2, then c sends a charge of 1/14 to each neighbour387

in N(c) ∩ C.388

Let us prove now that chg(v) ≥ 3/7 for every vertex v. Clearly, chg(v) = 3/7389

if v /∈ C. Consider now a vertex c ∈ C. By hypothesis, we have that c has390
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at least one neighbour in C. If c has exactly one neighbour c′ in C, then c′391

must have another neighbour in C. Since c has at most 2 neighbours outside C,392

then c sends a charge of at most 3/7 to one of them, at most 3/14 to the other,393

and receives 1/14 from c′. (Note that, if these two neighbours exist, then one394

of them must have another neighbour in C, distinct from c). Hence, chg(c) ≥395

1− 3/7− 3/14+ 1/14 = 3/7. If c has exactly two neighbours in C, then c sends a396

charge of at most 3/7 to some neighbour w /∈ C and exactly 1/14 to each one of397

the two neighbours in C. Thus, chg(c) ≥ 1− 3/7− 2(1/14) = 3/7. If c has exactly398

three neighbours in C, then c sends exactly 1/14 of charge to each of them. Hence,399

chg(c) ≥ 1− 3(1/14) = 11/14 > 3/7. The results follow from Lemma 2.2. □400

4. An identifying code of H2 with minimum density401

In this section we prove that d∗(H2) = 9/20. For that, we prove first the402

following result.403

Lemma 4.1. The minimum density of an idcode of H2 is at most 9/20.404

Proof. Consider the subgraph, say T , indicated in Figure 3, which is a subgraph405

of H2 induced by the vertices from columns 1 to 20. Let C the set of 18 black406

vertices indicated in T .407

Note that, the pattern defined by C in the first 10 columns of T is a reflected408

form of the pattern defined by C in the next 10 columns. We claim that if we409

concatenate infinite copies of T (side by side), the set of black vertices obtained is410

an idcode of H2 (with period 20). We leave to the reader to check this fact (it is411

enough to check the first 11 columns, and the columns 20 and 21). By Lemma 2.3412

we conclude that d∗(H2) ≤ 9/20. □413

. . .

. . .

. . .

. . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3. An idcode of T ⊂ H2, which gives an idcode of H2

To show that d∗(H2) ≥ 9/20, we present two different proofs, which are closely414

related. Both are based on the patterns defined by an idcode C in the graph H2.415

To study these patterns, we consider that the graph H2 is an infinite strip that416

can be “split” into “sequential” 4-vertex sets, defined formally in what follows.417

For an integer x, we say that a vertex of column x of H2 is cubic if it has418

degree 3 in H2. We adopt the convention that when x is odd then the vertices419

in column x are cubic. For an odd integer x, we denote by Qx the set of vertices420

{(x, 1), (x+ 1, 1), (x, 2), (x+ 1, 2)}, and call it a quartet.421

Note that H2[Qx] is a ⊏-shaped path in H2 with 4 vertices, and V (H2) is the422

disjoint union of quartets Qx such that x is an odd integer. Given a quartet Qx,423
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QxQL
x QR

x

. . .

. . .

. . .

. . .

1

2

Figure 4. Quartets QL
x , Qx and QR

x

we also refer to Qx−2 (resp. Qx+2), its left (resp. right) quartet, as Q
L
x (resp. QR

x ),424

see Figure 4.425

For a given idcode C, we say that Qx is type i (resp. type i+) if |Qx ∩ C| = i426

(resp. |Qx ∩ C| ≥ i). Type 1 quartets Qx play an important role in the proofs.427

If the single vertex in the idcode that belongs to Qx is cubic (resp. not cubic)428

in H2, we say that Qx is type 1-cubic (resp. type 1-noncubic). See Figure 6. All429

references to types assume that an idcode is clear from the context.430

The next lemmas tell us, for each quartet Qx of type i (1 ≤ i ≤ 3), which431

are the possible (or forbidden) types of its neighbouring quartets QL
x and/or QR

x .432

Once we have these results, we can either use the discharging method or an idea433

based on the average density of patterns defined by consecutive quartets.434

We denote by (H2, C, x) a triple consisting of the grid H2, an idcode C of H2,435

and an odd integer x. In the figures, vertices coloured black belong to C, vertices436

coloured gray may belong to C.437

Lemma 4.2 (Qx is type 0). Consider a triple (H2, C, x). If Qx is type 0, then438

QL
x is type 4; moreover, QR

x is type 3+ and C ∩QR
x contains two cubic vertices.439

1

2

. . .

. . .

. . .

. . .

QL
x Qx QR

x

Figure 5. Quartet Qx is type 0 implies quartet QL
x is type 4

Proof. If Qx is type 0, it is immediate that all vertices in columns x− 1 and x+2440

must be in C, since all vertices of Qx must have a nonempty identifier. As C is441

an idcode, the vertices of column x− 2 must belong to C; thus, QL
x is type 4. See442

Figure 5. Since H2[C] has no 2-clusters, QR
x is type 3+. □443

Lemma 4.3 (Qx is type 1). Consider a triple (H2, C, x). If Qx is type 1, then444

the following holds.445

(a) If Qx is type 1-cubic, then QL
x is type 2+ and QR

x is type 3+.446

(b) If Qx is type 1-noncubic, then QL
x is type 3+ and QR

x is type 2+.447

Proof. For simplicity, rename the vertices of QL
x ∪Qx ∪QR

x as shown in Figure 6.448

To prove (a), let Qx be type 1-cubic, and assume without loss of generality that449

Qx ∩ C = {x1}. See Figure 6(A).450
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. . .

. . .

. . .

. . .

QL
x Qx QR

x

u1 v1 x1 y1 z1 w1

u2 v2 x2 y2 z2 w2

(a) Qx is type 1-cubic

. . .

. . .

. . .

. . .

QL
x Qx QR

x

u1 v1 x1 y1 z1 w1

u2 v2 x2 y2 z2 w2

(b) Qx is type 1-noncubic

Figure 6. Quartet Qx is type 1

• If v1 ∈ C, then u1 ∈ C, otherwise {v1, x1} would induce a 2-cluster in H2,451

a contradiction. Thus, QL
x ∩ C ⊇ {v1, u1} and therefore QL

x is type 2+. If v1 /∈452

C, then v2 ∈ C, otherwise C[x1] = C[x2], a contradiction. Moreover, u1 ∈ C,453

otherwise C[v1] = C[x1]. Thus, Q
L
x ∩ C ⊇ {v2, u1} and therefore QL

x is type 2+.454

• Clearly, z2 ∈ C, otherwise C[y2] = ∅. If z1 ∈ C, then |QR
x ∩C| ≥ 3, otherwise455

{z1, z2} would induce a 2-cluster in H2. Hence, QR
x is type 3+. If z1 /∈ C, then456

w1 ∈ C, otherwise C[z1] = C[y2]. Moreover, w2 ∈ C, otherwise C[y2] = C[z2].457

Thus, QR
x ∩ C = {z2, w1, w2}, and QR

x is type 3.458

To prove (b), let Qx be type 1-noncubic, and assume without loss of generality459

that Qx ∩ C = {y2}. See Figure 6(B).460

• Clearly, v1 ∈ C, otherwise C[x1] = ∅. Moreover, u1 ∈ C, otherwise C[x1] = C[v1].461

If u2 /∈ C, then v2 ∈ C (because C[v2] ̸= ∅). Thus, QL
x is type 3+.462

• Clearly, z1 ∈ C (because C[y1] ̸= ∅). If z2 ∈ C, then QR
x is type 2+. If z2 /∈ C,463

then w1 ∈ C, otherwise C[z1] = C[y1], a contradiction. Hence, QR
x is type 2+. □464

Lemma 4.4 (Qx is type 2). Consider a triple (H2, C, x). If Qx is type 2, then465

QL
x and QR

x may not be both type 1.466

Proof. Suppose, by contradiction, that bothQL
x andQR

x are type 1. By Lemma 4.3,467

if QL
x (resp. QR

x ) is type 1-cubic (resp. 1-noncubic), then Qx is type 3+. Thus,468

let us suppose now that QL
x is type 1-noncubic, QL

x ∩ C = {u}; and QR
x is type469

1-cubic, QR
x ∩ C = {w}.470

First, assume that u and w are in the same row, say 2. See Figure 7(A). Then471

(x, 1) ∈ C, because C[(x − 1, 1)] ̸= ∅. Note that one of the vertices (x + 1, 1) or472

(x, 2) belongs to C, because C[(x− 1, 1)] ̸= C[(x, 1)]. If (x+ 1, 1) ∈ C, then (x, 1)473

and (x+ 1, 1) would induce a 2-cluster in H2, a contradiction. If (x, 2) ∈ C, then474

C[(x+ 2, 2)] = {w} = C[(x+ 2, 1)], a contradiction.475

x

u w

. . .

. . .

. . .

. . .

QL
x Qx QR

x

(a) Vertices u and w are in the same row

x w

u

. . .

. . .

. . .

. . .

QL
x Qx QR

x

(b) Vertices u and w are in different rows

Figure 7. Quartet Qx is type 2
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If u and w are in different rows, assume without loss of generality that u is in476

row 2 and w is in row 1. See Figure 7(B). Then (x, 1) ∈ C, because C[(x−1, 1)] ̸= ∅.477

If both (x+1, 1) and (x+1, 2) do not belong to C, then C[(x+2, 2)] = C[(x+2, 1)],478

a contradiction. Thus, exactly one of them belongs to C. If (x + 1, 1) ∈ C,479

then C[(x + 1, 2)] = ∅, a contradiction. Hence, (x + 1, 2) ∈ C. But in this480

case, C[(x − 1, 1)] = C[(x, 1)], a contradiction. This concludes the proof of the481

lemma. □482

We state now a lemma that will be helpful to simplify the proof of the next483

theorem.484

Lemma 4.5. The grid H2 has idcodes of minimum density without type 0 quartets.485

Proof. Let C be an idcode of H2, and Qx be a quartet of type 0. By Lemma 4.2,486

QL
x is type 4. It is simple to verify that C ′ = C \{(x−1, 1)}∪{(x, 1)} is an idcode487

of H2 such that Qx is type 1 and QL
x is type 3. Thus, d(C ′, H2) = d(C,H2). This488

means that If C is an idcode of minimum density containing type 0 quartets, then489

H2 has also an idcode of the same density without type 0 quartets. □490

Remark. The previous lemma does not guarantee anything about the elimination491

of type 4 quartets. We note that by doing a local change (more involved than the492

above one) we may also eliminate type 4 quartets and obtain an idcode of equal493

or possibly smaller density. We do not prove this statement as we do not use it494

here. Moreover, later we present arguments showing that type 4 quartets do not495

occur in minimum density idcodes of H2.496

Before going to the next proof, the reader may highlight in Figure 3 the 1-cubic497

and 1-noncubic quartets, and check the statements of Lemma 4.3 and Lemma 4.4498

with respect to the quartets of this figure. This will help the understanding of the499

discharging rule (resp. the idea based on the average density) used in the next500

two proofs.501

Theorem 4.6. The minimum density of an idcode of H2 is precisely 9/20.502

Proof. We use the discharging method to prove that d∗(H2) ≥ 9/20. For that,503

let C be a minimum identifying code of H2 that has no quartets of type 0504

(cf. Lemma 4.5). In the charging phase, we proceed as stated in Lemma 2.2:505

we set chg(v) = 1 if v ∈ C, and chg(v) = 0, otherwise. We shall prove that after506

the discharging phase (to be defined), we have chg(Qx) ≥ 9/5 for each quartet507

Qx. If this happens, then the total charge of each Qx can be distributed among508

its 4 vertices, and we get chg(v) ≥ 9/20 for each vertex v in Qx. Thus, we say509

that a quartet Qx is satisfied if chg(Qx) ≥ 9/5, otherwise, it is unsatisfied.510

After the charging phase, only type 1 quartets are unsatisfied. Apply the fol-511

lowing discharging rule.512

(R) As long as there are type 1 quartets Qx that are unsatisfied,513

(a) if Qx is 1-cubic, then it receives 1/5 from QL
x , and 3/5 from QR

x ;514

(b) if Qx is 1-noncubic, then it receives 3/5 from QL
x , and 1/5 from QR

x .515

We prove now that each quartet Qx is satisfied after the discharging phase.516

Case 1. Qx is type 1.517
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If Qx is type 1, then by Lemma 4.3, both QL
x and QR

x have charge at least 2.518

Thus, they have sufficient charge to send to Qx. If Qx is type 1-cubic, it received519

1/5 from QL
x and 3/5 from QR

x . If Qx is type 1-noncubic, then it received 3/5 from520

QL
x , and 1/5 from QR

x . Hence, in both cases, chg(Qx) = 1 + 1/5 + 3/5 = 9/5, and521

therefore Qx is satisfied.522

Case 2. Qx is type 2.523

If Qx is type 2, then by Lemma 4.4, QL
x and QR

x are not both type 1. If QL
x is524

type 1, then by Lemma 4.3, it is type 1-noncubic (because Qx is type 2). Thus,525

according to rule (R)(b), QL
x received 1/5 fromQx. SinceQx did not send charge to526

QR
x (becauseQR

x is not type 1) we have that chg(Qx) = 2−1/5 = 9/5. Analogously,527

if QR
x is type 1, then by Lemma 4.3, it is type 1-cubic (because Qx is type 2). Thus,528

according to rule (R)(a), QR
x received 1/5 from Qx. Since Qx did not send charge529

to QL
x (because QL

x is not type 1), we have that chg(Qx) = 2− 1/5 = 9/5.530

Case 3. Qx is type 3+.531

The only possibility for Qx to decrease its initial charge is when it has type 1532

neighbours. In the worst case, when both QL
x and QR

x are type 1, Qx sends at533

most 3/5 to each of them. Thus, chg(Qx) ≥ 3− 3/5− 3/5 = 9/5.534

Since every quartetQx is satisfied, by Lemma 2.2, we have that d(C,H2) ≥ 9/20.535

Using Lemma 4.1, we conclude that d∗(H2) = 9/20. □536

From the previous result and the fact that the idcode shown in Figure 4.1 has537

density at most 9/20, we conclude the following result.538

Corollary 2. The idcode shown in Figure 4.1 is a periodic idcode of H2 with539

minimum density.540

In what follows we present a second proof of Theorem 4.6 which is based on the541

idea of finding a periodic pattern that covers H2 and has the minimum possible542

density. This proof also uses Lemmas 4.2 to 4.5, and it is based on the fact543

(mentioned in Section 5) that H2 has a periodic idcode of minimum density. As544

we will see, the information provided by this proof, combined with further tests,545

will lead us to conclude that the periodic idcode that we have found is unique.546

Proof 2. (of Theorem 4.6). Let C be an idcode of minimum density in H2 that547

has no quartets of type 0. If C has no quartets of type 1, then all quartets in C548

are of type 2+, and in this case, d(C,H2) ≥ 1/2, contradicting Lemma 4.1. Thus,549

C has a quartet of type 1, and by Lemma 4.3 we conclude that C has a quartet550

of type 3+.551

Now let us consider that H2 (seen as a concatenation of quartets) can be split552

into subgraphs corresponding to special sequences of consecutive quartets. We553

are interested in sequences, which we call S(3)-sequences, defined as those starting554

with a quartet of type 3+ and containing exactly one quartet of type 3+. The555

S(3)-sequences whose second quartet is of type 1 (resp. type 2) are called S(3, 1)-556

sequences (resp. S(3, 2)-sequences). (We remark that not allowing the presence of557

another quartet of type 3+ is not a restriction to the size of the periods of the558

patterns we want to study. We may have different S(3)-sequences, and later we559
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allow them to be concatenated, so that periods with many occurrences of quartets560

of type 3+ are made possible.)561

For an S(3)-sequence S, let I(S) = (i1, i2, . . .) be the sequence where each ij ∈562

{1, 2, 3, 4} indicates the type of each of the jth quartet in S. In this proof, ij = i+563

means that ij ∈ {i, i + 1}. A simplified notation such as I(S) = (3+, 1, 2, 2, 1+)564

stands for I(S) ∈ {(3, 1, 2, 2, 1), (3, 1, 2, 2, 2), (4, 1, 2, 2, 1), (4, 1, 2, 2, 2)}. We denote565

by H[S] the subgraph of H2 induced by the quartets in S, and denote by C(S)566

the restriction of C to H[S]. We are interested in d(C(S), H[S]), the density of567

C(S) with respect to H[S].568

Note that I(S) may not contain subsequences of the form (1, 2, 1), (2, 1, 2) or569

(1, 1) because of Lemmas 4.3 and 4.4. If S is an infinite S(3)-sequence, then I(S) =570

(3+, 1, 2, 2, . . . ) or I(S) = (3+, 2, 2, . . .), and therefore d(C(S), H[S]) ≥ 1/2. If S571

is a finite S(3, 1)-sequence, then I(S) contains at most two (non-consecutive) 1’s.572

Let St be a finite S(3, 1)-sequence of length t, let It = I(St), and let Ct be573

the restriction of C to St. The possibilities for It are: I1 = (3+), I2 = (3+, 1),574

I3 = (3+, 1, 2), I4 = (3+, 1, 2, 2), I5 = (3+, 1, 2, 2, 1+), and It = (3+, 1, 2, . . . , 2, 1+)575

if t > 5. Thus d(Ct, H[St]) ≥ 1/2, for 1 ≤ t ≤ 4, d(C5, H[S5]) ≥ 9/20 and576

d(Ct, H[St]) ≥ (3 + 1 + 2(t − 3) + 1)/4t = (2t − 1)/4t > 9/20 if t > 5. Thus577

the minimum density 9/20 may possibly occur for S(3)-sequences of length 5 with578

sequence of types (3, 1, 2, 2, 1).579

It is easy to see that if S is a finite S(3, 2)-sequence, then d(C(S), H[S]) ≥ 1/2580

(because I(S) contains at most one 1). This ends the proof that all S(3)-sequences581

of H2 have density at least 9/20. Thus, d(C,H2) ≥ 9/20 (as H2 has a minimum-582

density periodic idcode). Combining this result with Lemma 4.1, we conclude that583

d∗(H2) = 9/20. □584

Remark on the uniqueness of a periodic minimum-density idcode for H2.585

By Corollary 2, the idcode shown in Figure 3 is a periodic idcode of H2 with586

minimum density. An interesting question is whether this idcode is unique, among587

the periodic ones. The meaning of uniqueness will be clear in what follows.588

The second proof of Theorem 4.6 suggests that to construct a periodic minimum-589

density idcode for H2 we should look for idcodes that define S(3, 1)-sequences of590

length 5 of type (3, 1, 2, 2, 1), and try to concatenate them to see whether they591

yield a periodic idcode.592

As the reader may check, the S(3, 1)-sequence, say S, corresponding to the593

5 initial quartets (first 10 columns) shown in Figure 3 is of type (3, 1, 2, 2, 1).594

However, the concatenation SS does not define an idcode of H2 restricted to these595

sequences. But, as one can see in Figure 3, after S, the next sequence of 5 quartets,596

say S′, which is a reflected form of S is also an S(3)-sequence of type (3, 1, 2, 2, 1).597

As we mentioned before, this is an idcode of H2 with period 20. This is not598

the way we obtained this idcode. In fact, this idcode was obtained by an ad hoc599

method, and we used it as an inspiration to derive the properties (Lemmas 4.2-4.5)600

that we proved. These lemmas, in turn, helped us in the lower bound proof. If601

a sequence such as S could not be found, one should look for S(3)-sequences of602
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lengths t = 6, 7, . . ., as they would be the next candidates (if we did not know an603

idcode with density 9/20).604

Let us now investigate whether the idcode shown in Figure 3 is the unique605

periodic idcode of H2 with density 9/20. We note that S and S′ are the unique606

S(3)-sequences of type (3, 1, 2, 2, 1) (we have verified this by running a program).607

We also note that the concatenation S′S′ does not define an idcode. So, for the608

moment we may say that the answer to this question is “yes”, if we consider609

minimum idcodes without type 0 quartets (as we proved).610

The question now is whether there are minimum-density idcodes containing611

type 0 quartets. We will not go into details, but we can prove that carrying612

out analogous arguments as those we used for S(3, 1)- and S(3, 2)-sequences, the613

answer is “no”. By Lemma 4.2, a type 0 quartet is preceded by a type 4 quartet,614

and is succeeded by a type 3+ quartet. Using this fact, we can show that any615

S(3)-sequence that is of subtype S(4, 0) has density greater than 9/20. Thus, we616

conclude that the idcode shown in Figure 3 is the unique periodic idcode of H2617

with minimum density. This idcode was also obtained by running a computer618

program, about which we report in the next section.619

We note that, the idea we mentioned after Lemma 2.3 to prove lower bound for620

the density of idcodes of Hk —based on periodic patterns with minimum density—621

is basically the idea behind the study we have carried out on the types of sequences622

of H2. This study led us to conclude that the periodic pattern H defined by the623

concatenation SS′ is the shortest periodic pattern that has the minimum density624

9/20. Of course, we may say that S′S is also such a shortest periodic pattern, but625

here we consider that they are equivalent.626

5. Minimum-density identifying codes of H3, H4 andH5627

In this section we present minimum-density idcodes for H3, H4 and H5 that we628

found with an algorithm implemented in C++. We describe briefly the algorithm,629

then exhibit some of these idcodes and the values d∗(H3), d
∗(H4) and d∗(H5).630

The algorithm that we implemented searches for a periodic idcode for these631

grids, and uses an idea that was already proposed in 2018 by Jiang [24], to find632

minimum-density idcodes for square grids Sk with finite number k of rows. We were633

not aware of his algorithm, although we knew about his results on Sk. Jiang [24]634

proved that such grids have idcodes with minimum density that are periodic, and635

described an algorithm to find them. His work presents in detail an algorithm that636

constructs a weighted directed graph (associated with Sk) in which a minimum637

mean cycle corresponds to a periodic minimum-density idcode of Sk. Unfortu-638

nately, the size of this graph is exponential in k. With his implementation in C, in639

2018 Jiang was able to obtain optimum idcodes for S4 and S5. We used basically640

the same idea for Hk. For completeness, we describe briefly the construction of641

this graph, using the terminology introduced by Jiang.642

We do not prove here that Hk has finite periodic idcodes that have minimum643

density, but this result holds. A proof similar to the one presented by Jiang [24]644
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for Sk can be done for Hk, using the idea based on the concept of bars, which is645

central here, and is defined in what follows.646

For ℓ ≥ 1 and k ≥ 2, any subgraph of Hk induced by {j1, . . . , jℓ} × [k],647

where j1 ≤ j2 ≤ . . . ≤ jℓ are ℓ consecutive columns of Hk, is called an ℓ-bar (see648

Figure 9). Let R be any ℓ-bar with ℓ ≥ 3 in Hk, and let R′ be the (ℓ − 2)-bar649

consisting of the middle columns of R (obtained by excluding the first and the650

last columns of R). We say that a subset C of vertices of R is a barcode of R if651

C[v] ̸= ∅ and C[u] ̸= C[v] for every distinct u, v ∈ R′. We adopt the convention652

that the first column of each 4-bar of Hk is indexed by an odd number.653

5.1. Construction of the arc-weighted directed graph Gk,4,j654

For k ≥ 2 and 5 ≤ j ≤ 8, let Gk,4,j = (V,A) denote the j-configuration graph655

of the idcodes of Hk defined as follows. The vertex set V of this graph consists of656

barcodes C of any 4-bar of Hk. There is an arc from C to C ′ if there is a barcode Q657

of a j-bar B of Hk such that C (resp. C ′) is the restriction of Q to the first (resp.658

last) 4 columns of B. In this case, the arc from C to C ′ gets weight |Q|−|C|. Note659

that, |V | ≤ 24k and |A| ≤ 2jk. In our implementation, we used j = 6 and j = 8660

(as in this case we have to deal only with 4-bars whose first column is indexed by661

an odd number).662

Jiang [24] considered, for the grid Sk, the graph Gk,4,5, described above for Hk663

(for Sk, the 4-bars correspond to subgraphs of Sk). He showed that in this graph,664

each 4-bar pattern of a periodic idcode for Sk corresponds to a directed cycle and665

vice-versa. We defined Gk,4,j for 5 ≤ j ≤ 8. It is not difficult to see that an666

equivalent statement also holds for j = 6, 7, 8, and for the grid Hk. Thus, in this667

case, the density of a minimum periodic idcode in Gk,4,j is w(Z)/pk, where w(Z)668

is the weight of a minimum mean cycle Z in the configuration graph Gk,4,j and p669

is the period. (If Z is a cycle, then the mean weight of Z is the ratio between the670

total weight w(Z) of the arcs in Z and the number of arcs in Z.)671

In Figure 9 we show a minimum density periodic idcode (with period 8) for672

H4 that was found in the 8-configuration graph G4,4,8. The two curly braces673

indicate two consecutive 4-bars (corresponding to two barcodes, say C and C ′,674

which are adjacent vertices in this graph). In this case, Q is the barcode of the675

8-bar (formed by the indicated 4-bars), and the weight of the arc from C to C ′ is676

|Q| − |C| = 14 − 7 = 7. This solution corresponds to the weighted directed cycle677

Z = (C,C ′) that has length |Z| = 2 and weight w(Z) = 14 (with mean weight678

w(Z)/2 = 14/2 = 7). In this case, the period is p = 8. Thus, the density of this679

solution is w(Z)/(8 . 4) = 14/32 = 7/16. We observe that when j = 8 the period680

is |Z| . 4. (but the period is |Z| . 2 if j = 6, as in this there is an overlap of 2681

columns for each two adjacent barcodes).682

It is well known that the minimum mean cycle problem on a graph with n683

vertices and m arcs can be solved in O(nm) time by Karp’s algorithm [26]. This684

is the algorithm that Jiang [24] used in his implementation for Sk. For Hk, we685

use Hartmann-Orlin’s algorithm [15], which is an improved version of Karp’s algo-686

rithm, to find a minimum mean cycle. We implemented a program in C++, using687
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Table 1. Sizes of the configuration graphs generated by our im-
plementation and total running times.

(a) Data for j = 6

Configuration graph # vertices # edges Total running time

G2,4,6 (H2) 144 1359 8ms
G3,4,6 (H3) 1896 57723 253ms
G4,4,6 (H4) 5870 63095 8 s
G5,4,6 (H5) 63751 1650188 87m

(b) Data for j = 8

Configuration graph # vertices # edges Total running time

G2,4,8 (H2) 144 12894 46ms
G3,4,8 (H3) 1896 1784401 9 s
G4,4,8 (H4) 5870 3291346 820 s
G5,4,8 (H5) 63751 248161004 928m

lemon1 library for graphs: it builds the graph Gk,4,j , finds a minimum mean cycle688

and outputs an idcode with minimum density for Hk. This implementation can689

be found in [32].690

We run this program to find minimum-density idcodes for H3, H4 and H5.691

This program constructed G3,4,6, G4,4,8, G5,4,6, and obtained d∗(H3) = 6/13,692

d∗(H4) = 7/16 and d∗(H5) = 11/25. The corresponding idcodes for these grids693

are depicted in Figures 8, 9 and 10. In Table 1, we indicate the size of these694

configuration graphs and the total running time the program needed to find an695

optimal solution. The running times for j = 8 are included to show the difference696

when compared to j = 6. The code was compiled with g++ 11.4.0 and option697

-O3, and executed in a computer with Intel(R) Xeon(R) CPU E7- 2870 @ 2.40GHz698

processor with 512 GB of RAM.699

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

. . .

. . .

. . .

. . .

. . .

. . .

Figure 8. A minimum-density idcode of H3 found in the graph
G3,4,6 (density 6/13 ≈ 0.46153, period 26)

Theorem 5.1. For k = 3, 4, 5, the idcodes for Hk shown in Figures 8, 9 and 10700

have minimum density. The corresponding densities of these idcodes are d∗(H3) =701

6/13, d∗(H4) = 7/16 and d∗(H5) = 11/25.702

1https://lemon.cs.elte.hu/trac/lemon

https://lemon.cs.elte.hu/trac/lemon
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1 2 3 4 5 6 7 8
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. . .

. . .

. . .

. . .

. . .

4-bar 4-bar

Figure 9. A minimum-density idcode of H4 found in the graph
G4,4,8 (density 7/16 = 0.4375, period 8)

1 2 3 4 5 6 7 8 9 10
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Figure 10. A minimum-density idcode of H5 found in the graph
G5,4,6 (density 11/25 = 0.44, period 10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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. . .

. . .

Figure 11. A minimum-density idcode of H5 found in the graph
G5,4,8 (density 11/25 = 0.44)

As a side remark, we observe that if instead of considering 4-bars, we consider703

3-bars (to define the vertices of the graph), and define adjacency of vertices in704

an analogous way, the corresponding graphs Gk,3,5 or Gk,3,6 for Sk or Hk do not705

have the desired property (as some arcs would indicate a wrong adjacency). We706

leave to the reader finding examples to verify this statement. But such incorrect707

adjacencies occur rarely. Since it is much faster to work with 3-bars, one possibility708

is to work with 3-bars, and check whether the solution found does not have wrong709

adjacencies, as in this case, an optimum solution may be found more quickly.710

We conclude this section mentioning that with our implementation we were711

not able to find a minimum-density idcode for H6 using the computer resources712

available to us.713
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6. Concluding remarks714

We note that for H3 we have found only the minimum-density idcode shown715

in Figure 8. But we are not claiming that it is unique. For H4 and H5, we716

have found other minimum-density idcodes with different periods. For H5 we note717

that the minimum-density idcode shown in Figure 11 is different from the idcode718

shown in Figure 10, but both have period 10. By considering the graph G5,4,8,719

the corresponding program output the solution of Figure 11 indicating that the720

period is 20. We noted that the columns from 1–10 of this idcode is equal to the721

columns from 11–20. Thus, we may say that the period of this idcode is 10. This722

does not indicate that the program is incorrect. Clearly, when j = 8, the program723

outputs a solution whose period is always a multiple of 4, while when j = 6 the724

program outputs a solution whose period is a multiple of 2.725

With this respect, we note that if Hk has a minimum-density idcode with pe-726

riod p, even when p is odd, an idcode with the same density and possibly different727

period can be found in the graph Gk,4,6 and Gk,4,8. This is true because there is728

a (smallest) multiple of p which is always a multiple of 2 or of 4, and therefore729

such a solution will be present in the corresponding graphs. We observe that our730

program finds one optimal solution (a minimum mean cycle) but not all optimal731

solutions.732

Our implementation may possibly be improved if we can eliminate from the733

graph Gk,4,j some vertices and arcs which we are sure will not occur in an optimal734

solution. For example, barcodes corresponding to the set of all vertices in a 4-bar,735

or possibly barcodes whose densities are much larger than some known upper736

bound for the minimum-density idcode. But to implement such steps safely, some737

proofs are needed. We also believe that a more substantial improvement is needed738

to be able to solve for larger k. We are working on this topic and hope that in a739

forthcoming paper we will be able to present good upper bounds for d∗(Hk), for740

all k ≥ 6.741
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