DENSITY OF IDENTIFYING CODES OF HEXAGONAL GRIDS WITH FINITE NUMBER OF ROWS

Rudini M. Sampaio ${ }^{1}$, Gabriel A. G. Sobral ${ }^{2}$ and Yoshiko Wakabayashi ${ }^{2}$

Abstract

In a graph G, a set $C \subseteq V(G)$ is an identifying code if, for all vertices v in G, the sets $N[v] \cap C$ are all nonempty and pairwise distinct, where $N[v]$ denotes the closed neighbourhood of v. We focus on the minimum density of identifying codes of infinite hexagonal grids H_{k} with k rows, denoted by $d^{*}\left(H_{k}\right)$, and present optimal solutions for $k \leq 5$. Using the discharging method, we also prove a lower bound in terms of maximum degree for the minimumdensity identifying codes of well-behaved infinite graphs. We prove that $d^{*}\left(H_{2}\right)=9 / 20, d^{*}\left(H_{3}\right)=6 / 13 \approx 0.4615, d^{*}\left(H_{4}\right)=7 / 16=0.4375$ and $d^{*}\left(H_{5}\right)=11 / 25=0.44$. We also prove that H_{2} has a unique periodic identifying code with minimum density.

Keywords: identifying code, hexagonal grid, minimum density
Mathematics Subject Classification. 94B65, 68R10, 90C27, 05C69

The concept of identifying code (idcode, for short), was introduced in 1998 by Karpovsky et al. 27] to identify a faulty processor in a multiprocessor system. The vertices of an idcode correspond to special processors (the monitors) that are able to check themselves and their neighbours to identify a faulty processor.

[^0]
TITLE WILL BE SET BY THE PUBLISHER

Problems on idcodes have been studied on finite and infinite graphs, being of great interest both from theoretical as well as practical viewpoint. Particular interest has been dedicated to grids as many processor networks have a grid topology (see 34,35$]$). Among these, we mention the square grid \mathcal{G}_{S}, the triangular grid \mathcal{G}_{T} and the king grid \mathcal{G}_{K}, shown in Figure 1 .

One fundamental problem on idcodes is that of finding idcodes of minimum density. The density captures the proportion of vertices in the code with respect to the whole graph. For finite graphs, Cohen et al. 7 proved that deciding the existence of an idcode of size at most k in a graph is an NP-complete problem. On infinite graphs, studies on minimum-density idcodes have considered grids with infinite or with a finite number of rows (see [1, 6, 9, 10, 12, 14, 16, 21, 24, 25, 27, 28]). For an updated bibliography covering this topic and related ones, the reader is referred to Jean 22 .

Figure 1. Partial representation of infinite square, triangular and king grids, and the corresponding minimum-density idcodes

We denote by $d^{*}(G)$ the minimum density of an idcode of a graph G. For the infinite grids mentioned previously, it is known that $d^{*}\left(\mathcal{G}_{S}\right)=7 / 20[1], d^{*}\left(\mathcal{G}_{T}\right)=$ $1 / 4$ 27] and $d^{*}\left(\mathcal{G}_{K}\right)=2 / 9[5]$. When these grids have a finite number k of rows, idcodes of minimum density are known for $k \leq 6$, and for larger k only lower and upper bounds have been found.

In this work we focus on infinite graphs, specially the hexagonal grids (see Figure 22. We denote these grids by \mathcal{G}_{H} when the number of rows is infinite, and by H_{k} when the number of rows is a positive integer k. For \mathcal{G}_{H}, new lower and upper bounds have been proved in the last years. Just to mention the more recent ones: in 2009, Cranston and Yu 9 proved a lower bound of $12 / 29 \approx 0.4138$, and in 2013, Cuckierman and Yu 10 improved the lower bound to $5 / 12 \approx 0.4166$. In 2014, Stolee 33 presented a computer-assisted framework showing that $d^{*}\left(\mathcal{G}_{H}\right) \geq$ $23 / 55 \approx 0.4181$. As for upper bounds, in 2000, Cohen et al. [6] constructed two idcodes of \mathcal{G}_{H} with density $3 / 7 \approx 0.4285$. Other idcodes with the same density have also been reported in the literature. Recently, breaking the long-standing bound of $3 / 7$, Salo and Törmä 29 showed that $d^{*}\left(\mathcal{G}_{H}\right) \leq 53 / 126 \approx 0.4206$. They found a periodic idcode using a computer-assisted proof that uses automata theory and Karp's minimum mean cycle algorithm. No results on lower or upper bounds have appeared in the literature for $d^{*}\left(H_{k}\right)$.

We prove that idcodes of well-behaved infinite graphs with maximum degree Δ have density at least $2 /(\Delta+2)$. This result and another one on infinite graphs with maximum degree 3 imply that $d^{*}\left(H_{k}\right) \geq 2 / 5$ for all $k \geq 2$, and that idcodes of H_{k} that do not induce trivial components have density at least $3 / 7$. We prove that $d^{*}\left(H_{2}\right)=9 / 20$, and exhibit an idcode with this minimum density, which we show to be unique. We also mention how we proved that $d^{*}\left(H_{3}\right)=6 / 13$, $d^{*}\left(H_{4}\right)=7 / 16$ and $d^{*}\left(H_{5}\right)=11 / 25$, using computer-assisted tools.

In Section 11we define the concepts used in this paper and establish the notation. We also present a density result on the infinite 3-regular tree, to show that this graph is not so well-behaved as the hexagonal grids, a fact (to be made precise) that has caused an erroneous proof in the literature on a related concept called locatingdominating set (and perhaps on other closed concepts as well). These preliminary comments help understanding the property (named SG) that we require from the infinite graphs to guarantee that some density proof techniques work. In Sections 2 and 3. we define SG-property and prove results on the discharging method and the mentioned lower bound. In Section 4 we show a minimum-density idcode for H_{2}, and prove that it is unique. Section 5 contains results on minimum-density idcodes for $H_{k}, k \in\{3,4,5\}$.

A preliminary version of this work (an extended abstract) appeared in 30]. This work contains additional novel results and a simplified and complete proof of Theorem 4.6.

1. Definitions, notation, And the infinite 3-REGULAR Tree

The hexagonal grid, denoted by \mathcal{G}_{H}, is an infinite graph with vertex set $V=$ $\mathbb{Z} \times \mathbb{Z}$ and edge set $E=\left\{\{u, v\}: u=(i, j), u-v \in\left\{(\pm 1,0),\left(0,(-1)^{i+j+1}\right)\right\}\right\}$. See Figure 2. The hexagonal grid with k rows, $k \geq 2$, denoted by H_{k}, is a graph isomorphic to the subgraph of \mathcal{G}_{H} induced by the vertex set $\mathbb{Z} \times\{1, \ldots, k\}$.

Figure 2. Hexagonal grid \mathcal{G}_{H}
Let G be a connected graph. If v is a vertex of G, and r is a natural number, then $N_{r}(v)$ denotes the set of vertices of v at distance at most r from v, and $N_{r}[v]=N_{r}(v) \cup\{v\}$ denotes the closed neighbourhood of v. When $r=1$, we omit the subscript r and simply write $N(v)$ and $N[v]$. Given $C \subseteq V(G)$, let $C[v]=N[v] \cap C$. An idcode of G is a set $C \subseteq V(G)$ such that $C[v] \neq \emptyset$ for every vertex v of G, and $C[v] \neq C[w]$ for any pair of distinct vertices v, w of G. Thus,
if a graph G has two distinct vertices v and w such that $N[v]=N[w]$, then G has no idcode. Such vertices are called twins. Clearly, a graph has an idcode if and only if it is twin-free. If C is an idcode, we say that $C[v]$ is the identifier of v.

We are interested in minimum-density idcodes of countably infinite connected graphs of bounded degree. For such a graph G, the density of a subset $C \subseteq V(G)$, denoted by $d(C, G)$, is defined as follows.

$$
d(C, G)=\inf \left\{d_{w}(C, G): w \in V(G)\right\}
$$

where

$$
d_{w}(C, G)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[w]\right|}{\left|N_{r}[w]\right|} .
$$

The minimum density of an idcode of a graph G, denoted by $d^{*}(G)$, is defined as

$$
d^{*}(G)=\inf \{d(C, G): C \text { is an idcode of } G\} .
$$

Notice that we use inf (infimum) in the definition of $d(C, G)$, instead of min (minimum), since the greatest lower bound does not always belong to the set. This definition (with inf) is also given by Jiang [24 to study densities of idcodes of S_{k} (a topic to be mentioned in Section 5). Slater 31] defines density of locatingdominating sets (a notion similar to idcode) with min, but the definition of density $d(C, G)$ makes sense for any set C. In the proof of Lemma 1.1 we show an example of an infinite graph G for which $d_{w}(C, G)>0$ for all $w \in \bar{V}(G)$, but $d(C, G)=0$.

This definition of subset density given above has not always been used. In some papers, such as $10-13,23$, the density $d(C, G)$ was simply defined as $d_{w}(C, G)$ where w is an "arbitrary vertex". This contains an implicit assumption that $d_{w}(C, G)=d_{v}(C, G)$ for any two vertices w, v of G, which is not always true as we show in Lemma 1.1. In most of these papers, this problem in the density definition did not lead to erroneous results, since the graphs considered were wellbehaved grids, all of them satisfy an important condition (named SG-property in the next section) which guarantees that $d_{w}(C, G)=d_{v}(C, G)$ for any two vertices w, v of G (see Lemma 2.1). However, some papers contain erroneous statements, as we will see in Theorem 1.2.

Lemma 1.1. There are infinite bounded degree graphs G with subsets $C \subset V(G)$ for which there are distinct vertices w, v such that $d_{w}(C, G) \neq d_{v}(C, G)$.

Proof. Let us consider the infinite 3-regular tree T, obtained from two infinite binary trees T_{1} and T_{2} with roots r_{1} and r_{2}, respectively, by adding the edge $r_{1} r_{2}$. We exhibit two examples of sets $C \subset V(T)$ and vertices w, v of $V(T)$ for which $d_{w}(C, T) \neq d_{v}(C, T)$.

As a first example, consider $C=V\left(T_{2}\right)$. Let w be a vertex of T_{1} that is a neighbour of r_{1}. Then $d_{w}(C, T)=1 / 6$. (More generally, If w is at distance d from r_{1}, we have that $d_{w}(C, T)=2^{-d} / 3$.) Let $v=r_{2}$. Then, $d_{v}(C, T)=2 / 3$. (Note that here $d(C, T)=0$.)

As a second example, let C be the set consisting of all vertices of T_{2} together with all vertices of T_{1} whose distance to r_{1} is even (r_{1} included). In this case, C
is an idcode of T. Let w (resp. v) a vertex in T_{1} (resp. T_{2}) that is at distance d from r_{1} (resp. r_{2}). It is not difficult to check that $d_{w}(C, T)$ converges to $2 / 3$ and $d_{v}(C, T)$ converges to 1 when d tends to ∞.

Even considering the correct definition of subset density $d(C, G)$, some papers calculate it in an informal way, covering the entire graph with periodic patterns and assuming that the density of C will be the density of the pattern. As an example, consider the infinite 3-regular tree T, used in the proof of Lemma 1.1, which is obtained from two infinite binary trees with roots r_{1} and r_{2} and the edge $r_{1} r_{2}$. Consider that T is rooted at r_{1}. Let C be the set of vertices in T whose distance to r_{1} is even (r_{1} included). Then, the vertices of T can be covered by the pattern (a matching) formed by a vertex and its leftmost child (being one in C and the other not in C), whose density is $1 / 2$. Also, by ignoring r_{2}, the vertices of T can be covered by the pattern (a cherry) formed by a vertex in C and its two children not in C, whose density is $1 / 3$. Finally, by ignoring r_{1}, the vertices of T can also be covered by the pattern (a cherry) formed by a vertex not in C and its two children in C, whose density is $2 / 3$.

Thus, considering three distinct periodic patterns, this method gives three different values as the density of $d(C, T)$, indicating that such a method should not be used in any graph. We will elaborate more on this in what follows, calling attention to a property that the infinite graph should satisfy for this method to work (see Lemma 2.1). Unfortunately, this informal way to calculate the density of sets on infinite graphs led to some erroneous results in the literature. We will not present here the proof (based on the definition we have given) that $d(C, T)=2 / 3$, as it is not so short, but the reader may verify this.

The next theorem shows that one of the first results on locating-dominating sets is wrong. We say that a set $C \subseteq V(G)$ is a locating-dominating set (lds) of G if $C[v] \neq \emptyset$, for every $v \notin C$, and $C[v] \neq C[w]$, for any two distinct vertices $v, w \notin C$. Notice that every identifying code is also a locating-dominating set (the difference is that a locating-dominating set C only cares about the vertices outside C). In 2002, Slater 31 stated that "the density of any locating-dominating set of a countably infinite d-regular graph is at least $2 /(d+3)$ ". We present an lds of the infinite 3 -regular tree whose density is at most $5 / 16=0.3125$ (a value smaller than $2 /(3+3)$), which is a counterexample to the result stated by Slater.

Theorem 1.2. The minimum density of a locating-dominating set of the infinite 3 -regular tree is at most $5 / 16=0.3125$.

Proof. Let T be the infinite 3-regular tree with root R, and let layer L_{i} be the set of vertices of T at a distance i from the root R. Thus, $V(T)=\bigcup_{i \geq 0} L_{i}, L_{0}=\{R\}$, and $\left|L_{i}\right|=3.2^{i-1}$, for $i \geq 1$. Thus, for $i \geq 5,\left|L_{i}\right|$ is a multiple of 16 , and is composed of 3 groups with 2^{i-1} vertices.

To construct a set $C \subset V(T)$ which we shall prove to be an lds of T, we label first the vertices of T, and then we define which vertices belong to C. The labelling procedure is the following.
(a) We assign label 1 to all vertices in $L_{0} \cup L_{1} \cup \ldots \cup L_{4}$.
(b) We label the vertices of L_{5} as follows. We consider that L_{5} is composed of 3 consecutive groups of 16 vertices (each of these groups are the leaves of the subtree of height 4 rooted at one of the children of root R). We label identically these groups of 16 vertices, according to the following pattern:

1	12	3	5	1	2	3	5	2	3	5	5		3	4	5	5	5

(c) Once the vertices in $L_{i}, i \geq 5$, have been labelled, we label the vertices in L_{i+1}. For that, we define for each vertex with label j (in L_{i}) which are the labels k, l of its children (in L_{i+1}), writing $j \longrightarrow\{k, l\}$. We let $1 \longrightarrow\{3,4\}, 2 \longrightarrow\{3,3\}, 3 \longrightarrow\{1,5\}, 4 \longrightarrow\{5,5\}$ and $5 \longrightarrow\{2,5\}$. Representing this in a tree-like structure, we have:

1	2		3		4		5	
/								
34	3	3	1	5	5	5	2	5

Now that $V(T)$ is labelled, let

$$
C:=\{v \in V(T): v \text { has label } 1 \text { or } 2\} .
$$

Consider a group, say H, of 16 vertices in L_{5}, and let x_{j} be the number of vertices in H with label j. Then, $x_{1}=2, x_{2}=3, x_{3}=4, x_{4}=1, x_{5}=6$; or in a condensed form, $x(H)=(2,3,4,1,6)$.

Now, let $\operatorname{chld}(H)$ be the group (in L_{6}) formed by the children of the vertices in H. Let now x_{j}^{\prime} be the number of vertices with label j in $\operatorname{chld}(H)$. Then, $x_{1}^{\prime}=x_{3}=4=2 x_{1}, x_{2}^{\prime}=x_{5}=6=2 x_{2}, x_{3}^{\prime}=x_{1}+2 x_{2}=8=2 x_{3}, x_{4}^{\prime}=$ $x_{1}=2=2 x_{4}$, and $x_{5}^{\prime}=x_{3}+2 x_{4}+x_{5}=12=2 x_{5}$. That is, $x_{j}^{\prime}=2 x_{j}$ for $j \in\{1,2, \ldots, 5\}$, and therefore, $x(\operatorname{chld}(H))=2 x(H)$. Since, at each layer L_{i}, $i \geq 5$, there are 3 groups with 2^{i-1} vertices, and each such group G (by the labelling rule) gives rise to a (children) group with $x(\operatorname{chld}(G))=2 x(G)$, in each new layer the proportion of vertices with labels 1 or 2 (those in C) is exactly the proportion that holds in layer L_{5}. We have $\left|C \cap L_{5}\right|=15$ and $\left|L_{5}\right|=48$. Thus, $\left|C \cap L_{5}\right| /\left|L_{5}\right|=15 / 48=5 / 16$. Since $\left|L_{i+1}\right|=2\left|L_{i}\right|$ and $\left|C \cap L_{i+1}\right|=2\left|C \cap L_{i}\right|$, for each layer L_{i} the ratio $\left|C \cap L_{i}\right| /\left|L_{i}\right|=5 / 16$ holds for all $i \geq 5$. Only for the initial layers $L_{i}, 0 \leq i \leq 4$, we have $\left|C \cap L_{i}\right| /\left|L_{i}\right|=1$. Thus, the density $d_{R}(C, T)$ is precisely

$$
d_{R}(C, T)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[R]\right|}{\left|N_{r}[R]\right|}=\limsup _{h \rightarrow \infty} \frac{\left|C \cap T_{h}(R)\right|}{\left|T_{h}(R)\right|}=5 / 16
$$

where $T_{h}(R)$ is the subtree of T with height h rooted at R. Since $d(C, T)=$ $\inf \left\{d_{w}(C, T): w \in V(T)\right\}$, we conclude that $d(C, T) \leq 5 / 16=0.3125$.

It remains to prove that C is an lds of T. For that, it suffices to check that the vertices with labels $3,4,5$ have distinct neighbourhood in C. The reader may
check that a vertex with label 3 is identified by its parent and one child (with label 1); a vertex with label 4 is identified solely by its parent (which has label 1); and a vertex with label 5 , if it belongs to L_{5}, then is identified by its parent and one child (with label 2), and if it belongs to layer $L_{i}, i \geq 6$, then it is identified solely by one child (the one with label 2). This concludes our proof that C is an lds of T with $d(C, T) \leq 5 / 16=0.3125$.

We understand that the erroneous proof of Theorem 2 stated in 31] happened because the infinite graph under consideration does not satisfy a property that would allow the application of the method that was used. The author used a measure called share $\gamma(v, C)$, that is an application of the discharging method (to be discussed in the next section) to obtain a lower bound proof for the density of a set, say C.

Roughly speaking, the share method works as follows: each vertex of C starts with charge $q>0$ and each vertex outside C starts with charge 0 . For any vertex $c \in C$ and $u \in N[c]$, the vertex c sends charge $1 /|C[u]|$ to u (this includes the case in which $u=c$). At the end of this procedure, all vertices outside C will have charge exactly 1 and every vertex $c \in C$ will have charge $q+1-\operatorname{sh}(c)$, where $\operatorname{sh}(c)=\sum_{u \in N[c]} 1 /|C[u]|$ is the total charge sent by c. The idea is that, if $\operatorname{sh}(c) \leq q$ for every $c \in C$, all vertices in G will have charge at least 1. Then, if G is finite,

$$
1 \cdot|V(G)| \leq \sum_{c \in C} \operatorname{sh}(c) \leq q \cdot|C|, \text { and hence } d(C, G)=\frac{|C|}{|V(G)|} \geq \frac{1}{q}
$$

Now, let G be an infinite connected graph and let v be a vertex of G. To guarantee charge at least 1 at every vertex in $N_{r-1}[v]$, it suffices to consider the vertices in $C \cap N_{r}[v]$. Thus,

$$
1 \cdot\left|N_{r-1}[v]\right| \leq \sum_{c \in C \cap N_{r}[v]} \operatorname{sh}(c) \leq q \cdot\left|C \cap N_{r}[v]\right|,
$$

which implies that

$$
d_{v}(C, G)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[v]\right|}{\left|N_{r}[v]\right|} \geq \frac{1}{q} \cdot \limsup _{r \rightarrow \infty} \frac{\left|N_{r-1}[v]\right|}{\left|N_{r}[v]\right|} .
$$

As we can see, the share method of 31] will work if $\lim \sup _{r \rightarrow \infty}\left|N_{r-1}[v]\right| /\left|N_{r}[v]\right|=1$, which is a consequence (Lemma 2.1(a) with $t=-1$) of our SG-property, defined in the next section.

2. The use of Discharging method to prove lower bounds FOR THE DENSITY OF IDCODES

The discharging method is a proof technique in combinatorics, first used in graph theory, that has now been used in many different contexts, such as in graph
colouring, decomposition, embedding, geometric and structural problems. For a guide on the use of the this method to prove results on colouring and other structural properties of graphs see 8 .

To prove results on a graph G, this method involves two phases: charging and discharging. In the charging phase, we assign charges (a rational number) to certain structures of G using a charging rule, which describes the value of the charge and the structures of G which will receive the charge. These structures may be vertices, edges, faces (if G is planar), etc. In the discharging phase, we re-assign the charges using the discharging rules, which describe the structures that will send and/or receive charge from other vertices. The discharging must preserve the total charge that was assigned in the charging phase.

Both the charging and discharging rules are designed to guarantee that, after these phases some information on the charges of certain vertices/edges will help us prove some property of the graph. In some applications, the initial charges or the discharging rules may take into consideration the degree of the vertices.

The discharging method has been one of the main tools to prove lower bounds for density of idcodes. Theorem 2.2 , proved in this section, tells how this method can be used to obtain density results in infinite graphs, once these graphs satisfy certain properties. Before that, we define $S G$-property and present a general result (Lemma 2.1) that is related to this property and is used in Theorem 2.2 and Lemma 2.3. (Here, the mnemonic SG stands for "slow growth", the concept we want to emphasize.)
Definition 1. We say that a graph G satisfies the SG-property if G is connected and has a vertex s such that $\lim _{r \rightarrow \infty} \frac{\left|N_{r+1}[s]\right|}{\left|N_{r}[s]\right|}=1$.

Notice that, since $N_{r}[s] \subseteq N_{r+1}[s]$, then $\lim _{r \rightarrow \infty} \frac{\left|N_{r+1}[s]\right|}{\left|N_{r}[s]\right|}=1$ if and only if $\limsup _{r \rightarrow \infty} \frac{\left|N_{r+1}[s]\right|}{\left|N_{r}[s]\right|}=1$. Also notice that the integer t in the item (a) of the following lemma may be negative.
Lemma 2.1. Let G be an infinite connected graph satisfying the $S G$-property, and let $s \in V(G)$ be such that $\lim _{r \rightarrow \infty} \frac{\left|N_{r+1}[s]\right|}{\left|N_{r}[s]\right|}=1$. Then the following hold.
(a) For every vertex v and integer t, we have $\lim _{r \rightarrow \infty} \frac{\left|N_{r+t}[v]\right|}{\left|N_{r}[v]\right|}=1$.
(b) For every vertex v and $C \subseteq V(G)$, we have $d_{v}(C, G)=d_{s}(C, G)$. Thus the density of C is $d(C, G)=d_{w}(C, G)$, where w is an arbitrary vertex of G.

Proof. To simplify notation, let $n_{k}[w]=\left|N_{k}[w]\right|$ for any positive integer k and vertex w. For the vertex s stated in the lemma, and any integer $t>0$, we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{n_{r+t}[s]}{n_{r}[s]}=\lim _{r \rightarrow \infty}\left(\frac{n_{r+t}[s]}{n_{r+t-1}[s]} \cdot \frac{n_{r+t-1}[s]}{n_{r+t-2}[s]} \ldots \cdot \frac{n_{r+2}[s]}{n_{r+1}[s]} \cdot \frac{n_{r+1}[s]}{n_{r}[s]}\right)=1 \tag{1}
\end{equation*}
$$

It is immediate that $\lim _{r \rightarrow \infty} \frac{n_{r+t}[s]}{n_{r}[s]}=1$ also holds when t is negative (as long as $r+t \geq 0$). Now, to prove (a), consider a vertex v and let $d:=\operatorname{dist}(v, s)$. First, we prove that (for $r \geq d$)

$$
\begin{equation*}
N_{r-d}[s] \subseteq N_{r}[v] \subseteq N_{r+d}[s] . \tag{2}
\end{equation*}
$$

To prove the first inclusion, take a vertex y in $N_{r-d}[s]$. Thus, $\operatorname{dist}(y, s) \leq r-d$. Since $\operatorname{dist}(y, v) \leq \operatorname{dist}(y, s)+\operatorname{dist}(s, v)$, it follows that $\operatorname{dist}(y, v) \leq r$, and therefore, $y \in N_{r}[v]$. The proof of the second inclusion is analogous: take $y \in N_{r}[v]$, which means that $\operatorname{dist}(y, v) \leq r$. Since $\operatorname{dist}(y, s) \leq \operatorname{dist}(y, v)+\operatorname{dist}(v, s)$, we have that $\operatorname{dist}(y, s) \leq r+d$, and therefore, $y \in N_{r+d}[s]$. From (2), we have that

$$
\begin{equation*}
N_{r+1-d}[s] \subseteq N_{r+1}[v] \subseteq N_{r+1+d}[s] \tag{3}
\end{equation*}
$$

Combining (3) and (2), we have

$$
\begin{equation*}
\frac{n_{r+1-d}[s]}{n_{r+d}[s]} \leq \frac{n_{r+1}[v]}{n_{r}[v]} \leq \frac{n_{r+1+d}[s]}{n_{r-d}[s]} \tag{4}
\end{equation*}
$$

Since (1) holds for every integer t (see the observation in the paragraph following (1)), it follows that the limit of the fraction on the left (resp. right) side of (4) when r tends to ∞ is 1 , and therefore,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{n_{r+1}[v]}{n_{r}[v]}=1 \tag{5}
\end{equation*}
$$

From (5), we may conclude that (1) holds when s is replaced by v, and this completes the proof of statement (a).

Now, let us prove (b). For that, we first note that, from (2) we have that

$$
\begin{equation*}
\frac{n_{r-d}[s]}{n_{r}[s]} \leq \frac{n_{r}[v]}{n_{r}[s]} \leq \frac{n_{r+d}[s]}{n_{r}[s]} \tag{6}
\end{equation*}
$$

Since the limit of the fraction on the left (resp. right) when r tends to ∞ is 1 , it follows that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{n_{r}[v]}{n_{r}[s]}=1 \tag{7}
\end{equation*}
$$

By definition, we have that

$$
\begin{equation*}
d_{v}(C, G)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[v]\right|}{n_{r}[v]} . \tag{8}
\end{equation*}
$$

From (2), we obtain

$$
C \cap N_{r-d}[s] \subseteq C \cap N_{r}[v] \subseteq C \cap N_{r+d}[s] .
$$

Thus,

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r-d}[s]\right|}{n_{r}[v]} \leq d_{v}(C, G) \leq \limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r+d}[s]\right|}{n_{r}[v]} . \tag{9}
\end{equation*}
$$

The lower (resp. upper) bound of $d_{v}(C, G)$ given by 9 is precisely $d_{s}(C, G)$. Indeed, for the lower bound, using (8), (1) and (7), we have

$$
\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r-d}[s]\right|}{n_{r}[v]}=\limsup _{r \rightarrow \infty}\left(\frac{\left|C \cap N_{r-d}[s]\right|}{n_{r-d}[s]} \cdot \frac{n_{r-d}[s]}{n_{r}[s]} \cdot \frac{n_{r}[s]}{n_{r}[v]}\right)=d_{s}(C, G) .
$$

For the upper bound, the proof follows similarly. Thus, $d_{v}(C, G)=d_{s}(C, G)$, and hence $d(C, G)=d_{w}(C, G)$, where w is an arbitrary vertex in G.

The SG-property is very important for the forthcoming proofs on the minimum density based on the discharging method. Lemma 2.1 guarantees that if a connected graph G has this property, then the density of a vertex set C in G may be calculated by considering $d_{v}(C, G)$ for an arbitrary vertex v.

It is not difficult to see that the infinite hexagonal grids $\left(\mathcal{G}_{H}\right.$ and $\left.H_{k}\right)$, as well as the grids mentioned in the introduction (square, triangular, king), and many others have the SG-property. In particular, for the grid \mathcal{G}_{H}, it is known that $n_{r+1}[s]=(3(r+2)(r+1)) / 2+1$ for any vertex s, from which we conclude that it has the SG-property. (For more information on $n_{r}[s]$, see any reference on the r th centered triangular number.) For the grid H_{k}, as k is fixed, it is easier to conclude that it has the SG-property. Recall that we have shown (see Lemma 1.1) that the infinite 3-regular tree does not have this property.

Theorem 2.2 (Discharging Method). Let G be an infinite graph with bounded maximum degree which satisfies the $S G$-property. Let C be a vertex set in G. Suppose that the discharging method is applied to G in the following way. In the charging phase, charge 1 is assigned to each vertex in C and charge 0 is assigned to the remaining vertices. In the discharging phase, among other rules, the following one is respected: no vertex sends charge from it to a vertex at a distance greater than d, for a fixed integer d. If, at the end, every vertex v of G has final charge $\operatorname{chg}(v)$ such that $q \leq \operatorname{chg}(v) \leq q^{\prime}$, where q and q^{\prime} are rational numbers, then $q \leq d(C, G) \leq q^{\prime}$.

Proof. Given a set $W \subseteq V(G)$, let $\operatorname{chg}(W)=\sum_{w \in W} \operatorname{chg}(w)$. Let q, q^{\prime} and d be as in the hypothesis of the lemma, and let s be an arbitrary vertex in G. As in the proof of Lemma 2.1, to simplify notation, we let $n_{r}[s]=\left|N_{r}[s]\right|$. Note that $q \cdot n_{r}[s] \leq \operatorname{chg}\left(N_{r}[s]\right) \leq q^{\prime} \cdot n_{r}[s]$.

Moreover, notice that $\operatorname{chg}\left(N_{r}[s]\right)$ is at most $\left|C \cap N_{r}[s]\right|$ plus the charge received from vertices outside $N_{r}[s]$, which are contained in $N_{r+d}[s]$. Then, $q \cdot n_{r}[s] \leq$ $\operatorname{chg}\left(N_{r}[s]\right) \leq\left|C \cap N_{r}[s]\right|+n_{r+d}[s]-n_{r}[s]$. Therefore,

$$
d_{s}(C, G)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[s]\right|}{n_{r}[s]} \geq q-\limsup _{r \rightarrow \infty} \frac{n_{r+d}[s]-n_{r}[s]}{n_{r}[s]}=q
$$

The last equality holds because $\lim _{r \rightarrow \infty} n_{r+d}[s] / n_{r}[s]=1$, by Lemma 2.1(a).
Moreover, for $r>d, \operatorname{chg}\left(N_{r}[s]\right)$ is at least $\left|C \cap N_{r}[s]\right|$ minus the charge sent to vertices outside $N_{r}[s]$, which comes from vertices in $N_{r}[s] \backslash N_{r-d}[s]$. Then, $q^{\prime} \cdot n_{r}[s] \geq \operatorname{chg}\left(N_{r}[s]\right) \geq\left|C \cap N_{r}[s]\right|-\left(n_{r}[s]-n_{r-d}[s]\right)$. Therefore,

$$
d_{s}(C, G)=\limsup _{r \rightarrow \infty} \frac{\left|C \cap N_{r}[s]\right|}{n_{r}[s]} \leq q^{\prime}+\limsup _{r \rightarrow \infty} \frac{n_{r}[s]-n_{r-d}[s]}{n_{r}[s]}=q^{\prime}
$$

Thus, from Lemma 2.1(b) we conclude that $q \leq d(C, G) \leq q^{\prime}$.
The next lemma shows that the usual method of determining the density of a set from periodic patterns, which we showed that is not always valid, works on graphs satisfying the SG-property.

Lemma 2.3. Let G be an infinite connected graph with bounded maximum degree that satisfies the $S G$-property. Let ℓ, c, c^{\prime}, d be positive integers, and let C be a subset of $V(G)$. Suppose that $V(G)$ can be partitioned into subsets V_{1}, V_{2}, \ldots of size ℓ such that, $c \leq\left|V_{i} \cap C\right| \leq c^{\prime}$ for each $i \geq 1$, and the distance between any two vertices of V_{i} is at most d. Then $c / \ell \leq d(C, G) \leq c^{\prime} / \ell$.

Proof. We use the discharging method as stated in Lemma 2.2 with $q=c / \ell$ and $q^{\prime}=c^{\prime} / \ell$. Recall that every vertex of C starts with charge 1 and the vertices outside C starts with charge 0 . In the discharging phase, for every part V_{i} of $V(G)$, the set of vertices in $C \cap V_{i}$ can guarantee charge at least $q=c / \ell$ and at most $q^{\prime}=c^{\prime} / \ell$ for every vertex of V_{i}. Since the distance between any two vertices of V_{i} is at most d, no vertex sends charge to a vertex at a distance greater than d. From Lemma 2.2, we conclude that $c / \ell \leq d(C, G) \leq c^{\prime} / \ell$.

In particular, for H_{k}, the above result indicates that to prove a lower bound for the density of an idcode C, one can show that if H_{k} can be covered with a periodic pattern H, then H is a pattern (subgraph of H_{k} containing vertices of C) for which the ratio $|C \cap V(H)| /|V(H)|$ is minimum possible (a result that might not be so easy to prove). This would lead us to the conclusion that this ratio gives a lower bound for $d\left(C, H_{k}\right)$. In Section 3 , we prove a lower bound for $d^{*}\left(H_{2}\right)$ using the discharging method, as stated in Theorem 2.2, and we also give another proof based on this idea of a pattern H with best possible ratio. The latter idea also yields a uniqueness proof of the minimum-density periodic idcode of H_{2}.

3. LOWER BOUNDS FOR THE DENSITY OF SOME IDCODES OF H_{k}

Karpovsky et al. 27] proved that for $d \geq 2$, every finite twin-free d-regular graph G satisfies $d^{*}(G) \geq 2 /(d+2)$. This was done using a double counting argument on the set of possible idcodes. The next theorem shows that the same bound holds for infinite connected graphs with maximum degree bounded by a constant d, if the graph has the SG-property. To prove this result, we use the discharging method, in a similar way that Cranston and Yu 9 proved the lower bound $2 / 5$ for the minimum density $d^{*}\left(\mathcal{G}_{H}\right)$ of the hexagonal grid.

Theorem 3.1. Let $\Delta \geq 2$ be a fixed integer and G be a connected infinite twin-free graph with maximum degree Δ. If G has the $S G$-property, then $d^{*}(G) \geq 2 /(\Delta+2)$. In particular, $d^{*}\left(H_{k}\right) \geq 2 / 5$ for every $k \geq 2$.

Proof. Let C be an idcode of G, and let $q=2 /(\Delta+2)$. We apply the discharging method with charging rules as stated in Lemma 2.2 and with the following discharging rule:
(R) If $v \notin C$ and $|C[v]|=p$, then v receives a charge of q / p from each vertex in $C[v]$.
We note that only neighbouring vertices exchange charges (thus we may apply Lemma 2.2 with $d=1$). We prove now that $\operatorname{chg}(v) \geq q$ for every vertex v in G. Clearly, if $v \notin C$, then $\operatorname{chg}(v)=q$; so assume that $v \in C$. If v has no neighbours in C, then for all $w \in N(v)$ we have $|C[w]| \geq 2$, otherwise $C[v]=C[w]$. Thus, vertex v sends a charge of at most $q / 2$ to each vertex in $N(v)$. As a vertex in G has degree at most Δ, it follows that $\operatorname{chg}(v) \geq 1-\Delta(q / 2)=q$.

Suppose now that v has a neighbour in C. Then for at most one vertex, say w, that is a neighbour of v outside C, we have that $C[w]=\{v\}$; and for all the remaining neighbours x of v outside C, we have that $|C[x]| \geq 2$. Thus v sends a charge of at most q to w and at most $q / 2$ to the remaining neighbours x in $N(v) \backslash C$. Since the degree of v is at most Δ, it follows that $\operatorname{chg}(v) \geq 1-q-(\Delta-2)(q / 2)=q$.

As $\operatorname{chg}(v) \geq q$ for every vertex v in G, by Lemma 2.2 we have that $d(C, G) \geq q$. As this holds for an arbitrary idcode C, it follows that $d^{*}(G) \geq q=2 /(\Delta+2)$. When G is the hexagonal grid H_{k} with k rows, the result we have shown implies that $d^{*}\left(H_{k}\right) \geq 2 / 5$ for every $k \geq 2$.

If C is an idcode of a graph G, then a component of $G[C]$, the subgraph induced by C, is called a cluster of G (w.r.t. C). If a cluster has precisely (resp. at least) t vertices, then it is called a t-cluster (resp. t^{+}-cluster). The unique vertex of a 1 -cluster is also called a 1-cluster. Note that $G[C]$ has no 2-clusters, otherwise, the 2 vertices in such a cluster would have the same identifier. The idcodes shown in Figures 1(B) and 1(C) induce only 1-clusters.

In what follows, we show that if C is an idcode of a graph G such that $G[C]$ has no 1-clusters, and G satisfies certain conditions, then $d(C, G) \geq 3 / 7$.

Theorem 3.2. Let G be a connected infinite twin-free graph with maximum degree 3, and with the $S G$-property. If C is an idcode of G such that $G[C]$ has no 1 -clusters, then $d(C, G) \geq 3 / 7$. In particular, $d\left(C, \mathcal{G}_{H}\right) \geq 3 / 7$ and $d\left(C, H_{k}\right) \geq 3 / 7$ for every $k \geq 2$.

Proof. We use the discharging method with charging rules as stated in Lemma 2.2 , We take $q=3 / 7$, and consider the following discharging rules:
(R1) If $v \notin C$ and $|C[v]|=p$, then v receives a charge of $3 /(7 p)$ from each vertex in $C[v]$.
(R2) If $c \in C$ and $|N[c] \cap C| \geq 2$, then c sends a charge of $1 / 14$ to each neighbour in $N(c) \cap C$.
Let us prove now that $\operatorname{chg}(v) \geq 3 / 7$ for every vertex v. Clearly, $\operatorname{chg}(v)=3 / 7$ if $v \notin C$. Consider now a vertex $c \in C$. By hypothesis, we have that c has
at least one neighbour in C. If c has exactly one neighbour c^{\prime} in C, then c^{\prime} must have another neighbour in C. Since c has at most 2 neighbours outside C, then c sends a charge of at most $3 / 7$ to one of them, at most $3 / 14$ to the other, and receives $1 / 14$ from c^{\prime}. (Note that, if these two neighbours exist, then one of them must have another neighbour in C, distinct from c). Hence, $\operatorname{chg}(c) \geq$ $1-3 / 7-3 / 14+1 / 14=3 / 7$. If c has exactly two neighbours in C, then c sends a charge of at most $3 / 7$ to some neighbour $w \notin C$ and exactly $1 / 14$ to each one of the two neighbours in C. Thus, $\operatorname{chg}(c) \geq 1-3 / 7-2(1 / 14)=3 / 7$. If c has exactly three neighbours in C, then c sends exactly $1 / 14$ of charge to each of them. Hence, $\operatorname{chg}(c) \geq 1-3(1 / 14)=11 / 14>3 / 7$. The results follow from Lemma 2.2

4. An identifying code of H_{2} with minimum density

In this section we prove that $d^{*}\left(H_{2}\right)=9 / 20$. For that, we prove first the following result.

Lemma 4.1. The minimum density of an idcode of H_{2} is at most $9 / 20$.
Proof. Consider the subgraph, say T, indicated in Figure 3, which is a subgraph of H_{2} induced by the vertices from columns 1 to 20 . Let C the set of 18 black vertices indicated in T.

Note that, the pattern defined by C in the first 10 columns of T is a reflected form of the pattern defined by C in the next 10 columns. We claim that if we concatenate infinite copies of T (side by side), the set of black vertices obtained is an idcode of H_{2} (with period 20). We leave to the reader to check this fact (it is enough to check the first 11 columns, and the columns 20 and 21). By Lemma 2.3 we conclude that $d^{*}\left(H_{2}\right) \leq 9 / 20$.

Figure 3. An idcode of $T \subset H_{2}$, which gives an idcode of H_{2}

To show that $d^{*}\left(H_{2}\right) \geq 9 / 20$, we present two different proofs, which are closely related. Both are based on the patterns defined by an idcode C in the graph H_{2}. To study these patterns, we consider that the graph H_{2} is an infinite strip that can be "split" into "sequential" 4 -vertex sets, defined formally in what follows.

For an integer x, we say that a vertex of column x of H_{2} is cubic if it has degree 3 in H_{2}. We adopt the convention that when x is odd then the vertices in column x are cubic. For an odd integer x, we denote by Q_{x} the set of vertices $\{(x, 1),(x+1,1),(x, 2),(x+1,2)\}$, and call it a quartet.

Note that $H_{2}\left[Q_{x}\right]$ is a \sqsubset-shaped path in H_{2} with 4 vertices, and $V\left(H_{2}\right)$ is the disjoint union of quartets Q_{x} such that x is an odd integer. Given a quartet Q_{x},

2

Figure 4. Quartets Q_{x}^{L}, Q_{x} and Q_{x}^{R}
we also refer to Q_{x-2} (resp. Q_{x+2}), its left (resp. right) quartet, as Q_{x}^{L} (resp. Q_{x}^{R}), see Figure 4.

For a given idcode C, we say that Q_{x} is type i (resp. type i^{+}) if $\left|Q_{x} \cap C\right|=i$ (resp. $\left|Q_{x} \cap C\right| \geq i$). Type 1 quartets Q_{x} play an important role in the proofs. If the single vertex in the idcode that belongs to Q_{x} is cubic (resp. not cubic) in H_{2}, we say that Q_{x} is type 1-cubic (resp. type 1-noncubic). See Figure 6, All references to types assume that an idcode is clear from the context.

The next lemmas tell us, for each quartet Q_{x} of type $i(1 \leq i \leq 3)$, which are the possible (or forbidden) types of its neighbouring quartets Q_{x}^{L} and/or Q_{x}^{R}. Once we have these results, we can either use the discharging method or an idea based on the average density of patterns defined by consecutive quartets.

We denote by $\left(H_{2}, C, x\right)$ a triple consisting of the grid H_{2}, an idcode C of H_{2}, and an odd integer x. In the figures, vertices coloured black belong to C, vertices coloured gray may belong to C.

Lemma $4.2\left(Q_{x}\right.$ is type 0). Consider a triple $\left(H_{2}, C, x\right)$. If Q_{x} is type 0, then Q_{x}^{L} is type 4; moreover, Q_{x}^{R} is type 3^{+}and $C \cap Q_{x}^{R}$ contains two cubic vertices.

Figure 5. Quartet Q_{x} is type 0 implies quartet Q_{x}^{L} is type 4

Proof. If Q_{x} is type 0 , it is immediate that all vertices in columns $x-1$ and $x+2$ must be in C, since all vertices of Q_{x} must have a nonempty identifier. As C is an idcode, the vertices of column $x-2$ must belong to C; thus, Q_{x}^{L} is type 4 . See Figure 5 Since $H_{2}[C]$ has no 2-clusters, Q_{x}^{R} is type 3^{+}.

Lemma $4.3\left(Q_{x}\right.$ is type 1). Consider a triple $\left(H_{2}, C, x\right)$. If Q_{x} is type 1 , then the following holds.
(a) If Q_{x} is type 1-cubic, then Q_{x}^{L} is type 2^{+}and Q_{x}^{R} is type 3^{+}.
(b) If Q_{x} is type 1-noncubic, then Q_{x}^{L} is type 3^{+}and Q_{x}^{R} is type 2^{+}. Proof. For simplicity, rename the vertices of $Q_{x}^{L} \cup Q_{x} \cup Q_{x}^{R}$ as shown in Figure 6.

To prove (a), let Q_{x} be type 1-cubic, and assume without loss of generality that $Q_{x} \cap C=\left\{x_{1}\right\}$. See Figure 6(A).

Figure 6. Quartet Q_{x} is type 1

- If $v_{1} \in C$, then $u_{1} \in C$, otherwise $\left\{v_{1}, x_{1}\right\}$ would induce a 2 -cluster in H_{2}, a contradiction. Thus, $Q_{x}^{L} \cap C \supseteq\left\{v_{1}, u_{1}\right\}$ and therefore Q_{x}^{L} is type 2^{+}. If $v_{1} \notin$ C, then $v_{2} \in C$, otherwise $C\left[x_{1}\right]=C\left[x_{2}\right]$, a contradiction. Moreover, $u_{1} \in C$, otherwise $C\left[v_{1}\right]=C\left[x_{1}\right]$. Thus, $Q_{x}^{L} \cap C \supseteq\left\{v_{2}, u_{1}\right\}$ and therefore Q_{x}^{L} is type 2^{+}.
- Clearly, $z_{2} \in C$, otherwise $C\left[y_{2}\right]=\emptyset$. If $z_{1} \in C$, then $\left|Q_{x}^{R} \cap C\right| \geq 3$, otherwise $\left\{z_{1}, z_{2}\right\}$ would induce a 2 -cluster in H_{2}. Hence, Q_{x}^{R} is type 3^{+}. If $z_{1} \notin C$, then $w_{1} \in C$, otherwise $C\left[z_{1}\right]=C\left[y_{2}\right]$. Moreover, $w_{2} \in C$, otherwise $C\left[y_{2}\right]=C\left[z_{2}\right]$. Thus, $Q_{x}^{R} \cap C=\left\{z_{2}, w_{1}, w_{2}\right\}$, and Q_{x}^{R} is type 3 .

To prove (b), let Q_{x} be type 1-noncubic, and assume without loss of generality that $Q_{x} \cap C=\left\{y_{2}\right\}$. See Figure (6)B).

- Clearly, $v_{1} \in C$, otherwise $C\left[x_{1}\right]=\emptyset$. Moreover, $u_{1} \in C$, otherwise $C\left[x_{1}\right]=C\left[v_{1}\right]$. If $u_{2} \notin C$, then $v_{2} \in C$ (because $C\left[v_{2}\right] \neq \emptyset$). Thus, Q_{x}^{L} is type 3^{+}.
- Clearly, $z_{1} \in C$ (because $C\left[y_{1}\right] \neq \emptyset$). If $z_{2} \in C$, then Q_{x}^{R} is type 2^{+}. If $z_{2} \notin C$, then $w_{1} \in C$, otherwise $C\left[z_{1}\right]=C\left[y_{1}\right]$, a contradiction. Hence, Q_{x}^{R} is type 2^{+}.

Lemma 4.4 (Q_{x} is type 2). Consider a triple $\left(H_{2}, C, x\right)$. If Q_{x} is type 2 , then Q_{x}^{L} and Q_{x}^{R} may not be both type 1.

Proof. Suppose, by contradiction, that both Q_{x}^{L} and Q_{x}^{R} are type 1 . By Lemma 4.3 . if Q_{x}^{L} (resp. Q_{x}^{R}) is type 1-cubic (resp. 1-noncubic), then Q_{x} is type 3^{+}. Thus, let us suppose now that Q_{x}^{L} is type 1-noncubic, $Q_{x}^{L} \cap C=\{u\}$; and Q_{x}^{R} is type 1-cubic, $Q_{x}^{R} \cap C=\{w\}$.

First, assume that u and w are in the same row, say 2. See Figure 7 (A). Then $(x, 1) \in C$, because $C[(x-1,1)] \neq \emptyset$. Note that one of the vertices $(x+1,1)$ or $(x, 2)$ belongs to C, because $C[(x-1,1)] \neq C[(x, 1)]$. If $(x+1,1) \in C$, then $(x, 1)$ and $(x+1,1)$ would induce a 2 -cluster in H_{2}, a contradiction. If $(x, 2) \in C$, then $C[(x+2,2)]=\{w\}=C[(x+2,1)]$, a contradiction.

Figure 7. Quartet Q_{x} is type 2

If u and w are in different rows, assume without loss of generality that u is in row 2 and w is in row 1 . See Figure $7(\mathrm{~B})$. Then $(x, 1) \in C$, because $C[(x-1,1)] \neq \emptyset$. If both $(x+1,1)$ and $(x+1,2)$ do not belong to C, then $C[(x+2,2)]=C[(x+2,1)]$, a contradiction. Thus, exactly one of them belongs to C. If $(x+1,1) \in C$, then $C[(x+1,2)]=\emptyset$, a contradiction. Hence, $(x+1,2) \in C$. But in this case, $C[(x-1,1)]=C[(x, 1)]$, a contradiction. This concludes the proof of the lemma.

We state now a lemma that will be helpful to simplify the proof of the next theorem.

Lemma 4.5. The grid H_{2} has idcodes of minimum density without type 0 quartets.
Proof. Let C be an idcode of H_{2}, and Q_{x} be a quartet of type 0 . By Lemma 4.2 , Q_{x}^{L} is type 4. It is simple to verify that $C^{\prime}=C \backslash\{(x-1,1)\} \cup\{(x, 1)\}$ is an idcode of H_{2} such that Q_{x} is type 1 and Q_{x}^{L} is type 3 . Thus, $d\left(C^{\prime}, H_{2}\right)=d\left(C, H_{2}\right)$. This means that If C is an idcode of minimum density containing type 0 quartets, then H_{2} has also an idcode of the same density without type 0 quartets.

Remark. The previous lemma does not guarantee anything about the elimination of type 4 quartets. We note that by doing a local change (more involved than the above one) we may also eliminate type 4 quartets and obtain an idcode of equal or possibly smaller density. We do not prove this statement as we do not use it here. Moreover, later we present arguments showing that type 4 quartets do not occur in minimum density idcodes of H_{2}.

Before going to the next proof, the reader may highlight in Figure 3 the 1-cubic and 1-noncubic quartets, and check the statements of Lemma 4.3 and Lemma 4.4 with respect to the quartets of this figure. This will help the understanding of the discharging rule (resp. the idea based on the average density) used in the next two proofs.
Theorem 4.6. The minimum density of an idcode of H_{2} is precisely $9 / 20$.
Proof. We use the discharging method to prove that $d^{*}\left(H_{2}\right) \geq 9 / 20$. For that, let C be a minimum identifying code of H_{2} that has no quartets of type 0 (cf. Lemma 4.5). In the charging phase, we proceed as stated in Lemma 2.2 we set $\operatorname{chg}(v)=1$ if $v \in C$, and $\operatorname{chg}(v)=0$, otherwise. We shall prove that after the discharging phase (to be defined), we have $\operatorname{chg}\left(Q_{x}\right) \geq 9 / 5$ for each quartet Q_{x}. If this happens, then the total charge of each Q_{x} can be distributed among its 4 vertices, and we get $\operatorname{chg}(v) \geq 9 / 20$ for each vertex v in Q_{x}. Thus, we say that a quartet Q_{x} is satisfied if $\operatorname{chg}\left(Q_{x}\right) \geq 9 / 5$, otherwise, it is unsatisfied.

After the charging phase, only type 1 quartets are unsatisfied. Apply the following discharging rule.
(R) As long as there are type 1 quartets Q_{x} that are unsatisfied,
(a) if Q_{x} is 1 -cubic, then it receives $1 / 5$ from Q_{x}^{L}, and $3 / 5$ from Q_{x}^{R};
(b) if Q_{x} is 1 -noncubic, then it receives $3 / 5$ from Q_{x}^{L}, and $1 / 5$ from Q_{x}^{R}.

We prove now that each quartet Q_{x} is satisfied after the discharging phase.
Case 1. Q_{x} is type 1.

If Q_{x} is type 1 , then by Lemma 4.3 both Q_{x}^{L} and Q_{x}^{R} have charge at least 2. Thus, they have sufficient charge to send to Q_{x}. If Q_{x} is type 1-cubic, it received $1 / 5$ from Q_{x}^{L} and $3 / 5$ from Q_{x}^{R}. If Q_{x} is type 1-noncubic, then it received $3 / 5$ from Q_{x}^{L}, and $1 / 5$ from Q_{x}^{R}. Hence, in both cases, $\operatorname{chg}\left(Q_{x}\right)=1+1 / 5+3 / 5=9 / 5$, and therefore Q_{x} is satisfied.
Case 2. Q_{x} is type 2.
If Q_{x} is type 2, then by Lemma 4.4 Q_{x}^{L} and Q_{x}^{R} are not both type 1. If Q_{x}^{L} is type 1 , then by Lemma 4.3, it is type 1-noncubic (because Q_{x} is type 2). Thus, according to rule (R)(b), Q_{x}^{L} received $1 / 5$ from Q_{x}. Since Q_{x} did not send charge to Q_{x}^{R} (because Q_{x}^{R} is not type 1) we have that $\operatorname{chg}\left(Q_{x}\right)=2-1 / 5=9 / 5$. Analogously, if Q_{x}^{R} is type 1 , then by Lemma 4.3 , it is type 1 -cubic (because Q_{x} is type 2). Thus, according to rule (R)(a), Q_{x}^{R} received $1 / 5$ from Q_{x}. Since Q_{x} did not send charge to Q_{x}^{L} (because Q_{x}^{L} is not type 1), we have that $\operatorname{chg}\left(Q_{x}\right)=2-1 / 5=9 / 5$.
Case 3. Q_{x} is type 3^{+}.
The only possibility for Q_{x} to decrease its initial charge is when it has type 1 neighbours. In the worst case, when both Q_{x}^{L} and Q_{x}^{R} are type $1, Q_{x}$ sends at most $3 / 5$ to each of them. Thus, $\operatorname{chg}\left(Q_{x}\right) \geq 3-3 / 5-3 / 5=9 / 5$.

Since every quartet Q_{x} is satisfied, by Lemma 2.2. we have that $d\left(C, H_{2}\right) \geq 9 / 20$. Using Lemma 4.1, we conclude that $d^{*}\left(H_{2}\right)=9 / 20$.

From the previous result and the fact that the idcode shown in Figure 4.1 has density at most $9 / 20$, we conclude the following result.

Corollary 2. The idcode shown in Figure 4.1 is a periodic idcode of H_{2} with minimum density.

In what follows we present a second proof of Theorem 4.6 which is based on the idea of finding a periodic pattern that covers H_{2} and has the minimum possible density. This proof also uses Lemmas 4.2 to 4.5 , and it is based on the fact (mentioned in Section 5) that H_{2} has a periodic idcode of minimum density. As we will see, the information provided by this proof, combined with further tests, will lead us to conclude that the periodic idcode that we have found is unique.

Proof 2. (of Theorem 4.6). Let C be an idcode of minimum density in H_{2} that has no quartets of type 0 . If C has no quartets of type 1 , then all quartets in C are of type 2^{+}, and in this case, $d\left(C, H_{2}\right) \geq 1 / 2$, contradicting Lemma 4.1. Thus, C has a quartet of type 1 , and by Lemma 4.3 we conclude that C has a quartet of type 3^{+}.

Now let us consider that H_{2} (seen as a concatenation of quartets) can be split into subgraphs corresponding to special sequences of consecutive quartets. We are interested in sequences, which we call $\mathrm{S}(3)$-sequences, defined as those starting with a quartet of type 3^{+}and containing exactly one quartet of type 3^{+}. The $\mathrm{S}(3)$-sequences whose second quartet is of type 1 (resp. type 2) are called $\mathrm{S}(3,1)$ sequences (resp. $\mathrm{S}(3,2)$-sequences). (We remark that not allowing the presence of another quartet of type 3^{+}is not a restriction to the size of the periods of the patterns we want to study. We may have different $S(3)$-sequences, and later we
allow them to be concatenated, so that periods with many occurrences of quartets of type 3^{+}are made possible.)

For an $S(3)$-sequence S, let $I(S)=\left(i_{1}, i_{2}, \ldots\right)$ be the sequence where each $i_{j} \in$ $\{1,2,3,4\}$ indicates the type of each of the j th quartet in S. In this proof, $i_{j}=i^{+}$ means that $i_{j} \in\{i, i+1\}$. A simplified notation such as $I(S)=\left(3^{+}, 1,2,2,1^{+}\right)$ stands for $I(S) \in\{(3,1,2,2,1),(3,1,2,2,2),(4,1,2,2,1),(4,1,2,2,2)\}$. We denote by $H[S]$ the subgraph of H_{2} induced by the quartets in S, and denote by $C(S)$ the restriction of C to $H[S]$. We are interested in $d(C(S), H[S])$, the density of $C(S)$ with respect to $H[S]$.

Note that $I(S)$ may not contain subsequences of the form $(1,2,1),(2,1,2)$ or $(1,1)$ because of Lemmas 4.3 and 4.4 . If S is an infinite $\mathrm{S}(3)$-sequence, then $I(S)=$ $\left(3^{+}, 1,2,2, \ldots\right)$ or $I(S)=\left(3^{+}, 2,2, \ldots\right)$, and therefore $d(C(S), H[S]) \geq 1 / 2$. If S is a finite $\mathrm{S}(3,1)$-sequence, then $I(S)$ contains at most two (non-consecutive) 1's.

Let S_{t} be a finite $\mathrm{S}(3,1)$-sequence of length t, let $I_{t}=I\left(S_{t}\right)$, and let C_{t} be the restriction of C to S_{t}. The possibilities for I_{t} are: $I_{1}=\left(3^{+}\right), I_{2}=\left(3^{+}, 1\right)$, $I_{3}=\left(3^{+}, 1,2\right), I_{4}=\left(3^{+}, 1,2,2\right), I_{5}=\left(3^{+}, 1,2,2,1^{+}\right)$, and $I_{t}=\left(3^{+}, 1,2, \ldots, 2,1^{+}\right)$ if $t>5$. Thus $d\left(C_{t}, H\left[S_{t}\right]\right) \geq 1 / 2$, for $1 \leq t \leq 4, d\left(C_{5}, H\left[S_{5}\right]\right) \geq 9 / 20$ and $d\left(C_{t}, H\left[S_{t}\right]\right) \geq(3+1+2(t-3)+1) / 4 t=(2 t-1) / 4 t>9 / 20$ if $t>5$. Thus the minimum density $9 / 20$ may possibly occur for $S(3)$-sequences of length 5 with sequence of types $(3,1,2,2,1)$.

It is easy to see that if S is a finite $\mathrm{S}(3,2)$-sequence, then $d(C(S), H[S]) \geq 1 / 2$ (because $I(S)$ contains at most one 1). This ends the proof that all $\mathrm{S}(3)$-sequences of H_{2} have density at least $9 / 20$. Thus, $d\left(C, H_{2}\right) \geq 9 / 20$ (as H_{2} has a minimumdensity periodic idcode). Combining this result with Lemma 4.1 we conclude that $d^{*}\left(H_{2}\right)=9 / 20$.

Remark on the uniqueness of a periodic minimum-density idcode for H_{2}. By Corollary 2, the idcode shown in Figure 3 is a periodic idcode of H_{2} with minimum density. An interesting question is whether this idcode is unique, among the periodic ones. The meaning of uniqueness will be clear in what follows.

The second proof of Theorem4.6 suggests that to construct a periodic minimumdensity idcode for H_{2} we should look for idcodes that define $\mathrm{S}(3,1)$-sequences of length 5 of type ($3,1,2,2,1$), and try to concatenate them to see whether they yield a periodic idcode.

As the reader may check, the $\mathrm{S}(3,1)$-sequence, say S, corresponding to the 5 initial quartets (first 10 columns) shown in Figure 3 is of type ($3,1,2,2,1$). However, the concatenation $S S$ does not define an idcode of H_{2} restricted to these sequences. But, as one can see in Figure 3, after S, the next sequence of 5 quartets, say S^{\prime}, which is a reflected form of S is also an $S(3)$-sequence of type ($3,1,2,2,1$). As we mentioned before, this is an idcode of H_{2} with period 20. This is not the way we obtained this idcode. In fact, this idcode was obtained by an ad hoc method, and we used it as an inspiration to derive the properties (Lemmas 4.2 4.5) that we proved. These lemmas, in turn, helped us in the lower bound proof. If a sequence such as S could not be found, one should look for $S(3)$-sequences of
lengths $t=6,7, \ldots$, as they would be the next candidates (if we did not know an idcode with density $9 / 20$).

Let us now investigate whether the idcode shown in Figure 3 is the unique periodic idcode of H_{2} with density $9 / 20$. We note that S and S^{\prime} are the unique $\mathrm{S}(3)$-sequences of type $(3,1,2,2,1)$ (we have verified this by running a program). We also note that the concatenation $S^{\prime} S^{\prime}$ does not define an idcode. So, for the moment we may say that the answer to this question is "yes", if we consider minimum idcodes without type 0 quartets (as we proved).

The question now is whether there are minimum-density idcodes containing type 0 quartets. We will not go into details, but we can prove that carrying out analogous arguments as those we used for $S(3,1)$ - and $S(3,2)$-sequences, the answer is "no". By Lemma 4.2, a type 0 quartet is preceded by a type 4 quartet, and is succeeded by a type 3^{+}quartet. Using this fact, we can show that any $\mathrm{S}(3)$-sequence that is of subtype $\mathrm{S}(4,0)$ has density greater than $9 / 20$. Thus, we conclude that the idcode shown in Figure 3 is the unique periodic idcode of H_{2} with minimum density. This idcode was also obtained by running a computer program, about which we report in the next section.

We note that, the idea we mentioned after Lemma 2.3 to prove lower bound for the density of idcodes of H_{k} - based on periodic patterns with minimum density is basically the idea behind the study we have carried out on the types of sequences of H_{2}. This study led us to conclude that the periodic pattern H defined by the concatenation $S S^{\prime}$ is the shortest periodic pattern that has the minimum density $9 / 20$. Of course, we may say that $S^{\prime} S$ is also such a shortest periodic pattern, but here we consider that they are equivalent.

5. Minimum-density identifying codes of H_{3}, H_{4} and H_{5}

In this section we present minimum-density idcodes for H_{3}, H_{4} and H_{5} that we found with an algorithm implemented in $\mathrm{C}++$. We describe briefly the algorithm, then exhibit some of these idcodes and the values $d^{*}\left(H_{3}\right), d^{*}\left(H_{4}\right)$ and $d^{*}\left(H_{5}\right)$.

The algorithm that we implemented searches for a periodic idcode for these grids, and uses an idea that was already proposed in 2018 by Jiang 24, to find minimum-density idcodes for square grids S_{k} with finite number k of rows. We were not aware of his algorithm, although we knew about his results on S_{k}. Jiang 24 proved that such grids have idcodes with minimum density that are periodic, and described an algorithm to find them. His work presents in detail an algorithm that constructs a weighted directed graph (associated with S_{k}) in which a minimum mean cycle corresponds to a periodic minimum-density idcode of S_{k}. Unfortunately, the size of this graph is exponential in k. With his implementation in C, in 2018 Jiang was able to obtain optimum idcodes for S_{4} and S_{5}. We used basically the same idea for H_{k}. For completeness, we describe briefly the construction of this graph, using the terminology introduced by Jiang.

We do not prove here that H_{k} has finite periodic idcodes that have minimum density, but this result holds. A proof similar to the one presented by Jiang 24
for S_{k} can be done for H_{k}, using the idea based on the concept of bars, which is central here, and is defined in what follows.

For $\ell \geq 1$ and $k \geq 2$, any subgraph of H_{k} induced by $\left\{j_{1}, \ldots, j_{\ell}\right\} \times[k]$, where $j_{1} \leq j_{2} \leq \ldots \leq j_{\ell}$ are ℓ consecutive columns of H_{k}, is called an ℓ-bar (see Figure 9). Let R be any ℓ-bar with $\ell \geq 3$ in H_{k}, and let R^{\prime} be the $(\ell-2)$-bar consisting of the middle columns of R (obtained by excluding the first and the last columns of R). We say that a subset C of vertices of R is a barcode of R if $C[v] \neq \emptyset$ and $C[u] \neq C[v]$ for every distinct $u, v \in R^{\prime}$. We adopt the convention that the first column of each 4-bar of H_{k} is indexed by an odd number.

5.1. Construction of the arc-weighted directed graph $G_{k, 4, j}$

For $k \geq 2$ and $5 \leq j \leq 8$, let $G_{k, 4, j}=(V, A)$ denote the j-configuration graph of the idcodes of H_{k} defined as follows. The vertex set V of this graph consists of barcodes C of any 4-bar of H_{k}. There is an arc from C to C^{\prime} if there is a barcode Q of a j-bar B of H_{k} such that C (resp. C^{\prime}) is the restriction of Q to the first (resp. last) 4 columns of B. In this case, the arc from C to C^{\prime} gets weight $|Q|-|C|$. Note that, $|V| \leq 2^{4 k}$ and $|A| \leq 2^{j k}$. In our implementation, we used $j=6$ and $j=8$ (as in this case we have to deal only with 4-bars whose first column is indexed by an odd number).

Jiang [24 considered, for the grid S_{k}, the graph $G_{k, 4,5}$, described above for H_{k} (for S_{k}, the 4 -bars correspond to subgraphs of S_{k}). He showed that in this graph, each 4-bar pattern of a periodic idcode for S_{k} corresponds to a directed cycle and vice-versa. We defined $G_{k, 4, j}$ for $5 \leq j \leq 8$. It is not difficult to see that an equivalent statement also holds for $j=6,7,8$, and for the grid H_{k}. Thus, in this case, the density of a minimum periodic idcode in $G_{k, 4, j}$ is $w(Z) / p k$, where $w(Z)$ is the weight of a minimum mean cycle Z in the configuration graph $G_{k, 4, j}$ and p is the period. (If Z is a cycle, then the mean weight of Z is the ratio between the total weight $w(Z)$ of the arcs in Z and the number of arcs in Z.)

In Figure 9 we show a minimum density periodic idcode (with period 8) for H_{4} that was found in the 8-configuration graph $G_{4,4,8}$. The two curly braces indicate two consecutive 4 -bars (corresponding to two barcodes, say C and C^{\prime}, which are adjacent vertices in this graph). In this case, Q is the barcode of the 8 -bar (formed by the indicated 4-bars), and the weight of the arc from C to C^{\prime} is $|Q|-|C|=14-7=7$. This solution corresponds to the weighted directed cycle $Z=\left(C, C^{\prime}\right)$ that has length $|Z|=2$ and weight $w(Z)=14$ (with mean weight $w(Z) / 2=14 / 2=7)$. In this case, the period is $p=8$. Thus, the density of this solution is $w(Z) /(8.4)=14 / 32=7 / 16$. We observe that when $j=8$ the period is $|Z|$. 4. (but the period is $|Z| .2$ if $j=6$, as in this there is an overlap of 2 columns for each two adjacent barcodes).

It is well known that the minimum mean cycle problem on a graph with n vertices and m arcs can be solved in $O(n m)$ time by Karp's algorithm 26]. This is the algorithm that Jiang 24] used in his implementation for S_{k}. For H_{k}, we use Hartmann-Orlin's algorithm 15], which is an improved version of Karp's algorithm, to find a minimum mean cycle. We implemented a program in $\mathrm{C}++$, using

Table 1. Sizes of the configuration graphs generated by our implementation and total running times.
(A) Data for $j=6$

Configuration graph	\# vertices	\# edges	Total running time	
$G_{2,4,6}$	$\left(H_{2}\right)$	144	1359	8 ms
$G_{3,4,6}$	$\left(H_{3}\right)$	1896	57723	253 ms
$G_{4,4,6}$	$\left(H_{4}\right)$	5870	63095	8 s
$G_{5,4,6}$	$\left(H_{5}\right)$	63751	1650188	87 m

(в) Data for $j=8$

Configuration graph	\# vertices	\# edges	Total running time
$G_{2,4,8}\left(H_{2}\right)$	144	12894	46 ms
$G_{3,4,8}\left(H_{3}\right)$	1896	1784401	9 s
$G_{4,4,8}\left(H_{4}\right)$	5870	3291346	820 s
$G_{5,4,8}\left(H_{5}\right)$	63751	248161004	928 m

lemon ${ }^{11}$ library for graphs: it builds the graph $G_{k, 4, j}$, finds a minimum mean cycle and outputs an idcode with minimum density for H_{k}. This implementation can be found in 32 .

We run this program to find minimum-density idcodes for H_{3}, H_{4} and H_{5}. This program constructed $G_{3,4,6}, G_{4,4,8}, G_{5,4,6}$, and obtained $d^{*}\left(H_{3}\right)=6 / 13$, $d^{*}\left(H_{4}\right)=7 / 16$ and $d^{*}\left(H_{5}\right)=11 / 25$. The corresponding idcodes for these grids are depicted in Figures 8, 9 and 10 . In Table 1, we indicate the size of these configuration graphs and the total running time the program needed to find an optimal solution. The running times for $j=8$ are included to show the difference when compared to $j=6$. The code was compiled with $\mathrm{g}++11.4 .0$ and option -O3, and executed in a computer with $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU}$ E7- $2870 @ 2.40 \mathrm{GHz}$ processor with 512 GB of RAM.

Figure 8. A minimum-density idcode of H_{3} found in the graph $G_{3,4,6}($ density $6 / 13 \approx 0.46153$, period 26)

Theorem 5.1. For $k=3,4,5$, the idcodes for H_{k} shown in Figures 8, 9 and 10 have minimum density. The corresponding densities of these idcodes are $d^{*}\left(H_{3}\right)=$ $6 / 13, d^{*}\left(H_{4}\right)=7 / 16$ and $d^{*}\left(H_{5}\right)=11 / 25$.

[^1]

Figure 9. A minimum-density idcode of H_{4} found in the graph $G_{4,4,8}($ density $7 / 16=0.4375$, period 8$)$

Figure 10. A minimum-density idcode of H_{5} found in the graph $G_{5,4,6}($ density $11 / 25=0.44$, period 10$)$

Figure 11. A minimum-density idcode of H_{5} found in the graph $G_{5,4,8}($ density $11 / 25=0.44)$

As a side remark, we observe that if instead of considering 4-bars, we consider 3-bars (to define the vertices of the graph), and define adjacency of vertices in an analogous way, the corresponding graphs $G_{k, 3,5}$ or $G_{k, 3,6}$ for S_{k} or H_{k} do not have the desired property (as some arcs would indicate a wrong adjacency). We leave to the reader finding examples to verify this statement. But such incorrect adjacencies occur rarely. Since it is much faster to work with 3-bars, one possibility is to work with 3 -bars, and check whether the solution found does not have wrong adjacencies, as in this case, an optimum solution may be found more quickly.

We conclude this section mentioning that with our implementation we were not able to find a minimum-density idcode for H_{6} using the computer resources available to us.

6. Concluding REMARKS

We note that for H_{3} we have found only the minimum-density idcode shown in Figure 8. But we are not claiming that it is unique. For H_{4} and H_{5}, we have found other minimum-density idcodes with different periods. For H_{5} we note that the minimum-density idcode shown in Figure 11 is different from the idcode shown in Figure 10, but both have period 10. By considering the graph $G_{5,4,8}$, the corresponding program output the solution of Figure 11 indicating that the period is 20 . We noted that the columns from $1-10$ of this idcode is equal to the columns from $11-20$. Thus, we may say that the period of this idcode is 10 . This does not indicate that the program is incorrect. Clearly, when $j=8$, the program outputs a solution whose period is always a multiple of 4 , while when $j=6$ the program outputs a solution whose period is a multiple of 2 .

With this respect, we note that if H_{k} has a minimum-density idcode with pe$\operatorname{riod} p$, even when p is odd, an idcode with the same density and possibly different period can be found in the graph $G_{k, 4,6}$ and $G_{k, 4,8}$. This is true because there is a (smallest) multiple of p which is always a multiple of 2 or of 4 , and therefore such a solution will be present in the corresponding graphs. We observe that our program finds one optimal solution (a minimum mean cycle) but not all optimal solutions.

Our implementation may possibly be improved if we can eliminate from the graph $G_{k, 4, j}$ some vertices and arcs which we are sure will not occur in an optimal solution. For example, barcodes corresponding to the set of all vertices in a 4-bar, or possibly barcodes whose densities are much larger than some known upper bound for the minimum-density idcode. But to implement such steps safely, some proofs are needed. We also believe that a more substantial improvement is needed to be able to solve for larger k. We are working on this topic and hope that in a forthcoming paper we will be able to present good upper bounds for $d^{*}\left(H_{k}\right)$, for all $k \geq 6$.

Acknowlegments. The authors would like to thank the referees for the careful reading of the paper, for pointing out some references, and for the valuable suggestions that improved the content and presentation of this paper. The authors are also thankful to Antoine Lobstein for the updated bibliography on identifying codes and related topics that he maintained for so many years, and to Devin Jean 22 for continuing his work. The authors extend their gratitude to the Brazilian research agencies CAPES, CNPq, FAPESP and FUNCAP for the financial support.

References

1. Yael Ben-Haim and Simon Litsyn, Exact minimum density of codes identifying vertices in the square grid, SIAM J. Discrete Math. 19 (2005), no. 1, 69-82. MR2178184
2. Marwane Bouznif, Frédéric Havet, and Myriam Preissmann, Minimum-density identifying codes in square grids, Lecture Notes in Computer Science (2016), 77-88.
3. Irène Charon, Iiro Honkala, Olivier Hudry, and Antoine Lobstein, General bounds for identifying codes in some infinite regular graphs, Electron. J. Combin. 8 (2001), no. 1, Research Paper 39, 21. MR1877658
4. \qquad , The minimum density of an identifying code in the king lattice, Discrete Math. 276 (2004), no. 1-3, 95-109. MR2046627
5. Irène Charon, Olivier Hudry, and Antoine Lobstein, Identifying codes with small radius in some infinite regular graphs, Electron. J. Combin. 9 (2002), no. 1, Research Paper 11, 25. MR1912793
6. Gérard D. Cohen, Iiro Honkala, Antoine Lobstein, and Gilles Zémor, Bounds for codes identifying vertices in the hexagonal grid, SIAM J. Discrete Math. 13 (2000), no. 4, 492504. MR1787935
7. \qquad , On identifying codes, Codes and association schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 97-109. MR1816390
8. Daniel W. Cranston and Douglas B. West, An introduction to the discharging method via graph coloring, Discrete Math. 340 (2017), no. 4, 766-793. MR3603558
9. Daniel W. Cranston and Gexin Yu, A new lower bound on the density of vertex identifying codes for the infinite hexagonal grid, Electron. J. Combin. 16 (2009), no. 1, Research Paper 113, 16. MR2546316
10. Ari Cukierman and Gexin Yu, New bounds on the minimum density of an identifying code for the infinite hexagonal grid, Discrete Appl. Math. 161 (2013), no. 18, 2910-2924. MR3126657
11. Marc Daniel, Sylvain Gravier, and Julien Moncel, Identifying codes in some subgraphs of the square lattice, Theoretical Computer Science 319 (2004), no. 1, 411-421.
12. Rennan Dantas, Frédéric Havet, and Rudini M. Sampaio, Identifying codes for infinite triangular grids with a finite number of rows, Discrete Math. 340 (2017), no. 7, 1584-1597. MR3634129
13. _, Minimum density of identifying codes of king grids, Discrete Math. 341 (2018), no. 10, 2708-2719. MR3843256
14. Florent Foucaud, Combinatorial and algorithmic aspects of identifying codes in graphs, Ph.D. thesis, Université Sciences et Technologies, 2012.
15. Mark Hartmann and James B. Orlin, Finding minimum cost to time ratio cycles with small integral transit times, Networks 23 (1993), no. 6, 567-574.
16. Iiro Honkala and Tero Laihonen, Codes for identification in the king lattice, Graphs Combin. 19 (2003), no. 4, 505-516. MR2031005
17. \quad, On the identification of sets of points in the square lattice, Discrete Comput. Geom. 29 (2003), no. 1, 139-152. MR1946799
18. _, On identification in the triangular grid, J. Combin. Theory Ser. B 91 (2004), no. 1, 67-86. MR2047532
19. On identifying codes in the hexagonal mesh, Inform. Process. Lett. 89 (2004), no. 1, 9-14. MR2025883
20. , On identifying codes in the triangular and square grids, SIAM J. Comput. 33 (2004), no. 2, 304-312. MR2048443
21. Iiro Honkala and Antoine Lobstein, On the density of identifying codes in the square lattice, J. Combin. Theory Ser. B 85 (2002), no. 2, 297-306. MR1912970
22. Devin Jean, Watching systems, identifying, locating-dominating and discriminating codes in graphs, https://dragazo.github.io/bibdom/main.pdf, July 2023, Accessed on July 2023.
23. Devin Jean and Suk Seo, Fault-tolerant locating-dominating sets with error-correction, arXiv cs.DM (2022), 2212.08193 version 1.
24. Minghui Jiang, Periodicity of identifying codes in strips, Inform. Process. Lett. 135 (2018), 77-84. MR3779981
25. Ville Junnila and Tero Laihonen, Optimal lower bound for 2-identifying codes in the hexagonal grid, Electron. J. Combin. 19 (2012), no. 2, Paper 38, 16. MR2946096
26. Richard M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Mathematics 23 (1978), no. 3, 309-311.
27. Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998), no. 2, 599-611. MR1607726
28. Ryan Martin and Brendon Stanton, Lower bounds for identifying codes in some infinite grids, Electron. J. Combin. 17 (2010), no. 1, Research Paper 122, 16. MR2729371
29. Ville Salo and Ilkka Törmä, Finding codes on infinite grids automatically, 2023.
30. Rudini Sampaio, Gabriel Sobral, and Yoshiko Wakabayashi, Minimum density of identifying codes of hexagonal grids with a finite number of rows, Anais do VII Encontro de Teoria da Computação (Porto Alegre, RS, Brasil), SBC, 2022, pp. 145-148.
31. Peter J. Slater, Fault-tolerant locating-dominating sets, vol. 249, 2002, Combinatorics, graph theory and computing (Louisville, KY, 1999), pp. 179-189. MR1898670
32. Gabriel Sobral, Rudini Sampaio, and Yoshiko Wakabayashi, Identifying codes, https:// gitlab.uspdigital.usp.br/gagsobral/identifying-codes 2023.
33. Derrick Stolee, Automated discharging arguments for density problems in grids, 2014.
34. Zhibin Xiao and Bevan Baas, A hexagonal processor and interconnect topology for manycore architecture with dense on-chip networks, VLSI-SoC: From Algorithms to Circuits and System-on-Chip Design, Springer Berlin Heidelberg, 2013, pp. 125-143.
35. Janez Zerovnik and Ignasi Sau, An optimal permutation routing algorithm on full-duplex hexagonal networks, Discrete Mathematics \& Theoretical Computer Science 10 (2008), 115.

[^0]: Dates will be set by the publisher.
 ${ }^{1}$ Depto de Computação Universidade Federal do Ceará (UFC) - Fortaleza, CE - Brazil; e-mail: rudini@dc.ufc.br
 ${ }^{2}$ Instituto de Matemática e Estatística - Universidade de São Paulo - São Paulo, SP - Brazil; e-mail: gagsobral@ime.usp.br \& yw@ime.usp.br
 (C) EDP Sciences 2001

[^1]: 1https://lemon.cs.elte.hu/trac/lemon

