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ABSTRACT. The circuit cover problem for mixed graphs (those containing edges and/or arcs) is
defined as follows. Given a mixed graph M with a nonnegative integer weight function p on its
edges and arcs, decide whether (M,p) has a circuit cover, that is, a list of circuits in M such
that every edge (arc) e is contained in exactly p(e) circuits of the list. In the special case M is a
directed graph (contains only arcs) the problem is easy, but when M is an undirected graph not
many results are known. For general mixed graphs this problem was shown to be NP-complete
by Arkin and Papadimitriou in 1986. We prove that this problem remains NP-complete for
planar mixed graphs. Furthermore, we present a good characterization for the existence of a
circuit cover when M is series-parallel (a similar result holds for the fractional version). We
also describe a polynomial algorithm to find such a circuit cover, when it exists. This is an
ellipsoid-based algorithm whose separation problem is the minimum circuit problem on series-
parallel mixed graphs, which we show to be polynomially solvable. Results on two well-known
combinatorial problems, the problem of detecting negative circuits and the problem of finding
shortest paths, are also presented. We prove that both problems are NP-hard for planar mixed
graphs.

Keywords: algorithm, circuit cover, negative circuit, shortest path, mixed graph, series-parallel
graph.

1 Introduction

A mixed graph is a triplet M = (V, E, A) where V is a finite set of vertices, F
is a finite set of edges and A is a finite set of arcs. When E = () we say that M is
a directed graph, and when A = () we say that M is an undirected graph. We
denote by (M, p) a mixed graph M with a weight function p: EU A — Q4.

Most of the concepts defined for undirected and directed graphs (see [6]) can be
extended in a natural way to mixed graphs. We assume the reader is familiar with
them. For a weight function p : EU A — Q we denote by p(F) the sum ) . p(e),
for any F C E U A.

*This work has been partially supported by CAPES (Proc. 3302006-0), CNPq (Proc. 304527/89-0),
FAPESP (Proc. 96/04505-2) and MCT/FINEP (PRONEX Project 107/97).




We use the capital letters D,G and M for directed, undirected and mixed
graphs, respectively. In a context referring to a mixed graph M, we may denote
by V(M), E(M) and A(M) the set of vertices, edges and arcs of M, respectively.

Here we consider only paths and circuits whose arcs (if any) are oriented in the
same direction.

If M =(V,E, A) is a mixed graph and e € EU A, then M — e (respectively, M/e)
denotes the graph obtained from M by deleting (respectively, contracting) e. A graph
H is a minor of a graph G (or G has an H-minor) if a graph isomorphic to H can be
obtained from a subgraph of G by a sequence of edge contractions. We say that M is
series-parallel if the underlying graph of M does not have a K-minor.

For a mixed graph M = (V, E, A), and a vertex set X C V, we denote by 67 (X)
(respectively, 6 (X)) the set of arcs leaving (respectively, entering) X. If Y C V' then
the set of edges with an endnode in X and the other in Y is denoted by §(X,Y);
and if Y = V — X then we write simply §(X). The cut defined by X is denoted by
V(X):=6X)Uds (X)Udt(X).

We say that (M, p) has a circuit cover if there is a vector of nonnegative integer
coefficients (A¢ : C' € C), where C denotes the set of circuits of M, such that p =
> cec AcxC. Here, for any subgraph H of M, x® denotes the {0,1}-incidence vector
of the {edge,arc}-set of H. We also say that (M,p) has a fractional circuit cover
if there is a vector of nonnegative rational coefficients (A¢ : C € C) such that p =
Ycec Aex©-

Given (M,p), where p is a nonnegative integer weight function, the problem of
deciding whether (M, p) has a circuit cover is called the Circuit Cover Problem.
The Fractional Circuit Cover Problem is defined in a similar way. We are inter-
ested in characterizing the existence of solutions for these problems, and in polynomial
algorithms to solve them.

For directed graphs the (Fractional) Circuit Cover Problem is easy: a pair (D, p)
has a fractional circuit cover if and only if p(6~(v)) = p(6*(v)) for every v € V(D).
Furthermore, if in addition p is integer-valued then there exists a circuit cover. It is
also easy to see that we can find such a cover in polynomial time. This is a special
case of a more general result, due to Hoffman [8], related to circulations in directed
graphs.

For undirected graphs, the Fractional Circuit Cover Problem was solved by Sey-
mour [13]. He showed that (G,p) has a fractional circuit cover if, and only if, for
every cut 6(X) we have p(6(X) — e) > p(e) for each edge e in the cut. A polynomial
algorithm to find such a fractional circuit cover is described in [4].

In the undirected case the fractional version is quite different from the integral
version. Clearly, the additional condition “p(§(X)) is even for every X C V(G)” is
necessary for the existence of a circuit cover of (G,p). But it is not always sufficient
as shows the following counterexample: let G = Pjg be the Petersen graph and F' a



perfect matching of Pjg; take p1g(e) = 2 for e € F, and p1p(e) = 1, otherwise.

Seymour [13] proved that if G is planar then this parity condition together with
the above condition (for fractional circuit cover) characterizes the existence of a circuit
cover. Alspach, Goddyn and Zhang [1] extended his result showing that, in a certain
sense, (Pig, p1p) is a minimal counterexample. They showed that: if G has no Petersen
graph as a minor, then (G,p) has a circuit cover if, and only if, for every cut §(X)
we have p(§(X)) even and p(§(X) — e) > p(e) for each edge e in the cut. To our
knowledge, their proof does not give (at least immediately) a polynomial algorithm to
find a circuit cover (when the conditions are fullfiled). It remains an open problem to
find such an algorithm.

Arkin and Papadimitriou [4, 5] have shown that the Circuit Cover Problem and
the Fractional Circuit Cover Problem are NP-complete for general mixed graphs. In
their paper, they left open the natural question about the complexity of both problems
for planar mixed graphs.

We are concerned here with the complexity of the Circuit Cover Problem and the
Fractional Circuit Cover Problem for series-parallel and planar mixed graphs. We
show good characterizations and polynomial algorithms for both problems restricted
to series-parallel mixed graphs. Furthermore, we settle the question of Arkin and
Papadimitriou proving that both problems are NP-complete for planar mixed graphs.

This paper is organized as follows. In Section 2 we show a good characterization
for the existence of a (fractional) circuit cover of (M,p) when M is a series-parallel
mixed graph. Section 3 is devoted to the description of a polynomial algorithm (relying
on the ellipsoid method) that finds a circuit cover of (M, p) (if it exists), when M is
series-parallel. In Section 4 we describe a polynomial algorithm to find a minimum
circuit in a series-parallel mixed graph with arbitrary weights. Finally, in Section 5
we prove that the Circuit Cover Problem and the Fractional Circuit Cover Problem
are NP-complete for planar mixed graphs.

A preliminary version of this paper, without some of the proofs and the results of
Section 5, has appeared in [11].

2 Circuit covers in series-parallel mixed graphs

We turn now to the study of the (Fractional) Circuit Cover Problem for mixed
graphs. In 1986 Arkin and Papadimitriou [4] showed that the Circuit Cover Problem
for mixed graphs is NP-complete. In view of this result, it is unlikely that we can
find nice necessary and sufficient conditions for the existence of a circuit cover in an
arbitrary mixed graph (M,p). We show that for series-parallel mixed graphs such a
nice characterization exists.

The following conditions are clearly necessary for the existence of a fractional



circuit cover of (M,p):
(a) For every X C V, £,(X) = p(6(X)) — |p(6~ (X)) - p(6* (X))| > 0
(b) For every cut V(X) and every e € §(X), p(V(X) —e) > p(e).

Furthermore, if (M, p) has a circuit cover then it is necessary that p is nonnegative
integral and the following holds:

(c) For every cut V(X), p(V(X)) is even.

We say that (M, p) is balanced if it satisfies (b); eulerian if it satisfies conditions
(a) and (c); and fractionally admissible if it satisfies (a) and (b). If p is integral,
we say that (M,p) is admissible if it is eulerian and balanced (or, it is fractionally
admissible and satisfies (c)). Sometimes, we say simply that p is balanced, eulerian or
(fractionally) admissible.

The following example shows that (fractional) admissibility is not always a suffi-
cient condition for the existence of a (fractional) circuit cover. Take the mixed graph
K, whose underlying graph is isomorphic to K4, and whose directed part consists of
a directed circuit of length 4 and the undirected part consists of a 1-factor. Assign
weight 1 to the arcs and weight 2 to the edges of K. It easy to see that K with these
weights is (fractionally) admissible and does not have a (fractional) circuit cover.

The main result of this section is the proof that admissibility is a sufficient condition
for the existence of a circuit cover when M is series-paralle]l. We need two lemmas.
The proof of the first one is not difficult and is left to the reader.

Lemma 2.1. Let G be a series-parallel undirected graph, B a minimal cut of G and
C a circuit of G. Then |BNC| < 2. [

Lemma 2.2. Let (M,p) be an admissible pair. Consider a subset X C V(M ) and an
edgee = uv € §(X), u € X, such that p(e) > 0, fp(X) =0 and p(6~ (X))—p(d+ (X)) >
0. Let M' be the graph obtained from M by replacing e with an arc a = (u,v); and let
p’ be the weight function on M', obtained from p by setting p’(a) := p(e). Then, the
resulting pair (M',p’) is admissible.

Proof. First we prove the lemma for the case p(e) = 1. In this case, suppose by con-
tradiction that (M’,p’) is not admissible. Clearly, conditions (b) and (c) are satisfied
by (M’,p'); thus, we conclude there exists some subset Y C V(M) such that e € 6(Y)
and fy(Y) < 0. We can assume that v € Y.
For ease of notation we set h(S) := p(6~(S)) —p(61(S)) for any subset S of V (M).
In what follows h refers only to the pair (M, p). Since f (Y) = p(6(Y)—e)—|h(Y)+1],
and f(Y) < 0, we have
P(O(Y) — &) < [h(Y) +1]. 1)



First, suppose h(Y) < 0. In this case, |h(Y) + 1| = |h(Y)| — 1. Thus, using
inequality (1) we conclude that p(6(Y)) —1 < |h(Y)| — 1, and therefore f,(Y) =
p(6(Y)) — |h(Y)| <0, a contradiction to the admissibility of (M, p).

Hence, h(Y) > 0. In this case, since p(e) = 1, inequality (1) simplifies to p(6(Y)) <
h(Y) +2.

By our assumption, f,(X) = 0 and A(X) > 0. Thus, p(6(X)) = h(X). Combining
this equality with the last inequality for p(6(Y")) we have

p(O(X)) +p(6(Y)) < h(X) +h(Y) +2.
Since h is a modular function, that is, h(X)+h(Y) = h(X NY)+h(X UY'), we obtain
p(6(X)) +p(d(Y)) <h(XNY)+h(XUY)+2.
Now since

p(8(X)) +p(3(Y)) = p((X NY))+p(3(X UY)) +2p(5(X — Y, ¥ — X)),
KX NY) < [A(XNY)|=p@(XNY)) = f,(XNY),
RXUY) < [h(XUY)|=p@(X UY))— f(X UY),

substituting them in the above inequality, we obtain the following contradiction:
2=2p(e) <2p(6(X =YY = X)) < —fp(XNY) = f(XUY)+2<2

This shows that (M’,p’) is admissible when p(e) = 1.

If p(e) > 2 we replace the edge e with p(e) parallel edges, and assign weight 1
to each of them. Clearly, the resulting weighted mixed graph (M”,p") is admissible.
Using the lemma in the case of unit weight (which we just proved) for (M”,p"), we
conclude that we can replace each parallel edge uv with an arc (u,v) and the new pair
(M',p") is still admissible. Finally, replacing the p(e) parallel arcs (u,v) with an arc
(u,v) of weight p(e), we still preserve admissibility. This concludes the proof.

The proof of the main theorem was inspired by the proof given by Seymour [13]
for undirected planar graphs, and by the proof of the theorem of Alspach et al. [1]
mentioned before.

Theorem 2.1. If M is series-parallel then (M,p) has a circuit cover if and only if p
is admissible.

Proof. It is immediate that if (M, p) has a circuit cover then p is admissible. To prove
the converse, let us assume that (M, p) is an admissible pair and p(e) > 0 for every



e € EU A (otherwise we could delete e from M). Applying Lemma 2.2 we can also
assume that if f,(X) = 0 then §(X) = 0.

We use induction on p(E). If p(E) = 0 then M is a directed graph and p(d~ (v)) =
p(6T(v)) for every v € V(M). The result is immediate.

Suppose that p(E) > 0. If there is a cut V(X) such that |V(X)| = |0(X)| = 2,
then we can contract one of the edges of this cut and apply the induction hypothesis.
Thus, we can assume that there are no such cuts.

If there is an edge ep with p(eg) = 1 then we can assign an arbitrary orientation
to eg. Since fp(X) > 2 for every () # X C V such that eg € §(X), it follows that the
resulting pair (M’,p’) is admissible. Using the induction hypothesis the result follows.

Let ey be an edge such that p(ep) is maximum. We can suppose that p(ep) > 2.
Let p' = p — 2x®°. We claim that (M,p’) is admissible. Clearly, (M,p’) is eulerian.
It remains to show that (M, p’) is balanced. Suppose by contradiction that there is a
cut V(X) such that p/(V(X) —e) < p'(e) for some edge e € §(X). Clearly, ey € 6(X).
If e = ey then

p(V(X) — e9) = p'(V(X) — eo) < p'(e0) < p(en),

which contradicts the admissibility of (M, p). Hence, e # eg. Since p/(V (X)) is even,
we have p/(V(X) —e) < p'(e) — 2. On the other hand,

pleo) < p(V(X) —e) =p'(V(X) —e) +2 < p'(e) = p(e).

But then p(eg) = p(e) and |V(X)| = |6(X)| = 2, contradicting the nonexistence of
such cuts.

Thus (M,p’) is admissible and p'(FE) = p(E) — 2. By the induction hypothesis,
(M,p’) has a circuit cover. Then there is a list L (with possible repetitions) of circuits
such that p’ = Y cer x¢. Let L = Ly U L1, where the circuits in Ly contain ey = zy
and the circuits in L1 do not contain eg.

Define an auxiliary undirected graph H as follows. Take V(H) := V and for each
C € L construct in H a circuit C that is the underlying circuit of C. Label the edges
of this circuit with “C”. We claim that there is a path from x to y in H.

In fact, let X be the set of vertices that are reachable from z in H, and suppose
y ¢ X. Let B be a minimal cut of M contained in V(X) such that ey € B. Then
no circuit of L; uses an edge or an arc of B, and by Lemma 2.1, every circuit of Ly
uses eg and only one element of B different from eg. Thus p(B —eg) = p'(B —eg) =
p'(eo) = p(eg) — 2, which contradicts the admissibility of (M, p). Therefore, y € X.

Take a shortest path from z to y in H. For each section of this path corresponding
to edges with the same label, take only one representative, and consider the sequence
of such labels, say (Ci,...,C). Clearly, there are no repeated circuits and V(C;) N
V(C;) # 0 if and only if |i — j| = 1.



Consider the subgraph G of H induced by the edge ey together with the edges in
the circuits C1,...,Cy. We claim that |[V(C;)) NV (Ciyq)| =1 fori =1,...,k - 1.
Suppose by contradiction that there are circuits C = C; and C/ = C;;1 such that
[V(C)NV(C")| > 2. In this case, it is not difficult to prove that we can find two
distinct vertices a,b € V(C)NV(C’) and two other distinct vertices u € V(C) -V (C’)
and v € V(C")—V(C), and also a path Py, from z to u in G and a path Py, from y to
a vertex v such that P,,, UCUC"UP,,U{ep} contains a subgraph homeomorphic to K4
(note the roles of the vertices a, b, u, v in this homeomorphism). This is a contradiction
since M is series-parallel.

Thus |[V(C;) NV (Cit1)| =1, for i = 1,...,k — 1. It is easy to see that |J C; can
be partitioned into a path from z to y and a path from y to z, say, P’ and @’. Each
one of these paths together with the edge eg forms a circuit in M. Let P, Q) be these
two circuits. Consider now the list of circuits L' := L — {C,...,Cx} U{P,Q}. By
construction, I’ contains only circuits of M, and furthermore p = 7, x¢. This
shows that (M, p) has a circuit cover. [ |

The above theorem gives immediately a result for the Fractional Circuit Cover
Problem.

Corollary 2.1. If M is series-parallel then (M,p) has a fractional circuit cover if and
only if p is fractionally admissible. [ |

To conclude this section we note that the property of being admissible is checkable
in polynomial time. To check condition (¢) we only have to verify whether p(V(v))
is even for every v € V. To check condition (b) we can do the following. Let H be
the underlying graph of M. For each edge e = uv in M compute a minimum weight
cut Be, separating u from v, with respect to p in H — e. If for some pair (e, B.) we
have p(B.) < p(e), then condition (b) is not satisfied, otherwise it is. Finally, we
can check condition (a) in the following way. First note that (a) holds if and only if
q(X) == p(0(X)) = p(0= (X)) +p(d*(X)) > 0 for every X C V. Let D = (V,AU A")
be the directed graph obtained from M by replacing each edge with two arcs defining
a circuit. Set capacities I(a) = u(a) = p(a) for a € A and I(a’) = 0,u(a’) = p(e) for
each a’ € A’ belonging to the circuit that replaced e. It is clear now that condition
(a) is satisfied if and only if D, [, u satisfy Hoffman’s condition (see [2]). This can be
checked by a single max-flow computation (see [2], Sec. 6.7).

3 A polynomial algorithm to find a circuit cover in a
series-parallel mixed graph

Let be given an admissible pair (M, p), where M = (E, A, V) is series-parallel. A
circuit cover of (M, p) can be represented by a pair (L, ), where L is a list (without



repetitions) of circuits of M and p is a vector indicating the multiplicity of each circuit.
It is not clear whether there exists such a list L with a polynomially bounded number
of circuits. Our proof of Theorem 2.1 does not answer this question. However, we can
prove that there exists such a list with at most m := |EUA| circuits [12]. In polyhedral
terminology, this is equivalent to saying that if p is in the integer cone generated by
the (incidence vectors of) circuits of M (p is admissible) then p can be expressed as a
nonnegative integer linear combination of at most m circuits of M.

Unfortunately, our proof of the latter result does not give directly a polynomial
algorithm to find such a circuit cover. However, if we do not require that the circuit
cover uses at most m circuits then we can design a polynomial algorithm that relies
on the ellipsoid method. For that, we need a polynomial separation algorithm that is
interesting in its own right: finding a minimum circuit in a series-parallel mixed graph
with arbitrary weights.

We describe two algorithms to find a circuit cover. The first algorithm is based on
the proof of Theorem 2.1 but it has a pseudo-polynomial running time. The second
algorithm is an elegant polynomial procedure that uses the first one and is based on
the algorithm presented in [1].

CirCovl Algorithm

Input: An admissible pair (M, p), where M = (V, E, A) is series-parallel.
Output: A circuit cover L’ of (M, p).

1. Delete arcs and edges with weight 0. Contract any edge that is in a cut V(X)
such that |V(X)| = |6(X)| = 2. If there is an edge e in a cut V(X) such that
fp(X) = 0 then assign an orientation to e according to Lemma 2.2.

2. If p(E) = 0 then return a circuit cover L’ (for directed graphs this is trivial) and
halt.

3. If there is an edge with weight 1 then assign an arbitrary orientation to it. Call
CirCovl recursively to find a circuit cover L’ of the new graph, return L’ and
halt.

4. Let eg = zy be an edge with maximum weight. Call CirCovl recursively to find
a circuit cover L' of (M,p — 2x°).

5. As in the proof of Theorem 2.1, find a shortest (z,y)-path in the auxiliary undi-
rected graph H. Let {C4,...,Ck} be the arc labels along this path. Decompose
JC; into an (z,y)-path P’ and a (y,z)-path Q. Let P := P'(y,ep,z) and
Q = Q'(x,e0,).

Return the circuit cover L := L — {C4,...,Cx} U{P,Q} and halt.



Step 1 requires O(|E|) max-flow min-cut computations. Step 2 can be done in
O(|A| - |V|) time. The total number of calls of CirCovl is bounded by p(E)/2 as the
total weight of the edges in each successive pair (M, p) is reduced by 2. So CirCovl is
a pseudo-polynomial algorithm.

We discuss now how to obtain a polynomial algorithm from CirCovl. The idea is
to formulate the Circuit Cover Problem for (M, p) as an integer program and to solve
its relaxation (that is, we solve the Fractional Circuit Cover Problem for (M,p)).
Then we use the fractional part of the resulting solution to define a new weight p’
(with relatively small entries), and call CirCovl to solve the Circuit Cover Problem
for (M,p'). A circuit cover of (M, p) is obtained by adjoining the partial circuit cover
corresponding to the integral part of the linear program solution and the circuit cover
found by CirCovl.

In what follows, N denotes the circuit-{edge,arc} incidence matrix of M and 1
denotes the vector of |C| ones.

CirCov2 Algorithm

Input: An admissible pair (M, p), where M = (V, E, A) is series-parallel.

Output: A circuit cover (L,u) of (M,p), where L is a list containing at most
2|E U A| — 1 circuits and p is a multiplicity vector whose entries are bounded by
r:= max{p(e) : e € EU A}.

1. Find a basic feasible solution A = (A¢)cec of the following linear program:

max{A\1l: AN =p, A\ > 0}. (2)

2. Let |A] :== (|A¢])cec and {A} := XA — | A] be respectively the integral and the
fractional part of A\, and let p’ := {A\}N = p — |A\|N. (Note that, since p’ is a
nonnegative combination of circuits, (M, p’) is fractionally admissible. As p and
[A|N are eulerian, then p’ is also eulerian.)

3. Call CirCov1l with input (M, p’) to obtain a circuit cover L’ of (M,p’).

4. Adjoin L’ to the circuit cover (S, |A]), where S := {C € C : |[A¢] > 0}, and
return the resulting circuit cover (L, u). Halt.

Let us show that |L| is polynomially bounded. As A is a basic solution, we have
|S| < |E U A|. Furthermore, |L'| + |A]1 < A1 = [A|1 + {A}1, and so |L/| < {\}1.
Since each nonzero entry in {A} is less than 1 we have {A\}1 < |E' U A| and therefore
IL'| < |[EUA|l—1. Thus |[L| < |S|+ || < 2lEUA| —1. As max{p/(e) : e €
EUA} < |L'| < |EUA|, we conclude that Step 3 can be done in polynomial time.



It remains to show how to solve Step 1 in polynomial time in |E U A|log(r), despite
the exponential number of variables A¢. For that, consider the dual linear program
of (2): min{pz : Nz > 1}. The separation problem for this LP is the following: Given
a rational vector x, either certify that x satisfies Nx > 1, or find a violated inequality
(a circuit in (M, z) having weight less than 1).

A theorem of Grotschel, Lovész and Schrijver (see [7]) implies that a basic optimal
solution of (2) can be found via the ellipsoid method in time polynomially bounded
by |E U A| and the input length of p, provided that we can solve the above separation
problem in time polynomially bounded by |E U A| and the input length of z. For
that, we can use a polynomial algorithm that finds a minimum circuit in the weighted
series-parallel mixed graph (M, z). In the next section we provide such an algorithm.

Theorem 3.1. The Circuit Cover Problem and the Fractional Circuit Cover Problem
for series-parallel mized graphs can be solved in polynomial time. [ ]

4 Minimum circuits in series-parallel mixed graphs

Consider a series-parallel mixed graph (M, w), where w is an arbitrary weight
function. As we are interested in finding minimum circuits, we may assume that M
is strongly connected, has at least one circuit and does not have cut vertices. We
note that as w can have negative entries, we must deal with negative circuits. We
recall that for arbitrary mixed graphs the problem of detecting negative circuits is
NP-complete [5].

Clearly, we can compute in polynomial time a minimum circuit of length 2 in M.
Thus, it suffices to describe a polynomial algorithm to find a minimum circuit of length
at least 3 in M. To solve the latter problem we can restrict ourselves to directed graphs:
we replace each edge e of M with two arcs defining a circuit, each one with weight
w(e). Thus, it remains to show a polynomial algorithm for the following problem:

MC3P(D,w): Given a series-parallel directed graph (D, w), find, if it exists, a mini-
mum directed circuit C of length at least 3.

The algorithm is based on the existence of a vertex with exactly 2 neighbours. We
call such a vertex special. A result (easy to be proved) that we use in the sequel is
the following.

Lemma 4.1. If G is a 2-connected series-parallel graph with |V (G)| > 3 then G has
a vertex with exactly two neighbours. [ |

In the description of the algorithm we use following two operations on a directed
graph (D,w).
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Parallel Arc Deletion - PAD(D, w)

Consider any two parallel arcs a and b.

Set D' := D — b and w(a) := min{w(a), w(b)}.
Let w’ be the restriction of w to D’.

Return (D', w').

Special Vertex Elimination - SVE(D, w;v) (D does not have parallel arcs)
Let z and y be the neighbours of the special vertex v.

1. If (z,v), (v, ), (y,v), (v,y) € A(D) then

set D' := D/{(y,v), (v;9)};

w(z,v) = w(z,v) + w,y); wv,z):=w,z)+ wy,v);
2. If (z,v), (v, ), (v,y) € A(D) and (y,v) ¢ A(D) then

set D' := (D — (v,2))/(v,y); w(z,v):=w(z,v)+w(v,y);
3. If (z,v), (v,y) € A(D) and (v,z), (y,v) € A(D) then

set D' := D/(v,y); w(z,v):=w(z,v)+ w(v,y);

4. Similarly, deal with the symmetric cases of 2 and 3, with the role of x and
y exchanged.

Let w’ be the restriction of w to D’.
Return (D', w’).

Denote by «(D,w) the weight of a minimum circuit of length at least 3 in
(D,w). Clearly, if (D',w') is obtained from (D,w) by a PAD operation then
y(D,w) = y(D’,w’"). On the other hand, if (D’,w’) comes from a SVE operation
then y(D,w) = min{w(C),y(D’,w’)} where C is a minimum circuit of length 3 con-
taining v,z and y (if there is no such a circuit, set w(C) = +00).

As D is series-parallel and does not have cut vertices it has a special vertex by
Lemma 4.1. Moreover, operations PAD and SVE preserve series-parallelness and does
not create cut vertices. So, a simple polynomial algorithm that solves MC3P (D, w)
consists of successive applications of these two operations, as shown in the following
sketch.

MC3 Algorithm

Input: A weighted series-parallel directed graph (D,w).

Output: A minimum circuit in (D, w) of length at least 3.
Set C := 0 and set w(C) := +o0;

11



While |V(D)| > 3 do
While (D, w) has parallel arcs do (D, w) := PAD(D, w);
If (D,w) has a special vertex v then
Let C’ be a minimum circuit of length 3 containing v;
(if it does not exist, set w(C’) = +o00)
(D,w) := SVE(D, w;v);
If w(C") < w(C) then C := C';

Return the circuit corresponding to C in the original digraph (D, w).

5 Complexity of the Planar Circuit Cover Problem

To show that the Circuit Cover Problem for planar mixed graphs is NP-complete
we shall use a special case of 3-SAT, namely, the Planar 3-SAT [10]. An instance
of 3-SAT consists of a boolean formula F(C, X) with clauses C = {C},...,Cy,} and
variables X = {v1,...,v,}. To define the Planar 3-SAT consider the undirected graph
G(F) = (CUX, E; U E3) where

Ei = {Cw; :vjeCiorv;€(C;,1<i<m,1<j<n}and
Ey = {vjvj1 : 1<j<n}U{v,v}.

Note that the structure of G(F') depends on the ordering of the variables. Planar
3-SAT corresponds to 3-SAT restricted to formulae F(C, X) for which there exists an
ordering of the variables such that G(F') is planar.

Let us describe the reduction from Planar 3-SAT to the planar Circuit Cover Prob-
lem. The proof is inspired by a proof of NP-completeness of the Directed Hamiltonian
Circuit for planar directed graphs [10].

Suppose that F(C,X) is an instance of Planar 3-SAT and fix an embedding of
G(F) in the plane. We can assume that each clause in F' contains at least two literals.
In Figure 1(i) we have an example of a planar graph G(F).

Consider the directed graph G(F) obtained from G(F) as follows. We assign an
orientation for the edges in Es to obtain a circuit C = (v1,v2, ... ,0pn,v1); then we
replace each edge v;C; with a directed circuit of length 2. The orientation of each
circuit in the plane depends on its position with respect to the directed circuit 6}
(oriented in the clockwise direction). If the vertex C; is in the external region with
respect to C_", then it is oriented in the clockwise direction, otherwise it is oriented in
the counter-clockwise direction (see Figure 1(ii)).

We construct from G(F) a mixed graph (M,p) replacing the vertices of G(F)
(variables and clauses) with some super-vertices (graphs) that we describe in what
follows. In this new graph each edge has weight 2 and each arc has weight 1.

12



0) (in)

Figure 1: (i) A graph G(F) for the formula F = (a + b+ ¢)(b + ¢ +d). (ii) Graph
G(F).

We replace each variable v; with a graph L(v;) as indicated in Figure 2, identifying

each arc (vj,v;41) of G(F) with an arc (t;,541), j = 1,...,n, where v, = v; and
Sp+1 = S1-
vj=a ai a2 a4m]'

a1 az Qam;

L(v;)

Figure 2: Graph L(v;) corresponding to the variable v;.

In the graph L(v;), m; is the number of occurrences of the variable v; (negated
or not) in the formula F. The number 4m; is sufficiently large to allow gaps between
vertical sections of L(v;) connecting distinct clauses. The necessity of that will become
clear later.

We describe now the super-vertices corresponding to the clauses of F. Suppose
that C; is a clause with three literals. We replace C; with a graph H(C;) as indicated in
Figure 3(i), where the vertices hi, ho, hg are identified with the variables of the clause
C;. Note that there is a symmetry between ho and hs with respect to the structure
of (C;), but hy is a distinguished vertex. We say that the edge e; is the opposite edge
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of hy, for t = 2,3, and hy is the free vertez of H(C;). If C; is a clause with only two
literals then we replace C; with a graph H(C;) as indicated in Figure 3(ii). Note that

Figure 3: (i) A clause C; with 3 literals and its corresponding graph H(C;). (ii) A
clause C; with 2 literals and its corresponding graph H(C;).

the arcs incident to the vertices h; represent the arcs incident to the variables of C; in
the graph G(F) (see Figure 1(ii)).

Now we show how to connect the clauses with the variables. Let C; be a clause
containing a literal v;. We connect H(C;) with L(v;) as follows. Suppose that v; is
identified with the super-vertex h; (which corresponds to the graph L(v;)). Remove
an arc ay = (¢,y) in L(v;), identify y with the head of the arc leaving h; and identify
x with the tail of the arc entering h;. The choice of a; is arbitrary but there must
be gaps between links of distinct H(C;)’s and the replacement should preserve the
planarity of the resulting graph. It is not hard to see that this is possible. If C;
contains a literal @;, remove an arc @ = (z,y) and connect z,y with H(C;) as we
have done before.

This concludes the construction of the plane mixed graph (M, p). See an example
in Figure 4. In this example we used 2m; as the length of each L(v;) instead of 4m;.
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Figure 4: Graph (M, p) obtained from formula F = (a + b+ ¢)(b + ¢ + d).



We show that if (M, p) admits a circuit cover then there exists a circuit (with some
special features) which contains every arc (¢;,s;+1), = 1,...,n. First, we make some
remarks about the graphs L(v;) and H(Cj).

The graph L(v;) with an additional arc (¢;,s;) admits a circuit cover. There exist
two possibilities for the circuit C' containing (t;,s;): either C' — (¢;,s;) is a path in
zigzag that goes from s; to t; and contains every arc ag, for k = 1,...,4m; (see
Figure 5), or C — (t;, s;) is a path in zigzag that goes from s; to t; and contains every
arc ay, for k = 1,...,4m;. The other arcs and edges can be covered by local circuits.

a

—_— —— - — - — =

a Adm;

Figure b: Zigzag path.

The graph H(C;) (thinking of h; as a vertex) admits a circuit cover. This cover
is unique if C; contains only two literals. So, let us assume that C; contains three
literals. In this case, a circuit cover of H(C;) consists of exactly four circuits. Two
of them are the triangles containing he and hs and their respective opposite edges.
There exist exactly two possibilities for the other two circuits (see Figure 6). Note
that the circuit containing h; must contain either ey or es.

The triangles containing ho and h3 together with the two possible circuits contain-
ing h; induce paths in H(C;) (thinking of H(C;) as a subgraph of M). We refer to
these paths as chains. Similarly, there exist two chains if C; contains only two literals.
So, with each chain of H(C}) is associated a literal of the clause C;, and for each literal
of C; there exists a corresponding chain in H(C;). In the case that v, is identified
with the free vertex hy there exist two candidate chains.

Now it is easy to see that if (M,p) admits a circuit cover then a circuit C' of this
cover must contain all arcs (¢j,sj+1), 7 = 1,...,n. In fact, if C enters a variable
L(vj;) through the arc (t;_1,s;) then it must use one of the zigzag paths and leave the
variable through (t;,s;41). Eventually, in the zigzag path the circuit could leave the
variable L(v;) and enter a clause H(C;). But inside the clause the circuit is forced to
use a chain and to return to the variable.

We say that a circuit C' in M is global if it contains all arcs (¢;,s;41), = 1,...,n,
and goes through each of the subgraphs L(v;) always using a zigzag path (eventually
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ho

Figure 6: Possible circuits in the circuit cover of H(C}).

entering a clause H(C;), if an arc a; was removed, using one of the corresponding
chains of v; and returning to L(v;)).

Now we are able to prove that the Fractional Circuit Cover Problem and the Circuit
Cover Problem for planar mixed graphs are NP-complete. We start with the proof for
the latter problem. This consists of the following lemmas.

Lemma 5.1. The graph (M,p) admits a circuit cover if and only if there exists a
global circuit in M.

Proof. As we have seen, if (M,p) admits a circuit cover then there exists a global
circuit in M.

On the other hand, if M contains a global circuit C then it is easy to obtain a
circuit cover of (M, p) using C and local circuits of each variable L(v;) and each clause

H(Cy). [ |

Lemma 5.2. The graph M contains a global circuit if and only if the formula F is
satisfiable.

Proof. Suppose that M contains a global circuit C. Note that C cannot use three
chains of H(C;) and hence, for each clause C; there exists a literal of C; whose corre-
sponding chain is not used by C. Assigning true to these literals we obtain a satisfying
truth assignment for F. Note that this choice is consistent because if C' uses a zigzag
path of a literal in L(v;) then it is forced to pass through all clauses H (C;) that contain
this literal using its corresponding chain.

If F has a satisfying truth assignment then we can define a global circuit as follows.
We traverse M through the “circuit” (vi,...,vn,v1) in the adequate way in each
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variable L(v;): if v; (U;) is false, choose the zigzag path that uses all arcs ay (ay),
k =1,...,4m; . If this path enters a clause H(C;) we traverse a corresponding chain
of v; as follows. If v; is not identified with the free vertex then there exists only one
choice. Otherwise, C; has three literals and one of them makes the clause true. So,
we traverse the corresponding chain of v; that contains the opposite edge of the true
literal. Note that since the literal makes the clause true, the circuit C' cannot enter
again the clause through the corresponding variable. This defines a global circuit

C. [ |
From Lemmas 5.1 and 5.2 we can conclude the following.

Theorem 5.1. The Circuit Cover Problem for planar mized graphs is NP-complete
even with weights restricted to 1 and 2. [ ]

Finally, we have to verify that the Fractional Circuit Cover Problem for planar
mixed graphs is NP-complete. It is sufficient to show that Lemma 5.1 remains valid
if we replace “circuit cover” with “fractional circuit cover”.

Lemma 5.3. The graph (M,p) admits a fractional circuit cover if and only if there
erists a global circuit in M.

Proof. If M contains a global circuit, we can obtain a circuit cover as in the proof of
Lemma 5.1.

On the other hand, suppose that A1,..., A and Ci,...,C; correspond to a frac-
tional circuit cover of (M, p). First, let v be a vertex in (M, p) of degree 3. This vertex
is an extreme of an edge (of weight 2 and two arcs (one entering v and other leaving
v) of weight 1. Then, no circuit C; can use both arcs incident to v. Otherwise, the
edge incident to v would have a positive excess which could not be covered by other
circuits. Hence, it is not hard to see that a circuit C; containing the arc (¢,,s1) must
be a global circuit. ]

From Lemmas 5.2 and 5.3 we have the following.

Theorem 5.2. The Fractional Circuit Cover Problem for planar mized graphs is NP-
complete even with weights restricted to 1 and 2. [ |

Finally, we note that one can prove in a similar way that the decision versions
of the following problems are NP-complete for planar mixed graphs [9]: deciding
whether a weighted mixed graph contains a negative circuit and finding a shortest
path between two given vertices (these were known to be NP-complete for general
mixed graphs [5, 3]).
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