
Discrete Mathematics 308 (2008) 1455–1471
www.elsevier.com/locate/disc

Packing triangles in low degree graphs and indifference graphs�

Gordana Manić∗, Yoshiko Wakabayashi
Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão, 1010—CEP 05508-090–São Paulo, Brazil

Received 5 November 2005; received in revised form 28 August 2006; accepted 11 July 2007
Available online 6 September 2007

Abstract

We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP)
in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems
has ratio 3/2 + ε, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the
size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems,
SIAM J. Discrete Math. 2(1) (1989) 68–72]. We present improvements on the approximation ratio for restricted cases of VTP and
ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio
slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm
for VTP on the class of indifference graphs.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Packing triangles; Approximation algorithm; Polynomial algorithm; Low degree graph; Indifference graph

1. Introduction

For a given family F of sets, a collection of pairwise disjoint sets of F is called a packing of F. The maximum k-set
packing problem, k�2, is defined as follows: given a family F of sets of size precisely k, find a largest packing of F.
This problem is a fundamental combinatorial problem that underlies a range of practical and theoretical problems. The
case k= 2 is the well-known maximum matching problem. We study two special cases of the maximum 3-set packing
problem that are NP-hard.

A cycle of length 3 in a graph G= (VG, EG) is called a triangle. Let TV(G) (resp. TE(G)) denote the collection
of the sets of vertices (resp. edges) of all triangles in G. We address the following problems on simple graphs. Vertex-
disjoint triangle packing (VTP): given a graph G, find a maximum size packing of TV(G), and edge-disjoint triangle
packing (ETP): given a graph G, find a maximum size packing of TE(G). For simplicity, we may also refer to a
collection of vertex-disjoint (resp. edge-disjoint) triangles of a graph G as a packing of TV(G) (resp. TE(G)).

The problem VTP arises in scheduling problems and in 3-grouping problem: given a set of people and the affinities
between them, divide them into groups of three members each, in the way that the persons in each group are mutually

� The first author was partially supported by CAPES, Brazil; the second author was partially supported by ProNEx - FAPESP/CNPq Proc. No.
2003/09925-5 and CNPq Proc. No. 308138/04-0 and 490333/04-4, Brazil.
∗ Corresponding author.

E-mail addresses: gocam@ime.usp.br (G. Manić), yw@ime.usp.br (Y. Wakabayashi).

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.07.100

http://www.elsevier.com/locate/disc
mailto:gocam@ime.usp.br
mailto:yw@ime.usp.br

1456 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

compatible and the number of isolated persons is minimum [7]. The problem ETP has applications in computational
biology [4].

As both problems are NP-hard [14,11], we wish to find good approximation algorithms or special instances amenable
to polynomial algorithms. Given a parameter ��1, a �-approximation algorithm for a maximization problem � is
a polynomial-time algorithm that, for any instance I of � produces a solution whose value is at least (1/�)opt(I),
where opt(I) denotes the optimal solution value for I. We also say that � is the approximation ration. A polynomial-
time approximation scheme (PTAS) for � is a family of algorithms {Aε: ε ∈ (0, 1)} such that for each ε, Aε is a
1/(1− ε)-approximation algorithm for �.

Consider the following local search algorithm HS(T, t), where T is TV(G) for VTP (resp. TE(G) for ETP), and
t is a positive integer.

Algorithm HS(T, t). Given a collection C of disjoint sets constructed so far, check whether there are p� t disjoint
sets in T\C that intersect at most p− 1 sets that are in C. If this happens, swap the sets to form a larger collection C,
and repeat; otherwise, return C (the solution is said to be t-optimal).

A general result of Hurkens and Schrijver [13] on the maximum k-set packing problem implies that the above
algorithm is a (3

2 + ε)-approximation algorithm for both VTP and ETP (ε is inversely proportional to t). This ratio is
tight and is the best approximation ratio known so far for both problems. There are only a few more results concerning
maximum triangle packing problems. For the planar case, Baker [2] presented a PTAS for VTP. According to [4], this
result can be extended to handle ETP as well. Both problems also admit such a scheme for �-precision unit disk graphs
[12]. The problem VTP is NP-hard when restricted to chordal graphs, while it is polynomially solvable on split graphs
and cographs [9]. Recently, Hassin and Rubinstein [10] presented a randomized (169

89 + �)-approximation algorithm for
VTP and also for its weighted version.

For a given integer k�3, we denote by VTP-k (resp. ETP-k), the problem VTP (resp. ETP) on graphs with maximum
degree k. In 2002, Caprara and Rizzi [4] proved that VTP-3 and ETP-4 can be solved in polynomial time, whereas
VTP-4 (see also [3]) and ETP-5 are APX-hard (that is, they do not admit a PTAS, unless P = NP [1]). Chlebík and
Chlebíková [5] showed recently that it is NP-hard to approximate VTP-4 within 95/94. We observe that the ratio
3
2 + ε obtained by Hurkens and Schrijver [13] is tight even for the problem VTP-4. We present improvements on

the approximation ratios of these APX-hard instances: a (3 −
√

13
2 + ε)-approximation algorithm for VTP-4, and a

4
3 -approximation algorithm for ETP-5. We also give an exact linear-time algorithm for VTP on indifference graphs (or,
equivalently, unit interval graphs and proper interval graphs). This result is of interest in view of the many applications
of such graphs in management, psychology, scheduling (see [8]).

1.1. Basic definitions and notation

A natural reduction for both VTP and ETP consists of deleting the edges that do not belong to any triangle. We,
thus, restrict our attention to simple graphs in which every edge belongs to some triangle; these graphs will be called
irredundant. The terminology we use is standard. One exception is that, when we write G − U (for U ⊆ VG or
U ⊆ EG) we assume that isolated vertices and edges that do not belong to any triangle on the graph obtained by
deleting U from G have been removed as well. Graphs G and H intersect if G ∩H is a non-empty graph. The degree
of a triangle T in a graph G, denoted by dG(T), is the number of triangles in G, different from T, that intersect T. We
denote by TG the collection of all triangles in G, and by [u, v, w] the triangle with vertices u, v and w. If two triangles
T1 and T2 of G have only one vertex in common and there is no other triangle in G that intersects both T1 and T2,
we say that the subgraph T1 ∪ T2 is a butterfly in G, and denote by vT1T2

the only vertex in common to T1 and T2. A
collection T of vertex-disjoint triangles in G is locally optimal in G if {VT : T ∈ T} is a maximum packing of the
family {VT : T ∈TG, T intersects a triangle in T}.

The intersection graph of a collection of sets T is the graph H with VH := T and such that T T ′∈EH⇔T ∩ T ′
=∅.
A graph G is an indifference graph if there exists a positive number � and a real-valued function f on VG such that for
all u, v ∈ VG (u
= v), uv is an edge in G whenever |f (u)− f (v)|< �.

In all figures, each square vertex is a vertex common to two triangles in G whose union is a butterfly. A vertex x that
is marked with a circle is saturated, that is, no more edges can be incident to x.

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1457

2. Algorithm for VTP on graphs with maximum degree 4

In this section we restrict our attention to graphs with maximum degree 4 and describe an approximation algorithm,
called VT4k , for VTP on such graphs. This algorithm performs some approximation-preserving reductions to transform
the input graph G into another graph G′ in which every triangle intersects at most 3 other triangles. Then, on the

intersection graph of TG′ it applies the (3−
√

13
2 + 13−√13

52k
)-approximation algorithm of Chlebík and Chlebíková [6],

which we denote by MIS3k (where k is a fixed integer parameter), for the problem of finding a maximum cardinality
independent set of vertices on graphs with maximum degree 3. For k = 4 the above ratio is slightly less than 1.25;
and for k > 65 it is slightly less than 1.2. We note that MIS3k follows essentially the algorithm of Berman and Fujito
[3], but the more detailed analysis done by Chlebík and Chlebíková in [6] improves the ratio (6

5 + 1
5k

) that was
obtained in [3].

A rough sketch of the algorithm VT4k is as follows. In each iteration, we repeatedly add a set T ⊆ TG, |T|�2,
locally optimal in G to A∗ (the set to be returned by the algorithm) and update G. If G still contains a triangle T with
degree greater than 3, the algorithm finds a certain subgraph H that contains T, and applies an appropriate reduction on
H in such a way that in the reduced graph the triangles obtained by this reduction have degree at most 3. The notion of
butterfly is crucial, because the reduction is based on the number of triangles in H that forms a butterfly with a triangle
not in H (which is, as we will prove in Section 2.1, at most 2). We will also prove that for any collection T locally
optimal in G, adding T to the current solution of our algorithm and deleting from G the vertices of all triangles in T
preserves the approximation ratio of the algorithm VT4k . Furthermore, we will prove that every reduction made on a
subgraph H preserves the approximation ratio of the algorithm.

We now give some more details of the algorithm VT4k . In each iteration of the algorithm VT4k , we repeatedly add
a set T ⊆ TG, |T|�2, locally optimal in G to A∗ (and update G) in order to eliminate special instances, that is,
instances that have a locally optimal collection with at most two triangles (some of those special instances are shown
in Fig. 1). By doing this, as we will see later, we are left with only a few general instances that have similar structure. If
G still contains a triangle T with degree greater than 3, the algorithm searches for the subgraph H, defined as a maximal
connected irredundant subgraph of G that contains T and does not contain any butterfly. Exploring the structural
properties of the graph G (irredundancy and degree boundedness), and using the fact that there is no subcollection |T|,
|T|�2, locally optimal in G (otherwise, it would be added to the solution in the first step), we are able to prove that
such a graph H has a very specific structure. More precisely, the number of triangles T ′ in TH for which there exists a
triangle in TG\TH that forms a butterfly with T ′ in G is at most 2. Furthermore, H is isomorphic to one of the graphs
in Fig. 15. It should be noted that our definition of the subgraph H allows us to find it without having to exhaustively
search for subgraphs isomorphic to those of Fig. 15.

We now explain the behaviour of the algorithm in each of the possible cases for the subgraph H. If the subgraph
H has two triangles T ′ and T ′′ that form a butterfly with a triangle not in H, then as we will prove in Section 2.1, H

(a) (b) (c)

(d) (e)

Fig. 1. Examples of instances that have a locally optimal collection T with at most two triangles (the marked triangles are in T, and each square
vertex is a vertex common to two triangles in G whose union is a butterfly). Graphs (c)–(e) are components of G.

1458 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

Fig. 2. Examples of a graph H obtained in the algorithm VT4k (H is the graph with full lines). T ′ (resp. T ′′) is a triangle of H that forms a butterfly
with a triangle T̃ ′ (resp. T̃ ′′) not in H. Note that possibly T̃ ′ = T̃ ′′. (a) Maximum packing {T1, T4, T7} of TV(H) is locally optimal in G. (b)
Maximum packing {T ′, T3, T ′′} of TV(H) is locally optimal in G.

is isomorphic to one of the graphs (a), (b) or (c) of Fig. 15. In all those cases the algorithm performs an appropriate
reduction. Making use of the specific structure of the graph H, the algorithm is able to decide whether there is a
collection T ⊆TH , |T|> 2, locally optimal in G. If such a collection exists, the reduction adds T to A∗ and updates
G. Otherwise, the algorithm reduces H in such a way that in the reduced graph the triangles obtained by the reduction
have degree at most 3. The algorithm decides which of these reductions to apply by comparing the cardinality of the
maximum packings of the TV(H) in the cases when both T ′ and T ′′ are in the packing, when only one of them is in
the packing, and when neither of them is in the packing. In order to give an intuition of the reductions, we present some
examples, shown on Figs. 2 and 3.

Note that for the example in Fig. 2(a), maximum packings of TV(H) in all possible cases (when both T ′, T ′′
are in the packing, when only one of them is in the packing, and when neither of them is in the packing) have the
same cardinality. Observe, furthermore, that these packings are easy to be found. For example, a maximum packing
of TV(H) in the case T ′ is in the packing and T ′′ is not in the packing can be obtained by taking T ′, the triangle T3
(which is locally optimal in H −vT ′′T̃ ′′ −VT ′), and the triangle T6 (which is locally optimal in H −vT ′′T̃ ′′ −VT ′ −VT3).
We will prove that in this case a maximum packing of TV(H) which contains neither T ′ nor T ′′ is locally optimal in
G (in the example, this collection is {T1, T4, T7}). Fig. 2(b) shows a case when T̃ ′ = T̃ ′′, and maximum packings of
TV(H) when bothT ′, T ′′ are in the packing, when only one of them is in the packing, and when neither of them is in
the packing are not all of the same cardinality. We will prove that in this case a maximum packing of TV(H) which
contains both T ′ and T ′′ is locally optimal in G (in the example, this collection is {T ′, T3, T

′′}).
We describe now the algorithm VT4k , but the reader may find useful to read first some comments on Fig. 3 given

later. As for the example in Fig. 3, comparing the maximum packings of TV(H) in all possible cases (when both T ′,
T ′′ are in the packing, when only one of them is in the packing, and when neither of them is in the packing), we note
the following. Even though the packings in (c) and (e) are of the same size, the solution in (e) is a “better solution” than
the solution in (c) (because if we choose {T ′, T5} to be included in the final solution, we must omit the triangle T̃ ′, but
this is not the case if we choose {T1, T4} to be included in the final solution of the algorithm). Similarly, even though
the packings in (d) and (e) are of the same size, choosing {T1, T4} is better than choosing {T1, T

′′} to be included in
the final solution. Hence, it is always good to choose {T ′, T3, T

′′} or {T1, T4} (and include it in the final solution of the
algorithm). Yet, we do not know which one is better globally. Thus, we apply the Reduce1(H), that is, we replace all
the triangles of H, except T ′ and T ′′, with a new triangle TH . We apply the reduction in order to eliminate the triangles
of degree greater than 3, that is, in order to be able to apply the algorithm MIS3k . As we will show later, this reduction
preserves the approximation ratio of the algorithm.

If the subgraph H has only one triangle T ′ such that exists a triangle in TG\TH that forms a butterfly with T ′ in G
then, as we will prove in Section 2.1, H is isomorphic to the graph in Fig. 15(d). Furthermore, G[VH] is a component
of G. Observe that for the graph G[VH] it is easy to find an optimal packing: take T ′, T3, T6, T9, etc. Note that T ′ is
locally optimal in H, T3 is locally optimal in H − VT ′ , T6 is locally optimal in H − VT ′ − VT3 , etc.

If, however, H has no triangle T ′ that forms a butterfly with a triangle in TG\TH , then H is isomorphic to the graph
in Fig. 15(e). Moreover, every vertex has degree 4, and thus, G[VH] is a component of G. Note that if T̃ is any triangle
in H, then H − VT̃ is isomorphic to the graph with full lines shown in Fig. 15(d). We will show, thus, that an optimal
solution of the graph H isomorphic to the graph in Fig. 15(e) can be obtained by taking any triangle T̃ and an optimal
solution of H − VT̃ . An optimal solution of H − VT̃ can be constructed as for the graph in Fig. 15(d).

We repeat the iterations while there exists a triangle in G with degree greater than 3. When there is no more such
triangles, we apply the algorithm MIS3k on the intersection graph of TG. Finally, for every application (in the reverse

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1459

order) of Reduce(H) we do Restore(H), that is, we add the appropriate triangles of H to the final solution of the
algorithm (see Fig. 3).

Algorithm VT4k .
Input: An irredundant graph G with maximum degree 4.
1 A∗ ← ∅
2 while there exists a triangle in G with degree greater than 3
3 do while there exists T ⊆TG, |T|�2, locally optimal in G
4 do Accept(T)

5 if there exists a triangle T ∈TG with dG(T) > 3
6 then H ← maximal connected irredundant subgraph of G that
7 contains T and does not contain any butterfly
8 BH ← {T ′ ∈TH : exists a triangle in TG\TH that forms
9 a butterfly with T ′ in G}
10 switch (|BH |){
11 case 2: Reduce(H)

12 case 1: SolH ← Commit(H); A∗ ←A∗ ∪ SolH
13 case 0: take a triangle T̃ in TH ;
14 SolH ← {T̃ } ∪ Commit(H − VT̃); A∗ ←A∗ ∪ SolH }
15 if G
= ∅ then A∗ ←A∗ ∪MIS3k(intersection graph of TG)

16 for every application (in the reverse order) of Reduce(H) do Restore(H)

17 return A∗.

Each of the procedures of algorithm VT4k is described next in more detail.

(1) Accept(T): Add T to A∗ and delete from G the vertices of all triangles in T. The algorithm executes Accept(T)

not only in line 4, but also in the Reduce(H). As we will show later, the algorithm executes Accept(T) only if
the collection T is locally optimal.

(2) Commit(H): Set E := ∅. While H
= ∅, find a triangle T locally optimal in H, add T to E and delete VT from H.
Return E.

(3) Reduce(H): Given a graph H as defined in the algorithm, with |BH | = 2, this procedure reduces H in such a way
that in the reduced graph the triangles obtained by the reduction have degree at most 3 (in the case of Reduce1(H)

and Reduce2(H)), or adds some triangles of H to A∗ and updates the graph (that is, executes Accept(T), for a
T ⊆TH). More formally, the procedure Reduce(H) is as follows.
Take T ′, T ′′ ∈ BH and T̃ ′, T̃ ′′ ∈TG\TH such that T ′ ∪ T̃ ′ and T ′′ ∪ T̃ ′′ are butterflies in G (possibly T̃ ′ = T̃ ′′).
Let

SolT ′T ′′ := {T ′, T ′′} ∪ Commit(H − VT ′ − VT ′′),

Sol
T ′T ′′ := {T ′} ∪ Commit(H − VT ′ − vT ′′T̃ ′′),

Sol
T
′
T ′′ := {T ′′} ∪ Commit(H − VT ′′ − vT ′T̃ ′),

Sol
T
′
T
′′ := Commit(H − vT ′T̃ ′ − vT ′′T̃ ′′).

As we will see in Section 2.1, SolT ′T ′′ is a maximum packing of TV(H) that contains T ′ and T ′′, Sol
T ′T ′′ is a

maximum packing of TV(H) that contains T ′ but not T ′′, etc.
(a) If |SolT ′T ′′ | = |Sol

T ′T ′′ | = |Sol
T
′
T ′′ | = |Sol

T
′
T
′′ | then Accept (Sol

T
′
T
′′), see Fig. 2(a).

(b) If the equality in (a) is not satisfied and T̃ ′ = T̃ ′′ then Accept (SolT ′T ′′), see Fig. 2(b).
(c) If |SolT ′T ′′ | − 1= |Sol

T ′T ′′ | = |Sol
T
′
T ′′ | = |Sol

T
′
T
′′ | and T̃ ′
= T̃ ′′ then apply Reduce1(H):

G← (G− (EH \{ET ′ ∪ ET ′′ })) ∪ TH ,

where TH := [v′, w, v′′], w is a new vertex, v′ is any vertex of T ′ different from vT ′T̃ ′ , and v′′ is any vertex
of T ′′ different from vT ′′T̃ ′′ . Thus, Reduce1(H) replaces all triangles of H, except T ′ and T ′′, with a new

1460 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

Fig. 3. (a) An example of a graph H obtained in the algorithm VT4k (H is the graph with the full lines). T ′ ∪ T̃ ′ and T ′′ ∪ T̃ ′′ are butterflies in G.
Depending on whether T ′, T ′′ are restricted to be in a maximum packing of TV(H) or not, we have one of the cases (b)–(e). (b) {T ′, T3, T ′′} is a
maximum packing of TV(H) that contains T ′ and T ′′. (c) {T ′, T5} is a maximum packing of TV(H) that contains T ′ but not T ′′. (d) {T1, T ′′}
is a maximum packing of TV(H) that contains T ′′ but not T ′. (e) {T1, T4} is a maximum packing of TV(H) that contains neither T ′ nor T ′′.
(f) and (g) represent Reduce1(H): it replaces all the triangles of H, except T ′ and T ′′, with a new triangle TH . (h) If T ′, T ′′ are in the solution of
the algorithm before applying Restore(H), then the procedure Restore(H) adds T3 to the final solution. (i) If T ′ is in the solution of the algorithm
before applying the Restore(H), but not T ′′, then this procedure adds T5 to the final solution. (j) Similar to case (i). (k) If TH is in the solution of
the algorithm before applying the Restore(H), then the procedure Restore(H) removes TH from the solution and adds T1 and T4 to it.

triangle TH that induces a butterfly with T ′ and with T ′′ in the reduced graph (see Fig. 3 (f) and (g)). We will
prove that T ′ and T ′′ are disjoint, that is, Reduce1(H) is well defined.

(d) If |SolT ′T ′′ | = |Sol
T ′T ′′ | = |Sol

T
′
T ′′ | = |Sol

T
′
T
′′ | + 1 and T̃ ′
= T̃ ′′, then apply Reduce2(H):

G← (G− EH) ∪ T 1
H ∪ T 2

H ,

where T 1
H := [vT ′T̃ ′ , w1, w], T 2

H := [w, w2, vT ′′T̃ ′′] and w1, w, w2 are new vertices. Hence, this reduction
replaces all triangles of H with the new triangles T 1

H and T 2
H , such that T 1

H induces a butterfly with T 2
H and

with T̃ ′; and T 2
H induces a butterfly with T̃ ′′ and with T 1

H on the reduced graph.
(4) Restore(H): If the reduction applied to H was Reduce1(H) or Reduce2(H), then the procedure Restore(H) adds

appropriate triangles of H to A∗.

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1461

Fig. 4. Triangles in BH cannot intersect.

(a) If the reduction applied to H was Reduce1(H), then if TH belongs to A∗ before applying Restore(H), this
procedure removes TH from A∗ and adds to it the set Sol

T
′
T
′′ (computed in Reduce(H)); if T ′, T ′′ ∈ A∗,

then A∗ ← A∗ ∪ SolT ′T ′′ ; if T ′ ∈ A∗, T ′′ /∈A∗, then A∗ ← A∗ ∪ Sol
T ′T ′′ ; and if T ′ /∈A∗, T ′′ ∈ A∗,

then A∗ ←A∗ ∪ Sol
T
′
T ′′ (see Fig. 3).

(b) If, however, the reduction applied to H was Reduce2(H), then if T 1
H belongs to A∗ before applying

Restore(H), this procedure adds Sol
T ′T ′′ to A∗ and removes T 1

H ; if T 2
H ∈A∗, then adds Sol

T
′
T ′′ to A∗ and

removes T 2
H ; and if T 1

H , T 2
H /∈A∗, then adds Sol

T
′
T
′′ to A∗.

2.1. Analysis and the approximation ratio of VT4k

We first observe the following fact.

If H is a butterfly-free graph, and T1, T2 are triangles of H that

have only one vertex z in common, then there is at least one edge

of H with one endpoint in VT1\{z} and another in VT2\{z}. (1)

This is because the degree bound 4 has already been met at z.

Lemma 1. For each iteration of the algorithm VT4k for which the condition in line 5 is satisfied, if |BH | = 2, then the
triangles in BH are disjoint.

Proof. Let G be the graph in line 5 of the algorithm VT4k , H the subgraph of G (as defined in line 6) with |BH | = 2,
and T ′, T ′′, T̃ ′, T̃ ′′ as defined in Reduce(H).

Suppose that |VT ′ ∩VT ′′ | = 2, say VT ′ ∩VT ′′ = {x, y}. If T̃ ′ = T̃ ′′, then T ′ ∪ T̃ ′ is not a butterfly in G, a contradiction
(see Fig. 4(a)). Thus, T̃ ′
= T̃ ′′. From the facts that vT ′T̃ ′ and vT ′′T̃ ′′ are already saturated, T ′ ∪ T̃ ′ (resp. T ′′ ∪ T̃ ′′)is a
butterfly in G, and �(G)= 4, we conclude that there is at most one more triangle in G that intersects x or y, namely the
triangle [x, y, z]. Note that now also both x and y are saturated. Since H is butterfly-free, there is no triangle in H other
than [x, y, z] which contains z (note that z can be a vertex in the intersection of two triangles that form a butterfly). We
have thus showed that H contains T ′, T ′′ and at most one more triangle [x, y, z] (see Fig. 4(b)). But this implies that
H does not have a triangle T with dG(T) > 3, a contradiction.

Suppose now that T ′ and T ′′ have only one vertex in common. Similarly as above, we have T̃ ′
= T̃ ′′. If T ′ =
{vT ′T̃ ′ , x, z} and T ′′ = {vT ′′T̃ ′′ , z, y}, since vT ′T̃ ′ and vT ′′T̃ ′′ are already saturated, using the fact (1), we have that
xy ∈ EH . Now, from the facts that H has a triangle T with dG(T) > 3, z is saturated and �(G)= 4, we conclude that
there is at most one triangle in G that intersects x or y, namely the triangle [x, y, p] (see Fig. 4(c)). But now, both x and
y are saturated and [x, y, z] is locally optimal in G. Thus, the algorithm would have applied Accept([x, y, z]) in line 4,
and we again obtain a contradiction. �

Corollary 2. Reduce1(H) is well defined and it does not create new triangles in G, except for TH .

Proof. Follows directly from Lemma 1. �

We observe, furthermore, that Reduce2(H) does not create any new triangles in G except for T 1
H and T 2

H , because
T̃ ′
= T̃ ′′.

1462 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

Fig. 5. Cases when dH (T)= 4.

Fig. 6. Cases when dH (T)= 3.

It is easy to see that after the execution of Reduce1(H) or Reduce2(H), the graph obtained still has maximum degree
4, and is irredundant. We will show that all other reductions applied in the algorithm consist of adding a collection T
locally optimal in G to A∗, and deleting from G the vertices of all triangles in T. Thus, the structural properties of the
input graph (maximum degree 4 and irredundancy) are maintained in each iteration.

Moreover, we observe that

For any iteration of the algorithm for which there exists a triangle

in G with degree greater than 3, where G is the graph in line 5,

there is no subcollection T, |T|�2, locally optimal in G. (2)

Otherwise, of course, the algorithm would have applied Accept(T) in line 4.

Lemma 3. For each iteration of the algorithm VT4k , we have that dG(x)�3 for all x ∈ VH , where H is the graph in
line 6.

Proof. Suppose that H has a vertex x with dG(x)= 2, and let T be the triangle in H that contains x. If just one triangle
of G is adjacent to T, then T would be locally optimal in G, a contradiction with (2). Thus, dG(T)�2. If there are two
vertex-disjoint triangles T1 and T2 that intersect T, then T ∪ T1 and T ∪ T2 are butterflies in G, that is, H = T , which is
impossible (since H has a triangle with degree in G greater than 3). Thus, the triangles that have a vertex in common
with T intersect pairwise, that is, T is locally optimal in G, which contradicts (2). �

Theorem 4. For each iteration of the algorithm VT4k , we have that |BH |�2.

Proof. Suppose that BH
= ∅, and let T be any triangle in BH . By the definition of BH , triangle T forms a butterfly
with a triangle T̃ /∈TH .

If dH (T) = 4, then using the facts that �(G) = 4 and T ∪ T̃ is a butterfly in G, we conclude that the subgraph of
H induced by the triangle T and the triangles of H that intersect T is isomorphic to the graph in Fig. 5(a). Note that y
and z are saturated. Furthermore, since �(G)= 4, the vertex t (resp. w) of the graph shown in Fig. 5(a) is not a vertex
in the intersection of two triangles that form a butterfly in G. Hence, if H is isomorphic to the graph in Fig. 5(a), then
[y, t, w] would be locally optimal in G, which contradicts (2). Thus, since vT T̃ , y and z are already saturated, there is
a vertex p adjacent to t and w. Note that now t and w are also saturated. From Lemma 3 it follows that dG(p)�3, that
is, the triangle [t, p, w] is also in BH , and thus, |BH | = 2. Observe that H is isomorphic to the graph in Fig. 5(b).

If, however, dH (T)= 3, then since �(G)= 4 and T ∪ T̃ is a butterfly in G, the subgraph of H induced by the triangle
T and the triangles of H that intersect T is isomorphic to the graph in Fig. 6(a) (note that y, p and z are saturated). If
H is isomorphic to the graph in Fig. 6(a), then [y, p, z] is locally optimal in G, a contradiction. Thus, tw ∈ EH . If
dG(t)= dG(w)= 3, then [t, p, w] is locally optimal in G, again a contradiction. Hence, there is a vertex l adjacent to t
and w. Note that now t and w are also saturated. From Lemma 3 it follows that dG(l)�3, that is, the triangle [t, l, w]
also belongs to BH , and thus |BH | = 2. Observe that H is isomorphic to the graph in Fig. 6(b).

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1463

Fig. 7. If dH (T)= 2, the subgraph of H induced by T and the triangles of H that intersect T is not isomorphic to the graph in (a), but to the graph in
(b). In (b), the vertex y is saturated because dH (T)= 2.

Fig. 8. Possible configurations when dH (T)= 2. In (a), |BH | = 2, and the graph H has at least seven vertices. In (b), full lines indicate edges in H.
The graph (b) has at least nine vertices, G[VH] is a component of G, xy is not an edge of G, and |BH | = 1.

If dH (T)= 2, and the subgraph of H induced by T and the triangles of H that intersect T is isomorphic to the graph
in Fig. 7(a), then clearly, tw /∈EH . Furthermore, T ∪ T̃ is a butterfly in G, and vT T̃ , z, y are saturated. Hence, from
Lemma 3 we have that [y, t, z] (resp. [y, w, z]) forms a butterfly with a triangle not in H, with the vertex t (resp. w)
being in the intersection of the triangles that form such butterfly. Thus, from the definition of H, it follows that in this
case H is isomorphic to the graph in Fig. 7(a). But then, H does not have a triangle with degree greater than 3 in G, a
contradiction. Hence, the subgraph of H induced by T and the triangles of H that intersect T is isomorphic to the graph
in Fig. 7(b).

Now, since T ∪ T̃ is a butterfly in G, �(G)= 4, G is irredundant and H is butterfly-free, we have the following two
possibilities.

• H is isomorphic to the graph in Fig. 8(a). Note that H can have odd or even number of triangles (the configuration
of the graph H with even number of triangles is similar to that of Fig. 8(a)). Since H has a triangle with the degree
in G greater than 3, this graph H has at least seven vertices. Furthermore, by Lemma 3, dG(x)�3, that is, |BH | = 2
for that graph.
• H is isomorphic to the graph in Fig. 8(b) (full lines indicate edges in H). Note that H can have odd or even number

of triangles (the configuration of the graph H with even number of triangles is similar to that of Fig. 8(b)). Observe,
furthermore, that xy /∈EG and T forms a butterfly with the triangle [vT T̃ , z, x]. We next show that

G[VH] is a component of G. (3)

Suppose that (3) does not hold. Since all the vertices of graph in Fig. 8(b) have degree 4 in G, except for x and y, then
there is a vertex w /∈VH such that, without loss of generality, xw ∈ EG. From degree boundedness and the fact that
xy /∈EG, we conclude that xw is not an edge of any triangle, a contradiction. Hence, the statement (3) holds, and we
have that |VH |�9 (otherwise, H would have T, |T|�2 locally optimal in G). Note, furthermore, that |BH | = 1.

We proved, thus, that |BH |�2 in all possible cases. �

Lemma 5. For each iteration of the algorithm VT4k , if BH =∅, then dH (x)�3 for all x ∈ VH , and H is a component
of G.

Proof. Suppose that there exists x ∈ VH with dH (x)= 2. Then Lemma 3 implies that there is an edge xw not in EH .
From the irredundancy of G, we have that xw is the edge of a triangle T̃ ∈TG\TH . Since BH = ∅, then T̃ does not
induce a butterfly with a triangle of H. Furthermore, x is in VH and thus, by the definition of H we have that T̃ ∈TH ,
a contradiction. Similarly we have that H is a component of G. �

1464 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

Fig. 9. Case where every pair of triangles in H has two vertices in common is not possible.

Fig. 10. Graph H when rz, pt is in EH , and pr is not in EH . Dashed lines can not be edges of H.

Fig. 11. Cases when rz is not in EH , and ry is in EH .

Theorem 6. For each iteration of the algorithm VT4k , if |BH |�1, then G[VH] is a component of G and SolH is an
optimal solution in that component (where SolH is the set as defined in lines 12 and 14 of the algorithm VT4k).

Proof. As we saw in the proof of Theorem 4, if |BH | = 1, then H is isomorphic to the graph in Fig. 8(b) (with the
full lines being the edges of H), and G[VH] is a component of G. Note that in this case Commit(H) is a packing of
TV(H) that covers all the vertices of H, except at most two of them, and thus, Commit(H) is an optimal solution of
the component G[VH].

Suppose now that BH =∅. From Lemma 5, it follows that H is a component of G, and thus, |VH |�9 (for otherwise,
G would have T, |T|�2 locally optimal).

If every pair of triangles in H has two vertices in common, then H is isomorphic to the graph in Fig. 9. Hence, H
does not have a triangle T with dG(T) > 3, a contradiction.

Let then T1 = [x, y, z] and T2 = [x, t, r] be triangles of H with only one vertex in common. Since H does not have
a butterfly, using the fact (1), we may assume, without loss of generality, that yt ∈ EH . Now we have the following
possibilities.

(i) rz ∈ EH . Since |VH |> 5, using the degree boundedness and irredundancy, we have that there exists a vertex p
adjacent to, without loss of generality, y and z. From Lemma 5, we have that dH (p)�3. Thus, as H is butterfly-free
and irredundant, and x, y, z are already saturated, it follows that pt ∈ EH or pr ∈ EH . If both pt and pr are edges
of H, then all vertices of H are saturated, and |VH |�8, a contradiction with the fact that |VH |�9. If, however,
pt ∈ EH , pr /∈EH (see Fig. 10) then there is no new vertex k adjacent to r or p. Indeed, suppose that there is a new
vertex k such that, without loss of generality, rk ∈ EG. From the degree boundedness and the fact that pr /∈EH ,
it follows that rk is not an edge of any triangle, a contradiction. Thus again, |VH |�8, a contradiction. Similarly if
pt /∈EH , pr ∈ EH .

(ii) rz /∈EH , ry ∈ EH . If tz ∈ EH , then of course, x, y, t are saturated. Since rz /∈EH , similarly as above, we
conclude that there is no vertex k adjacent to r or z. Thus, H is isomorphic to the graph in Fig. 11(a) and |VH |�8,

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1465

Fig. 12. Case when rz, ry, tz are not edges of H and there exists a vertex p adjacent to t and y in H.

Fig. 13. Cases when rz, ry, tz are not edges of H and there is no vertex adjacent to t and y in H.

Fig. 14. A graph H that has the graph in (a) as a subgraph and satisfies BH = ∅ is isomorphic to the graph in (b).

a contradiction. If, however, tz /∈EH , then from (2) we have that |VH |> 5. Thus, since tz, rz /∈EH , the only way
to expand the graph is by a new vertex w adjacent to t and r. Now, from Lemma 5, we have that dH (z)�3 and
dH (w)�3. Since x, y, r, t are already saturated, the only possible configuration of H is shown in Fig. 11(b). But
then, H has a butterfly [r, t, w] ∪ [w, k, z], a contradiction.

(iii) rz, ry /∈EH , tz ∈ EH . Note that this case is equivalent to the case (ii) when tz /∈EH .
(iv) rz, ry, tz /∈EH .

(1) There exists a vertex p adjacent to t and y in H. Since x, y, t are saturated, from Lemma 5 and the fact that
H is butterfly-free, we have that rp, pz ∈ EH , and then again |VH |�8, a contradiction (see Fig. 12).

(2) There is no vertex adjacent to t and y in H. Since |VH |> 5, there is a vertex p adjacent to, without loss of
generality, y and z. Since case (i) does not occur, we have that tp /∈EH . Indeed, if tp ∈ EH , we would have a
graph (the graph in Fig. 13(a) induced by the vertices x, y, z, t, p) isomorphic to the graph in Fig. 10 induced
by the vertices x, y, z, t, r (which we showed to be impossible). Suppose now that there is no vertex that
is adjacent to both p and z, or adjacent to both r and t. Then, from Lemma 5 and tp, rz /∈EH follows that
pr ∈ EH . From the irredundancy of H and the fact that tp, rz /∈EH we have that there is a triangle [p, r, l]
in H that contains the edge pr. Now, our hypothesis (that there is no vertex that is adjacent to both p and z, or
adjacent to both r and t) implies that lt, lz /∈EH , and thus, the graph H has a butterfly [r, p, l] ∪ [r, t, x] (see
Fig. 13(b)), a contradiction. We conclude, thus, that there is a vertex l adjacent to, without loss of generality,
p and z (Fig. 14(a)). Note that a graph H that has the graph in Fig. 14(a) as a subgraph and satisfies BH = ∅
is isomorphic to the graph in Fig. 14(b). Observe that H can have odd or even number of triangles (the
configuration of the graph H with even number of triangles is similar to that of Fig. 14(b)). Since all the
vertices in this graph are saturated, H is a component of G, and thus |VH |�9 (for otherwise, H would have
T, |T|�2, locally optimal in G). Observe that if T̃ is a triangle in H, then H − VT̃ is isomorphic to the
graph with full lines shown in Fig. 8(b) (but now with at least six vertices). Thus, Commit(H − VT̃) is a
vertex-disjoint packing of triangles in H − VT̃ that covers all vertices of H − VT̃ , except at most two. Since
|VH | = |VH−VT̃

| + 3, we have that T̃ ∪ Commit(H − VT̃) is an optimal solution in H. �

1466 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

Fig. 15. Possible configurations of graph H. Each square vertex is a vertex common to two triangles in G whose union is a butterfly. The graph (c)
has at least seven vertices. The graphs (d) and (e) have at least nine vertices, and G[VH] is a component of G (in (d) xy is not an edge of G, and
dotted lines indicate edges that are in EG, but not in EH). Note that in (d) T ′ induces a butterfly with the triangle [v

T ′T̃ ′ , x, z]. In (c)–(e) H can
have odd or even number of triangles (the configuration of H with even number of triangles is similar to that of graphs shown on this figure).

Corollary 7. For each iteration of the algorithm VT4k , the graph H is isomorphic to one of the graphs in Fig. 15.

Proof. Follows from the proofs of Theorems 4 and 6. �

Theorem 8. If T is locally optimal in G, then Accept(T) preserves the approximation ratio of the algorithm VT4k .

Proof. We note, initially, that there exists a maximum packing of TV(G) which contains T. Indeed, if a maximum
packing of TV(G) does not contain T, we can replace the triangles that intersect a triangle in T, with T. Hence, for
G′ := G −⋃

T ∈TVT we have opt(G′)�opt(G) − |T|. Thus, if a packing A of TV(G′) satisfies opt(G′)��|A|
(with ��1), then opt(G)�opt(G′)+ |T|��|A| + |T|��|A ∪T|. �

Corollary 9. If T is locally optimal in a graph G and A is a maximum vertex-disjoint packing of triangles in
G−⋃

T ∈T VT , then A ∪T is a maximum packing of TV(G).

Proof. Follows directly from the proof of Theorem 8 (take �= 1). �

Theorem 10. Reduce(H) preserves the approximation ratio of the algorithm VT4k .

Proof. Consider any iteration of the algorithm for which there exists a triangle in G with degree greater than 3 (where
G is the graph in line 5), and |BH | = 2. From Corollary 7 it follows that H is one of the graphs in Fig. 15(a), (b) or (c).
Note that

if K is any of the graphs H − VT ′ − VT ′′ , H − VT ′ − vT ′′T̃ ′′ ,

H − VT ′′ − vT ′T̃ ′ , H − vT ′T̃ ′ − vT ′′T̃ ′′ , then Commit(K) is a maximum

packing of TV(K). (4)

Therefore, SolT ′T ′′ is a maximum packing of TV(H) that contains T ′ and T ′′, Sol
T ′T ′′ is a maximum packing of

TV(H) that contains T ′ but not T ′′, etc. Besides, for H isomorphic to one of the graphs in Fig. 15(a), (b) or (c), the
equalities listed in the definition of Reduce(H) cover all possible relations between the cardinalities of the sets SolT ′T ′′ ,
Sol

T ′T ′′ , Sol
T
′
T ′′ and Sol

T
′
T
′′ .

Suppose that the equality in 3(a) is satisfied. From the definition of graph H and the fact that T ′∪T̃ ′ (resp. T ′′∪T̃ ′′) is a
butterfly in G, we have that the triangles in H that have a vertex in common with T ′ (resp. T ′′) intersect pairwise (the proof
is similar to the proof of Lemma 3). Moreover, we saw that T ′ and T ′′ are disjoint, and consequently, {T ′, T ′′} is locally
optimal in H. Thus, from statement (4) (take K=H −VT ′ −VT ′′) and Corollary 9, it follows that SolT ′T ′′ is a maximum
packing of TV(H). Since |SolT ′T ′′ | = |Sol

T
′
T
′′ |, Sol

T
′
T
′′ is also a maximum packing of TV(H). Note that {T ∈TG :

T intersects a triangle in Sol
T
′
T
′′ } ⊆ TH . Furthermore, TH ⊆ {T ∈ TG : T intersects a triangle in Sol

T
′
T
′′ }, for

otherwise, Sol
T
′
T
′′ would not be a maximum packing of TV(H). Thus, Sol

T
′
T
′′ is locally optimal in G and by Theorem

8, Accept(Sol
T
′
T
′′) preserves the approximation ratio of the algorithm.

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1467

Suppose now that the equality in 3(a) is not satisfied and T̃ ′ = T̃ ′′. Let A be a maximum packing of TV(H ∪ T̃ ′). If
T̃ ′ ∈A, then of course, |A|=|Sol

T
′
T
′′ |+1; and if T̃ ′ /∈A, then |A|=|SolT ′T ′′ | (since |Sol

T ′T ′′ |, |Sol
T
′
T ′′ |, |Sol

T
′
T
′′ |�

|SolT ′T ′′ |).The equality in 3(a) is not satisfied, that is, one of the equalities in 3(c) or (d) is satisfied, and hence,
|SolT ′T ′′ | = |Sol

T
′
T
′′ | + 1. Therefore, SolT ′T ′′ is a maximum packing of TV(H ∪ T̃ ′). Now, similarly as above, we

conclude that {T ∈TG : T intersects a triangle in SolT ′T ′′ } =TH ∪ T̃ ′. Hence, SolT ′T ′′ is locally optimal in G, and
Theorem 8 implies that Accept(SolT ′T ′′) preserves the approximation ratio of the algorithm.

If one of the equalities in 3(c) or (d) is satisfied and T̃ ′
= T̃ ′′, we define GA to be the graph G before Reduce1(H)

(resp. Reduce2(H)) is applied, and GP to be the graph G immediately after the application of Reduce1(H) (resp.
Reduce2(H)). Furthermore, let AP be a maximal vertex-disjoint packing of triangles in GP .

Suppose that the equality in 3(c) is satisfied and T̃ ′
= T̃ ′′. We show initially that

opt(GP)�opt(GA)− |Sol
T
′
T
′′ | + 1. (5)

LetT∗A be a set of triangles that is a maximum packing ofTV(GA). If T ′, T ′′ ∈T∗A, then |T∗A∩TH |=|SolT ′T ′′ |, since
SolT ′T ′′ is a maximum packing ofTV(H) that containsT ′ andT ′′. Hence,T∗A\(TH \{T ′, T ′′}) is a packing ofTV(GP)

whose size is opt(GA)− |SolT ′T ′′ | + 2= opt(GA)− |Sol
T
′
T
′′ | + 1. If T ′, T ′′ /∈T∗A, then |T∗A ∩TH | = |Sol

T
′
T
′′ |,and

thus, (T∗A\TH) ∪ {TH } is a packing of TV(GP) of cardinality opt(GA)− |Sol
T
′
T
′′ | + 1. If, however, T ′ ∈T∗A and

T ′′ /∈T∗A, then T∗A\(TH \{T ′}) is a packing of TV(GP) of size opt(GA)−|Sol
T ′T ′′ | + 1= opt(GA)−|Sol

T
′
T
′′ | + 1.

Similarly if T ′ /∈T∗A and T ′′ ∈T∗A. Hence, the statement (5) holds.
Note that since AP is maximal, at least one of T ′, T ′′, TH is in AP . We define now the set AA (in accordance with

Restore(H)):

AA :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AP \{TH } ∪ Sol
T
′
T
′′ if TH ∈AP ,

AP ∪ SolT ′T ′′ if T ′, T ′′ ∈AP ,

AP ∪ Sol
T ′T ′′ if T ′ ∈AP , T ′′ /∈AP ,

AP ∪ Sol
T
′
T ′′ if T ′ /∈AP , T ′′ ∈AP .

We show next that

|AA| = |AP | + |Sol
T
′
T
′′ | − 1 (6)

and

AA is a maximal packing in TV(GA). (7)

If TH ∈ AP , then of course, |AA| = |AP | + |Sol
T
′
T
′′ | − 1. If T ′, T ′′ ∈ AP , then |AA| = |AP | + |SolT ′T ′′ | − 2 =

|AP | + |Sol
T
′
T
′′ | − 1. If, however, T ′ ∈AP , T ′′ /∈AP , then |AA| = |AP | + |Sol

T ′T ′′ | − 1= |AP | + |Sol
T
′
T
′′ | − 1.

Similarly if T ′ /∈AP , T ′′ ∈AP . Hence, claim (6) holds. From (4) and the maximality of AP , it follows that AA is a
maximal packing of TV(GA) in all cases. Thus, we conclude that (7) holds.

If opt(GP)��|AP | (for some ��1), then from (5) and (6) we have opt(GA)�opt(GP)+|Sol
T
′
T
′′ |−1��|AP |+

|Sol
T
′
T
′′ | − 1= �(|AA| − |Sol

T
′
T
′′ | + 1)+ |Sol

T
′
T
′′ | − 1. Note that |Sol

T
′
T
′′ |�1,and thus opt(GA)��|AA|.

We remark that the algorithm MIS3k returns a maximal independent set of vertices, and hence, immediately after
line 15, A∗ is a maximal packing of TV(G). Observe that the restorations of subgraphs are done in the reverse order of
their reductions. Hence, using (7), one can deduce by induction that for each Reduce1(H) applied in the algorithm, if
GP is the graph as defined previously, then AP is a maximal packing of TV(GP). It follows, thus, that Restore(H) is
well defined, that is, at least one of T ′, T ′′, TH belongs toA∗ before applying Restore(H). Furthermore, as we saw,AA

is a packing of TV(GA), and opt(GP)��|AP | implies opt(GA)��|AA|. We conclude thus that each Reduce1(H)

(and corresponding Restore(H)) preserves the approximation ratio of the algorithm.
The proof of the fact that Reduce2(H) (and corresponding Restore(H)) preserves the approximation ratio is

analogous. �

Theorem 11. The algorithm VT4k is a (3−
√

13
2 + 13−√13

52k
)-approximation algorithm for VTP-4.

Proof. According to Theorems 6, 8 and 10, all reductions applied in Algorithm VT4k preserve the approximation ratio.
Thus, the approximation ratio of VT4k is that of MIS3k . �

1468 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

It should be noted that Algorithm VT4k does not search exhaustively for the graphs shown in Fig. 15; hence if no
call is made to MIS3k , the algorithm VT4k finds an optimal solution and can be implemented to run in no more than
O(n3) time, where n is the number of vertices of the input graph. The time complexity of VT4k is dominated by that of
MIS3k , which is O(nO(k)). Thus, any improvement on the approximation ratio and/or time complexity of algorithms for
the maximum independent set problem on graphs with maximum degree 3 will lead to an improvement on the quality
of VT4k .

3. Algorithm for ETP on graphs with maximum degree 5

In this section we restrict our attention to graphs with maximum degree 5 and describe an approximation algorithm
called ET5 for ETP on such graphs. For that, consider the graph shown in Fig. 16, called Hajós graph, which will be
denoted by H := H [T1, T2, T3]. This graph consists of a circuit of length 6 together with three chords that induce a
triangle; the other three triangles containing one of these chords are denoted by T1, T2 and T3.

Algorithm ET5.
Input: A graph G with maximum degree 5.
1 A∗ ← ∅
2 while G contains a Hajós graph H =H [T1, T2, T3]
3 do {A∗ ←A∗ ∪ {T1, T2, T3}, G← G− EH }
4 return A∗ ∪ {T : ET ∈ HS(TE(G), 3)}.

3.1. Analysis of the performance ratio of ET5

To obtain the approximation ratio of ET5, we need the following lemmas.

Lemma 12. If G is a graph that contains a Hajós graph H, then the number of triangles in any maximum packing of
TE(G) that share an edge with H is at most 4.

The proof of the above lemma can be easily obtained by inspection (using the degree boundedness).

Lemma 13. The algorithm HS(TE(G), 3) is a 4
3 -approximation algorithm for the problem ETP-5 on a graph G that

does not contain a Hajós graph.

Proof. The proof is by induction on the number of triangles in G. For |TG|= 0 and |TG|= 1, the proof is immediate.
Let G be a graph with |TG|> 1, T∗ a maximum packing of TE(G), and A∗ := {T : ET ∈ HS(TE(G), 3)}. We
show next that there exists a collection of triangles A such that

A ⊆A∗, |A|�3 and |T|/|A|� 4
3 , where T is the set of triangles from

T∗ that share an edge with a triangle in A. (8)

For that, we analyse four cases.

(i) If there exists a triangle T ∈A∗ ∩T∗, then we take A := {T }.
(ii) If case (i) is not satisfied and A∗ has distinct triangles T1, T2, T3 such that |VT1 ∩ VT2 | = |VT2 ∩ VT3 | = 1, then we

take A := {T1, T2, T3} (see Fig. 17). Using the fact that G does not contain a Hajós graph and that the maximum

Fig. 16. Hajós graph denoted by H [T1, T2, T3].

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1469

Fig. 17. Triangles T1, T2 and T3 from the case (ii).

Fig. 18. The algorithm HS(TE(G), 3) can possibly return the set of the six marked triangles.

degree of G is 5, it is easy to see that the number of triangles in T∗ that share an edge with a triangle in A is at
most 4.

(iii) If cases (i) and (ii) are not satisfied, and A∗ has distinct triangles T1 and T2 such that |VT1 ∩VT2 | = 1, then we take
A := {T1, T2}. Suppose that |T|�3. If no triangle in A∗, other than T1 and T2, shares an edge with a triangle in
T, then T1 and T2 could be replaced by T, a contradiction. Thus, there is a triangle T3 (T3
= T1, T2) in A∗ that
shares an edge with a triangle in T. Since G does not contain a Hajós graph, we have that T1, T2 and T3 are as in
case (ii), which is again a contradiction. We conclude, thus, that |T|�2.

(iv) If cases (i)–(iii) are not satisfied, then let T1 be any triangle in A∗ and A := {T1}. Suppose |T|�2. If the only
triangle in A∗ that shares an edge with a triangle in T is T1, then T1 could be replaced by T, a contradiction.
Thus, there is a triangleT2 (T2
= T1) in A∗ that shares an edge with a triangle in T, that is, we have the case (iii),
a contradiction. We conclude that |T|�1.

In all cases above we conclude that claim (8) holds. Let A be a collection that satisfies (8) and G′ := G−⋃
T ∈A ET .

Observe thatA∗\A is 3-optimal in G′ (for otherwise,A∗ would not be 3-optimal in G). Thus, the induction hypothesis
implies that opt(G′)� 4

3 |A∗\A|. Hence,

opt(G)�opt(G′)+ |T|� 4
3 |A∗\A| + |T| = 4

3 |A∗| − 4
3 |A| + |T|.

Since |T|/|A|� 4
3 , from the above inequalities we conclude that opt(G)� 4

3 |A∗|. �

Theorem 14. The algorithm ET5 is a 4
3 -approximation algorithm for the problem ETP-5.

Proof. Follows directly from Lemmas 12 and Lemma 13. �

It is not difficult to show that the ratio 4
3 is tight. As for the time complexity of the algorithm ET5, we note that it

can be implemented to run in O(n3) time, where n is the number of vertices of the input graph.
A natural question that arises is whether the local search algorithm of Hurkens and Schrijver performs better on

graphs with maximum degree 5. We note that the tight instance of the k-set packing problem presented by Hurkens
and Schrijver [13] leads to a graph G for which the value of the optETP(G) to the value of the solution obtained by
the algorithm HS(TE(G), t) approaches 3/2 (as t increases), but �(G) = 6. However, we found some examples of
irredundant graphs with maximum degree 5 for which the local search algorithm achieves the ratio 3/2 for t = 3. In
Fig. 18 we show a graph G with �(G)= 5, for which optETP(G)= 9 and HS(TE(G), 3) can possibly output a solution
with six triangles. For this example ET5 finds an optimal solution. We do not have examples for t > 3, but we note
that in this case, the running time of the algorithm HS(TE(G), t) is worse than that of ET5. Possibly, for t > 3, the
performance ratio of HS(TE(G), t) on graph with �(G)= 5 is better than 3/2 + ε. It would be interesting to decide
whether this is the case.

1470 G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471

4. The problem VTP on indifference graphs

It is well known that the class of the indifference graphs is contained in the class of interval graphs (see [8]). Formally,
an interval graph is the intersection graph of a finite set of intervals in R. When the intervals have the same length, we
have a unit interval graph. When no interval contains another, we have a proper interval graph. Roberts [16] showed
that the classes of indifference, proper interval and unit interval graphs are all equivalent.

For the next result we use the following characterization obtained by Looges and Olariu [15]: a graph G is an
indifference graph if, and only if, there exists a linear order < (which we call canonical) on VG such that, for every
choice of vertices u, v, w we have that

if u < v < w and uw ∈ EG then uv, vw ∈ EG. (9)

Algorithm VTindifference.
Input: An indifference graph G.
1 Find a canonical order v1 < v2 < · · ·< vn on VG

2 A∗ ← ∅
3 for i ← 1 to |VG| − 2
4 do if vivi+2 ∈ EG then {T ← [vi, vi+1, vi+2], A∗ ←A∗ ∪ T , G← G− VT }
5 return A∗.

Theorem 15. The algorithm VTindifference applied to an indifference graph G returns a maximum packing ofTV(G)

in linear time.

Proof. Suppose that, for an indifference graph G, the collectionA∗ returned by the algorithm is not an optimal solution.
Let T∗ be a maximum packing of TV(G) that has the maximum number of triangles in common with A∗, and i the
smallest number such that [vi, vi+1, vi+2] ∈A∗\T∗. We denote the triangle [vi, vi+1, vi+2] by T and show that

if T ′ ∈T∗, T ′ ∩ T
= ∅ and vj ∈ VT ′ \VT then j > i + 2. (10)

Suppose, by contradiction, that j � i + 2. Since vj /∈VT , we have j < i.
If vj is a vertex of a triangle T ′′ in A∗, from the definition of the number i and the fact that j < i, we have

T ′′ ∈ T∗ ∩A∗. Furthermore, T ∈ A∗, T ′ ∩ T
= ∅ imply that T ′ /∈A∗, and thus T ′
= T ′′. Note that vj is covered
by T ′ and T ′′, both in T∗, which is impossible. It follows, thus, that vj is not covered by a triangle in A∗. We analyse
two possible cases.

(i) vjvi+1 ∈ EG or vjvi+2 ∈ EG. From j < i and (9), it follows that vjvj+2 ∈ EG. Since vj is not covered by a
triangle in A∗, the algorithm would include [vj , vj+1, vj+2] in the solution, a contradiction.

(ii) vjvi+1, vj vi+2 /∈EG. Then of course vi, vj ∈ VT ′ . Let vk be the third vertex of T ′. Note that vk /∈VT .If k� i + 2
then, analogously as for vj , it follows that k < i and vk is not covered by a triangle in A∗. For l := min{j, k}, the
facts that j, k < i, vlvi ∈ EG and (9) imply vlvl+2 ∈ EG. But then, the algorithm would include [vl, vl+1, vl+2] in
the solution, a contradiction. If k > i + 2 then j < i, vjvk ∈ EG and (9) imply that vjvj+2 ∈ EG, which is again a
contradiction.

We have thus proved (10).
Now, if only one triangle T1 from T∗ intersects T, by replacing T1 with T, we obtain a maximum packing of TV(G)

that has more triangles in common with A∗ than T∗ does, a contradiction.
If exactly two triangles, T1 and T2, from T∗ intersect T, then since T1 and T2 are vertex-disjoint, there are at least

three distinct vertices, say vk, vl and vp in (VT1 ∪ VT2)\VT . From (10) we have that k, l, p > i + 2. Suppose, without
loss of generality, that p=max{k, l, p}. Since vp is adjacent to at least one of the vi, vi+1, vi+2, and k, l, p > i+2, (9)
implies that [vk, vl, vp] is a triangle in G. By replacing T1 and T2 with T and [vk, vl, vp], we obtain an optimal solution
which has more triangles in common with A∗ than T∗ does, a contradiction.

If three triangles, T1, T2, and T3 from T∗ intersect T, then there are six distinct vertices in (VT1 ∪ VT2 ∪ VT3)\VT .
By (10), the indices of all those vertices are greater than i + 2. Furthermore, similarly as above, using (9) we obtain

G. Manić, Y. Wakabayashi / Discrete Mathematics 308 (2008) 1455–1471 1471

that they induce a complete subgraph in G. Thus, we can replace T1, T2 and T3 with T and two other vertex-disjoint
triangles, whose vertices are in (VT1 ∪ VT2 ∪ VT3)\VT . This is again a contradiction.

Since the canonical order can be computed in linear time [15], it follows that the algorithm is linear. �

We observe that there exists an interval graph that is not an indifference graph, for which our greedy algorithm fails
to return a maximum vertex-disjoint triangle packing. However, algorithm VTindifference can be generalized in a way
that, given an indifference graph G and a fixed integer r �2, it returns a maximum number of vertex-disjoint complete
subgraphs on r vertices, in G.

5. Conclusions and open problems

We improved the approximation ratio for the vertex and edge-disjoint triangle packing problems on graphs with
bounded degree, instances known to be APX-hard [4]. We observe that the instance exhibited by Hurkens and Schrijver
[13] to show that the ratio 3/2+ ε of their algorithm is tight yields an irredundant graph with maximum degree 4. We
also note that another example can be constructed by considering the graph, say G, given by Yu and Goldschmidt [17],
showing the tightness of local search for the problem of maximum independent set in k-claw free graphs (using G we
can construct another graph G′ for which the ratio 3/2+ ε is attained). These examples show that our algorithm VT4k

in fact performs better than the simple local search algorithm on graphs with maximum degree 4.
Any improvement to the (3/2+ε)-approximation ratio for the general case of VTP or ETP would be most interesting.

Another open problem is to improve the lower bound for the approximation ratio of VTP or ETP. However, before
tackling the general case, we may address the triangle packing problems on some special classes of graphs. For example,
the class of the interval graphs. On this class the problem is interesting from both practical and theoretical point of
view; this class contains the indifference graph class (on which, as we proved, VTP is polynomially solvable), while
it is a subclass of chordal graphs (on which VTP problem is NP-hard [9]).

Acknowledgements

We thank the referees for the suggestions and remarks that improved the presentation of this paper.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation (Combinatorial
Optimization Problems and their Approximability Properties), Springer, Berlin, 1999.

[2] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput. Mach. 41 (1) (1994) 153–180.
[3] P. Berman, T. Fujito, On approximation properties of the independent set problem for low degree graphs, Theory Comput. Syst. 32 (2) (1999)

115–132.
[4] A. Caprara, R. Rizzi, Packing triangles in bounded degree graphs, Inform. Process. Lett. 84 (4) (2002) 175–180.
[5] M. Chlebík, J. Chlebíková, Inapproximability results for bounded variants of optimization problems, in: Lecture Notes in Computer Science,

vol. 2751, Springer, Berlin, 2003, pp. 27–38.
[6] M. Chlebík, J. Chlebíková, On approximability of the independent set problem for low degree graph, in: Lecture Notes in Computer Science,

vol. 3104, Springer, Berlin, 2004, pp. 47–56.
[7] G. Cornuéjols, D. Hartvigsen, W. Pulleyblank, Packing subgraphs in a graph, Oper. Res. Lett. 1(4) (1981/1982) 139–143.
[8] M.C. Golumbic,Algorithmic graph theory and perfect graphs,Annals of Discrete Mathematics, vol. 57, second ed., Elsevier Science,Amsterdam,

2004.
[9] V. Guruswami, C. Pandu Rangan, M.S. Chang, G.J. Chang, C.K. Wong, The Kr-packing problem, Computing 66 (1) (2001) 79–89.

[10] R. Hassin, S. Rubinstein, An approximation algorithm for maximum triangle packing, Discrete Appl. Math. 154 (6) (2006) 971–979.
[11] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput. 10 (4) (1981) 713–717.
[12] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, R.E. Stearns, NC-approximation schemes for NP- and PSPACE-

hard problems for geometric graphs, J. Algorithms 26 (2) (1998) 238–274.
[13] C.A.J. Hurkens, A. Schrijver, On the size of systems of sets every t of which have an SDR with an application to the worst-case ratio of heuristics

for packing problems, SIAM J. Discrete Math. 2 (1) (1989) 68–72.
[14] R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1) (1975) 45–68.
[15] P.J. Looges, S. Olariu, Optimal greedy algorithms for indifference graphs, Comput. Math. Appl. 25 (7) (1993) 15–25.
[16] F.S. Roberts, Indifference graphs, Proof Techniques in Graph Theory, Academic Press, New York, 1969, pp. 139–146.
[17] G. Yu, O. Goldschmidt, Local optimality and its application on independent sets for k-claw free graphs, J. Comb. Optim. 1 (2) (1997) 151–164.

	Packing triangles in low degree graphs and indifference graphs62626262
	Introduction
	Basic definitions and notation

	Algorithm for VTP on graphs with maximum degree 4
	Analysis and the approximation ratio of VT4k

	Algorithm for ETP on graphs with maximum degree 5
	Analysis of the performance ratio of ET5

	The problem VTP on indifference graphs
	Conclusions and open problems
	Acknowledgements
	References

