
A Polyhedral Investigation of the LCS Problem
and a Repetition-Free Variant

Cristina G. Fernandes, Carlos E. Ferreira,
Christian Tjandraatmadja, and Yoshiko Wakabayashi

Universidade de São Paulo, Brazil
{cris,cef,christj,yw}@ime.usp.br

Abstract. We consider the longest common subsequence problem (lcs)
and a variant of it where each symbol may occur at most once in the
common subsequence. The lcs is a well-known problem that can be
solved in polynomial time by a dynamic programming algorithm. We
provide a complete description of a polytope we associate with the lcs.
The integrality of this polytope can be derived by showing that it is in
fact the clique polytope of a perfect graph. The repetition-free version of
the problem is known to be difficult. We also associate a polytope with
this version and investigate its facial structure. We present some valid
and facet-defining inequalities for this polytope and discuss separation
procedures. Finally, we present some computational results of a branch
and cut algorithm we have implemented for this problem.

1 Introduction

Given two finite sequences s and t over an alphabet, the longest common sub-
sequence problem (lcs) consists in finding a longest common subsequence of s
and t. It is well known that this problem can be solved in polynomial time by
a dynamic programming algorithm that runs in O(|s||t|) time (see [4]). The lcs

has important applications in Bioinformatics and Computational Biology, where
the sequences are genomes and a common subsequence may be interpreted as
a similarity measure between the genomes. It is also present in the core of the
unix diff command.

We associate a polytope with the lcs and study its facial structure. For that,
given an instance of the problem, we represent the feasible solutions of this
instance as vectors in R

n (for some dimension n) and consider the polytope
defined as the convex hull of these vectors. We give a complete description of
this polytope, exhibiting all of its facets (faces of maximal dimension). Since the
lcs is polynomially solvable, it is expected that such a complete description can
be provided (see [6,7] for details). We discuss the description we provide in this
paper and relate it with other known results.

We also study a variation of the lcs in which each symbol of the alphabet
is allowed to occur at most once in the sought common subsequence. We refer

E.S. Laber et al. (Eds.): LATIN 2008, LNCS 4957, pp. 329–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

330 C.G. Fernandes et al.

to this version as the Repetition-Free LCS problem (rflcs). It has been
proved that this problem is NP-hard. Indeed, Adi et al. [1] proved that it is apx-
hard even if each symbol appears at most twice in each of the given sequences.
Another variation considered in the literature is the so-called exemplar model.
In this problem, as in the rflcs, each symbol may appear at most once in the
common subsequence. Besides, some symbols are mandatory and must appear in
the subsequence. This model has been studied by Bonizzoni et al. [2] who proved
that the problem is also apx-hard. Yet another related variation was proposed
by Sankoff [9] in the studies of gene families. All these variations may be useful
in the comparisons of genomes [2,9] and may prove to be useful in other contexts
as well.

This paper is organized as follows. In Section 2 we give a complete description
of the polytope we associate with the lcs and show how to solve the separation
problem for it in polynomial time. Moreover we show the relationship between
the lcs polytope and the clique polytope of a class of perfect graphs. In Section 3
we provide a formulation for the rflcs and present some results on valid and
facet-defining inequalities for the corresponding polytope. Some computational
results of a branch and cut algorithm we developed for the rflcs are shown in
Section 4. Finally, in Section 5 we present some conclusions.

2 A Polyhedral Study of the LCS Polytope

Consider an instance of the lcs consisting of two sequences s = s1, . . . , sn and
t = t1, . . . , tm over some alphabet. For each symbol a of the alphabet, let s(a)
be the set of indices i of s such that si = a, and let t(a) be defined analogously.
Let E ⊆ {1, . . . , n} × {1, . . . , m} be the set of all pairs (i, j) in s(a) × t(a) where
a ranges over all symbols of the alphabet. That is, E = ∪a

(
s(a) × t(a)

)
.

Note that any common subsequence w of s and t can be represented by a vector
z in {0, 1}E as follows. If w = si1 , . . . , sip = tj1 , . . . , tjp , where i1 < · · · < ip and
j1 < · · · < jp, then for each pair ij in E we have that zij = 1 if and only if there
exists an index � in {1, . . . , p} such that i = i� and j = j�. Thus, the feasible
solutions of this instance of the lcs are the vertices of the following polytope
(defined as the convex hull of these solutions).

Plcs := conv{z ∈ {0, 1}E | z represents a common subsequence of s and t}.

Obviously, finding a vector z∗ in Plcs with maximum number of nonzero com-
ponents is equivalent to finding a longest common subsequence of s and t.

Proposition 1. The polytope Plcs is full-dimensional.

Proof. It is sufficient to observe that the zero vector and the unit vectors eij ,
for all (i, j) in E (that is, the vector such that eij

ij = 1 and eij
k� = 0 for all

(k, �) �= (i, j)), are in Plcs and are affinely independent. Thus the polytope Plcs

has dimension |E|. ��

A Polyhedral Investigation of the LCS Problem 331

We say that two distinct pairs (i, j) and (k, �) in E cross if (i ≤ k and j ≥ �)
or (k ≤ i and � ≥ j). A simple integer programming formulation for the lcs

follows.

maximize
∑

(i,j)∈E zij

subject to zij + zk� ≤ 1 for all (i, j) and (k, �) in E that cross,
zij ∈ {0, 1} for all (i, j) in E.

(1)
Observe that z is a feasible solution of (1) if and only if it corresponds to a

common subsequence of s and t.

Proposition 2. For every (i, j) in E, the inequality zij ≥ 0 defines a facet of
Plcs.

Proof. Fix an (i, j) in E. It is easy to see that the zero vector and the unit
vectors ek� for all (k, �) �= (i, j) are vertices of Plcs that satisfy zij = 0 and they
are affinely independent. ��

We note that the inequalities in (1) do not always induce facets of Plcs. As we
will see in what follows, some of them may possibly be facet-defining. To simplify
the notation, if z is a vector and S is a subset of E, then we denote by z(S) the
sum

∑
(i,j)∈S zij .

We say that a set S ⊆ E is a star if any two distinct pairs in S cross. If S is
a star then the inequality z(S) ≤ 1 is called a star inequality. Note that the
inequalities in (1) are star inequalities defined by stars of cardinality 2.

Lemma 1. Consider a star S ⊆ E. Then the star inequality z(S) ≤ 1 is valid
for Plcs, and it defines a facet if and only if S is maximal.

Proof. It is immediate that the star inequality z(S) ≤ 1 is valid for Plcs. Now,
let us prove that it defines a facet when S is maximal.

Consider a facet-defining inequality az ≤ α and suppose

{z ∈ R
E | z(S) = 1} ⊆ F := {z ∈ R

E | az = α}.

Note that, for each pair (p, q) in E \ S, there exists a pair (i, j) in S such that
(i, j) and (p, q) do not cross (since S is maximal). Thus, eij and eij + epq are
incidence vectors of common subsequences of the sequences s and t and are in
F . So, aij = aeij = a(eij +epq) = aij +apq, and therefore apq = 0 for every (p, q)
in E \ S. Now observe that, for every (i, j) and (k, �) in S, we have that eij

and ek� are in F . Then, aij = aeij = aek� = ak� = α, for some constant α.
This proves that az ≤ α can be rewritten as αz(S) ≤ α, and therefore the star
inequality z(S) ≤ 1 is facet-defining.

Conversely, suppose that the star inequality z(S) ≤ 1 defines a facet of Plcs.
If S is not maximal, there exists a pair (p, q) in E \ S such that (p, q) crosses
all pairs in S. Thus, S′ := S ∪ {(p, q)} is a star and the inequality z(S′) ≤ 1 is
valid. In this case, the star inequality z(S) ≤ 1 can be written as the sum of the
inequality z(S′) ≤ 1 and the inequality zpq ≥ 0, a contradiction. ��

332 C.G. Fernandes et al.

A nice result is that the inequalities given in the lemma above define completely
the polytope Plcs. More precisely, any facet-defining inequality of Plcs is either
a nonnegativity inequality or a maximal star inequality. This result is proved
in the next theorem. First, consider the following order relation on the pairs on
E. Given (i, j) and (k, �) in E, we write (i, j)
 (k, �) if i < k or (i = k and
j ≤ �). Now, we can define a lexicographical order on the subsets of E as follows.
Consider two subsets S1 and S2 of E. For k = 1, 2, let ((ik1 , jk

1), . . . , (ik�k
, jk

�k
))

be the sequence of the pairs in Sk sorted according to this (total) order and
refer to it as the sorted Sk. We say that S1 is lexicographically smaller than
or equal to S2, and write S1
 S2, if either the sorted S1 is a prefix of the
sorted S2 or (i1p, j1

p)
 (i2p, j2
p) for the first index p such that (i1p, j1

p) �= (i2p, j2
p) (if

it exists).

Theorem 1

Plcs = {z ∈ R
E | zij ≥ 0 for all (i, j) ∈ E and

z(S) ≤ 1 for all maximal star S ⊆ E}.

Proof. Let az ≤ α be an inequality that induces a facet, say F , of Plcs. First we
prove that, if this inequality has negative coefficients, it must be a nonnegativity
constraint for some (i, j) in E. Say aij < 0 and suppose that the inequality
az ≤ α is not a multiple of −zij ≤ 0. Then, there must be a vector z in Plcs such
that az = α and zij = 1 (otherwise, F would be contained in the hyperplane
zij = 0). But then z − eij is also a vector in Plcs, and a(z − eij) = az − aij > α,
a contradiction.

So, we may assume that aij ≥ 0 for all (i, j) in E. Consider now the support T
of the inequality az ≤ α and some (i, j) in E \T . It is easy to see that there must
exist some (k, �) in T that does not cross (i, j). Otherwise F would be contained
in the hyperplane zij = 0. It remains to be proved that T is a star.

Let S1 = {(i1, j1), (i2, j2), . . . , (it, jt)} be the first maximal star in T in the
lexicographical order defined above. If az ≤ α is not a maximal star inequality,
there must exist some z in R

E such that az = α and z(S1) = 0. Thus, there must
exist two distinct pairs (i, j) and (k, �) in T \ S1 with zij = zk� = 1 such that
every pair in S1 either crosses (i, j) or (k, �). Assume without loss of generality
that (i, j)
 (k, �). As S1 is maximal, (i, j) cannot cross all pairs in S1. Since
S1 is the first maximal star in the lexicographical order, there is an index p in
{1, . . . , t} such that (i, j) does not cross (ip, jp) and (ip, jp)
 (i, j). Thus, j ≥ jp.
But then, (k, �) must cross (ip, jp), and therefore � ≤ jp. This implies that i ≤ k
and j ≥ jp ≥ �, and hence (i, j) and (k, �) cross, a contradiction. ��

2.1 The Separation Problem for the Star Inequalities

A polynomial-time algorithm to solve the separation problem for the star in-
equalities is the following. Let s and t be the two sequences for which we want
to find a longest common subsequence, and let z ∈ R

E be such that 0 ≤ zij ≤ 1
for all (i, j) in E. Consider the problem of finding a maximum weight common
subsequence of the reversal of s and the sequence t, where the weight of aligning

A Polyhedral Investigation of the LCS Problem 333

si with tj is zij . This problem can be solved in polynomial time using a dynamic
programming algorithm (see [4]). Observe that such a common subsequence of
the reversal of s and t corresponds to a maximal star (since the weights are non-
negative). So, if such a maximum weight star, say S, has value greater than 1,
the corresponding star inequality z(S) ≤ 1 is violated by z. Conversely, if this
value is less than or equal to 1, no star inequality is violated by the current
solution z.

2.2 The Integrality of the LCS Polytope

Another way of proving that the polytope described in Theorem 1 is integral is by
means of the following result shown by Fulkerson [5], Lovász [8] and Chvátal [3].
Given an undirected graph G = (V, E), the clique polytope of G is defined as
the convex hull of the incidence vectors of the cliques in G. We say a set S ⊆ V
is a stable set of G if S is a set of pairwise non-adjacent vertices. Consider the
polytope:

PC(G) = {x ∈ R
V | xv ≥ 0 for all v ∈ V and

x(S) ≤ 1 for all stable set S ⊆ V }.

Chvátal [3] proved that the description above is indeed the description of the
clique polytope of G (and therefore integral) if and only if G is a perfect graph.
(A graph is perfect if for every induced subgraph H of G the maximum size of
a clique in H is equal to the minimum coloring of H).

Now we observe that the lcs polytope defined in Theorem 1 is the clique
polytope of a perfect graph. Let Gst be the graph defined as follows: its vertex
set consists of all pairs (i, j) in E (as we defined in the beginning of Section 2),
and two vertices are adjacent if and only if the corresponding pairs do not cross.

Thus, finding a longest common subsequence of s and t is equivalent to finding
a largest clique in the graph Gst. Note that the maximal star inequalities z(S) ≤
1 that are facets of Plcs are in fact inequalities of the form x(S) ≤ 1 of the clique
polytope PC(Gst), where S is a maximal stable set of Gst. Thus, Plcs = PC(Gst),
that is, Plcs is precisely the clique polytope of the graph Gst. Hence, Plcs is
integral if and only if Gst is perfect.

Now it remains to show that the graph Gst is perfect. To this end, we show
that its complement Ḡst is perfect (it is known that the complement of a perfect
graph is also a perfect graph [8]). We claim that Ḡst is a comparability graph,
and therefore a perfect graph. We recall that a comparability graph is a graph
that has a transitive orientation, that is, an orientation such that the resulting
directed graph satisfies a transitive law: whenever there exist directed edges (a, b)
and (b, c), there must exist a directed edge (a, c).

It is not difficult to prove that Ḡst is a comparability graph. It suffices to note
that the following orientation Gst of Ḡst is transitive: if e = {u, v} is an edge
of Ḡst, where u = (i, j) and v = (k, �) (note that the pairs (i, j) and (k, �) cross),
then orient e from u to v if i ≤ k and j ≥ � (see Figure 1). It is immediate that
if u = (i, j), v = (k, �) and w = (p, q) are vertices of Gst, and in this graph there

334 C.G. Fernandes et al.

are arcs going from u to v and from v to w, then this graph has an arc going
from u to w. This follows because we have i ≤ k and j ≥ � (as there is an arc
from u to v) and we have k ≤ p and � ≥ q (as there is an arc from v to w) and
therefore we have i ≤ k and j ≥ q. Thus the orientation we defined is transitive.

Although the lcs polytope can be described as the clique polytope of the
graph Gst, the proof of the complete description of Plcs we have presented (by
means of star inequalities) is interesting, as it is short and self-contained (it does
not rely on the result concerning the clique polytope of perfect graphs).

3 Formulation for the RFLCS

Given two sequences s and t, the problem of finding a repetition-free lcs of s
and t can be formulated as the following integer program.

maximize
∑

(i,j)∈E zij

subject to z(Ea) ≤ 1 for all symbol a of the alphabet,
zij + zkl ≤ 1 for all (i, j) and (k, l) in E that cross,

zij ∈ {0, 1} for all (i, j) in E.
(2)

As in the case of lcs, we can associate with rflcs the following polytope:

Prflcs := conv{z ∈ {0, 1}E | z represents a repetition-free
common subsequence of s and t}.

It is easy to see that the maximal star inequalities are valid for Prflcs. However,
these inequalities are not facet-defining.

For a set S ⊆ E, let Sa = S∩(s(a)×t(a)), where a is a symbol of the alphabet.
We say that a set S ⊆ E is an extended star if, for every two distinct symbols a
and b, each pair in Sa crosses all pairs in Sb. We prove in the next theorem that
if S is a maximal extended star then the corresponding star inequality z(S) ≤ 1
is facet-defining for Prflcs.

(1, 3) (1, 5)

(3, 1)

(2, 2)

(3, 4)(4, 2)

(5, 3)

(5, 5)

(a) (b)

aa

aa

bb

b

c

cc
s

t

Fig. 1. (a) A graph indicating all pairs in E with respect to s = acbca and t = bcaba .
(b) The graph Gst for s and t.

A Polyhedral Investigation of the LCS Problem 335

Theorem 2. Let S be a maximal extended star. The inequality z(S) ≤ 1 defines
a facet of Prflcs.

Proof. It is immediate that the inequality z(S) ≤ 1 is valid for Prflcs. In order
to prove that it defines a facet of Prflcs, consider an inequality az ≤ α that
defines a facet F of Prflcs and suppose

{z ∈ R
E | z(S) = 1} ⊆ F := {z ∈ RE | az = α}.

Consider a pair (i, j) in Ea \S for some symbol a. Since S is a maximal extended
star, there is a pair (k, �) in S ∩ Eb, with b �= a, that does not cross (i, j). Then,
ek� and ek� + eij are both in F , and this implies that aij = 0 for every (i, j) in
Ea \ S. Since this holds for every symbol a, we conclude that aij = 0 for every
(i, j) in E \ S.

Now observe that for every (i, j) in S we have that eij ∈ F . Thus, aij = α for
every (i, j) in S. Hence, the inequality az ≤ α can be rewritten as αz(S) ≤ α
and we conclude that the extended star inequality z(S) ≤ 1 is facet-defining. ��

3.1 The Separation Problem for the Extended Star Inequalities

We show now that a polynomial-time algorithm using a dynamic programming
algorithm can be used to solve the separation problem for the extended star
inequalities. The idea of the algorithm is similar to the separation algorithm
shown in the previous section. Let z be a fractional point we intend to separate.
Every extended star (see Figure 2(a)) corresponds to an alignment as the one
depicted in Figure 2(b), between the sequence s reversed, which we denote by sr,
and the sequence t. In the alignment shown in Figure 2(b) each star corresponds
to some particular symbol (that is, only pairs corresponding to the same symbol
can cross).

(a) (b)s sr

tt

Fig. 2. (a) An extended star between s and t. (b) The corresponding alignment between
sr and t.

The separation algorithm has to find an extended star whose corresponding
inequality is violated. For that, it looks for a maximum weight alignment, as the
one in Figure 2(b), between sr and t. The weights for the alignments are given
by z. Such an alignment allows crossings only among pairs corresponding to a
common symbol. One can find such an alignment by a dynamic programming
algorithm.

336 C.G. Fernandes et al.

Indeed, let mw(n, m) be the weight of such a maximum weight alignment
between the sequences sr[1 . . n] and t[1 . . m]. The following recurrence holds for
mw(n, m):

mw(n, m)=

⎧
⎨

⎩

0 if n = 0 or m = 0,
max{mw(n − 1, m), mw(n, m − 1)} if sr[n] �= t[m],
max1≤i,j≤n{mw(i − 1, j − 1) + ba(i, n, j, m)} if sr[n] = t[m] = a,

where ba(i, n, j, m) =
∑

{zkl : i ≤ k ≤ n, j ≤ l ≤ m, (k, l) ∈ Ea}.

It is not hard to see that mw(n, m) can be computed by an O(n2m2) al-
gorithm. It is also not hard to derive an algorithm that finds an alignment
between sr and t of weight mw(n, m). If mw(n, m) < 1, then such an align-
ment corresponds to an extended star that is violated. If mw(n, m) ≥ 1, then
no extended star is violated.

4 Computational Results

We implemented a branch and cut algorithm for the rflcs using the exact
separation procedure for the extended star inequalities shown in the previous
section. We considered instances consisting of two sequences of equal length
n = 512, and with alphabet sizes 1

8n, 2
8n, . . . , 7

8n. The instances are generated
randomly with uniform probability. To solve the linear programming relaxation
we use the GLPK (Gnu Linear Programming Kit), an ANSI C set of routines
organized in the form of a callable library.

In the first experiment we tested our branch and cut algorithm on 10 random
instances, each one with the above mentioned alphabet size. We limited the
running time for each instance to one hour. The results obtained are summarized
in Table 1. In each line the results shown correspond to 10 instances with the
given alphabet size. The first column shows the alphabet size. In the second
column we indicate the average computational time for the 10 instances; and
we also indicate in parenthesis the minimum and maximum running time. The
next column shows the average number of cuts added to the linear program.
Then, we indicate how many of the instances could be solved to optimality
within one hour. The next two columns show the average lower and upper bound
achieved within the fixed time limit. Finally, the last two columns exhibit the
average number of active nodes at the moment the program was interrupted and
the average number of nodes visited in the branch and bound tree during the
execution of the program.

In Table 1, we note that it becomes more difficult to solve instances in which
the alphabet size is small compared to the length of the sequences (up to 3

8n).
This difficulty might be explained by the fact that when the alphabet is small
then the number of repetitions in the sequences is large, and this implies that
such instances may have many feasible solutions. It is interesting to note that
we could solve all instances to optimality when the size of the alphabet is at
least 1

2n. The average number of nodes in the branch and cut tree (last column)

A Polyhedral Investigation of the LCS Problem 337

Table 1. Computational results with extended star inequalities

alph. size time (min/max) cuts exact lb ub active nodes
64 3604.5 (3600/3609) 1162.5 0 44.4 63.9 1.0 0.0
128 3601.6 (3600/3604) 1927.7 0 56.8 75.2 1.0 0.0
192 2761.8 (762/3600) 2532.1 6 58.8 59.7 1.7 10.7
256 604.4 (224/1582) 1474.0 10 54.2 54.2 0.0 5.6
320 245.9 (93/498) 1077.1 10 46.5 46.5 0.0 1.8
384 113.0 (72/200) 797.0 10 43.0 43.0 0.0 1.0
448 76.0 (52/108) 660.6 10 40.7 40.7 0.0 1.4

indicate that most of the work was done in the root node. For the instances with
small alphabet we achieve an average gap under 50% to the value of the best
solution found in one hour.

In order to investigate the strength of the extended star inequalities we ran
GLPK with the integer programming formulation (2). We set the parameters
of the solver to use clique and Gomory cuts (these are the best parameters we
could found). The results for the easier instances (with alphabet size at least
1
2n) are summarized in Table 2.

Table 2. Branch and bound with formulation (2)

alph. size time (min/max) cuts exact lb ub active nodes
256 3669.3 (3642/3724) 300.0 0 13.3 56.0 29.0 3.0
320 2739.3 (771/3631) 282.6 4 45.7 47.3 45.6 91.7
384 1159.9 (534/2886) 271.9 10 43.0 43.0 0.0 87.2
448 746.1 (254/2537) 236.5 10 40.7 40.7 0.0 117.0

As shown in Table 2, we could solve all 10 instances only for alphabet sizes 384
and 448. It is interesting to observe that in these cases the average time to solve
the instances is around 10 times larger than the time we needed using the facet-
defining inequalities and our separation procedure. In the other cases, we could
solve only 4 instances to optimality, while using the extended star inequalities
we could solve all instances within one hour.

5 Conclusion

The lcs is a well-known problem that has many nice applications. Perhaps
because of the fact that a polynomial-time algorithm for this problem is known,
a polyhedral approach to this problem has not been considered in the literature.
We think the polyhedral results we have shown for the lcs in this paper have
many interesting aspects: we give a complete and irredundant description of the
polytope Plcs we have associated to it and show that the separation problem for

338 C.G. Fernandes et al.

this polytope is polynomial. Furthermore, we have given an alternative proof of
the integrality of this polytope by showing its relation with the clique polytope of
the graph Gst, which we show to be perfect. The repetition-free version of lcs, an
NP-hard problem, also has applications in the study of genomes. This variant has
been less investigated. The polyhedral approach and the computational results
we presented for the rflcs show that this approach is an improvement to pure
branch and bound strategies or simple heuristics. Further facets of this polytope,
as well as some heuristics, may be incorporated to the present code, leading to
improvements that can be useful to solve some larger instances of the problem.

Acknowledgements

We would like to thank José Coelho de Pina for some valuable comments re-
lated to the contents of Section 2.2. We also thank the financial support from
CNPq (Proc. 490333/04, 307011/03-8, 308138/04-0, 301919/04-6), ProNEx -
Fapesp/CNPq Proc. No. 2003/09925-5 and Fapesp (Proc. 07/54282-6), Brazil.

References

1. Adi, S.S., Braga, M., Fernandes, C.G., Ferreira, C.E., Martinez, F.H.V., Sagot, M.-
F., Stefanes, M.A., Tjandraatmadja, C., Wakabayashi, Y.: Repetition-free longest
common subsequence. In: Proc. IV Latin-American Algorithms, Graphs and Opti-
mization Symposium (to appear) (2007)

2. Bonizzoni, P., Della Vedova, G., Dondi, R., Fertin, G., Vialette, S.: Exemplar longest
common subsequence. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 622–629. Springer, Heidelberg
(2006)

3. Chvátal, V.: On certain polytopes associated with graphs. J. Combinatorial Theory
Ser. B 18, 138–154 (1975)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Fulkerson, D.R.: Anti-blocking polyhedra. J. Combinatorial Theory Ser. B 12, 50–71
(1972)

6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

8. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete
Math. 2(3), 253–267 (1972)

9. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–
917 (1999)

	A Polyhedral Investigation of the LCS Problemand a Repetition-Free Variant
	Introduction
	A Polyhedral Study of the LCS Polytope
	The Separation Problem for the Star Inequalities
	The Integrality of the LCS Polytope

	Formulation for the RFLCS
	The Separation Problem for the Extended Star Inequalities

	Computational Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

