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Abstract

Let M = (V, E, A) be a mixed graph with vertex set V , edge set E and arc set A. A cycle cover of M is a family
C = {C1, . . . , Ck} of cycles of M such that each edge/arc of M belongs to at least one cycle in C. The weight of C is

∑k
i=1 |Ci |. The

minimum cycle cover problem is the following: given a strongly connected mixed graph M without bridges, find a cycle cover of
M with weight as small as possible. The Chinese postman problem is: given a strongly connected mixed graph M , find a minimum
length closed walk using all edges and arcs of M . These problems are NP-hard. We show that they can be solved in polynomial
time if M has bounded tree-width.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Mixed graphs generalize the notion of digraphs and graphs in the sense that they may contain (undirected) edges
as well as (directed) arcs. A mixed graph is a triple M = (V, E, A) where V is a finite set of vertices, E is a finite
set of edges and A is a finite set of arcs. When E = ∅ we say that M is a digraph, and when A = ∅ we say that M is
a graph. Note that these consist of simple mixed graphs, that is, loops and parallel arcs/edges are not allowed.

A cycle cover of a mixed graph M = (V, E, A) is a family C = {C1, . . . , Ck} of cycles of M such that each edge
or arc of M belongs to at least one cycle in C. We define the weight of C as the sum of the lengths of the cycles in C,
that is,

∑k
i=1 |Ci |.

The MINIMUM CYCLE COVER PROBLEM (MCCP) consists of the following: given a bridgeless strongly connected
mixed graph M , find a cycle cover of M of minimum weight.

This problem is NP-hard if M is an arbitrary planar mixed graph [15]. It is well-studied when M is a graph:
Thomassen [19] showed that this case is NP-hard. Also, this case is related to the well-known cycle double cover
conjecture [14] and the Chinese postman problem [10].
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Fig. 1. The numbers denote the number of times each edge/arc is used on a postman walk. This walk cannot be decomposed into a cycle cover of
same weight. This postman walk has minimum length, while the weight of a minimum cycle cover is 9.

Let M be a strongly connected mixed graph. A postman walk in M is a closed walk that contains all edges and
arcs of M . Any cycle cover of weight k can be converted into a postman walk of length k, but the converse is not true.
(See Fig. 1.)

The CHINESE POSTMAN PROBLEM (CPP) in mixed graphs is a variant of MCCP: given a strongly connected mixed
graph M , find a postman walk in M of minimum length.

We know that CPP can be solved in polynomial time in graphs [10] and in digraphs [11]. On the other hand,
Papadimitriou [17] proved that CPP is NP-hard on planar mixed graphs.

In this paper, we study the complexity of MCCP and CPP on mixed graphs with a certain structural parameter – tree-
width – bounded by a constant. The tree-width of a graph G can be defined using the notion of a tree-decomposition
of G. The study of tree-decompositions started in the eighties and had several consequences in two areas: graph theory
and design of algorithms. In the first, tree-decompositions were fundamental in the proof of Robertson and Seymour’s
result on graph minors: in every infinite sequence of graphs, there are two graphs such that one is a minor of the other.
In the second, this concept was successfully explored in the design of polynomial-time algorithms for several NP-hard
problems on graphs with bounded tree-width. We show a polynomial-time algorithm for MCCP and for CPP on mixed
graphs with bounded tree-width.

It is known that any graph problem that can be expressed as a formula in (specific) extensions of monadic second
order (MSO) logic can be solved in polynomial (many times, linear) time on graphs with bounded tree-width [2,3,
7]. Many graph problems can be formulated as such formulas. Indeed, Arnborg, Lagergren, and Seese [2, Sec. 3]
explicitly considered many well-known graph problems taken from Garey and Johnson [13] and proved they can be
formulated as such. We believe the two problems we address cannot be expressed in these (specific) extensions of
MSO logic. Next we present some reasons for this. We refer to MCCP only but the same observations hold for CPP.

In Fig. 2, we show a family of graphs with bounded tree-width, where the weight of a minimum cycle cover is
quadratic on the size of the graph. In these graphs, both the number of cycles and the length of each cycle in any
minimum cycle cover is not bounded by a fixed constant, even though the graphs have bounded tree-width. The
structure we are searching for in the graph is a collection of subsets of edges (the cycles), each of the subsets having
size possibly dependent on the size of the graph, and with the collection possibly also of size dependent on the size
of the graph. In most of the problems that can be expressed in MSO logic, there is a fixed bound on some parameter
of the searched structure (number of sets of the structure, size of the sets of the structure, etc) [2]. However, because
of the previous, we did not find a way to express MCCP in (such extensions of) MSO logic. Courcelle and Mosbah [8,
page 64] also gave some examples of problems that cannot be expressed in MSO logic, that have some elements in
common with MCCP, reinforcing this impression we have.

Many of the polynomial-time algorithms for graphs with bounded tree-width follow a straightforward dynamic
programming approach [5]. Although ours is also a dynamic programming algorithm, it is not a straightforward
application of the general framework. These two problems seem to require a more elaborate application of the
framework. Maybe this is related to the fact that these problems might not be expressible in MSO logic. For them, one
has to show that the partial solutions, which are more complex structures, have some nontrivial properties. Also, one
has to make a careful choice of the data to be carried along the dynamic programming, to guarantee the polynomial
bound on the running time of the resulting algorithm. We elaborate more on this when the involved concepts are
introduced.
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Fig. 2. A family of graphs of tree-width bounded by 4: for each even n, there is a graph in the family consisting of a directed cycle C on n vertices
and arcs between antipodal vertices in C . There are only two different types of directed cycles in such graphs: the cycle C and the cycles that
contain exactly one chord of C .

Specifically, in this paper we prove the following theorems.

Theorem 1. CPP is solvable in polynomial time on mixed graphs with bounded tree-width.

Theorem 2. MCCP is solvable in polynomial time on mixed graphs with bounded tree-width.

The paper is organized as follows. Next we introduce some notation and give some definitions. In Section 2 we
prove Theorem 1 and in Section 3 we prove Theorem 2.

1.1. Definitions and notation

Most of the concepts defined for graphs and digraphs (see [6]) can be extended in a natural way to mixed graphs.
We assume the reader is familiar with them. We present here just a few concepts, to establish the notation.

A walk in a mixed graph is a sequence W := (v1, l1, . . . , vk−1, lk−1, vk), where each vi is a vertex and either
li = vi−1vi is an edge or li = (vi−1, vi ) is an arc. Sometimes W is denoted simply by (v1, . . . , vk). The length of W
is k − 1. We say that W is a walk from v1 to vk or that W starts at v1 and ends at vk . Also, we say that v1 and vk are
the ends of W . If a walk starts and ends at the same vertex, we say it is closed. A cycle is a closed walk (v1, . . . , vk),
where vi 6= v j , for all 1 ≤ i < j < k. A path is a walk (v1, . . . , vk), where vi 6= v j , for all 1 ≤ i < j ≤ k.

A mixed graph is strongly connected if for any ordered pair of vertices (u, v), there is a path from u to v.
Given a mixed graph M , the underlying undirected graph of M is the graph obtained from M by replacing every

arc in M by an edge with the same ends.
Let G be a graph and Θ :=

(
T, (Wt )t∈V (T )

)
be a pair consisting of a tree T and a multiset whose elements Wt ,

indexed by the vertices of T , are subsets of V (G). For a vertex v of G, we denote by Fv the subgraph of T induced
by those vertices t of T for which Wt contains v. Then Θ is called a tree-decomposition of G if the following two
conditions hold:

(1) For every edge e = xy of G, there is a vertex t of T such that {x, y} ⊆ Wt ;
(2) For every vertex v of G, the subgraph Fv of T is a tree.

The width of Θ is the maximum, over all vertices t of T , of |Wt | − 1; and the tree-width of G is the least width
of any tree-decomposition of G. We refer to [9,18] for properties and other results on tree-decompositions.

We may assume that the tree T in any tree-decomposition is binary. If this is not the case, one can modify T ,
introducing new vertices in such a way that the modified tree-decomposition preserves the width of the original one.

For a mixed graph M , the concept of tree-decomposition refers to the tree-decomposition of its underlying
undirected graph G. Let Θ :=

(
T, (Wt )t∈V (T )

)
be a tree-decomposition of G. For each vertex t of T , choose a

set E(Wt ) of edges of M and a set A(Wt ) of arcs of M such that all edges and arcs in E(Wt ) and A(Wt ) have
their two ends in Wt and every edge or arc in M appears in exactly one of these sets. These sets form a partition of
E(M) ∪ A(M), which we call an associated partition of Θ . (Note that it is not unique.)

Given a mixed graph M = (V, E, A) and a subset X of V , we denote by δ(X) the set of edges of M with exactly
one end in X . We denote by δ+(X) the set of arcs of M starting at a vertex in X and ending at a vertex not in X . Also,
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Fig. 3. (a) For S = {u, v, w}, d(u) = d(w) = 1, and d(v) = −2, the pair (P,C) is a d-realization in M ′ for P = {(u, x, y, v), (w, z, y, v)} and
C = {(v, w, y)}. (b) The collection C = {(u, x, y, v, t), (w, z, y, v, t, w), (v, w, y), (r, w, t)} is a cycle cover of M whose restriction to M ′ is the
pair (P,C).

let δ−(X) := δ+(V \ X). A bridge in M is an edge e of M such that δ(X)∪ δ+(X)∪ δ−(X) = {e}, for some subset X
of V . We say M is Eulerian if |δ(X)| − ‖δ+(X)| − |δ−(X)‖ is an even non-negative number, for any subset X of V .
The following theorem [4,12] generalizes the results known for graphs and digraphs.

Theorem 3. Any Eulerian mixed graph can be partitioned into a set of edge and arc disjoint cycles. �

2. The Chinese postman problem

In this section, we prove Theorem 1, that is, we present a polynomial-time algorithm for CPP on mixed graphs with
bounded tree-width. To simplify the description of the algorithm, we represent a solution of CPP for a mixed graph
M = (V, E, A) in an unusual form. Let P be a postman walk in M . Consider the supergraph H = (VH , EH , AH ) of
M for which VH := V and, for each edge (arc) e of M , if e appears t times in P , then there are t copies of e in EH
(AH ). Clearly H is an Eulerian mixed graph. Therefore, by Theorem 3, H can be written as a union of edge and arc
disjoint cycles, say, C1, . . . , Cq . Note that some of these cycles might not correspond to cycles in M . This happens
exactly when a cycle Ci consists of two copies of the same edge of M . In this case, we say Ci is a pseudocycle in M .
On the other hand, if C1, . . . , Cq is a collection of cycles and pseudocycles of M whose union contains all edges and
arcs of M , then the mixed graph given by

⋃q
i=1 Ci is Eulerian and corresponds to a postman walk in M .

Define the weight of a collection C1, . . . , Cq of cycles and pseudocycles as
∑q

i=1 |Ci |. We can formulate CPP as
the problem of finding a minimum-weight collection of cycles and pseudocycles containing all edges and arcs of M .
From now on, we consider this new formulation of CPP.

Let m := |E ∪ A|. Observe that, if C1, . . . , Cq is an optimal solution for CPP then q ≤ m. Indeed, suppose
C1, . . . , Cq is an optimal solution for CPP. In each Ci , there exists an edge or arc that appears in no other (pseudo)cycle
C j (otherwise, by removing Ci we would get a better solution). As a consequence, no edge or arc of M appears in
more than m (pseudo)cycles.

Before describing the algorithm, we need some additional notation. Let S be a subset of V . An S-configuration is a
function d : S → {−m, . . . , m} such that

∑
v∈S d(v) = 0. Let M ′ be a subgraph of M and d be an S-configuration, for

some set S of vertices of M ′. If P is a collection of paths in M ′ with ends in S and C is a collection of (pseudo)cycles
of M ′, then the pair (P, C) is a d-realization in M ′ if

– for each v in S, the number of paths in P that start at v minus the number of paths in P that end at v is exactly
d(v);

– each edge or arc of M ′ belongs to some path in P or to some (pseudo)cycle in C.

We give an example of d-realization in Fig. 3(a).
The intuition behind the concepts of S-configuration and d-realization is the following. Consider a cycle cover C

for M . The part of the cycle cover within a subgraph M ′ of M is a d-realization in M ′ for some set S of vertices of
M ′ and some function d : S → {−m, . . . , m} such that

∑
v∈S d(v) = 0. (See Fig. 3(b).) Indeed, when we take the

restriction of the cycles in C to M ′, we obtain a collection of paths and cycles (some paths might be part of the same
cycle). The endpoints of the paths define the set S. The difference between the number of paths starting and ending
in a vertex defines the function d . The concept of d-realization is a formal definition of what we refered to as partial
solution. The use of these concepts in the algorithm is described ahead.
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We define the weight of a d-realization (P, C) as the quantity given by
∑

P∈P |P| +
∑

C∈C |C |. We say a d-
realization in a graph is optimal if it has the smallest possible weight.

When M ′ is a digraph with n′ vertices and m′ arcs, an optimal d-realization can be found in O((m′ log n′)(m′
+

n′ log n′)) time using a minimum cost flow algorithm [1,16].
Let (T, (Wt )t∈V (T )) be a tree-decomposition of (the underlying undirected graph of) M with tree-width k. Let

(E(Wt ))t∈V (T ) and (A(Wt ))t∈V (T ) be an associated partition of Θ . Note that each set in this partition has size bounded
by a function which depends only on k.

Root the tree T at an arbitrary vertex r in T . For each vertex t of T , denote by Mt the subgraph of M such
that V (Mt ), E(Mt ) and A(Mt ) are the union, over all descendents v of t in T , of the sets Wv , E(Wv) and A(Wv)

respectively. Note that the restriction of an optimal solution C∗ of CPP to Mt corresponds to a collection P of paths
and a collection C of (pseudo)cycles in Mt . It is not difficult to see that (P, C) corresponds to an optimal d-realization
in Mt , for some Wt -configuration d . Moreover, if (P ′, C′) is an optimal d-realization in Mt , one can get an optimal
solution of CPP in M by combining (P ′, C′) with the restriction of C∗ to the graph M − (E(Mt ) ∪ A(Mt )).

The algorithm for CPP is based on the following strategy. For each vertex t of T and each Wt -configuration d,
find an optimal d-realization in Mt . The algorithm solves this initially for the leaves of T and goes up in T until it
reaches its root r . Note that in the particular case of the root, a d-realization for d ≡ 0 is a collection of (pseudo)cycles
covering all arcs and edges of M , that is, it is a feasible solution for CPP. Hence, solving CPP is equivalent to finding
an optimal d-realization in M for the Wr -configuration d ≡ 0.

2.1. Description of the algorithm

From now on, let us assume that M has tree-width at most k, where k is a fixed constant. Also, let (T, (Wt )t∈V (T ))

be a tree-decomposition of M of width at most k, with T binary. Clearly, as k is a constant, |E(Wt )| and |A(Wt )| are
bounded by a constant, for all t .

For each vertex t of T , the algorithm builds a list of partial solutions consisting of triples (d,P(d), C(d)) where
d is a Wt -configuration and (P(d), C(d)) is an optimal d-realization in Mt . Since |Wt | ≤ k + 1, there are at most
(2m + 1)k+1 different Wt -configurations for each t .

The algorithm starts building these lists for the leaves of T . This can be done in polynomial time, because, as
|Wt | ≤ k + 1, one can find an optimal d-realization by enumeration, for each Wt -configuration d. Going up the tree,
the algorithm uses the lists of the children of a vertex to build the list for this vertex. This process is repeated and halts
only when it reaches the root of the tree T .

Let us describe how the list for a vertex is obtained from the lists of its children. Let t be a vertex of the tree T
and d be a Wt -configuration. Let t1 and t2 be the two children of t (the case where t has only one child is similar)
and let L1 and L2 be the lists of partial solutions for t1 and t2, respectively. Let π := (di ,P(di ), C(di )) be a partial
solution in Li , for i = 1, 2. A d-extension for the pair (π1, π2) is a d-realization (P, C) in Mt whose restriction to
the subgraph Mti corresponds to the partial solution (P(di ), C(di )), for i = 1, 2. If, for each pair (π1, π2), we can
compute an optimal d-extension for (π1, π2) (if one exists), then an optimal d-realization in Mt is simply an optimal
d-extension for a pair that gives the smallest possible weight (considering all such pairs).

But how can we compute an optimal d-extension for a specific pair (π1, π2)? Each di is defined on Wti . A d-
extension for the pair (π1, π2) exists only if the support of both d1 and d2 is contained in Wt . Extend d1 and d2 so
that they are defined on Wt . Let d0 := d − (d1 + d2) and let H := (Wt , E(Wt ), A(Wt )). Thus, to compute an optimal
d-extension it suffices to find an optimal d0-realization in H .

Let (P, C) be an optimal d0-realization in H . For each e = uv in E(Wt ), exactly one of the following holds:

(a) every element in P ∪ C containing e traverses e from u to v;
(b) every element in P ∪ C containing e traverses e from v to u;
(c) there are exactly two elements in P ∪ C containing e, one of them traverses e from u to v, and the other traverses

e from v to u.

In order to compute an optimal d0-realization in H , we consider all digraphs obtained from H by replacing each
edge e = uv of H by either (a) an arc (u, v), or (b) an arc (v, u), or (c) two arcs (u, v) and (v, u). For each one
of these digraphs, we compute an optimal d0-realization (using a minimum cost flow algorithm), and we select a
d0-realization with minimum weight. Note that the number of digraphs considered is 3|E(Wt )| ≤ 3k(k+1)/2. So the
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total time used to find an optimal d-extension of a pair (π1, π2) is O(3k(k+1)/2(|E(Wt ) ∪ A(Wt )| log |Wt |)(|E(Wt ) ∪

A(Wt )| + |Wt | log |Wt |)) = O(3k(k+1)/2k4 log k).
We conclude that, given d and the lists L1 and L2 of partial solutions for t1 and t2, one can find an optimal

d-extension in Mt in time O(|L1||L2|3k(k+1)/2k4 log k). The length of each list Li is at most the number of Wti -
configurations, which is at most (2m + 1)k+1. Thus, one can find an optimal d-realization in Mt in polynomial time.
Furthermore, one can build in polynomial time the list of all partial solutions for a vertex t from the lists for its
children.

From the above, CPP in mixed graphs with tree-width bounded by k can be solved in polynomial time, completing
the proof of Theorem 1. Unfortunately, due to its time complexity, the algorithm is only useful in practice for small
values of k. One can make the algorithm a bit faster by including in the list of partial solutions for a vertex t only
the partial solutions with support in Wp ∩ Wt , where p is the parent of t in the tree T , but this does not reduce the
complexity of the algorithm.

3. The minimum cycle cover problem

In this section, we prove Theorem 2. The algorithm for MCCP follows the same lines of the algorithm described
above. The difference lies in how we define a partial solution for MCCP. Partial solutions for CPP include pseudocycles
and these are not allowed in a solution for MCCP. Unfortunately, it is not enough simply to omit the pseudocycles
from the partial solutions, because they appear naturally when we put together two partial solutions. The change has
to be more radical. More information is needed so that we can put two partial solutions together without forming
pseudocycles.

For the MCCP, an S-configuration is a function d : {−1, 0, 1}
S

→ {0, . . . , m}. A path-family in M is a set
of pairwise vertex-disjoint paths in M . Let F := {P1, . . . , Pt } be a path-family in M , and assume that, for each
i = 1, . . . , t , Pi is a path from ui to vi . For z in {−1, 0, 1}

S , we say F covers z if {s ∈ S : z(s) = 1} = {u1, . . . , ut },
and {s ∈ S : z(s) = −1} = {v1, . . . , vt }.

Let d be an S-configuration, where S is a set of vertices of a subgraph M ′ of M . If F is a collection of path-families
in M ′ (with their paths having ends in S) and C is a collection of cycles in M ′, we say (F, C) is a d-realization in M ′

if

– there exists a partition F :=
⋃

z∈{−1,0,1}S Fz such that Fz consists of exactly d(z) path-families in M ′ that cover z;
– each edge or arc of M ′ belongs to a path in some path-family in F or to some cycle in C.

The weight of a d-realization (F, C) is defined as the quantity given by
∑

F∈F
∑

P∈F |P| +
∑

C∈C |C |. A d-
realization in a graph is optimal if it has the smallest possible weight.

Note that the restriction of a path-family to a subgraph Mt is also a path-family and the restriction of a cycle to Mt
is either a cycle or a path-family. Moreover, if t is an arbitrary vertex of T , then the restriction of an optimal solution
C∗ for MCCP to the subgraph Mt corresponds to a collection F of path-families in Mt together with a collection C of
cycles in Mt . It is not difficult to see that (F, C) corresponds to an optimal d-realization for some Wt -configuration d.
Also, if (F ′, C′) is another optimal d-realization in Mt , then the restriction of C∗ to the graph M − (E(Mt ) ∪ A(Mt ))

combined with (F ′, C′) results in another optimal solution for MCCP in M . Note that, when t = r and d ≡ 0, a
d-realization in Mt (= M) is a collection of cycles covering all arcs and edges of M , that is, it is a feasible solution of
MCCP. Thus, solving MCCP is equivalent to finding an optimal d-realization in M for the Wr -configuration d ≡ 0.

The algorithm works as the previous one. Given a tree-decomposition (T, (Wt )t∈V (T )) of M , with width at most
k, where T is a binary tree, it builds, for each vertex t of T , a list of partial solutions for the MCCP in Mt . Each
partial solution consists of a triple (d,F(d), C(d)), where d is a Wt -configuration and (F(d), C(d)) is an optimal
d-realization. Since |Wt | ≤ k + 1, there are at most (m + 1)3k+1

different Wt -configutations, for each t . For the leaves
of T , the lists are built directly by brute force. For each internal vertex t , let t1 and t2 be its two children. (The case
where t has only one child is similar.) Let us describe how the list for t is obtained from the lists for t1 and t2. More
specifically, let us show how to extend a pair of partial solutions (π1, π2), with πi := (di ,F(di ), C(di )) for i = 1, 2,
to obtain a d-realization (F, C) in Mt . Such a d-realization is called a d-extension of (π1, π2) and is such that its
restriction to Mti is exactly πi for i = 1, 2. Specifically, (F, C) satisfies

– C(d1) ∪ C(d2) ⊆ C;
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– the set of arcs and edges of each path-family in F and each cycle in C \ (C(d1) ∪ C(d2)) can be decomposed into
L , F1 and F2, where L is a path-family in the graph (Wt , E(Wt ) ∪ A(Wt )) and, for i = 1, 2, either Fi = ∅ or
Fi ∈ F(di );

– each path-family of F(di ), i = 1, 2, appears in the decomposition of exactly either one path-family in F or one
cycle in C \ (C(d1) ∪ C(d2)).

For i = 1, 2, let zi in {−1, 0, 1}
Wt be such that di (zi ) > 0, and let Fi be a path-family in F(di ) that covers zi . Let L

be a path-family in (Wt , E(Wt ), A(Wt )). Then L , F1 and F2 determine, besides possibly some cycles, a path-family
in Mt covering some z in {−1, 0, 1}

Wt . Note that z depends only on the choice of L , z1 and z2. (Here we used the fact
that the paths in the path-families are disjoint and F1 and F2 are contained in Mt1 and Mt2 , respectively.) So we say
simply that L , z1 and z2 (instead of L , F1 and F2) determine a path-family in Mt and we call the triple (L , z1, z2) a
candidate path-family in Mt . Similarly, for each z in {−1, 0, 1}

Wt such that di (z) > 0, for i = 1 or 2, we can do
the same with only L and z, and we also say (L , z) is an candidate path-family in Mt . A candidate path-family in Mt
covers z if it determines a path-family in Mt that covers z. We can do the same with a cycle (instead of a path-family)
in Mt . In this case, we say (L , z1, z2) (or (L , z)) is a candidate cycle in Mt . Each candidate path-family (cycle)
represents several path-families (cycles) in Mt .

We reduce the problem of finding an optimal d-extension of (π1, π2) to the problem of enumerating all feasible
solutions of an integer linear program of constant size. We use candidate path-families (cycles) to avoid enumerating
all possible path-families and cycles in Mt . In this way, we need only to consider triples or pairs of subsets of a
bounded-size set.

Let us describe the above mentioned integer linear program.
Let D1 and D2 be two disjoint copies of {−1, 0, 1}

Wt . Let P be a matrix with rows indexed by R := E(Wt ) ∪

A(Wt ) ∪ D1 ∪ D2, whose columns are the incidence vectors of candidate path-families in Mt . Analogously, let C
be a matrix with rows indexed by R, whose columns are the candidate cycles in Mt . For z in R, denote by Pz
(respectively Cz) the row of P (respectively C) corresponding to z. Note that the size of R is |E(Wt )| + |A(Wt )| +

2(3|Wt |) ≤ k(k + 1)/2 + k(k + 1) + 2(3k+1). Also, the number of columns of these two matrices is bounded by
2|E(Wt )∪A(Wt )||D1||D2| ≤ 23k(k+1)/2

+ 32(k+1). So, P and C have constant size.
For z in {−1, 0, 1}

Wt , denote by K(z) the set of candidate path-families in Mt that cover z. Consider pairs (x, y),
where x is a non-negative integer vector indexed by candidate path-families in Mt and y is a non-negative integer
vector indexed by candidate cycles in Mt , satisfying the following conditions:∑

F∈K(z)

xF = d(z) ∀z ∈ {−1, 0, 1}
Wt ;

Pex + Ce y ≥ 1 ∀e ∈ E(Wt ) ∪ A(Wt );

Pz x + Cz y = d1(z) ∀z ∈ D1;

Pz x + Cz y = d2(z) ∀z ∈ D2.

Let us show that there is a correspondence between integer solutions (x, y) and extensions of (π1, π2). Clearly, an
extension of (π1, π2) corresponds to an integer solution (x, y). Now, suppose that (x, y) is an integer vector satisfying
the integer linear program above. Let F be the collection of candidate path-families in Mt , with each candidate path-
family F appearing exactly xF times, and let C be the collection of candidate cycles in Mi , with each candidate cycle
C appearing exactly yC times. Recall that the pair (F(di ), C(di )) is a di -realization in Mti , for i = 1, 2. The pair (x, y)

forces the occurrence in F ∪ C of exactly di (z) candidate path-families covering z in Di . Replacing these candidate
path-families in F, C by path-families in F(d1) ∪F(d2) for each z, we obtain a collection of path-families and cycles
in Mt , which we call F̂ and Ĉ respectively. It is easy to see that (F̂, Ĉ ∪ C(d1) ∪ C(d2)) is a d-realization in Mt .

Thus, to find an optimal extension, it is enough to find a pair (x, y) satisfying the system above and that
minimizes the weight of the corresponding realization. Clearly, we may assume that the components of x and y
lie in {0, . . . , m}. So, an upper bound for the number of feasible solutions of the system is (m + 1)g(k), where
g(k) = O(23k(k+1)/2

+ 32(k+1)) is the sum of the number of columns of P and C.
Therefore, given d and πi := (di ,F(di ), C(di )), i = 1, 2, one can find an optimal d-realization (π1, π2) in time

O(g(k) + mg(k)). Given d and the lists L1, L2 of partial solutions for t1,t2, one can compute an optimal d-realization
in Mt in time |L1||L2|O(g(k) + mg(k)). The length of each list Li is the number of Wti -configurations, which is at
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most (m + 1)3k+1
. Hence, one can find an optimal d-realization in Mt in polynomial time. Furthermore, one can build

in polynomial time a list of partial solutions for a vertex t from the lists for its children repeating the process for all
possible Wt -configurations. This concludes the proof of Theorem 2.

4. Concluding remarks

The algorithm we obtained is more of theoretical interest because of its complexity. It would be interesting to find
a simpler dynamic programming algorithm, though this does not seem to be an easy task.

It would also be interesting to establish whether these two problems are in the classes of problems addressed by
one of the metaresults for bounded tree-width graphs [2,8]. If the answer to this is positive, it would lead to another
algorithm for these problems. If it is negative, maybe the algorithms we described inspire possible extensions of these
metaresults to incorporate the two problems and others of similar nature.

We consider a relevant contribution of this paper the detailed presentation of a far from straightforward
dynamic programming algorithm for two well-known problems on bounded tree-width graphs. Most of the dynamic
programming algorithms for bounded tree-width graphs are not so intricate to derive. We hope the approach we
described in this paper may help in the design of algorithms for other problems on bounded tree-width graphs that
have a similar nature and require a more sophisticated approach.
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