
Computers & Operations Research 36 (2009) 2801 -- 2815

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Three-dimensional packingswith rotations�

F.K. Miyazawaa,∗, Y. Wakabayashib
aInstituto de Computação, Universidade Estadual de Campinas, Caixa Postal 6176, 13084-971 Campinas, SP, Brazil
bInstituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090 São Paulo, SP, Brazil

A R T I C L E I N F O A B S T R A C T

Available online 8 January 2009

Keywords:
Packing problems
Approximation algorithms
Orthogonal rotations

We present approximation algorithms for the three-dimensional strip packing problem, and the three-
dimensional bin packing problem. We consider orthogonal packings where 90◦ rotations are allowed. The
algorithms we show for these problems have asymptotic performance bounds 2.64, and 4.89, respectively.
These algorithms are for the more general case in which the bounded dimensions of the bin given in the
input are not necessarily equal (that is, we consider bins for which the length, the width and the height
are not necessarily equal). Moreover, we show that these problems—in the general version—are as hard
to approximate as the corresponding oriented version.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We focus on orthogonal packing problems where 90◦ rotations
are allowed. These problems have many real-world applications
[1,2]: job scheduling, container loading, cutting of hardboard, glass,
foam, etc.

We present approximation algorithms for the three-dimensional
versions of the strip packing and the bin packing problems. In the
d-dimensional version of both problems, d�1, the input consists of
a list of d-dimensional items (not necessarily of equal sizes) and a d-
dimensional bin B. In the d-dimensional strip packing problem (dSP),
defined only for d�2, one of the dimensions of the bin B, say height,
is unlimited, and the goal is to pack the list of items into B so as to
minimize the height of the packing. In the d-dimensional bin packing
problem (dBP), the dimensions of the bin B are limited, and the goal
is to pack the list of items into a minimum number of bins.

These problems and others of this nature have been more inves-
tigated in the version in which the packing is required to be oriented.
In this version, the items and the bins are given with an orientation
with respect to a coordinate system, and the items must be packed
into the bins in this given orientation. In this paper, we consider
packings that allow orthogonal rotations (that is, the items to be
packed may be rotated by 90◦ around any of the axes); to distinguish
them we may refer to them as r-packings or packings with rotation

�This research was partially supported by CNPq (Proc. 478470/06–1, 472504/07-
0, 306624/07-9, 305702/07-6 and 490333/04-4) and ProNEx-FAPESP/CNPq (Proc.
03/09925-5).
∗ Corresponding author. Tel.: +551935215882; fax: +551935215847.
E-mail addresses: fkm@ic.unicamp.br (F.K. Miyazawa), yw@ime.usp.br

(Y. Wakabayashi).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.12.015

(instead of saying non-oriented orthogonal packing). We also denote
the corresponding problems by dSPr (d-dimensional strip packing
problemwith rotation) and dBPr (d-dimensional bin packing problem
with rotation).

We present approximation algorithms with asymptotic perfor-
mance bounds 2.64 and 4.89 for the problems 3SPr and 3BPr, respec-
tively.

Approximation algorithms for the oriented versions of these pack-
ing problems have been extensively considered. The most studied
case is the one-dimensional bin packing problem (1BP), for which
the work of Johnson [3] in the early 1970s pioneered the approach of
designing efficient approximation algorithms with worst-case per-
formance guarantee for packing problems. Since 1BP is NP-hard and
it is a particular case of all problems considered in this paper, it
follows that each problem considered here is NP-hard. Moreover,
1BP cannot be approximated—in the absolute sense—within 3

2 − �;
thus, this negative result also holds for the problems considered
here.

In what follows we only mention some previous results closely
related to the problems we focus in this paper. For the problem
2SP, Kenyon and Rémila [4] obtained an asymptotic polynomial
time approximation scheme (APTAS). For the problem 2BP, Chung
et al. [5] proved that the algorithm HFF(p) (Hybrid First Fit) has
asymptotic performance bound 2.125. In 2001, Caprara [6] proved
that this algorithm has asymptotic performance bound 2.077; and
also presented an algorithm with asymptotic performance bound
1.691, the best bound known for the problem 2BP. Recently, Bansal
et al. [7] proved that there is no APTAS for 2BP, unless P=NP. They
also showed an APTAS for the problem dBP when the items and the
bins are d-dimensional cubes. For the problem 3SP, in 1997 we pre-
sented a 2.67-approximation [8], then in 2006 Jansen and Solis-Oba

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:fkm@ic.unicamp.br
mailto:yw@ime.usp.br

2802 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

[9] obtained a (2+ �)-approximation, and recently Bansal et al. [10]
obtained a 1.69-approximation. For the problem 3BP, Li and Cheng
[11] and Csirik and van Vliet [12] designed algorithms with asymp-
totic performance bound 4.84. Their algorithms generalize to the
problem dBP, and achieve asymptotic performance bound close to
1.691d.

The approximation bounds of some of the algorithms designed for
the oriented version may also hold when these algorithms are used
for the corresponding r-packing problem. This happens when the
proofs are based only on area arguments. Except for these cases, not
many results are known on approximation algorithms for r-packing
problems. The interest on these problems is more recent and has
increased lately.

For the problem 2SPr, the algorithms NFDH and BLDW have
asymptotic performance bound 2 (see [1]). In [13] we presented an
algorithm with asymptotic performance bound 1.613; then Epstein
and van Stee [14] obtained an algorithm with asymptotic bound 1.5,
and Jansen and van Stee [15] presented an APTAS.

We considered a special case of the problem 3SPr, denoted by
3SPz, in which the boxes can be rotated around the z-axis, but can-
not be laid down. For this problem we obtained an algorithm with
asymptotic performance bound 2.67 (see [16]). We also showed an
algorithm with bound 2.55 for the special case of 3SPz in which the
bin has square bottom, and also for a more specialized version in
which the boxes have square bottom (see [13] for a result when the
bin does not have a square bottom). To our knowledge, [16] is the
first paper to present approximation algorithms for r-packing prob-
lems where rotations are exploited in a non-trivial way. It is easy
to see that any algorithm for 3SPz leads to an algorithm to 2BPr

with the same bound. Therefore, the algorithms presented in [16]
also lead to algorithms for the problem 2BPr. For the special case in
which the bins are squares, Epstein [17] presented an on-line algo-
rithm with asymptotic bound 2.45. Using the APTAS presented by
Jansen and van Stee [15] for the problem 2SPr, it is possible to ob-
tain a (2 + �)-asymptotic approximation algorithm for 2BPr, which
is the best result known for this problem. Epstein and van Stee [14]
obtained an algorithm with asymptotic bound 2.25 for the special
case of 3SPz where the bin has square bottom. They also observed
that this algorithm can be used to obtain an algorithm with asymp-
totic performance bound 4.5 for the special case when the bins are
cubes.

Using the fact that there is no APTAS for 2BP, we may easily
conclude that there is no APTAS for the problem 3SP or 3BP, unless
P= NP.

For a survey on approximation algorithms for packing problems,
we refer the reader to [1,18].

This paper is organized as follows. In Section 2, we define the
problems, give some basic definitions and state some results. Sec-
tions 3 and 4 are devoted to problems 3SPr and 3BPr, respectively.
In Section 5 we present some concluding remarks.

An extended abstract corresponding to an early version of
this paper appeared in [13], presenting results for the two- and
three-dimensional cases. In that paper, we only mentioned the
bounds we have obtained, without any algorithm or proof for
the three-dimensional case. In fact, in the present paper, for the
3SP problem we show an algorithm with performance bound
2.64, which is better than the bound 2.76, mentioned in that
paper.

2. Preliminaries

In this section, we first define the packing problems that appear
in this paper, then give some basic definitions, establish the nota-
tion, and mention some known results that we use. We also dis-
cuss some relations (reductions) between algorithms for the oriented

version and the version with rotations. Since we use existing algo-
rithms for subproblems of the 3SPr and 3BPr, we also define these
problems.

In the bin packing problem, 1BP, we are given a list of items
L = (s1, . . . , sn), and bins B of capacity a, where 0 < si�a, and we
are asked to find a packing of L into a minimum number of
bins B.

The two-dimensional strip packing problem with rotation, 2SPr, is
the following: given a list of rectangles L=(r1, . . . , rn), where ri=(xi, yi),
and a bin B=(a,∞), find an r-packing of the rectangles of L into B that
minimizes the size of the packing in the unlimited direction of B.

In the two-dimensional bin packing problem with rotation, 2BPr,
we are given a list of rectangles L = (r1, . . . , rn), where ri = (xi, yi),
and two-dimensional bins B = (a, b), and we are asked to find
an r-packing of the rectangles of L into a minimum number of
bins B.

The three-dimensional strip packing problem with rotation, 3SPr,
is defined as follows: given a list of boxes L = (e1, . . . , en), where
ei = (xi, yi, zi), and a bin B = (a, b,∞), find an r-packing of the boxes
of L into B, that minimizes the size of the packing in the unlimited
direction of B.

In the three-dimensional bin packing problem with rotation, 3BPr,
we are given a list of boxes L = (e1, . . . , en), where ei = (xi, yi, zi),
and three-dimensional bins B = (a, b, c), and we are asked to
find an r-packing of the boxes of L into a minimum number of
bins B.

We denote by 2SPr(a), 2BPr(a, b), 3SPr(a, b), and 3BPr(a, b, c) the
corresponding problems versionswith the bin sizes defined by values
a, b and c. If P is a packing for the (three-dimensional) strip packing
problem, we denote by H(P) the height of packing P, and if P is a
packing for the (three-dimensional) bin packing problem, we denote
by #(P) the number of bins used in P.

2.1. Definitions and notation

In all problems considered in this paper the given list L of
boxes must be packed orthogonally into bins B (three-dimensional
strip or three-dimensional bins) in such a way that no two items
overlap.

For all algorithms we assume that every item e in the input list L
is given in a feasible orientation, that is, in an orientation that allows
it to be packed into B without the need of any rotation (there is
no loss of generality in assuming this, as the items can be rotated
previously if needed). Moreover, we consider that the items have
each of its dimensions not greater than a constant Z.

To refer to the packings, we consider the Euclidean space R3, with
the xyz coordinate system. An item e in L has its dimensions defined
as x(e), y(e) and z(e), also called its length, width and height, respec-
tively. Each of these dimensions is the measure in the corresponding
axis of the xyz system. For the one- and the two-dimensional cases,
some of these values are not defined.

If e is a rectangle then we denote by S(e) its area. If e is a box then
the bottom area of e is the area of the rectangle (x(e), y(e)), and V(e)
denotes the volume of e. Given a function f : C → R and a subset
C′ ⊆ C, we denote by f (C′) the sum

∑
e∈C′ f (e).

Although a list of items is given as an ordered n-tuple, when the
order of the items is irrelevant we consider the corresponding list
as a set. Therefore, if L is a list of items, we refer to the total area,
respectively, volume, of the items in L as S(L), respectively, V(L).

If L1, L2, . . . , Lk are lists, where Li = (e1i , e
2
i , . . . , e

ni
i), the con-

catenation of these lists, denoted by L1‖L2‖ · · · ‖Lk, is the list
(e11, . . . , e

n1
1 , e12, . . . , e

n2
2 , . . . , e1k , . . . , e

nk
k).

The following is a convenient notation to define and restrict the
input list of items. We assume that the dimensions of the input

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2803

bin B is (a, b, c):

X[p, q] := {e : p · a < x(e)�q · a},
Y[p, q] := {e : p · b < y(e)�q · b},
Z[p, q] := {e : p · c < z(e)�q · c},
Cxy [p1, q1 ; p2, q2] :=X[p1, q1] ∩Y[p2, q2],

Cyz [p1, q1 ; p2, q2] :=Y[p1, q1] ∩Z[p2, q2],

Czx [p1, q1 ; p2, q2] :=Z[p1, q1] ∩X[p2, q2],

Cxyz [p1, q1 ; p2, q2 ; p3, q3] :=X[p1, q1] ∩Y[p2, q2] ∩Z[p3, q3],

Cm := Cxyz
[
0,

1
m

; 0,
1
m

; 0,
1
m

]
,

Cxy
m := Cxy

[
0,

1
m

; 0,
1
m

]
,

Cp,q :=X[0, 1/p] ∩Y[0, 1/q],

Cp,q,r :=X[0, 1/p] ∩Y[0, 1/q] ∩Z[0, 1/r].

℘1 := [12 , 1 ; 1
2 , 1], ℘2 := [0, 12 ; 1

2 , 1],

℘3 := [12 , 1 ; 0, 12], ℘4 := [0, 12 ; 0, 12].

If T is a set of items, then we say that an item e in L is of type T
if e′ ∈T for some permutation e′ of e. If P is a packing, we denote
by L(P) the set of boxes packed in P.

If A is an algorithm (for one of the packing problems), and L is a
list of items to be packed, then A(L) denotes the size of the packing
generated by algorithmAwhen applied to list L, and OPT(L) denotes
the size of an optimal packing of L. The size can be the height of the
packing or the number of bins used in the packing, depending on the
problem we are considering. Although OPT will be used for distinct
problems, its meaning will be clear from the context. We say that
an algorithm A has asymptotic performance bound � if there exists
a constant � such that A(L)��OPT(L)+ �, for all input list L.

2.2. Relations between algorithms for oriented packings and r-packings

One way to solve r-packing problems is to adapt algorithms de-
signed for the oriented case. In [16] we mention that, for the prob-
lem 3SPz, a simple algorithm that first rotates all items so as to have
them in a feasible orientation and applies an algorithm for 3SP must
have an asymptotic bound at least 3. It can be shown, using the same
strategy, that no algorithm for 2SPr, designed as we described above,
can have asymptotic performance bound smaller than 2. Similar re-
sults also hold for the problems 2BPr and 3BPr: no algorithm with
asymptotic performance bound smaller than 3 can be obtained as
described above (for more details see [16]).

Most of the results concerning approximation results do not con-
sider rotations. In the early 1980s, Coffman et al. [1] discussing the
case where 90◦ rotations are allowed, mentioned that “no algorithm
has been found (for the problem 2BP) that attains improved guar-
antees by actually using such rotations itself.” Chung et al. [5] also
discussed this matter and raised the question about the possibility
of obtaining algorithms with better worst-case bounds. For other
papers that raise questions about rotations the reader may refer to
[4,19].

We can show that when scaling does not affect the problem, for
any of the general packing problems considered, the version allowing
rotations is as hard to approximate as the oriented version. More
precisely, we can show the following result.

Theorem 2.1. Let PROBr be one of the problems defined previously,
for which orthogonal rotations around some of the axes x or y or z
(possibly several axes) are allowed; and let PROB be a variant of PROBr,

obtained by fixing the orientation of the packing with respect to some
axis. Let � and �r be constants and Ar an algorithm for PROBr such
that Ar(L)��OPT(L)+ �r for any input list L of PROBr. Then, there is
an algorithm A for PROB such that the following holds:

A(L)��OPT′(L)+ � for any input list L of PROB,

where OPT′(L) is the size of an optimum packing of L (w.r.t. PROB) and
� is a constant. Moreover, the reduction is polynomial, if we consider a
convenient representation for the instance.

Proof. Consider the problem 2BPr and an instance composed of an
input list of rectangles L and bins of size B = (a, b). Suppose that
x(e)�a and y(e)�b, for each item e ∈ L. Let Ar be an algorithm for
2BPr such that Ar(L)��OPT(L) + �r . Consider the following algo-
rithm A′ for the problem 2BP. First take a scaling of B to B′ = (a′, b)
and L to L′ in the same proportion, in such a way that min{x(e) : e ∈
L′} > b. In this case, all rectangles of L′ can only be packed in the orig-
inal orientation. At this point, we apply algorithm Ar to pack L′ into
the box B′, obtaining a packing P′. At last, rescale P′ to the original
sizes, obtaining a packing, say P (of the original list L into B). It is
clear that A′(L)�� ·OPT′(L)+ �, where OPT′(L) is the size of an op-
timum packing for the problem 2BP and � is the additive constant
obtained in the original scale.

For the three-dimensional case, we can first apply the strategy
so that no box can be rotated around the z-axis. Then, we apply the
same strategy scaling the height of all boxes and bins in such way
that no item can be laid down. Denote the final input list by L′′ and
the final bins by B′′. Obtain a packing P′′ applying the algorithm A′

and then rescale the packing P′′ to the initial sizes.
We can apply the same strategy when rotations are allowed in

only some axes, and design an algorithm A with the desired prop-
erty. �

Using the fact that there is no APTAS for the problems 2BP (see
[20]) we have the following negative result.

Corollary 2.2. There is no APTAS for the problems 2BPr, 3SPr and 3BPr,
unless P = NP.

One-dimensional bin packing problem: Some algorithms we shall
describe use one-dimensional bin packing problem algorithms as
subroutines. This section is devoted to these algorithms and related
results (see [18]). Many algorithms have been designed for 1BP. In
what follows we describe the following: NF (Next Fit), FF (First Fit)
and FFD (First Fit Decreasing).

The algorithm NF can be described as follows. Given a list of items
L, it packs the items in the order given by L. The first item is packed
into a bin which becomes the current bin; then as long as there are
items to be packed, the next item is tested. If possible, it is packed
into the current bin; if it does not fit in the current bin, then it is
packed into a new bin, which becomes the current bin.

The algorithm FF also packs the items in the order given by L.
It tries to pack each new item into one of the previous bins, con-
sidering the order they were generated. If it is not possible to pack
an item in any of the previous bins, the algorithm packs it into a
new bin.

The algorithm FFD first sorts the items of L in decreasing order
of their length, and then applies the algorithm FF.

We also use the APTAS designed by Fernandez de la Vega and
Lueker [18,21], which we denote by FL�.

Theorem 2.3 (Fernandez de la Vega and Lueker [21], Coffman et al.
[18]). For any rational � >0, there exists a polynomial-time algorithm
FL� for the one-dimensional bin packing problem such that, for any input
list L, FL�(L)� (1+ �)OPT(L)+ 1.

2804 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

Two-dimensional strip packing problem: Some of the algorithms
we use as subroutine, are for the two-dimensional strip packing
problem with rotation (2SPr). For the problem 2SP, Coffman et al.
[19] presented the algorithms NFDH(s) (Next Fit Decreasing Height)
and FFDH(s) (First Fit Decreasing Height) and proved that their
asymptotic performance bounds are 2 and 1.7, respectively. The
algorithm NFDH(s) first sorts the input list L in decreasing order
of height, then packs the rectangles side by side generating levels.
When an item cannot be packed in the current level, it is packed
in a new level above the previous one. The algorithm FFDH(s) also
packs the items in decreasing order of height. Each item is packed
in the first level with sufficiently space to accommodate it. If there
is no such level, the item is packed in a new level above the
previous one.

Recently, Jansen and van Stee [15] presented an asymptotic ap-
proximation scheme for problems inwhich all items can be packed in
both ways. We note that the scheme presented can also be adapted
to the case in which some of the items may not be rotated.

Theorem 2.4 (Jansen and van Stee [15]). For any rational � >0,
there exists a polynomial-time algorithm JvS� for 2SPr(a) such that
JvS�(L)� (1 + �)OPT(L) + O(Z/�2), for any list L of rectangles with
dimensions at most Z.

3. Three-dimensional strip packing problem

In this section, we present an algorithm for 3SPr, called TRIk,�,
with asymptotic performance bound close to 2.64. We observe that
we consider the more general setting in which the bin may not have
square bottom.

This algorithm uses the critical set combination strategy used
in [8,16]. The idea is to combine item types which do not lead to
packings with good space filling, if considered independently.

In Section 3.1 we present some subroutines used by the main al-
gorithm of this section. In Sections 3.2–3.4 we present the ideas of
the main algorithm and how they guide us to obtain the main algo-
rithm. In Section 3.2 we show a first idea to obtain an approxima-
tion algorithm with asymptotic factor 3.25 and the points we need
to improve to obtain a better bound. In Section 3.3, we present a
first combination step to obtain an improved algorithm with bound
2.6875. In Section 3.4, we consider another combination step to ob-
tain the final bound of 2.64. The use of the combination of critical
sets is the key idea of algorithm TRIk,�. In Section 3.5 we present the
main algorithm in detail.

3.1. Subroutines

The algorithm TRIk,� uses many algorithms as subroutines, which
we describe in what follows.

First we describe the algorithm NFDH (Next Fit Decreasing
Height) presented by Li and Cheng [22]. The algorithm has two
variants: NFDHx and NFDHy. The notation NFDH is used to refer to
any of these variants.

Algorithm NFDH. The algorithm NFDHx first sorts the boxes of L in
decreasing order of their height, say L= (e1, e2, . . . , en). The first box
e1 is packed in the position (0, 0, 0), the next one is packed in the
position (x(e1), 0, 0) and so on, side by side, until a box is found that
does not fit in this layer. At this moment the next box ek is packed
in the position (0, y(e∗), 0), where y(e∗) =max{y(ei), i = 1, . . . , k − 1}.
The process continues in this way until a box el is found that does
not fit in the first level. Then the algorithm packs this box in a new
level at the height z(e1). The algorithm proceeds in this way until all
boxes of L have been packed.

x

y

Fig. 1. Two stacks of boxes.

The algorithmNFDHy is analogous to the algorithmNFDHx, except
that it generates the layers in the y-axis direction (for a more detailed
description see [22]).

The following result will be useful (see [8,16]).

Lemma 3.1. Let L be an instance of 3SPr and P be a packing of L
consisting of levels N1, . . . ,Nv such that min{z(e) : e ∈ Ni}� max{z(e) :
e ∈ Ni+1}, and S(Ni)� sab for a given constant s >0, i=1, . . . ,v−1. Then
H(P)� (1/s)V(L)/a b+ Z.

If a packing P satisfies the above inequality, we say that P has
a volume guarantee of s.

Given a set of boxes S, we call these boxes as f -boxes if we can
obtain a packing of Swith volume guarantee of at least f . For example,
the boxes S ⊂ Cxy[13 ,

1
2 ; 1

2 , 1] are 1
3 -boxes, since we can sort the

boxes in S in non-increasing order of height and place two boxes in
each level, each box b with S(b)�ab/6, except perhaps in the last
level. From Lemma 3.1, the obtained packing has volume guarantee
1
3 . Another way to obtain a packing PS of S with volume guarantee
1
3 is to iteratively pack the boxes generating two stacks, from the
bottom of the bin, packing the next box of S at the top of the stack
with smallest height. See Fig. 1. When all boxes have been packed,
the two stacks have almost the same height, except by a difference
of Z. Since the bottom area of each box is at least ab/6 and the
height difference of the two stacks is at most Z, we can conclude
that V(S)�ab/3(H(PS)− Z). Isolating H(PS) we can see that packing
PS has a volume guarantee of 1

3 .

Algorithm LL. Another algorithm we use is the algorithm LLm, pre-
sented by Li and Cheng [2]. It is used to pack lists L such that L ⊂ Cxy

m .
The Algorithm LL first sorts the boxes in L in non-increasing order
of their height and then divides L into sublists L1, . . . , Lv such that
L = L1‖ · · · ‖Lv. Each sublist Li has total bottom area S(Li) that is at
least ((m−2)/m)ab (except possibly for the last sublist) but not more
than ((m−2)/m)ab+ab/m2. Then, it uses a two-dimensional packing
subroutine to pack each sublist into only one level (the subroutine
is proved to pack in only one bin if the total area of rectangles is
bounded in this way). Clearly, the area occupation in each level is at
least ((m− 2)/m)ab, and using Lemma 3.1 the following holds.

Lemma 3.2 (Li and Cheng [2]). If P is a packing generated by the
algorithm LLm for an instance L ⊂ Cxy

m , then LLm(L)� (m/(m − 2))
V(L)+ Z.

Algorithm A3S. Another algorithm we use is the algorithm A3Sp,q,
presented in [23]. This algorithm does not use any rotation. It

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2805

Fig. 2. (a) Partition of boxes into parts (view of the xy-plane) and (b) rotation of a
box with dimensions (10, 5, 7) to a box (5, 7, 10).

divides the input list L ⊂ Cp,q into several sublists and apply specific
algorithms for each one. Each packing is a level-oriented packing in
the conditions presented for Lemma 3.1, with area occupation of at
least (pq/(p+ 1)(q+ 1))ab in each level. The following holds for this
algorithm.

Lemma 3.3. IfP is a packing generated by the algorithm A3Sp,q for an
instance L ⊆ Cp,q, then A3Sp,q(L)� ((p+ 1)(q+ 1)/pq)V(L)+ 6Z.

Denote by 3Sm the algorithm A3S1/m,1/m. Using Lemma 3.3, the
following holds.

Corollary 3.4. If P is a packing generated by the algorithm 3Sm for an
instance L ⊆ Cm,m, then 3Sm(L)� ((m+ 1)/m)2V(L)+ 6Z.

3.2. Idea of the algorithm TRIk,�

First, let us give an idea of the algorithm TRIk,�. Consider the set
of boxes defined by the sets ℘1, . . . ,℘4 (mentioned in Section 2.1).
Now, consider an input list of boxes for 3SPr(a, b).

(i) First rotate each box e ∈ ℘1 of the input list, if possible, to a box
with orientation e′ ∈ ℘2 ∪℘3 ∪℘4.

(ii) Now, rotate each remaining box e ∈ ℘1, if possible, to a box with
orientation e′ ∈ ℘1 in such a way that z(e′) is minimum.

Fig. 2 illustrates step (i). Let L be the resulting input list, after these
two steps and let Li be the set L ∩℘i, for i= 1, . . . , 4.

If we apply algorithmA3Sp,q for sublists L1, . . . , L4 with appropriate
values of p and q for each sublist, we obtain packings P1, . . . ,P4 for
which the following holds:

H(P1)�
1
1/4

V(L1)
ab
+ C1Z, (1)

H(P2)�
1
1/3

V(L2)
ab
+ C2Z, (2)

H(P3)�
1
1/3

V(L3)
ab
+ C3Z, (3)

H(P4)�
1
4/9

V(L4)
ab
+ C4Z, (4)

where Ci, i=1, . . . , 4, are constants. That is, the boxes in the lists L1, L2,
L3 and L4 are 1

4 -boxes,
1
3 -boxes,

1
3 -boxes and 4

9 -boxes, respectively.
Note that after steps (i) and (ii) the boxes of L1 can only be packed

one on top of the other, and therefore,

H(P1)= OPT(L1)�OPT(L). (5)

Let n1 = H(P1)− C1Z and n2 =
∑4

i=2(H(Pi)− CiZ). Now we have
two lower bounds for the height of an optimum packing: the height
of packing P1 and the volume based lower bound V(L)/ab. That is,

OPT(L)�H(P1)= n1 (6)

and

OPT(L)�
V(L)
ab
= V(L1)

ab
+

4∑
i=2

V(Li)
ab

�
1
4
n1 +

1
3
n2. (7)

From (6) and (7), we have

OPT(L)� max{n1, 14n1 + 1
3n2}. (8)

Using the above relation, we can prove the following inequality for
the final packing P=P1‖P2‖P3‖P4:

H(P)= H(P1)+ H(P2)+ H(P3)+ H(P4)

= n1 + n2 + CZ

�
n1 + n2

max
{
n1, 14n1 + 1

3n2
}OPT(L)+ CZ

= �′ OPT(L)+ CZ,

where C=∑4
i=1 Ci and �′ := (n1 + n2)/max{n1, 14n1 + 1

3n2}. The value
of �′ can be bounded by 3.25 using the following lemma, shown in
[24].

Lemma 3.5. Suppose X, Y , x, y are real numbers such that x >0 and
0 <X <Y <1. Then

x+ y
max{x,Xx+ Yy} �1+ 1− X

Y
.

In the analysis we considered that the packing that was generated
consists of two parts: one optimum packing (P1) with “poor” volume
guarantee (of 1

4) and the other part (packing P2‖P3‖P4) with a
“medium” volume guarantee (of at least 1

3).
Note that if we could improve the volume guarantee of 1

4 or 1
3

that appear in the ratio �′, then we obtain a bound that is better than
3.25. So, the first idea used in the algorithm TRIk,� is to use a critical
combination strategy to improve the volume guarantee of one of the
parts. In each combination step, we combine two types of boxes, each
type associated with a small volume guarantee. Although the boxes
of each type may lead to packings with poor volume guarantee, if
packed separately, the combined packing may have a good volume
guarantee. The arrangement using two types of boxes may have a
combination that leads to a better volume occupation than with only
one type.

For each algorithm, we define the sublists that leads to packings
with poor volume guarantee for each region, denoted as critical boxes,
and make a combined packing with good volume guarantee, which
we denote by good packings.

3.3. Combining critical 1
3 -boxes with critical 1

3 -boxes

In this section we present the algorithms that combine critical 1
3 -

boxes: COMBINEz and COMBINE-ABz
k. The packing obtained by the

combination step has a good volume guarantee, of at least 0.457.
We consider the combination of boxes of type A=A1‖ · · · ‖

Ak+14 with boxes of typeB=B1‖ · · · ‖Bk+14 (throughout the paper,
we denote the critical sets with lettered sets or lettered indexes).
These sets are illustrated in Fig. 3 and are produced by algorithm
COMBINE-ABz

k. Since this algorithm is also used as a subroutine for
problem 3BPr, it will be described in a more general way.

The combination is performed in steps by combining boxes of
type Ai with boxes of type Bj, for 1� i, j�k + 14. At each combi-
nation step, all boxes of type Ai or all boxes of type Bj are totally

2806 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

Fig. 3. Sublists Ai :=Axy
i and Bj :=Bxy

j when a= b= 1.

B

A

A

Fig. 4. Example of a packing produced by algorithm COMBINE with three columns.

packed. Fig. 4 illustrates a packing that combines such boxes. The fi-
nal combined packing of boxes of typeA andB is the concatenation
of all combined packings.

To describe algorithm COMBINE-ABz
k, we have to define some

numberswhich are used to define critical sets. For each critical subset
Ai and Bj, we can obtain positions and use the algorithm COMBINE
to obtain a combined packing of items of Ai ∪ Bj, such that the
volume guarantee of the combined packing is at least 27

56 and all items
of one of these critical subsets are totally packed. These numbers
have already been used in [8,16]. For completeness, we present them
and also the critical sets and related results.

Definition 3.6. Let r(k)1 , r(k)2 , . . . , r(k)k+15 and s(k)1 , s(k)2 , . . . , s(k)k+14 be real
numbers defined as follows:

• r(k)1 , r(k)2 , . . . , r(k)k are such that r(k)1
1
2 = r(k)2 (1 − r(k)1) = r(k)3 (1 − r(k)2) =

· · · = r(k)k (1− r(k)k−1)= 1
3 (1− r(k)k) and r(k)1 < 4

9 ;

• r(k)k+1 = 1
3 , r

(k)
k+2 = 1

4 , . . . , r
(k)
k+15 = 1

17 ;

• s(k)i = 1− r(k)i for i= 1, . . . , k;

• s(k)k+i = 1− ((2i+ 4− (i+ 2)/3�)/(4i+ 10)) for i= 1, . . . , 14;

The following result can be proved using a continuity argument.

Claim 3.7. The numbers r(k)1 , r(k)2 , . . . , r(k)k are such that r(k)1 > r(k)2 > · · · >
r(k)k > 1

3 and r(k)1 → 4
9 as k→∞.

For simplicity, we omit the superscripts (k) of the notation r(k)i , s(k)i
when k is clear from the context.

Using the numbers in Definition 3.6, we define the following
critical sets (see Fig. 3):

Axy
i =Cxy[ri+1, ri ; 1

2 , si], B
xy
i =Cxy[12 , si; ri+1, ri],

Axy =
k+14⋃
i=1

Axy
i , Bxy =

k+14⋃
i=1

Bxy
i .

We use basically the same procedure used in [16] with the algo-
rithm COMBINE, with a small modification.

Algorithm COMBINEz. This algorithm is called with the parameters
(L,T1,T2,p1, p2), where p1=(p11,p12, . . . , p1n1) consists of the positions
in the bottom of box B where the columns of boxes of type T1

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2807

should start and p2 = (p21, p
2
2, . . . ,p

2
n2) consists of the positions in the

bottom of box Bwhere the columns of boxes of typeT2 should start.
Each point pij=(xij, yij) represents the x-axis and the y-axis coordinates
where the first box (if any) of each column of the respective type
must be packed. Note that the z-axis coordinate need not be specified
since it may always be assumed to be 0 (corresponding to the bottom
of box B). Here we are assuming that the positions p1, p2 and the
typesT1,T2 are chosen in such a way that the defined packing can
always be performed (a column will not intersect any other column).
We call height of a column the sum of the height of all boxes in that
column. Initially, all n1+n2 columns are empty, starting at the bottom
of box B. At each iteration, the algorithm chooses a column with the
smallest height, say a column given by the position pij, and packs

the next box e of type Ti, updating the list L after each iteration. If
there is no such box e, then the algorithm terminates returning the
partial packing P of L.

We denote by COMBINEx and COMBINEy the corresponding ver-
sion of the algorithm COMBINEz which generates columns in the x
and y directions, respectively, or by COMBINE when considering any
of these versions. The only modification of the algorithm COMBINE,
from the version presented in [16], is that it may consider orthogo-
nal rotations around any axis, to fit in the sets Axy

i or Bxy
j , or any

set (type) given as a parameter. The next lemma is valid for this al-
gorithm:

Lemma 3.8 (Miyazawa and Wakabayashi [16]). Let P be the packing
of L′ ⊆ L generated by the algorithm COMBINE when applied to lists of
typesT1 andT2 and list of positions pi1, p

i
2, . . . ,p

i
ni , i=1, 2. If S(e)� siab,

for all boxes e inTi (i=1, 2), then H(P)� (1/(s1n1+s2n2))V(L′)/ab+Z.

We also denote the sum s1n1+s2n2, in Lemma 3.8, as the volume
guarantee of the packing P.

To combine all boxes of type Axy or Bxy, we call the algo-
rithm COMBINEz with pairs of types Axy

i and Bxy
j . Since each

run of algorithm COMBINE packs all boxes of one type, it is suffi-
cient to call COMBINE 2(k + 14) times. We denote this algorithm
as COMBINE-ABz

k(L, COMBINE). The algorithm COMBINE is given
as a parameter, since in the next section, we use the algorithm
COMBINE-ABz

k to pack boxes into bins for problem 3BPr with an-
other subroutine. Fig. 4 illustrates a packing produced by algorithm
COMBINE-AB.

The following lemma is obtained from Lemma 3.8, using the fact
that the volume guarantee of packing PAB is at least 17

36 .

Lemma 3.9 (Miyazawa and Wakabayashi [16]). If PAB is a packing of
a list LAB generated by the algorithm COMBINE-ABz

k with parameters
(L, COMBINE), then

H(PAB)�
1

17/36
V(LAB)
ab

+ (2k+ 41)Z.

Fig. 5 presents the volume guarantee one can obtain for each re-
gion using only list partition without any combination. As the algo-
rithm COMBINE-ABz

k packs all boxes of type A or type B, assume
that all boxes of type B have been packed by this routine. Fig. 6 il-
lustrates the volume guarantee for the remaining boxes, in each re-
gion, and the situation when all boxes of type B have been packed.
Now, if possible rotate each box in parts ℘1 ∪℘2 that fits in the set
℘3∪℘4. Clearly, after this step there will be no box which, if rotated,
becomes a box in the setB, because the construction of packingPAB
considers any possible rotation of boxes in the input list L.

Since the remaining items in℘1∪℘2 cannot be packed side by side
in the y-dimension, we have now an instance of the two-dimensional

Fig. 5. Critical sets A and B.

Fig. 6. After combination of boxes of type A and B: all boxes of type B have been
packed.

strip packing problem, for which we can obtain an almost optimum
packing (according to Theorem 2.4), and volume guarantee at least
1
4 (minimum of 1

4 and 1
3). To this end, rotate each box e ∈ ℘1 ∪℘2, if

possible, to a box e′ ∈ ℘1 ∪℘2 so that y(e′) is maximum (this allows
to consider each box as a smallest possible rectangle in the xz plane).
Therefore, at this point, we can obtain a final packing consisting of
two parts: one almost optimum packing with volume guarantee 1

4
and another (for the remaining boxes) with volume guarantee 4

9 . In
this case, when � → 0, we can use Lemma 3.5 to obtain a packing
with asymptotic performance bound

h′1 + h′2

max
{

1
1+ �

h′1,
1
4h1 + 4

9h
′
2

} ≈ 2.6875.

2808 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

Fig. 7. After combination of LC and LD: LC ⊆PCD .

Fig. 8. After combination of LC and LD: LD ⊆PCD .

3.4. Combining critical 1
4 -boxes with critical 4

9 -boxes

At this point, we continue with a new combination step, just af-
ter the generation of the combination of boxes of typeA andB that
producedPAB. Now, we combine critical 1

4 -boxes, which are given by
the set LC , and critical 4

9 -boxes, which are given by the set LD=L′D‖L′′D.
These critical sets can be seen in Fig. 9. The precise definition of sets
LC and LD can be found in the description of Algorithm TRIk,�: these
are the set of boxes of types TC and TD, defined in step 4.3. The
combined packing has also a good volume guarantee (which is also
at least 1

4 + 2
9 = 17

36 =0.472 . . .). Figs. 7 and 8 present the regions of the
critical sets LC and L′D‖L′′D and the status when the boxes of each crit-
ical set are totally packed. The fractions indicate the minimum vol-
ume guarantee we can obtain for each region. The combined pack-
ing PCD is the concatenation of two packings: P′CD, which combines
LC and L′D, and P′′CD, which combines the remaining items of LC and
L′′D. The packing P′CDhas one column consisting of items in LC and

one column consisting of items in L′D. The packing P′′CD has one col-
umn consisting of items in LC and two columns consisting of items
in L′′D.

If all critical 1
4 -boxes have been packed in PCD, we obtain the

following bound:

h′1 + h′2

max
{

h′1
1+ �

, 0.271h1 +
4
9
h′2

} .

Otherwise, if all critical 4
9 -boxes have been packed inPCD we obtain

the following bound:

h′′1 + h′′2

max
{

h′′1
1+ �

,
1
4
h′′1 + 0.457h′′2

} .

In both cases, a simple calculation shows that the asymptotic per-
formance bound is at most 2.64.

3.5. Description and analysis of algorithm TRIk,�

In this section we present a formal description of algorithm TRIk,�
and analyse its asymptotic performance bound. We observe that
the value of t defined in step 2 was obtained by imposing equal-
ity for the bounds obtained in both cases analysed in the proof of
Theorem 3.10.

The algorithm TRIk,� and the proof of its approximation factor
follows very closely the ideas presented in Sections 3.2–3.4. The
packings obtained with combinations of critical sets have lettered
indexes: PAB and PCD. Both packings have good volume guaran-
tee (at least 0.47). The remaining boxes are divided into many sub-
lists, but basically, the final packing is divided into two parts (see
Section 3.4): one with poor volume guarantee (in Case 1 it is 0.271
and in Case 2 it is 0.25) and the other part has a good volume guar-
antee (in Case 1 it is 0.444 and in Case 2 it is 0.457). For the part
with poor volume guarantee, we could obtain an almost optimum
packing (one within (1+ �) of the optimum).

Algorithm TRIk,�(L).
Input: List of boxes L (instance of 3SP(a, b)).
Output: PackingP of L into a bin B=(a, b,∞), allowing orthogonal
rotations.

1 Rotate each box e ∈ ℘1, if possible, to a box e′ ∈ ℘2 ∪℘3 ∪℘4.
2 t← (

√
33− 3)/6.

3 PAB ← COMBINE-ABz
k(L, COMBINE). L← L\L(PAB).

4 If all boxes of type Bxy
k were packed in PAB then

4.1 Rotate each box e ∈ L∩℘2, if possible, to a box e′ ∈ ℘3∪℘4.
4.2 Rotate each box e ∈ L ∩ (℘1 ∪ ℘2), if possible, to a box

e′ ∈ ℘1 ∪℘2 such that y(e) is maximum.
4.3 Let

TC =Cxy[12 , 1;
1
2 , 1− t], T′D =Cxy [0, t ; 0, 1] ,

T′′D =Cxy [0, t ; 0, 1] , TD =T′D ∪T′′D.

4.4 Generate a packing PCD as follows.
PCD′ ← COMBINE(L,TC ,T

′
D, [(0, 0)], [(0, 1− t)]).

PCD′′ ← COMBINE(L\LCD′ ,TC ,T
′′
D, [(0, 0)], [(0, 1 −

t), (12 , 1− t)]).

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2809

Fig. 9. Sublist after the packing of list LB = (B1 ∪ · · · ∪ Bk+14).

PCD ←PCD′ ‖PCD′′ ;
LCD ← LCD′ ∪ LCD′′ ;

4.5 Subdivide the list L into sublists L1, . . . , L23 as follows (see
Fig. 9). Li ← L ∩Cxy

[
1
2 , 1 ; 1

i+2 ,
1

i+1
]
, i= 1, . . . , 16,

L17 ← L ∩Cxy[12 , 1 ; 0, 1
18],

L18 ← L ∩Cxy[13 ,
1
2 ; 1

3 ,
1
2], L19 ← L ∩Cxy[13 ,

1
2 ; 1

4 ,
1
3],

L20 ← L ∩Cxy[13 ,
1
2 ; 0, 14], L21 ← L ∩Cxy[14 ,

1
3 ; 1

3 ,
1
2],

L22 ← L ∩Cxy[0, 14 ; 1
3 ,

1
2], L23 ← L ∩Cxy[0, 13 ; 0, 13].

4.6 Generate packings P1, . . . ,P23 as follows.

Pi ← NFDHy(Li) for i= 1, . . . , 21;

Pi ← NFDHx(Li) for i= 22;

P23 ← LL3(L23).

4.7 Paux ←PAB‖PCD‖P1‖ · · · ‖P23;
4.8 L← L\L(Paux). /* Note that L ⊆ ℘1 ∪℘2. */
4.9 Consider each box e ∈ L as a rectangle of length x(e) and

height y(e) and the box B= (a, b,∞) as a rectangular strip
of length a and unlimited height. Apply algorithm JvS� to
L (see Theorem 2.4) and let PJvS be the resulting packing.
Let PNFDH be the packing NFDHx(L ∩X[0, 13])‖NFDHx(L ∩
X[13 ,

1
2])‖NFDHx(L ∩X[12 , 1]).

Let PSTRIP be the smallest packing in {PJvS,PNFDH}.
4.10 P←PSTRIP‖Paux.

5 If all boxes of type Axy
k were packed in PAB then generate a

packing P of L as in step 4 in symmetric way.
6 Return P.

End algorithm.

Theorem 3.10. For any instance L for the problem 3SPr, we have

TRIk,�(L)��k,� OPT(L)+O

(
k+ 1

�

)
Z,

where �k,� → (25+ 3
√
33)/16= 2.639 . . . as k→∞ and �→ 0.

Proof. We present the proof for the case in which all boxes of
type Bxy

k were packed in step 4. The proof for the other case (step
5) is analogous. We analyse two subcases, according to step 4.4
(LC ⊆ LCD).

Each packing Pi, i ∈ {1, . . . , 23}\{1, 18}, has a volume guarantee
of at least 17

36 . Furthermore, this minimum value is attained when
i ∈ {16, 17}. Therefore, applying Lemmas 3.1 and 3.2 we can conclude
that

H(Pi)�
36
17

V(Li)
ab
+ Z for i ∈ {1, . . . , 23}\{1, 18}. (9)

From Lemma 3.9, we have

H(PAB)�
36
17

V(LAB)
ab

+ (2k+ 41)Z. (10)

For the packings PCD′ and PCD′′ (step 4.4), the volume guarantee
(by Lemma 3.8) is at least 1

4 + r1
2 , and therefore

H(PCD)�
1

1
4
+ r1

2

V(LCD)
ab

+ 2Z. (11)

Let us analyse the two possibilities: LC ⊆ LCD or LD ⊆ LCD (see
step 4.4).

2810 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

Case 1: LC ⊆ LCD. For the packings P1 and P18 we have

H(P1)�
1
r1

V(L1)
ab
+ Z, (12)

H(P18)�
1
4
9

V(L18)
ab

+ Z. (13)

By Theorem 2.4,

H(PSTRIP)�H(PJvS)� (1+ �)OPT(LSTRIP)+ ��Z, (14)

where LSTRIP is the set of items packed in PSTRIP. Note that to derive
the last inequality we used the fact that the items in LSTRIP cannot be
packed side by side in the y-direction. Moreover, any item e ∈ LSTRIP
has been previously rotated to have maximum (possible) value of
y(e). So, applying algorithm NFDH to LSTRIP we obtain

H(PSTRIP)�H(PNFDH)�
1

(1− t) 12

V(LSTRIP)
ab

+ 3Z. (15)

Now, for the packingPaux=PAB‖P1‖ · · · ‖P23, using the inequal-
ities (10)–(13) and the fact that r1� min{ 1736 , 14 + r1

2 ,
4
9 }, we obtain

H(Paux)�
1
r1

V(Laux)
ab

+ (2k+ 68)Z, (16)

where Laux denotes the set of boxes in the packing Paux.
Let

n1 := H(PSTRIP)− ��Z, (17)

n2 := H(Paux)− (2k+ 68)Z. (18)

From inequality (14) we have n1� (1 + �)OPT(LSTRIP) and there-
fore,

OPT(L)�OPT(LSTRIP)�
n1

(1+ �)
. (19)

From (16) and (18) we can conclude that

V(Laux)
ab

� r1n2, (20)

and from (15) and (17), we have

V(LSTRIP)
ab

�
(1− t)

2
n1. (21)

Since V(L) = V(Laux) + V(LSTRIP), using (20) and (21) we obtain
V(L)/ab� r1n2 + ((1− t)/2)n1.

So,

OPT(L)�
V(L)
ab

� r1n2 +
(1− t)

2
n1.

Combining (19) and the inequality above, we get

OPT(L)� max
{

1
1+ �

n1,
1− t
2

n1 + r1n2

}
.

Since H(P)= H(Paux)+ H(PSTRIP); using (17) and (18), we have

H(P)= (n2 + (2k+ 68)+ n1 + ��)= n1 + n2 + (2k+ �′�)Z,

where �′� = �� + 68. Therefore,

TRIk,�(L)��′k,�(r1)OPT(L)+ (2k+ �′�)Z,

where �′k,�(r1)=(n1+n2)/max{(1/(1+�))n1, ((1−t)/2)n1+r1n2t}. Now
using Lemma 3.5, we can conclude that �′k,�(r1)� [1/r1 − (1− t)(1+
�)/2r1 + (1+ �)].

Case 2: LD ⊆ LCD. As the proof of this case is analogous, we omit
some details. Since all rectangles of L′D were packed in PCD, we

have no critical 1
4 -boxes in L1. More precisely, we have a volume

guarantee of at least t for the packing P1. The same can be verified
for the packing P18. Thus, the following holds:

H(Pi)�
1
t
V(Li)
ab
+ Z for i ∈ {1, 18}. (22)

Since t� min{ 14 + r1
2 ,

17
36 }, from (22), (10) and (11) we have

H(Paux)�
1
t
V(Laux)

ab
+ (2k+ 68)Z. (23)

By Theorem 2.4,

H(PSTRIP)�H(PJvS)� (1+ �)OPT(LSTRIP)+ ��. (24)

The packing PNFDH has a volume guarantee of at least 1
4 and since

H(PSTRIP)�H(PNFDH), we have

H(PSTRIP)�
1
1/4

V(LSTRIP)
ab

+ 3Z. (25)

Let

n1 := H(PSTRIP)− ��Z and

n2 := H(Paux)− (2k+ 68)Z.

Then, from (24) we can conclude that

OPT(L)�OPT(LSTRIP)�
1

1+ �
n1.

Now, from (23) and (25), we have

V(Laux)
ab

� tn2 and
V(LSTRIP)

ab
�

1
4
n1,

and therefore,

OPT(L)�
V(L)
ab

� tn2 +
1
4
n1.

So,

OPT(L)� max
{

1
1+ �

n1,
1
4
n1 + tn2

}
.

Thus, TRIk,�(L)��′′k,�(r1)OPT(L)+(2k+�′�)Z, where �′′k,�(r1)� [1/t−(1+
�)/4t + (1+ �)]. The last inequality follows by taking �′′k,�(r1)= (n1 +
n2)/max{(1/(1+ �))n1, 14n1 + tn2} and using Lemma 3.5.

From both cases above, we can conclude that for k → ∞ and
�→ 0 the statement of the theorem holds. �

4. Three-dimensional bin packing problem

In this section, we consider the three-dimensional bin packing
problem with rotation (3BPr). We present an algorithm with an
asymptotic performance bound that may converge to a value smaller
than 4.89. We denote the algorithm of this section by BOXk,�.

4.1. Subroutines

Before presenting the main algorithm, we describe some algo-
rithms used as subroutines.

Algorithm H3B. This algorithm uses the same strategy used in the
algorithm HFF (Hybrid First Fit) presented by Chung et al. [5]. The
algorithm H3Bz generates a packing in two steps. First it generates a
three-dimensional strip packing of L, subdivided in levels and using
the z-axis as a height dimension, and then packs the levels into
bins, using a one-dimensional bin packing algorithm. The algorithms

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2811

for the problems 3SP and 1BP used in these steps must be given
as subroutines. We denote by H3Bp,q,r the algorithm that uses the
algorithms A3Sp,q and FFD as subroutines and by H3Bm the algorithm
H3B1/m,1/m,1/m. The following holds for this algorithm.

Lemma 4.1 (Miyazawa and Wakabayashi [25]). If P is a packing
generated by the algorithm H3Bp,q,r for an instance L ⊆ Cp,q,r , then
H3Bp,q,r(L)� ((p+ 1)(q+ 1)(r + 1)/pqr)V(L)+ 14.

Lemma 4.2. If P is a packing generated by the algorithm H3Bm for an
instance L ⊆ Cm, then H3Bm(L)� ((m+ 1)/m)3V(L)+ 14.

Denote by H3Dx and H3Dy the variants of this algorithm where
the generation of levels is done in the x and y direction, respectively.

Algorithm FFDC. We use the same scheme of the algorithm
COMBINE used for 3SPr. For that, we first modify the algorithm
COMBINE to the bin packing version. We denote this algorithm as
FFDCz (First Fit Decreasing Combine for z-axis). The algorithm FFDCz

combines the strategy of the algorithm COMBINE with the strategy
of the algorithm FFD to pack boxes into columns.

The input parameters are a list of boxes L, two set of boxes T1
and T2 and two coordinate lists p1 and p2 associated with these
sets. Each column starts at the bottom of a box B in a coordinate
p ∈ p1 ∪ p2. The columns located in coordinates of list [pi] have only
boxes of type Ti, i = 1, 2, and start in the plane xy growing in the
direction of the z-axis.

Algorithm FFDCz.
Input: (L,T1,T2,p1,p2) // each pi is a list of coordinates in the
plane xy.
Output: Partial packing of L into B such that all boxes of type T1
or all boxes of type T2 are totally packed.

1 While there are non-packed boxes in L of typeT1 andT2 do
1.1 Let P1,P2, . . . ,Pi be the packings in the bins B1, . . . ,Bi,

respectively, generated so far.
1.2 Take a non-packed box e′ of typeT1 with z(e′) maximum.

If possible, pack e′ in a column of boxes corresponding
to T1 in P1, . . . ,Pi, without violating the limits of the
corresponding bin. If necessary, rotate the box e′ so as to
have e′ ∈T1.

1.3 If it is not possible to pack a box in step 1.2, pack (if
possible) the next box e′′, of type T2, using the same
strategy used in step 1.2, but with columns of boxes of
type T2.

1.4 If it was not possible to pack an item by steps 1.2 and
1.3, let i← i+1; generate a new empty packing Pi (that
starts with empty columns in positions p1 ∪ p2) in a new
bin Bi.

2 Return P1,P2, . . . ,Pi.

end algorithm.

We denote by FFDCx and FFDCy the corresponding versions of the
algorithm FFDCz that generates columns in the x and y directions,
respectively.

4.2. Main algorithm for 3BPr

Now, we present the ideas behind the algorithm BOXk,�. To un-
derstand this algorithm, we first consider the volume guarantee
one could obtain if only list partition and the next fit decreasing

algorithms were used. Suppose we partition the region of boxes in
types Tijk, for i, j, k ∈ {0, 1} as follows:

X0 ←X[0, 12], X1 ←X[12 , 1],

Y0 ←Y[0, 12], Y1 ←Y[12 , 1],

Z0 ←Z[0, 12], Z1 ←Z[12 , 1],

Tijk ←Xi ∩Yj ∩Zk, i, j, k ∈ {0, 1}.

First, rotate each box e ∈ L of type T111, if possible, to a box e′ ∈
∪ijk�111Tijk. Now, consider the volume guarantee one can obtain
with Lemma 4.1, only with list partition and algorithm H3B. Partition
L into sets Sijk := L ∩Tijk, for i, j, k ∈ {0, 1}. We have the following
volume guarantees for each sublist:

• In the set S111 we have the larger items. Since S111 = L∩X[12 , 1]∩
Y[12 , 1] ∩Z[12 , 1], we have that Sijk ⊆ C1,1,1. From Lemma 3.2 we
have that

H3B1,1,1(S111)�
(1+ 1)(1+ 1)(1+ 1)

1 · 1 · 1 V(S111)+ 14

= 1
1/8

V(S111)+ 14.

Therefore, the set S111 leads to the very poor volume guarantee of
1
8 . The analysis for other sublists are similar.

• For the boxes in Sijk, with i + j + k = 2, we can obtain a volume
guarantee of 1

2
1
2
2
3 = 1

6 = 0.166
• For the sets Sijk, with i+j+k=1, we can obtain a volume guarantee

of 1
2
2
3
2
3 = 2

9 = 0.222
• For the set S000, we can obtain a packing with a volume guarantee

of 2
3
2
3
2
3 = 8

27 = 0.296

The critical sets defined for algorithm BOXk,� consider regions for
which we obtain volume guarantee close to 1

8 (in set S111), 1
6 (in sets

S011, S101 and S110) and 2
9 (in sets S001, S010 and S100). Since no two

boxes of S111 can be packed in a same bin, placing one box of S111
in each bin leads to an optimum packing of S111. Therefore, using
Lemma 3.5, we can obtain a packing with asymptotic performance
that is bounded by

n1 + n2

max
{
n1,

1
8
n1 +

1
6
n2

} �6.25.

In the next sections, we define and combine critical sets to obtain
packings with better bounds.

4.2.1. Combining critical 1
6 -boxes with critical 1

6 -boxes
The algorithm first combines critical sets of type Tijk, with i +

j+ k= 2, using the algorithm COMBINE-ABk with subroutine FFDC.
First, it combines critical 1

6 -boxes of typeT011 andT101 obtain-
ing a combined packing with a good volume guarantee. If all criti-
cal boxes of type T011 have been packed, it combines critical boxes
of type T101 with critical boxes of type T110; otherwise, it com-
bines critical boxes of type T011 with critical boxes of type T110.
In each combination step, it defines the corresponding critical sets.
To combine critical boxes of type T011 and T101, it uses the rou-
tine COMBINE-ABz

k with subroutine FFDCz. See Fig. 11(a). Note that
all boxes e ∈T011∪T101 have z(e) > c

2 and each bin produced in the
combined packing has three boxes, except perhaps in the last, with
total bottom area at least 17

36ab. Therefore, the volume guarantee of
this combined packing is at least 17

36
1
2 = 17

72 =0.231 The same vol-
ume guarantee can be obtained when critical 1

6 -boxes of typesT011
and T110 are combined. Denote by PAB the packing produced by
calling algorithm COMBINE-ABk.

2812 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

Before continuing with new combination steps, let us give the
idea behind the direction of these combinations. After the generation
of packingPAB, we can obtain packings with volume guarantee close
to 2

9 = 0.222 . . . for the remaining boxes, except for those in T110 ∪
T111. Fortunately, if each box e ∈T110∪T111 is previously rotated
to a box e′ ∈ Tijk, for ijk /∈ {110, 111}, the remaining items in L ∩
(T110∪T111) can only be packed side by side in the z-axis. Therefore,
it is an instance of a one-dimensional bin packing problem, for which
we can obtain an almost optimum packing (see Theorem 2.3) and
volume guarantee of at least 1

8 . This leads to a final packing with
asymptotic performance bound

n1 + n2

max
{

1
1+ �

n1,
1
8
n1 +

2
9
n2

} �4.9375.

We can obtain a further improvement with some more combi-
nations.

4.2.2. Combining critical 1
8 -boxes with critical 2

9 -boxes
Assume that all critical 1

6 -boxes of types T011 and T101 have
been totally packed. So, the current situation is the following: The
packing PAB has volume guarantee at least 17

72 and the remaining
boxes in the set T011 and T101 lead to packings with volume guar-
antee close to 17

72 . The last combination steps consider the critical 1
8 -

boxes, in the set T111, and the critical 2
9 -boxes in

⋃
ijk /∈{111,000}Tijk.

The combined packing of this step, denoted by PCD, has good vol-
ume guarantee (that is at least p

2 = 0.225 . . .) and totally packs one
of the critical sets. See Figs. 11(b) and (c). We have two cases, de-
pending on which critical set is totally packed:

Case 1: All critical 2
9 -boxes are totally packed. In this case, the

asymptotic performance bound is at most

n1 + n2

max
{

1
1+ �

n1,
1
8
n1 +

p
2
n2

} .

Case 2: All critical 1
8 -boxes are totally packed. In this case, the

asymptotic performance bound is at most

n1 + n2

max
{

1
1+ �

n1,
1− p
4

n1 +
2
9
n2

} .

In both cases, the performance bounds is close to 4.882. The value
of p was obtained in such a way that the two cases give the same
bound.

4.2.3. Algorithm BOXk,�
The Algorithm BOXk,� and the proof of its approximation factor

follows the ideas presented in Section 4.2. As before, the packings
obtained with combination of critical sets have lettered indexes:PAB
andPCD, since the ideas used are close to the ones used in algorithm
TRIk,�. The volume guarantees we can obtain for the bin packing case
are worse than those for the strip packing version. So, in this case
we say that a good volume guarantee, obtained for packingsPAB and
PCD, is close to 0.236. The final packing is divided into two parts,
one with poor volume guarantee (in Case 1 it is 0.125 and in Case 2
it is 0.137) and the other part with good volume guarantee (in Case
1 it is 0.225 and in Case 2 it is 0.222). Here we could also obtain
an almost optimum packing (within (1+ �) of the optimum) for the
items in the part with poor volume guarantee.

We present now a formal description of the algorithm we ex-
plained previously.

Fig. 10. Lists Lijk .

Algorithm BOXk,�(L).
Input: List of boxes L (instance of 3BPr(a, b, c)).
Output: Packing P of L into bins B= (a, b, c).

1 Let

X0 ←X[0, 12], X1 ←X[12 , 1],

Y0 ←Y[0, 12], Y1 ←Y[12 , 1],

Z0 ←Z[0, 12], Z1 ←Z[12 , 1];

Tijk ←Xi ∩Yj ∩Zk, ijk ∈ {0, 1}.

2 p←
√
137−9
6 .

3 Rotate each box e ∈ L ∩T111, if possible, in such a way that
e fits in one of the sets Tijk, ijk�111. Ties can be decided
arbitrarily.

4 P′AB ← COMBINE-ABz
k(L,T011,T101, FFDCz); L ← L\L(P′AB);

If all boxes of type T011 ∩Axy
k were packed then

P′′AB ← COMBINE-ABx
k(L,T101,T110, FFDCx);

Otherwise // all boxes of type T101 ∩Bxy
k were packed. //

P′′AB ← COMBINE-ABy
k(L,T110,T011, FFDCy);

PAB ←P′AB ∪P′′AB; (L← L\L(P′′AB);
5 Consider that all boxes of type (T011∩Axy

k) and (T101∩Ayz
k)

were totally packed.
5.1 Rotate each box e ∈ L of type T110, if possible, to a box

e′ ∈Tijk, for some ijk /∈ {111, 110}.
5.2 Rotate each box e ∈ L of type T110 ∪T111, if possible, to

a box e′ ∈T110 ∪T111 such that z(b) is minimum.
5.3 Let Lijk ← L ∩Tijk for i, j, k ∈ {0, 1} (see Fig. 10).
5.4 P000 ← H3D2(L000).
5.5 Generate a packing PCD in the following manner.

P011
CD ← FFDCz(L011∪L111,T011∩X[13 ,p],T111∩X[12 , 1−

p], [(0, 0)], [(0,p)]);

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2813

B A

A

CD C

D

D

Fig. 11. Example of bins: (a) bin of packing PAB; (b) bin with boxes of types T011 ∩X[1
3 , p] and T111 ∩X[1

2 , 1 − p]; (c) bin with boxes of types T010 ∩Z[1
3 ,

1
2] ∩X[1

3 , p]
and T111 ∩X[1

2 , 1− p].

L111 ← L111\L(P011
CD ; (See Fig. 11(b))

P101
CD ← FFDCx(L101∪L111,T101∩Y[13 ,p],T111∩Y[12 , 1−

p], [(0, 0)], [(0,p)]);
L111 ← L111\L(P101

CD ;
P001

CD ← FFDCz(L001 ∪ L111,T001 ∩X[13 ,
1
2] ∩Y[13 , p],

T111 ∩Y[12 , 1− p], [(0, 0), (0, 12)], [(0,p)]);
L111 ← L111\L(P001

CD ;
P010

CD ← FFDCy(L010 ∪ L111,T010 ∩Z[13 ,
1
2] ∩X[13 , p],

T111 ∩X[12 , 1− p], [(0, 0), (0, 12)], [(0,p)]);
L111 ← L111\L(P010

CD ; (See Fig. 11(c))
P100

CD ← FFDCx(L100∪L111,T100∩Y[13 ,
1
2]∩Z[13 ,p],T111∩

Z[12 , 1− p], [(0, 0), (0, 12)], [(0,p)]);
L111 ← L111\L(P100

CD ;
PCD ←P011

CD ∪P101
CD ∪P001

CD ∪P010
CD ∪P100

CD .
5.6 Generate packings of the remaining boxes of the sublists

Lijk with i+ j+ k= 1.
5.6.1 Generate a packing P001 of the remaining boxes in

L001 in the following manner. Let L18001, . . . , L
23
001 be a

partition of L001 such that (see Fig. 9).
L18001 ← L001 ∩Cxy[13 ,

1
2 ; 1

3 ,
1
2],

L19001 ← L001 ∩Cxy[13 ,
1
2 ; 1

4 ,
1
3],

L20001 ← L001 ∩Cxy[13 ,
1
2 ; 0, 14],

L21001 ← L001 ∩Cxy[14 ,
1
3 ; 1

3 ,
1
2],

L22001 ← L001 ∩Cxy[0, 14 ; 1
3 ,

1
2],

L23001 ← L001 ∩Cxy[0, 13 ; 0, 13].

Pi
001 ← H3Dz(NFDHy, Li001, NF), i= 18, . . . , 21;

P22
001 ← H3Dz(NFDHx, L22001, NF);

P23
001 ← H3Dz(BI(t)3 , L23001, NF);

P001 ←P18
001 ∪ · · · ∪P25

001.
5.6.2 Generate a packing P010 of the remaining boxes of

L010 in a way analogous to step 5.6.1, generating
the levels in the y-axis direction.

5.6.3 Generate a packing P100 of the remaining boxes of
L100 in a way analogous to step 5.6.1, generating
the levels in the x-axis direction.

5.7 Generate a packing of the remaining boxes of L011 and
L101.
5.7.1 Generate a packing P011 of the remaining boxes of

L011. Let (L1011, . . . , L
17
011) be a partition of L011 defined

as follows (see Fig. 9).

Li011 ← L011 ∩Y[
1

i+ 2
,

1
i+ 1

], i= 1, . . . , 16;

L17011 ← L011 ∩Y[0, 1
18];

Pi
011 ← H3Dxy(NFDHy, Li011, NF), i= 1, . . . , 17;

P011 ←P1
011 ∪ · · · ∪P17

011.
5.7.2 Generate a packing P101 of the remaining boxes of

L101 in a way analogous to step 5.7.1, considering
the plane yz instead of xy.

5.8 Generate a packing of the remaining boxes of L110 and
L111 as follows.
5.8.1 LUNI ← L110 ∪ L111;
5.8.2 Consider each box e of LUNI as a one-dimensional

item of length z(e) and each bin B as a one-
dimensional bin with length c.

5.8.3 P′UNI ← FFDz(LUNI);
5.8.4 P′′UNI ← FLz�(LUNI);
5.8.5 PUNI ← (P ∈ {P′UNI,P′′UNI}|#(P) is minimum).

5.9 Paux ←PAB ∪PCD ∪P000 ∪P001 ∪P010 ∪P100 ∪P011 ∪
P101;

5.10 P←PUNI ∪Paux.
6 For the other cases, the steps are analogous to step 5, differing

only in the planes and directions the packing is generated.
7 Return P.

end algorithm.

The next result shows a bound for the asymptotic performance
of algorithm BOXk,�.

Theorem 4.3. For any list of boxes L for 3BPr, we have

BOXk,�(L)��k,�OPT(L)+ �k,�,

where �k,� → (43 + 3
√
137)/16 = 4.882 . . . as k→∞ and �→ 0; and

�k,� is a constant that depends on k and �.

Proof. First, denote by L′ijk the boxes packed in the packing Pijk, for
i, j, k ∈ {0, 1}. We analyse two cases, considering the set M, defined as

M := L111 ∩X[12 , 1− p] ∩Y[12 , 1− p] ∩Z[12 , 1− p],

after step 5.5.

In what follows, for a packing Q we denote by b_area(Q) the
fraction of the bottom area of the bin B that is occupied by the
packing Q .

Case 1: M� ∅ after step 5.5.
By Lemma 4.2 we have

#(P000)�
1

8/27
V(L′000)
abc

+ 14. (26)

2814 F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815

For the packingPAB, we have a b_area(PAB)� 17
36 , except perhaps

in 2(2k+ 41) bins. Since each box of LAB has height greater than c/2,
we have

#(PAB)�
1

17/72
V(LAB)
abc

+ 4k+ 82. (27)

For the packing PCD, note that for each bin B of Pi
CD, i ∈

{011, 101, 001, 010, 100}, we have b_area(Pi
CD)�

1
4 + r1

2 , except per-

haps for the last bin of each packing Pi
CD. Also considering that each

box has height greater than c/2, we have

#(PCD)�
1

1
8
+ r1

4

V(LCD)
abc

+ 6. (28)

For the packing P001, for each bin B of Pi
001, we have a

b_area(Pi
001)�

17
36 . Note that the boxes with small area guarantee

in L18001 were totally packed in PCD, otherwise we would not have
M� ∅. Therefore, proceeding in the same way as before, we have

#(P001)�
1

17/72
V(L′001)
abc

+ 8. (29)

The same analysis we have made for packing P001 can be made
for the packings P010 and P100. So, the following inequalities hold:

#(P010)�
1

17/72
V(L′010)
abc

+ 8, (30)

#(P100)�
1

17/72
V(L′100)
abc

+ 8. (31)

Now, consider the packingP011. Note that for each packingPi
011

we have b_area(Pi
001)�p (this minimum is attained for list L1011),

except perhaps in the last bin of the packing Pi
011. Therefore,

#(P011)�
1
p/2

V(L′011)
abc

+ 17. (32)

In the same way, we have the following inequality for packing
P101:

#(P101)�
1
p/2

V(L′101)
abc

+ 17. (33)

From inequalities (26)–(33) and considering that p
2=min{ p2 , 1772 , 18+

r1
4 }, we have

#(Paux)�
1
p/2

V(Laux)
abc

+ Ck
aux. (34)

Finally, consider the packing PUNI generated for boxes of L110
and L111 in step 5.8. The minimum volume in each bin B of P′UNI,
except perhaps in the last bin, is at least abc/8. Therefore,

#(P′UNI)�
1
1/8

V(LUNI)
abc

+ 1.

Note that after the rotation of boxes made in step 5.1, there is no
box e in LUNI that can be rotated such that e fits in one of the types
Tijk, ijk /∈ {110, 111}. So, after step 5.2, all boxes of LUNI will have the
smallest height possible, without leaving T110 ∪T111. Therefore,
after applying algorithm FL� in step 5.8.4, we have

#(P′′UNI)� (1+ �)OPT(LUNI)+ C�
UNI.

Since #(PUNI)� max{#(P′UNI), #(P′′UNI)}, we have

#(PUNI)�
1
1/8

V(LUNI)
abc

+ 1, (35)

#(PUNI)� (1+ �)OPT(LUNI)+ C�
UNI. (36)

From inequalities (34) to (36), we can conclude that

#(P)��′k,�OPT(L)+ �k,�,

where �′k,� = (h1 + h2)/max{ 1
1+�h1,

1
8h1 + p

2h2} and �k,� = Ck
aux + C�

UNI.
Case 2: M = ∅ after step 5.5.
The analysis is analogous to Case 1, and the details will be omitted.

We can conclude that

#(P000)�
1

8/27
V(L000)
abc

+ 14,

#(PAB)�
1

17/72
V(LAB)
abc

+ 4k+ 82,

#(PCD)�
1

1
8
+ r1

4

V(LCD)
abc

+ 6.

Furthermore, for each packing Pi
001 we have b_area(Pr

001)�
4
9 . This

also holds for the packings P010 and P100. Therefore, we have

#(P001)�
1
2/9

V(L′001)
abc

+ 8,

#(P010)�
1
2/9

V(L′010)
abc

+ 8,

#(P100)�
1
2/9

V(L′100)
abc

+ 8.

For the packingPi
011, we have b_area(Pi

011)� r1. The same also holds
for packing P101. Therefore,

#(P011)�
1

r1/2
V(L′011)
abc

+ 17,

#(P101)�
1

r1/2
V(L′101)
abc

+ 17.

From the above inequalities, we have

#(Paux)�
1

r1/2
V(Laux)
abc

+ Ck
aux.

Since M ⊆ L111 and the boxes of M were totaly packed, we have
that the minimum volume of any box in L111 is at least (1 − p)/4.
Therefore, considering the packings of P110 and P111, we have

#(PUNI)�
1

(1− p)/4
V(LUNI)
abc

+ 1.

#(PUNI)� (1+ �)OPT(LUNI)+ C�
UNI.

So, we obtain

#(P)��′′k,�OPT(L)+ �k,�,

where �′k,� = (h1 + h2)/max{(1/(1+ �))h1, ((1− p)/4)h1 + (r1/2)h2} and
�k,� = Ck

aux + C�
UNI.

Let �k,� := max{�′k,�,�′′k,�}. As for k → ∞ we have r1 → 4
9 ,

we can conclude from both cases above that limk→∞,�→0�k,� �

4.882 �

F.K. Miyazawa, Y. Wakabayashi / Computers & Operations Research 36 (2009) 2801 -- 2815 2815

5. Concluding remarks

We presented approximation algorithms for three-dimensional
packing problems where orthogonal rotations are allowed. We
showed that these problems—in their general version—are as hard
to approximate as the oriented case. In this case, any approxi-
mation algorithm for the case with rotations can be used to ob-
tain an approximation algorithm for the oriented case with the
same approximation bound. The two approximation algorithms
for three-dimensional packing problems presented in this paper
can be implemented to run in time polynomial in the number of
items.

References

[1] Coffman EG, Garey Jr. MR, Johnson DS. Approximation algorithms for bin
packing—an updated survey. In: Ausiello G, Lucertini M, Serafini P, editors.
Algorithms design for computer system design. New York: Springer; 1984.
p. 49–106.

[2] Li K, Cheng K-H. Static job scheduling in partitionable mesh connected systems.
Journal of Parallel and Distributed Computing 1990;10:152–9.

[3] Johnson DS. Near-optimal bin packing algorithms. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA; 1973.

[4] Kenyon C, Rémila E. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 2000;25:645–56.

[5] Chung FRK, Garey MR, Johnson DS. On packing two-dimensional bins. SIAM
Journal on Algebraic and Discrete Methods 1982;3:66–76.

[6] Caprara A. Packing 2-dimensional bins in harmony. In: Proceedings of the 43rd
symposium on foundations of computer science. 2002. p. 490–9.

[7] Bansal N, Correa JR, Kenyon C, Sviridenko M. Bin packing in
multiple dimensions: inapproximability results and approximation schemes.
Mathematics of Operations Research 2006;31(1):31–49.

[8] Miyazawa FK, Wakabayashi Y. An algorithm for the three-dimensional packing
problem with asymptotic performance analysis. Algorithmica 1997;18(1):
122–44.

[9] Jansen K, Solis-Oba R. An asymptotic approximation algorithm for 3D-strip
packing. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete
algorithms. 2006. p. 143–52.

[10] Bansal N, Han X, Iwama K, Sviridenko M, Zhang G. Harmonic algorithm for 3-
dimensional strip packing problem. In: Proceedings of the of the 18th annual
ACM-SIAM Symposium on discrete algorithms. 2007. p. 1197–206.

[11] Li K, Cheng K-H. A generalized harmonic algorithm for on-line multidimensional
bin packing. TR UH-CS-90-2, University of Houston; January 1990.

[12] Csirik J, van Vliet A. An on-line algorithm for multidimensional bin packing.
Operations Research Letters 1993;13:149–58.

[13] Miyazawa FK, Wakabayashi Y. Packing problems with orthogonal rotations. In:
Proceedings of the 6th Latin American theoretical informatics, Buenos Aires,
Argentina, Lecture notes in computer science, vol. 2976. Berlin: Springer; 2004.
p. 359–68.

[14] Epstein L, van Stee R. This side up!. ACM Transactions on Algorithms
2006;2(2):228–43.

[15] Jansen K, van Stee R. On strip packing with rotations. In: Proceedings of the
37th ACM symposium on theory of computing. 2005.

[16] Miyazawa FK, Wakabayashi Y. Approximation algorithms for the orthogonal
z-oriented 3-D packing problem. SIAM Journal on Computing 2000;29(3):
1008–29.

[17] Epstein L. Two dimensional packing: the power of rotation. In: Proceedings of
the 28th international symposium of mathematical foundations of computer
science, Lecture notes on computer science, vol. 2747. Berlin: Springer; 2003.
p. 398–407.

[18] Coffman EG, Garey Jr. MR, Johnson DS. Approximation algorithms for bin
packing: a survey. In: D. Hochbaum, editor, Approximation algorithms for NP-
hard problems, PWS, 1997. p. 46–93 [chapter 2].

[19] Coffman EG, Garey Jr. MR, Johnson DS, Tarjan RE. Performance bounds for
level oriented two-dimensional packing algorithms. SIAM Journal on Computing
1980;9:808–26.

[20] Bansal N, Sviridenko M. New approximability and inapproximability results for
2-dimensional bin packing. In: Proceedings of the 15th ACM-SIAM symposium
on discrete algorithms. 2004. p. 189–96.

[21] Fernandez de la Vega W, Lueker GS. Bin packing can be solved within 1+ � in
linear time. Combinatorica 1981;1(4):349–55.

[22] Li K, Cheng K-H. On three-dimensional packing. SIAM Journal on Computing
1990;19:847–67.

[23] Miyazawa FK, Wakabayashi Y. Two- and three-dimensional parametric packing.
Computers and Operations Research 2007;34:2589–603.

[24] Miyazawa FK, Wakabayashi Y. Parametric on-line algorithms for packing
rectangles and boxes. European Journal of Operational Research 2003;150:
281–92.

[25] Miyazawa FK, Wakabayashi Y. Cube packing. Theoretical Computer Science
2003;297:355–66.

	Three-dimensional packings with rotations62626262
	Introduction
	Preliminaries
	Definitions and notation
	Relations between algorithms for oriented packings and r-packings

	Three-dimensional strip packing problem
	Subroutines
	Idea of the algorithm TRIk,epsilon
	Combining critical 13-boxes with critical 13-boxes
	Combining critical 14-boxes with critical 49-boxes
	Description and analysis of algorithm TRIk,epsilon

	Three-dimensional bin packing problem
	Subroutines
	Main algorithm for 3BPr
	Combining critical 16-boxes with critical 16-boxes
	Combining critical 18-boxes with critical 29-boxes
	Algorithm BOXk,epsilon

	Concluding remarks
	References

