
Resenhas IME-USP 1998, Vol. 3, No. 3, 323 - 349.The Complexity of Computing Medians of Relations1Yoshiko WakabayashiAbstra
t: Let N be a �nite set and R be the set of allbinary relations on N . Consider R endowed with a metri
d, the symmetri
 di�eren
e distan
e. For a given m-tuple� = (R1; : : : ; Rm) 2 Rm, a relation R� 2 R that min-imizes the fun
tion Pmk=1 d(Rk; R) is 
alled a median rela-tion of �. In the so
ial s
ien
es, in qualitative data analysisand in multi
riteria de
ision making, problems o

ur in whi
hthe m-tuple � represents 
olle
ted data (preferen
es, simi-larities, games) and the obje
tive is that of �nding a medianrelation of � with some spe
ial feature (representing for ex-ample, 
onsensus of preferen
es, 
lustering of similar obje
ts,ranking of teams, et
.). In this paper we analyse the 
ompu-tational 
omplexity of all su
h problems in whi
h the medianis required to satisfy one or more of the properties: re
exitiv-ity, symmetry, antisymmetry, transitivity and 
ompleteness.We prove that whenever transitivity is required (ex
ept whensymmetry and 
ompleteness are also simultaneously required)then the 
orresponding median problem isNP-hard. In some
ases we prove that they remainNP-hard even when the pro-�le � 
onsists of one or two relations. We mention some ap-pli
ations and strategies that 
an be used to solve the medianproblems 
onsidered here.Key words: Relations, 
lustering, 
omplexity, median,order, transitivity 1. Introdu
tionIn the so
ial 
hoi
e theory a 
lassi
al problem that has been largely investigatedand whose origin tra
es ba
k to the late eighteenth 
entury is the problem ofaggregating individual preferen
es (linear orders) into a so
ial preferen
e (a linearorder). The notion of 
onsensus of preferen
es plays an important role in theso
ial s
ien
es, a reason why many e�orts have been made to �nd realisti
 modelsto express it (
f. Le
ler
 [1988a℄, Day [1988℄).The �rst mathemati
al approa
hes on problems of aggregation of preferen
esare 
redited to Borda in 1770 and Condor
et in 1785, both 
on
erned with thedesign of ele
tion pro
edures. Young [1990℄ dis
usses the model proposed by thesetwo major �gures of that time, gives some histori
al a

ounts and explains theCondor
et's theory of voting (see also Young and Levengli
k [1978℄).The notion of median relation |a relation minimizing a \remoteness" fun
tionde�ned in terms of the symmetri
 di�eren
e distan
e| was introdu
ed by Ke-meny [1959℄, who investigated a method to aggregate individual preferen
es intoa 
olle
tive preferen
e. His method, although being of metri
 nature, is in fa
t1This work has been partially supported by CNPq Grant 304527/89-0, FAPESP Grant 96/04505-2and ProNEx Proje
t 107/97 (MCT/FINEP). 323



324 Yoshiko Wakabayashiequivalent to the Condor
et's majority rule, a

ording to whi
h the winning 
olle
-tive preferen
e should be the one supported by the largest number of votes (Young[1990℄, Barbut [1967℄, Fishburn [1977℄, Mi
haud [1987℄). In 
luster analysis a sim-ilar approa
h was proposed by Regnier [1965℄, then Mirkin [1974℄, for solving theproblem of aggregating equivalen
e relations into an equivalen
e relation (see alsoZahn [1964℄).The fa
t that the symmetri
 di�eren
e distan
e has been used in problemso

urring in many di�erent 
ontexts is not a pure 
oin
iden
e. Axiomati
s sup-porting its use has been investigated in several 
ases, 
f. Kemeny [1959℄, Monjardet[1978℄, Barth�elemy [1979℄ and Barth�elemy and Monjardet [1981℄. However, themedian approa
h, as any 
onsensus pro
edure, has some defe
ts as pointed out byFishburn [1977℄, Le
ler
 [1988a℄, and Barth�elemy and Monjardet [1988℄. This lastreferen
e gives also an overview of the developments on the algorithmi
 approa
hesand extensions of the notion of median in other stru
tures. The results 
on
ern-ing its algebrai
 de�nition that generalizes to any distributive latti
e (
f. Barbut[1961℄, Monjardet [1980℄), as well as more re
ent results on median semilatti
es,resp. (semi)modular (semi)latti
es 
an be found in Monjardet [1987, 1988℄, resp.Barth�elemy [1981℄ and Le
ler
 [1988b℄. For a uni�ed treatment of this subje
t thereader should refer to Barth�elemy, Flament and Monjardet [1982℄; Barth�elemy,Le
ler
 and Monjardet [1986℄; Barth�elemy and Monjardet [1988℄ and Barth�elemy[1988℄.In this paper we analyse the 
omputational 
omplexity of a 
lass of problemsof �nding medians with pres
ribed properties. This 
lass in
ludes those 
lassi
alproblems su
h as aggregation of preferen
es and 
lustering.The material is organized as follows. In Se
tion 2 we give the de�nitions andnotation to be used and present the problems to be investigated. In Se
tion 3 themain results on the 
omputational 
omplexity of these problems are presented, andin Se
tion 4 we dis
uss spe
ial 
ases 
on
erning restri
ted domains. In Se
tion 5we mention some appli
ations and known strategies to solve median problems.2. Definitions and NotationLet N be a �nite set with n obje
ts and let R denote the set of all (binary)relations on N . Consider R endowed with a metri
 d, the symmetri
 di�eren
edistan
e, de�ned asd(R;S) := jR4 Sj := jR [ Sj � jR \ Sj for all R;S 2 R:A pro�le of relations in R, or a pro�le in Rm, is an m-tuple � = (R1; : : : ; Rm)where Rk 2 R for k = 1; : : : ;m. Given a pro�le � = (R1; : : : ; Rm) in Rm, arelation R� 2 R that minimizes the fun
tionD(�; R) := mXk=1 d(Rk ; R)is 
alled a median relation of �.



The Complexity of Computing Medians of Relations 325In this general form the problem of �nding a median of a given pro�le is trivialand not interesting. However, if we require the median to satisfy 
ertain propertiesthe resulting problem be
omes interesting and has ni
e appli
ations. So, a

ordingto the desired properties of R� we obtain di�erent problems, and here we 
onsiderall those arising when the properties are 
hosen from the setP := fRe
exive, Symmetri
, Antisymmetri
, Transitive, Totalg:Let us re
all some de�nitions. A relation R 2 R is re
exive (REF) if (i; i) 2 R forall i 2 N ; R is symmetri
 (SYM) if (i; j) 2 R implies (j; i) 2 R for all i; j 2 N ; Ris antisymmetri
 (ASY) if (i; j) 2 R and (j; i) 2 R imply i = j for all i; j 2 N ; Ris transitive (TRA) if (i; j) 2 R and (j; k) 2 R imply (i; k) 2 R for all i; j; k 2 N ;R is total (TOT) if (i; j) 2 R or (j; i) 2 R for all i; j 2 N; i 6= j.To simplify notation we use the abbreviated form of the name of the property(given in parentheses) to denote also the set of all relations having this property.Thus, for example, TRA denotes the set of all transitive relations in R. Somerelations having more than one of the properties in P are known by spe
ial names,not always standard in the literature. Here we adopt the following notation andterminology:C denotes the set of all 
omplete preorders, i.e. C = TRA \ TOT.T denotes the set of all tournaments, i.e. T = ASY \ TOT.L denotes the set of all linear orders, i.e. L = ASY \TRA \ TOT.O denotes the set of all partial orders, i.e. O = ASY \ TRA.E denotes the set of all equivalen
e relations, i.e. E = REF \ SYM \TRA.For a subsetM� R the median problem relative toM, denoted by MP(R;M),is de�ned as follows.Median Problem relative to M | MP(R;M)Instan
e: Pro�le � = (R1; : : : ; Rm) of m relations in R.Obje
tive: Find a relation R� 2 M su
h that D(�; R�) = minR2MD(�; R).We expe
t the reader to be familiar with the basi
 
on
epts of graph theory and
omplexity theory. If not, the de�nitions not given here 
an be found in Bondyand Murty [1976℄, resp. Garey and Johnson [1979℄. We present only the 
on
eptswe need to establish out notation.A graph G with node set V and edge set E is denoted by G = [V;E℄. Adigraph (or dire
ted graph) D with node set N and ar
 set A is denoted byD = (N;A). A graph G = [V;E℄, resp. digraph D = (N;A), is 
alled 
omplete ifE = ffu; vg : u; v 2 V; u 6= vg, resp. A = f(u; v) : u; v 2 N; u 6= vg. If D = (N;A)is a digraph with A = N �N then D is 
alled l-
omplete (i.e. 
omplete with allloops). For a digraph D = (N;A), we 
all the ar
s in (N �N) n A missing ar
s(analogously, missing edges in 
ase of a graph). A digraph is 
alled a
y
li
 if itdoes not 
ontain any dire
ted 
y
le. A 
lique of a graph is a 
omplete subgraphof G. It needs not be maximal, as is sometimes assumed in the literature. A setof edges A in a graph G = [V;E℄ is 
alled a 
lique partitioning of G if there is a



326 Yoshiko Wakabayashipartition V1; : : : ; Vk of V su
h that the subgraph indu
ed by ea
h Vi, 1 � i � k,is a 
lique in G and A is the union of all edges in G with both endnodes in thesame set of the partition. In this 
ase, if for 1 � i � k the 
lique indu
ed by Viis denoted by Qi, then we say that C(A) := fQ1; : : : ; Qkg is the 
lique set de�nedby A. 3. Computational ComplexityWe assume here that an instan
e of the median problem MP(R;M) 
onsistingof a pro�le � = (R1; : : : ; Rm) is given by an (n2;m)-matrix A = (aek), where therows 
orrespond to the pairs e 2 N �N , the 
olumns 
orrespond to the relationsR1; : : : ; Rm, and ae;k = 1 if e 2 Rk; ae;k = 0 if e 62 Rk, k = 1; : : : ;m. That is,ea
h 
olumn k of A 
orresponds to the 
hara
teristi
 ve
tor of the relation Rk.Clearly the size of su
h an instan
e is O(n2m).It is well-known that the median problems we are 
onsidering 
an be formu-lated as 0/1 linear programs or optimization problems on weighted digraphs (seeGr�ots
hel and Wakabayashi [1988℄). In fa
t, it is not diÆ
ult to prove thatD(�; R) =X(i;j)wijrij +X(i;j)�ij ;where �ij := jfk : (i; j) 2 Rkgj;(3:1) wij := m� 2�ij and(3:2) r = (rij ) is the 
hara
teristi
 ve
tor of R:Thus, ea
h given instan
e of MP(R;M) 
an be formulated as the 0/1 linearprogram:(3:3) minimize X(i;j)wijrijsubje
t to: r = (rij) is the 
hara
teristi
 ve
tor of some relation R 2 M:If the 
oeÆ
ients wij are interpreted as being weights asso
iated with the ar
s(i; j) of an l-
omplete digraph Dn on the node set N , then the problem be
omesthat of �nding a minimum weighted subdigraph D0 = (N;R) of Dn, where R 2M. For example, if M = L the 
orresponding digraph problem is a spe
ial
ase of the weighted feedba
k ar
 set problem or linear ordering problem, and ifM = E we obtain the so-
alled 
lique partitioning problem (see Reinelt [1985℄,Gr�ots
hel, J�unger and Reinelt [1985℄, Barth�elemy, Gueno
he and Hudry [1988℄,resp. Wakabayashi [1986℄ and Gr�ots
hel and Wakabayashi [1988℄).From the above redu
tion one obtains immediately the following result (ex
lud-ing some trivial non-interesting 
ases).



The Complexity of Computing Medians of Relations 327Proposition 3.4. If M2 fSYM; ASY; TOT; ASY \ TOTg then the medianproblem MP(R;M) is polynomially solvable.We 
an also make use of the given redu
tion, in a more spe
ialized way, toshow that MP(R;M) is NP-hard for other subsets M. Namely, we �rst notethat the obtained digraph optimization problems are spe
ial in the sense that allof its weights wij are integers having the same parity. Furthermore, we observethat whenever we have su
h an l-
omplete weighted digraph Dn = (N;An) withm := maxe2An jwej we 
an 
onstru
t a pro�le � = (R1; : : : ; Rm) in Rm su
h thatea
h (i; j) 2 N �N belongs to pre
isely �ij relations, where �ij = (m � wij)=2(see (3.1) and 3.2). In other words, these spe
ial digraph optimization problemsare also redu
ible to MP(R;M).In what follows we state more formally the results 
on
erning the above re-du
tion. Before, we introdu
e some notation. For ea
h set M � R we de�ne adigraph optimization problem relative to M as follows.Digraph Optimization Problem | DOP(n;M;m)Instan
e: l-
omplete digraph Dn = (N;An); weights we 2 Z for ea
h e 2 An,all having the same parity and with maxe jwej = m.Obje
tive: Find an ar
 set A� � An su
h that A� 2 M and w(A�) :=Pe2A� weis minimum.The reason to introdu
e these problems is justi�ed by the following result.Theorem 3.5. Let M� R. If DOP(n;M;m) is NP-hard and m is bounded bya polynomial in n, then MP(R;M) is NP-hard.Proof. Let Dn = (N;An), w and m be given as an instan
e I of DOP(n;M;m).The 
orresponding instan
e I 0 of MP(R;M) is 
onstru
ted as follows. For ea
hpair (i; j) 2 An we determine the number �ij := (m� wij)=2 and setRk := f(i; j) 2 N �N : �ij � kg; for k = 1; : : : ;m;obtaining this way the pro�le � = (R1; : : : ; Rm). In other words, we let (i; j)belong to the �rst �ij relations R1; : : : ; R�ij .The 
onstru
tion of the pro�le � 
an be done in O(n2m) time. Thus, when mis bounded by a polynomial in n this 
onstru
tion is polynomial in the size of I.The proof that an optimum solution of the instan
e I 0 gives an optimum solutionof I is straightforward and will be omitted. �To prove the NP-hardness of some problems, we 
onsider the 
orrespondingde
ision version of DOP(n;M;m) that will be denoted by DDP(n;M;m).For te
hni
al reasons it will be 
onvenient to 
onsider a slight variation ofthe transitive relation, denoted by TRA�, de�ned as follows: if (i; j) 2 R and(j; k) 2 R then (i; k) 2 R for all i; j; k 2 N , i 6= j 6= k 6= i. With this de�nitionwe 
an refer to the property TRA� on 
omplete digraphs (instead of l-
ompletedigraphs). For that, we de�ne the 
orresponding digraph optimization (resp.
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ision) problem DOP� (resp. DDP�), de�ned analogously as DOP (resp. DDP),ex
ept that the instan
e 
onsists of a (loopless) 
omplete digraph.The next lemma shows that if we 
an prove an NP-
ompleteness result forDDP� with respe
t to TRA�, then we 
an derive an analogous result for DDPwith respe
t to TRA (in
luding or not the property REF). More pre
isely, thefollowing holds.Lemma 3.6. Let M� = S \ TRA� for some relation S on N , and letM2 fS \TRA; S \ TRA \ REFg:If DDP�(n;M�;m) is NP-
omplete then DDP(n;M;m) is NP-
omplete.Proof. LetDn = (N;An), w,m and k be an arbitrary instan
e of DDP�(n;M�;m).The 
orresponding instan
e of DDP(n;M;m), de�ned by D0n, w0, m, k0 is 
on-stru
ted as follows: D0n = (N;A0n) is the l-
omplete digraph obtained from Dn byadding to it all the missing loops, the weights w0e are de�ned as:w0e :=8><>: we if e 2 An;0 if e 62 An and m is even;�1 if e 62 An and m is odd,and k0 := � k if m is even,k � n if m is odd.We 
laim that Dn has an ar
 set B su
h that B 2 M� and w(B) � k if andonly if D0n has an ar
 set B0 with B0 2 M and w0(B0) � k0.In fa
t, given B � An take B0 := B [ f(i; i) : i 2 Ng; and 
onversely, givenB0 � A0n take B := B0 n f(i; i) : i 2 Ng. This proves the 
laim and establishes theNP-
ompleteness of DDP(n;M;m). �For the proof of the next theorem we need the fa
t that the following problemis NP-
omplete (see Karp [1972℄).A
y
li
 Subdigraph Problem (ASP)Instan
e: Digraph D = (N;A) without loops; positive integer k � jN j.Question: Is there a subset B � A with jBj � k su
h that H = (N;B) is a
y
li
?The next lemma (easy to be proved by indu
tion) will be useful in theorem 3.8.Lemma 3.7. If H = (N;B) is an a
y
li
 digraph then there exists a graph H 0 =(N;B0) 
ontaining H, su
h that B0 2 ASY \ TRA \ TOT.In the subsequent NP-
ompleteness proofs we shall omit the straightforwardveri�
ation that the 
onsidered problems are in the 
lass NP .



The Complexity of Computing Medians of Relations 329Theorem 3.8. LetM0 = ASY \ TRA� and M00 = ASY \ TRA� \TOT:Then DDP�(n;M0;m) is NP-
omplete for m 2 f2; 3g, and DDP�(n;M00;m) isNP-
omplete for m 2 f1; 2g.Proof. [Transformation from the A
y
li
 Subdigraph Problem (ASP)℄(i) Assume �rst that m 2 f2; 3g and let M2 fM0;M00g.Suppose that D = (N;A) and k are given as an instan
e of ASP.Then the 
orre-sponding instan
e of DDP�(n;M;m), de�ned by Dn, w, m and k0, is obtained asfollows: Dn = (N;An) is the 
omplete digraph obtained from D by adding to itall the missing ar
s whi
h are not loops; the weights we for e 2 An are de�ned aswe := � �m if e 2 A,�(m� 2) otherwise;and k0 := �2k ��n2�(m� 2):We shall prove that D has an a
y
li
 subdigraph H = (N;B) with jBj � k ifand only if Dn has a subdigraph H 0 = (N;B0) with B0 2M and w(B0) � k0.a) Let H = (N;B) be an a
y
li
 subdigraph in D with jBj � k. Sin
e H isalso a subdigraph of Dn, then by Lemma (3.7) there exists in Dn a subdigraphH 0 = (N;B0) 
ontaining H su
h that B0 2 M00. Moreover,w(B0) = w(B) + w(B0 nB)� jBj(�m)� ��n2�� jBj�(m� 2) � k0:b) Let H 0 = (N;B0) be a subdigraph in Dn su
h that B0 2 M and w(B0) � k0.Sin
e H is a
y
li
, by Lemma (3.7) there exists in Dn a subdigraph H 00 = (N;B00)
ontaining H 0 with B00 2 M00. Note that B00 has at least k ar
s with weight �m.Otherwise, if B00 has l ar
s with weight �m, l � k � 1, thenw(B0) � w(B00) = l(�m)� ��n2�� l�(m� 2) > k0:Thus, if we take B := fe 2 B00 : we = �mg, 
learly H = (N;B) is an a
y
li
subdigraph of D with jBj � k.(ii) If m = 1 then the above proof also holds for M =M00.Sin
e ASP is NP-
omplete and the given transformation is polynomial, theresult follows. �



330 Yoshiko WakabayashiWe want to prove in the sequel that DDP�(n;M; 1) for M = SYM \ TRA� isNP-
omplete. For that, we introdu
e the next problem whi
h we prove later (seeTheorem 3.13) to be NP-
omplete.Restri
ted Clique Partitioning Problem { RCCPInstan
e: Complete graph Kn = [V;E℄, weights we 2 f�1; 0; 1g for ea
h e 2 E,integer k.Question: Is there a 
lique partitioning A � E su
h that w(A) � k? (That is, isthere a partition of the node set Vn su
h that the sum of the weightsof all edges with both endnodes in the same set of the partition is lessor equal to k?)Theorem 3.9. Let M = SYM \ TRA�:Then DDP�(n;M; 1) is NP-
omplete.Proof. [Transformation from RCPP℄ Note that it suÆ
es to prove for m = 1.Let Kn = [Vn; En℄, w and k be an arbitrary instan
e of RCPP and assume thatVn = f1; 2; : : : ; ng. The 
orresponding instan
e of DDP�(M; 1) de�ned by Dn,w0 and k0, is 
onstru
ted as follows: Dn = (N;An) is a 
omplete digraph withnode set N = Vn, the weights w0e for e 2 An are de�ned asw0ij := � 1 if (wij = 1) or (wij = 0 and i < j),�1 if (wij = �1) or (wij = 0 and i > j);and k0 := 2k.It is immediate that, ifKn = [Vn; En℄ has a 
lique partitioningA with w(A) � k,then B := fij; ji : fi; jg 2 Ag, is an ar
 set in Dn su
h that B 2 M andw0(B) = 2w(A). Conversely, if Dn has an ar
 set B 2 M with w0(B) � k0, thenit is easy to see that the set A := ffi; jg : ij 2 Bg is a 
lique partitioning of Knwith 2w(A) = w0(B). Sin
e RCPP is NP-
omplete (by Theorem 3.13), and thegiven transformation is polynomial, the result follows. �It remains to analyse two more 
ases. Namely, when M 2 fTRA�;TRA� \TOTg. This is done in the next two theorems.Theorem 3.10. Let M = TRA� \ TOT:Then the problem DDP�(p;M;m), where m is bounded by a polynomial in p, isNP-
omplete.Proof. By Theorem 3.8, the problem Q := DDP�(n;M�; 2) with M� = ASY \TRA�\TOT is NP-
omplete. We want to prove that Q is polynomially redu
ibleto eQ := DDP�(p;M;m), where m � p4. Let Dn = (N;An), w and k be given as



The Complexity of Computing Medians of Relations 331an instan
e of Q. Note that, we may assume that k < n2, otherwise Q is triviallysolvable. Suppose N = f1; 2; : : : ; ng, n � 2. The 
orresponding instan
e of eQde�ned by eDp, ew and ~k is 
onstru
ted as follows : eDp = ( eN; ~A) is the 
ompletedigraph of order p = 2n with node set eN := fi1; i2 : i 2 Ng. To de�ne the weightsewe for e 2 ~A we letR := [1�i<j�nRij where Rij := �(i1; j1); (j1; i2)	and set ewe =8>>>>><>>>>>: 0 if e = (i2; i1), i 2 NL if e = (i1; i2), i 2 Nwij if e = (i1; j1), e 2 Rwji if e = (j1; i2), e 2 RM otherwise,where M := 4n2 and L := 2n4:Observe that j ewej is even and j ewej � p4 for every e 2 ~A.The parameter ~k is de�ned as~k := k + CM; whereC := �2n2 �� n��n2� = 3�n2�:
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M MML0 0 Lwjiwijwji Figure 1We shall prove that Dn = (N;An) has a subdigraph H = (N;B) with B 2M�and w(B) � k if and only eDp = ( eN; ~A) has a subdigraph eH = ( eN; eB) with eB 2Mand ew( eB) � ~k.It is 
lear that M , L and ~k were 
hosen 
onveniently so that the above 
laim
an be shown to hold. Before we give the proof, let us explain the idea behind the
hoi
e of the values for M , L and ~k. Note that for ea
h pair i, j, 1 � i < j � n,the ar
s (i; j) and (j; i) in Dn 
orrespond to the ar
s (i1; j1) and (j1; i2) in eDp,



332 Yoshiko Wakabayashirespe
tively, and that the assigned weights agree 
orrespondingly. See Figure 1.Given a subdigraph eH = ( eN; eB) in eDp with eB 2 M and ew( eB) � ~k, we wantto 
onstru
t a subdigraph H = (N;B) in Dn with B 2 M� and w(B) � k.So we want eH to have exa
tly one of the ar
s (i1; j1); (j1; i2) for ea
h pair i, j,1 � i < j � n (so that the 
orresponding ar
s in Dn 
an be set into B). Thus we
hoose L 
onveniently (a

ording to ~k) so that both of (i1; j1) and (j1; i2) 
annotbe in any transitive subdigraph eH with ew( eB) � ~k. This 
an be a

omplished by
hoosing L so that whenever both of these ar
s are 
hosen to be in a transitivesubdigraph eH = ( eN; eB), then the 
hoi
e of (i1; i2) for
ed by the transitivity givesthat ew( eB) > ~k. The values for ~k andM are so 
hosen that eH must be a subdigraph
onsisting of :i) all ar
s with weight 0;ii) exa
tly one of the ar
s (i1; j1), (j1; i2) for ea
h pair i, j, 1 � i < j � n;iii) exa
tly C := �2n2 �� n� �n2� ar
s with weight M .a) Given a subdigraph H = (N;B) in Dn with B 2 M� and w(B) � k, 
onstru
teH = ( eN; eB) by setting: eB := eB1 [ eB2 [ eB3;whereeB1 := �(i1; j1); (i1; j2); (i2; j1); (i2; j2) : 1 � i < j � n and (i; j) 2 B	;eB2 := �(j1; i1); (j1; i2); (j2; i1); (j2; i2) : 1 � i < j � n and (j; i) 2 B	;eB3 := �(i2; i1) : i 2 N	:Noti
e that j eBj = �2n2 � and eB 2 TOT. For ea
h pair e = (i; j), 1 � i; j � n, i 6= j,let Se be the following basi
 subdigraphj1j2i1i2 Sij
Figure 2Clearly, eH = ( eN; eB) is the union of all basi
 subdigraphs Se ea
h 
orrespondingto an ar
 e 2 B. By inspe
tion, it is easy to see that these subdigraphs Se aretransitive. Thus it remains to be proved that if e := (ir; js) and f := (js; lt),with r; s; t 2 f1; 2g, are ar
s of eB not in the same basi
 subdigraph, then g :=(ir; lt) 2 eB. Noti
e that when i = j or j = l then e and f are in a same basi
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s su
h as e and f where i = l. Thereforewe may assume that i; j; l are pairwise distin
t.Sin
e e := (ir; js) 2 eB, thenif ( i < j then e 2 eB1 and (i; j) 2 B,i > j then e 2 eB2 and (i; j) 2 B.Similarly, f := (js; lt) 2 eB implies thatif ( j < l then f 2 eB1 and (j; l) 2 B,j > l then f 2 eB2 and (j; l) 2 B:Thus, (i; j) 2 B and (j; l) 2 B. Sin
e B 2 TRA�, (i; l) 2 B. If i < lthen g 2 eB1, otherwise g 2 eB2. Hen
e, g 2 eB. This 
ompletes the proof thateB 2 TRA�.Now let us prove that ew( eB) � ek. Noti
e that eB1; eB2 and eB3 are pairwisedisjoint, R \ eB3 = ; and jR \ eBj = ��R \ ( eB1 [ eB2)�� = jRj2 = �n2�.Thus, ew( eB) = ew( eB \ R) + ew�( eB1 [ eB2) nR) + ew( eB3)= w(B) + �j eBj � j eB3j � j eB \ Rj�M= w(B) +��2n2 �� n��n2��M � k + CM = ek:b) Let eH = ( eN; eB) be a subdigraph of eDp with eB 2M and ew( eB) � ~k. Then thefollowing holds:(b1) eB does not 
ontain an ar
 e with ewe = L.Suppose eB 
ontains su
h an ar
 e. Thenew( eB) � L� Xe2An��we��+ 2�n2�M:Sin
e Pe2An jwej � 2n2, it follows that ew( eB) � 6n4�4n3�2n2. On the other hand,~k = k + CM < n2 + � 3n(n�1)2 �4n2 = 6n4 � 6n3 + n2 and therefore, ew( eB) > ~k, a
ontradi
tion.(b2) eB 
ontains all ar
s e with ewe = 0.This follows immediately from (b1) and the fa
t that eB 2 TOT.(b3) For every pair (i; j), 1 � i < j � n, j eB \Rij j � 1.



334 Yoshiko WakabayashiSuppose there is a pair (i; j) su
h that eB 
ontains both of (i1; j1) and (j1; i2).Sin
e eB 2 TRA�, this implies that (i1; i2) 2 eB; but as ew(i1; i2) = L, this 
ontra-di
ts (b1).(b4) eB 
ontains exa
tly C ar
s with weight M .Suppose eB has more than C ar
s with weight M . Thusew( eB) � (C + 1)M � Xe2An jwej > ~k;a 
ontradi
tion. So, eB 
an have at most C ar
s with weight M . On the otherhand, sin
e j eBj � �2n2 � and eB 
ontains n ar
s with weight 0 (by (b2)), at most �n2�ar
s of R (by (b3)) and no ar
s with weight L (by (b1)), then eB must 
ontain atleast �2n2 � � n � �n2� =: C ar
s with weight M . Thus eB 
ontains exa
tly C ar
swith weight M .(b5) For every pair (i; j), 1 � i < j � n, j eB \Rij j = 1.Sin
e �2n2 � � j eBj = n+C+ j eB\Rj, it follows that j eB\Rj � �2n2 ��n�C = �n2�.If for some pair (i; j), 1 � i < j � n, j eB \ Rij j < 1 then by (b3) j eB \ Rj < �n2�, a
ontradi
tion. Thus, the statement is proved.(b6) eB has no double ar
s.Immediate from (b1), (b4) and (b5).(b7) ew( eB \ R) � k.Clearly, ew( eB) = ew( eB \ R) + CM . Thus, ew( eB \ R) � ~k � CM = k.But (i1; j2) 2 eB \ R and (j2; j1) 2 eB imply (i1; j1) 2 eB. Thus, (i1; j1) 2 eB.Analogously, analysing the 
ases j < l and j > l we 
on
lude that (j1; l1) 2 eB.Sin
e eB 2 TRA� , then (i1; j1) 2 eB and (j1; l1) 2 eB imply that (i1; l1) 2 eB.Thus, if i < l then (i1; l1) 2 eB \ R, and therefore (i; l) 2 B. Suppose i > l. By(b6) (i1; l1) 2 eB implies (l1; i1) 62 eB. By (b5), if l < i and (l1; i1) 62 eB \ R then(i1; l2) 2 eB \ R. But then, (i; l) 2 B and therefore B 2 TRA�.Sin
e the given transformation is polynomial, it follows that eQ isNP-
omplete. �A 
onstru
tion similar to the one presented in the proof of Theorem 3.10 leadsto the following result.Theorem 3.11. Let M = TRA�:Then the problem DDP�(p;M;m), where m is bounded by a polynomial in p, isNP-
omplete.Proof. Let Q := DDP�(n;M�; 2) with M� = ASY \ TRA� \ TOT be the NP-
omplete problem 
onsidered in Theorem 3.8. Our aim is to prove that Q is



The Complexity of Computing Medians of Relations 335polynomially transformable to eQ := DDP�(p;M;m), where m � p6. For that, letus assume that Dn = (N;An), w and k, k < n2, are given as an instan
e of Q,and let us 
onstru
t the 
orresponding instan
e of eQ.Let eDp = ( eN; ~A) be the 
omplete digraph of order p = 2n with node seteN := fi1; i2 : i 2 Ng.To de�ne the weights ewe, setR := [1�i<j�nRij ; where Rij := �(i1; j1); (j1; i2)	 ;R := [1�i<j�nRij ; where Rij := �(j1; i1); (i2; j1)	 :Let M be the smallest even integer su
h thatM > k + 2n2 ;and set M� := ��n2�+ 1�M ;L :=M +�n2�(M� +M) :Now de�ne ewe for ea
h e 2 ~A, as follows :ewe = 8>>>>>>>><>>>>>>>>:
�M� if e = (i2; i1), i 2 NL if e = (i1; i2), i 2 Nwij �M� if e = (i1; j1), e 2 Rwji �M� if e = (j1; i2), e 2 RM if e 2 R0 otherwise .Observe that j ewej is even and j ewej � p6 for every e 2 ~A.
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336 Yoshiko Wakabayashi~k := k + �n2�M � ��n2�+ n�M� :We 
laim that Dn = (N;An) has a subdigraph H = (N;B) with B 2 M� andw(B) � k i� eDp = ( eN; ~A) has a subdigraph eH = ( eN; eB) with eB 2 TRA� andew( eB) � ~k.a) Given H = (N;B) in Dn with B 2M� and w(B) � k, let eH = ( eN; eB) be thesubdigraph of eDp de�ned by : eB := eB1 [ eB2 [ eB3 ;whereeB1 := �(i1; j1); (i1; j2); (i2; j1); (i2; j2) : 1 � i < j � n and (i; j) 2 B	 ;eB2 := �(j1; i1); (j1; i2); (j2; i1); (j2; i2) : 1 � i < j � n and (j; i) 2 B	 ;eB3 := �(i2; i1) : 1 � i � n	 :Then ew( eB) = ew( eB \ R) + ew( eB nR)= ew( eB \ R) + ew( eB1 [ eB2 nR) + ew( eB3)= w(B) ��n2�M� +�n2�M � nM�= w(B) ���n2�+ n�M� +�n2�M� k ���n2�+ n�M� +�n2�M � ~k :Using the fa
t that B 2 M� it is not diÆ
ult to prove that eB 2 TRA�. Indeed,the proof is analogous to the one present for Theorem 3.10, and therefore it willbe omitted.b) Let eH = ( eN; eB) be a subdigraph of eDp with eB 2 TRA� and ew( eB) � ~k.Based on eH we want to 
onstru
t a transitive tournament H = (N;B) in Dn withw(B) � k. For that, we �rst observe that eH has the following properties :(b1) eB does not 
ontain an ar
 e with ewe = L.Suppose eB 
ontains su
h an ar
 e. Thenew( eB) � L� nM� �Xe2A jwej � n(n� 1)M��M +�n2�(M� +M)� nM� � 2n2 � n(n� 1)M�> k ��n2�M� � nM� +�n2�M = ~k ;
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ontradi
tion.(b2) For every pair (i; j), 1 � i < j � n, �� eB \ Rij�� = 1.Suppose there is a pair (i; j) su
h that �� eB \ Rij�� = 2. In this 
ase, sin
eeB 2 TRA�, it follows that (i1; i2) 2 eB, 
ontradi
ting (b1). Thus, �� eB \ Rij �� � 1for every pair (i; j), 1 � i < j � n. Now suppose there is a pair (i; j) su
h that�� eB \ Rij �� = 0. Thenew( eB) � ���n2�� 1�M� � nM� � Xe2An jwej:Using the fa
t that Pe2An jwej � 2n2 and making some substitutions we getew( eB) > ~k . Sin
e this 
ontradi
ts our assumption, we 
on
lude that (b2) holds.(b3) For every i, 1 � i � n, (i2; i1) 2 eB:Suppose for some i, 1 � i � n, (i2; i1) 62 eB. Thenew( eB) � �(n� 1)M� � Xe2An jwej ��n2�M�� ��n2�+ 1�M � nM� � 2n2 ��n2�M�> �n2�M + k ���n2�+ n�M� = ~k ;a 
ontradi
tion.(b4) For every pair (i; j), 1 � i; j � n, �� eB \ Rij �� = 1.By (b2), for every pair (i; j), 1 � i < j � n, exa
tly one of the ar
s (i1; j1)or (j1; i2) is in eB. If (i1; j1) 2 eB, sin
e (i2; i1) 2 eB, it follows that (i2; j1) 2 eB.Analogously, if (j1; i2) 2 eB then (j1; i1) 2 eB. Thus, j eB \ Rij j � 1. Now supposethere is a pair (i; j), 1 � i < j � n, su
h that j eB \ Rij j > 1. This implies that eBhas more than �n2� ar
s with weight M and thereforeew( eB) � ��n2�+ 1�M � Xe2An jwej ��n2�M� � nM�> �n2�M + k ���n2�+ n�M� = ~k ;a 
ontradi
tion. So, we have proved that (b4) holds.(b5) ew( eB \ R) � k � �n2�M�:This follows from the fa
t that ew( eB\R) = ew( eB)+nM���n2�M and ew( eB) � ~k .



338 Yoshiko WakabayashiNow let H = (N;B) be the subdigraph of Dn withB :=�(i; j) : (i1; j1) 2 eB \R; 1 � i < j � n	 [�(j; i) : (j1; i2) 2 eB \ R; 1 � i < j � n	 :We 
laim that B 2 M� and w(B) � k. Note that jBj = j eB \ Rj = �n2�. Further-more, w(B) = ew( eB \ R) + �n2�M�. Thus, by (b5) it follows that w(B) � k: Thede�nition of B and fa
t (b2) yield immediately that B 2 ASY\TOT. So it remainsto be shown that B 2 TRA�. Let (i; j) and (j; l) be ar
s of B, i 6= j 6= l 6= i.If i < j and (i; j) 2 B then (i1; j1) 2 eB \ R. If i > j and (i; j) 2 B then(i1; j2) 2 eB \ R. In the latter 
ase, sin
e (j2; j1) 2 eB and eB 2 TRA�, it fol-lows that (i1; j1) 2 eB. From an analogous analysis of 
ases j < l and j > l, we
on
lude that (j1; l1) 2 eB. Thus, (i1; j1) 2 eB and (j1; l1) 2 eB, and therefore(i1; l1) 2 eB. If i < l, then (i1; l1) 2 eB \ R, and hen
e (i; l) 2 B. Suppose l < i.Then (i1; l1) 2 eB \ R, and therefore by (b4) it follows that (l2; i1) 62 eB. In this
ase, (l1; i1) 62 eB; otherwise (l2; l1) 2 eB and (l1; i1) 2 eB would imply (l2; i1) 2 eB,a 
ontradi
tion. But if (l1; i1) 62 B, by (b2) we 
on
lude that (i1; l2) 2 eB. Thus(i; l) 2 B, and this proves that B 2 TRA�.Clearly, the transformation of Q to eQ is polynomial and therefore eQ is NP-
omplete. �The next result follows from theorems 3.8{3.11 together with Lemma 3.6 andTheorem 3.5.Theorem 3.12. LetM0 2 �TRA; ASY \ TRA; SYM \ TRA; TRA \ TOT; ASY \ TRA \ TOT	:Then MP(R;M) is NP-hard for M2 �M0;M0 \REF	: �We 
an summarize the 
omputational 
omplexity results we have proved asfollows.a) The median problem MP(R;M) is easy wheneverM results from any 
om-bination of the properties REF, SYM, ASY and TOT. [Proposition 3.4.℄b) Transitivity makes the median problem diÆ
ult. More pre
isely, if one ofthe properties required forM is TRA then the median problem MP(R;M)is NP-hard ex
ept for the trivial 
ombination TRA\SYM\TOT. The mostinteresting 
ases are in
luded here: partial orders (TRA\ASY), linear orders(TRA \ ASY \TOT) , 
omplete preorders (TRA \ TOT) and equivalen
esREF \TRA \ SYM. [Theorem 3.12.℄
) The property REF may be in
luded or not, without 
hanging the 
omplexitystatus of the median problem. [Theorem 3.12.℄d) In some 
ases the median problem MP(R;M) is NP-hard even when thepro�le � 
onsists of 1 or 2 relations. This is the 
ase when M is a linearorder and M is a partial order. [Theorem 3.8.℄



The Complexity of Computing Medians of Relations 339To 
lose this se
tion we present the NP-
ompleteness proof of the Restri
tedClique Partitioning Problem, needed to prove Theorem 3.9. We shall base ourproof on the transformation from the Simple Max-Cut Problem (SMCP), knownto be NP-
omplete (Garey, Johnson and Sto
kmeyer [1976℄). In this problem theinstan
e 
onsists of a graph G = [V;E℄, and a positive integer k. The obje
tive isto de
ide whether G has a 
ut of size at least k.Theorem 3.13. The Restri
ted Clique Partitioning Problem is NP-
omplete.Proof. � Transformation from the Simple Max-Cut Problem (SMCP) �Let G =[V;E℄ and k be given as an instan
e of SMCP, and assume that jV j = n. LetG0 = [V 0; E0℄ be a 
omplete graph of order 3n obtained from G by adding to it2n more nodes and 
ompleting it with all the missing edges, whi
h are not loops.Assume that V 0 = V [X [ Y , where jX j = jY j = n. Assign weights we to ea
hedge e 2 E0 by settingwe := 8><>: 1 if e 2 E [ (X : Y ) ,�1 if e 2 (V : X [ Y ) ,0 otherwise ;and let k0 := jEj � k � n2 :We 
laim that G has a 
ut C with jCj � k i� G0 has a 
lique partitioning A withw(A) � k0.a) Assume that C = E(V1 : V nV1) is a 
ut in G with jCj � k, and let V2 := V nV1.Then the edge set A := E0(V1 [X)[E0(V2[Y ) is a 
lique partitioning of G0 withwA) = w�E0(V1 [X)�+ w�E0(V2 [ Y )�= �j(V1 : X)j � j(V2 : Y )j+ jE n Cj= �n2 + jEj � jCj � �n2 + jEj � k = k0 :b) Assume that G0 has a 
lique partitioning A with w(A) � k0. We want to provethat G has a 
ut C with jCj � k. Let us assume for the moment that the followingholds:Claim 1: G0 has a 
lique partitioning A0 with w(A0) � k0 and C(A0) = fQ1; Q2g,where Q1 and Q2 are su
h that V Q1 = X [ V1 and V Q2 = Y [ V2 for somenonempty subsets V1 and V2 of V .Note that, in this 
ase, w(A0) = w(EQ1)+w(EQ2) = �n2+��E(V1)��+��E(V2)�� =�n2 + jEj � ��E(V1 : V2)��, and sin
e w(A0) � k0 = �n2 + jEj � k, it follows that��E(V1 : V2)�� � k, and therefore C := E(V1 : V2) de�nes the desired 
ut C in G.Thus, in order to 
omplete the proof it remains to be shown that Claim 1 holds.Before that, for notational 
onvenien
e, let us give names to the di�erent types of
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liques we shall 
onsider. A

ording to its interse
tion with the sets V , X , Y , a
lique H = [V H;EH ℄ may be of one of the following types (see Figure 4) :
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................


ype3Type 2Type 5X Y
V

Type 4Type 4 Type 1Type 1
Figure 4Type 1 :(X;V )-interse
ting (if V H \X 6= ;, V H \ V 6= ; and V H \ Y = ;) or(Y; V )-interse
ting (if V H \ Y 6= ;, V H \ V 6= ; and V H \X = ;) .Type 2 :(X;Y; V )-interse
ting (if V H \X 6= ;, V H \ Y 6= ; and V H \ V 6= ;) .Type 3 :V -in
luded (if ; 6= V H � V ) .Type 4 :X-in
luded (if ; 6= V H � X) or Y -in
luded (if ; 6= V H � Y ) .Type 5 :(X;Y )-interse
ting (if V H \X 6= ;, V H \ Y 6= ; and V H \ V = ;) .Note that a

ording to the given de�nitions the desired 
lique partitioning A0of Claim 1 must be su
h that C(A0) = fQ1; Q2g, where Q1 and Q2 are both ofType 1.For simpli
ity, we say that a 
lique partitioning A1 is better than a 
lique par-titioning A2 if either w(A1) < w(A2), or w(A1) = w(A2) and jC(A1)j < jC(A2)j.Sin
e ea
h 
lique partitioning A is bije
tively asso
iated with the 
lique setC(A), when we refer to a 
lique partitioning B obtained from A by repla
ing someof the 
liques in C(A) with others, we are in fa
t de�ning how C(B) is 
onstru
tedand therefore de�ning in this way the ar
 set B.Now 
onsider the following Claim 2 to be used in the proof of Claim 1.Claim 2: Let Q be a 
lique partitioning of G0 and assume that Q1; : : : ; Ql, l � 2,are 
liques in C(Q) all of whi
h are (W;V )-interse
ting, where W = X or W = Y .Let � := lPi=1 jV Qi \ W j and � := lPi=1 jV Qi \ V j. If � � �, then the 
liquepartitioning Q0 obtained from Q by repla
ing the 
liques Q1; : : : ; Ql with the
lique G0[V Q1 [ : : : [ V Ql℄ is su
h that w(Q0) < w(Q).



The Complexity of Computing Medians of Relations 341The proof of Claim 2 will be omitted as it 
an be obtained without any diÆ
ultyby indu
tion on l. (For l � 3 prove that there exist two 
liques Qi and Qj ,1 � i < j � l, su
h that j(V Qi [ V Qj) \W j � j(V Qi [ V Qj) \ V j.)Proof of Claim 1Let A be the set of the 
lique partitionings ~A of G0 with w( ~A) � k0 and su
hthat C( ~A) 
ontains the smallest number possible p of 
liques of Type 2. Clearly,A 6= ; and p � 0. Our aim is to prove �rst that p = 0, and then show the existen
eof the desired 
lique partitioning A0.Let us start by assuming that p � 1. Now let Â be a best 
lique partitioning inA, and let H1; : : : ; Hp be the 
liques of Type 2 
ontained in C(Â).For 1 � i � p let Xi := V Hi \X; xi := jXij ;Yi := V Hi \ Y; yi := jYij ;Vi := V Hi \ V; vi := jVij :Suppose C(Â) 
ontains a 
lique Hi, 1 � i � p, su
h that vi � xi. Then we
an split Hi into a 
lique of Type 1, G0[Xi [ Vi℄, and a 
lique of Type 4, G0[Yi℄,obtaining this way a 
lique partitioning ~A with w( ~A) � w(Â) and with C( ~A)
ontaining p � 1 
liques ot Type 2. Sin
e this 
ontradi
ts the 
hoi
e of Â, we
on
lude that vi > xi for i = 1; : : : ; p. By symmetry, we also 
on
lude thatvi > yi for i = 1; : : : ; p.It is immediate that C(Â) 
ontains no (X;Y )-interse
ting 
liques. Otherwise,a better 
lique partitioning 
ould be obtained from Â by repla
ing ea
h (X;Y )-interse
ting 
lique with 2 
liques, one being X-in
luded and the other Y -in
luded.It is also easy to see that C(Â) 
ontains no X-in
luded and no Y -in
luded
liques. For, if H were an X-in
luded 
lique in C(Â) then by repla
ing the 
liqueH1 with the 
lique H1[H we 
ould obtain a better 
lique partitioning in A (sin
ev1 > y1). By symmetry, the same holds with respe
t to Y -in
luded 
liques.Sin
e pPi=1xi < pPi=1 vi � n = jX j and pPi=1 yi < jY j, then C(Â) must 
ontain(X;V )-interse
ting 
liques, say eH1; : : : ; eHh, h � 1, and (Y; V )-interse
ting 
liques,say eQ1; : : : ; eQq, q � 1.Let � := hSi=1(V eHi \X) and � := hSi=1(V eHi \ V ).Sin
e � � �, if h � 2 then by Claim 2 the 
liques eH1; : : : ; eHh 
an be repla
edwith the 
lique hSi=1 eHi yielding this way a better 
lique partitioning in A. Bysymmetry, if q � 2 then a better 
lique partitioning 
an also be obtained. Thus,we 
on
lude that h = 1 and q = 1, and for simpli
ity we let H := eH1 and Q := eQ1.If C(Â) 
ontains V -in
luded 
liques, say H 01; : : : ; H 0l , l � 1, then it is easy tosee that these 
liques 
an be 
ombined with the 
lique H giving this way a better
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lique partitioning. It suÆ
es to note that jV H \X j > jV H \ V j+ j lSi=1V H 0i j.Thus, we 
on
lude that C(Â) = fH1; : : : ; Hpg [ fH;Qg.Let HX := V H \X , hX := jHX j; HV := V H \V , hV := jHV j; QY := V Q\Y ,qY := jQY j; QV := V Q \ V , qV := jQV j. Note that hX > hV and qY > qV .Let us now fo
us our attention on the 
liques H , Q and H1.


.......................... . .............. . .....
.......... ............................. . . . . . . . . . . . . . . . . . ..................


. . . . ...........................................

.. . . . . . . . .. . . . . . ..........................................................
.... . . .X

V VYY XH HQ QH1 H1hX x1hV v1 y1 hX x1 y1qY qYv1(a) (b)qV hV qV
Figure 5Suppose v1 � hV + y1.In this 
ase, let ~A be the 
lique partitioning obtained from Â by splitting C1into the new 
liques G0[V H [X1℄ and G0[V Q[ Y1 [ V1℄, and preserving the (old)
liques H2; : : : ; Hp (see Figure 5.a). Thus, C( ~A) 
ontains p � 1 
liques of Type2 and w( ~A) = w(Â) � x1hV � x1y1 + x1v1 � y1qV � v1qY + jE(V1 : QV )j �w(Â)� x1(hV + y1 � v1)� y1qV � v1(qY � qV ).Sin
e hV + y1 � v1 � 0 and qY � qV > 0 we 
on
lude that w( ~A) < w(Â) � k0,and therefore we have a 
ontradi
tion to the 
hoi
e of Â.Assume now that v1 > hV + y1.In this 
ase, let ~A be the 
lique partitioning obtained from Â by performinga splitting of C1, symmetri
 to the previous one. That is, ~A 
onsists of the new
liques G0[V H [X1[V1℄ and G0[V Q[Y1℄, and the 
liques H2; : : : ; Hp (see Figure5.b). Thus C( ~A) 
ontains p� 1 
liques of Type 2 andw( ~A) � w(Â)� y1qV � x1y1 + y1v1 � x1hV � v1hX + v1hV= w(Â)� y1qV + y1(v1 � x1) + hV (v1 � x1)� v1hX= w(Â)� y1qV + (y1 + hV )(v1 � x1)� v1hX :Sin
e y1 + hV < v1 and v1 > x1, it follows thatw( ~A) < w(Â)� y1qV + v1(v1 � x1)� v1hX :
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t that hX = n� (x1 + : : : xp) = (hV + qV + v1 + : : : vp)� (x1 +: : : xp) > v1�x1, we obtain that w( ~A) < w(Â), again a 
ontradi
tion to the 
hoi
eof Â.This 
ompletes the proof that p = 0.Now let us assume that A0 is a best 
lique partitioning in A and that C(A0)
ontains no 
liques of Type 2. It is immediate that C(A0) must 
ontain at least a
lique of Type 1; otherwise we would have w(A0) � 0 and therefore w(A0) > k0,a 
ontradi
tion. Let Q1 be a 
lique of Type 1 
ontained in C(A0), and assumewithout loss of generality that Q1 is (X;V )-interse
ting.Clearly, C(A0) 
ontains no (X;Y )-interse
ting 
liques. It is also immediate thatC(A0) 
ontains no X-in
luded 
liques, sin
e they 
ould all be 
ombined with Q1giving this way a better 
lique partitioning.If the 
lique set C(A0) 
ontains other (X;V )-interse
ting 
liques di�erent fromQ1, say H1; : : : ; Hh, then by Claim 2, if we set Q1 := Q1 [ H1 [ : : : [Hh, thenwe obtain a better 
lique partitioning. Thus, we 
on
lude that C(A0) 
ontains aunique (X;V )-interse
ting.If C(A0) 
ontains a V -in
luded 
lique, say H , then (sin
e n = jV Q1 \ X j >jV Q1\V j) we 
an set Q1 := Q1[H and obtain a better 
lique partitioning.If C(A0)
ontains no (Y; V )-interse
ting 
liques, then it 
onsists of the 
liqueQ1 = G0[X[V ℄and some Y -in
luded 
liques, and therefore w(A0) = �n2 + jEj > k0, a 
ontra-di
tion. Thus, let Q2 be a (Y; V )-interse
ting 
lique in C(A0). If C(A0) 
ontainsY -in
luded 
liques and/or other (Y; V )-interse
ting 
liques, by performing analo-gous transformations to the ones we de�ned with respe
t to Q1, we 
an 
onstru
ta better 
lique partitioning. Hen
e, we 
on
lude that Q2 is the unique (Y; V )-interse
ting 
lique in C(A0) and therefore, C(A0) = fQ1; Q2g with Q1 and Q2 bothof Type 1.Thus, we have proved that Claim 1 holds, and therefore we have 
ompleted theproof of the theorem. �4. The 
ase of restri
ted domainsIn the pre
eding se
tion we have proved the NP-hardness of MP(R;M) for
ertain subsets M � R. One may now ask whether the following spe
ial 
asesof these problems have also the same 
omplexity: instead of R (an unrestri
teddomain of the relations in the pro�le �), we may have the information that thegiven relations are endowed with some properties from P. In this 
ase, instead ofR, we have a subsetM0 � R and we are lead to the problem MP(M0;M) de�nedanalogously. In other words, when we 
onsider that the domain is R, this meansthat we have no information about the properties of the input relations, and whenwe spe
ify a subset M0 � R this means that the input relations are known to bein M0 (they belong to a restri
ted domain).We have shown that in some 
ases the problem MP(M0;M) is NP-hard evenwhen the pro�le � 
onsists of a �xed number m of relations. Let us denote byMP(M0;M;m) this latter problem.When M0 = M = L (the given relations are linear orders and the obje
tive



344 Yoshiko Wakabayashirelation is also a linear order), Orlin [1981℄ (in an unpublished manus
ript) andBartholdi, Tovey and Tri
k [1988℄ proved that MP(L;L) is NP-hard. Note thatthis implies that the more general problem MP(R;L) is NP-hard, but not thatMP(R;L; 1) is NP-hard | the result we have shown.Let us turn now to the 
ase of equivalen
e relations. K�riv�anek and Mor�avek[1986℄ proved that MP(SYM,E ,1) is NP-hard. This result yields as a 
orollarythe fa
t that MP(R; E ; 1) is NP-hard (Theorem 3.9). Furthermore, from it one
an also derive that MP(E ; E) is NP-hard. The redu
tion given by K�riv�anek andMor�avek is from a problem on hierar
hi
al-tree 
lustering, whoseNP-
ompletenessproof is very laborious. For the sake of 
ompleteness of the 
lass of results 
overedin this paper we have in
luded our weaker result. We should observe however,that in this 
ase rather than the NP-hardness of MP(R; E ; 1), the interest liesmore on the Theorem 3.13 from whi
h the result 
ould be derived.There remains a number of open problems 
on
erning the 
omputational 
om-plexity status of MP(M0;M;m) for some 
ombinations of M and M0. We re
allthat the problems we know to be NP-hard are MP(R;L; 1), MP(R;O; 2) andMP(SYM,E ; 1). It would be interesting to establish the 
omplexity of the prob-lems MP(T ;L;m) and MP(L;L;m) for small m.5. Appli
ations and strategies to solve some median problemsIn qualitative data analysis, so
ial 
hoi
e theory, and paired 
omparison meth-ods there are many problems that 
an be modelled as median problems. In these
ontexts, the data arise from the measurement of a number of 
hara
teristi
s (orattributes) asso
iated with ea
h obje
t of a given set and the obje
tive is that of�nding a linear order, or a partial order or a 
lustering of the obje
ts that `bestrepresents' the given data.For example, the data may arise by 
olle
ting the preferen
es of m voters withrespe
t to a set of obje
ts (
andidates, teams) and the obje
tive is to �nd aranking of the obje
ts that best represents the given preferen
es. Note that thepreferen
es of the m voters may be seen as m relations (eventually linear orders)on the obje
t set, and the ranking of the obje
ts may be seen as a linear orderthat best represents the given relations. So here we have the median problemMP(R;M), where M is a linear order. This is the problem of aggregation ofpreferen
es we have mentioned in the introdu
tory se
tion.Instead of preferen
es the relations may indi
ate dominan
es (or hierar
hies) onthe obje
t set. These appli
ations o

ur in behavioral s
ien
es in the study of thedominan
e relationship in a group of animals (see Mar
otor
hino and Mi
haud[1979℄). Appli
ations in marketing are mentioned by Slater [1961℄ and Reinelt[1985℄, on the design of publi
ity 
ampaign for produ
ts based on voting upondi�erent types of advertisements.When the relations represent similarities (that 
an be dedu
ed by 
onsideringthe attributes of the obje
ts), and the aim is that of �nding a best partition of theobje
t set into `homogeneous' disjoint 
lasses (or 
lusters), we have the so-
alled
lustering problem. In this 
ase, we are given a set of m relations (ea
h relationindi
ating the similarities of the obje
ts with respe
t to one attribute) and we
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e relation. Thus here we have the median problemMP(R;M), where M is an equivalen
e relation.Clustering problems o

ur in many areas: zoology, botani
s, so
iology, politi
sand e
onomi
s. A number of real problems that were modelled as 
lustering prob-lems 
oming from these di�erent areas 
an be found in Gr�ots
hel and Wakabayashi[1989℄.As we have mentioned, the median problems that we have 
onsidered 
an beredu
ed to optimization problems on weighted digraphs. Some of these digraphproblems have been largely investigated, in spe
ial, the linear ordering problemand the 
lique partitioning problem. The latter solves the problem of �nding amedian that is an equivalen
e relation.Thus, the strategies that have been developed to solve these problems 
an beused to solve the 
orresponding median problem. These strategies go from simpleheuristi
s to sophisti
ated bran
h-and-
ut algorithms.For the linear ordering problem, Reinelt [1985℄ developed a bran
h-and-
ut al-gorithm and reported very good 
omputational results obtained by solving a num-ber of problems in e
onomi
s, in spe
ial triangulation problems for input-outputtables (see also Gr�ots
hel, J�unger and Reinelt [1984a, 1984b℄). This algorithm
ombines the 
utting plane approa
h and bran
h-and-bound te
hniques. Mar
o-tor
hino and Mi
haud [1979℄ developed heuristi
s and reported 
omputations onsome ranking problems. Other problems that are equivalent to the linear orderingproblem are the a
y
li
 subdigraph problem (J�unger [1985℄) and the permutationproblem (Young [1978℄). Exa
t methods were developed by de Cani [1972℄, Kaas[1981℄, T�ushaus [1983℄, and others.For the 
lique partitioning problem, Wakabayashi [1986℄ developed a bran
h-and-
ut algorithm (see also Gr�ots
hel and Wakabayashi [1988℄ for the 
ompu-tational results on the performan
e of the proposed algorithm). Results on thepolyhedral investigations of the 
lique partitioning polytope that were used to de-velop this algorithm 
an be found in Gr�ots
hel and Wakabayashi [1990a, 1990b℄.Among the heuristi
 methods that were proposed for the 
lustering problem wemention Mar
otor
hino and Mi
haud [1981℄, and S
hader [1981℄. Exa
t methodswere developed by T�ushaus [1983℄; S
hader and T�ushaus [1985℄ also proposed anapproa
h that 
ombines heuristi
s with a subgradient method.Polyhedral results for the partial order polytope were obtained by M�uller [1996℄;Gurgel [1992℄ investigated the fa
ial stru
ture of the 
omplete preorder polytope(see also Gurgel and Wakabayashi [1993℄). These results 
an be used in the designof a 
utting plane based algorithm to solve the partial ordering problem and the
omplete preorder problem. Exa
t methods for these problems were investigatedby T�ushaus [1981, 1983℄. 6. Referen
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