
Resenhas IME-USP 1998, Vol. 3, No. 3, 323 - 349.The Complexity of Computing Medians of Relations1Yoshiko WakabayashiAbstrat: Let N be a �nite set and R be the set of allbinary relations on N . Consider R endowed with a metrid, the symmetri di�erene distane. For a given m-tuple� = (R1; : : : ; Rm) 2 Rm, a relation R� 2 R that min-imizes the funtion Pmk=1 d(Rk; R) is alled a median rela-tion of �. In the soial sienes, in qualitative data analysisand in multiriteria deision making, problems our in whihthe m-tuple � represents olleted data (preferenes, simi-larities, games) and the objetive is that of �nding a medianrelation of � with some speial feature (representing for ex-ample, onsensus of preferenes, lustering of similar objets,ranking of teams, et.). In this paper we analyse the ompu-tational omplexity of all suh problems in whih the medianis required to satisfy one or more of the properties: reexitiv-ity, symmetry, antisymmetry, transitivity and ompleteness.We prove that whenever transitivity is required (exept whensymmetry and ompleteness are also simultaneously required)then the orresponding median problem isNP-hard. In someases we prove that they remainNP-hard even when the pro-�le � onsists of one or two relations. We mention some ap-pliations and strategies that an be used to solve the medianproblems onsidered here.Key words: Relations, lustering, omplexity, median,order, transitivity 1. IntrodutionIn the soial hoie theory a lassial problem that has been largely investigatedand whose origin traes bak to the late eighteenth entury is the problem ofaggregating individual preferenes (linear orders) into a soial preferene (a linearorder). The notion of onsensus of preferenes plays an important role in thesoial sienes, a reason why many e�orts have been made to �nd realisti modelsto express it (f. Leler [1988a℄, Day [1988℄).The �rst mathematial approahes on problems of aggregation of preferenesare redited to Borda in 1770 and Condoret in 1785, both onerned with thedesign of eletion proedures. Young [1990℄ disusses the model proposed by thesetwo major �gures of that time, gives some historial aounts and explains theCondoret's theory of voting (see also Young and Levenglik [1978℄).The notion of median relation |a relation minimizing a \remoteness" funtionde�ned in terms of the symmetri di�erene distane| was introdued by Ke-meny [1959℄, who investigated a method to aggregate individual preferenes intoa olletive preferene. His method, although being of metri nature, is in fat1This work has been partially supported by CNPq Grant 304527/89-0, FAPESP Grant 96/04505-2and ProNEx Projet 107/97 (MCT/FINEP). 323



324 Yoshiko Wakabayashiequivalent to the Condoret's majority rule, aording to whih the winning olle-tive preferene should be the one supported by the largest number of votes (Young[1990℄, Barbut [1967℄, Fishburn [1977℄, Mihaud [1987℄). In luster analysis a sim-ilar approah was proposed by Regnier [1965℄, then Mirkin [1974℄, for solving theproblem of aggregating equivalene relations into an equivalene relation (see alsoZahn [1964℄).The fat that the symmetri di�erene distane has been used in problemsourring in many di�erent ontexts is not a pure oinidene. Axiomatis sup-porting its use has been investigated in several ases, f. Kemeny [1959℄, Monjardet[1978℄, Barth�elemy [1979℄ and Barth�elemy and Monjardet [1981℄. However, themedian approah, as any onsensus proedure, has some defets as pointed out byFishburn [1977℄, Leler [1988a℄, and Barth�elemy and Monjardet [1988℄. This lastreferene gives also an overview of the developments on the algorithmi approahesand extensions of the notion of median in other strutures. The results onern-ing its algebrai de�nition that generalizes to any distributive lattie (f. Barbut[1961℄, Monjardet [1980℄), as well as more reent results on median semilatties,resp. (semi)modular (semi)latties an be found in Monjardet [1987, 1988℄, resp.Barth�elemy [1981℄ and Leler [1988b℄. For a uni�ed treatment of this subjet thereader should refer to Barth�elemy, Flament and Monjardet [1982℄; Barth�elemy,Leler and Monjardet [1986℄; Barth�elemy and Monjardet [1988℄ and Barth�elemy[1988℄.In this paper we analyse the omputational omplexity of a lass of problemsof �nding medians with presribed properties. This lass inludes those lassialproblems suh as aggregation of preferenes and lustering.The material is organized as follows. In Setion 2 we give the de�nitions andnotation to be used and present the problems to be investigated. In Setion 3 themain results on the omputational omplexity of these problems are presented, andin Setion 4 we disuss speial ases onerning restrited domains. In Setion 5we mention some appliations and known strategies to solve median problems.2. Definitions and NotationLet N be a �nite set with n objets and let R denote the set of all (binary)relations on N . Consider R endowed with a metri d, the symmetri di�erenedistane, de�ned asd(R;S) := jR4 Sj := jR [ Sj � jR \ Sj for all R;S 2 R:A pro�le of relations in R, or a pro�le in Rm, is an m-tuple � = (R1; : : : ; Rm)where Rk 2 R for k = 1; : : : ;m. Given a pro�le � = (R1; : : : ; Rm) in Rm, arelation R� 2 R that minimizes the funtionD(�; R) := mXk=1 d(Rk ; R)is alled a median relation of �.



The Complexity of Computing Medians of Relations 325In this general form the problem of �nding a median of a given pro�le is trivialand not interesting. However, if we require the median to satisfy ertain propertiesthe resulting problem beomes interesting and has nie appliations. So, aordingto the desired properties of R� we obtain di�erent problems, and here we onsiderall those arising when the properties are hosen from the setP := fReexive, Symmetri, Antisymmetri, Transitive, Totalg:Let us reall some de�nitions. A relation R 2 R is reexive (REF) if (i; i) 2 R forall i 2 N ; R is symmetri (SYM) if (i; j) 2 R implies (j; i) 2 R for all i; j 2 N ; Ris antisymmetri (ASY) if (i; j) 2 R and (j; i) 2 R imply i = j for all i; j 2 N ; Ris transitive (TRA) if (i; j) 2 R and (j; k) 2 R imply (i; k) 2 R for all i; j; k 2 N ;R is total (TOT) if (i; j) 2 R or (j; i) 2 R for all i; j 2 N; i 6= j.To simplify notation we use the abbreviated form of the name of the property(given in parentheses) to denote also the set of all relations having this property.Thus, for example, TRA denotes the set of all transitive relations in R. Somerelations having more than one of the properties in P are known by speial names,not always standard in the literature. Here we adopt the following notation andterminology:C denotes the set of all omplete preorders, i.e. C = TRA \ TOT.T denotes the set of all tournaments, i.e. T = ASY \ TOT.L denotes the set of all linear orders, i.e. L = ASY \TRA \ TOT.O denotes the set of all partial orders, i.e. O = ASY \ TRA.E denotes the set of all equivalene relations, i.e. E = REF \ SYM \TRA.For a subsetM� R the median problem relative toM, denoted by MP(R;M),is de�ned as follows.Median Problem relative to M | MP(R;M)Instane: Pro�le � = (R1; : : : ; Rm) of m relations in R.Objetive: Find a relation R� 2 M suh that D(�; R�) = minR2MD(�; R).We expet the reader to be familiar with the basi onepts of graph theory andomplexity theory. If not, the de�nitions not given here an be found in Bondyand Murty [1976℄, resp. Garey and Johnson [1979℄. We present only the oneptswe need to establish out notation.A graph G with node set V and edge set E is denoted by G = [V;E℄. Adigraph (or direted graph) D with node set N and ar set A is denoted byD = (N;A). A graph G = [V;E℄, resp. digraph D = (N;A), is alled omplete ifE = ffu; vg : u; v 2 V; u 6= vg, resp. A = f(u; v) : u; v 2 N; u 6= vg. If D = (N;A)is a digraph with A = N �N then D is alled l-omplete (i.e. omplete with allloops). For a digraph D = (N;A), we all the ars in (N �N) n A missing ars(analogously, missing edges in ase of a graph). A digraph is alled ayli if itdoes not ontain any direted yle. A lique of a graph is a omplete subgraphof G. It needs not be maximal, as is sometimes assumed in the literature. A setof edges A in a graph G = [V;E℄ is alled a lique partitioning of G if there is a



326 Yoshiko Wakabayashipartition V1; : : : ; Vk of V suh that the subgraph indued by eah Vi, 1 � i � k,is a lique in G and A is the union of all edges in G with both endnodes in thesame set of the partition. In this ase, if for 1 � i � k the lique indued by Viis denoted by Qi, then we say that C(A) := fQ1; : : : ; Qkg is the lique set de�nedby A. 3. Computational ComplexityWe assume here that an instane of the median problem MP(R;M) onsistingof a pro�le � = (R1; : : : ; Rm) is given by an (n2;m)-matrix A = (aek), where therows orrespond to the pairs e 2 N �N , the olumns orrespond to the relationsR1; : : : ; Rm, and ae;k = 1 if e 2 Rk; ae;k = 0 if e 62 Rk, k = 1; : : : ;m. That is,eah olumn k of A orresponds to the harateristi vetor of the relation Rk.Clearly the size of suh an instane is O(n2m).It is well-known that the median problems we are onsidering an be formu-lated as 0/1 linear programs or optimization problems on weighted digraphs (seeGr�otshel and Wakabayashi [1988℄). In fat, it is not diÆult to prove thatD(�; R) =X(i;j)wijrij +X(i;j)�ij ;where �ij := jfk : (i; j) 2 Rkgj;(3:1) wij := m� 2�ij and(3:2) r = (rij ) is the harateristi vetor of R:Thus, eah given instane of MP(R;M) an be formulated as the 0/1 linearprogram:(3:3) minimize X(i;j)wijrijsubjet to: r = (rij) is the harateristi vetor of some relation R 2 M:If the oeÆients wij are interpreted as being weights assoiated with the ars(i; j) of an l-omplete digraph Dn on the node set N , then the problem beomesthat of �nding a minimum weighted subdigraph D0 = (N;R) of Dn, where R 2M. For example, if M = L the orresponding digraph problem is a speialase of the weighted feedbak ar set problem or linear ordering problem, and ifM = E we obtain the so-alled lique partitioning problem (see Reinelt [1985℄,Gr�otshel, J�unger and Reinelt [1985℄, Barth�elemy, Guenohe and Hudry [1988℄,resp. Wakabayashi [1986℄ and Gr�otshel and Wakabayashi [1988℄).From the above redution one obtains immediately the following result (exlud-ing some trivial non-interesting ases).



The Complexity of Computing Medians of Relations 327Proposition 3.4. If M2 fSYM; ASY; TOT; ASY \ TOTg then the medianproblem MP(R;M) is polynomially solvable.We an also make use of the given redution, in a more speialized way, toshow that MP(R;M) is NP-hard for other subsets M. Namely, we �rst notethat the obtained digraph optimization problems are speial in the sense that allof its weights wij are integers having the same parity. Furthermore, we observethat whenever we have suh an l-omplete weighted digraph Dn = (N;An) withm := maxe2An jwej we an onstrut a pro�le � = (R1; : : : ; Rm) in Rm suh thateah (i; j) 2 N �N belongs to preisely �ij relations, where �ij = (m � wij)=2(see (3.1) and 3.2). In other words, these speial digraph optimization problemsare also reduible to MP(R;M).In what follows we state more formally the results onerning the above re-dution. Before, we introdue some notation. For eah set M � R we de�ne adigraph optimization problem relative to M as follows.Digraph Optimization Problem | DOP(n;M;m)Instane: l-omplete digraph Dn = (N;An); weights we 2 Z for eah e 2 An,all having the same parity and with maxe jwej = m.Objetive: Find an ar set A� � An suh that A� 2 M and w(A�) :=Pe2A� weis minimum.The reason to introdue these problems is justi�ed by the following result.Theorem 3.5. Let M� R. If DOP(n;M;m) is NP-hard and m is bounded bya polynomial in n, then MP(R;M) is NP-hard.Proof. Let Dn = (N;An), w and m be given as an instane I of DOP(n;M;m).The orresponding instane I 0 of MP(R;M) is onstruted as follows. For eahpair (i; j) 2 An we determine the number �ij := (m� wij)=2 and setRk := f(i; j) 2 N �N : �ij � kg; for k = 1; : : : ;m;obtaining this way the pro�le � = (R1; : : : ; Rm). In other words, we let (i; j)belong to the �rst �ij relations R1; : : : ; R�ij .The onstrution of the pro�le � an be done in O(n2m) time. Thus, when mis bounded by a polynomial in n this onstrution is polynomial in the size of I.The proof that an optimum solution of the instane I 0 gives an optimum solutionof I is straightforward and will be omitted. �To prove the NP-hardness of some problems, we onsider the orrespondingdeision version of DOP(n;M;m) that will be denoted by DDP(n;M;m).For tehnial reasons it will be onvenient to onsider a slight variation ofthe transitive relation, denoted by TRA�, de�ned as follows: if (i; j) 2 R and(j; k) 2 R then (i; k) 2 R for all i; j; k 2 N , i 6= j 6= k 6= i. With this de�nitionwe an refer to the property TRA� on omplete digraphs (instead of l-ompletedigraphs). For that, we de�ne the orresponding digraph optimization (resp.



328 Yoshiko Wakabayashideision) problem DOP� (resp. DDP�), de�ned analogously as DOP (resp. DDP),exept that the instane onsists of a (loopless) omplete digraph.The next lemma shows that if we an prove an NP-ompleteness result forDDP� with respet to TRA�, then we an derive an analogous result for DDPwith respet to TRA (inluding or not the property REF). More preisely, thefollowing holds.Lemma 3.6. Let M� = S \ TRA� for some relation S on N , and letM2 fS \TRA; S \ TRA \ REFg:If DDP�(n;M�;m) is NP-omplete then DDP(n;M;m) is NP-omplete.Proof. LetDn = (N;An), w,m and k be an arbitrary instane of DDP�(n;M�;m).The orresponding instane of DDP(n;M;m), de�ned by D0n, w0, m, k0 is on-struted as follows: D0n = (N;A0n) is the l-omplete digraph obtained from Dn byadding to it all the missing loops, the weights w0e are de�ned as:w0e :=8><>: we if e 2 An;0 if e 62 An and m is even;�1 if e 62 An and m is odd,and k0 := � k if m is even,k � n if m is odd.We laim that Dn has an ar set B suh that B 2 M� and w(B) � k if andonly if D0n has an ar set B0 with B0 2 M and w0(B0) � k0.In fat, given B � An take B0 := B [ f(i; i) : i 2 Ng; and onversely, givenB0 � A0n take B := B0 n f(i; i) : i 2 Ng. This proves the laim and establishes theNP-ompleteness of DDP(n;M;m). �For the proof of the next theorem we need the fat that the following problemis NP-omplete (see Karp [1972℄).Ayli Subdigraph Problem (ASP)Instane: Digraph D = (N;A) without loops; positive integer k � jN j.Question: Is there a subset B � A with jBj � k suh that H = (N;B) is ayli?The next lemma (easy to be proved by indution) will be useful in theorem 3.8.Lemma 3.7. If H = (N;B) is an ayli digraph then there exists a graph H 0 =(N;B0) ontaining H, suh that B0 2 ASY \ TRA \ TOT.In the subsequent NP-ompleteness proofs we shall omit the straightforwardveri�ation that the onsidered problems are in the lass NP .



The Complexity of Computing Medians of Relations 329Theorem 3.8. LetM0 = ASY \ TRA� and M00 = ASY \ TRA� \TOT:Then DDP�(n;M0;m) is NP-omplete for m 2 f2; 3g, and DDP�(n;M00;m) isNP-omplete for m 2 f1; 2g.Proof. [Transformation from the Ayli Subdigraph Problem (ASP)℄(i) Assume �rst that m 2 f2; 3g and let M2 fM0;M00g.Suppose that D = (N;A) and k are given as an instane of ASP.Then the orre-sponding instane of DDP�(n;M;m), de�ned by Dn, w, m and k0, is obtained asfollows: Dn = (N;An) is the omplete digraph obtained from D by adding to itall the missing ars whih are not loops; the weights we for e 2 An are de�ned aswe := � �m if e 2 A,�(m� 2) otherwise;and k0 := �2k ��n2�(m� 2):We shall prove that D has an ayli subdigraph H = (N;B) with jBj � k ifand only if Dn has a subdigraph H 0 = (N;B0) with B0 2M and w(B0) � k0.a) Let H = (N;B) be an ayli subdigraph in D with jBj � k. Sine H isalso a subdigraph of Dn, then by Lemma (3.7) there exists in Dn a subdigraphH 0 = (N;B0) ontaining H suh that B0 2 M00. Moreover,w(B0) = w(B) + w(B0 nB)� jBj(�m)� ��n2�� jBj�(m� 2) � k0:b) Let H 0 = (N;B0) be a subdigraph in Dn suh that B0 2 M and w(B0) � k0.Sine H is ayli, by Lemma (3.7) there exists in Dn a subdigraph H 00 = (N;B00)ontaining H 0 with B00 2 M00. Note that B00 has at least k ars with weight �m.Otherwise, if B00 has l ars with weight �m, l � k � 1, thenw(B0) � w(B00) = l(�m)� ��n2�� l�(m� 2) > k0:Thus, if we take B := fe 2 B00 : we = �mg, learly H = (N;B) is an aylisubdigraph of D with jBj � k.(ii) If m = 1 then the above proof also holds for M =M00.Sine ASP is NP-omplete and the given transformation is polynomial, theresult follows. �



330 Yoshiko WakabayashiWe want to prove in the sequel that DDP�(n;M; 1) for M = SYM \ TRA� isNP-omplete. For that, we introdue the next problem whih we prove later (seeTheorem 3.13) to be NP-omplete.Restrited Clique Partitioning Problem { RCCPInstane: Complete graph Kn = [V;E℄, weights we 2 f�1; 0; 1g for eah e 2 E,integer k.Question: Is there a lique partitioning A � E suh that w(A) � k? (That is, isthere a partition of the node set Vn suh that the sum of the weightsof all edges with both endnodes in the same set of the partition is lessor equal to k?)Theorem 3.9. Let M = SYM \ TRA�:Then DDP�(n;M; 1) is NP-omplete.Proof. [Transformation from RCPP℄ Note that it suÆes to prove for m = 1.Let Kn = [Vn; En℄, w and k be an arbitrary instane of RCPP and assume thatVn = f1; 2; : : : ; ng. The orresponding instane of DDP�(M; 1) de�ned by Dn,w0 and k0, is onstruted as follows: Dn = (N;An) is a omplete digraph withnode set N = Vn, the weights w0e for e 2 An are de�ned asw0ij := � 1 if (wij = 1) or (wij = 0 and i < j),�1 if (wij = �1) or (wij = 0 and i > j);and k0 := 2k.It is immediate that, ifKn = [Vn; En℄ has a lique partitioningA with w(A) � k,then B := fij; ji : fi; jg 2 Ag, is an ar set in Dn suh that B 2 M andw0(B) = 2w(A). Conversely, if Dn has an ar set B 2 M with w0(B) � k0, thenit is easy to see that the set A := ffi; jg : ij 2 Bg is a lique partitioning of Knwith 2w(A) = w0(B). Sine RCPP is NP-omplete (by Theorem 3.13), and thegiven transformation is polynomial, the result follows. �It remains to analyse two more ases. Namely, when M 2 fTRA�;TRA� \TOTg. This is done in the next two theorems.Theorem 3.10. Let M = TRA� \ TOT:Then the problem DDP�(p;M;m), where m is bounded by a polynomial in p, isNP-omplete.Proof. By Theorem 3.8, the problem Q := DDP�(n;M�; 2) with M� = ASY \TRA�\TOT is NP-omplete. We want to prove that Q is polynomially reduibleto eQ := DDP�(p;M;m), where m � p4. Let Dn = (N;An), w and k be given as



The Complexity of Computing Medians of Relations 331an instane of Q. Note that, we may assume that k < n2, otherwise Q is triviallysolvable. Suppose N = f1; 2; : : : ; ng, n � 2. The orresponding instane of eQde�ned by eDp, ew and ~k is onstruted as follows : eDp = ( eN; ~A) is the ompletedigraph of order p = 2n with node set eN := fi1; i2 : i 2 Ng. To de�ne the weightsewe for e 2 ~A we letR := [1�i<j�nRij where Rij := �(i1; j1); (j1; i2)	and set ewe =8>>>>><>>>>>: 0 if e = (i2; i1), i 2 NL if e = (i1; i2), i 2 Nwij if e = (i1; j1), e 2 Rwji if e = (j1; i2), e 2 RM otherwise,where M := 4n2 and L := 2n4:Observe that j ewej is even and j ewej � p4 for every e 2 ~A.The parameter ~k is de�ned as~k := k + CM; whereC := �2n2 �� n��n2� = 3�n2�:
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M MML0 0 Lwjiwijwji Figure 1We shall prove that Dn = (N;An) has a subdigraph H = (N;B) with B 2M�and w(B) � k if and only eDp = ( eN; ~A) has a subdigraph eH = ( eN; eB) with eB 2Mand ew( eB) � ~k.It is lear that M , L and ~k were hosen onveniently so that the above laiman be shown to hold. Before we give the proof, let us explain the idea behind thehoie of the values for M , L and ~k. Note that for eah pair i, j, 1 � i < j � n,the ars (i; j) and (j; i) in Dn orrespond to the ars (i1; j1) and (j1; i2) in eDp,



332 Yoshiko Wakabayashirespetively, and that the assigned weights agree orrespondingly. See Figure 1.Given a subdigraph eH = ( eN; eB) in eDp with eB 2 M and ew( eB) � ~k, we wantto onstrut a subdigraph H = (N;B) in Dn with B 2 M� and w(B) � k.So we want eH to have exatly one of the ars (i1; j1); (j1; i2) for eah pair i, j,1 � i < j � n (so that the orresponding ars in Dn an be set into B). Thus wehoose L onveniently (aording to ~k) so that both of (i1; j1) and (j1; i2) annotbe in any transitive subdigraph eH with ew( eB) � ~k. This an be aomplished byhoosing L so that whenever both of these ars are hosen to be in a transitivesubdigraph eH = ( eN; eB), then the hoie of (i1; i2) fored by the transitivity givesthat ew( eB) > ~k. The values for ~k andM are so hosen that eH must be a subdigraphonsisting of :i) all ars with weight 0;ii) exatly one of the ars (i1; j1), (j1; i2) for eah pair i, j, 1 � i < j � n;iii) exatly C := �2n2 �� n� �n2� ars with weight M .a) Given a subdigraph H = (N;B) in Dn with B 2 M� and w(B) � k, onstruteH = ( eN; eB) by setting: eB := eB1 [ eB2 [ eB3;whereeB1 := �(i1; j1); (i1; j2); (i2; j1); (i2; j2) : 1 � i < j � n and (i; j) 2 B	;eB2 := �(j1; i1); (j1; i2); (j2; i1); (j2; i2) : 1 � i < j � n and (j; i) 2 B	;eB3 := �(i2; i1) : i 2 N	:Notie that j eBj = �2n2 � and eB 2 TOT. For eah pair e = (i; j), 1 � i; j � n, i 6= j,let Se be the following basi subdigraphj1j2i1i2 Sij
Figure 2Clearly, eH = ( eN; eB) is the union of all basi subdigraphs Se eah orrespondingto an ar e 2 B. By inspetion, it is easy to see that these subdigraphs Se aretransitive. Thus it remains to be proved that if e := (ir; js) and f := (js; lt),with r; s; t 2 f1; 2g, are ars of eB not in the same basi subdigraph, then g :=(ir; lt) 2 eB. Notie that when i = j or j = l then e and f are in a same basi



The Complexity of Computing Medians of Relations 333subdigraph. Furthermore, eB has no ars suh as e and f where i = l. Thereforewe may assume that i; j; l are pairwise distint.Sine e := (ir; js) 2 eB, thenif ( i < j then e 2 eB1 and (i; j) 2 B,i > j then e 2 eB2 and (i; j) 2 B.Similarly, f := (js; lt) 2 eB implies thatif ( j < l then f 2 eB1 and (j; l) 2 B,j > l then f 2 eB2 and (j; l) 2 B:Thus, (i; j) 2 B and (j; l) 2 B. Sine B 2 TRA�, (i; l) 2 B. If i < lthen g 2 eB1, otherwise g 2 eB2. Hene, g 2 eB. This ompletes the proof thateB 2 TRA�.Now let us prove that ew( eB) � ek. Notie that eB1; eB2 and eB3 are pairwisedisjoint, R \ eB3 = ; and jR \ eBj = ��R \ ( eB1 [ eB2)�� = jRj2 = �n2�.Thus, ew( eB) = ew( eB \ R) + ew�( eB1 [ eB2) nR) + ew( eB3)= w(B) + �j eBj � j eB3j � j eB \ Rj�M= w(B) +��2n2 �� n��n2��M � k + CM = ek:b) Let eH = ( eN; eB) be a subdigraph of eDp with eB 2M and ew( eB) � ~k. Then thefollowing holds:(b1) eB does not ontain an ar e with ewe = L.Suppose eB ontains suh an ar e. Thenew( eB) � L� Xe2An��we��+ 2�n2�M:Sine Pe2An jwej � 2n2, it follows that ew( eB) � 6n4�4n3�2n2. On the other hand,~k = k + CM < n2 + � 3n(n�1)2 �4n2 = 6n4 � 6n3 + n2 and therefore, ew( eB) > ~k, aontradition.(b2) eB ontains all ars e with ewe = 0.This follows immediately from (b1) and the fat that eB 2 TOT.(b3) For every pair (i; j), 1 � i < j � n, j eB \Rij j � 1.



334 Yoshiko WakabayashiSuppose there is a pair (i; j) suh that eB ontains both of (i1; j1) and (j1; i2).Sine eB 2 TRA�, this implies that (i1; i2) 2 eB; but as ew(i1; i2) = L, this ontra-dits (b1).(b4) eB ontains exatly C ars with weight M .Suppose eB has more than C ars with weight M . Thusew( eB) � (C + 1)M � Xe2An jwej > ~k;a ontradition. So, eB an have at most C ars with weight M . On the otherhand, sine j eBj � �2n2 � and eB ontains n ars with weight 0 (by (b2)), at most �n2�ars of R (by (b3)) and no ars with weight L (by (b1)), then eB must ontain atleast �2n2 � � n � �n2� =: C ars with weight M . Thus eB ontains exatly C arswith weight M .(b5) For every pair (i; j), 1 � i < j � n, j eB \Rij j = 1.Sine �2n2 � � j eBj = n+C+ j eB\Rj, it follows that j eB\Rj � �2n2 ��n�C = �n2�.If for some pair (i; j), 1 � i < j � n, j eB \ Rij j < 1 then by (b3) j eB \ Rj < �n2�, aontradition. Thus, the statement is proved.(b6) eB has no double ars.Immediate from (b1), (b4) and (b5).(b7) ew( eB \ R) � k.Clearly, ew( eB) = ew( eB \ R) + CM . Thus, ew( eB \ R) � ~k � CM = k.But (i1; j2) 2 eB \ R and (j2; j1) 2 eB imply (i1; j1) 2 eB. Thus, (i1; j1) 2 eB.Analogously, analysing the ases j < l and j > l we onlude that (j1; l1) 2 eB.Sine eB 2 TRA� , then (i1; j1) 2 eB and (j1; l1) 2 eB imply that (i1; l1) 2 eB.Thus, if i < l then (i1; l1) 2 eB \ R, and therefore (i; l) 2 B. Suppose i > l. By(b6) (i1; l1) 2 eB implies (l1; i1) 62 eB. By (b5), if l < i and (l1; i1) 62 eB \ R then(i1; l2) 2 eB \ R. But then, (i; l) 2 B and therefore B 2 TRA�.Sine the given transformation is polynomial, it follows that eQ isNP-omplete. �A onstrution similar to the one presented in the proof of Theorem 3.10 leadsto the following result.Theorem 3.11. Let M = TRA�:Then the problem DDP�(p;M;m), where m is bounded by a polynomial in p, isNP-omplete.Proof. Let Q := DDP�(n;M�; 2) with M� = ASY \ TRA� \ TOT be the NP-omplete problem onsidered in Theorem 3.8. Our aim is to prove that Q is



The Complexity of Computing Medians of Relations 335polynomially transformable to eQ := DDP�(p;M;m), where m � p6. For that, letus assume that Dn = (N;An), w and k, k < n2, are given as an instane of Q,and let us onstrut the orresponding instane of eQ.Let eDp = ( eN; ~A) be the omplete digraph of order p = 2n with node seteN := fi1; i2 : i 2 Ng.To de�ne the weights ewe, setR := [1�i<j�nRij ; where Rij := �(i1; j1); (j1; i2)	 ;R := [1�i<j�nRij ; where Rij := �(j1; i1); (i2; j1)	 :Let M be the smallest even integer suh thatM > k + 2n2 ;and set M� := ��n2�+ 1�M ;L :=M +�n2�(M� +M) :Now de�ne ewe for eah e 2 ~A, as follows :ewe = 8>>>>>>>><>>>>>>>>:
�M� if e = (i2; i1), i 2 NL if e = (i1; i2), i 2 Nwij �M� if e = (i1; j1), e 2 Rwji �M� if e = (j1; i2), e 2 RM if e 2 R0 otherwise .Observe that j ewej is even and j ewej � p6 for every e 2 ~A.
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336 Yoshiko Wakabayashi~k := k + �n2�M � ��n2�+ n�M� :We laim that Dn = (N;An) has a subdigraph H = (N;B) with B 2 M� andw(B) � k i� eDp = ( eN; ~A) has a subdigraph eH = ( eN; eB) with eB 2 TRA� andew( eB) � ~k.a) Given H = (N;B) in Dn with B 2M� and w(B) � k, let eH = ( eN; eB) be thesubdigraph of eDp de�ned by : eB := eB1 [ eB2 [ eB3 ;whereeB1 := �(i1; j1); (i1; j2); (i2; j1); (i2; j2) : 1 � i < j � n and (i; j) 2 B	 ;eB2 := �(j1; i1); (j1; i2); (j2; i1); (j2; i2) : 1 � i < j � n and (j; i) 2 B	 ;eB3 := �(i2; i1) : 1 � i � n	 :Then ew( eB) = ew( eB \ R) + ew( eB nR)= ew( eB \ R) + ew( eB1 [ eB2 nR) + ew( eB3)= w(B) ��n2�M� +�n2�M � nM�= w(B) ���n2�+ n�M� +�n2�M� k ���n2�+ n�M� +�n2�M � ~k :Using the fat that B 2 M� it is not diÆult to prove that eB 2 TRA�. Indeed,the proof is analogous to the one present for Theorem 3.10, and therefore it willbe omitted.b) Let eH = ( eN; eB) be a subdigraph of eDp with eB 2 TRA� and ew( eB) � ~k.Based on eH we want to onstrut a transitive tournament H = (N;B) in Dn withw(B) � k. For that, we �rst observe that eH has the following properties :(b1) eB does not ontain an ar e with ewe = L.Suppose eB ontains suh an ar e. Thenew( eB) � L� nM� �Xe2A jwej � n(n� 1)M��M +�n2�(M� +M)� nM� � 2n2 � n(n� 1)M�> k ��n2�M� � nM� +�n2�M = ~k ;



The Complexity of Computing Medians of Relations 337a ontradition.(b2) For every pair (i; j), 1 � i < j � n, �� eB \ Rij�� = 1.Suppose there is a pair (i; j) suh that �� eB \ Rij�� = 2. In this ase, sineeB 2 TRA�, it follows that (i1; i2) 2 eB, ontraditing (b1). Thus, �� eB \ Rij �� � 1for every pair (i; j), 1 � i < j � n. Now suppose there is a pair (i; j) suh that�� eB \ Rij �� = 0. Thenew( eB) � ���n2�� 1�M� � nM� � Xe2An jwej:Using the fat that Pe2An jwej � 2n2 and making some substitutions we getew( eB) > ~k . Sine this ontradits our assumption, we onlude that (b2) holds.(b3) For every i, 1 � i � n, (i2; i1) 2 eB:Suppose for some i, 1 � i � n, (i2; i1) 62 eB. Thenew( eB) � �(n� 1)M� � Xe2An jwej ��n2�M�� ��n2�+ 1�M � nM� � 2n2 ��n2�M�> �n2�M + k ���n2�+ n�M� = ~k ;a ontradition.(b4) For every pair (i; j), 1 � i; j � n, �� eB \ Rij �� = 1.By (b2), for every pair (i; j), 1 � i < j � n, exatly one of the ars (i1; j1)or (j1; i2) is in eB. If (i1; j1) 2 eB, sine (i2; i1) 2 eB, it follows that (i2; j1) 2 eB.Analogously, if (j1; i2) 2 eB then (j1; i1) 2 eB. Thus, j eB \ Rij j � 1. Now supposethere is a pair (i; j), 1 � i < j � n, suh that j eB \ Rij j > 1. This implies that eBhas more than �n2� ars with weight M and thereforeew( eB) � ��n2�+ 1�M � Xe2An jwej ��n2�M� � nM�> �n2�M + k ���n2�+ n�M� = ~k ;a ontradition. So, we have proved that (b4) holds.(b5) ew( eB \ R) � k � �n2�M�:This follows from the fat that ew( eB\R) = ew( eB)+nM���n2�M and ew( eB) � ~k .



338 Yoshiko WakabayashiNow let H = (N;B) be the subdigraph of Dn withB :=�(i; j) : (i1; j1) 2 eB \R; 1 � i < j � n	 [�(j; i) : (j1; i2) 2 eB \ R; 1 � i < j � n	 :We laim that B 2 M� and w(B) � k. Note that jBj = j eB \ Rj = �n2�. Further-more, w(B) = ew( eB \ R) + �n2�M�. Thus, by (b5) it follows that w(B) � k: Thede�nition of B and fat (b2) yield immediately that B 2 ASY\TOT. So it remainsto be shown that B 2 TRA�. Let (i; j) and (j; l) be ars of B, i 6= j 6= l 6= i.If i < j and (i; j) 2 B then (i1; j1) 2 eB \ R. If i > j and (i; j) 2 B then(i1; j2) 2 eB \ R. In the latter ase, sine (j2; j1) 2 eB and eB 2 TRA�, it fol-lows that (i1; j1) 2 eB. From an analogous analysis of ases j < l and j > l, weonlude that (j1; l1) 2 eB. Thus, (i1; j1) 2 eB and (j1; l1) 2 eB, and therefore(i1; l1) 2 eB. If i < l, then (i1; l1) 2 eB \ R, and hene (i; l) 2 B. Suppose l < i.Then (i1; l1) 2 eB \ R, and therefore by (b4) it follows that (l2; i1) 62 eB. In thisase, (l1; i1) 62 eB; otherwise (l2; l1) 2 eB and (l1; i1) 2 eB would imply (l2; i1) 2 eB,a ontradition. But if (l1; i1) 62 B, by (b2) we onlude that (i1; l2) 2 eB. Thus(i; l) 2 B, and this proves that B 2 TRA�.Clearly, the transformation of Q to eQ is polynomial and therefore eQ is NP-omplete. �The next result follows from theorems 3.8{3.11 together with Lemma 3.6 andTheorem 3.5.Theorem 3.12. LetM0 2 �TRA; ASY \ TRA; SYM \ TRA; TRA \ TOT; ASY \ TRA \ TOT	:Then MP(R;M) is NP-hard for M2 �M0;M0 \REF	: �We an summarize the omputational omplexity results we have proved asfollows.a) The median problem MP(R;M) is easy wheneverM results from any om-bination of the properties REF, SYM, ASY and TOT. [Proposition 3.4.℄b) Transitivity makes the median problem diÆult. More preisely, if one ofthe properties required forM is TRA then the median problem MP(R;M)is NP-hard exept for the trivial ombination TRA\SYM\TOT. The mostinteresting ases are inluded here: partial orders (TRA\ASY), linear orders(TRA \ ASY \TOT) , omplete preorders (TRA \ TOT) and equivalenesREF \TRA \ SYM. [Theorem 3.12.℄) The property REF may be inluded or not, without hanging the omplexitystatus of the median problem. [Theorem 3.12.℄d) In some ases the median problem MP(R;M) is NP-hard even when thepro�le � onsists of 1 or 2 relations. This is the ase when M is a linearorder and M is a partial order. [Theorem 3.8.℄



The Complexity of Computing Medians of Relations 339To lose this setion we present the NP-ompleteness proof of the RestritedClique Partitioning Problem, needed to prove Theorem 3.9. We shall base ourproof on the transformation from the Simple Max-Cut Problem (SMCP), knownto be NP-omplete (Garey, Johnson and Stokmeyer [1976℄). In this problem theinstane onsists of a graph G = [V;E℄, and a positive integer k. The objetive isto deide whether G has a ut of size at least k.Theorem 3.13. The Restrited Clique Partitioning Problem is NP-omplete.Proof. � Transformation from the Simple Max-Cut Problem (SMCP) �Let G =[V;E℄ and k be given as an instane of SMCP, and assume that jV j = n. LetG0 = [V 0; E0℄ be a omplete graph of order 3n obtained from G by adding to it2n more nodes and ompleting it with all the missing edges, whih are not loops.Assume that V 0 = V [X [ Y , where jX j = jY j = n. Assign weights we to eahedge e 2 E0 by settingwe := 8><>: 1 if e 2 E [ (X : Y ) ,�1 if e 2 (V : X [ Y ) ,0 otherwise ;and let k0 := jEj � k � n2 :We laim that G has a ut C with jCj � k i� G0 has a lique partitioning A withw(A) � k0.a) Assume that C = E(V1 : V nV1) is a ut in G with jCj � k, and let V2 := V nV1.Then the edge set A := E0(V1 [X)[E0(V2[Y ) is a lique partitioning of G0 withwA) = w�E0(V1 [X)�+ w�E0(V2 [ Y )�= �j(V1 : X)j � j(V2 : Y )j+ jE n Cj= �n2 + jEj � jCj � �n2 + jEj � k = k0 :b) Assume that G0 has a lique partitioning A with w(A) � k0. We want to provethat G has a ut C with jCj � k. Let us assume for the moment that the followingholds:Claim 1: G0 has a lique partitioning A0 with w(A0) � k0 and C(A0) = fQ1; Q2g,where Q1 and Q2 are suh that V Q1 = X [ V1 and V Q2 = Y [ V2 for somenonempty subsets V1 and V2 of V .Note that, in this ase, w(A0) = w(EQ1)+w(EQ2) = �n2+��E(V1)��+��E(V2)�� =�n2 + jEj � ��E(V1 : V2)��, and sine w(A0) � k0 = �n2 + jEj � k, it follows that��E(V1 : V2)�� � k, and therefore C := E(V1 : V2) de�nes the desired ut C in G.Thus, in order to omplete the proof it remains to be shown that Claim 1 holds.Before that, for notational onveniene, let us give names to the di�erent types of



340 Yoshiko Wakabayashiliques we shall onsider. Aording to its intersetion with the sets V , X , Y , alique H = [V H;EH ℄ may be of one of the following types (see Figure 4) :
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Figure 4Type 1 :(X;V )-interseting (if V H \X 6= ;, V H \ V 6= ; and V H \ Y = ;) or(Y; V )-interseting (if V H \ Y 6= ;, V H \ V 6= ; and V H \X = ;) .Type 2 :(X;Y; V )-interseting (if V H \X 6= ;, V H \ Y 6= ; and V H \ V 6= ;) .Type 3 :V -inluded (if ; 6= V H � V ) .Type 4 :X-inluded (if ; 6= V H � X) or Y -inluded (if ; 6= V H � Y ) .Type 5 :(X;Y )-interseting (if V H \X 6= ;, V H \ Y 6= ; and V H \ V = ;) .Note that aording to the given de�nitions the desired lique partitioning A0of Claim 1 must be suh that C(A0) = fQ1; Q2g, where Q1 and Q2 are both ofType 1.For simpliity, we say that a lique partitioning A1 is better than a lique par-titioning A2 if either w(A1) < w(A2), or w(A1) = w(A2) and jC(A1)j < jC(A2)j.Sine eah lique partitioning A is bijetively assoiated with the lique setC(A), when we refer to a lique partitioning B obtained from A by replaing someof the liques in C(A) with others, we are in fat de�ning how C(B) is onstrutedand therefore de�ning in this way the ar set B.Now onsider the following Claim 2 to be used in the proof of Claim 1.Claim 2: Let Q be a lique partitioning of G0 and assume that Q1; : : : ; Ql, l � 2,are liques in C(Q) all of whih are (W;V )-interseting, where W = X or W = Y .Let � := lPi=1 jV Qi \ W j and � := lPi=1 jV Qi \ V j. If � � �, then the liquepartitioning Q0 obtained from Q by replaing the liques Q1; : : : ; Ql with thelique G0[V Q1 [ : : : [ V Ql℄ is suh that w(Q0) < w(Q).



The Complexity of Computing Medians of Relations 341The proof of Claim 2 will be omitted as it an be obtained without any diÆultyby indution on l. (For l � 3 prove that there exist two liques Qi and Qj ,1 � i < j � l, suh that j(V Qi [ V Qj) \W j � j(V Qi [ V Qj) \ V j.)Proof of Claim 1Let A be the set of the lique partitionings ~A of G0 with w( ~A) � k0 and suhthat C( ~A) ontains the smallest number possible p of liques of Type 2. Clearly,A 6= ; and p � 0. Our aim is to prove �rst that p = 0, and then show the existeneof the desired lique partitioning A0.Let us start by assuming that p � 1. Now let Â be a best lique partitioning inA, and let H1; : : : ; Hp be the liques of Type 2 ontained in C(Â).For 1 � i � p let Xi := V Hi \X; xi := jXij ;Yi := V Hi \ Y; yi := jYij ;Vi := V Hi \ V; vi := jVij :Suppose C(Â) ontains a lique Hi, 1 � i � p, suh that vi � xi. Then wean split Hi into a lique of Type 1, G0[Xi [ Vi℄, and a lique of Type 4, G0[Yi℄,obtaining this way a lique partitioning ~A with w( ~A) � w(Â) and with C( ~A)ontaining p � 1 liques ot Type 2. Sine this ontradits the hoie of Â, weonlude that vi > xi for i = 1; : : : ; p. By symmetry, we also onlude thatvi > yi for i = 1; : : : ; p.It is immediate that C(Â) ontains no (X;Y )-interseting liques. Otherwise,a better lique partitioning ould be obtained from Â by replaing eah (X;Y )-interseting lique with 2 liques, one being X-inluded and the other Y -inluded.It is also easy to see that C(Â) ontains no X-inluded and no Y -inludedliques. For, if H were an X-inluded lique in C(Â) then by replaing the liqueH1 with the lique H1[H we ould obtain a better lique partitioning in A (sinev1 > y1). By symmetry, the same holds with respet to Y -inluded liques.Sine pPi=1xi < pPi=1 vi � n = jX j and pPi=1 yi < jY j, then C(Â) must ontain(X;V )-interseting liques, say eH1; : : : ; eHh, h � 1, and (Y; V )-interseting liques,say eQ1; : : : ; eQq, q � 1.Let � := hSi=1(V eHi \X) and � := hSi=1(V eHi \ V ).Sine � � �, if h � 2 then by Claim 2 the liques eH1; : : : ; eHh an be replaedwith the lique hSi=1 eHi yielding this way a better lique partitioning in A. Bysymmetry, if q � 2 then a better lique partitioning an also be obtained. Thus,we onlude that h = 1 and q = 1, and for simpliity we let H := eH1 and Q := eQ1.If C(Â) ontains V -inluded liques, say H 01; : : : ; H 0l , l � 1, then it is easy tosee that these liques an be ombined with the lique H giving this way a better



342 Yoshiko Wakabayashilique partitioning. It suÆes to note that jV H \X j > jV H \ V j+ j lSi=1V H 0i j.Thus, we onlude that C(Â) = fH1; : : : ; Hpg [ fH;Qg.Let HX := V H \X , hX := jHX j; HV := V H \V , hV := jHV j; QY := V Q\Y ,qY := jQY j; QV := V Q \ V , qV := jQV j. Note that hX > hV and qY > qV .Let us now fous our attention on the liques H , Q and H1.
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Figure 5Suppose v1 � hV + y1.In this ase, let ~A be the lique partitioning obtained from Â by splitting C1into the new liques G0[V H [X1℄ and G0[V Q[ Y1 [ V1℄, and preserving the (old)liques H2; : : : ; Hp (see Figure 5.a). Thus, C( ~A) ontains p � 1 liques of Type2 and w( ~A) = w(Â) � x1hV � x1y1 + x1v1 � y1qV � v1qY + jE(V1 : QV )j �w(Â)� x1(hV + y1 � v1)� y1qV � v1(qY � qV ).Sine hV + y1 � v1 � 0 and qY � qV > 0 we onlude that w( ~A) < w(Â) � k0,and therefore we have a ontradition to the hoie of Â.Assume now that v1 > hV + y1.In this ase, let ~A be the lique partitioning obtained from Â by performinga splitting of C1, symmetri to the previous one. That is, ~A onsists of the newliques G0[V H [X1[V1℄ and G0[V Q[Y1℄, and the liques H2; : : : ; Hp (see Figure5.b). Thus C( ~A) ontains p� 1 liques of Type 2 andw( ~A) � w(Â)� y1qV � x1y1 + y1v1 � x1hV � v1hX + v1hV= w(Â)� y1qV + y1(v1 � x1) + hV (v1 � x1)� v1hX= w(Â)� y1qV + (y1 + hV )(v1 � x1)� v1hX :Sine y1 + hV < v1 and v1 > x1, it follows thatw( ~A) < w(Â)� y1qV + v1(v1 � x1)� v1hX :



The Complexity of Computing Medians of Relations 343Now using the fat that hX = n� (x1 + : : : xp) = (hV + qV + v1 + : : : vp)� (x1 +: : : xp) > v1�x1, we obtain that w( ~A) < w(Â), again a ontradition to the hoieof Â.This ompletes the proof that p = 0.Now let us assume that A0 is a best lique partitioning in A and that C(A0)ontains no liques of Type 2. It is immediate that C(A0) must ontain at least alique of Type 1; otherwise we would have w(A0) � 0 and therefore w(A0) > k0,a ontradition. Let Q1 be a lique of Type 1 ontained in C(A0), and assumewithout loss of generality that Q1 is (X;V )-interseting.Clearly, C(A0) ontains no (X;Y )-interseting liques. It is also immediate thatC(A0) ontains no X-inluded liques, sine they ould all be ombined with Q1giving this way a better lique partitioning.If the lique set C(A0) ontains other (X;V )-interseting liques di�erent fromQ1, say H1; : : : ; Hh, then by Claim 2, if we set Q1 := Q1 [ H1 [ : : : [Hh, thenwe obtain a better lique partitioning. Thus, we onlude that C(A0) ontains aunique (X;V )-interseting.If C(A0) ontains a V -inluded lique, say H , then (sine n = jV Q1 \ X j >jV Q1\V j) we an set Q1 := Q1[H and obtain a better lique partitioning.If C(A0)ontains no (Y; V )-interseting liques, then it onsists of the liqueQ1 = G0[X[V ℄and some Y -inluded liques, and therefore w(A0) = �n2 + jEj > k0, a ontra-dition. Thus, let Q2 be a (Y; V )-interseting lique in C(A0). If C(A0) ontainsY -inluded liques and/or other (Y; V )-interseting liques, by performing analo-gous transformations to the ones we de�ned with respet to Q1, we an onstruta better lique partitioning. Hene, we onlude that Q2 is the unique (Y; V )-interseting lique in C(A0) and therefore, C(A0) = fQ1; Q2g with Q1 and Q2 bothof Type 1.Thus, we have proved that Claim 1 holds, and therefore we have ompleted theproof of the theorem. �4. The ase of restrited domainsIn the preeding setion we have proved the NP-hardness of MP(R;M) forertain subsets M � R. One may now ask whether the following speial asesof these problems have also the same omplexity: instead of R (an unrestriteddomain of the relations in the pro�le �), we may have the information that thegiven relations are endowed with some properties from P. In this ase, instead ofR, we have a subsetM0 � R and we are lead to the problem MP(M0;M) de�nedanalogously. In other words, when we onsider that the domain is R, this meansthat we have no information about the properties of the input relations, and whenwe speify a subset M0 � R this means that the input relations are known to bein M0 (they belong to a restrited domain).We have shown that in some ases the problem MP(M0;M) is NP-hard evenwhen the pro�le � onsists of a �xed number m of relations. Let us denote byMP(M0;M;m) this latter problem.When M0 = M = L (the given relations are linear orders and the objetive



344 Yoshiko Wakabayashirelation is also a linear order), Orlin [1981℄ (in an unpublished manusript) andBartholdi, Tovey and Trik [1988℄ proved that MP(L;L) is NP-hard. Note thatthis implies that the more general problem MP(R;L) is NP-hard, but not thatMP(R;L; 1) is NP-hard | the result we have shown.Let us turn now to the ase of equivalene relations. K�riv�anek and Mor�avek[1986℄ proved that MP(SYM,E ,1) is NP-hard. This result yields as a orollarythe fat that MP(R; E ; 1) is NP-hard (Theorem 3.9). Furthermore, from it onean also derive that MP(E ; E) is NP-hard. The redution given by K�riv�anek andMor�avek is from a problem on hierarhial-tree lustering, whoseNP-ompletenessproof is very laborious. For the sake of ompleteness of the lass of results overedin this paper we have inluded our weaker result. We should observe however,that in this ase rather than the NP-hardness of MP(R; E ; 1), the interest liesmore on the Theorem 3.13 from whih the result ould be derived.There remains a number of open problems onerning the omputational om-plexity status of MP(M0;M;m) for some ombinations of M and M0. We reallthat the problems we know to be NP-hard are MP(R;L; 1), MP(R;O; 2) andMP(SYM,E ; 1). It would be interesting to establish the omplexity of the prob-lems MP(T ;L;m) and MP(L;L;m) for small m.5. Appliations and strategies to solve some median problemsIn qualitative data analysis, soial hoie theory, and paired omparison meth-ods there are many problems that an be modelled as median problems. In theseontexts, the data arise from the measurement of a number of harateristis (orattributes) assoiated with eah objet of a given set and the objetive is that of�nding a linear order, or a partial order or a lustering of the objets that `bestrepresents' the given data.For example, the data may arise by olleting the preferenes of m voters withrespet to a set of objets (andidates, teams) and the objetive is to �nd aranking of the objets that best represents the given preferenes. Note that thepreferenes of the m voters may be seen as m relations (eventually linear orders)on the objet set, and the ranking of the objets may be seen as a linear orderthat best represents the given relations. So here we have the median problemMP(R;M), where M is a linear order. This is the problem of aggregation ofpreferenes we have mentioned in the introdutory setion.Instead of preferenes the relations may indiate dominanes (or hierarhies) onthe objet set. These appliations our in behavioral sienes in the study of thedominane relationship in a group of animals (see Marotorhino and Mihaud[1979℄). Appliations in marketing are mentioned by Slater [1961℄ and Reinelt[1985℄, on the design of publiity ampaign for produts based on voting upondi�erent types of advertisements.When the relations represent similarities (that an be dedued by onsideringthe attributes of the objets), and the aim is that of �nding a best partition of theobjet set into `homogeneous' disjoint lasses (or lusters), we have the so-alledlustering problem. In this ase, we are given a set of m relations (eah relationindiating the similarities of the objets with respet to one attribute) and we



The Complexity of Computing Medians of Relations 345are looking for an equivalene relation. Thus here we have the median problemMP(R;M), where M is an equivalene relation.Clustering problems our in many areas: zoology, botanis, soiology, politisand eonomis. A number of real problems that were modelled as lustering prob-lems oming from these di�erent areas an be found in Gr�otshel and Wakabayashi[1989℄.As we have mentioned, the median problems that we have onsidered an beredued to optimization problems on weighted digraphs. Some of these digraphproblems have been largely investigated, in speial, the linear ordering problemand the lique partitioning problem. The latter solves the problem of �nding amedian that is an equivalene relation.Thus, the strategies that have been developed to solve these problems an beused to solve the orresponding median problem. These strategies go from simpleheuristis to sophistiated branh-and-ut algorithms.For the linear ordering problem, Reinelt [1985℄ developed a branh-and-ut al-gorithm and reported very good omputational results obtained by solving a num-ber of problems in eonomis, in speial triangulation problems for input-outputtables (see also Gr�otshel, J�unger and Reinelt [1984a, 1984b℄). This algorithmombines the utting plane approah and branh-and-bound tehniques. Maro-torhino and Mihaud [1979℄ developed heuristis and reported omputations onsome ranking problems. Other problems that are equivalent to the linear orderingproblem are the ayli subdigraph problem (J�unger [1985℄) and the permutationproblem (Young [1978℄). Exat methods were developed by de Cani [1972℄, Kaas[1981℄, T�ushaus [1983℄, and others.For the lique partitioning problem, Wakabayashi [1986℄ developed a branh-and-ut algorithm (see also Gr�otshel and Wakabayashi [1988℄ for the ompu-tational results on the performane of the proposed algorithm). Results on thepolyhedral investigations of the lique partitioning polytope that were used to de-velop this algorithm an be found in Gr�otshel and Wakabayashi [1990a, 1990b℄.Among the heuristi methods that were proposed for the lustering problem wemention Marotorhino and Mihaud [1981℄, and Shader [1981℄. Exat methodswere developed by T�ushaus [1983℄; Shader and T�ushaus [1985℄ also proposed anapproah that ombines heuristis with a subgradient method.Polyhedral results for the partial order polytope were obtained by M�uller [1996℄;Gurgel [1992℄ investigated the faial struture of the omplete preorder polytope(see also Gurgel and Wakabayashi [1993℄). These results an be used in the designof a utting plane based algorithm to solve the partial ordering problem and theomplete preorder problem. Exat methods for these problems were investigatedby T�ushaus [1981, 1983℄. 6. ReferenesBarbut, M. [1961℄ M�ediane, distributivit�e, �eloignement. Math�ematiques etSienes Humaines 70, 5-31 (reprodued in 1980).Barbut, M. [1967℄ M�edianes, Condoret et Kendall. Math�ematiques et Sienes
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