
Mathematical Programming 47 (1990) 367-387 367 
North-Holland 

F A C E T S  O F  T H E  C L I Q U E  P A R T I T I O N I N G  P O L Y T O P E  

M. G R t ~ T S C H E L  

lnstitut fiir Mathematik, Unieersitiit Augsburg, 8900 Augsburg, FR Germany 

Y. W A K A B A Y A S H I  

Universidade de Sgto Paulo, Instituto de Matemdtica e Estat{stica, 01498 S~o Paulo SP, Brazil 

Received 16 November 1987 
Revised manuscript received 14 November 1988 

A subset A of the edge set of a graph G =(V, E) is called a clique partitioning of G is there is 
a partition of the node set V into disjoint sets W I , . . .  ,W k such that each W, induces a clique, 
i.e., a complete (but not necessarily maximal) subgraph of G, and such that A=  
(_jk {uv I u, v ~ Wi, u ~ v}. Given weights w e ~ N for all e c E, the clique partitioning problem is i = 1  

to find a clique partitioning A of G such that } ~ a  w~ is as small as possible. This problem--known 
to be Jg~-hard, see Wakabayashi (1986)--comes up, for instance, in data analysis, and here, the 
underlying graph G is typically a complete graph. In this paper we study the clique partitioning 
polytope ~n of the complete graph K,,, i.e., ~,, is the convex hull of the incidence vectors of the 
clique partitionings of K~. We show that triangles, 2-chorded odd cycles, 2-chorded even wheels 
and other subgraphs of K,, induce facets of ~,,. The theoretical results described here have been 
used to design an (empirically) efficient cutting plane algorithm with which large (real-world) 
instances of the clique partitioning problem could be solved. These computational results can be 
found in GriStschel and Wakabayashi (1989). 
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I.  Introduction and notation 

In  this  p a p e r  we  s tudy  t h e  fac ia l  s t ruc tu re  o f  t he  c l i que  p a r t i t i o n i n g  p o l y t o p e  ~n o f  

t he  c o m p l e t e  g r a p h  Kn. Th i s  sec t ion  c o n t a i n s  s o m e  i n t r o d u c t o r y  ma te r i a l .  I n  S e c t i o n  

2 the  c l i q u e  p a r t i t i o n i n g  p r o b l e m  is d e s c r i b e d  a l o n g  wi th  s o m e  o f  its a p p l i c a t i o n s .  

T h e  p o l y t o p e  ~ ,  a s s o c i a t e d  wi th  this  p r o b l e m  is i n t r o d u c e d  in S e c t i o n  3. F a c e t -  

de f in ing  i n e q u a l i t i e s  fo r  ~n are  s t u d i e d  in S e c t i o n s  4 a n d  5. S e c t i o n  6 d e s c r i b e s  

f u r t h e r  i ssues  r e l a t ed  to t he  p o l y t o p e  ~n .  

W e  e x p e c t  t he  r e a d e r  to  be  f a m i l i a r  w i th  t he  b a s i c  c o n c e p t s  o f  g r a p h  theory .  Al l  

de f in i t i ons  n o t  g iven  h e r e  can  be  f o u n d  in [2].  All  g r a p h s  we  c o n s i d e r  a re  s imp le .  

W e  d e n o t e  a g r a p h  G w i t h  n o d e  set  V a n d  e d g e  set  E by  G = ( V ,  E ) .  

W e  u s u a l l y  d e n o t e  an  e d g e  e w i th  e n d n o d e s  u a n d  v by  uv. I f  this  m a y  c a u s e  

c o n f u s i o n  we  wil l  wr i te  e = {u, v}. I f  an  e d g e  is u s e d  as a subsc r ip t ,  t he  b r a c e s  a re  
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always omitted and the comma is used only if needed for clarity. Thus if edges 

{u, v} or {i, j + 1} are subscripts, say of a vector b, then the notation will be bur, or bia+l • 

If  v is a node of G = (V, E) then the set of  edges in G incident to v is denoted 

by 6(v). For F c E, V(F) denotes the set of nodes in G consisting of the endnodes 

of the edges in F, and if S _  V then we denote the set of edges in G with both 

endnodes in S by E(S), that is, 

E ( S ) = { u v c  E]u, yeS} .  

Moreover, if $ 1 , . . . ,  Sk are subsets of V then 

k 

E(S, , . . . ,  Sk):= U E(S,). 
i--I 

If  S, T ~ V a n d S c ~ T = 0 t h e n  

[S:  T]:={uv]ucS, vc  T} 

denotes the set of edges with one endnode in S and the other in T. 

If  the graphs H = ( W ,  F) and G = ( V ,  E) are such that W_c V and F c  E then 

H is called a subgraph of G. In this case we write H _c G. If  W c V then the subgraph 

H = (W, E ( W ) )  is said to be induced by W and is also denoted by G[W].  For 

F c_ E, H = ( V( F), F) is the subgraph of  G induced by F. 
A matching M in a graph G = (V, E) is a set of edges such that no two edges of 

M have a common endnode. If  ]M[ = p  then we say that M is a p-matching. This 
is not a standard terminology but it will be convenient for our purposes. If  a node 

v is the endnode of an edge in a matching M, then we say that v is covered by M 
or M covers v. A matching M in a graph G = ( V, E) is called perfect if every node 

in V is covered by M. 

A graph is called complete if every pair of its nodes is linked by an edge. A clique 
is a subgraph of a graph that is complete (a clique is not necessarily a maximal 

complete subgraph). We will frequently have to work with complete subgraphs of 
complete graphs. In such cases we will use subscripts to distinguish between these 
graphs. In particular, we will often denote the complete graph of order n by 

K, = ( V,, En). When we write Kk _c K,,, for k < n, then we view the complete graph 

on k nodes as a subgraph of  Kn and we assume that the k nodes of Kk are formed 

by an arbitrarily chosen subset of  V, of cardinality k. 
We say t h a t / I  = { W~, . . . ,  Wk} is a partition of V if W~ c~ W/= 0 for 1 <~ i < j  ~< k, 

V = W 1 u . . . u W k ,  and W ~ 0 f o r a l l  i. 
A set A of  edges in a graph G = (V, E) is called a clique partitioning of G if there 

is a partition F = { W ~ , . . . ,  Wk} of V such that A = E ( W ~ , . . . ,  Wk) and such that 

the subgraph G[ W~] induced by W~ is a clique for i =  1 . . . .  , k. Note that every 

clique partitioning A induces a unique partition W~, . . . ,  Wk of V such that A = 

E(  W~, . . . ,  Wk). In case G is complete, every partition of the node set of G induces 

a clique partitioning. If  the edges of G have weights then the weight of a clique 

partitioning A is the sum of the weights of  the edges in A. 
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A path of length k - 1  is an edge set of  the form {v~v2, v2v3, . . . ,  Vk-~Vk} where 
v~ # vj for 1 <~ i ~ j  ~< k. I f  P = {v~v2, . . . ,  vk-~ Vk} is a path then P u {V~Vk} is a cycle 
of length k. A triangle is a cycle of length three. 

We also assume familiarity with the basic concepts of polyhedral theory. We only 
define a few terms here. The book [9] by Schrijver contains all the background 
material needed. 

The vector space we work with is R E, where E is the edge set of  a graph G; so 
the components  of a vector are indexed by the edges of  (7. I f  F_c E then XFc  R E 
denotes the incidence vector of  F, that is, F Xe = 1 if e c  F, X ~ = 0  otherwise. We 
denote the convex hull of  a set S c_ R e by cony(S). 

A polytope P is the convex hull of finitely many points, or equivalently, a bounded 
set that is the intersection of  finitely many halfspaces. An inequality a Y x  ~ Ol is valid 
with respect to P if P ~  {x[aTx<~ a}. I f  aTx<~ a is valid with respect to P then 

F~ := {x c P[ aTx = c~} is the face induced by aTx <~ a. A facet of P is a nonempty 
face of P that is contained in no other face of  P different from P. Equivalently, a 
facet F of  P is a nonempty face with d i m ( F ) - = - d i m ( P ) -  1, where dim(S) denotes 
the dimension of a set S, i.e., the maximum number  of affinely independent points 
in S minus 1. Note that, if the affine space spanned by S does not contain the zero 
vector (for example, if S c {x I aTx = a} where a ~ 0), then a set of  points in S is 

affinely independent if and only if it is hnearlv independent.  
I f  P ~ ~E has dimension ]E I then every facet of  P is induced by a valid inequality 

aVx <~ a that is unique up to multiplication by a positive constant. I f  aTx <~ a is 
valid for P and F~:=Pc~{x[aVx=a}  is a facet of P we say that aTx<~c~ is 

facet-defining. 
For two sets M a n d  N, M ~  N : =  ( M u  N ) \ ( M  c~ N)  denotes their symmetric 

difference~ 

2. The clique partitioning problem 

An instance of the clique partitioning problem (CPP, for short) can be described as 
follows: 

(I1) Given a complete graph Kn = (Vn, E~) with weights We ~ ~ for all e c E, ,  find 
a clique partitioning A ~ En of minimum weight. 

Let us remark that the clique partitioning problem is also meaningful for general 
(not necessarily complete) graphs. We will in this paper,  however, restrict our 
attention to the problem defined in (I1). The reason is that all applications we came 
across give rise to clique partitionings of  complete graphs. So we developed the 
theory to be described here for this special case. 

Our motivation to study the CPP came from certain clustering problems in 

economics posed to us by O. Opitz (Augsburg). The standard way to handle such 
problems is to view them as instances of  a problem of aggregating binary relations 
into an equivalence relation. This problem is a well-known model in data analysis 
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[1, 10] and has a wide range of applications. An instance of it can be formulated 
as follows: 

(I2) Given a family of  m binary relations R1, R 2  . . . .  , R,, defined on a set N, 
find an equivalence relation R* on N such that ~ ( R * ) ' -  ~ "  [R*•Rkl is as small " - -  k = l  

as possible. 
It is not difficult to prove that (I2) can be reduced to CPP (see [3] or [11]). 

Assuming that N = { 1 ,  2 , . . . ,  n} and R1, R 2 , . . . ,  Rm are given as an instance of 
(12), the corresponding instance of CPP is the following: a complete graph with 
node set N and weights w~i assigned to each edge /j defined as wij := wij + wji, where 
w0 := m-21{k c { 1 , . . . ,  m}: i is related to j in relation Rk}[. 

In many applications of  problem (I2) in marketing, zoology, politics, etc., N is 
a set of objects (e.g. computers, animals, states, etc.) and each of the m binary 
relations Rk (1 <~ k<~ m), defined on N, describes whether the object pairs in N are 
similar or not with respect to a certain characteristic k. In this case, the desired 
equivalence relation R* can be interpreted as being the one that determines the 
best partition of N into classes (or clusters) of  similar objects. 

This approach of clustering objects by considering m similarity relations which 
are to be aggregated into an equivalence relation R* that best approximates them 
has been widely investigated and dates back to (at least) 1965 (see [7]). For the 
reader interested in applications and algorithms for problem (I2) we refer to [1, 3, 
5, 6, 8, 10, 11]. 

We want to remark here that the clique partitioning problem (on complete graphs) 
can be equivalently viewed as a certain "multicut problem" as follows: Given a 
complete graph Kn =(Vn, En) with edge weights we, find a partition F =  
{ W 1 , . . . ,  Wk} of V such that the sum of the weights of the edges not contained in 
[._)k En(W/) (these edges form a multicut) is as large as possible. Clearly, i f A  is i = l  

a minimum weight clique partitioning of K, ,  then En\A is a maximum weight 
multicut, and vice versa. The case where only partitions with a fixed number k of 
node sets are allowed is also of combinatorial and practical interest. In particular, 
if k is fixed and equal to 2 we obtain the well-known max-cut problem. In our case, 
however, the number k is not fixed. All possible partitions of  V are feasible. 

3. The clique partitioning polytope 

We will now describe the polyhedral approach to the clique partitioning problem, 
give an integer linear programming formulation of the CPP, and present some 
elementary facts about the associated polyhedron. 

Let K,  --- ( V,,, E,)  be the complete graph of  order n. We will assume throughout 
the paper that n/> 3. Let ~n denote the convex hull of the incidence vectors of the 
clique partitionings of Kn, i.e., 

~:~n = c o n v { x  AEI~E" [A is a clique partitioning of K,}. (3.1) 
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~ ,  is called the clique part i t ioning polytope (of order n). Its number  of  vertices is 

equal to the number  of  different partitionings of a set with n objects into subsets. 
This number  is known to be 

n 

p° := Z S(n ,  k) ,  
k - 0  

where 

i k 

S ( n , k ) = ~ . ~ . j ~ o  

is the Stirling number  of  the second kind. The numbers p~ grow quite rapidly. For 
instance, for n = 158 (this is the size of  the largest real world instance of CPP we 
know) we have p158 ~ 5.82 x 102°5. (Of course, the number  of  vertices does not say 
much about the "complexi ty"  of  a polyhedron.) 

The clique partitioning problem can be viewed as a linear program of the form 

minimize wV x 

subject to x c ~ , ,  

since every basic solution of this LP is the incidence vector of  a clique partitioning 
and vice versa. However,  in order to be able to apply linear programming techniques 
to solve this problem, we need a description of ~ ,  by means of a system of linear 
inequalities. As the CPP is an N ~ - h a r d  problem (see [11]), it is very unlikely that 
we can find a good (or " N ~ " - )  description of  ~ ,  (cf. [4]). The aim of this paper  
is to present a partial characterization of ~n by exhibiting several classes of facet- 
defining inequalities for ~n. 

Let us begin with formulating CPP as an integer linear programming problem. 
Since ~n is contained in the unit hypercube, the trivial inequalities 

O<~Xe~l fo r  all  e c E .  (3.2) 

are clearly valid. Moreover,  if A is a clique partitioning and if a = uv and b = vw 

are two edges in A with a common endnode v then the edge c = uw must also be 
in A. Thus for every triangle {a, b, c} of K , ,  the triangle inequali ty  

Xa+Xb--Xc<~l  (3.3) 

is satisfied by every incidence vector of  a clique partitioning, and hence it is valid 
for ~,,. Note that every triangle {a, b, c} induces in fact three triangle inequalities, 
namely 

xa + Xb -- Xc <~ 1, X~ -- Xb + Xc <~ I, -- X~ + Xb + Xc <~ 1. 

For ease of  notation, we will further on just speak of the triangle inequality 

Xa+Xb--Xc<~ 1 induced by a triangle {a, b, c} and assume that it stands for all the 
three possible triangle inequalities associated with {a, b, c}. 
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Consider now the polytope 

3-n := { x ~  ~']0~<xe~ < 1 foral l  e c  E, ,  

xa +xb - x ,  <~ 1 for all triangles {a, b, c} of Kn}. (3.4) 

It follows from the remarks above that ~n -~ 3-~; and it is easy to see that the integral 
points in 3-n are exactly the incidence vectors of the clique partitionings of K,.  So 
~,, = conv{x ~ 3--n Ix integral} and this implies that 

minimize w T x 

subject to 0 ~ x e ~ l  for all e c E n ,  
(3.5) 

xa +xb - x ,  ~< 1 for all triangles {a, b, c} of K, ,  

x integral, 

is an integer programming formulation of CPP. As our computational experience 
(see [3]) shows, the linear program obtained from (3.5) by dropping the integrality 
constraints is a quite reasonable LP-relaxation of CPP. The use of this LP-relaxation 
is also theoretically justified since all inequalities but the upper bounds define facets 
of ~n. To prove this, observe first that ~ ,  contains the zero vector and all unit 
vectors, so ~n is full-dimensional, i.e., 

dim ~ = ]Enl =½n(n - 1). (3.6) 

This implies that for each facet of ~ there exists a unique (up to scaling by a 
positive constant) inequality defining it. 

Theorem 3.1. For every clique partitioning polytope ~ ,  n >I 3, the following holds. 

(a) Every nonnega~ivity constraint xe >10 defines a facet  o f  ~ .  

(b) Every triangle inequality xa + xb - x,. <~ 1 defines a facet  o f  ~,,. 

(c) N o  upper bound inequality x~ <~ 1 defines a facet  o f  ~n. 

Proof. (a) Let e ~ E,,. Then x~ = 0 is satisfied by the zero vector and all unit vectors 
X ~sr, f 6  E, ,  f ~  e. These ]E, I vectors are incidence vectors of clique partitionings 
and are affinely independent. 

(b) Let {a, b, c} be a triangle in K,,  say a = uv, b = vw, c=  uw. Then the [E,[ 
incidence vectors of the following clique partitionings 

{a}, {b}, {a, b, c}, 

{a ,e}  f o r a l l e c E , , e ~ 6 ( u ) u 6 ( v ) ,  

{b ,e}  f o r a l l e ~ E , , , e c 6 ( u ) \ { a , c } ,  

E ( { u , v , w , z } )  f o r a l l z ~ V \ { u , v , w } ,  

satisfy x~ + xh - xc ~< 1 with equality and are obviously linearly independent. 
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(c) Let e c  E,  and let e, f, g be a triangle. Then  2Xe~<2 is the sum o f  the two 
facet-defining triangle inequalities x~ + x f - X g  <~ 1 and x ~ - x j + x g  <<-1, and hence 

xe ~< 1 does not  define a facet o f  ~ , .  []  

The fol lowing observat ion summarizes a few "s t ructural"  propert ies o f  facet- 

defining inequalities o f  ~ , .  

Corol lary 3.2. Let aVx <~ c~ be a nontrivial facet-defining inequality for ~ and let 
Ea := { e ~ En ] ae ~ 0}. Then the following holds. 

(a) ~ > 0 .  

(b) a has positive and negative entries. 

(c) the subgraph H =  (V,(E~),  E~) of  K ,  is 2-connected. 

Proof.  (a) Clearly a ~>0, since the empty set is a clique part i t ioning satisfying 
aTX ~ = 0. Assume that a = 0. I f  a had a positive coefficient, say ae > 0, then aTX ~e~ = 

a e > 0  would  contradict  the validity o f  a'rx<~ a. Thus all coefficients of  a are 

nonposit ive.  But then a can be represented as a nonnegat ive linear combina t ion  o f  

the nonnegat ivi ty  constraints - xe  ~< 0, a contradict ion.  

(b) Assume that the vector  a has no negative entries. Since E,, is a clique 

part i t ioning it follows that  Y~,~>o ae <~ a. But then aTx <~ c~ can be obta ined  by a 

nonnegat ive  linear combina t ion  of  the constraints Xe <~ 1, a contradict ion.  I f  a has 
no positive entries then clearly aTx <~ a can be obta ined by a nonnegat ive  linear 

combina t ion  o f  the constraints --Xe <~ 0, a contradict ion.  

(c) We prove that H = (V,(E~),  E,)  is connected.  The p roo f  of  the 2-connected-  

ness o f  H follows analogously  (assuming that  there is cut-vertex). Suppose  H is 

disconnected.  Let W1 be the set o f  nodes  o f  one of  the nontrivial  connec ted  

componen t s  of  H, and let W2: = V~\W~. For  i = 1 , 2  let F~:= E,(W~) be the set of  

edges in K,  with both endnodes  in W~, and let a ~ be a vector defined by (a~)e := a~ 
if e c F~ and (a~)~ := 0, otherwise. N o w  let D be a clique part i t ioning o f  K,  such 

that  aVA~ c' = a, and let D~ := D c~ F~ and D2 := D ~ F2. Clearly, D~ and D2 are clique 
part i t ionings o f  K~. Let a~ := a-rx D, and o/2 :~- aTx Oa. Thus c~ + a2 = a, and further- 

more  a~Vx<~ a~ and a2Tx<~ a2 are valid inequalities for  ~ .  Since aVx<~ o~ is the 

sum of  these two inequalities, we have a contradict ion.  []  

Finally we would  like to prove a useful lifting theorem that shows that  every 
inequali ty that  defines a facet  of  ~k (and satisfies a certain condi t ion)  also defines 
a facet o f  ~n, n > k. 

Theorem 3.3 (Lifting Theorem).  Suppose Y.~ek a~x~ <~ a defines a nontrivial facet  o f  

~k. Then this inequality also defines a facet  o f f ,  for  all n > k, provided the following 
condition is satisfied: 

(L) There exist a clique partioning A =  E k ( W 1 , . . .  , W,) Of Kk and a node v c  Vk 
A such that }~e~Ek aexe = a and {v}= Wifor  some i c {1 . . . . .  s}. 
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Proof. We will show that the given inequality defines a facet of  ~k+t. The statement 
of  the theorem then follows by induction, since condition (L) remains satisfied in 

Kk+t • 

Set V k : = { 1 , . . . , k } ,  Vk+t: = V~<3{k+l}. Let a:=(ae)e~Ek, a:=(~ie)e~E . . . .  where 
de:=ae for e e E k  and ae :=0  for e e E k + t \ E k .  The validity of  aVx~<a for ~k+t is 

obvious. 
Since aVx <~ ce defines a nontrivial facet of  ~k we have ~ > 0 and thus there are 

IEk] clique partitionings At . . . .  , AjEkl whose incidence vectors are linearly indepen- 
dent and satisfy aVx <~ ~ with equality. Each set A~ is also a clique partitioning of  
Kk+t and satisfies ~TxA' = 0~. Let M be the nonsingular [Ekl x [Ek[ matrix whose 

rows are the vectors X A`. We may assume that the rows and columns of M are 

arranged in such a way that the last k -  1 columns of M correspond to the edges 
iv ( i e  Vk\{v}), where v is the special node existing by condition (L), and such that 
the (k - 1) x (k - 1) submatrix N of M in the lower right hand corner is nonsingular. 

From the k - 1  clique partitionings ArEkl_k+2,... , ArEkj , whose incidence vectors 
are the last k -  1 rows of  M, we construct k -  1 new clique partitionings of  Kk+l as 

follows. For i • {[Ek] - k + 2 . . . .  , levi}, let ( Y~, Ek (Y~)) be the clique of A i with v 6 Y~; 
since N is nonsingular, I Y~I ~> 2 holds. Set 

B i : = A ~ u { { j ,  k + l } l j e  Y/}. 

Then aTxB' = ce holds by construction. Finally, let A be the clique partitioning 
existing by condition (L); set 

n ~ : = A u { { v ,  k +  1}}. 

Clearly, dTx B~ = c~. 

Let M be the IEk+l] x IEk+tl-matrix whose rows are the incidence vectors (in ~ E~+,) 

of  the clique partitionings A , , . . . ,  AiEkr, BIE~I_k+2,..., RE~I, B~. Then M can be 
put into the form shown in Figure 3.1 where M and N are nonsingular. Obviously, 

is nonsingular, and thus there are ]Ek+tl clique partitionings in Kk+t whose 
incidence vectors satisfy cITx ~< ~ with equality and are linearly independent. This 
implies that ~ T x ~  a defines a facet of ~k+,.  [] 

M 0 

N 

• N N 

0--.0 0...0 

Fig. 3.1. Matrix 1~. 
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Condi t ion  (L) in Theorem 3.3 is a sufficient condi t ion for "trivial lifting". We 

believe it is not  necessary, but  could not prove it. However ,  all classes o f  facet- 

defining inequalities we have found satisfy it. Maybe  all nontrivial facet-defining 

inequalities satisfy (L). 

4. 2-Partition inequalities 

In this section we int roduce a class of  facet-defining inequalities that  generalizes 

the class o f  triangle inequalities. This class o f  inequalities turns out  to be o f  part icular  

impor tance  f rom a computa t iona l  point  o f  view. 

Let Kn = (V,,  E , )  be a complete graph. For  every two disjoint nonempty  subsets 

S and T o f  V~, the inequali ty 

E E x , , -  Y X , -  E Xs,<~min{lSl, ITl} (4.1) 
s e S  t ~ T  s, t c S  s, t c T  

x ~ t  s e t  

is called a 2-partition inequality. I f  we want  to stress that the inequali ty is the one 

cor responding  to S and T we say that  x ( [ S : T ] ) - x ( E n ( S ) ) - x ( E n ( T ) ) < ~  
min{ISl, ITI} is the 2-partition inequality induced by S and T (or short: [S, T]-  

inequality). The graph of  the support  o f  a 2-part i t ion inequali ty with S = {u, v} and 

T = {t, y, z} is shown in Figure 4.1. Note  that, if ISI = 1 and IT I = 2 then the corre- 
sponding  [S, T]- inequal i ty  is nothing but a triangle inequality. 

T ' t r-~--~--~-i-  - - - - - ~ " z  ~ 

Fig. 4.1. Graph of the support of a 2-partition inequality with S = {u, v} and T = {t, y, z}. The correspond- 
ing 2-partition inequality is x({ut, uy, uz, vt, vy, vz}) x,,~ - x({ty, tz, yz}) <~ 2. 

Theorem 4.1. For every n >~ 3 and every two nonempty disjoint subsets S, T o f  Vn, the 
corresponding 2-partition inequality 

x([  S : T]) - x(  En ( S) ) - x(  E ,  ( T) ) <~ min{ISI, ITI} 

is valid for  ~ , .  It defines a facet  if  and only if  ISI ~ IT[. 
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Proof.  Assume w.l.o.g, that  ISI <~ I TI. We prove the validity o f  (4.1) by induct ion on 

IS[ + I T  I. Let IS] = 1 and IT I ~> 1. For  I TI <~ 2 the result is immediate.  So assume that 
IT[ = t ~> 3. By induct ion hypothesis ,  for every v c T the IS, T\{v}]- inequal i ty  

x([S  : T\{v}])  - x(E,  (T\{v}))  ~< 1 

is valid for ~ , .  Adding  these inequalities up for  all v c T we obtain 

(t - 1) (x([S : T]))  - ( t -  2 ) (x (E ,  (T)) )  ~< t. 

Since -x (E, (T) )<~ 0 is also valid for ~ , ,  adding this inequali ty to the above one, 

we get 

(t - 1) (x([S : T])  - x(E.  (T)))  <~ t, 

and hence 

t 
x ( [ S :  T]) - x(E.  ( T)) <~ t - 1' 

which implies that 

is valid for ~n. 

Now let ]S]=s~>2,  Irl=t >2, ISl+lrl=k, and suppose that  (4.1) is valid for 

ISI+IT[<~k-1. 
For every v c S consider  the [S \{v} :  T]- inequal i ty ,  

x([S \{v}  : T])  - x(E,  (S\{v}))  - x(E,  (T) )  ~< s - 1, (4.2) 

and for every v e T consider  the [S :  T\{v}]- inequal i ty  

x([S : T\{v}])  - x(En (S)) - x(E,  (T \{v}) )  ~< min{s, t - 1}. (4.3) 

By induct ion hypothesis,  all these inequalities are valid for ~ , .  Adding  up the 
inequalites (4.2) for every v c S and (4.3) for every v e T we obtain 

(s + t - 2 ) (x ( [S  : T])  - x(E,  (S)) - x (E,  (T)))  

<~ s(s - 1)+  t(min{s, t -  1}). (4.4) 

I f  [S] <[T] ,  then (4.4) yields 

] s ( s + t - 1 )  I 
x([S: T] ) -x (E°(S) ) -x (E°(T) )<~  L ~ t - 2 - ~  j = Isl. 

I f  IS] = ]TI, i.e., s = t, then (4.4) can be written as 

(2s - 2 ) (x ( [S  : T])  - x(E.  (S)) - x (E .  (T)))  <~ s(2s - 2), 

which implies that 

x ( [ S :  T]) - x ( E ,  (S)) - x ( E ,  (T))  ~ IS]. 
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This completes the p roo f  that  the inequality (4.1) is valid for P, .  When  IS]--IT[ the 

p roo f  given above shows that  the inequality (4.1) can be obtained by a nonnegat ive  

linear combina t ion  o f  other  valid inequalities, and therefore it does not  define a 

facet o f  ~ , .  

Now assume that IS] < IT[. We prove first that  (4.1) defines a facet o f  ~k, where 
k = ] S l + [ r l .  

For notat ional  convenience we may assume that  S : = { 1 , 2 , . . . ,  s}. Let aTx<~ ao 
denote  the inequality (4.1), i.e., aTx: = x([S: T ] ) - x ( E n ( S ) ) - x ( E , ( T ) ) < ~  s= :  ao, 
and let bTx<~bo be a facet-defining inequali ty for ~k such that F , : =  

{x e ~k l a Tx = a0} ~ Fb :---- {x e ~k I bTx = bo}. Clearly, Fa # ~k, thus if we can prove 

that b = cm for some a e • then since Fo # 0 we can conclude that  (4.1) defines a 

facet of  ~k. We start by establishing the following: 

Claim 1. There exists a e ~ such that be = a for  all e e [S : T]. 
Proof To prove Claim 1 consider  a subset T ' c  T with IT'[ = s, and let i be a 

node  in S. For  every node  w e  T', let M~(w) be an s-matching containing iw with 

M/(w) ~ I S :  T ' ] ;  and for every pair  (w, v) with w e  T '  and v e  T \ T ' ,  let 

Mi(w, 12):= (Mi (w) \ { iw} )  w {its}. 

It is clear that  X ~,~) ,  X M,~w'~) ~ Fo ~_ Fb, and therefore 0 =  b o -  bo= bTx M'(w) 

-- b T x  M~(w'u) = biw - bi~. Thus,  for a (fixed) node  i e S and for every w e T'  we have 

that b~w = b~ for every v e T \  T'. This implies that  for every i c S there exists a~ e 
such that b~, = a~ for all t e 7". 

To complete  the p roo f  o f  Claim 1 we shall prove that for  s >~ 2, al  . . . . .  a~. 
For  i, j e S, i # j ,  let M be an (s - 2 ) - m a t c h i n g  conta ined in [S \ { i , j } :  T]. I f  s = 2 

take M = 0. Let u, v, w be distinct nodes in T, not  covered by the matching M. Let 

A : - - M w { i u ,  iv, uv}w{jw} and B : - - M w { j u ,  jv, uv}w{iw}. 

Since X A, X ~ e F~ ~ Fb, it follows that b~, + b~ + bj~ = bj, + bj~ + b~,  which implies 
that a~ = aj. This completes the p roo f  of  Claim 1. 

Our  next step is to prove the following: 

Claim 2. b e = - a  for all e e  E , ( S ) w  E , ( T ) .  
Proof Let e :=  uv6  E , ( T )  and let M be an s-matching covering v but  not u, 

M c  [S :  T]. Let i e  S be such that i r e  M and let 

A~ := M w {iu, uv}. 

Clearly X M, X A~ e Fo ~_ Fb, and therefore b~ + b,~ = 0, i.e., b~ = b,~ = - b ~  = - a .  

N o w  let e : = / j e  E , ( S )  and let M be an s -matching conta ined in [S :  T]. Let u, v 
be nodes o f  T such that iu, jv  e M and let 

B~ := M w { iv, ij, ju, uv}. 

Since X M, X ~," e F~ c Fb, it follows that b~ + b~j + bj~ + b~ = 0. By the previous results, 

b~ = bj~ = a = -b ,~ .  Thus,  b~ = b!j = - a ,  and this completes  the p r o o f  o f  Claim 2. 
The two claims imply that  b~ = o~a e for all e c Ek, and this proves that  (4.1) defines 

a facet o f  ~k. 
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For any node v ~ T there exists an s-matching M__c IS, T] not covering v. M is 
a clique partitioning and v a node as required in condition (L). Thus by Theorem 
3.3, the [S, T]-inequality defines a facet of ~n for all n ~> k. [] 

Remark 4.2. It is easy to see that the polytope J-, (see (3.4)) is equal to ~n for 
n =2, 3. Since the 2-partition inequalities for ISI ~ ]T[ define facets of ~ , ,  we can 
conclude that g ,  # ~n for n/> 4. In fact, for every two nonempty disjoint subsets 
S, T of V. with ISI¢[T[, [SI+[T[~3,  the point x * 6 ~  ~,, defined by x*: =1 for all 
e ~ [S: T], x * = 0  else. is a vertex of 3-. (that is not contained in ~. ) .  

5. Facets from 2-chorded cycles, paths and even wheels 

We will now introduce three further classes of inequalities valid for ~n and we will 
show which of these inequalities define facets of ~n- 

Let C be a cycle in Kn, say C = { e ~ , . . . , e k }  and ei=vivi+l ( i = l , . . . , k - l ) ,  
ek = V~Vk, then the set 

: =  {ViVi+ 2 C E,, l i = 1 , . . . ,  k -  2} w {VlVk-1 ,V2Vk} 

is called the set of 2-chords of C. For every cycle C ___ E, of length at least 5 and its 
associated set C of 2-chords, 

x(C)-x(~)<~ [~[Ctl (5.1) 

is called the 2-chorded cycle inequality (induced by C). Figure 5.1 shows a 7-cycle 
and its set of 2-chords. The associated 2-chorded cycle inequality is given by 

C = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 1}}, 

= {{1, 3}, {3, 5}, {5, 7}, {7, 2}, {2, 4}, {4, 6}, {6, 1}}, 

x(C)-x(~)<~3. 

1 

7 2~3 

Fig. 5.1. A 7-cycle. 

Theorem 5.1. Let C ~_ En be a cycle of length at least 5 and let C be the set of 2-chords 
of C. Then the 2-chorded cycle inequality induced by C, 

x(C)-x(C)<~ [½1cfJ 

is valid for ~n. It defines a facet of ~n if and only if  ICI is odd. 
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Proof .  To  establish the validi ty of  (5.1) we p roceed  as follows. For  each edge e c C, 

let el and e2 be the two edges in C such that  {el, e2, e} is a tr iangle in K , .  Cons ider  
the associated tr iangle inequal i ty  xe, + x ~ -  x, ~< 1. Adding  up, for  all e ~ C, these 

tr iangle ine qualities we obta in  ~ e ~ e (x~, + Xe2 - -  X e ) = 2x ( C ) - x ( t~ ) <~ ] C] = I C I. Since 
- x ( C )  ~< 0 is valid for  ~ ,  adding this inequal i ty  to the latter one and then  dividing 

by 2, we obtain  that  x(C)-x(C)<~½[CI is valid for  ~ , .  Since for  every vertex o f  
~ ,  the lef t -hand side o f  this inequali ty is an integer,  we can round  the r ight -hand 
side down to the next  integer and obtain the validi ty o f  the 2-chorded cycle inequal i ty  
induced  by C. 

I f  [C I is even, the above  p r o o f  shows that  the inequal i ty  (5.1) can be ob ta ined  
by  a nonnegat ive  l inear  combina t ion  of  other  facet-defining inequalit ies,  and there- 
fore it does not  define a facet. 

N o w  assume that  ICI = k is odd  (and at least 5). We first show that  (5.1) defines 

a facet  o f  ~k. Let k :=  2 p +  1, V:= {1 . . . .  , 2 p +  1}, C : =  {{i, i + l } l i =  1 , 2 , . . . ,  2 p + l } ,  
and  consider  all the addi t ions  of  node  numbers  taken  modu lo  2 p +  1. Deno te  by  
aVx <~ ao the inequal i ty  x (C)  - x (C)  >~ p and let F ,  := {x ~ ~k [ aTx = ao} be the face 
defined by it. Note  that  F ,  # ~k. Assume fur ther  that  bVx ~ bo is a facet-defining 

inequal i ty  for  ~k such that  Fo ~ Fb := {x c ~ )k  I b'rx ---- bo}. We want  to show that  b = a a  

for  some a ~ E. 
For  i~  V, let M~ be the unique perfect  p -ma tch ing  conta ined  in C\{{i, i+1} ,  

{i, i - 1}} ,  that  is, 

M~ = { { i +  1, i+2} ,  { i+3 ,  i + 4 } , . . . ,  { i + 2 p -  1, i+2p}}.  

Clearly,  X ~' c Fa ~ Fb for  all i c V, and therefore  b Tx M' = b Tx M: . . . . .  b'rx ~ . . . . . .  

bo. Note  that  for  every i~ V, MiAM,+2={{i ,  i+1} ,  { i + 1 ,  i+2}} holds.  This fact  
together  with bTx M  ̀= bTX M'+~ imply  that  b~,~+~ = b~+~,~+2. Thus  we can conclude that  

there exists a ~ E such that  

be = a for  all e c C. (5.2) 

N o w  for every i ~ V, consider  the clique par t i t ioning 

A,:= M,w{{i ,  i+1} ,  {i, i+2}}. 

Since X a,, X M, c F ,  and  F, c_ Fb, it fol lows that  bTx A' = bTX g', and therefore  

bi, i+ 1 d-bi, i+2--O. Then  using (5.2) we get that  bi, i+2 =--oz ,  and since this holds for  
every i c V, we can conclude  that  

b~ = - a  for  all e c C. (5.3) 

Our  next  step is to prove  that  b~ = 0 for  all e c Ek \ (C  u C). Since E5 = C u C we 
assume f rom now on that  k ~ 7. Set 

J : =  {3, 5 , . . . ,  2 p - 3 } .  

For  every i c V and j c J consider  the clique par t i t ioning 

Aij: = Miw{{i ,  i+j} ,  {i, i + j +  1}}. 
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Since xA'~, X M' c Fa c_ Fb w e  h a v e  b T x  Aij = brX M', and therefore 

bi, i+j = - b / , / + j +  1 fora l l  i~ V, j c J .  (5.4) 

Let iE V, j c J ,  and r = 2 p - j .  Then r e  J, i + j + l  ~ V a n d  i + j + l + r =  i + 2 p + l  = 

i m o d ( 2 p + l ) .  Thus (5.4) yields 

bi+j+l,i=-bi+j+l.i+l fora l l  i c  V, j c J ,  (5.5) 

and hence by (5.4) and (5.5), 

b ~ , ~ + j = - b i ,  i+j+l = bi+l.~+j+l fora l l  i c  V, j c J .  (5.6) 

From (5.6) we conclude that 

for  every j c J there exists flj ~ R such that 
(5.7) 

f j  = bi, i+j = -b i ,  i+j+l for all i ~ V. 

Note  that the edges e ~ E k \ ( C u  C) are exactly those o f  the form { i , i + j }  or 
{i, i + j +  1} for i ~ V and j c J. Thus if we can prove that f j  = 0 for all j c J we have 

the desired result. 

L e t j  c J. By (5.7), f 2 p d  = -b i ,  i+2p-j+l for all i c V. Hence,  in particular, for i = j  + 1, 

it follows that f2e j =-bj+l,2e+2 =-bj+l .1  = - b , , l + j  = - f j ,  i,e., 

f l j= - f l 2p j  for  a l l j  e J. (5.8) 

In case k = 7, we have J - - {3}  and so j - - 2 p - j  = 3. Thus (5.8) implies that f3  = 0, 
and the p r o o f  is finished for  k = 7. Hence from now on we assume k i> 9. Equat ion 

(5.8) shows that we only have to prove that /3i = 0 for those j E J with 3 ~ j  ~ q, 

where q = p if p is odd and q = p + 1 if p is even. For  s c {5, 7 , . . . ,  q}, consider  the 

clique part i t ioning 

B s :=  M2p+ 1 u {{1, s}, {1, s + 1}, {2, st ,  {2, s + 1}}. 

Since X B,, X'~, '+~ c F, c_ Fb, we conclude that 

bl,, + b1..~+1 + b2.s + be,s+1 = 0.  (5.9) 

Y a k i n g j = s - 2  and i = 1  (resp. i = 2 )  in (5.7) we obtain f~ 2 = - b l . ~  (resp. f s  2 = 
b2,s = -b2,s+0. Analogously ,  taking j = s and i = 1 in (5.7) we get/3,  = b~,~+,. These 

equat ions and (5.9) imply that 

f , = f ~ - 2  for a l l s c { 5 , 7 , . . . , q } .  

Thus for p odd  (since q = p )  we have that f 3 = f 5  . . . . .  flip, and since by (5.8), 
fp  = - f ie ,  it follows that  fp  = 0, and therefore f j  = 0 for all j c J. I f  p is even (since 

q = p + 1) then/33 = f5  . . . . .  re-1 = fie+l, and since by (5.8) fp_~ = -fie+l, it follows 
that  f j = 0  for  all j c  J. Thus we have proved that be = 0  for  all e C E k \ C U  C. 

Altogether  we have shown that there exists a c R such that 

a i f e c C ,  

be = - - a  i f e c  C, 

0 i f e c E k \ ( C u C ) ,  
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i.e., be =-aa~ for all e e Ek. This completes the p r o o f  that  x ( C ) -  x (C)<~p  defines 

a facet o f  ~k. 

To prove that  it also defines a facet o f  ~n for all n > k, observe that  every node  

i together  with the clique parti t ioning Mi satisfies the condi t ion (L) o f  Theorem 

3.3. Thus,  by  Theorem 3.3 the result follows. []  

1 Given an odd  cycle C of  length at least 5, then the point  x* e R e,, with x* = ~ if 
e c C  and x * = 0  if e c E , \ C  is conta ined in J-n and satisfies all 2-parti t ion 

inequalities. But x* violates the 2-chorded cycle inequali ty x ( C )  - x ( C )  <~½(ICI- 1). 

A further class of  inequalities can be derived f rom paths and a universal node  

as follows. Let P = {el, • • •, ek 2} be a path  in K~, n ~> k, o f  length at least two and 

assume that  ei = viVi+l, i = 1 , . . . ,  k - 2 ,  then the set 

f i :=  {v,v,+2[i= 1 , . . . ,  k - 3 }  

is called the set of  2-chords o f  P. Let z e V, be a node  different f rom v l , . . . ,  vk 

and set 

R :={v i z l i e  {1, . . . , k - l } , / e v e n } ,  

R := {vizl i c {1, . . . , k - l } , / o d d } .  

We call P w/~ w R u / ~  a 2-chorded path with a universal node (see Figure 5.2) and 

the inequali ty 

x ( P  w R)  - x ( P  u R )  <~ [½(]Pl + 1)] (5.10) 

the 2-chorded path inequality induced by P w/5 ~ R u/~ .  

Note  that, when P has length two, the cor responding  2-chorded path inequali ty 

is an [S, r] - inequal i ty  with S = {v2} and T = {v~, v3, z}. 

--.. \ ,, \ / /...- 
" - \  \ , ,  \ / / . -  

" . .  \ "\ \ / / / / 
\ \ \ , ,  \ / / . "  

\ ,',4.-" 

Fig. 5.2. A 2-chorded path with a universal node; k even. 

Theorem 5.2. Let P u P ~ R u R c_ En be a 2-chorded path o f  length at least two with 

a universal node. Then the associated 2-chorded path inequality 

x(PuR)-x(P~)<~ [½(IPI+ 1)3 

is valid for ~ , .  It defines a facet  o f  ) ,  i f  and only i f  IP[ is even. 
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Proof. For notational convenience let us assume that V:= V ( P w  P u  R • R) = 
{ 1 , 2 , . . . ,  k - 1 } u { z } ,  where z is the universal node; so IV[= k<~ n. 

(a) Validity. We prove validity of (5.10) by induction on k. 
(al) k = 4 .  The corresponding 2-chorded path inequality is--as remarked 

before--an IS, T]-inequality. Thus the result follows from Theorem 4.1. 
(a2) k = 5. In this case, consider the partition of V into the sets S = {2, 4} 

and T = {1, 3, z}. Then, by Theorem 4.1 the 2-partition inequality induced by S and 
7", 

X21q- X23 q- X2z q- X41-~ X43 q- X4z -- X24-- X13-- Xlz -- X3z ~ 2 

is valid for ~ , .  Adding the inequality -x41 ~< 0 and the above inequality we obtain 
the inequality (5.10). 

(a3) Assume that k~>6. Let 

P , : = P \ { { k - 2 ,  k -1}} ,  P2:=P,\{{k-3,  k-2}} ,  

R, := R\{z, k -  1}, R2 := R,\{z, k -2} ,  

/~, := R\{z, k -  1}, /~z: =/~,\{z, k-Z}.  

By induction hypothesis, the 2-chorded path inequality induced by P1 u/31 ~ R1 u 

/~1, 

x(P1 u RO - - x ( P  1 U /~1)<  [kiP[I, 

and the 2-chorded path inequality induced by 1°2 w/52 w R2 u/~2, 

x(n2 u R2) - x(/52 u/~2) ~< [~(IPI - 1)J, 

are valid for ~ . .  
Let drx <~ do be the inequality obtained by adding these two inequalities and the 

following three inequalities (which define facets of ~', by Theorem 3.1): 

X k 3,k_2-~-Xk_2,k_l --Xk_3,k_ 1 ~ 1, 

-- Xk-3 ,k -  1 ~ O, 

- -Xk-4 ,  k 2 ~'~ O. 

If  k is odd, we add to dTx ~ do the inequalities 

Xk_2,k_l"[-Xk_l,z--Xk_2,z ~ l and Xk_l,z<~ l, 

and obtain 

2(x(P u R) -x ( /3  u /~))  ~< [½[PI] + [½([PI- 1)] +3 = [PI +2. 

This yields that the inequality (5.10) is valid for ~ , .  
If  k is even, then we add the inequalities 

Xk--2 ,k - l -~Xk_2,z - -Xk  1,~<~1 and -xk_~,~<~O, 
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to dTx <~ do and obtain 

2 ( x ( P w  R ) - x ( P w / ~ ) ) < ~  L½[PH + L½(IP1-1)J + 2 =  ]PI+ 1. 

Hence  we can conclude that  (5.10) is valid for  ~n. 
For  k odd,  it is easy to see that each incidence vector of  a clique part i t ioning 

satisfying the 2-chorded path  inequality with equali ty also satisfies the triangle 

inequality Xk_2,k_l-[-Xz, k_l--Xz,  k_2 ~ 1 with equality. So in this case the 2-chorded 
path inequali ty does not  define a facet of  ~n. 

(b) Facet. We will now prove that the inequali ty (5.10) defines a facet of  ~ ,  
when ]PI is even. Assume that IPI = k - 2  is even and k~>6. We first show that the 
2-chorded path  inequali ty induced by P w/5 w R w/~, let us denote  it by aXx ~ ao, 
defines a facet of  ~k. Let F,  denote  the face of  ~k defined by aVx <~ ao. Clearly 
Fa ~ ~k. Cons ider  a facet-defining inequali ty bTx <~ bo and assume that  F, c Fb := 
{x c ~k I bTx = bo}. 

Let  V k = { 1 , 2 , . . . ,  k}, so the universal node  z is equal to node  k. Let I~:= 
{1, 3 , . . . ,  k -  1} and /2 := {2, 4 . . . .  , k - 2 } .  For  i c I 2 u  {k} consider  the matching 

Mi := { { j , j -  1}:j  c / 2 , j <  i}• {{j, j  + 1}:j  c Iz,j>~ i}. (5.11) 

Then  clearly, 

XM'~FaC_Fb f o r i e I 2 u { k  }. (5.12) 

Since Mi A Mi+2 = {{i, i - 1 } ,  {i, i+  1}}, using (5.12) we obtain 

bi, i - i  -~ bi, i+l for  i6 I 2. (5.13) 

For  i c ~ ,  consider  the clique part i t ionings 

Ai: = (Mi\{¢ i + l } ) w { i ,  z}, 

Bi: = M~w{{i, i - 1 } ,  { i - 1 ,  i +  1}}, 

Ci := Mi w {{i, z}, { i+  1, z}}, 

Di := Mi+2 u {{i, z}, {i - 1, z}}. 

Since X A', X B', X c~, X D' ~ Fa c_ IS'b, using (5.12) and (5.13) we conclude  that  for  

every i c I2 there exists a~ c N such that a~ = b~.i-i = b~.g+~ = bi, z = - b i - l , i + l  -= -bi  l.z = 

-b~+~.~. This implies that  there exists a c • such that 

b e = {  a f o r a l l e ~ P u R ,  (5.14) 
- f o r a l l e E ~ u { e c P l e = { i , i + 2 } , i c I ~ } .  

Now we want  to prove that  be = - a  for  all e ~/5, e = {i, i + 2}, i ~ /2 .  Let e = {i, i + 2} 
be such an edge. The fol lowing clique par t i t ioning derived from the matching Mk 
defined in (5.11), 

A:  = (Mk\{i, i - 1 } ) u { { i ,  i+2},  {i, i + l } , { i ,  z}, { i+1 ,  z}, { i+2 ,  z}} 
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is such that its incidence vector  is in Fa --- F~, and therefore by (5.12) and (5.14), it 

follows that  be =-c~.  

Our next step is to prove that be = 0 for  all e c/~" := E k \ ( P  u f i  u R u R ) .  

Case 1. e c F is incident to two nodes in 12. We may  assume that e := { i , j } ,  where 

i, j c I 2  and j~> i + 4 .  For  

B := (Mk\{{i, i - 1}, { j , j  - 1}}) u {{i, j}, {i, z}, {j, z}} 

we have X B c Fo ~ Fb. Using (5.12) and (5.14) we can conclude that be = 0. 

Case 2. e c P is incident to two nodes  in 11. We may assume that e := {i , j} ,  where 

i, j c 11 and j ~> i + 4. In this case, 

C := ( M i + l \ { j -  1,j}) u { { j -  1, z}, {i, j}} 

is such that  X c c Fa c Fb, and thus by (5.12) and (5.14) it follows that be = 0. 

Case 3. e c  F is incident to a node in /2 and a node  in I2. Assume first that 
e := {i, j}, where i 6 ~ ,  j ~ Ii and j ~ i + 3. Let 

D :=  M j +  1 k..) {{i,j}, {i - 1,j}}. 

Then X D ~ F ,  _ Fv. Since X~J +~ c F,  c_ Fb and b~ ~.j = 0, we get b~ = 0. 

Now assume that e : =  { i , j } ,  where i c / 2 ,  j c I2 and j~< i - 3 .  Set 

D '  := Mj+~ u {{i, j}, {j, i +  1}}. 

Since X D', ,~ Mj+I ~ f a ~ F b and bj.~+l = 0, then b~ = 0. 

We have shown that b = a a  for an a c N, and thus we can conclude that aVx <~ ao 

defines a facet of  ~k. To prove that it also defines a facet o f  ~,, for n > k, observe 
that, for every i c / 2 ,  the node  i -  1 and the clique part i t ioning M~ satisfy condi t ion 

(L) o f  Theorem 3.3. This finishes the proof.  []  

A wheel consists o f  the edges of  a cycle plus the edges that link a further node  
to all the nodes  of  the cycle. We can derive another  class o f  facet-defining inequalities 

f rom even wheels and the 2-chords o f  their cycles as follows. 

Let C g E ,  be a cycle o f  even length 2p with p~>4 and let z ~  E , \ V , ( C )  be a 

further  node  (the center). Let C be the set o f  2-chords o f  C and let { V, I?} be a 

biparti t ion o f  the node  set o f  C (i.e., [ V[ = [ f'l and every edge of  C has one endnode  

in V and the other in 17). Set 

n:={zvlv~ v}, ~:={zvlvc 9}, 

then C u C u R u / ~  is called a 2-chorded even wheel and the inequality 

x(C ~ R ) - x (  ~ u ~ )~  ½1cI (5.15) 

is called the 2-chorded even wheel inequality ( induced by C t~ C u R t j /~) .  Figure 

5.3 shows two 2-chorded even wheels. 
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Fig. 5.3. Two 2-chorded even wheels. The edges in C ~ R are drawn solid, those in C ~/~ dashed. 

Theorem 5.3. Let C w C w R w R ~ E,  be a 2-chorded even wheel, where C is an even 

cycle o f  length at least 8. Then the 2-chorded even wheel inequality 

x ( C  u g ) - x ( O  u 

induced by C u C w R w K defines a facet  o f  ~ , .  

Proof. For ease of notation, let us assume that V , (C) :={1 ,2  . . . .  ,2p}, V:= 
{ 2 , 4 , . . . , 2 p } ,  9 :={1 ,3  . . . .  , 2 p - 1 } ,  z c V , \ V ( C ) ,  C : = { { i , i + l } l i = l , . . . , 2 p }  , 

C : = { { i , i + 2 } ] i = l , . . . , 2 p } ,  where (here and in the following) summation of 

integers representing nodes is considered modulo 2p. 
To establish the validity of (5.15) for ~ , ,  consider, for every i c V, the path 

P , : -  C\{{ i ,  i -  1}, {i, i+1}} 

from i + I  to i - I  of length 2 ( p - l ) ,  its set /5i of  2-chords, and R i : = - { z v l v c  ~'}, 

Ri := {zv[v  ~ V\{i}}. By Theorem 5.2, for every i c V, the 2-chorded path inequality 
induced by P~ u / 5  ~ R~ u/~i,  

x(Pi  w Ri) - x(f i i  w Ri) <~ P - 1 

is valid for ~,,. The sum of these p inequalities (over all i c V) is 

( p  -- l ) ( x ( C  k..) R )  - x ( 0  u / ~ ) )  '~-(x24~-x46qt-x68 -~-" " •-~- X2p,2) - x ( R )  

<~p(p -1 ) .  

Adding to this inequality the following inequalities: 
(a) the p triangle inequalities: 

xi, i+l-~Xi+l,i+2-xi, i+2~l  foral l  i c  V; 

(b) the [½pJ triangle inequalities: 

x~,z+x~+2,z-xi,~+2<~l f o r i = 2 + 4 j ,  j = 0 , . . . , [ ½ p J - 1 ;  



386 M. Griitschel, Y.. Wakabayashi / Clique partitioning 

(c) the trivial inequalities: 

-xi,  i+2~<0 f o r a l l i c V  and f o r i = 4 + 4 j ,  j = 0 , . . . ,  [ ) p J - 1 ;  

and if p is odd, also the inequalities x~,2p ~ 1 and -X2p,2 <~ 0; we obtain 

p ( x ( C u R ) - x ( C w R ) ) < ~ p ( p - 1 ) + p +  [½(p + 1)], 

which implies that the 2-chorded even wheel inequality (5.15) is valid for ~n. 
The p roof  that x ( C  u R) - x ( C  w/~) ~< p defines a facet of  ~ ,  runs along the same 

lines as the two previous proofs of  such facts in this section. It is technically not 
more complicated and therefore omitted. [] 

6. Final remarks 

There are a number  of  further questions that could be asked about the clique 
partitioning polytope ~n studied in this paper.  We briefly mention a few interesting 

aspects. 
All facet-defining inequalities described in this paper  have coefficients that are 

either 0 or ±1. Moreover, the subgraphs of  Kn they arise from are quite "symmetric" 
resp. "regular".  Do all the facet-defining inequalities of  ~n have this property? They 

do not. We have found some "nonsymmetr ic"  facet-defining inequalities with 
coefficients in {0, +1, ±2}. One of these can be described as follows. 

Theorem 
Set 

6.1, Let V be a subset o f  seven nodes of  V, for n >! 7, say V = {/)l, v2,, • . ,  vv}. 

E1 := {/)1/)2,/)1/)4,/)2/-)3, /)2/)5,/)3/)4, /),-1/)5}, 

E2 := {/)1/)3,/)1/)5,/)2/)4,/)3/)5}, 

E3 := {/)1/)6, /)5/)6, /)6/)7}, 

E4:= {/)1/)7,/)2/)~,/)4/)~,/)5/)7}- 
Then the inequality 

x(E1) - x(E2) + 2x(E3) - 2x(E4) ~< 4 

defines a facet o f  ~ , .  [] 

(6.1) 

Figure 6.1 shows a picture of  the graph ( V, E1 w E 2 W E 3 W E 4 )  , where v = { 1 , . . . ,  7}, 
that induces the facet-defining inequality (6.1). A proof  of  Theorem 6.1 as well as 
some indications of how further (quite complicated) facets of  this type can be 
constructed can be found in [11]. 

Another issue are "lift ing" or "glueing" results. A simple (though useful) lifting 
theorem has been stated in Theorem 3.3. There are further procedures with which 

edge sets that induce facets can be "glued" together so that the resulting edge set 
also induces a facet. These procedures are rather complex and will be investigated 

in a forthcoming paper. 
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Fig. 6.1. The graph ( V, E 1 u E 2 k_) E 3 k.j E 4 )  , where V = {1 . . . .  ,7}. 
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Finally, there is the "appl ied" aspect of the results presented here. Can one use 
the inequalities in the framework of a cutting plane procedure for the clique 
partitioning problem? One can, and the algorithm we have implemented works 
surprisingly well, although we were not able so far to design fast exact separation 
procedures for the classes of inequalities presented in Sections 4 and 5. But efficient 
heuristics worked very well. Our computational experiments show that the triangle 
inequalities (3.3) and the 2-partition inequalities (4.1) are very often sufficient to 
produce optimal clique partitionings. These computational results can be found in 
[3] and [11]. 
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