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In this paper we consider a clustering problem that arises in qualitative data analysis. This problem 
can be transformed to a combinatorial optimization problem, the clique partitioning problem. 
We have studied the latter problem from a polyhedral point of  view and determined large classes 
of facets of  the associated polytope. These theoretical results are utilized in this paper. We describe 
a cutting plane algorithm that is based on the simplex method and uses exact and heuristic 
separation routines for some of the classes of  facets ment ioned before. We discuss some details 
of  the implementat ion of our code and present our computat ional  results. We ment ion applications 
from, e.g., zoology, economics,  and the political sciences. 

Introduction 

The need of analysing data that arise from the measurement  of  a number  of character- 
istics (or attributes) associated with each object of  a given set, occurs very frequently 
in sociology, zoology, economics, and many other sciences. The areas of study 
concerned with this type of problem are known as data analysis, multivariate analysis, 
and taxonomy. 

We consider here a problem occurring in qualitative data analysis, of the following 

type. 

Given a data set consisting of  the description of  a set of  objects with respect to a number 
of  characteristics, find a best partition of the object set into "homogeneous" disjoint 
classes (or clusters). 

In this paper  we give a precise formulation of this clustering problem and show 
how it can be reduced to a graph optimization problem which we call clique 
partitioning problem (CPP). This is done in Section 2. In Section 3 we summarize 

some results of  Gr&schel and Wakabayashi  (1987) on the polyhedron associated 
with the CPP. In Section 4 we describe a cutting plane algorithm for CPP which is 
based on these theoretical results. Finally, in Section 5 we report on the computa- 
tional results with our code. Many applications from zoology, marketing, and the 
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political sciences are given and the optimization process for each of these applica- 

tions is illustrated. 

I. Definitions and notation 

We assume that the reader is familiar with the basic concepts of graph theory. The 

definitions not given here can be found in Bondy and Murty (1976). All graphs we 

consider are simple. We denote a graph G with node set V and edge set E by 

G = (V, E). An edge e with endnodes u and v is denoted by uv. If  S is a node set 

of G = (V, E) then we denote the set of edges in G with both endnodes in S by 

E(S),  that is, 

E ( S ) = { u v c  E lu  , v6 S}. 

Moreover, if $ 1 , . . . ,  Sk are subsets of V then 

k 

E(Sl, . . . ,  Sk):-- CJ E(S,) .  
i--1 

I fS ,  T_c V a n d  S ~ T = O t h e n  

[S :  T]:={uvlucS, vc T} 

denotes the set of edges with one endnode in S and the other in T. 

A graph is called complete if every pair of its nodes is linked by an edge. A clique 
is a subgraph of a graph that is complete (a clique is not necessarily a maximal 

complete subgraph). We will denote the (up to isomorphism unique) complete graph 

with n nodes by Kn = (V,, E,). 

We say that F = { W1,. • •, W~} is a partition of V if V¢~ c~ Wj = 0 for 1 ~< i < j  ~< k, 

V - - - W i u . . . v o W k  and W ~ # 0 f o r a l l i .  
A set A of edges in a graph G = (V, E) is called a clique partitioning of G if there 

is a partition F = { W I , . . .  W~} of V such that A = E ( W ~ , . . . ,  Wk) and such that 

the subgraph induced by W/ is a clique for i = 1 , . . . ,  k. Note that every clique 

partitioning A induces a unique partition W1 . . . .  , Wk of V such that A =  

E ( W ~ , . . . ,  Wk). In case G is complete every partition of the node set of G induces 
a clique partitioning. 

A cycle C c  E of length k is an edge set of the form {viv2, v2v3,. . . ,  Vk lVk, VlVk}, 
where vi# vj if i# j .  For k~>4 the set 

:= {v,vi.2li = 1,. : . ,  k - 2 } u  {U1/)k-1 , D2Uk} 

is called the set of 2-chords of C. 
We introduce now some basic concepts from polyhedral theory needed in the 

sequel--see Schrijver (1986) for a comprehensive treatment of this subject. 
Our "universe" will be the vector space R e, where E is the edge set of a graph. 
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If  F_~ E then X~C ~z denotes the incidence vector of F, that is, X~ = 1 if e c F, 
F Xe = 0 otherwise. We denote the convex hull of a set S ~_ R e by conv(S). 

A polytope P is the convex hull of finitely many points, or equivalently, a bounded 

set that is the intersection of finitely many halfspaces. An inequality aXx <~ a is valid 
with respect to P if P~_{x[aTx<~ce}. If  aTx<~a is valid with respect to P then 

Fo := {x ~ P I aTx = a} is the face induced by aTx <~ a. A facet of P is a face of P 

that is contained in no other face of P different from P. Equivalently, a facet F of 
P is a nonempty face with dim(F) = dim(P) - 1, where dim(S) denotes the dimension 
of a set S, i.e., the maximum number of affinely independent points in S minus 1. 

If  P_~ ~E has dimension IEI then every facet of P is induced by a valid inequality 

aVx <~ a that is unique up to multiplication by a positive constant. If  aTx <~ a is 

valid for P and F , : = P ~ { x  laTx =a}  is a facet of P we say that aVx<~a is 

facet-defining. 
If  x~U~ ~ and F _  E then the sum Y.e~r x~ is abbreviated by x(F) .  IS I denotes 

the cardinality of a set S, and, for a c ~, [c~J denotes the largest integer not larger 

than a. 

2. Clustering, aggregation, clique partitioning 

The generic clustering problems we are considering in this paper are most frequently 

stated in the following (imprecise) form: 

Given n objects and p characteristics and an n x p  data matrix (2.1) 

D = (dlk), where an entry dik represents the property of object i 

with respect to characteristic k, find a "best" partition of the set 
of objects into nonoverlapping classes o f"homogeneous"  objects, 

i.e., find a best clustering of the objects. 

Some of the terms above need explanation. The data matrix D may contain numerical 

entries bu t - - in  the area of applications we have in mind-- i t  is not the numerical 
values that are important. We view a column of D as a way to describe which of 

the objects has which property of the characteristic. For instance, if the objects are 

"people" and the characteristic is "color of hair" then the entries could be "black", 
"brown",  "red" etc., or if the objects are "voters" and the characteristic is a certain 

"mot ion"  then one would use the numbers 0, 1, 2 and 3 to indicate whether a voter 
was in favor, against, abstained, or absent. (So the data are nominal and that is 

why this area is often called qualitative data analysis.) Another natural way to 

represent such a problem is, thus, to associate with every characteristic k a binary 

relation Rk (which represents the "similarity" between the object pairs i,j) by 

defining 

( i , j ) c R k  ¢:> dik=djk. 

Even if exact numerical data are available it is sometimes reasonable to "condense" 

these data into binary relations. One way, for instance, is to group objects according 
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to their "size", e.g., states, companies, or mammals are classified as small, medium, 
or large (or whatever seems appropriate for the application considered). 

There are several ways to interpret the terms "best" and "homogeneous" used 
in (2.1). Having made the step into the language of binary relations it is most natural 
to say that a "partition of the objects into nonoverlapping classes of " h o m o g e n e o u s "  
objects" is nothing but an equivalence relation on the set of objects. So the clusters 

of a clustering are exactly the equivalence classes defined by the equivalence relation. 
And a natural way to define "best" is to compare each equivalence relation R with 
each of the given binary relations Rk, i.e., to count the number of disagreements of 
R with R k (this is the number ]RARk[ := ]{(i , j ):( i , j )c R and (i,j)¢: gk, or ( i , j )~ R 
and (i,j) c Rk}]), add up the number of disagreements over all given relations, and 
choose the best equivalence relation with respect to this criterion. Using these 
interpretations, the clustering problem (2.1) can then be reformulated (precisely) 
as follows. 

Given p binary relations R 1 , . . . ,  R e defined on a set N, find an (2.2) 
equivalence relation R* on N such that ~=IlR*ARkl  is as small 
as possible. 

Problem (2.2) is a classical problem in the area of qualitative data analysis. It is a 
special type of the so-called problems of  aggregation of  binary relations and has been 
investigated intensively (cf. Barth61emy and Monjardet (1981), Marcotorchino and 
Michaud (1980, 1981a, 1981b), Opitz and Schader (1984), and Tfishaus (1983)). In 
the sequel we show how it can be reduced to a 0/1 programming problem. 

Every binary relation on a set N can be represented by a 0/1-matrix as follows. 
For every k, l<~k<~p, and every pair ( i , j ) ~ N x N  we let 

(k). {10 i f ( i , j )  C R k ,  

ru "- otherwise. 

Similarly, we let 

r/j := {10 i f ( i , j ) c R ,  
otherwise. 

Then the (nonlinear) objective function ~ = 1  IRARkl can be linearized as follows: 

P 

Z k=l 

p 
]RARk] = Y~ y, (,,,..(k).~ - "ijJ" ,,2 

k--1 ( i , j ) c N x N  

=~, ~ r};)+~ ~ (1--2r}k))rij 
k (i,j) k (i,j) 

(i,j) 

= c + Y~ cijr 0 • 
(i,j) 
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That  is, 

P 

~, IRARk] = 2 cot o + c, 
k = l  ( i , j ) c N x N  

and 

P 
co:= 32 ( 1 - - 2 r l f ) ) = p - - 2 l { k ~ { 1 , . . . , p I : ( i , j ) C R k } [  

k = l  

c:= 2 I{k~{1,...,PI:(i,j)eRk}l. 
( i , j ) e N x N  

It  is also easy to express the requi rement  that  a b inary  relat ion R has to be  reflexive, 
symmetr ic ,  and transit ive by means  of  equat ions  and inequalit ies involving the r 0 
and hence  p rob l em (2.2) can be fo rmula ted  as 

minimize  

subject  to 

Y~ cor o + c 
( i , j )~N×N 

r, = 1 for all i c N 

r~ - rj~ = O for all i, j c N ,  i ¢ j 

ro+r~k--r~k<~l for  all i , j ,  k e N  

r 0 ~ {0, 1} for all i , j  e N.  

(i.e., R is reflexive), 

(i.e., R is symmetr ic) ,  

(i.e., R is transit ive),  

(2.3) 

Problern (2.3) can be simplified further. Clearly,  we can drop the constant  c f rom 
the object ive funct ion and we can also delete the var iables  r, f rom (2.3). Since 

r o = rj~ we can replace these two variables  by  one var iable  x o (here the order  o f  i 
a n d j  is irrelevant,  so we m a y  assume i < j ) ,  and  by  defining new weights w 0 := c o + cj~, 
we get the fol lowing 0/1 l inear program:  

minimize  

subject  to 

wuxo 
l~i<.j~n 

X O + X j k - - X i k ~ I  for  a l l l < ~ i < j < k < ~ n ,  

Xo--Xjk+Xik<~I  for  a l l l < ~ i < j < k < ~ n ,  

--X~j+Xjk+X~k <<-I for  all l < ~ i < j < k < - n ,  

xij c {0, 1} for all 1 ~< i < j < ~  n, 

(2.4) 

which is clearly equivalent  to (2.3). 

It is easy to see that  the solutions of  (2.4) are exact ly the incidence vectors  of  the 
clique par t i t ionings of  the comple te  g r a p h  K,. = ( V,, En). Thus  the clustering p r o b l e m  
(2.1), resp. its related theoret ical  in terpre ta t ion (2.2), can be reduced  to the fol lowing 
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combinatorial optimization problem (called clique partitioning problem (short: 

CPP)): 

Given a complete graph K~ = ( V,, E, )  with weights we e Z for all (2.5) 
e e E, ,  find a clique partitioning A c E,  such that w(A)  is as 

small as possible. 

We want to attack the clustering problem (2.2) algorithmically via the clique 
partitioning problem (2.5). Unfortunately, problems (2.2) and (2.5) are NP-hard, 
cf. Wakabayashi (1986); so we cannot expect to obtain a polynomial time algorithm. 

We have chosen to develop a cutting plane algorithm for (2.5). To do this, the 
polyhedron associated with the clique partitioning problem has to be investigated. 
This approach will be explained in the following section. 

3. The clique partitioning polytope 

To formulate CPP in polyhedral,  respectively linear programming terms, we associate 

with it a polyhedron in the following way. Let N~,, denote the real vector space 

where every component  Xe of a vector x c R E,, is indexed by an edge e of the complete 
graph K,, = ( V , ,  E,).  To avoid trivialities, we assume throughout the paper  that 
n ~> 3. For every edge set A _c E~, /~I/Ac R En denotes its incidence vector. The convex 
hull of all incidence vectors of  clique partitionings of  K,, is called the clique 

partitioning polytope (of K , )  and is denoted by ~ ,  i.e. , 

~n = conv{xA e R e" [A is a clique partitioning of Kn}. 

Since the vertices of  ~'n are in one-to-one correspondence with the clique partition- 

ings of K, ,  it follows immediately that CPP can be formulated as the problem 

minimize w Vx 
subject to x c ~ , .  (3.1) 

(3.1) is a linear program in the sense that a linear objective function is to be 
minimized over a polytope. To apply LP-techniques, this formulation is of  no use 

unless ~ ,  can be represented by a system of linear inequalities. Since the clique 
partitioning problem (2.5) is NP-hard, it follows from general results of  complexity 
theory that it is very unlikely that an explicit complete description of ~,, can ever 
be obtained. But we were able to determine large classes of  valid and facet-defining 
inequalities for ~ .  The following theorem is a summary of some of the results of 

Gr6tschel and Wakabayashi  (1987). 

Theorem 3.2. Let Kn = ( Vn, En) be a complete graph with n >~ 3 nodes, and let ~n ~ Re" 

be the clique partitioning polytope o f  Kn. 

(a) The dimension o f  ~n is equal to IEnl = n(n  - 1)/2. 
(b) For every edge e c En, the trivial inequalities xe >i 0 and xe <~ 1 are valid for  ~ .  

Every inequality x~ >~ 0 defines a face t  o f  ~n but no inequality Xe <~ 1 does. 
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(C) For every three different nodes i, j, k c Vn, each of the three associated triangle 
inequalities 

Xo+Xjk--Xik <~ 1, X~--xjg+Xik <~ 1, --Xij-]-Xjk~-Xik <~ 1, 

defines a facet of ~n. 
(d) For every two disjoint nonempty subsets S, T of V,, the 2-partition inequality 

induced by S and T (short: [S, T]-inequality) 

x([S:  T]) - x(E,  (S)) - x (E,  (T))  <~ min{IS[, ]TI} 

is valid for ~ , .  It defines a facet of ~ ,  if  and only if  IS] # ] T I. 
(e) For every cycle C c E, of length at least 5 and its set C of 2-chords, the 2-chorded 

cycle inequality 

is valid for ~n. It defines a facet of ~n if and only if  Icl is odd. 
(f) For every even cycle C c_ En of length at least 8, for every node z ~ V~ not in 

the node set Vn( C) of C, and for every bipartition V, f ' o f  Vn( C), the 2-chorded even 
wheel inequality 

x ( c  u e ) - x ( O  <-Ic  
2 

defines a facet of ~n, where C is the set of 2-chords of C and R := {zvl v c V}, 

/ :={zvtvc 9}. [] 

The proofs of these results are quite involved. These are not all facets of ~ ,  
known--see  Gr6tschel and Wakabayashi (1987) for further details. Let us set 

•,, := {x c N~,, ]x ~> 0, x satisfies all triangle inequalities 3.2 (c)}. 

Then, by (3.2), all inequalities defining ~ ,  induce facets of ~ ,  and, by (2.4), 

~ .  = conv{x ~ 3-. ]x integral}. 

So the linear program 

minimize wVx 
(3.3) 

subject to x ~ ~-,, 

is an LP-relaxation of the clique partitioning problem. Our computational experi- 
m e n t s - s e e  Section 5--show that (3.3) is indeed quite a reasonable LP-relaxation. 

4. The cutting plane algorithm 

The use of polyhedral results in LP-based cutting plane procedures has become a 
standard (and very successful) technique in the recent years--see,  for instance, 
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Barahona, Gr6tschel, J/inger and Reinelt (1988), Crowder and Padberg (1980), 

GrStschel and Holland (1985), GrStschel, Jiinger and Reinelt (1984), Padberg and 
Rinaldi (1987), Reinelt (1985). Nevertheless, to make the basic idea work, requires 

some nontrivial, rather problem dependent  effort. 
We will first describe the fundamentals of  our algorithm. Afterwards we go into 

more detail and explain some implementational aspects and some of the heuristics 
we have added to the basic algorithm to make it work in practice. 

The initial step of the polyhedral approach to combinatorial optimization is to 
get a very good linear programming relaxation of the problem considered. We 
be l ieve- -and  computational experience shows-- tha t  the system of inequalities given 

by the classes of facets described in Theorem 3.2 is such an LP-relaxation. It is, 
however, far from clear how linear programs over these systems of inequalities can 
be solved efficiently. 

It follows from the ellipsoid method, see Gr6tschel, Lov~isz and Schrijver (1981), 
that a linear program (with possibly exponentially many inequalities) can be solved 

in polynomial  time if the separation problem for the constraint system can be solved 
in polynomial  time. The separation problem here is the task to check, for a given 
vector y, whether y satisfies all constraints, and if not, to find a constraint that is 
violated by y. (Such a constraint is called a cu t t ing  p l a n e  or cut, for obvious 

reasons.) 
For the classes of  facet-defining inequalities given in Theorem 3.2, it is clear that 

the trivial constraints (b) and the triangle inequalities (c) can be checked in poly- 
nomial time. However, we do not know whether the separation problem for any of 

the other systems of inequalities can be solved in polynomial  time. Thus to take 
care (at least partly) of  these inequalities we have to resort to separation heuristics. 

Due to these facts we decided to proceed as follows. We first solve (by trivial 

inspection) the linear program 

minimize w T x 
(4.1) 

subject to 0<~ Xe <~ 1 for all e c En. 

Suppose x* is an opt imum solution of the present LP. We now check whether x* 
violates any of the triangle inequalities. I f  so, we add some of these inequalities 

(the selection process will be described later) to the current LP, and we repeat. 
I f  x* satisfies all triangle inequalties and is integral we know that it is the incidence 

vector of  a clique partitioning and stop with an opt imum solution of (3.1). 
I f  x* satisfies all triangle inequalities and is fractional there is no obvious way 

to continue, since no further polynomial time separation algorithm is available. We 
have thus invented several heuristics that check whether a given point x* violates 
inequalities of  the other classes described in Theorem 3.2. Our final choice of which 
separation heuristic to use was then based on extensive computational testing. This 
is not too satisfying from a theoretical point of  view, but we do not know a way to 

get around this kind of numerical experiments. 
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The result of these experiments was that we gave up considering the 2-chorded 

cycle inequalities and the 2-chorded even wheel inequalities (and the further facets 
we know) completely. We only added three heuristics that search for violated 
2-partition inequalities 3.2 (d). 

So our algorithm now calls these three heuristics to check whether some 2-partition 
inequalities violated by x* can be found. I f  this is so, these inequalities are added 

to the current LP and we repeat. Otherwise, we resort to branch and bound. 
It was more than surprising for us that, in all problems we ran, we never had to 

call the branch and bound algorithm. The cutting plane phase always ended with 
an integral opt imum solution. So the chosen LP-relaxation of (3.1) consisting of all 
inequalities 3.2 (b) and (c) and some of the inequalities 3.2 (d) turned out to be 
(empirically) very effective. 

Let us now describe a few more details to show our strategic and tactical choices. 

LP-solver: Of couse, we did not use the ellipsoid method. We solved our linear 

programs with IBM's  LP-package MPSX/370. This is quite a fast LP-solver, but it 
is not so easy to use i t i n  a cutting plane environment. Anyway, MPSX did its job. 
The very first LP was solved by inspection. In all subsequent problems we first 

called the routine DUAL to find a feasible solution (based on the opt imum basis 
of  the previous LP), and then we called PRIMAL to obtain an opt imum solution. 

Variable elimination: The first issue to think of is whether one intends to eliminate 

variables in order to run a sparse subproblem. In this case one has to write a routine 
that brings in the left out variables, prices them out, and restarts the whole program 
on a larger set of variables in case some reduced costs have the wrong sign. The 
largest real world problem we got is a clustering problem for 158 objects. So this 

gives a clique partitioning problem with 12 403 variables. This size is around the 
break even point where pricing out as described above starts to pay (an observation 
made in other cutting plane experiments). Thus we decided to drop that option and 
run on the full variable set. 

Checking triangle inequalities: There are 3(~) triangle inequalities 3.2 (c). Based on 
the problem dimensions we were going for, we decided that complete enumeration 

of all the inequalities would be feasible with respect to running time. It turned out, 
however, that, by checking all triangle inequalities, sometimes several thousand 
violated inequalities were found. To keep the LP's small we decided to add not all 
of  them to the current LP. After some experiments (more on that in Section 5) we 

adopted the following strategy. First, we introduced a parameter,  called MAXCUT,  
to limit the number  of  cutting planes added in one iteration. In addition, the 
enumeration process was organized in such a way that, as soon as about 5× 
M A X C U T  violated triangle inequalities are found, the enumeration terminates. 

Moreover,  for each violated triangle inequality aTx <~ 1 we compute its "degree of 
violation", i.e., the number  ~a := a T x * -  1, and sort these numbers into 10 buckets 
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of equal size. After termination of this procedure we start retrieving violated triangle 
inequalities from the buckets (starting with the bucket of  highest degree of violation) 
until M A X C U T  inequalities have been chosen or all buckets are empty. This way 

we generate a "reasonable"  number  of  cutting planes all of  which are "highly" 
violated. Limited computational experiments showed that 

M A X C U T  c {400, 500} 

is a good choice for our range of problem sizes. 

Note that by considering triangle inequalities first and handling them in the way 
described above yields (empirically) the following benefits: 

- The LP's are kept small and sparse (with considerable numerical and running 
time advantages). 

- The heuristics for other classes of  inequalities can use the fact that all triangle 
inequalities are satisfied. 

Separation heuristics for  2-partition inequalities: Here we assume that all triangle 
inequalities are satisfied. As before, we will not generate more than MAXCUT 
cutting planes in one phase. 

We first run a heuristic that searches for [S, T]-inequalities with ISI = 1. For every 
node v~ Vn we do the following. We set W: - -{wc  V n \ { v } [ O < x * w < l }  (the nodes 
with X*w ~ {0, 1} will not help in this process) and choose some ordering of the nodes 
of  W. We pick the first node we  W (in this ordering), set T:=  {w}, and for every 

node i c W \ { w }  we set 

T : = T t 3 { i }  if x * = 0  f o r a l l j c T .  (4.2) 

We check whether the set T constructed this way satisfies x*([{v}: T ] ) >  1. I f  so 

the inequality x([{v} : T]) ~< 1 is added to the current LP. We repeat this procedure 
with converse ordering of W. 

We call the next heuristic only if the previous one failed to produce any violated 

inequality. The second heuristic is the same as the first, we only replace (4.2) by 

T:=  T • { i }  if x ' v -  Y, x * > 0 .  (4.3) 
j e t  

Both these heuristics have an O(n 3) worst case running time but are much faster 

in practice. 

Our third routine searches for violated [S, T]-inequalities with IsI, I rl/> 2. it is a 
complex enumerative procedure with O(n 3) running time, and we do not want to 
describe it here. In fact, due to our order of  calling the heuristics, it turned out that 
this last heuristic was never ever called in our applications. 

Row elimination: After having determined some new cutting planes and before 

restarting the LP-solver we eliminate all old constraints that are nonbinding at the 
current opt imum solution, i.e., we delete all those rows aTx <~ a with a T x * <  a. It 
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may, thus, happen that some cuts are generated several times; but in general, row 
elimination tends to produce smaller linear programs and an overall running time 
decrease. 

Branch and Bound: I f  the cutting plane phase does not produce an integral solution 
a branch and bound procedure is called to find an opt imum solution. As the 
implementation of branch and bound algorithms is well known we shall not elaborate 

on this. We only want to mention that when a variable is temporari ly (resp. 
permanently) fixed to 1 or 0 then we can use the triangle inequalities to fix temporari ly 
(resp. permanently) other variables. That is, if x~ and xb have been fixed to 1 and 
{a, b, c} is a triangle in K, ,  then we can fix xc to 1. This amounts to finding the 

transitive closure of the graph defined by the edges e with x~ = 1. As stated before, 
the branch and bound phase was never activated in the final version of our algorithm. 

5. Applications and computational results 

In this section we report on the computational  experiences with our cutting plane 
algorithm for the clique partitioning problem. This algorithm was primarily 

developed for the clustering problem (2.1) resp. (2.2) which is - -as  we showed in 
Section 2--reducible  to CPP. All real world instances of  CPP we consider here arise 
this way. 

As mentioned in Section 2, the p binary relations Rk, 1 <~ k<~p, on the object set 
N : = { 1 , 2 , . . . ,  n} are defined by 

(i , j)  CRK ¢=> d,k=djk. 

Thus the corresponding instance of CPP consists of  a complete graph K,  = (Vn, E~) 
with weights wij assigned to its edges, where w~j := p - 21{k c { 1 , . . . ,  p}: (i, j )  6 Rk}l. 

In two of  the applications to be mentioned in the next section some binary relations 
(that are based on quantitative data) will be defined in a slightly different way. 

In all applications given here the input to our program is the data matrix D whose 

columns define the given binary relations and an additional parameter  which 
determines how the weights w~j are to be calculated. The output is a list of  the 

objects in each of the equivalence classes (i.e., a list of  the clusters) determined by 
the opt imum clique partitioning. 

We ran our program on a Siemens 7.865 of the Deutsche Forschungs- und 
Versuchsanstalt fiir Luft- und Raumfahrt  (DFVLR) in Oberpfaffenhofen under the 
operating system VM/370-CMS. The CPU time reported here is the figure printed 
out by the operating system as the execution time for the entire run, including all 
input and output operations. The fractions of  seconds were rounded up. 

We have considered many real as well as random data bu t - - a s  mentioned 

before - - in  none of the cases we needed to go into the branch and bound phase. 
More surprisingly, in most cases triangle inequalities were sufficient to produce an 
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integral opt imum solution. Only a few times 2-partition inequalities (with ]S] = 1) 

had to be added. 

5.1. The problem instances and the optimization process 

In the sequel we consider various examples of  clique partitioning problems to 
illustrate the performance of our algorithm on real-world problem instances. Most 
of the data sets correspond to applications from the literature concerning the problem 
of classifying objects based on their qualitative and /or  quantitative description. 
Some new data sets that have not yet appeared in the literature are also given. The 
complete data sets of  all problems considered, and the corresponding solutions are 

given in the Appendix. 
For each problem instance we have summarized the relevant execution data in a 

table. All Tables 5.1-5.13 are printed in the same scheme. The symbol " # "  means 
"number  of" .  The optimization process is shown step by step and the total CPU 
time for the entire run is given. The column "I ter ."  indicates the iteration number, 

where each iteration is one complete cutting plane phase (cutting plane recognition, 
row elimination, solution of the new LP). Thus, the last number  in this column is 
the number  of LP's that had to be solved. The next three columns show how many 
cuts are generated, added, and eliminated per iteration. In the column "LP size" 

we give the number  of  constraints of  the current LP- - the  one obtained after the 
addition and elimination of the cuts indicated in the previous columns. The last 
column shows the objective function value for the opt imum solution of the current 
LP. The last value in this column is the objective function value for the opt imum 
integer solution found. As it will be clear from the tables, we have considered 

MAXCUT = 400 or M A X C U T  = 500. 
To distinguish between the types of  cuts generated, we use the symbol "A" to 

denote triangle inequalities and "*"  to denote [S, T]-inequalities with IS] = 1. 
Note that the first row (Iter. = 0) corresponds to the trivial LP (4.1) whose opt imum 

solution is obvious. The cuts generated in iteration k, k/> 1, are based on the opt imum 
solution obtained in iteration k - 1 .  

5.1.1. Classification o f  cetacea (whales, porpoises, and dolphins) 
The problem of classifying animals and plants is of  great interest in biology. The 
first example we want to consider here was proposed by Vescia (1985) and concerns 
the classification of 36 different types of  cetacea. The given instance consists of  35 
different genera and one species (the Balaenoptera musculus) which are described 
with respect to 15 characteristics (10 morphological,  3 osteological and 2 behavioral 

parameters).  
Many different mathematical  models, including the one we used, have been 

proposed for this particular problem instance and slightly different classifications 
were found. As a matter of  fact, the cetacea are still poorly known and different 

zoologists propose different classifications. 
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The computational results we obtained with the application of our cutting plane 

algorithm to this data set (n = 36, p = 15, # LP variables = 630) are summarized in 

Table 5.1. 

T a b l e  5.1 

# Cu t s  

Iter. G e n e r a t e d  A d d e d  E l i m i n a t e d  L P  size Obj .  va lue  

0 . . . . .  998 

1 274 ~ 274 - -  274 - 9 6 7  

2 12 ~ 12 - -  286 - 9 6 7  

C P U  t ime:  0:15 (min : sec )  

The information given in Table 5.1 are to be interpreted as follows: At first the 

trivial LP was solved and an optimum solution, say x °, was obtained. The objective 

function value at x ° was found to be -998. Then, 274 triangle inequalities which 

were violated by x ° were generated, and these were all added to the trivial LP. The 
new LP with 274 constraints was solved and an optimum solution x 1 with wTx 1= 
--967 was obtained. Twelve triangle inequalities violated by x I were generated and 

these were added to the previous LP yielding a new LP with 286 constraints. The 

optimum solution of this last LP, with objective function value -967,  was integral 

and an optimum solution for CPP. 

This problem instance has been solved to optimality by Vescia (1985), using the 

approach of solving the dual version of the LP defined by the triangle inequalities 
and the nonnegativity constraints. The author, however, does not report any compu- 
tational details. 

Remark. In this particular problem some information is missing (cf. entries "*" in 

the Table A1 given in the Appendix A1) and for this reason the weights wo, i<j, 
were calculated as follows: 

where 

and 

Wij := Sij -- S~j 

s~j := [{k: d~k = 4k, dig # *, 1 <~ k<~p}l 

: =  I{k: d,k ajk, e,k , ,  , ,  1 k p}l. 

It is assumed here that when an entry, say dik, in the data matrix is "*" then the 
object i is not comparable to any of the other objects with respect to the characteristic 

k. Thus s U (resp. ~ )  corresponds to the number of characteristics with respect to 
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which the objects i and j have (resp. do not have) the same description, provided 

they are comparable. Note that in this case s~/+ go <~ P, but if in particular s o + -s o = p, 

then wij =~ij-So = p - 2 s o .  That is, when no information is missing we have our 

usual definition. 

5.1.2. Classification o f  wild cats 

This problem instance is similar to the previous one. The data set consists of the 

description of 30 wild cats with respect to 14 morphological and behavioral charac- 

teristics (cf. Appendix A2). This example is from Marcotorchino (1981), who uses 

the same mathematical model but solves it to optimality with another method. Again 

only two iterations were needed to find an optimal solution and only 555 cutting 
planes sufficed to prove optimality. (In this instance n =30, p = 14 and # LP 
variables = 435). 

Table 5.2 

# Cuts 

Iter.  Generated Added Eliminated LP size Obj. value 

0 . . . . .  1400 
l 561 ~ 400 -- 400 -1313 
2 155 A 155 -- 555 -1304 

CPU time: 0:23 (min:sec) 

5.1.3. Classification o f  workers 

In this example from Opitz and Schader (1984) the data matrix (given in Appendix 

A3) describes the opinions of 34 workers with respect to 13 parameters concerning 

their working environment, colleagues, headman, career perspectives, etc. 
We have been informed (private communication) that Opitz and Schader have 

solved this problem to optimality using a branch and bound method proposed by 

T/ishaus (1983). (In this example n = 34, p = 13 and # LP variables = 561). 

Table 5.3 shows that--contrary to the previous examples--violated inequalities 

other than the triangle inequalities had to be added to find an optimum solution. 

The solution found at iteration 7 satisfies all triangle inequalities but is fractional. 

Two violated simple 2-partition inequalities were generated at iteration 8 and these 

were added to the previous LP. The new LP, with 1138 constraints, yielded an 
optimum solution for CPP. In fact, among the real world problems, this is the only 

example where inequalities different from triangle inequalities were needed. 

5.1.4. Classification o f  cars 

In this problem instance 33 cars are described with respect to the frequency repair 

that was needed for the brake system, fuel system, etc. A total of 13 parameters are 
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Table 5.3 
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# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  1233.0 
1 1849 A 400 - -  400 -1168.50 
2 1481 ~ 400 - -  800 -1074.50 
3 1268 ~ 400 173 1027  -1012.83 
4 1751A 400 344 1083 -970.00 
5 59 A 59 39 1 1 0 3  -965.50 
6 4 ~ 4 10 1 0 9 7  -964.50 
7 66 A 66 26 1137 -964 50 
8 2 * 2 1 1 1 3 8  -964.00 

CPU time: 3:18 (min:sec) 

c o n s i d e r e d  (cf. A p p e n d i x  A4)  a n d  t h e  e n t r i e s  a r e  0 a n d  1 ( w h e r e  " 1 "  s t a n d s  f o r  

g r e a t e r  t h a n  a v e r a g e  f r e q u e n c y  o f  r e p a i r ) .  T h i s  d a t a  se t  is g i v e n  in  H a r t i g a n  (1975)  

as a t r i a l  d a t a  se t  fo r  a n  a l g o r i t h m  to c o n s t r u c t  a t ree--a  s p e c i a l  c l u s t e r i n g  s t r u c t u r e .  

T h e  r e su l t s  a re  t h e r e f o r e ,  n o t  c o m p a r a b l e .  ( W e  h a v e  n = 3 3 ,  p = 13 a n d  # L P  

v a r i a b l e s  = 528).  

Table 5.4. 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  1748.00 
1 1507 A 400 - -  400 -1648.00 
2 1264 A 400 - -  800 -1557.50 
3 757 A 400 55 1145  -1502.00 
4 30 A 30 17 1158 -1501.00 

CPU time: 2:35 (min:sec) 

5.1.5. Classification o f  micro computers 
T h e  d a t a  se t  c o n s i d e r e d  h e r e  is f r o m  C h a h  (1985)  a n d  c o n c e r n s  t h e  d e s c r i p t i o n  o f  

40 m i c r o  c o m p u t e r s  w i t h  r e s p e c t  to  14 c h a r a c t e r i s t i c s  ( see  A p p e n d i x  A5) .  

T o  d e a l  w i t h  s o m e  q u a n t i t a t i v e  v a l u e s  ( d e s c r i b i n g  p r i c e ,  s ize  o f  r a n d o m  a c c e s s  

m e m o r y ,  e tc . )  i n  th i s  p a r t i c u l a r  c a se  we  d e f i n e d  t h e  b i n a r y  r e l a t i o n s  Rk, 1 ~ k ~ 14, 

as f o l l o w s :  

Id, -djkL 
( i , j ) C R k  ¢~ 4 0 . 3 .  

max{dik, dig, 1} 

T h e  m o d e l  u s e d  b y  C h a h  is d i f f e r e n t  f r o m  t h e  o n e  we  use ,  a n d  l e a d s  to  a d i f f e r e n t  

resu l t .  
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Table 5.5 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  1270 
1 1575 A 500 - -  500 -1158 
2 1434 ~ 500 - -  1000 -1088 
3 1185 A 500 279 1221 -996 
4 1297 A 500 305 1416 -966 
5 42 A 42 116 1342 -966 

cPu  time: 4:17 (min:sec) 

5.1.6. Votes of  54 member states of  the United Nations Organization 

The example  considered here, given by Marco to rch ino  (1981), describes the votes 

o f  54 Nat ions  on 3 mot ions  presented  in a Genera l  Assembly  o f  the U N O  in 1968 

(see A p p e n d i x  A6). This p rob lem has been solved to opt imal i ty  by Marco torch ino ,  

using the approach  of  solving the dual vers ion o f  the LP-re laxat ion  defined by the 

tr iangle and trivial inequali t ies .  

Table 5.6 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  918.00 
1 2004 A 400 - -  400 -886.00 
2 2001A 400 - -  800 -840.00 
3 2003 A 400 251 949 -833.00 
4 1716 A 400 70 1279 -801.00 
5 19 A 19 - -  1298 -798.00 

cPu  time: 4:30 (min:sec) 

5.1.Z Votes o f  all member states o f  the United Nations Organization 
These  are new data sets, col lected f rom U N O  (1985), concern ing  the votes of  all 

m e m b e r  states o f  the Uni t ed  Nat ions  Organ iza t ion  on Resolutions adopted by the 

39th General Assembly held at the end 1984 (cf. A p p e n d i x  A7). 

For  each o f  the data sets to be specified in the sequel,  we have run our  program 

for the comple te  data  set (n = 158) and for a smaller  data  set (n < 158) obta ined 

f rom the comple te  one by delet ing some States which  were "absen t " .  

Case 1: Resolut ions  39 / l19-120-121- -Votes  on 3 Resolu t ions  concern ing  the 

si tuation o f  human  rights and fundamenta l  f r eedom in El Salvador, Guatemala, and 

Chile (cf. Append ix  A7.1). 
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Table 5.7 
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# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  12 322 

1 2001 ~ 400 - -  400 -12  298 
2 2003 ~ 400 - -  800 -12  280 

3 2003 ~ 400 30 1170 -12  234 

4 1653 ~ 400 - -  1570 -12  210 

5 1302 A 400 37 1933 -12  207 
6 1401 ~ 400 - -  2333 -12  197 

CPU time: 14:12 (min:sec) 

Case  la :  n = 158 a n d  p = 3 ( #  L P  v a r i a b l e s  = 12 4 0 3 ) .  S e e  T a b l e  5.7.  

Case lb:  n = 139 a n d  p = 3 ( #  L P  v a r i a b l e s  = 9 5 9 1 ) .  T h i s  d a t a  s e t  c o r r s p o n d s  t o  

t h e  p r e v i o u s  o n e  w i t h o u t  t h e  S t a t e s  w h i c h  w e r e  a b s e n t  i n  a t  l e a s t  o n e  o f  t h e  t h r e e  

s e s s i o n s  c o n s i d e r e d .  S e e  T a b l e  5.8. 

Table 5.8 

# Cuts 

lter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  11 706 

1 2008 ~ 400 - -  400 -11  664 
2 2001 ~ 400 - -  800 -11  650 

3 2005 ~ 400 40 1160 -11  639 
4 846 ~ 400 - -  1560 -11  613 

CPU time: 8:38 (min:sec) 

Table 5.9 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 m - -  - -  

1 2592 ~ 500 - -  
2 2502 ~ 500 - -  
3 2501 ~ 500 166 

4 236 ~ 236 - -  

5 87 ~ 87 33 

- -  -73  178 
500 -73  139 

1000 - 7 2  886 
1334 -72  874 

1570 -72  821 

1624 - 7 2  820 

CPU time: 9:47 (min:sec) 
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Case 2: R e s o l u t i o n  3 9 / 1 4 8 - - V o t e s  o n  15 m a t t e r s  r e l a t e d  w i t h  n u c l e a r  w e a p o n s  

(cf .  A p p e n d i x  A7 .2 ) .  

Case 2a: n = 158 a n d  p -- 15 ( #  L P  v a r i a b l e s  = 12 403) .  See  T a b l e  5.9. 

Case 2b: n = 145 a n d  p = 15 ( #  L P  v a r i a b l e s  = 11 165).  T h i s  d a t a  s e t  c o r r e s p o n d s  

to  t h e  p r e v i o u s  o n e  w i t h o u t  t h e  S t a t e s  w h i c h  w e r e  a b s e n t  a t  l e a s t  8 t i m e s .  See  T a b l e  

5.10. 

Case 3: R e s o l u t i o n  3 9 / 9 9 - - V o t e s  o n  9 m a t t e r s  r e l a t e d  to  t h e  United Nat ions  

Re l i e f  and Works f o r  Palestine Refugees  in the Near  East  (cf.  A p p e n d i x  A7 .3 ) .  

Case 3a: n = 158 a n d  p = 9 ( #  L P  v a r i a b l e s  = 12 403) .  See  T a b l e  5.11. 

Table 5.10 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  72 111 
1 2506 ~ 500 - -  500 -72 076 
2 2513 A 500 - -  1000 -71 880 
3 1426 A 500 - -  1500 -71 861 
4 269 ~ 269 - -  1769 -71 819 
5 87 ~ 87 38 1818 -71 818 

CPU time: 8:04 (min:sec) 

Table 5.11 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  73 133 
1 2502 ~ 500 - -  500 -73 090 
2 2501A 500 - -  1000 -73 076 
3 840 5 500 - -  1500 -73 076 

CPU time: 5:27 (min:sec) 

Table 5.12 

# Cuts 

Iter. Generated Added Eliminated LP size Obj. value 

0 . . . . .  72 694 
1 2502 ~ 500 - -  500 -72 651 
2 2501 ~ 500 - -  1000 -72 637 
3 840 ~ 500 - -  1500 -72 637 

CPUtime:  4:43 (min:sec) 
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Case 3b: n = 147 and p = 9 (#  LP variables 10 731). This data set corresponds to 
the previous one without the States which were absent at least 5 times. See Table 5.12. 

5.1.8. Classification of companies 
The problem instance considered here is from Sp~ith (1977) and concerns the 
description of 137 companies in W. Germany with respect to their need of different 

groups of employees (cf. Appendix A8). A total of  25 groups of employees are 
considered (ex. secretaries, programers, engineers, etc.), and for each company,  it 
is indicated whether the corresponding group of employees is needed ("1")  or not 
("0").  The clustering technique used by Sp~ith fixes the number  of  clusters a priori 
and optimizes a different objective function. The computat ional  results are therefore 
not comparable.  

T a b l e  5.13 

# Cu t s  

Iter.  G e n e r a t e d  A d d e d  E l i m i n a t e d  L P  size Obj .  va lue  

0 . . . . .  82 625 

1 2 5 0 1 A  500 - -  500 - 8 2  414 

2 2502 A 500 - -  1000 - 8 2  188 
3 2565 A 500 182 1318 - 8 2  163 

4 2550 A 500 131 1687 - 8 2  051 

5 2502 A 500 31 2156 - 8 1  897 

6 2 5 0 1 A  500 51 2605 - 8 1  884 

7 2549 A 500 - -  3105 - 8 1  829 

8 2558 A 500 86 3619 - 8 1  811 

9 1885 A 500 - -  4019 - 8 1  802 

C P U  t ime:  19:47 (min : sec )  

Although the opt imum solution we obtained turned out to be not interesting (only 

two clusters were produced),  the computat ional  results reveal some interesting 
aspects (cf. Table 5.13). Note that the LP at iteration 8 has 3619 constraints, all of  
which are binding for the obtained solution ~ (this can be derived from the fact 
that at iteration 9 no elimination was performed).  Although there were 1885 triangle 
inequalities violated by if, the addition of only 500 of them was sufficient to produce 
an opt imum solution. It should also be noted that in this case the final LP has more 
than 4000 constraints. This problem is the "hardes t"  real world problem we 
encountered so far. 

5.2. Random data 

In the applications we considered previously, only in one case (n = 34) we needed 
to add cuts other than the triangle inequalities. For randomly generated data sets, 
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which we created to test various features o f  our code the picture was, however,  

different. 
We generated 20 matrices with entries 0, 1, 2, having dimension n x p where 

12 ~< n ~< 30, 10 ~< p ~< 13, and in 9 cases we needed to call the cut generation routine 
for IS, T]-partition inequalities with ISI = 1. In 7 cases the first strategy used in this 

routine was sufficient to find violated IS, T]-partition inequalities, and in 2 o f  them 
we had to use the second strategy (cf. Section 4). In none of  the cases we needed 
to call the third cut generation heuristic for IS, T]-inequalit ies and in all cases 

(except in one)  the running times were less than 2 minutes. 

In Table 5.14 we show the computational  result obtained for n = 22 and p = 13. 
Observe that when all triangle inequalities are satisfied the objective function value 
( -138 .50)  is very close to the optimum objective value ( - 137 ) .  This fact could be 
observed in all the 7 cases (only in one case the relative difference was 5%, in 6 

Table 5.14 

n = 2 2  

# Cuts Generated 

lter. A * (1) * (2) Obj .  value 

0 . . . .  237.00 

1 432 - -  - -  - 1 3 8 . 5 0  

2 - -  2 - -  - 1 3 8 . 0 0  

3 62 - -  - -  - 1 3 8 . 0 0  

4 - -  1 - -  - 1 3 7 . 7 5  

5 - -  1 - -  - 1 3 7 . 3 3  

6 3 - -  - -  - 1 3 7 . 1 7  

7 - -  1 - -  - 1 3 7 . 1 1  

8 - -  3 - -  - 1 3 7 . 0 0  

9 9 - -  - -  - 1 3 7 . 0 0  

10 - -  - -  2 - 1 3 7 . 0 0  

11 13 - -  - -  - 1 3 7 . 0 0  

C P U  t i m e :  1:21 (min:sec) 

Table 5.15 

n = 3 0  

Data Entries Cuts M A X C U T  C P U  time 

R a n d o m - 1  {0, 1, 2} A .  400 0 :23  

R a n d o m - 2  {0, 1, 2} A * 400 0 :15  

R a n d o m - 3  {0, 1, 2} A 400 3 :46  

R a n d o m - 4  {0, 1, 2, 3} A • 400 0:11 

R a n d o m - 5  {0, 1) A 400 4 :20  

R a n d o m - 6  {0, 1} 2x 400 2 :40  
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cases it was less than 2%). The symbols "*(1)"  and "*(2)"  stand for IS, T]- 
inequalities found by the first and second strategy, respectively. 

The computational results obtained for 6 data matrices of  dimension 30 x p, where 
10<~p~ < 13, are shown in Table 5.15. 

5.3. Some remarks 

We have tested to which extent the choice of  the value for M A X C U T  influences 
the overall running time and we have noted that in most of  the cases the better 
performances were achieved for M A X C U T c  {400, 500}, for n up to 60. Especially 

when there are many violations the running times may depend largely on the choice 
of  MAXCUT.  In these cases, if M A X C U T  is less than 300 the improvement  on the 
objective value is very slow. On the other hand, if M A X C U T  is too large (say more 
than 800) the LP's become large very fast, even with eliminations, and they require 

a lot of  time to be optimized. In Table 5.16 we indicate the results obtained for 
n = 34 (1849 violations found in the first iteration) and n = 33 (1507 violations). 

T a b l e  5.16 

n = 34 (worker s )  n = 33 (ca rs )  

M A X C U T  C P U  t ime  M A X C U T  C P U  t ime  

250 4:40 300 2:45 

400 3:18 400 2:35 

500 3:30 500 3:25 

600 4:13 800 3:36 

By comparing the running times for problem instances with about  the same size 
we observed considerable variances. A closer look at the "structures" of  the objective 
function showed that "easy"  problems often have the property that more than 80% 
of the objective function coefficients are positive (or negative), while the problems 
with a more even distribution of positive and negative objective function coefficients 
needed more time for their solution. More exactly, what matters is the distribution 
of the wij in the interval I - p ,  p]. But we do not have sufficient material to derive 
significant statistical conclusions from our impression. 

In Table 5.17 we summarize the computat ional  results obtained for all real data 
and some random data we have mentioned previously. It is an interesting fact that 
for the real data sets, except for the case n =34,  the triangle inequalities were 
sufficient to obtain an opt imum solution. In all cases in which we needed to add 

cuts other than the triangle inequalities, we obtained that the LP-relaxation defined 
by the triangle inequalities produced a very good lower bound for the opt imum 

objective value is very slow. On the other hand, if M A X C U T  is too large (say more 
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Table 5.17 

n Data type of # iter. max max CPU time 
cuts LP size # viol. (min:sec) 

12 Random A ,  4 35 29 0:11 
15 Random A 2 422 357 0:16 
20 Random A ,  3 364 329 0:31 
25 Random A 7 660 741 1:45 
30 Random-1 A • 7 142 94 0:23 
30 Random-2 A ,  4 96 57 0:15 
30 Random-3 A 4 955 1016 3:46 
30 Random-4 2x * 2 33 31 0:11 
30 Random-5 2x 4 945 1406 4:20 
30 Random-6 2x 4 1206 1578 2:47 
30 Wild Cats A 2 555 561 0:23 
33 Cars A 4 1158 1507 2:35 
34 Workers A • 8 1138 1849 3:18 
36 Cetacea A 2 286 274 0:15 
40 Micro A 7 1342 1575 4:17 
54 UNO A 5 1298 2004 4:30 
60 Random 3, * 16 912 742 6:08 

158 UNO-Ia A 6 2333 2003 14:12 
139 UNO-lb A 4 1560 2008 8:38 
158 UNO-2a A 5 1624 2592 9:47 
145 UNO-2b A 5 1818 2513 8:04 
158 UNO-3a A 3 1500 2502 5:27 
147 UNO-3b A 3 1500 2502 4:43 
137 Companies A 9 4019 2558 19:47 

b r a n c h  a n d  b o u n d  p h a s e ,  i f  n e e d e d .  S u r p r i s i n g l y ,  in  n o n e  o f  t h e  p r o b l e m  i n s t a n c e s  

we  n e e d e d  to  e n t e r  t h e  b r a n c h  a n d  b o u n d  p h a s e .  I n  fac t ,  we n e v e r  c a l l e d  o u r  t h i r d  

cu t  g e n e r a t i o n  r o u t i n e  fo r  g e n e r a l  2 - p a r t i t i o n  i n e q u a l i t i e s .  

T h e  p r e s e n t  f o r m  o f  o u r  a l g o r i t h m  s h o u l d  n o t  b e  s e e n  as a d e f i n i t i v e  one .  I t  w o u l d  

b e  i n t e r e s t i n g  to  tes t  s o m e  o t h e r  s t r a t e g i e s  to  see  w h e t h e r  t h e  r u n n i n g  t i m e  c a n  b e  

s p e e d e d  up .  T h u s  f o r  e x a m p l e  in  t h e  c a s e  o f  t h e  v i o l a t e d  t r i a n g l e  i n e q u a l i t i e s ,  

i n s t e a d  o f  u s i n g  o u r  M A X C U T  m o s t  v i o l a t e d  i n e q u a l i t i e s  s t r a t e g y ,  o n e  c o u l d  t ry  

to  a d d  o n l y  v a r i a b l e  d i s j o i n t  t r i a n g l e  i n e q u a l i t i e s .  

A n o t h e r  p o s s i b i l i t y  w o u l d  b e  to  c o n s i d e r  a g a i n  s o m e  o t h e r  c l a s se s  o f  f a c e t - d e f i n i n g  

i n e q u a l i t i e s ,  d e v e l o p  b e t t e r  s e p a r a t i o n  h e u r i s t i c s  a n d  ca l l  t h e m  in  d i f f e r en t  o rd e r s .  

T h e s e  f e a t u r e s  c o u l d  b e  a d d e d  to  t h e  p r e s e n t  c o d e  w i t h o u t  r e q u i r i n g  a n y  s u b s t a n t i a l  

m o d i f i c a t i o n .  

5.4. C o n c l u s i o n s  

O t h e r  c o d e s  fo r  t h e  s o l u t i o n  o f  t he  c l u s t e r i n g  p r o b l e m  c o n s i d e r e d  h e r e  e x i s t - - s e e  

M a r c o t o r c h i n o  a n d  M i c h a u d  (1980,  1981a,  1981b) ,  S c h a d e r  a n d  T f i s h a u s  (1985) ,  

o r  T f i s h a u s  (1983) .  U n f o r t u n a t e l y ,  we w e r e  n o t  a b l e  to  get  h o l d  o f  a n y  o f  t h e s e  

c o d e s .  So we  w e r e  n o t  a b l e  to  e x e c u t e  t h e s e  a l g o r i t h m s  in  t h e  s a m e  e n v i r o n m e n t  in  
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order to compare running times, etc. It is also very hard to draw conclusions from 
the published results of other authors since the performances of  the codes are often 

not documented too well and, even if so, it is unclear how to filter out the performance 
characteristics of the computers and operating systems used. Anyway, we believe 
that our approach is a valid alternative to the existing methods. This opinion, in 
particular, is confirmed by the fact that the running times of  our code are 'quite 
modest and that it can handle large problem sizes consistently well. Moreover, as 
far as we know no other code has ever solved clustering problems of  the size we 

report about here. 

Appendix 

We list in the sequel either the complete data sets or provide references to papers 
where the data of the problem instances mentioned in Chapter 5 can be found. The 

optimum solution we found is listed under the heading "Solution Classes" (SC), 

where we indicate the class to which each object belongs. Thus, in the column "SC",  

objects with the same number are to be interpreted as belonging to the same class. 

Appendix A1. Classification of cetecea 

Reference: Vescia (1985). The parameters and entries in Table A1 are specified as 

follows: 
(i) Morphological parameters. 

1 : Neck. 
O: does not exist, l: exists. 

2: Form of  the head. 
O: cylindrical, 1: conical, 2: with a curved forehead, 3: globular, 4: flat, 5: convex. 

3: Size of  the head. 
O: very big, 1: medium size. 

4: Beak. 
O: missing, 1: large, 2: narrow and short, 3: narrow and long. 

5: Dorsal fin. 
O: missing, l: triangular, 2: falciform, 3: backward and falciform. 

6: Flippers. 
0: small, 1: large and short, 2: medium size, 3: long and narrow. 

7: Set o f  teeth. 
0: on the lower jaw, 1: on the lower and upper jaw, 2: without teeth but long baleens, 3: without teeth 
but thick baleens, 4: without teeth but large baleens. 

9: Blow hole. 
0: on the left side, 1: on the right side, 2: on the middle line, 3: on the middle line with two holes. 

10: Color. 
0: central parts are clearer than dorsal parts, 1: blackish, 2: no pigmentation, 3: spotted. 

14: Longitudinal furrows on the throat. 
0: do not exist, 1: a small number exists, 2: a big number exists. 

(ii) Osteological parameters. 
11: Cervical vertebrae. 

0: free, 1: partly or completely welded. 
12: Lachrymal and jugal bones. 

0: form one piece, 1: are independent. 
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15: Head bones. 
0: symmetr ica l ,  1: s l ight ly  unsymmet r i ca l ,  2: unsymmet r i ca l ,  3: very unsymmet r i ca l .  

(iii) Behav iora l  parameters .  

8: Feeding. 
0: feed on  squish ,  1: feed  on fish, 2: feed on seal,  3: feed on p lank ton .  

13: Habitat. 
0: rivers, 1: t empera te  or w a r m  seas,  2: co ld  seas, 3: coasts,  4: var iable .  

Table  A1 

D a t a  mat r ix  and  so lu t ion  c lasses  (SC) 

Zoolog ica l  n a m e  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SC 

1 Ba laena  

2 Ba laenop te ra  

3 Ba laenop te ra  Mus.  

4 Berard ius  
5 C e p h a l o r h y n c h u s  

6 De lph inap t e ru s  

7 De lph inus  
8 Eschr ich t ius  
9 E u b a l a e n a  

10 G l o b i c e p h a l a  

11 G r a m p u s  

12 H y p e r o o d o n  

13 In ia  
14 Kogia  

15 Lagenorhynchus  

16 Lipotes  
17 Lissode lph is  

18 M e g a p t e r a  

19 M e s o p l o d o n  
20 M o n o d o n  

21 N e o p b a l a e n a  

22 N e o p b o c a e n a  

23 Orcael la  
24 Orcinus  

25 Phocaena  
26 Physeter  
27 Pla tan is ta  

28 Pseudorca  

29 Sota l ia  
30 Sousa 

3 l Stenel la  
32 Steno 

33 S tenode lph i s  
34 Tasmace tus  
35 Turs iops  
36 Z iph ius  

0 5 0 0 0 1 2 3 3 4 1 * 2 0 0 1 

0 4 0 0 3 0 4 3 3 0 0 * 4 2 0 2 

0 4 0 0 3 3 4 3 3 3 0 * 4 2 0 2 

1 2 1 2 2 0 0 0 2 0 1 1 2 1 2 3 
0 1 1 1 2 2 1 0 1 4 1 1 2 0 1 4 

1 3 1 0 0 1 1 1 1 2 0 1 2 0 2 5 

0 2 1 2 2 2 1 1 1 0 1 1 1 0 1 4 
0 1 0 0 0 3 3 3 3 3 0 * 4 1 0 2 
0 5 0 0 0 1 2 3 3 1 1 * 2 0 0 1 

0 3 1 0 2 3 1 0 1 3 1 1 1 0 1 4 

0 3 1 0 2 3 0 0 1 0 1 1 4 0 1 4 
1 2 1 2 2 0 0 0 2 0 1 1 4 1 2 3 

1 2 1 3 1 1 1 1 2 0 0 0 0 0 * 6 

0 0 0 0 1 0 0 0 0 0 1 * 4 0 3 7 

0 2 1 2 2 2 1 1 1 0 1 1 2 0 1 4 

1 2 1 3 1 1 1 1 0 0 0 0 0 0 * 6 
0 1 1 1 0 2 1 1 1 0 1 1 1 0 1 4 

0 4 0 0 3 3 4 3 3 3 0 * 4 2 0 2 

1 1 1 2 2 0 0 0 2 0 1 1 4 1 2 3 
1 3 1 0 0 1 0 0 1 3 0 1 2 0 2 5 

0 1 0 0 3 0 2 3 3 0 1 * 2 0 0 1 
0 1 1 0 0 0 1 1 1 3 1 1 4 0 1 4 

1 3 1 0 2 0 1 1 1 1 1 1 3 0 1 4 

0 3 1 0 2 1 1 2 1 3 1 1 2 0 1 4 
0 1 1 0 1 0 1 1 1 0 1 1 4 0 1 4 
0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 7 
1 2 1 3 1 1 1 1 2 1 0 0 0 0 1 6 
0 3 1 0 2 3 1 0 1 1 1 1 4 0 1 4 

0 2 1 2 2 2 1 1 1 2 1 1 3 0 1 4 

0 2 1 2 2 2 1 1 1 0 1 1 3 0 1 4 

0 2 1 2 2 2 1 1 1 3 1 1 4 0 1 4 

0 1 1 2 2 2 1 1 1 0 1 1 1 0 1 4 

1 2 1 3 1 1 1 1 2 1 0 0 0 0 * 6 
0 3 1 2 2 0 0 0 2 0 1 1 2 1 2 3 
0 2 1 2 2 2 1 1 1 0 1 1 4 0 1 4 
0 1 1 2 2 0 0 0 2 3 1 1 4 1 2 3 

The miss ing  data  are represen ted  by  " * ' .  
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Appendix A2. Classification of wild cats 

Reference: Marcotorchino (1981). The parameters and entries in Table A2 are 

specified as follows: 

(i) Morphological parameters. 
1 : Aspect of the pelt. 

1: without spots, uniformly colored, 2: with spots, ~ with stripes, 4: marmoreal (like marble). 
2: Fur. 

0: short-haired, 1: long-haired. 
3: Ears. 

1: round or rounded, 2: pointed. 
4: Height (H) up to shouMer. 

1: H~<50cm, 2: 5 0 c m < H ~ < 7 0 c m ,  3: H > 7 0 c m .  
5: Weight ( W). 

1: W<~10kg, 2: 10kg< W~<80kg, 3: W>80kg .  
6: Length (L) of  body. 

1: L~<80cm, 2: 8 0 c m <  L<~ 150 cm, 3: L >  150cm. 
7: Length of tail compared with length of body. 

1: short, 2: median, 3: long. 
8: (Teeth) Canines. 
0: little developed, 1: very developed. 

9. (Larynx) Lingual bone. 
0: absent, 1: present. 

10: Retractile claws. 
0: no, 1: yes. 

(ii) Behavioral parameters. 
11 : Predatory behavior. 

1: diurnal, 2: diurnal and nocturnal, 3: nocturnal. 
12: Type of prey. 

1: big prey (antelope, buffalo, etc.), 2: big or small prey, 3: small prey (shrewmouse, little monkey). 
13: Climbs trees. 

0: no, 1: yes. 
14: Chases after or lies in wait for the prey. 

0: wait, 1: chase. 

Table A2 

Data matrix and solution classes (SC) 

Wild cats 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SC 

1 Lion 1 0 1 3 3 3 2 1 1 1 1 1 0 1 1 
2 Tigre 3 0 1 3 3 3 2 1 1 1 3 1 0 0 1 
3 Jaguar 2 0 1 3 3 2 1 1 1 1 2 1 1 0 2 
4 Leopard 2 0 1 3 3 2 2 1 1 1 3 2 1 0 2 
5 Once 2 1 1 2 2 2 3 1 1 1 1 2 1 0 2 
6 Guepard 2 0 1 3 2 2 3 0 0 0 1 2 0 1 3 
7 Puma 1 0 1 2 3 2 3 1 0 1 2 2 1 0 2 
8 Panth. Nebuleuse 4 0 1 2 2 2 3 1 1 1 3 3 1 0 2 
9 Serval 2 0 2 2 2 2 1 0 0 1 1 3 1 1 4 

10 Ocelot 2 0 1 2 2 2 2 0 0 1 2 3 1 0 4 
11 Lynx 2 1 2 2 2 2 1 1 0 1 2 2 1 0 2 
12 Caracal 1 0 2 2 2 1 1 0 0 1 2 3 1 1 4 
13 C. Viverrin 2 0 1 1 1 2 2 0 0 1 2 3 0 0 4 
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Table  A 2 - - c o n t i n u e d  

Wi ld  cats 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SC 

14 J a g u a r u n d i  1 0 1 1 2 2 3 0 0 1 2 3 1 0 4 

15 C. Chaus  1 1 2 1 2 1 2 0 0 1 3 3 1 0 4 

16 C. Dore  1 0 1 1 1 1 2 0 0 1 3 3 1 0 4 

17 C. M a r g u a y  2 0 1 1 1 1 2 0 0 1 3 3 1 0 4 

18 C. Marger i t e  1 1 1 1 1 1 2 0 0 1 2 3 0 0 4 

19 C. Cafe r  3 0 1 1 1 1 2 0 0 1 3 3 1 1 4 
20 C. Ch ine  1 0 2 1 1 1 1 0 0 1 2 3 1 0 4 

21 C. Bengale  2 0 1 1 1 1 2 0 0 1 3 3 1 0 4 

22 C. Rou i l l eux  2 0 1 1 1 1 2 0 0 1 2 3 1 0 4 
23 C. Mala i s  1 1 1 1 1 1 1 0 0 1 3 3 1 0 4 
24 C. Borneo  1 0 l 1 1 1 2 0 0 1 3 3 1 0 4 

25 C. Negr ipes  2 0 1 1 1 1 1 0 0 1 2 3 1 1 4 

26 C. M a n u l  1 1 1 1 1 1 1 0 0 1 3 3 1 0 4 

27 C. Marb re  4 0 1 1 1 1 3 0 0 1 3 3 1 0 4 

28 C. Tigr in  2 0 1 1 1 1 2 0 0 1 3 3 1 0 4 

29 C. T e m m i n c k  1 0 1 1 1 1 2 0 0 1 3 3 1 0 4 

30 C. Andes  2 1 1 1 1 2 2 0 0 1 3 2 1 0 4 

Appendix  A3. Classification o f  workers 

R e f e r e n c e :  O p i t z  a n d  S c h a d e r  ( 1 9 8 4 ) .  T h e  p a r a m e t e r s  i n  T a b l e  A 3  a r e  s p e c i f i e d  a s  

f o l l o w s :  

1: Type of work. 2: Working speed. 3: Noise level. 4: Humidity. 5: Friendly superiors. 6: Unfriendly 
superiors. 7: Headman. 8: Friendly colleagues. 9: Unfriendly colleagues. 10: Colleagues. l l :  Salary. 
12: Fairness w.r.t, payment. 13: Career perspectives. 

Table  A3 

Da ta  mat r ix  and  solu t ion  classes  (SC) 

1 2 3 4 5 6 7 8 9 10 11 12 13 SC 

1 - 1  - 1  - 1  1 1 1 - 1  1 1 1 - 1  - 1  1 1 
2 0 1 1 1 - 1  1 0 1 1 0 - 1  - 1  1 2 

3 1 - 1  1 1 1 1 1 1 - 1  0 1 l 1 3 

4 0 - 1  1 1 1 1 0 1 - 1  0 - 1  - 1  - 1  2 
5 0 1 - 1  1 1 1 1 1 1 1 1 0 1 3 

6 1 1 1 0 1 - 1  1 1 - 1  1 - 1  1 0 3 

7 1 1 1 1 1 1 1 1 1 0 0 - 1  - 1  3 
8 1 1 1 1 1 - 1  1 1 1 1 1 - 1  0 3 

9 1 1 - 1  0 1 1 1 1 1 0 1 l 1 3 

10 1 - 1  1 1 - 1  1 0 1 1 1 - 1  - 1  1 2 

11 0 - 1  1 1 1 1 1 1 - 1  0 0 0 0 3 

12 1 - 1  1 - 1  1 1 1 - 1  1 0 1 - 1  1 3 

13 1 1 1 0 1 1 1 1 - 1  0 1 1 1 3 
14 1 1 1 0 1 1 1 1 1 0 1 1 1 3 

15 0 1 1 1 1 1 1 1 - 1  0 - 1  - 1  0 3 
16 1 1 1 0 1 1 1 1 - 1  0 0 0 0 3 

17 1 1 1 1 1 1 1 1 - 1  0 0 0 1 3 

18 0 1 1 1 1 1 1 1 - 1  0 1 1 0 3 

19 0 1 1 1 1 1 1 1 1 0 1 - 1  - 1  3 
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T a b l e  A 3 - - c o n t i n u e d  
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1 2 3 4 5 6 7 8 9 10 11 12 13 SC 

20 1 1 1 0 1 1 1 1 1 1 - 1  1 0 3 

21 1 1 1 1 1 1 1 1 - 1  0 0 1 1 3 

22 1 1 1 0 1 1 1 1 1 1 1 1 1 3 
23 0 - 1  1 1 1 1 1 1 1 1 0 - 1  0 3 

24 0 1 - 1  0 1 - 1  1 1 1 0 1 1 1 3 

25 --1 1 1 0 - 1  1 - 1  1 1 0 0 1 1 1 

26 0 1 1 1 1 1 0 - 1  - 1  - 1  - 1  - 1  - 1  2 

27 1 1 1 1 - 1  1 1 1 1 1 1 1 1 3 

28 1 1 - 1  0 1 1 1 1 1 0 - 1  - 1  1 3 

29 1 1 - 1  1 1 1 1 1 1 0 1 1 1 3 

30 0 1 - 1  0 1 1 - 1  1 1 0 1 1 1 3 

31 - 1  - 1  1 1 - 1  1 1 - 1  - 1  1 0 - 1  - 1  2 
32 0 - 1  1 1 1 - 1  - 1  1 1 0 - 1  - 1  0 2 

33 0 - 1  1 1 1 1 1 1 1 0 1 1 1 3 

34 0 1 1 1 - 1  - 1  0 1 - 1  0 0 1 1 2 

(1): S a t i s f i e d / m a n y  (5,6,8,9),  ( - 1 ) :  U n s a t i s f i e d / f e w ,  (0): U n d e c i d e d .  

Appendix A4. Classification of cars 

Reference: Hartigan (1975). The parameters in Table A4 are specified as follows: 
1: Brake system. 2: Fuel system. 3: Electrical. 4: Exhaust. 5: Steering. 6: Engine, mechanical 7: Rattles 

and squeaks. 8: Rear axle. 9: Rust. 10: Shock absorbers. 11: Transmission, clutch. 12: Wheel alignment. 
13: Other. 

T a b l e  A4 

D a t a  ma t r i x  a n d  so lu t ion  c lasses  (SC) 

C a r  1 2 3 4 5 6 7 8 9 10 11 12 13 SC 

1 A M C  A m b a s s a d o r  8 1 0 0 0 0 0 0 1 0 0 0 0 0 1 

2 Buick  Spec ia l  6 0 0 0 0 0 0 1 0 1 0 0 0 1 1 

3 Buick  Spec ia l  8 0 0 0 0 0 0 1 0 0 1 0 1 1 1 

4 Buick  8 Full  0 0 0 1 0 1 1 0 1 1 0 1 0 1 

5 Buick  Riv ie ra  0 0 1 1 0 0 0 0 0 1 0 0 0 1 

6 C a d i l l a c  C h e v y  II 0 1 0 0 1 0 1 1 1 0 0 1 0 2 

7 Cheve l l e  6 0 0 0 0 0 1 1 0 1 0 0 0 0 1 

8 Cheve l le  8 0 1 0 1 1 0 1 0 1 1 0 1 0 2 

9 C h e v r o l e t  Full  0 1 1 1 1 0 1 1 1 1 1 1 0 2 

10 C o r v a i r  6 0 1 0 0 1 1 0 1 0 1 1 1 1 3 

11 Corve t t e  0 0 0 1 0 0 1 1 0 0 1 0 0 1 

12 C h r y s l e r  N e w p o r t  1 0 0 0 0 0 0 0 0 0 0 0 0 1 

13 N e w  Y o r k e r  1 0 0 0 0 0 0 1 0 0 0 0 1 1 
14 D o d g e  Ful l  Size 1 0 0 0 0 0 1 0 0 1 0 0 0 1 

15 F a l c o n  6 0 0 0 0 0 0 1 0 0 0 1 1 0 1 

16 F a i r l a n e  6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

17 F a i r l a n e  8 0 0 0 1 0 0 1 1 0 0 0 1 0 1 

18 F o r d ,  Ful l  Size 0 0 0 1 1 0 0 0 0 1 0 1 1 1 

19 T h u n d e r b i r d  0 0 1 0 1 1 0 0 0 0 0 1 1 1 
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Table A4---continued 

Car 1 2 3 4 5 6 7 8 9 10 11 12 13 SC 

20 Mercury Full 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

21 Olds Full 1 1 0 0 0 0 1 0 0 1 0 1 0 1 
22 Plymouth Full 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
23 Pontiac Tempest 0 1 0 0 0 0 1 0 1 1 0 1 0 1 

24 Pontiac Full 1 1 1 0 0 0 1 0 1 1 0 1 0 2 

25 Rambler Rebel 6 0 0 1 0 0 0 0 1 0 0 1 0 1 1 
26 Mercedes 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

27 MG 1100 0 0 1 1 0 0 0 0 0 0 0 0 0 1 

28 Peugeot 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
29 Porsche 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

30 Renault 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

31 Volvo 0 0 0 1 0 0 0 1 0 0 0 0 0 1 
32 VW bug 1 0 1 1 1 1 0 0 0 0 1 0 0 4 

33 VW bus 0 0 1 0 0 1 0 0 1 0 1 0 0 1 

The "1" means greater than average frequency of repair  in 1962-1967. 

Appendix A5. Classification of micro computers 

Reference: Chah (1984). The parameters in Table A5 are specified as follows: 
1 : Color Monitor. 2: Disk Operating System CP/M. 3: Disk Operating System MS-DOS. 4: Disk Operating 

System "'other". 5: Processor ( 1 : 8  bits, 2 : 1 6  bits, 3 : 3 2  bits). 6: Parallel Interface. 7: Serial Interfaee. 
8: IEEE 488 Interface. 9: Hard Disk (0: if it does not exist, 1 :5  Mb, 2 :10  Mb). 10: Number of diskette 
drives (1 or 2). 11: Price (F.F.). 12: Random Access Memory, configuration (Kb). 13: Random Aceess 
Memory, maximum (Kb). 14: Mass Storage, Diskette Unit (Kb). 

Table A5 

Data matrix and solution classes (SC) 

Computer  1 2 3 4 5 6 7 8 9 10 11 12 13 14 SC 

1 PAP 0 0 2 0 2 1 1 1 0 1 20000 192 512 720 1 

2 QX 10 1 2 0 0 1 2 1 1 0 2 23500 192 250 320 2 

3 MACINTOSH 0 0 0 2 3 0 2 0 0 1 26000 128 512 400 3 
4 TI PC 2 2 2 0 2 2 1 0 0 1 26300 128 768 320 4 

5 PAP (2) 0 0 2 0 2 1 1 1 0 2 27200 192 512 720 1 

6 APRICOT 0 0 2 0 2 2 2 ! 0 2 28400 256 768 315 4 
7 Z 150 0 0 2 0 2 2 2 0 0 2 28500 320 640 360 4 
8 GOUPIL 3 0 2 0 0 1 2 2 0 0 2 29700 64 1024 360 2 

9 APPLE 3 0 0 0 2 1 1 2 1 1 1 35000 256 256 140 5 

10 TANDY2000  1 0 2 0 2 2 2 0 0 2 30200 128 768 720 4 
11 IBM PC 1 1 2 0 2 2 1 0 0 2 36100 128 640 320 4 

12 TI PC (2) 2 2 2 0 2 2 1 0 0 2 39000 256 768 320 4 

13 APPLE 2E 1 1 0 2 1 1 1 1 1 1 39400 128 832 140 5 

14 TELE PC 1 0 2 0 2 2 2 1 2 1 59200 256 640 360 4 
15 PAP (3) 0 0 2 0 2 1 1 1 2 1 47400 192 512 720 1 

16 IBM PC XT 1 1 2 0 2 2 1 0 2 1 51000 128 640 320 4 
17 Z 150 (2) 0 2 2 0 2 2 2 0 2 2 51500 320 640 360 4 
18 TANDY 2000 (2) 1 0 2 0 2 2 2 0 2 2 52200 128 768 720 4 
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Table A5--cont inued 
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Computer  1 2 3 4 5 6 7 8 9 10 11 12 13 14 SC 

19 VICTOR S1 1 2 2 0 2 2 2 1 2 2 66000 256 896 1228 4 
~'~'~ wj 200 nv _9 0 0_ l 2 2 0 0 2 22500 64 64 256 2 

21 AS 100 2 1 2 0 2 2 2 2 0 2 32000 128 512 640 4 

22 MZ 35 1 0 2 2 1 2 2 0 0 2 34000 136 372 400 4 

23 BASIS 108 1 0 0 2 1 2 2 1 0 2 28500 384 384 160 3 

24 L I S A 2  0 0 0 2 3 2 1 1 0 1 35500 512 512 400 3 
25 EUROPE PC 1 0 2 0 2 2 2 0 2 1 47400 128 1024 327 4 
26 PSI 80 0 2 0 0 1 2 2 0 0 2 47800 80 256 308 2 
27 CORONA PC 2 1 1 2 0 2 2 2 1 2 2 45000 256 512 320 4 

28 OPLITE 1 0 2 0 2 2 2 0 0 2 33500 256 640 360 4 

29 HORIZON 0 2 0 0 1 2 2 0 0 2 35000 64 576 360 2 
30 FOXY 1 1 2 0 2 2 2 1 2 1 51000 256 1024 360 4 

31 SKS 2500 0 2 0 0 1 1 2 1 0 2 32000 64 256 800 2 

32 ZEPHYR 0 2 0 0 1 2 2 0 0 2 41400 64 64 640 2 

33 MBC 4050 0 2 0 0 2 2 2 0 0 2 35600 256 1024 640 2 
34 SANCO 8000 0 2 0 0 1 2 2 0 0 2 26100 70 192 400 2 
35 IPC MODEL 15 0 2 0 0 1 0 2 0 0 2 43000 64 512 782 2 
36 DESKTOP 10 0 1 2 0 2 0 2 1 0 2 44800 128 768 360 4 

37 LISA 2-S 0 0 0 2 3 2 1 1 1 1 47400 512 1024 400 3 

38 NEC PC 8000 0 0 0 2 1 2 1 1 0 2 31800 32 64 320 3 
39 M 20 0 0 0 2 2 2 2 1 0 2 21600 128 512 286 3 

40 TRS 80 MOD 12 0 0 0 2 1 2 2 0 0 1 32000 80 768 422 2 

(0): The feature does not exist, (1): The feature is optional,  (2): The feature exists. 

Appendix  A6. Votes o f  54 member  states o f  the U N O  

R e f e r e n c e :  M a r c o t o r c h i n o  ( 1 9 8 1 ) .  S e e  T a b l e  A 6 .  

Table A6 

Data matrix and solution classes (SC) 

States a b c SC States a b c SC States a b c SC 

1 U.S.A. 3 3 1 1 16 COLU 5 '2  1 3 31 LUXE 3 3 1 1 
2 CANA 3 2 1 1 17 VENE 3 1 1 1 32 FRAN 3 2 3 4 

3 CUBA 1 5 3 2 18 GUYA 5 1 1 3 33 SPAI 3 2 1 1 
4 HAlT 5 1 1 3 19 ECUA 3 5 2 5 34 PORT 5 3 2 6 

5 DOMI 1 1 1 2 20 PERU 3 1 1 1 35 POLA 1 1 3 2 

6 JAMA 3 1 1 1 21 BRAZ 3 2 1 1 36 AUST 3 2 2 4 

7 TRIN 3 1 1 1 22 BOLI 5 1 1 3 37 H U N G  1 1 3 2 

8 BARB 5 1 2 3 23 PARA 3 2 1 1 38 CZEC 1 1 3 2 
9 MEXI 3 1 1 1 24 CHIL 3 1 1 1 39 ITAL 3 2 1 1 

10 GUAT 3 1 1 1 25 ARGE 3 1 1 1 40 MALT 5 5 1 3 
11 HOND 3 2 1 1 26 URUG 3 5 1 1 41 ALBA 1 5 3 2 

12 E L S  3 2 1 1 27 U.K. 3 3 1 1 42 YUGO 1 1 3 2 

13 NICA 3 2 1 1 28 IREL 3 2 1 1 43 GREE 3 1 1 1 
14 COST 3 1 1 1 29 NETH 3 3 1 1 44 CYPR 3 1 1 1 

15 PANA 3 1 1 1 30 BELG 3 3 1 1 45 BULG 1 1 3 2 
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Table A6--continued 

States a b c SC States a b c SC States a b c SC 

46 ROMA 1 1 3 2 49 BYEL 1 1 3 2 52 NORW 3 2 3 4 
47 USSR 1 1 3 2 50 FINL 2 2 3 4 53 DENM 3 2 3 4 
48 UKRA 1 1 3 2 51 SWED 3 2 3 4 54 ICEL 3 2 1 1 

(1): In favour, (2): Against, (3): Abstaining, (5): Absent. 

Appendix A7. Votes o f  all member states o f  the U N O  

R e f e r e n c e :  U N O  (1985) .  

R e m a r k .  ( a )  T h e  v o t e s  c o n s i d e r e d  h e r e  a r e  t h o s e  w h i c h  w e r e  r e c o r d e d  w h e n  t h e  

s e s s i o n  w a s  h e l d .  

(b )  T h e  s t a t e s  w h i c h  a n n o u n c e d  t h a t  t h e y  w e r e  n o t  p a r t i c i p a t i n g  in  a v o t e  a r e  

c o n s i d e r e d  h e r e  as  " a b s e n t " .  

A7.1. Votes on Resolutions 39/119-120-121 

T h e  p a r a m e t e r s  in  T a b l e  A7.1  a re  s p e c i f i e d  as  f o l l o w s :  

A: 39/l19-Situation of human rights and fundamental freedoms in E1 Salvador. 
B: 39/120-Situation of human rights and fundamental freedoms in Guatemala. 
C: 39/121-Situation of human rights and fundamental freedoms in Chile. 

T h e  s o l u t i o n  c l a s s e s  in  T a b l e  A7.1 a re  s p e c i f i e d  as  f o l l o w s :  
sc1-  Solution classes with all states. 
SC2: Solution classes without considering states which were absent at least once. 

Table A7.1 

Data matrix and solution classes 

States A B C SC1 SC2 

1 Afganistan 0 0 0 1 1 
2 Albania 0 3 3 2 
3 Algeria 0 0 0 1 1 
4 Angora 0 0 0 1 1 
5 Antigua and Barbuda 3 3 3 2 
6 Argentina 0 0 0 1 1 
7 Australia 0 0 0 1 1 
8 Austria 0 0 0 1 1 
9 Bahamas 2 2 2 3 2 

10 Bahrain 0 0 0 1 1 
11 Bangladesh 1 1 1 4 3 
12 Barbados 0 0 0 1 1 
13 Belgium 0 0 0 1 1 
14 Belize 2 2 2 3 2 
15 Benin 0 0 0 1 1 
16 Bhutan 2 2 2 3 2 
17 Bolivia 3 3 3 2 
18 Botswana 0 0 0 1 1 
19 Brazil 2 2 1 3 2 
20 Brunei Darussalam 2 2 2 3 2 
21 Bulgaria 0 0 0 1 1 
22 Burkina Faso 0 0 0 1 1 
23 Burma 2 2 2 3 2 
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States A B C SCI  SC2 

24 Burund i  0 0 0 1 1 

25 Byeloruss ia  0 0 0 1 1 
26 C a m e r o o n  3 3 2 2 

27 C a n a d a  0 0 0 1 1 

28 Cape  Verde 0 0 0 1 1 

29 Cent ra l  Afr ican  Repub l i c  2 2 2 3 2 
30 C h a d  2 2 2 3 2 

31 Chi le  1 1 1 4 3 
32 C h i n a  2 2 2 3 2 

33 C o l o m b i a  0 2 3 5 

34 C o m o r o s  3 3 3 2 
35 C o n g o  0 0 0 1 1 

36 Cos ta  Rica  0 2 0 1 1 
37 C u b a  0 0 0 1 1 

38 Cyprus  0 0 0 1 1 

39 Czechos lovak i a  0 0 0 1 1 

40 Democra t i c  K a m p u c h e a  2 2 2 3 2 
41 Democra t i c  Yemen  0 0 0 1 1 
42 D e n m a r k  0 0 0 1 1 

43 Dj ibout i  3 3 3 2 

44 D o m i n i c a  3 3 3 2 

45 D o m i n i c a n  Repub l i c  0 2 0 1 1 
46 Ecuado r  2 2 2 3 2 

47 Egypt  0 2 2 3 2 

48 El Sa lvador  1 1 1 4 3 

49 Equa to r i a l  G u i n e a  2 2 0 3 2 
50 E t h i o p i a  0 0 0 1 1 

5l  Federa l  Repub l i c  of  G e r m a n y  2 0 0 1 1 
52 Fiji 2 2 2 3 2 

53 F in l and  0 0 0 1 1 

54 France  0 0 0 1 1 

55 G a b o n  2 2 2 3 2 
56 G a m b i a  0 0 0 1 1 

57 G e r m a n  Democra t i c  Repub l i c  0 0 0 1 1 
58 G h a n a  0 0 0 1 1 
59 Greece  0 0 0 1 1 

60 G r e n a d a  3 3 3 2 

61 G u a t e m a l a  1 1 1 4 3 

62 G u i n e a  0 2 0 1 1 

63 Gu inea -Bi s sau  3 3 3 2 
64 G u y a n a  0 0 0 1 1 

65 Hai t i  1 1 1 4 3 

66 H o n d u r a s  1 2 2 3 2 
67 H u n g a r y  0 0 0 1 1 
68 I ce l and  0 0 0 1 1 
69 Ind ia  0 0 0 1 1 

70 I n d o n e s i a  1 1 1 4 3 

71 Iran 0 0 0 1 1 

72 I raq  0 0 3 1 
73 I re land  0 0 0 1 1 

74 Israel  3 3 3 2 
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Table A7.1--continued 

States A B C SC1 SC2 

75 Italy 0 0 0 1 1 

76 Ivory Coast 2 2 2 3 2 
77 Jamaica  0 0 0 1 1 

78 Japan 2 2 2 3 2 
79 Jordan 2 2 2 3 2 

80 Kenya 0 0 0 1 1 

81 Kuwait 0 0 0 1 1 
82 Lao People's Democratic Rep. 0 0 0 1 1 

83 Lebanon 3 3 1 2 

84 Lesotho 0 0 0 1 1 
85 Liberia 2 2 2 3 2 
86 Libya 0 0 0 1 1 
87 Luxembourg 0 0 0 1 1 

88 Madagascar 0 0 0 1 1 

89 Malawi 2 2 2 3 2 

90 Malaysia 2 2 2 3 2 

91 Maldives 2 2 0 3 2 
92 Mali 0 0 0 1 1 

93 Malta 0 0 0 1 1 

94 Mauri tania 0 0 0 1 1 
95 Mauritius 0 0 0 1 1 

96 Mexico 0 0 0 1 1 
97 Mongolia 0 0 0 1 1 

98 Morocco ! 1 1 4 3 

99 Mozambique 0 0 0 ! 1 

100 Nepal 2 2 2 3 2 

101 Netherlands 0 0 0 1 1 

102 New Zealand 0 0 0 1 1 
103 Nicaragua 0 0 0 1 1 
104 Niger 2 2 2 3 2 

105 Nigeria 0 2 2 3 2 

106 Norway 0 0 0 1 1 

107 Oman 2 2 2 3 2 

108 Pakistan 2 1 1 4 3 
109 Panama 0 2 2 3 2 

110 Papua New Guinea 2 2 2 3 2 

111 Paraguay 1 1 1 4 3 

112 Peru 0 2 2 3 2 
113 Philippines 2 2 2 3 2 

114 Poland 0 0 0 1 1 
115 Portugal 0 0 0 1 1 

116 Qatar 0 0 0 1 1 

117 Romania 2 2 0 3 2 

118 Rwanda 0 0 0 1 1 

119 Saint Lucia 3 3 3 2 
120 Saint Vicent 0 3 2 6 

121 Samoa 0 0 0 l 1 
122 Sao Tome and Principe 0 0 0 1 1 

123 Saudi Arabia 0 0 2 l 1 

124 Senegal 0 0 0 1 1 

125 Seychelles 0 0 0 l 1 
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States A B C SC1 SC2 

126 Sierra Leone 0 0 0 1 1 
127 Singapore 2 2 2 3 2 
128 Solomon Islands 3 3 3 2 
129 Somalia 2 2 2 3 2 
130 Spain 0 0 0 1 1 
131 Sri Lanka 2 2 0 3 2 
132 St. Christopher and Nevis 3 3 3 2 
133 Sudan 2 2 2 3 2 
134 Suriname 2 2 2 3 2 
135 Swaziland 0 0 0 1 1 
136 Sweden 0 0 0 1 1 

137 Syria 0 0 3 1 
138 Thailand 2 2 2 3 2 
139 Togo 0 0 0 1 1 
140 Trinidad Tobago 2 2 2 3 2 
141 Tunisia 0 0 0 1 1 
142 Turkey 2 2 2 3 2 
143 Uganda 0 0 0 1 1 
144 Ukraine 0 0 0 1 1 
145 USSR 0 0 0 1 1 
146 United Arab Emirates 0 0 0 1 1 
147 United Kingdom 2 0 0 1 1 
148 United Republic of Tanzania 0 0 0 1 1 
149 United States of America 1 1 1 4 3 
150 Uruguay 1 1 l 4 3 
151 Vanuatu 0 0 0 1 1 
152 Venezuela 0 2 0 1 1 
153 Viet Nam 0 0 0 1 1 
154 Yemen 2 2 2 3 2 
155 Yugoslavia 0 0 0 1 1 
156 Zaire 2 2 2 3 2 
157 Zambia 0 0 0 1 1 
158 Zimbabwe 3 0 0 1 

A7.2. Votes on Resolution 39/148: "Review of  the implementation of the recomenda- 

tions and decisions adopted by the General Assembly at its tenth special session" 

T h e  p a r a m e t e r s  in  T a b l e  A7 .2  a r e  s p e c i f i e d  a s  f o l l o w s :  

A: Unilateral nuclear disarmament measures. B: Bilateral nuclear arms negotiations. C: Nuclear 
weapons in all aspects. D: Non-use of nuclear weapons and prevention of nuclear war. E: Prohibition 
of the nuclear neutron weapon. F: Climatic effects of nuclear war: nuclear winter. G: Bilateral nuclear-arms 
negotiations. H: United Nations Institute for Disarmament Research. J: Disarmament Week. K: Cessation 
of the nuclear-arms race and nuclear disarmament. L: Implementation of the recomendations and 
decisions of the tenth special session. M: International co-operation for disarmament. N: Report of the 
Conference on Disarmament. O: Implementation of the recomendations and decisions of the tenth 
special session. P: Prevention of nuclear war. 

T h e  s o l u t i o n  c l a s s e s  in  T a b l e  A7 .2  a r e  s p e c i f i e d  as  f o l l o w s :  

SCl: Solution class considering all states. 
SC2: Solution class without considering states which were absent at least 8 times. 
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T a b l e  A7.2 

D a t a  ma t r i x  a n d  so lu t ion  c lasses  

(*) A B C D E F G H J K L M N O P SC1 SC2 

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

6 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

7 0 0 1 1 2 0 2 0 2 2 0 1 2 2 0 3 2 

8 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0 1 1 

9 0 2 2 2 2 0 2 0 0 2 0 2 0 0 0 1 1 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

11 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

12 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

13 2 0 1 1 1 2 1 0 2 l 2 1 2 1 1 3 2 
14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

15 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

16 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

17 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

19 0 0 0 2 2 0 2 0 0 0 0 0 0 0 0 1 1 

20 0 0 0 3 2 0 0 0 0 0 3 3 0 0 0 1 1 

21 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

22 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
23 0 2 0 2 2 0 0 0 0 0 3 3 0 0 0 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

25 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

26 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 

27 2 0 1 1 1 0 1 0 2 1 2 1 2 1 2 3 2 

28 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1 

29 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 2 

30 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

31 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 1 1 

32 0 0 3 2 2 0 0 0 2 0 0 3 0 0 0 1 1 

33 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 1 1 

34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

35 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 

35 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 

36 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 1 1 

37 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

38 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 1 1 
39 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

40 0 0 3 3 3 3 0 0 3 0 3 3 0 0 0 1 1 

41 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

42 0 0 1 1 2 0 2 0 2 2 0 1 2 0 2 3 2 

43 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

44 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

45 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 

46 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

47 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

48 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 
49 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 1 1 
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(*) A B C D E F G H J K L M N O P SC1 SC2 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 
76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 
94 

95 

96 

97 

98 

99 

100 

0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 

2 0 1 1 1 2 1 0 2 1 2 1 2 1 1 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 

2 0 1 1 1 2 1 0 2 1 0 1 2 1 1 3 2 

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 2 0 0 2 0 0 0 0 0 0 2 2 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 2 2 0 2 2 0 0 0 0 0 0 0 1 1 

0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 
0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 0 1 1 2 0 2 0 2 1 0 1 2 2 2 3 2 

0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 

0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 

0 0 2 0 2 0 0 0 0 0 0 2 0 0 0 1 1 

0 0 1 1 l 2 1 2 2 2 2 1 2 1 2 3 2 

2 0 1 1 1 2 1 0 2 1 2 1 2 1 1 3 2 

0 0 2 3 2 0 0 0 2 0 0 0 0 0 0 1 1 

0 0 3 2 3 0 0 0 0 0 0 3 0 0 0 1 1 

2 0 1 1 1 0 2 2 0 2 0 1 2 2 2 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 1 1 

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 1 1 2 2 1 0 2 1 2 1 2 1 2 3 2 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 2 0 0 0 0 0 3 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 3 3 3 3 0 0 0 0 0 0 3 0 0 0 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 1 1 

0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 1 1 
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(*) A B C D E F G H J K L M N O P SC1 SC2 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 
112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 
130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 
143 

144 

145 

146 

147 

148 

149 

150 
151 

2 0 1 1 2 2 1 0 2 1 2 1 2 1 2 3 2 

2 0 1 1 2 0 2 0 2 2 2 1 2 2 2 3 2 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 

0 0 1 1 2 0 2 0 2 1 0 1 2 2 2 3 2 

0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

0 0 2 2 2 0 0 0 2 2 0 2 0 0 0 1 1 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 3 2 2 0 2 0 0 0 0 3 0 0 0 1 1 

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

2 0 1 1 1 0 1 0 0 1 0 1 2 1 2 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 1 1 

0 0 0 2 2 0 0 0 0 2 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

0 2 3 0 3 0 3 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 1 1 

0 0 2 0 2 0 0 0 0 0 0 3 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 3 2 0 0 0 3 0 3 3 0 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 1 1 2 0 2 0 0 2 0 1 2 2 2 3 2 

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 

0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 1 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

0 0 2 0 2 0 0 0 0 0 2 2 0 0 0 1 1 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 1 1 1 2 1 0 2 1 0 1 2 1 2 3 2 
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 1 1 1 2 1 0 2 1 2 1 2 2 1 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 0 1 1 1 2 1 1 2 1 2 1 1 1 1 3 2 

0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 
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(*) A B C D E F G H J K L M N O P SC1 SC2 

152 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 
153 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
155 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
156 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 1 1 
157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
158 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

(0): In favour, (1): Against, (2): Abstaining, (3): Absent. 
(*) The States 1 to 158 are precisely those given in Table A7.1. 

A7.3. Votes on Resolution 39/99: United Nations'Relief and Works for Palestine 
Refugees in the Near East 
The parameters are specified as follows: 

A: Assistance to Palestine refugees. D: Offers by Member States of grants and scholarships for higher 
education including vocational training, for the Palestine refugees. E: Palestine refugees in the Gaza 
Strip. F: Resumption of the ration distribution to Palestine refugees. G: Population and refugees displaced 
since 1967. H: Revenues derived from Palestine refugee properties. I: Protection of Palestine refugees. 
J: Palestine refugees in the West Bank. K: University of Jerusalem "AI-Quds" for Palestine refugees. 

For the data matrix see UNO (1985) or Wakabayashi (1986). Consider the states 
from 1 to 158 as in Table A7.1 and the 9 motions above specified. The solution 

classes are specified as follows: 

Solution classes considering all states: 
Class 1: 5, 34, 44, 60, 71, 119, 120, 128, 132, 135, 151. Class 2: 74, 149. Class 3: all the others. 

Solution classes without considering states which were absent at least 5 times: 
Class 1: 74, 149. Class 2: all the others. 

Appendix A8. Classification of companies 
Reference: Sp~ith (1977). The complete data set can be found in Spfith (1977). The 

solutions classes are specified as follows: 

Class 1:10 and 107. Class 2: all the others. 
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