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Abstract. Given a graph G = [V,E], a subset A ç E is called a clique partitioning of G if
there is a partition of V into sets VI, V2,'" ,Vk such that the subgraph induced by each Vi is
a clique and A = U~=duv : u,v E Vi,u =F v}. The clique partitioning polytope Pn is defined
as the convex hull of the incidence vectors of a11clique partitionings of the complete graph of
order n. In this paper we present a condition characterizing the adjacency of vertices on the
polytope Pn. We also prove that the diameter ofPn is equal to three for every n ~ 4.

1. Introduction
The clique pàrtitioning polytope Pn is defined as the convex hull of the incidence

vectors of all clique partitionings of the complete graph of order n. It is the natural 0/1-
polytope associated with the problem of finding a minimum weight clique partitioning
in a weighted complete graph of order n. A description of a cutting plane algorithm for
this .NP-hard problem and computational results on the applications of this algorithm
to solve some clustering problems in Data Analysis are presented in Grõtschel and
Wakabayashi [3, 1987b]. Other theoretical results on the facial structure of the polytope
Pn are mentioned in Grõtschel and Wakabayashi [2, 1987a].

In this paper we give a characterization of adjacency of vertices on the polytope
Pn. It turns out that the adjacency test of two vertices on Pn can be performed by an
algorithm of time complexity O(n2). We also show that for every n ~ 4 the polytope
Pn has diameter equal to three.

2. Definitions and Notation
We assume that the reader is familiar with the basic concepts of graph theory. The

definitions not given here can be found in Bondy and Murty [1, 1976] or Harary [4,
1969]. We consider only simple graphs. A graph G with node set V and edge set Eis
denoted by G = [V, E]. The complete graph on n nodes is denoted by Kn = [Vn,En].
If A is an edge set of G = [V, E], then the subgraph of G with edge set A and node set
consisting of the end nodes of the edges in A is denoted by [A] and is said to be induced
by A. For notational convenience, we denote an edge {u, v} simply by uv.

If S and T are disjoint node sets of a graph G = [V,E], then

(S : T) := {uv : u E S,v E T} .

A clique of a graph G is a complete nonempty subgraph of G. Note that the complete
subgraph need not be maximal, as it is sometimes assumed in the literature. If Q is a
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clique, then we denote by VQ and EQ its node set and edge set, respectively. If EQ = 0,
then Q is called a degenerate clique; otherwise it is called a nondegenerate clique.

We say that r = {Vi, ... ,Vd (k ~ 1) is apartition ofVifv;nVj = 0 for 1 =:; i < j =:; k
and V = ViU· . 'UVk. A set of edges A in a graph G = [V, E] is called a clique partitioning
of G if there is a partition r = {Vi, ... , Vd of V such that the subgraph induced by
each V;, 1 =:; i =:; k, is a clique in G, and A = Uf=!iuv: u,v E V;,u =f. v}. In this
case, if for 1 =:; i =:; k the clique induced by V; is denoted by Qi, then we say that
C(A):= {QI, ... ,Qk} is the clique sei defined by A.

The distance d( u, v) between two nodes u and v in a graph is the length of a shortest
path between u and v, if it exists; otherwise d( u, v) = 00.

We introduce now the basic concepts of polyhedral theory that we need in the sequeI.
If E is a finite set and X any set, then we denote by X E the set of (column) vectors with
lEI components indexed by E and with entries in X; that is, if E = {el, ... ,em} then
XE = {x : x

T = (x€!, ... ,xem), xej E X, 1 =:; i =:; m}. Here it is always assumed that
the elements of E are ordered and that the indexing corresponds to the given ordering.

If E is a finite set and A ç E then we denote by XA the incidence uector of A,
XA = (X:)eEE, defined as X: = 1 if e E A, and X: = O if e rt. A. If A ç E and W E XE,
then we use the following notation :

w(A):= L we.

eEA

If S ç Rm, we denote by conv (S) the convex hull of the elements of S, defined as the
set of alI vectors in Rm which are convex combinations of finitely many vectors of S.

A set P ç Rm is called a polyhedron if P is the solution of a system of linearinequalities; that is,

P = {x E Rm : Ax =:; b} ,
for some (n, m)-matrix A and vector b E Rn. If P is bounded, then Pis called a polytope.

Let P ç Rm be a polyhedron. An inequality aT x =:; ao is called valid for P, if
P ç {x E Rm : a

T
x =:; ao}. A set F ç P is called a face of P, if there exists an

inequality aT x =:; ao which is valid for P such that

F = P n {x : aT x = ao} .

A face F of P is called proper if F =f. P, and nontrivial if 0 =f. F =f. P. A nontrivial
face of P is called a facet if F is not contained in any other proper face of P. A face
of P consisting of exactly one point is called a vertex. Two vértices xA and xB of P
are called adjacent (with respect to P) if there is a l-dimensional face of P, called an
edge, containing both of them. Other equivalent formulations of the adjacency concept
are presented in the next theorem (cf. Murty [5, 1971]).

Theorem 2.1. Let P C Rm be a polytope and Q be the set of its veriices. Let xA and xB
be distinet vertiees of P. Then the following statements are equivalent :

(i) x
A

and xB are adjaeent (with respeet to P).
(ii) No point y on the line segment eonneeting xA and xB, y =f. xA, Y =f. xB, ean be

represented as a eonvex eombination of vertiees in Q \ {xA, xB}.
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. A d : B =f. A Y =f. xB ean(iii) Any point y on the Une segment eonneet1~g x. an x '. y . x , ,

be repz:sented uniqueRl~ as ahe~~:::~O:~~~lC:e ~~:e:l;:~~t~~s of P which(iv) There lS a vector e E sue
maximize the funetion eTx over P.

We denote by A6.B the symmetric dilference of two sets A and B, i.e.,

A6.B := {x : x E A \ B or x E B \ A} .

. that 'P denotes the clique partitioning polytope (as-Throughout this paper we assume n
sociated with K; = [Vn, EnJ), defined as

'Pn := conv {XA : A clique partitioning of Kn} .

3. Characterization of Adjacency of Vertices on P«
be the cli ue artitioning polytope assoeiated wit.h. th~ complete

Theorem 3.1. Let r, n > 2 ~d~et A and B be distinct clique partltl~nmgs of.~n.
graph Kn = [V

n
, En~, - B' f'1"l di t if and only if the followmg coudiiionThen the vertiees X and X o r « are a !Jacen

holds:

The graph indueed by A6.B is conneeted, and
if A C B, then C(B) has no clique eontaining
more than 2 cliques ofC(A).

h d d b A6.B Assume that A and B defineProof: Let H = [A6.B] be the grap in uce y .
the clique sets

(3.2)

C(A):= {AI,A2,'" ,Ar}, r ~ 1, and
C(B) := {BI, B2,'" ,Bs}, s ~ 1,

ti ly Let V A· (resp V BJ") be the node set and EAi (resp. EBj) be the edgerespec rve . ". . )
set of the clique Ai (resp. Bj), 1 =:; l =:; r (resp. 1 =:; J =:; s .

(a) We prove first the necessity of condition (3.2). For that, let us assume that XA ~d
B di t d H = [A6.B] is not connected. Then H has at least two componen s,

:ay ~:~J[~;,nE:rand H2 = [V2,E2]. For i = 1,2Iet s; = [V;,EiJ be the subgraph of
[A U B] induced by the nodes in V;, and set

A':=(A\{EAi: EAiÇEL l=:;i=:;r})U{EBj: EBjÇE;, 1=:;j =:;s}

and

B':=(B\{EBj: EBjÇE;, l=:;j=:;s})U{EAi: EAiÇEi, 1=:;i =:;r}.

... f K ith C(A') ( p C(B'» consistingNote that A' (resp. B') is a cliquel>.artItIonmg.o d.n ';. d a11c~~u~sfromC(B) (resp.of all cliques from C(A) (resp. C(Bt:J) not contame m 1 an
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C(A')) contained in Hi- Hence A' ::/:A, A' =f. B, B' =f. B and B' =f. A. Furthermore,
A' =f. B',

AUB=A'UB' and AnB=A'nB'.
Thus

1 A 1 B 1 A' 1 B'2X + 2X = 2X + 2X ,

h· h' li h A Bw IC Imp es t at X and X are not adjacenct, contradicting our assumption.
Let us assume now that H is connected and A C B. Assume also that Bl is the

clique in C(B) which contains at least 2 cliques of C(A), say AI, A2,' .. ,Ak with k ~ 2.
Note that this clique is uni que since [A~Bl is connected.

Suppose by contradiction that k ~ 3. Since XA and XB are adjacent there is a vector
c = (c, : e E En) such that XA and XB are the only two vertices ofPn which maximize
cT x over P«. For alI pairs i,j with 1:::;i < j :::;k, let

r:r:hen Aij is a clique partitioning of Kn with C(Aij) consisting of all cliques from C(A)
dIfferent from Ai and Aj and a new clique obtained by combining Ai and A· into a
~~~~. J

Clearly Aij =f. A and furthermore, since k ~ 3, Aij =f. B. Thus, cT XAij < cT XA and
therefore c(V Ai : V Aj) < O for alI pairs i, j with 1 :::; i < j :::;k.

On the other hand, since B\A = {e E (V Ai: V Aj) : 1:::; i < j :::;k}, then c(B\A) <
O and hence c(B) = c(A) + c(B \ A) < c(A), i.e., cTXB < cT XA, a contradiction. Thus
k = 2, and this completes the proof of part (a).

(b) To prove the sufficiency of condition (3.2) we first introduce the terminology to be
~sed. Fo~ Ai E ~(A) and e, E C(B) the set I := V Ai n Vs, =f. 0 is called a binding
zn:te~sectlO.n sei if I =f. V Ai and I =f. Ve; In this case, we say that Ai and s, are
bzndzng cliques and that (Ai,Bj) is a pair of binding cliques (see Figure 3.1).

------- .•.....•....
<,,8,,

\
\,
I,

"".••...••.-------
Figure 3.1.

Suppose now that condition (3.2) holds and XA, XB are not adjacent with respect to
Pn. Thus, by Theorem (2.1), there is a point on the line segment between XA and XB
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which has another different convex representation, i.e., there exist clique partitionings
Dl. ... ,D, and scalars À/s such that

I
ÀA XA + ÀB XB = L: Ài XDi, and

i=l
ÀA + ÀB = 1, ÀA, ÀB > O,

(1) I
L: Ài = 1 , Ài ~ O ,
i=l
Di ~ {A,B}, i = 1, ... ,1.

For simplicity we set L := {1, 2, ... ,I} and assume without loss of generality that Ài > O
for all i E L.

By (1) it follows that if e E A n B then

1= L Àixfi ,
ieL

and if e E s; \ A U B then
0= L Àixfi

ies.

Since t Ài = 1 and x, > O for alI i E L, it follows that
i=l

D. {1, if e EA nB ,
Xe • = O, if e E En \ A U B ,

and thus

(2) A n B ç Di ç A U B for all i E L .

Our aim is to prove that there exists k E L such that Dk = A or Dk = B, obtaining
this way a contradiction to (1).

Case 1. A C B or B C A. Assume without loss of generality that A C B and let
e E B \ A. Then by our assumptions in (1) there must exist k E L such that Xfk = 1.
We may assume that e E Bi, In this case, Bl must contain precisely two cliques of C(A),
say AI and A2, and therefore all edges in EBl \ A are incident to a node in V AI UV A2.
Since EAl U EA2 ç A nB ç o, and e E o, then EBl ç in. Now using the fact that
C(B) \ {BI} = C(A) \ {AI, A2} and (2) holds we obtain that Dk = B.
Case 2. A ct. B and B ct. A. In this case we establish first two claims.

C1aim 1. Let k E L, 1 :::;i :::;r and 1 :::;j :::;s. If (Ai, Bj) is a pair of binding cliques
and there exists e E EAi \ B, e incident to I := V Ai n V Bj such that e E Dk, then
Ai E C(Dk).

[Proof of Claim 1]. Assume that e := uv with u E I. It is immediate that no edge
in En \ Ai incident to e is in Dk, otherwise we would have a contradiction to the fact
that Dk ç A U B. Thus if EAi = {e}, then clearly Ai E C(Dk). Now assume that there
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exists an edge f := uy in EAi \ B, f ri. DI;. Then there must exist an index p E L \ {k}
such that f E Dp, otherwise we would get a contradiction to our assumptions in (1).
Let

(3)
LI := {p E L : e E Dp, f ri. Dp} ,
L2 := {p E L : f E Dp} and
L3 := {p E L : e ri. Dp, f ri. Dp} .

Clearly, these sets are all pairwise disjoint and L = LI U L2 U L3. Thus

1= L: Àp = L: Àp + L: x, + L: Àp .
pEL pEL1 pEL2 pEL3

Since e, f E A \ B, then by (1) and (3) it follows that

(4)

(5) L: Àp $ L: Àp = ÀA .
pELl PEL2

On the other hand, since there exists an edge h := uw, h E EBj \ A,' then xfp = O for
all p E LI U L2 and therefore

(6)

Now combining (4), (5), (6) and the fact that ÀA + ÀB = 1 we get E L À = O a
contradiction. ' pE 1 P ,

.Thus we have proved that all edges in EAi \ B incident to u are also in DI;. Now
~smg t.he fact that DI; is a clique partitioning and A n B ç DI; ç A U B we obtain
immediately that Ai E C(DI;) and complete this way the proof of Claim l.

By making use of Claim 1 we can now prove the following

Clai~ 2: Le~ k E L and i, j be such that 1 $ i $ r and 1 $ j $ s. If (Ai,Bj) is a pair
of binding cliques then Ai E C(DI;) if and only if Bj ri. C(DI;).

[Proof of Claim 2] If Ai E C(DI;) , then it is immediate that Bj ri. C(DIc). Nowassume
that Bj ri. C(DIc). To prove that Ai E C(DIc) we assume the contrary and set

LA:= {p E L
LB:= {p E L

Ai E C(Dp)} , and
Bj E C(Dp)} •

So, by our assumption k E L \ LA U LB, and by the previous result LA n LB = 0
Observing that there is an edge e E EAi \ B, and an edge f E EBj \ A, both incident
to I:= VAi n VBj, using Claim 1 and (1) we obtain

Since ÀIc > O, then 1 = E Àp > E Àp + E Àp = ÀA + ÀB = 1, a contradiction.
. pEL PELA PELB

ThIS proves that Ai E C(DI;) and concludes the proof of Claim 2.
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Finally, using the two claims we can complete the proof of Case 2. For that, consider
a pair (Ai, B i) of binding cliques and let e be an edge such that e E A \ B and e is
incident to V Ai n V B i. By (1), there exists an index k E L such that e E DIc, and
therefore by Claim 1, Ai E C(DIc). Now using Claim 2 and the hypothesis that [A6B]
is connected, it follows that all binding cliques in C(A) are in C(DIc)' Recalling that
A n B ç DIc ç A U B we conclude that DIc = A. Thus, the sufficiency of (3.2) is settled
and the proof of the theorem is complete .•

An immediate consequence of Theorem (3.1) is the following

Corollary 3.3. Adjacency of vertices on the polytope Pn can be tested by an algorithm of
time complexity O(n2).

4. lhe Diameter of P«

The adjacency structure of a polytope P can be better understood by studying the
properties of the so-called adjacency graph or skeleioti of P, G(P), defined as follows:
G(P) has a node for each vertex of P, and two nodes of it are joined by an edge if
and only if the corresponding vertices are adjacent (with respect to P). One interesting
information about G(P) which gives good insight into the adjacency structure of the
polytope P concerns the diameter of G(P) - also called the diameter of P and denoted
by diam(P). It is defined as the maximum length of a shortest path between any pair
of nodes of G(P). Thus if d is the diameter of a polytope P, this means that starting
from any vertex one can reach any other by "walking" along at most d edges of P. Note
that an edge of P is a face of dimension 1 defined by conv ({xl, x2}) , where xl, x2 are
adjacent vertices of P.

To investigate the diameter of the polytope Pn, we assume for ease of notation that
if A and B are clique partitionings of Kn, then d(A, B) denotes the distance between
the vertices XA and and XB in G(Pn).

lheorem 4.1. Let P« be the clique partitioning polytope. Then diam (P2) = 1,
diam (P3) = 2 and diam (Pn) = 3 for alI n ~ 4.

Proof: It is immediate that diam(P2) = 1 and diam(P3) = 2. So assume that n ~ 4
and let A and B be distinct clique partitionings of Kn. We shall prove that d(A, B) $ 3,
and that equality holds in some cases.

Case 1. A = 0.
(i.i) Suppose C(B) has only one nondegenerate clique, say BI.

a) Assume first that BI 1- te; By Theorem (3.1), if BI ~ K2 then d(A, B) = 1,
otherwise d(A, B) ~ 2. In the latter case, take u E V BI and v ri. V BI and define a
clique partitioning D consisting only of the edge uv. Then by Theorem (3.1), d(A, D) =
1 = d(D, B), and therefore d(A, B) = 2.

b) Assume that BI ~ Kn. Let CI be the set of all clique partitionings of K; consisting
of one edge, and let C2 be the set of all clique partitionings B' such that IC(B')I = 2.
Thus, by Theorem (3.1), d(A, A') = 1 if and only if A' E C1 and d(B,B') = 1 if and
only if B' E C2. Since n ~ 4, then C1 nC2 = 0 and therefore d(A, B) ~ 3. Now in
order to prove that d(A,B) = 3 note that there exist A' E CI and B' E C2 such that
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d(A',B') = 1. In fact, if we take any two nodes u, v in Kn and set A' := {uv} and
B':= e; \ {e E e; : e incident to u}, then, by Theorem (3.1), d(A',B') = 1.
(1.2) Suppose C(B) has more than one nondegenerate clique. In this case, d(A, B) ;:::2.
If C(B) has exact1y 2 nondegenerate cliques, say BI and B2, then take u E VBI and
v E VB2 and define the clique partitioning D:= {uv}. Clearly, d(A,D) = 1 = d(B,D)
and therefore d(A, B) = 2. Now suppose C(B) has more than 2 nondegenerate cliques.
Let CI be as defined in the case 1.1.b. Since for every A' E CI the graph [A'.6.B] is
not connected, then d(A',B);::: 2 and therefore d(A,B);::: 3. Now let u be a node in a
nondegenerate clique of C(B) and set D := En \ {e E En : e incident to u}. Clearly,
d(B, D) = 1. On the other hand, by the case 1.La already analysed, d(A, D) = 2. Thus
d(A, B) = 3.

Case 2. A f:. 0 and B f:. 0.
(2.1) A C B. Let AI be a nondegenerate clique of C(A). Take a node u E V AI and
set D := e; \ {e E e; : e incident to u}. Then d(A, D) = 1 = d(B, D) and therefore
d(A, B) ~ 2.
(2.2) A rt. B and B rt. A. If [A.6.B] is connected then d(A, B) = 1. So let us assume
that [A.6.B] is not connected. Then d(A, B) ?: 2. Suppose C(A) = {A!, ... ,Ar} and
C(B) = {BI,'" ,Bs}. If there exists a node u with the property that there are nodes v,
w such that uv E AI and uw E Bj (eventually with v = w), then set D := En \ {e E En :
e incident to u}. Clearly, D f:. A, D f:. B and furthermore, d(A,D) = d(B,D) = L
Thus, d(A, B) = 2. In case such a node u does not exist, then every nondegenerate
clique of C(A) (resp. C(B)) contains only degenerate cliques of C(B) (resp. C(A)). Let
C' be the set of those cliques in C(A)UC(B) with this property. Then by our assumptions
C' must contain at least a clique of C(A) and a clique of C(B), and furthermore all cliques
in C' are pairwise disjoint. Now choose a node in each clique of C', call W the set of
these nodes and set D := {e E En : e has both ends in W}. Since [A.6.D] and [B.6.D]
are connected, A rt. D, D rt. A and B rt. D, D rt. B, then d(A, D) = 1 = d(B, D) and
thus d(A, B) = 2.•

An analysis of the proof of Theorem (4.1) gives immediately the following two results:

Coro/lary4.2. Lei Pn be the clique partitioning polytope and let A and B be distinct
clique partitionings of Kn, n ;:::4. Then d(A, B) ~ 3 and equality holds if and only if
A = 0 and either B ~ Kn or C(B) has more than 2 nondegenerate cliques.

Coro/lary4.3. Let Kn be the complete graph on n nodes, n ;:::4, and let

P~ := conv {XA : A f:. 0, A clique partitioning of Kn} .

Then diam (P~) = 2.

~em.ark4.4. A polyhedron P with dimension m and k facets has the Hirsch property
if diam (P) ~ k - m. Using the results presented in our former paper (cf. Grótschel
and Wakabayashi [2, 1987a]) on the facets of Pn, we can conclude that the polytope Pn
has the Hirsch property for all n ;:::2. This fact is however, implied by a more general
result proved recently (personal communication) by D. Naddef (Grenoble, France) which
states that ali polytopes with 0/ l -vertices have the Hirsch. property.
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5. ConcJudingRemarks

The fact that the diameter of Pn is very small is not so surprising, since examples
of polytopes associated with NP-hard problems .which hav: small diame~er are well-
known in the literature, This is what occurs for instance with the travellmg salesman
polytope and the linear ordering polytope which are known to have diameter 2 (Padbe:g
and Rao [6, 1974] and Young [8, 1978]). We should remark, h.owever, that whereas m
some cases the (non- )adjacency test of two vertices can be easily performed, as on the
polytope P« or the linear ordering polyt~~e, it might happen -:- as in the ca~e of t~e
travelling salesman polytope - that deciding whether two vertrces are non-adjacent IS

an NP-complete problem. (Papadimitriou [7, 1978]).

Note Added in Proof. The main results of this paper - Theorem (3.1) and Theorem
(4.1) - were obtained first by Simon Régnier a~d publi~hed i~ t:chnical r~ports of
"Centre de Calcul de la Maison des Sciences de I Homme , Pans, m the penod from
1971 to 1975. A reprint of Régnier's papers can be found in "Mathématiques et Sciences
Humaines, 21e année, No. 82, 1983 - a special issue dedicated to his contribut.ions
to mathematical taxonomy. This work was done independently and uses an entirely
different proof technique.
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