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Abstract.  Given a graph G = [V, E], a subset A C E is called a clique partitioning of G if
there is a partition of V into sets V1, V2,...,Vi such that the subgraph induced by each V; is
a clique and A = U;‘:l{uv s u,v € V;,u # v}. The cligue partitioning polytope Pr, is defined
as the convex hull of the incidence vectors of all clique partitionings of the complete graph of
order n. In this paper we present a condition characterizing the adjacency of vertices on the
polytope Py,. We also prove that the diameter of P, is equal to three for every n > 4.

1. Introduction

The clique partitioning polytope Py is defined as the convex hull of the incidence
vectors of all clique partitionings of the complete graph of order n. It is the natural 0/1-
polytope associated with the problem of finding a minimum weight clique partitioning
in a weighted complete graph of order n. A description of a cutting plane algorithm for
this A/ P-hard problem and computational results on the applications of this algorithm
to solve some clustering problems in Data Analysis are presented in Grotschel and
Wakabayashi [3, 1987b]. Other theoretical results on the facial structure of the polytope
P, are mentioned in Grotschel and Wakabayashi [2, 1987a.

In this paper we give a characterization of adjacency of vertices on the polytope
P,.. It turns out that the adjacency test of two vertices on Py can be performed by an
algorithm of time complexity O(n?). We also show that for every n > 4 the polytope
P, has diameter equal to three.

2. Definitions and Notation

We assume that the reader is familiar with the basic concepts of graph theory. The
definitions not given here can be found in Bondy and Murty [1, 1976] or Harary {4,
1969]. We consider only simple graphs. A graph G with node set V and edge set E is
denoted by G = [V, E]. The complete graph on n nodes is denoted by K, = [Vy, En).
If A is an edge set of G = [V, E], then the subgraph of G with edge set A and node set
consisting of the end nodes of the edges in A is denoted by [A] and is said to be induced
by A. For notational convenience, we denote an edge {u,v} simply by uv.

I S and T are disjoint node sets of a graph G = [V, E], then

(8:T):={uv:ueS,veT}.

A clique of a graph G is a complete nonempty subgraph of G. Note that the complete
subgraph need not be maximal, as it is sometimes assumed in the literature. If Q is a
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clique, then we denote by VQ and EQ its node set and edge set, respectively. If EQ = ),
then @ is called a degenerate cligue; otherwise it is called a nondegenerate cligue.

We say that T = {",... »Vi} (k> l)isapartitionofVifV.ﬂVj =fforl1 <; <j<k
and V = VjU---UV;. A set of edges A in a graph G = [V, E] is called a cligue partitioning
of G if there is a partition I' = {1;,... s Vi} of V such that the subgraph induced by
each V;, 1 < i <k is a clique in G, and 4 = Uf;l{uv ‘u,v € Vi,u # v}. In this
case, if for 1 < ¢ < k the clique induced by V; is denoted by Q;, then we say that
C(A):={0Q,,... @i} is the clique set defined by A.

The distance d(u, v) between two nodes u and v in a graph is the length of a shortest
path between u and v, if it exists; otherwise d(u, v) = oo.

We introduce now the basic concepts of polyhedral theory that we need in the sequel.
If E is a finite set and X any set, then we denote by X ¥ the set of (column) vectors with
|E| components indexed by E and with entries in X ; that is, if £ = {e1,... ,em} then
XP={z . T (Zeys--. 1 Tem ), Te; € X,1< 4 < m} Here it is always assumed that
the elements of E are ordered and that the indexing corresponds to the given ordering.

If E is a finite set and 4 C E then we denote by x4 the incidence vector of A,
XA=(x;4)e€E,deﬁnedasxf:lifeeA, andxﬁ:OifeqéA. IfAQEandeXE,
then we use the following notation : .

w(A) = Z We .

e€EA

If $ C R™, we denote by conv(S) the convez hull of the elements of § , defined as the
set of all vectors in R™ which are convex combinations of finitely many vectors of S.
A set P C R™ is called a polyhedron if P is the solution of a system of linear
inequalities; that is, :
P={zER"’:Ax_<_b},
for some (n, m)-matrix A and vector b ER™ If Pis bounded, then P is called a polytope.
Let P C R™ be a polyhedron. An inequality Tz < ag is called valid for P, if
P C {:v €ER™ : T < ao}. A set F C P is called a face of P, if there exists an
inequality aly < ap which is valid for P such that

F=Pﬂ{:c : aTx=a0},

are called adjacent (with respect to P) if there is a 1-dimensional face of P, called an
edge, containing both of them. Other equivalent formulations of the adjacency concept
are presented in the next theorem (cf. Murty [5, 1971)).

Theorem 2.1. Let P - Rm be a polytope and Q be the set of its vertices. Let z# and zB
be distinct vertices of P. Then the following statements are equivalent :
(i) z* and 2B are adjacent (with respect to P ).
(ii) No point Y on the line segment connecting x4 and ;B yyF i,y # 28, can be
represented as a convex combination of vertices in Q \ {z4,zB}.
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: : A B A .'L‘B can
(iii) Any point y on the line segment connecting 4 and 28, y # 24, y # 2B,

i bination of vertices in Q.
epresented uniquely as a convex com . ‘
@iv) 3‘(;2;5 is a vector ¢ € R™ such that 4 and zP are the only vertices of P which

maximize the function ¢« over P.

We denote by AAB the symmetric difference of two sets A and B, i.e.,
AAB:={z : z€ A\Borz € B\ A}.

Throughout this paper we assume that P, denotes the clique partitioning polytope (as-
sociated with K, = [V}, E,]), defined as

Py := conv {XA : A clique partitioning of K,,} .

3. Characterization of Adjacency of Vertices on P,

i itioni iated with the complete

be the clique partitioning polytope associa h the
Theo;ze'In( 31‘ [IIl/et ép"] en >2 (Zmd let A and B be distinct clique part1t1qn1ngs of.I.{n.
?ﬁfﬂ 1.‘12;l V_erti(':‘e’rs ;A’ a.nd_XB ’of Py are adjacent if and only if the following condition

holds:
The graph induced by AAB is connected, and
(3.2) if A C B, then C(B) has no clique containing
more than 2 cliques of C(A).

Proof: Let H = [AAB] be the graph induced by AAB. Assume that A and B define
the clique sets

C(A) = {Al,Ag,..‘,Ar}, 7‘21, and

C(B):: {Bl,Bz,...,Bs}, 321,
respectively. Let V A; (resp. V B;) be the node set 'fmd EA; (resp. EBj) be the edge
set of the clique A; (resp. B;), 1 <i<r (resp. 1<j < s).

A
(a) We prove first the necessity of condition (3.2). For that, let us assume that y artlsd
xP are adjacent and H = [AAB] is not connected. Then H has at l*ea.st tv;lo coxgpone}r: 0%
say Hy = [V, E1] and Hy = [V3, Ey]. For i = 1,2 let H} = [V;, E¥] be the subgrap
[A U B] induced by the nodes in V;, and set

. :
A''=(A\{EA; : EA;CE},1<i<r})U{EB; : EB;CE},1<j<s)}

and
B':=(B\{EB; : EB;CE},1<j<s}))U{EA; : EA;CE!,1<i<r}.

. p -
Note that A’ (resp. B') is a clique partitioning of K, with C(A) (r'esp. C(B ))cccg;szﬁi:sng
of all cliques from C(A) (resp. C(B%)) not contained in H: 1 and all cliques from C( p.
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C(Aﬁj) contained in Hy. Hence A' # A, A' # B, B' # B and B' # A. Furthermore,
A £B

AuB=Aup and AnNB=4A'np.
Thus
la,lp_1a 1p
X Fax” =3x +3x7

which implies that x4 and xB are not adjacenct, contradicting our assumption.

Let us assume now that H is connected and A C B. Assume also that B is the
clique in C(B) which contains at least 2 cliques of C(A), say A}, A,, ... , A with k > 2.
Note that this clique is unique since [AAB] is connected.

Suppose by contradiction that k > 3. Since x4 and x? are adjacent there is a vector

c¢=(c. : e € E,) such that x? and x?Z are the only two vertices of P, which maximize
cTz over P,. For all pairs ¢,j with 1 <i<j <k, let

Aij = AU(VA4;: VA;).

Then A;j is a clique partitioning of K, with C(Aij) consisting of all cliques from C(A4)
different from A; and Aj and a new clique obtained by combining A4; and A; into a
unique clique.

Clearly Ai; # A and furthermore, since k > 3, Aij # B. Thus, ¢Ty4i < cT'x4 and
therefore ¢(V A; : V A;) <0 for all pairs 7, ; with 1 <i<j<k

On the other hand, since B\A = {fee(VAi:VA4) : 1<i< J <k}, then¢(B\A) <
0 and hence ¢(B) = c(4) + ¢(B \ 4) < c(A4), ie.,, cTxB < TxA, a contradiction. Thus
k =2, and this completes the proof of part (a).

(b) To prove the sufficiency of condition (3.2) we first introduce the terminology to be
used. For 4; € C(A) and B; € C(B) the set T := VAiNVB; # 0 is called a binding
intersection set if T # VA and T # VB;. In this case, we say that A; and B; are
binding cligues and that (4i, B) is a pair of binding cligues (see Figure 3.1).

Figure 3.1.

Suppose now that condition (3-2) holds and x4, B are not adjacent with respect to
Pn. Thus, by Theorem (2.1), there is a point on the line segment between x4 and B
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which has another different convex representation, i.e., there exist clique partitionings
Ds,...,D; and scalars A's such that

I .
Aax?+2pxB =,§1 XixPi, and

=
da+ip=1, Aa,Ag>0,
1 i
() E’\i=1, A 20,
&
Di¢{A,B}, i=1,..,I.

For simplicity we set L := {1,2,... ,[} and assume without loss of generality that A; > 0

foralli € L.
By (1) it follows that if e € AN B then

1= Z /\iXeDi )
i€l
and if e € E, \ AU B then .
0=">3 xx?.
€L

Since ZI: Ai=1and \; > 0 for all 7 € L, it follows that
=1

b, [1, ife€cANB,

Xe' =0, ifec E,\AUB,
and thus
(2) ANBCD;CAUB forallie L.

Our aim is to prove that there exists k¥ € L such that Dy = A or Dy = B, obtaining
this way a contradiction to (1).

Case 1. A C Bor B C A Assume without loss of generality that A C B gnd let
e € B\ A. Then by our assumptions in (1) there must exist k'e L such t.hat x5k = 1.
We may assume that e € Bjy. In this case, B must contair.x precisely two qllques of C(ﬁ),
say A; and Ay, and therefore all edges in EB; \ A are incident to a nod.e in VAjUV A4;.
Since EAj UEA; C ANB C D; and e € Dy, then EB; € Dy. Now using the fact that
C(B)\ {B1} =C(A4)\ {A1, 42} and (2) holds we obtain that D = B.

Case2. A ¢ Band B¢ A. In this case we establish first two claims.

i ) ] i, Bj) i ir of binding cliques
Claim1. Letke€ L,1<i<randl<j<s. If(4;Bj)isa pairo
and there exists ¢ € EA; \ B, e incident to T := VA4; N VB; such that e € Dy, then
A; € C(Dy).

[Proof of Claim 1]. Assume that e := uv with w € Z. It is imrnedi.atfe that no edge
in E, \ 4; incident to e is in D, otherwise we would have a contradiction to the 1il'a,ct
that Dy € AU B. Thus if EA; = {e}, then clearly A; € C(D;). Now assume that there
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exists an edge f := uy in E4; \ B, f ¢ Di. Then there must exist an index p€ L\ {k}

iuih that f € D,, otherwise we would get a contradiction to our assumptions in (1).
o ;

L1:={p€L : Cera f¢Dp}7
(3) Ly:={peL : feDp} and
Ly:={p€L : e¢ Dy, f¢ Dp}.

Clearly, these sets are all pairwise disjoint and L = L; U Ly U L. Thus

4) 1=Z’\p=2’\p+2’\p+2’\p-

peEL peL; p€L; p€EL3
Since e, f € A\ B, then by (1) and (3) it follows that
(5) Z’\PSZ)‘P=’\A'
€Ly PEL;

On the other hand, since there exists an edge h:=uw, h € EB; \ A, th D
all p € Ly U Ly and therefore ’ i\ A then 3" =0 for

(6) 2 2.
peL3

Now combining (4), (5), (6) and the fact that A4 + Ap = 1 =
contradiction. 4 ? VB Dyetadp = 0,2

'Thus we have proved that all edges in EA; \ B incident to u are also in Dy. Now
using t_he fact that Dy is a clique partitioning and AN B C Dy C AU B we obtain
1mmed1ate1‘y that A; € C(Dy) and complete this way the proof of Claim 1.

By making use of Claim 1 we can now prove the following

Clail.n 2: Let. k€ Landi, jbesuchthat 1 <i<rand1l <J < If (A, By) is a pair
of binding cliques then A4; € C(Dy) if and only if B; ¢ C(Dy).

[Proof of Claim 2] If 4; € C(Dy), then it is immediate that B; ¢ C
; , ;i ¢ C(Dy). Now assume
that B; ¢ C(Dy). To prove that A; € C(Dy) we assume the contrary and set

Li:={peL : A;€C(D,)}, and
Lg:={peL : B;€C(Dp)}.
So, by our assumption k € L \ L4 U Lp, and by the previous result LynLg =0

Observing that there is an edge e € EA; \ B, and an ed inci
) ge f € EB; \ A, both incident
to7:=VA;NVB;, using Claim 1 and (.1) we obtain i\ Ot mciden

ZA,,:/\A and Z’\P=’\B'
pEL, r€lp
Since Ay > 0, then 1 = ng/\P > pezlz Ap + ezl; Ap = Aa + Ap = 1, a contradiction.
. A p
This proves that A; € C(D;) and concludes the groof of Claim 2.
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Finally, using the two claims we can complete the proof of Case 2. For that, consider
a pair (Ai, B;j) of binding cliques and let e be an edge such that e € A\ B and e is
incident to VA; N VB;. By (1), there exists an index k¥ € L such that e € Dy, and
therefore by Claim 1, 4; € C(Dy). Now using Claim 2 and the hypothesis that {AAB|
is connected, it follows that all binding cliques in C(A) are in C(Dg). Recalling that
ANB C Dy € AU B we conclude that Dy = A. Thus, the sufficiency of (3.2) is settled
and the proof of the theorem is complete. 1

An immediate consequence of Theorem (3.1) is the following

Corollary 3.3. Adjacency of vertices on the polytope P, can be tested by an algorithm of
time complexity O(n?).

4. The Diameter of P,

The adjacency structure of a polytope P can be better understood by studying the
properties of the so—called adjacency graph or skeleton of P, G(P), defined as follows:
G(P) has a node for each vertex of P, and two nodes of it are joined by an edge if
and only if the corresponding vertices are adjacent (with respect to P). One interesting
information about G({P) which gives good insight into the adjacency structure of the
polytope P concerns the diameter of G(P) — also called the diameter of P and denoted
by diam (P). It is defined as the maximum length of a shortest path between any pair
of nodes of G(P). Thus if d is the diameter of a polytope P, this means that starting
from any vertex one can reach any other by “walking” along at most d edges of P. Note
that an edge of P is a face of dimension 1 defined by conv ({zl, xz}) , where z!, z? are
adjacent vertices of P.

To investigate the diameter of the polytope Py, we assume for ease of notation that
if A and B are clique partitionings of K, , then d(A4, B) denotes the distance between
the vertices x4 and and x® in G(P,).

Theorem 4.1. Let P, be the clique partitioning polytope. Then diam(P;) = 1,

diam (P3) =2 and diam(P,) =3 for alln > 4.

Proof: It is immediate that diam (P;) = 1 and diam (P3;) = 2. So assume that n > 4
and let A and B be distinct clique partitionings of K,. We shall prove that d(A4, B) < 3,
and that equality holds in some cases.

Casel. A=29.

(1.1) Suppose C(B) has only one nondegenerate clique, say B;.

a) Assume first that By ¥ K,. By Theorem (3.1), if B; & K, then d(4, B) = 1,
otherwise d(A4, B) > 2. In the latter case, take u € VB; and v ¢ VB; and define a
clique partitioning D consisting only of the edge uv. Then by Theorem (3.1), d(4, D) =
1 =d(D, B), and therefore d(A, B) = 2.

b) Assume that By = K,,. Let C; be the set of all clique partitionings of K, consisting
of one edge, and let C; be the set of all clique partitionings B’ such that |C(B')| = 2.
Thus, by Theorem (3.1), d(4,A') = 1 if and only if A’ € C; and d(B,B') = 1 if and
only if B’ € C;. Since n > 4, then C; NC, = § and therefore d(A4, B) > 3. Now in
order to prove that d(A, B) = 3 note that there exist A’ € C; and B’ € C; such that
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d(A4',B') = 1. In fact, if we take any two nodes u, v in K, and set A’ := {uv} and
B':=Ey\{e€ E, : eincident to u}, then, by Theorem (3.1),d(4',B') = 1.

(1.2) Suppose C(B) has more than one nondegenerate clique. In this case, d(A, B) > 2.
If C(B) has exactly 2 nondegenerate cliques, say B; and Bs, then take u € VB; and
v € VB; and define the clique partitioning D := {uv}. Clearly, d(A,D)=1=4d(B,D)
and therefore d(A, B) = 2. Now suppose C(B) has more than 2 nondegenerate cliques.
Let C; be as defined in the case 1.1.b. Since for every 4’ € C; the graph [A'AB] is
not connected, then d(A’, B) > 2 and therefore d( 4, B) > 3. Now let u be a node in a
nondegenerate clique of C(B) and set D := E, \ {e € E, : e incident to u}. Clearly,
d(B, D) = 1. On the other hand, by the case 1.1.a already analysed, d(A, D) = 2. Thus
d(A,B) = 3.

Case2. A#0and B+#90.

(21) AC B. Let A; be a nondegenerate clique of C(A). Take a node u € VA4; and
set D := E, \ {e € En : eincident to u}. Then d(4,D) = 1 = d(B, D) and therefore
d(A,B) < 2.

(22) A¢ Band B¢ A.  If [AAB] is connected then d(A, B) = 1. So let us assume
that [AAB] is not connected. Then d(4, B) > 2. Suppose C(A) = {41,...,4,} and
C(B) = {Bj,...,B;}. If there exists a node u with the property that there are nodes v,
w such that uv € 4; and uw € B; (eventually with v = w), then set D := E,\{e € E, :
e incident to u}. Clearly, D # A, D # B and furthermore, d(A,D) = d(B,D) = 1.
Thus, d(A,B) = 2. In case such a node u does not exist, then every nondegenerate
clique of C(A) (resp. C(B)) contains only degenerate cliques of C(B) (resp. C(A)). Let
C' be the set of those cliques in C (A)UC(B) with this property. Then by our assumptions,
C' must contain at least a clique of C (A) and a clique of C(B), and furthermore all cliques
in C' are pairwise disjoint. Now choose a node in each clique of C', call W the set of
these nodes and set D := {e € E, : e has both ends in W}. Since [AAD] and [BAD]
are connected, A ¢ D, D ¢ Aand B¢ D, D ¢ B, then d(A,D) = 1= d(B,D) and
thus d(A,B) = 2. 1

An analysis of the proof of Theorem (4.1) gives immediately the following two results:

Corollary 4.2. Let P, be the clique partitioning polytope and let A and B be distinct
clique partitionings of K,, n > 4. Then d(A, B) < 3 and equality holds if and only if
A = { and either B = K,, or C(B) has more than 2 nondegenerate cliques.

Corollary 4.3. Let K, be the complete graph on n nodes, n > 4, and let

P, = conv{x® : A#0,A clique partitioning of K} .
Then diam (P}) = 2.

Remark 4.4. A polyhedron P with dimension m and k facets has the Hirsch property
if diam(P) < k — m. Using the results presented in our former paper (cf. Grétschel
and Wakabayashi [2, 1987al) on the facets of P,, we can conclude that the polytope P,
has the Hirsch property for all n > 2. This fact is however, implied by a more general
result proved recently (personal communication) by D. Naddef (Grenoble, France) which
states that all polytopes with 0/1-vertices have the Hirsch property.
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5. Concluding Remarks

The fact that the diameter of P, is very small is .not ) surpn'sing, since examples
of polytopes associated with AP-hard problems‘whlch hana small dlame'ter are well-
known in the literature. This is what occurs for instance with the !:ravelhng salesman
polytope and the linear ordering polytope which are known to have diameter 2 (Padbe¥g
and Rao [6, 1974] and Young (8, 1978]). We sh.ould remark, h'owever, that whereas in
some cases the (non-)adjacency test of two ve.rtlce's can be easily performed, as 01; tge
polytope Pr or the linear ordering polytf);?e, it might happen —asin the case o t e
travelling salesman polytope — that deciding whether two vertices are non-adjacent is

an NP-complete problem. (Papadimitriou [7, 1978]).

Note Added in Proof. The main results of this paper — tI‘heorgn (3.1). and Theorem
(4.1) — were obtained first by Simon Régnier and published in t.echmcal rgports of
“Centre de Calcul de la Maison des Sciences de ’'Homme”, Parls’, in .the perlod. from
1971 to 1975. A reprint of Régnier’s papers can be found in “_Mathematxgues et 'Sc1er'1ces
Humaines, 21¢ année, No. 82, 1983 — a special issue dedicated to his COIltI‘lbUt.IOI’lS
to mathematical taxonomy. This work was done independently and uses an entirely
different proof technique.
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