Three Short Proofs in Graph Theory

L. Lovász

Dept. of Mathematics, Eötvos Lorand University, Budapest, Hungary

Communicated by W. T. Tutte Received June 30, 1973

The aim of this note is to give short proofs of three well-known theorems of graph theory.

BROOKS' THEOREM. If G is a graph with maximum degree $n \ (n \ge 3)$ and G contains no complete (n + 1)-graph, then G is n-colorable.

Proof¹. Suppose G contains two points a, b at distance 2 such that G - a - b is connected (this is satisfied, for example, if G is 3-connected). Let v be a point adjacent to a and b.

As G - a - b is connected, we can arrange its points in a sequence $x_1 = v, x_2, ..., x_{m-2}$ such that each point $x_i, i \ge 2$ is adjacent to an earlier point; in fact, if $x_1, ..., x_i$ have already been chosen let x_{i+1} be any point not yet listed and adjacent to one of them.

We define an *n*-coloring of G as follows. Let a, b get color 1 (this is legitimate, since they are nonadjacent). We successively color x_{m-2} , $x_{m-3}, ..., x_2$ with one of the colors 1,..., n. This is always possible since each has fewer than n neighbours previously colored. Although this may not be true for $x_1 = v$, it has two neighbors, a and b, of the same color and so we can find a color for v different from the colors of its neighbors.

What's left is to find appropriate points a, b for nontrivial cases. As noted, this is trivially possible if G is 3-connected (since it cannot be a complete graph). One way to finish is to say that 2-separable graphs can easily be broken into smaller pieces whose *n*-colorings can be put together. Another possibility is this. We may assume G is 2-connected. Let x be a point which is not adjacent to all the other points but has degree at least 3 (we may assume such a point exists). If G - x is still 2-connected, let a = x and let b be any point at distance 2 from x. If G - x is separable, consider 2 endblocks B_1 , B_2 (an endblock B_i is a 2-connected component containing a point z_i such that for any other 2-connected component

¹ A related idea was used by J. Ponstein, A new proof of Brooks' chromatic number theorem for graphs, J. Combinatorial Theory 7 (1969), 255–257.

269

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

L. LOVÁSZ

B' either B_i and B' are disjoint or z_i is their only common vertex). Since G is 2-connected, there are $a \in B_1 - z_1$, $b \in B_2 - z_2$ adjacent to x. Now a, b satisfy the requirements.

The other two proofs are based on the idea that if a theorem indicates the structure of certain "extremal" graphs then a proof of the theorem may sometimes be obtained by verifying this structure directly.

KÖNIG'S THEOREM. The maximum number $\nu(G)$ of independent edges of a bipartite graph equals to the minimum number $\tau(G)$ of points covering all edges.

TUTTE'S THEOREM. A graph G has a 1-factor if and only if G - X has at most |X| odd components for all $X \leq V(G)$.

Both theorems have a trivial half, which hardly have different proofs: $\nu(G) \leq \tau(G)$ for any bipartite graph (in fact, for any graph) and the condition given in Tutte's theorem is necessary. We only give the non-trivial parts in detail.

Proof of König's Theorem ($\nu(G) \ge \tau(G)$). Let G' be a minimal subgraph of G with the property $\tau(G') = \tau(G)$. We claim G' consists of independent edges. This will finish the proof as the number of these edges is, obviously, at least $\tau(G') = \tau(G)$.

Suppose, to the contrary, that G' has a vertex x adjacent to y_1 and y_2 . By the minimality of G', $\tau(G' - (x, y_i)) < \tau(G)$ and so, there is a set $S_i \subseteq V(G)$, $|S_i| = \tau(G) - 1$ which covers all edges of $G' - (x, y_i)$. Since S_i cannot cover (x, y_i) , we have $x, y_i \notin S_i$.

Set $S = S_1 \cap S_2$, |S| = t, $R = (S_1 - S) \cup (S_2 - S) \cup \{x\}$. Then $|R| = 2(\tau(G) - 1 - t) + 1 = 2(\tau(G) - t) - 1$. R induces a bipartite subgraph G" of G' (since any subgraph of G is bipartite). Let T be the smaller of the two color classes of G". Then $|T| \leq \lfloor \frac{1}{2} \mid R \rfloor = \tau(G) - t - 1$. Observe that $T \cup S$ covers all edges of G': if an edge is induced by R, T covers it and if it is not, it can meet both S_1 and S_2 only if it has an endpoint in $S_1 \cap S_2 = S_1$.

Now

$$|T \cup S| = \tau(G) - t - 1 + t = \tau(G) - 1 < \tau(G'),$$

a contradiction.

Proof of Tutte's Theorem (Sufficiency). Assume G is a graph which satisfies the condition that the number of odd components of G - X is at most |X|, but has no 1-factor. The condition with $X = \phi$ yields that |V(G)| is even. Let G' be a maximal graph on V(G) containing all edges of G and having no 1-factor.

Let V_1 be the set of those points of G' which are connected to every other point and let $V_2 = V(G) - V_1$. Let G" be the subgraph of G' induced by V_2 .

We claim G" consists of disjoint complete graphs, i.e., adjacency is an equivalence relation on V_2 . Suppose, to the contrary that there are a, $b, c \in V_2$ with $(a, b), (b, c) \in V(G')$ and $(a, c) \notin V(G')$. As $b \in V_2$, we find a point d such that $(b, d) \notin V(G)$.

By the maximality of G', G' + (a, c) has a 1-factor F_1 and G' + (b, d) has a 1-factor F_2 . Obviously, $(a, c) \in F_1$, $(b, d) \in F_2$ but $(a, c) \notin F_2$ and $(b, d) \notin F_1$.

 $F_1 \cup F_2$ decomposes into disjoint cycles and edges (these are the edges of $F_1 \cap F_2$).

Let C be the cycle of $F_1 \cup F_2$ containing (a, c). If $(b, d) \notin C$, exchange the edges of $F_1 \cap C$ for the edges of $F_2 \cap C$ in F_1 . The new 1-factor does not contain (a, c) or (b, d) and is therefore a 1-factor of G', a contradiction. So $(b, d) \in C$.

Removing (b, d) and (a, c) from C we get two paths, one of them having d as an end point. Let P be this path. We may assume without loss of generality that the other endpoint of P is a. Then C' = P + (b, d) + (a, b) is a cycle which alternates with respect to F_2 . So removing the edges of $F_2 \cap C'$ from F_2 but adding the other edges of C', we again get a 1-factor of G', a contradiction.

So we have shown that G'' consists of disjoint complete subgraphs; there must be more than $|V_1|$ odd ones among these, otherwise G'obviously has a 1-factor. Thus $G' - V_1$ has $> |V_1|$ odd components and therefore, so does $G - V_1$. Thus, the condition is not satisfied.