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Abstract: We collect some of our favorite proofs of Brooks’ Theorem,
highlighting advantages and extensions of each. The proofs illustrate some
of the major techniques in graph coloring, such as greedy coloring, Kempe
chains, hitting sets, and the Kernel Lemma. We also discuss standard
strengthenings of vertex coloring, such as list coloring, online list coloring,
and Alon–Tarsi orientations, since analogs of Brooks’ Theorem hold in each
context. We conclude with two conjectures along the lines of Brooks’
Theorem that are much stronger, the Borodin–Kostochka Conjecture and
Reed’s Conjecture. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 80: 199–225, 2015
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1. INTRODUCTION

Brooks’ Theorem is among the most fundamental results in graph coloring. In short, it
characterizes the (very few) connected graphs for which an obvious upper bound on the
chromatic number holds with equality. It has been proved and reproved using a wide range
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of techniques, and the different proofs generalize and extend in many directions. In this
article we share some of our favorite proofs. In addition to surveying Brooks’ Theorem,
we aim to illustrate many of the standard techniques in vertex coloring1; furthermore,
we prove versions of Brooks’ Theorem for standard strengthenings of vertex coloring,
including list coloring, online list coloring, and Alon–Tarsi orientations. We present
the proofs roughly in order of increasing complexity, but each section is self-contained
and the proofs can be read in any order. Before we state the theorem, we need a little
background.

A proper coloring assigns colors, denoted by positive integers, to the vertices of a
graph so that endpoints of each edge get different colors. A graph G is k-colorable if
it has a proper coloring with at most k colors, and its chromatic number χ(G) is the
minimum value k such that G is k-colorable. If a graph G has maximum degree �, then
χ(G) ≤ � + 1, since we can repeatedly color an uncolored vertex with the smallest color
not already used on its neighbors. Since the proof of this upper bound is so easy, it is
natural to ask whether we can strengthen it. The answer is yes, nearly always.

A clique is a subset of vertices that are pairwise adjacent. If G contains a clique Kk on
k vertices, then χ(G) ≥ k, since all clique vertices need distinct colors. Similarly, if G
contains an odd length cycle, then χ(G) ≥ 3, even when � = 2. In 1941, Brooks [10]
proved that these are the only two cases in which we cannot strengthen our trivial upper
bound on χ(G).

Brooks’ Theorem. Every graph G with maximum degree � has a �-coloring unless
either (i) G contains K�+1 or (ii) � = 2 and G contains an odd cycle.

We typically emphasize the case � ≥ 3, and often write the following: “Every graph
G satisfies χ ≤ max{3, ω, �},” where ω is the size of the largest clique in G. This
formulation follows Brooks’ original article, and it has the benefit of saving us from
considering odd cycles in every proof. Before the proofs, we introduce our notation,
which is fairly standard. The neighborhood N(v) of a vertex v is the set of vertices
adjacent to v. The degree d(v) of a vertex v is |N(v)|. For a graph G with vertex set V (G),
we often write |G| to denote |V (G)|. The clique number ω(G) of G is the size of its
largest clique. We denote the maximum and minimum degrees of G by �(G) and δ(G).
We write simply ω, �, δ, or χ when referring to the original graph G, rather than to any
subgraph. The subgraph of G induced by vertex set V1 is the graph with vertex set V1 and
with every edge of G that has both endpoints in V1; it is denoted G[V1]. The subgraph
induced by a clique is complete.

To color greedily is to consider the vertices in some order, and color each vertex v with
the smallest color not yet used on any of its neighbors. For every graph, there exists a
vertex order under which greedy coloring is optimal (given an optimal coloring, consider
the vertices in order of increasing color). However, considering each of the n! vertex
orderings for an n-vertex graph is typically impractical.

1One common coloring approach notably absent from this article is the probabilistic
method. Although the so-called naive coloring procedure has been remarkably
effective in proving numerous coloring conjectures asymptotically, we are not
aware of any probabilistic proof of Brooks’ Theorem. For the reader interested in
this technique, we highly recommend the monograph of Molloy and Reed “Graph
Colouring and the Probabilistic Method” [48].
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In our proofs, we often assume that a counterexample exists, and this assumption leads
us to a contradiction. A minimum counterexample G to Brooks’ Theorem is one minimiz-
ing |G|. To avoid repetition later, we note the following here, which is helpful in multiple
proofs. We will use it later without further comment. Any minimum counterexample G
must satisfy χ > max{ω,�}, and thus χ = � + 1. If H is a proper induced subgraph of
G, then minimality of G gives χ(H) ≤ max{3, ω(H), �(H)} ≤ �. So for every vertex
v, G − v is �-colorable; since G is not �-colorable, v must have a neighbor in all � color
classes in any �-coloring of G − v. Since this is true for every vertex v, it follows that G
must be �-regular.

2. GREEDY COLORING

To motivate our first two proofs, we return to the observation that every graph satisfies
χ ≤ � + 1. The idea is to color the vertices greedily in an arbitrary order. To prove
χ ≤ �, it suffices to order the vertices so that at the point when each vertex gets colored,
it still has an uncolored neighbor. Of course, this is impossible, since in any order the
final vertex will have no uncolored neighbors. Nonetheless, we can find an order such
that every vertex except the last still has an uncolored neighbor when it gets colored.
Such an order yields a �-coloring of G − v for each choice of a final vertex v. Our first
two proofs show two different ways to ensure that we can extend this �-coloring to G.

In 1975, Lovász published a three-page article [43] entitled “Three Short Proofs in
Graph Theory.” It included the following proof of Brooks’ Theorem by coloring greedily
in a good order. The proof needs a few notions of connectedness. A cutset is a subset
V1 ⊂ V such that G \ V1 is disconnected. If a single vertex is a cutset, then it is a cutvertex.
A graph is k-connected if every cutset has size at least k. A block is a maximal 2-connected
subgraph. The block graph of a graph G has the blocks of G as its vertices and has two
blocks adjacent if they intersect. It is easy to see that every block graph is a forest; each
leaf of a block graph corresponds to an endblock in the original graph.

Lemma 2.1. Let G be a 2-connected graph with δ(G) ≥ 3. If G is not complete, then
G contains an induced path on three vertices, say uvw, such that G \ {u, w} is connected.

Proof. Since G is connected and not complete, it contains an induced path on three
vertices. If G is 3-connected, any such path will do. Otherwise, let {v, x} ⊂ V (G) be a
cutset. Since G − v is not 2-connected, it has at least two endblocks B1, B2. Since G is
2-connected, each endblock of G − v has a noncutvertex adjacent to v (see Figure 1). Let
u ∈ B1 and w ∈ B2 be such vertices. Now G \ {u, w} is connected since d(v) ≥ 3. So uvw
is our desired induced path. �

Proof 2 of Brooks’ Theorem. Let G be a connected graph. First, suppose that G has a
vertex v with d(v) < �. We color greedily in order of decreasing distance to v (breaking
ties arbitrarily). For each vertex u other than v, when u gets colored, some neighbor w on
a shortest path in G from u to v is uncolored, so we use at most � colors. Since d(v) < �,
we can color v last. Similarly, suppose G has a cutvertex v. Now for each component H
of G − v, we can �-color H + v, since v has fewer than � neighbors in H. By permuting
the color classes to agree on v, we get a �-coloring of G.

Now assume that G is �-regular, 2-connected, and not complete. Let uvw be the
induced path guaranteed by Lemma 2.1. Color u and w with color 1; now as before,
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FIGURE 1. G contains an induced path uvw such that G \ {u, w} is connected.

color the remaining vertices greedily in order of decreasing distance in G \ {u, w} from
v. Again we can color v last, this time because it has two neighbors with the same
color. �

Lovász’s proof has many variations. Bondy [5] used a depth-first search tree to construct
the path in Lemma 2.1, and Bryant [11] used yet another method. Schrijver’s proof [60]
skips Lemma 2.1 by using greedy coloring only for 3-connected graphs and handling
two-vertex cutsets by patching together colorings of the components.

3. KEMPE CHAINS

The most famous theorem in graph theory is the 4 Color Theorem: Every planar graph is
4-colorable. In 1852, Guthrie asked whether this was true. Two years later the problem
appeared in Athenæum [28, 44], a London literary journal, where it attracted the attention
of mathematicians. In 1879, Kempe published a proof. Not until 1890 did Heawood
highlight a flaw in Kempe’s purported solution.2 Fortunately, Heawood largely salvaged
Kempe’s ideas, and proved the 5 Color Theorem. The key tool in this work is now
called a Kempe chain. This technique is among the most well-known in graph coloring.
It yields a short proof that every bipartite graph has a proper �-edge-coloring, and
similar ideas show that every graph has a proper (� + 1)-edge-coloring (see Section 5.3
of Diestel [18]).

In 1969 Mel’nikov and Vizing [45] used Kempe chains to give the following elegant
proof of Brooks’ Theorem. We phrase this proof in terms of a minimal counterexample
G, and for an arbitrary vertex v, we color G − v by minimality. To turn the proof into an
algorithm, we can simply color greedily toward v, as in our first proof; thus, the “hard
part” is once again showing how to color this final vertex v.

For a proper coloring of a graph G, an (i, j)-Kempe chain is a component of the
subgraph of G induced by the vertices of colors i and j. A swap in an (i, j)-Kempe chain
H swaps the colors on H; each vertex in H colored i is recolored j and vice versa. Such
a swap yields another proper coloring.

Proof 3 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum
counterexample. Choose an arbitrary vertex v. By minimality, G is �-regular. Further,

2In 1880, Tait published a second proof. But, alas, it, too, was founding wanting.
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FIGURE 2. The left figure shows Claim 2 and the right figure shows Claim 3 in
Proof 3 of Brooks’ Theorem.

in each �-coloring of G − v, each color appears on some neighbor of v. Fix an arbitary
�-coloring C of G − v. For each i ∈ {1, . . . , �}, let vi be the neighbor of v using color i.
By a similar argument, for each vi, each color other than i appears on a neighbor of vi;
for otherwise we could recolor vi and color v with i. For each pair of colors i and j, let
Ci, j denote the (i, j)-Kempe chain containing vi.

Claim 1. For all i and j, Ci, j = Cj,i. If not, then after a swap in Ci, j, two neighbors of
v use j and none use i, so we can color v with i.

Claim 2. For all i and j, the (i, j)-Kempe chain Ci, j containing vi and v j is a path. If
not, then Ci, j has a vertex of degree at least 3 (since vi and v j have degree
1); let u be the unique such vertex in Ci, j that is closest to vi. At most � − 2
colors appear on neighbors of u, so we can recolor u. Now i and j violate
Claim 1.

Claim 3. For all i, j, and k, we have Ci, j ∩ Ci,k = vi. Suppose not and choose u ∈
Ci, j ∩ Ci,k, with u �= vi. Since u has color i, colors j and k each appear on two
neighbors of u; so we can recolor u. Now i and j (and also i and k) violate
Claim 1.

Claim 4. Brooks’ Theorem is true. If the neighbors of v form a clique, then G = K�+1

and there is nothing to prove. So instead there exist some nonadjacent vi and
v j, say v1 and v2 by symmetry. Let u be the neighbor of v1 in C1,2. Now
perform a swap in C1,3. Call this new coloring C′, and define v′

i and C′
i, j

analogously to vi and Ci, j for C. Since u still uses color 2, clearly u ∈ C′
2,3. By

Claim 3, the swap on C1,3 did not disrupt C1,2 except at v1; so u ∈ C′
1,2. Now

u ∈ C′
1,2 ∩ C′

2,3, which violates Claim 3, and gives the desired contradiction.�
Kostochka and Nakprasit [40] took this Kempe chain proof further by showing that

when extending the coloring to v, we can ensure that only one color class changes size.3

Catlin [13] proved that the �-coloring given by Brooks’ Theorem can be chosen so that
one of the color classes is a maximum independent set, and this result is a quick corollary
of the theorem of Kostochka and Nakprasit. Much earlier, Mitchem [46] gave a short

3They proved the following. For k ≥ 3, let G be a Kk+1-free graph with �(G) ≤ k.
Suppose that G − v has a k-coloring with color classes M1, . . . , Mk . Then G has a
k-coloring with color classes M′

1, . . . , M ′
k such that |Mi | �= |M ′

i | for exactly one i.
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proof of Catlin’s result by modifying an existing �-coloring via Kempe chains. Recently,
Sivaraman [61] gave a short inductive proof of Catlin’s Theorem.

4. REDUCING TO THE CUBIC CASE

A natural idea for proving Brooks’ Theorem is induction on the maximum degree. For
a graph G with maximum degree � and clique number at most �, suppose we have
some independent set I such that G − I has maximum degree and clique number each at
most � − 1. If we can color G − I with � − 1 colors, then we can extend the coloring
to G with one extra color. This approach forms the basis for our proofs in the next two
sections. Of course we must provide a base case for the induction, and we must also show
how to find this very useful set I.

Before proving Brooks’ Theorem again, we give an easy lemma, which covers the
base case in our inductive proof. We often prove coloring results by repeatedly extending
a partial coloring. During this process, the lists of valid colors for two uncolored vertices
may differ, depending on the colors already used on their neighbors. This motivates the
notion of list coloring. Later we develop this idea further, but for now we need only the
following lemma.

Lemma 4.1. If each vertex of a cycle C has a list of two colors, then C has a proper
coloring from its lists unless C has odd length and all lists are identical.

Proof. Denote the vertices by v1, . . . , vn and let the lists be as specified. If all lists
are identical and n is even, then we alternate colors on C. So suppose that two lists differ.
This implies that the lists differ on some pair of adjacent vertices, say on v1 and vn. Color
v1 with a color not in the list for vn. Now color the vertices greedily in order of increasing
index. �

The following proof is due to the second author [50]. In some ways it is simpler than
the first two proofs, since this one needs neither connectivity concepts nor recoloring
arguments.
Proof 4 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum
counterexample. Recall that G must be �-regular.

First, suppose G is 3-regular. A diamond is K4 minus an edge. If G contains an induced
diamond D, then by minimality we 3-color G − D. The two nonadjacent vertices in
D each still have two colors available, so we color them with a common color, and
then finish the coloring. So G cannot contain diamonds. Since δ(G) ≥ 2, G contains
an induced cycle C. Each vertex of C has one neighbor outside of C. Since � = 3 and
G does not contain K4, two vertices of C have distinct neighbors outside of C; call the
neighbors x and y (see Figure 3). When x and y are adjacent, let H = G − C; otherwise,
let H = (G − C) + xy. Since G does not contain diamonds, H does not contain K4. Since
G is minimum, H is 3-colorable. That is, G − C has a 3-coloring where x and y get
different colors. Each vertex of C loses one color to its neighbor outside of C, and so still
has two colors available. Since x and y use different colors, by Lemma 4.1 we can extend
the coloring to V (C), and hence to all of G.

Now instead suppose � ≥ 4. Since G is not complete, it has an induced 3-vertex path,
uvw. By minimality, G − v has a �-coloring; choose a color class I of this �-coloring
with u, w �∈ I. Now ω(G − I) ≤ � − 1; this is because any K� in G − I would have to
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FIGURE 3. How to �-color a graph with no K�+1 when � = 3.

contain v and all of its neighbors in G − I, but its neighbors u and w are nonadjacent.
Form I′ by expanding I to a maximal independent set, and let H = G − I′. Since I′ is
maximal, each vertex in H has a neighbor in I′, so �(H) ≤ � − 1. If �(H) = � − 1,
then ω(H) ≤ �(H), so Brooks’ Theorem holds for H, and χ(H) ≤ � − 1. Otherwise,
�(H) ≤ � − 2. Now a greedy coloring gives χ(H) ≤ �(H) + 1 ≤ � − 1. In each case
χ(H) ≤ � − 1; now we use one more color on I′ to get χ(G) ≤ χ(H) + 1 ≤ �. �

In one variation of Proof 4 we do not reduce to the cubic case [53]. Instead, we note
that, similarly to Lemma 4.1, a Kk has a proper coloring from lists of size k − 1 unless
all the lists are identical. Hence if G contains a K� (or an odd cycle when � = 3),
then we get a �-coloring of G by minimality in the same way as in the 3-regular
case of Proof 4. Otherwise, removing any maximal independent set yields a smaller
counterexample.

A hitting set is an independent set that intersects every maximum clique. The reduction
to the cubic case in the previous proof is an immediate consequence of more general
lemmas on the existence of hitting sets [38, 51, 33, 64]. Schmerl [59] extended Brooks’
Theorem to all locally finite graphs, by constructing a recursive hitting set.4 Tverberg also
modified his own earlier proof [64] to give a shorter constructive proof [65] of Brooks’
Theorem for locally finite graphs. We will see this earlier proof in Section 5.

5. K-TREES

Tverberg used k-trees [64] to give a short proof of Brooks’ Theorem. Similar to the proof
in Section 4, this one inductively colors G − I by minimality, where I is a hitting set. The
differences in the two proofs lie in how we find I and how we handle the base case.

We define k-trees5 as follows. For k = 3, an odd cycle is a k-tree and for k ≥ 4, a Kk

is a k-tree. Additionally, any graph formed by adding an edge between vertices of degree
k − 1 in disjoint k-trees is again a k-tree. For convenience, we write Tk to mean Kk when
k ≥ 4 and to mean an odd cycle when k = 3.

4By recursive hitting set, we mean an infinite set S of vertices, which is both a
hitting set and a recursive set; more formally, S is recursive if for any vertex v , we
can decide whether v is in S in finite time.

5Often the term k-tree is used for a different (and inequivalent) notion. In presenting
Tverberg’s proof, we keep with his use of this term, even though it is admittedly
nonstandard.
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FIGURE 4. Components A and B of G − v in the final case of Lemma 5.1.

The name k-tree comes from the fact that contracting each Tk to a single vertex yields
a tree T . A leaf in a k-tree is a Tk corresponding to a leaf in T . Each leaf in a k-tree has
only one vertex of degree k in G, so it is easy to show by induction that each k-tree other
than Tk has at least k + 1 vertices of degree k − 1. Now we can state Tverberg’s lemma.

Lemma 5.1. Let G be a connected graph and let k = �(G). If k ≥ 3 and G is neither
a k-tree nor Kk+1, then G has a vertex v of degree k such that no component of G − v is
a k-tree.

Proof. Suppose the lemma is false and let G be a counterexample. Now G contains
a Tk, for otherwise any vertex v of degree k suffices. Let H be a copy of Tk with the
minimum number of vertices of degree k in G. First, suppose H has only one vertex v of
degree k, and note that v is a cutvertex of G. Since G is not a k-tree and H is a k-tree,
G − H is not a k-tree. Since neither G − H nor H − v is a k-tree, v is the desired vertex,
which is a contradiction.

So instead H has at least two vertices of degree k. Pick neighbors v, w ∈ V (H), where
v has degree k and w has degree as small as possible. When G − v is connected, let
A = G − v; otherwise G − v has two components, A and B, where H − v ⊆ A. Since G
is a counterexample, either A or B is a k-tree.

Suppose B is a k-tree. Now we find a copy of Tk with at most one vertex of degree k,
which contradicts the minimality of H. If B = Tk, then B will do. Otherwise, we choose a
leaf of B with no vertex adjacent to v in G. Thus B is not a k-tree; so instead A is a k-tree.

Since A is a k-tree, w has degree at least k − 1 in A and hence at least k in G. By our
choice of w, every vertex in H has degree k in G. Hence, by the minimality of H, every
vertex in a Tk in G has degree k. But every vertex of A is in a Tk and hence has degree k
in A unless it is a neighbor of v. So, A is a k-tree with at most k vertices of degree k − 1.
The only such k-tree is Tk, so A = Tk and G = Kk+1, a contradiction. �

Proof 5 of Brooks’ Theorem. Suppose the theorem is false and choose a minimum
counterexample G. If G is a �-tree, then let v be a cutvertex. For each component H
of G − v, we can �-color H + v, and then permute the colors so the colorings agree on
v. So G is not a �-tree. Now apply Lemma 5.1 with k = � recursively on components
until all components have maximum degree less than k; let v1, . . . , vr be the vertices used
by the lemma and let I = {v1, . . . , vr}. Note that I is independent. If k = 3, then G − I
consists of even cycles and paths, so we can 2-color it. If k ≥ 4, then by minimality
of |G|, we can (k − 1)-color G − I. Now we finish by coloring I with a new color, a
contradiction. �
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FIGURE 5. The left figure shows an example of a P-acceptable path. The right
figure shows sets X and Y constructed from components A and B.

6. PARTITIONED COLORING

The coloring number col(G) is defined by col(G) = 1 + maxH⊆G δ(H), where H ranges
over all subgraphs of G. Suppose we color a graph G as follows: delete a vertex v of
minimum degree, recursively color G − v, and greedily color v. This method shows that
χ(G) ≤ col(G). In 1976, Borodin [6] proved the following generalization of Brooks’
Theorem.

Theorem 6.1. Let G be a graph not containing a K�+1. If s ≥ 2 and r1, . . . , rs are
positive integers with r1 + . . . + rs ≥ � ≥ 3, then V (G) can be partitioned into sets
V1, . . . ,Vs such that �(G[Vi]) ≤ ri and col(G[Vi]) ≤ ri for all i ∈ {1, . . . , s}.

Brooks’ Theorem follows from Theorem 6.1 by taking s = � and r1 = . . . = rs = 1.6

One way to prove Theorem 6.1 is to extend the idea of the fundamental result of Lovász
[42] along the lines of Catlin [14] and Bollobás and Manvel [4], where a partition is
repeatedly modified by moving vertices from one part to another. In his dissertation [52]
the second author gave the following proof of Brooks’ Theorem, where this dynamic
process is specialized and made static. (The heart of this proof is Lemma 6.2, which is
similar to the special case of Theorem 6.1 when s = 2, r1 = 1, and r2 = � − 1.)

Let G be a graph. A partition P = (V1,V2) of V (G) is normal if it minimizes the
value of (� − 1) ‖V1‖ + ‖V2‖, where ‖Vi‖ denotes |E(G[Vi])|. Note that if P is a normal
partition, then �(G[V1]) ≤ 1 and �(G[V2]) ≤ � − 1, since if some vertex v has degree
that is too high in its part, then we can move it to the other part. The P-components of G
are the components of G[V1] and G[V2]. A P-component is an obstruction if it is a K2 in
G[V1] or a K� in G[V2] or an odd cycle in G[V2] when � = 3. (Note that if a P-component
contains an obstruction, then the obstruction is the whole P-component.)

A path v1 . . . vk is P-acceptable (see Figure 5) if v1 is in an obstruction and for all
i, j ∈ {1, . . . , k}, vi and v j are in different P-components. A P-acceptable path is maximal
if it is not contained in a larger P-acceptable path. This means that a P-acceptable path
v1 . . . vk is maximal if and only if every neighbor of vk is in the same P-component as
some vertex in the path. Given a partition P, to move a vertex u is to move it to the other
part of P. Note that if P is normal and u is in an obstruction, then the partition formed

6Section 9 gives another extension of Brooks’ Theorem (also due to Borodin [7])
that classifies the graphs that are colorable when each vertex v is allowed a
list of colors L(v ) and |L(v )| = d (v ). Borodin, Kostochka, and Toft [9] proved an
intruiging common generalization of these two, seemingly unrelated, results.
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by moving u is again normal since u had maximum degree in its original part. For a
subgraph H of G and vertex u ∈ V (G), let NH (u) = N(u) ∩ V (H).

Lemma 6.2. Let G be a graph with � ≥ 3. If G does not contain K�+1, then V (G) has
an obstruction-free normal partition.

Proof. Suppose the lemma is false and let G be a counterexample. Among the
normal partitions of G with the minimum number of obstructions, choose P = (V1,V2)

and a maximal P-acceptable path v1 . . . vk so as to minimize k. Throughout the proof, we
often move some vertex u in an obstruction A. Since this destroys A, the minimality of
P implies that the move creates a new obstruction, which must contain u. So if u has a
neighbor w, initially in the other part, then w is in this new obstruction. Finally, the new
partition has the minimum number of obstructions.

Let A and B be the P-components containing v1 and vk respectively. Let X = NA(vk).
If |X | = 0, then moving v1 creates a new normal partition P′. Since v1 is adjacent to v2,
the new obstruction contains v2. So v2v3 . . . vk is a maximal P′-acceptable path, violating
the minimality of k. Hence |X | ≥ 1.

Pick any vertex x ∈ X , and form P′ by moving x. The new obstruction contains vk and
hence all of B, since each obstruction is a whole P′-component. So {x} ∪ V (B) induces an
obstruction. Let Y = NB(x); see Figure 5. Since x ∈ X was arbitrary, the argument works
for all z ∈ X . Since obstructions are regular, NB(z) = Y for all z ∈ X , which implies that
X is joined to Y in G. Also since obstructions are regular, |Y | = δ(B) + 1.

First, suppose |X | ≥ 2. Similar to above, form P′ from P by moving x and vk. Now {vk} ∪
V (A − x) induces an obstruction (vk is in a P′-component with v1, since |X − x| ≥ 1).
Because obstructions are regular, |NA−x(vk)| = �(A) and hence |X | ≥ �(A) + 1. Since X
and Y are disjoint, |X ∪ Y | ≥ (�(A) + 1) + (δ(B) + 1) = �(G) + 1; the equality holds
because A and B + x are obstructions. (If � > 3, then �(A) + 1 = |A| and δ(B) + 1 =
|B| and the sizes of obstructions in distinct parts sums to � + 2; the case � = 3 is a little
different, since now one obstruction is an odd cycle.)

Suppose X is not a clique and pick nonadjacent x1, x2 ∈ X . It is easy to check that
moving x1, vk, x2, violates the choice of P. Hence X is a clique. Similarly, suppose Y is not
a clique and pick nonadjacent y1, y2 ∈ Y and any x′ ∈ X − {x}. Now moving x, y1, x′, y2

again violates the choice of P. Hence Y is a clique. But X is joined to Y , so X ∪ Y induces
K�+1 in G, a contradiction.

So instead |X | = 1. Suppose X �= {v1}, and first suppose A is K2. Now moving x creates
another normal partition P′ with the minimum number of obstructions. In P′, the path
vkvk−1 . . . v1 is a maximal P′-acceptable path, since the P′-components containing v2 and
vk contain all neighbors of v1 in that part. Repeating the above argument using P′ in place
of P gets us to the same point with A not K2. Hence we may assume A is not K2.

Move each of v1, . . . , vk in turn. The obstruction A is destroyed by moving v1, and for
1 ≤ i < k, the obstruction created by moving vi is destroyed by moving vi+1. So after the
moves, vk is in an obstruction. The minimality of k implies that {vk} ∪ V (A − v1) induces
an obstruction and hence |X | ≥ 2, since A is not K2. This contradicts |X | = 1.

Therefore X = {v1}. Now moving v1 creates an obstruction containing both v2 and vk,
so k = 2. Since v1v2 is maximal, v2 has no neighbor in the other part besides v1. But now
moving v1 and v2 creates a partition violating the choice of P. �

Proof 6 of Brooks’ Theorem. Suppose Brooks’ Theorem is false and choose a counterex-
ample G minimizing �. Clearly � ≥ 3. By Lemma 6.2, V (G) has an obstruction-free
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normal partition (V1,V2). Note that V1 is an independent set, since �(G[V1]) ≤ 1
and G[V1] contains no K2. Since G[V2] is obstruction-free, the minimality of �

gives χ(G[V2]) ≤ �(G[V2]) ≤ � − 1. Using one more color on V1 gives χ(G) ≤
1 + χ(G[V2]) ≤ �, a contradiction. �

7. SPANNING TREES WITH INDEPENDENT LEAF SETS

In this section, we take a scenic route. We combine two lemmas of independent interest,
to give an unexpected proof of Brooks’ Theorem. The union of two forests F1 and F2 (on
the same vertex set) is 4-colorable, since we can color each vertex v with a pair (a1, a2),
where ai is the color of v in a proper 2-coloring of Fi. A star forest is a disjoint union of
stars. Sauer conjectured that the union of a forest and a star forest is always 3-colorable,
and Stiebitz [62] verified this conjecture. The main component of his proof is a lemma
that allows for extending a k-coloring of an induced subgraph to the whole graph when
it has a spanning forest with certain properties.

Böhme et al. [3] classified the graphs with a spanning tree whose leaves form an
independent set; by combining this result with Stiebitz’s coloring lemma, they gave an
alternative proof of Brooks’ Theorem. In this section, we prove both the lemma of Stiebitz
and that of Böhme et al., as well as show how they easily yield Brooks’ Theorem.

We need two definitions. An independency tree is a spanning tree in which the leaves
form an independent set. Let v1, . . . , vn be an order of the vertices of a graph G; call
it σ . We define a depth-first-search tree, or DFS tree, with respect to σ as follows. We
iteratively grow a tree. At each step i, we have a tree Ti and an active vertex xi. Let T1 = v1

and x1 = v1. We grow the tree as follows. If xi has a neighbor not in Ti, then choose the
first such neighbor w, with respect to σ . Now let Ti+1 = Ti + xiw and xi+1 = w. If xi has
no neighbor outside the tree, then let w be the neighbor of xi on a path in Ti to v1. Now let
Ti+1 = Ti and xi+1 = w. This algorithm terminates only when xk = v1 and all neighbors
of v1 are in the tree. It is easy to check that when this happens Tk is a spanning tree.
A DFS independency tree is both a DFS tree and an independency tree. We begin with
the following elegant lemma, from Böhme et al. [3]; about 25 years earlier, Dirac and
Thomassen [19] proved a variation containing (1) and (4), as well as other equivalent
conditions (but not (2) or (3)).

Lemma 7.1. For a connected graph G, the following four conditions are equivalent.

(1) G is Cn, Kn, or Kn/2,n/2 for n even.
(2) G has no independency tree.
(3) G has no DFS independency tree.
(4) G has a Hamiltonian path, and every Hamiltonian path is contained in a Hamil-

tonian cycle.

Proof.

(1) ⇒ (2): If G is Cn or Kn, then any spanning tree has all leaves pairwise adjacent,
so G has no independency tree. So Let G be Kn/2,n/2. If all leaves are in the same
part, then each vertex in the other part has degree at least 2. This requires at least
n edges, which is too many for an n-vertex tree; so we get a contradiction.

(2) ⇒ (3): This implication is immediate from the definitions.
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n 1n − 1

k − 1kk + 1

n 1 2n − 1

k − 2k − 1kk + 1

n 1n − 1

k − 1kk + 1

FIGURE 6. Key steps in the proof that (4) ⇒ (1): On the left, G must contain
v1vk+1. In the center, G must contain vnvk−2. A symmetric argument shows that

G must contain vnvk+2. On the right, G must contain vnvk+1.

(3) ⇒ (4): We prove the contrapositive. If G has a Hamiltonian path P that is not
contained in a Hamiltonian cycle, then P is an independency tree. Considering the
vertices in the order in which they appear in P shows that P is a DFS independency
tree. So suppose instead that G has no Hamiltonian path. Let P = v1 . . . vk be a
maximum path in G. The maximality of P implies that v1 and vk are nonadjacent to
each u ∈ V \ V (P). Similarly v1 and vk are nonadjacent (if not, let u be a neighbor
of some vi not on P; now the path vi+1 . . . vkv1 . . . viu is longer than P). Now
consider a DFS tree T that begins with v1, . . . , vk. Since it has an independent leaf
set, T is a DFS independency tree.

(4) ⇒ (1): Suppose that G has a Hamiltonian path P, and P is contained in a Hamilto-
nian cycle C, where C = v1 . . . vn. If C has no chords, then G = Cn, and (1) holds.
So assume C has a chord. The length of a chord viv j is min(|i − j|, n − |i − j|).

The left part of Figure 6 shows that if G contains a chord of C of a given length, then
G contains all chords of C of that length; the central part shows that if G contains a chord
of C of odd (even) length, then it contains all chords of C of odd (even) length.

Suppose n is odd. If G has a chord, then it has either vnv(n+3)/2 or vnv(n−1)/2 (since one
chord has odd length and the other even length). By the middle of Figure 6, the presence
of one of these chords implies the presence of the other. So G has all chords and G = Kn.
Suppose instead that n is even. If G has an even chord, then G has a chord of length 2. For
any chord vnvk of length at least 3, the right part of Figure 6 shows that G also contains
vnvk+1; hence G contains chords of both parities, so G = Kn. In the final case, with n
even and no even chord, all odd chords exist, so G = Kn/2,n/2. �

Next we state Stiebitz’s lemma for extending a k-coloring of a subgraph to the whole
graph.

Lemma 7.2. Let H be an induced subgraph of a graph G with χ(H) ≤ k for some
k ≥ 3. Then χ(G) ≤ k if G has a spanning forest F where

(1) for each component C of H, F [V (C)] is a tree; and
(2) dG(v) ≤ dF (v) + k − 2 for every v ∈ V (G − H).

Before proving Lemma 7.2, we use Lemmas 7.1 and 7.2 to give a short proof of
Brooks’ Theorem.

Proof 7 of Brooks’ Theorem. It suffices to consider connected graphs. If a graph G is
Cn, Kn, or Kn/2,n/2 for n even, then χ(G) satisfies the desired bound. So suppose G is
none of these graphs. By Lemma 7.1, G has an independency tree T . Let I denote the
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FIGURE 7. The left figure shows Claim 1. The right figure shows Claim 3.

independent leaf set of T . To apply Lemma 7.2, let H = G[I], let F = T , and let k = �.
Clearly χ(H) = 1 ≤ k. Each component C of H is an isolated vertex, which is a tree,
so (1) holds. Finally, each vertex v ∈ V (G − H) is a nonleaf in F , so dF (v) ≥ 2. Thus
dG(v) ≤ k ≤ dF (v) + (k − 2). So Lemma 7.2 implies that χ(G) ≤ k = �. �

The proof of Lemma 7.2 yields an algorithm which extends the coloring of H to one
of G, by adding vertices to H one at a time (this is a rough approximation; we give
more precise details below). The proof is by contradiction and it relies on fives claims;
any vertex v violating a claim allows us to make progress in extending the coloring.
One obvious route is to color v immediately and add it to H. When this is not possible,
we form a smaller graph G′ from G − v by identifying some vertices, and we color G′

recursively; afterwards, we color v greedily. Clearly G′ (and F ′ and H ′) must satisfy the
hypotheses of the lemma. We also must ensure that the resulting coloring of G − v uses
at most k − 1 colors on neighbors of v, so that we can extend the coloring to v.

Proof of Lemma 7.2. For any graphs U and W , we write U − W for the subgraph
of U induced by V (U ) \ V (W ). If uv ∈ E(F ), then u is an F-neighbor of v, and u and
v are F-adjacent. Suppose the lemma is false and choose a counterexample pair G, H
minimizing |G − H|. Note that each vertex v in G − H must have a neighbor in H, since
otherwise we can add v to H. Thus |H| ≥ 1.

Claim 1. If there exists v ∈ V (G − H) adjacent to components A1, . . . , As of H with
dG(v) ≤ s + k − 2, then there exist i and j, with i �= j, and a path in F − v from Ai to Aj.

Suppose not and choose such a v ∈ V (G − H). We will find a k-coloring of G. For each
i ∈ {1, . . . , s}, let zi be a neighbor of v in Ai. Form G′, F ′, H ′ from G, F , H (repectively)
by deleting v and identifying all zi as a single new vertex z. Now χ(H ′) ≤ k, since by
permuting colors in each component we can get a k-coloring of H where all the zi use the
same color. Also, F ′ is a spanning forest in G′ since we are assuming there is no path in
F − v from Ai to Aj whenever i �= j. It is easy to check that Conditions [cond1](1) and
[cond2](2) hold for G′, F ′, H ′. Now |G′ − H ′| < |G − H|, so by minimality of |G − H|,
we have a k-coloring of G′. This gives a k-coloring of G − v where z1, . . . , zs all get the
same color. So v has at most dG(v) − (s − 1) ≤ k − 1 colors used on its neighborhood,
leaving a color free to finish the k-coloring on G, a contradiction.

Claim 2. Every leaf of F is in H and every vertex not in H has an F-neighbor
not in H. We can rewrite this formally: dF (v) ≥ 2 and dF−H (v) ≥ 1 for all v ∈ V (G −
H). Applying Claim 1 with s = 1 implies dG(v) ≥ k. Now [cond2]Condition (2) gives
dF (v) ≥ dG(v) + 2 − k ≥ 2. Suppose dF−H (v) = 0 for some v ∈ V (G − H). Since F is
a forest, [cond1]Condition (1) implies that all F-neighbors of v must be in different
components of H. Moreover there can be no path between two of these components
in F − v. [cond2]Condition (2) gives dG(v) ≤ dF (v) + k − 2, so applying Claim 1 with
s = dF (v) gives a contradiction. Thus dF−H (v) ≥ 1 for all v ∈ V (G − H).
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Claim 3. There exists v in G − H with dF−H (v) = 1 such that every component of H
that is F-adjacent to v is not F-adjacent to any other vertex in G − H.

Form a bipartite graph F ′ from F by contracting each component of H and each
component of F − H to a single vertex. Since F is a forest, [cond1]Condition (1) implies
that F ′ is also a forest. So some vertex contracted from a component A of F − H
has at most one neighbor of degree at least 2; say this neighbor is contracted from B,
where B ⊆ (F ∩ H). (If not, then we can walk between components of H and F − H
until we get a cycle in F .) Let v be a leaf of A that is not F-adjacent to B; this gives
dF−H (v) = dA(v) ≤ 1. Claim 2 gives dF−H (v) ≥ 1, so in fact dF−H (v) = 1 as desired.

Claim 4. If the v in Claim 3 is adjacent to a component of H, then it is F-adjacent to
that component.

Let A1, . . . , Ar be the components of H that are F-adjacent to v, where r = dF (v) − 1.
Suppose there is another component Ar+1 of H that is adjacent to v. Since no vertex of
G − H besides v is F-adjacent to any of A1, . . . , Ar, there can be no F-path in F − v
between any pair among A1, . . . , Ar, Ar+1. Now the contrapositive of Claim 1 implies that
dG(v) > (r + 1) + k − 2 = dF (v) + k − 2; this inequality contradicts [cond2]Condition
(2).

Claim 5. The lemma holds.
Let H ′ = G[V (H) ∪ {v}], with v as in Claims 3 and 4. By Claim 4, [cond1]Condition

(1) of the hypotheses holds for H ′. [cond2]Condition (2) clearly holds and F is still a
forest. Also, by permuting colors in the components we can get a k-coloring of H where all
F-neighbors of v get the same color. Hence v has at most dH (v) − (dF (v) − 2) ≤ dG(v) −
1 − (dF (v) − 2) = dG(v) − dF (v) + 1 ≤ k − 1 colors on its neighborhood. Hence H ′ is
k-colorable. But then, by minimality of |G − H|, G is k-colorable, a contradiction. �

8. KERNEL PERFECTION

In the late 1970s, Vizing [66] and, independently, Erdős, Rubin, and Taylor [26] in-
troduced the notion of list coloring, which is the subject of Sections 8 and 9. An f -list
assignment gives to each vertex v a list L(v) of f (v) allowable colors. A proper L-coloring
is a proper coloring where each vertex gets a color from its list. A graph G is f -choosable
(or f -list colorable) if it has a proper L-coloring for each f -list assignment L. We are par-
ticularly interested in two cases of f . If G is f -choosable and f is constant, say f (v) = k
for all v, then G is k-choosable. The minimum k such that G is k-choosable is its choice
number χ�.7 If f (v) = d(v) for all v and G is f -choosable, then G is degree-choosable.
All our remaining proofs show that Brooks’ Theorem is true even for list coloring,8 which
is a stronger result.

In 2009, Schauz [58] and Zhu [67] introduced online list coloring. In this variation,
list sizes are fixed (each vertex v gets f (v) colors), but the lists themselves are provided

7Erdős, Rubin, and Taylor noted that bipartite graphs can have arbitrarily large
choice number. Let m = (2k−1

k

)
and let G = Km,m. If we assign to the vertices of

each part the distinct k-subsets of {1, . . . , 2k − 1}, then G has no good coloring.
Thus χ�(G) > k.

8Formally: If G is a connected graph other than an odd cycle or a clique, then
χ�(G) ≤ �.
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FIGURE 8. The only two connected K�-free graphs where α = |G|
�

.

online by an adversary. In round 1, the adversary reveals the set of vertices whose lists
contain color 1. The algorithm then uses color 1 on some independent subset of these
vertices (and cannot change this set later). In each subsequent round k, the adversary
reveals the subset of uncolored vertices with lists containing k. Again the algorithm
chooses an independent subset of these vertices to use color k. The algorithm wins if it
succeeds in coloring all vertices. And the adversary wins if it reveals a vertex v on each
of f (v) rounds, but the algorithm never colors it. A graph is online k-list colorable (or
k-paintable) if some algorithm can win whenever f (v) = k for all v. The minimum k
such that a graph G is online k-list colorable is its online choice number, denoted χOL,
(or paint number).9

Any proof of the following lemma yields a proof of Brooks’ Theorem for coloring,
list coloring, and even online list coloring using the kernel ideas below (we write α(G)

to denote the maximum size of an independent set, or stable set, in G). Note that this
lemma follows immediately from Brooks’ Theorem for coloring and also from Brooks’
Theorem for fractional coloring (defined below). Surprisingly, all known short proofs of
Lemma 8.1 rely on some version of Brooks’ Theorem.

Lemma 8.1. If G is a graph with � > 2 and G does not contain K�+1, then α(G) ≥ |G|
�

.

It is natural to ask when we can improve the bound in Lemma 8.1. When G can be
partitioned into disjoint copies of K�, clearly we cannot. But Albertson, Bollobas, and
Tucker [1] did improve the bound when G is connected and K�-free, except when G is
one of the two exceptional graphs shown in Figure 8. Along these lines, Fajtlowicz [27]
proved that every graph G satisfies α(G) ≥ 2|G|

ω+�+1 . In general, this bound is weaker than
Lemma 8.1, but when ω ≤ � − 2 it is stronger.

A closely related problem is fractional coloring, where independent sets are assigned
nonnegative weights so that for each vertex v the sum of the weights on the sets containing
v is 1. In a fractional k-coloring, the sum of all weights on the independent sets is k; the
fractional chromatic number is the minimum value k allowing a fractional k-coloring.
(A standard vertex coloring is the special case when the weight on each set is 0 or 1.)

9At first glance, an adversary assigning lists to vertices seems to have much more
power in the context of online list coloring than in list coloring. However, in practice
the choice number and online choice number are often equal. In fact, it is unknown
[12] whether there exists a graph with χOL > χ� + 1.
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King, Lu, and Peng [34] strengthened the result of Albertson et al. [1] by showing that
every connected K�-free graph with � ≥ 4 (except for the two graphs in Figure 8) has
fractional chromatic number at most � − 2

67 ; this result was further strengthened by
Edwards and King [23, 22]. Recently Dvořák, Sereni, and Volec [21] proved fascinating
results on fractional coloring of triangle-free cubic graphs. Specifically, they proved that
all such graphs have fractional chromatic number at most 14

5 , which is best possible. (For
numerous earlier results on this problem, see the references in [21].)

Kostochka and Yancey [37] gave a simple, yet powerful, application of the Kernel
Lemma to a list coloring problem. A kernel in a digraph D is an independent set I ⊆ V (D)

such that each vertex in V (D) − I has an edge into I. A digraph in which every induced
subdigraph has a kernel is kernel-perfect, and kernel-perfect orientations can be very
useful for list coloring; Alon and Tarsi [2], Remark 2.4] attribute this result to Bondy,
Boppana, and Siegel (here d+(v) denotes the out-degree of v in D).

Kernel Lemma. Let G be a graph and f : V (G) → N. If G has a kernel-perfect
orientation such that f (v) ≥ d+(v) + 1 for each v ∈ V (G), then G is f -choosable.

The proof of the Kernel Lemma is by induction on the total number of colors in
the union of all the lists. For an arbitrary color c, let H be the subdigraph induced by the
vertices with c in their lists. We use c on the vertices of some kernel of H, and invoke the
induction hypothesis to color the remaining uncolored subgraph. The same proof works
for online list coloring, since we simply choose c to be color 1.

All bipartite digraphs are kernel-perfect, and the next lemma [37] generalizes this fact.

Lemma 8.2. Let A be an independent set in a graph G and let B = V (G) − A. Any
digraph D created from G by replacing each edge in G[B] by a pair of opposite arcs and
orienting the edges between A and B arbitrarily is kernel-perfect.

Proof. Let G be a minimum counterexample, and let D be a digraph created from
G that is not kernel-perfect. To get a contradiction it suffices to construct a kernel in D,
since each subdigraph has a kernel by minimality. Either A is a kernel or there is some
v ∈ B which has no outneighbors in A. In the latter case, each neighbor of v in G has an
inedge to v, so a kernel in D − v − N(v) together with v is a kernel in D. �

Now we can show that Lemma 8.1 implies Brooks’ Theorem. For simplicity we only
prove this for list coloring, but a minor modification of the proof works for online list
coloring. This proof is a special case of a result of the second author and Kierstead [32].

Theorem 8.3. Every graph satisfies χl ≤ max {3, ω, �}.
Proof 8 of Brooks’ Theorem. Suppose the theorem is false and let G be a minimum
counterexample. The minimality of G implies χl(G − v) ≤ � for all v ∈ V (G). So G is
�-regular. Lemma 8.1 implies α(G) ≥ |G|

�
. Let A be a maximum independent set in G

and let B = V (G) − A. For each subgraph H, let AH = A ∩ V (H) and BH = B ∩ V (H).
The number of edges between A and B is α(G)�, which is at least |G|. So there exists a
nonempty induced subgraph H of G with at least |H| edges between AH and BH , since
H = G is one example. Pick such an H minimizing |H|. See Figure 9.

For all v ∈ V (H), let dv be the number of edges incident to v between AH and BH .
We show that dv = 2 for all v. If dv ≤ 1 for some v, then H − v violates the mini-
mality of H. The same is true if dv < dw for some v and w, as we now show. Let k
be the minimim degree in H, and choose v and w with dv = k and dw > dv. Let ‖H‖
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AH

BH

FIGURE 9. The bipartite graph H with parts AH and BH .

FIGURE 10. A Gallai tree with 15 blocks.

denote the number of edges in H. Since dw > k, we have 2 ‖H‖ ≥ k|H| + 1. Delet-
ing v gives 2 ‖H − v‖ ≥ k |H| + 1 − 2k = k(|H| − 1) + (1 − k) = 2(|H| − 1) + (1 −
k) + (k − 2)(|H| − 1). When k ≥ 3 the final term is at least k, since |H| ≥ k + 1; so
‖H − v‖ ≥ |H − v|, a contradiction. If instead k = 2, then 2 ‖H − v‖ ≥ 2(|H| − 1) − 1.
Since the left side is even, we conclude 2 ‖H − v‖ ≥ 2(|H| − 1), again reaching a con-
tradiction.

So dv = dw for all v and w; we call this common value d, and note that d ≥ 2. Now there
are (d/2)|H| edges between AH and BH . It is easy to check that (d/2)|H| − d ≥ |H| − 1
for d > 2, so the minimality of |H| shows that d = 2. Thus the edges between AH and
BH induce a disjoint union of cycles (in fact, just a single cycle, by the minimality of H).

Create a digraph D from H by replacing each edge in H[BH] by a pair of opposite
arcs and orienting the edges between AH and BH consistently along the cycles. By
Lemma 8.2, D is kernel-perfect. Since d+(v) ≤ d(v) − 1 for each v ∈ V (H), the Kernel
Lemma shows that H is f -choosable where f (v) = d(v) for all v ∈ V (H). Now given any
�-list-assignment on G, we can color G − H from its lists by minimality of |G|, and then
extend the coloring to H, which is a contradiction. �
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9. DEGREE-CHOOSABLE GRAPHS

The option to give different vertices lists of different sizes allows us to refine Theorem 8.3.
A graph G is degree-choosable if it is f -choosable where f (v) = d(v) for all v ∈ V (G).
The degree-choosable graphs were classified by Borodin [7] and independently by Erdős,
Rubin, and Taylor [26]. A graph is a Gallai tree if each block is a complete graph or an
odd cycle.

Theorem 9.1. A connected graph is degree-choosable if and only if it is not a Gallai
tree.

A minimal counterexample to Brooks’ Theorem is regular, and hence degree-choosable
if and only if �-choosable. So Brooks’ Theorem follows immediately from Theorem 9.1,
since the only �-regular Gallai tree is K�+1. We give two proofs of Theorem 9.1. The first
uses a structural lemma from Erdős, Rubin, and Taylor [26] known as “Rubin’s Block
Lemma,” but the second does not.

Lemma 9.2. No Gallai tree is degree-choosable.

Proof. Assign disjoint lists to the blocks as follows. For each block B, let LB be a
list of size 2 if B is an odd cycle and size k if B is Kk+1. The list for each vertex v is
the union of the lists for blocks containing it: L(v) = ∪B�vLB. Note that |L(v)| = d(v)

for all v.
We show that G has no coloring from these lists, by induction on the number of blocks.

For the base case, G is complete or an odd cycle, and the proposition clearly holds.
Otherwise, let B be an endblock of G, and let v ∈ B be a cutvertex. If G has an L-coloring,
then each vertex in B − v gets colored from LB, so each color in LB appears on a neighbor
of v. Now G \ (B − v) is again a Gallai tree, with lists as specified above; by hypothesis
it has no good coloring from its lists. �

The following lemma has many different proofs [26, 25, 31, 52]. We follow the pre-
sentation of Hladký, Král, and Schauz [31]. Although it is known as Rubin’s Block [26],
the result was implicit in the much earlier work of Gallai [29, 30] and Dirac.

Rubin’s Block Lemma. If G is a 2-connected graph that is not complete and not an
odd cycle, then G contains an induced even cycle with at most one chord.

Proof. Let G be a 2-connected graph that is neither complete nor an odd cycle.
Since G is not complete, it has a minimal cutset S, with |S| ≥ 2. Choose u, v ∈ S and let
C be a cycle formed from the union of shortest paths P1 and P2 joining u and v in two
components of G \ S (see Figure 11). Now C has at most one chord, the edge uv. If C has
even length, then we are done. If C has odd length, then one of the paths joining u and
v in C has odd length; call it P. If uv is present, then P + uv is a chordless even cycle.
Thus, uv is absent and C is an induced odd cycle of length at least 5. Since G is not an
odd cycle, there exists w ∈ V (G \ C).

Suppose first that no vertex w ∈ V (G \ C) has two neighbors on C. Since G is
2-connected, there is a shortest path R with endpoints on C and interior disjoint from C,
and R has length at least 3. Now V (C) ∪ V (R) induces two 3-vertices with three vertex
disjoint paths between them. Two paths have the same parity, so together they induce a
chordless even cycle.

So instead some vertex w ∈ V (G \ C) has two or more neighbors on C; call them
v1, . . . , vk (see Figure 11). The vi split C into paths Pi with each vi the endpoint of two

Journal of Graph Theory DOI 10.1002/jgt



BROOKS’ THEOREM AND BEYOND 217

u

v

P1 P2

v1 vk

w

FIGURE 11. The figure on the left shows an induced cycle C formed from P1 and
P2. The figure on the right shows w , not on C, and its neighbors on C.

paths. If any Pi has even length, then V (Pi) ∪ {w} induces a chordless even cycle. So each
Pi has odd length; since C has odd length, k ≥ 3. If k > 3, then V (P1) ∪ V (P2) ∪ {w}
induces an even cycle with one chord. If k = 3, then some path Pi, say P3 by symmetry,
has length at least 3, since C has length at least 5. Now again V (P1) ∪ V (P2) ∪ {w}
induces an even cycle with exactly one chord. �

The following proof is similar to Lovász’s proof of Brooks’ Theorem, which we saw in
Section 2. In the list coloring context, two parts of that proof break down: (i) nonadjacent
neighbors of a common vertex v need not have a common color and (ii) we cannot
permute colorings on different blocks to agree on a cutvertex. The first problem has an
easy solution, but the second is more serious. If in our induced path uvw either u or w
is a cutvertex, then when we color u and w first we disconnect the graph of uncolored
vertices. So rather than coloring toward a subgraph that we colored first, we instead color
toward a subgraph that we can color last—any degree-choosable subgraph will do.

Proof 1 of Theorem 9.1. Lemma 9.2 shows that no Gallai tree is degree-choosable.
So now suppose G is not a Gallai tree. By [rubin]Rubin’s Block Lemma, G has an
induced even cycle with at most one chord; call this subgraph H. We can greedily color
the vertices of G − H in order of decreasing distance from H, since each vertex has an
uncolored neighbor when we color it. Now we extend the coloring to H. When H is an
even cycle, we can use Lemma 4.1. So assume instead that H is an even cycle with one
chord; label the vertices v1, . . . , vn around the cycle so that dH (v1) = 3. Since v1 has
3 colors, we color it with some color not available for vn. Now we greedily color the
vertices in order of increasing index. �

Many proofs of list coloring theorems can be easily extended to prove their analogues
for online list coloring. The classification of degree-choosable graphs illustrates this idea
well. The analogue of degree-choosable is degree-paintable, and a connected graph is
degree-paintable precisely when it is not a Gallai tree. Suppose that H is a connected
degree-paintable induced subgraph of G. Let σ be an order of the vertices by decreasing
distance from H. If Sk denotes the vertices available on round k, then the algorithm
greedily forms a maximal independent set Ik by adding vertices from (V (G) − V (H)) ∩
Sk in the order σ . For the vertices in Sk with no neighbor in Ik, the algorithm then plays
on H the strategy that shows it is degree-paintable. This produces a valid coloring. To
complete the classification of degree-paintable graphs, we need only verify that every
even cycle with at most one chord is degree-paintable.

Alon and Tarsi [2] developed a powerful tool, which gives an alternate short proof of
Theorem 9.1 from [rubin]Rubin’s Block Lemma. A subgraph H of a directed graph D is
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Eulerian if in H each vertex v has indegree d−
H (v) equal to outdegree d+

H (v). Let EE and
EO denote the sets of Eulerian subgraphs of D where the number of edges is even and
odd, respectively.

Alon–Tarsi Theorem. Let D be an orientation of a graph G, and let L be a list
assignment such that |L(v)| ≥ 1 + d+(v) for all v. If |EE| �= |EO|, then G is L-colorable.

Let G be a graph that is not a Gallai Tree, and let H be an induced even cycle with at
most one chord in G, as guaranteed by [rubin]Rubin’s Block Lemma. Order the vertices
outside of H by increasing distance from H (breaking ties arbitrarily); call this order
σ . Now orient each edge uv as u → v if u precedes v in σ . Orient the cycle edges in
H consistently, and orient the chord, if it exists, arbitrarily. It is easy to see that each
vertex v has indegree at least 1, and hence outdegree at most d(v) − 1. So the Alon–Tarsi
Theorem implies that G is degree-choosable if |EE| �= |EO|. Every Eulerian subgraph J
must be a subgraph of H, for otherwise the vertex of J that comes last in σ has outdegree
0. If H is an even cycle, then |EO| = 0 and |EE| = 2, since both the empty subgraph
and all of H are in EE. If H is a cycle with a chord, then either |EE| = 3 and |EO| = 0
or else |EE| = 2 and |EO| = 1. In both cases, the Alon–Tarsi Theorem shows that G is
degree-choosable. This is essentially the proof given by Hladký, Král, and Schauz [31].

After our first proof of Theorem 9.1, we outlined how to extend the result to characterize
degree-paintable graphs. However, we omitted the tedious proof that an even cycle
with at most one chord is degree-paintable. One advantage of the Alon–Tarsi proof of
Theorem 9.1 is that it extends easily to paintability. Schauz [56, 57] proved an analogue of
the Alon–Tarsi Theorem for online list coloring,10 so in fact the proof of the paintability
result is nearly identical.

We extend this idea [17] to show that G2 is online (�2 − 1)-choosable unless ω(G2) ≥
�2; here G2 is formed from G by adding edge uv for each pair u and v at distance 2 in G.
Our approach in that proof is quite similar to the method used above to prove Theorem 9.1
via the Alon–Tarsi Theorem. Applying these techniques to G2 gives d−(v) ≥ 2 for all v.
Now however, we seek a subgraph H that is online “degree-1”-choosable, that is, H is
online f -choosable, where f (v) = d(v) − 1. So the bulk of the work lies in showing that
every square graph contains either such an induced subgraph or else a large clique.

We now conclude our digression into online list coloring and the Alon–Tarsi Theorem,
and we finish the section with a second proof of Theorem 9.1. Kostochka, Stiebitz, and
Wirth [41] gave a short proof of Theorem 9.1, which we reproduce below. Further, they
extended the result to hypergraphs.

Proof 2 of Theorem 9.1. Lemma 9.2 shows that no Gallai tree is degree-choosable.
So now suppose there exists a graph that is not a Gallai tree, but is also not degree-
choosable. Let G be such a graph with as few vertices as possible. Since G is not
degree-choosable, no induced subgraph H of G is degree-choosable (if such an H exists,
then we color G − H greedily towards H, and extend the coloring to H since it is degree-
choosable). Hence, for any v ∈ V (G) that is not a cutvertex, G − v must be a Gallai tree
by minimality of |G|.

If G has more than one block, then for endblocks B1 and B2, choose noncutvertices
w ∈ B1 and x ∈ B2. By the minimality of |G|, both G − w and G − x are Gallai trees.

10Let D be an orientation of a graph G, and let f be a list size assignment such that
f (v ) ≥ 1 + d+(v ) for all v . If |EE | �= |EO|, then G is f -paintable.
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Since every block of G appears either as a block of G − w or as a block of G − x, every
block of G is either complete or an odd cycle. Hence, G is a Gallai tree, a contradiction.
So instead G has only one block, that is, G is 2-connected. Further, G − v is a Gallai tree
for all v ∈ V (G).

Now let L be a list assignment on G such that |L(v)| = d(v) for all v ∈ V (G) and G is
not L-colorable. Suppose two vertices in G get different lists. Since G is connected, we
have adjacent v, w ∈ V (G) such that L(v) − L(w) �= ∅. Pick c ∈ L(v) − L(w) and color
v with c. Now we can finish by coloring in order of decreasing distance from w in G − v.
So instead L(v) = L(w) for all v, w ∈ V (G); in particular, G is regular.

Pick an arbitrary v ∈ V (G) and consider the Gallai tree G − v. Since G is regular and 2-
connected, v must be adjacent to all noncutvertices in all endblocks of G − v. So, if G − v
has at least two endblocks, then d(v) ≥ 2(�(G) − 1). Since 2(�(G) − 1) > �(G) when
�(G) ≥ 3, we must have �(G) = 2. Since G is not L-colorable it is not 2-colorable and
hence is an odd cycle, a contradiction. Therefore G − v has only one endblock. As noted
above, G − v is a Gallai tree; since G − v has only one endblock (and, hence, only one
block), it is complete. Thus G is also complete, again a contradiction. �

10. FURTHER DIRECTIONS

In this final section, we conclude our survey by discussing two conjectures that strengthen
Brooks’ Theorem. Determining the chromatic number of a graph is well-known to be NP-
hard. However, Brooks’ Theorem shows that determining whether a graph has χ = � + 1
is easy. If � = 2, look for odd cycles; otherwise, look for a K�+1. It is natural to ask
how close t must be to � so that we can easily check whether χ = t. Emden-Weinert,
Hougardy, and Kreuter [24] gave the following lower bound on this threshold.

Theorem 10.1. For any fixed �, deciding whether a graph G with maximum degree
� has a (� + 1 − k)-coloring is NP-complete for any k such that k2 + k > �, when
� + 1 − k ≥ 3.

Molloy and Reed [47] then proved a matching upper bound, for sufficiently large �.

Theorem 10.2. For any fixed sufficiently large �, deciding whether a graph G with
maximum degree � has a (� + 1 − k)-coloring is in P for every k such that k2 + k ≤ �.

Further, they conjectured that the same result holds for all values of �. (Section 15.4
of Molloy and Reed [48] has more on this question.) Viewed in this framework, Brooks’
Theorem describes the case k = 1. Now we consider the case k = 2. In 1977, Borodin
and Kostochka [8] posed the following conjecture.

Borodin–Kostochka Conjecture. If G has � ≥ 9 and ω ≤ � − 1, then χ ≤ � − 1.

If true, the conjecture is best possible in two ways. First, even when we require
ω ≤ � − 2, we cannot conclude χ ≤ � − 2. For example, form G from a disjoint 5-
cycle and K�−4 by adding all edges with one endpoint in each graph (this is the join of C5

and K�−4). Now ω = � − 2, but χ = � − 1, since every proper coloring uses at least 3
colors on the 5-cycle and cannot reuse any color on the clique.

Second, the lower bound on � cannot be reduced, as demonstrated by the following
construction, shown in Figure 12. Form G from five disjoint copies of K3, say D1, . . . , D5,
by adding edge uv if u ∈ Di, v ∈ Dj, and |i − j| ≡ 1 mod 5. This graph is 8-regular
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FIGURE 12. A construction showing that the hypothesis � ≥ 9 in the
Borodin–Kostochka Conjecture is necessary and best possible.

with ω = 6. Each color class has size at most 2, so χ = �15/2� = 8. Thus χ = �,
but ω = � − 2. For � ≤ 8, various other examples are known [16] where χ = � and
ω < �.

Reed [55] proved the Borodin–Kostochka Conjecture when � ≥ 106 and the present
authors [16] proved it for claw-free graphs (those where no vertex has three pairwise
nonadjacent neighbors). Although this question remains open, stronger versions of the
conjecture are believed true. Already in 1977, Borodin and Kostochka were convinced
that the same upper bound holds for the list chromatic number. Recently, we conjectured
[17] that the bound holds even for the online list chromatic number. Reed posed the
following conjecture, which is along similar lines, but much more far-reaching.

Reed’s Conjecture. Every graph G satisfies χ ≤ ⌈
ω+�+1

2

⌉
.

In 1998, Reed proved [54] that there exists a positive ε such that χ ≤
�ωε + (� + 1)(1 − ε)�. The original conjecture is that this upper bound holds when
ε = 1

2 . In 2012, King and Reed [35] gave a much shorter proof of the same result. A key
ingredient of their proof is the result of King [33] that every graph with ω > 2(�+1)

3 has a
hitting set (recall that a hitting set is independent and intersects every maximum clique).
About the same time, they used the Claw-free Structure Theorem of Chudnovsky and
Seymour to prove that Reed’s Conjecture holds for all claw-free graphs [36]. Section
21.3 of Molloy and Reed [48] gives further evidence for Reed’s Conjecture by showing
that the desired upper bound holds for the fractional chromatic number, even without
rounding up.

We conclude this section by showing that Reed’s Conjecture is best possible,
using random graphs. Specifically, we show that if ε > 1

2 , then the bound χ ≤
�ωε + (� + 1)(1 − ε)� fails for some graph G. The proof we present is from the end
of [54]. Before we give the details of the random construction, we mention in passing that
Kostochka [39] also showed this using the explicit examples that Catlin [15] constructed
to disprove the Hajós Conjecture. Let Ht = t · C5 (i.e. C5 where each edge has multiplicity
t) and let Gt be the line graph of Ht ; Figure 12 shows G3. Catlin showed that for odd t we
have χ(Gt ) = 5t+1

2 , �(Gt ) = 3t − 1, and ω(Gt ) = 2t. So, for any ε > 1
2 , we can choose

t large enough to make the bound fail.
Now we give the details of the random construction. We will construct a graph H on

n vertices such that χ(H) ≥ 1
2 n − n3/4 and ω(H) ≤ 8n3/4 log n. When we form G by
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joining H to K�+1−n, we see that the desired bound fails for G when ε > 1
2 . Let H be

a random graph on n vertices, where each edge appears independently with probability
p and let p = 1 − n−3/4. The expected number of cliques of size k is

(n
k

)
p(k

2). So when
k ≥ 8n3/4 log n, the expected number of k-cliques is arbitrarily small for sufficiently large
n. (

n

k

)
p(k

2) =
(

n

k

) (
1 − n−3/4

)(k
2)

≤ nk
(
1 − n−3/4

)k2/4

≤ 2k log n
(

e−n−3/4
)k2/4

≤ ek log n−k2n−3/4/4

≤ e−k log n.

The expected number of independent sets of size 3 is
(n

3

)
(1 − p)3 = (n

3

)
(1 − (1 −

n−3/4))3 ≤ 1
6 n3/4. By deleting one vertex from each independent set of size 3, we get

a graph H on n − 1
6 n3/4 vertices with independence number 2. So χ(H) ≥ n

2 − 1
12 n3/4

and ω(H) ≤ 8n3/4 log n. Now χ(G) ≥ (� + 1 − n) + ( 1
2 n − 1

12 n3/4) = � + 1 − 1
2 n −

1
12 n3/4. Similarly, ω(G) ≤ (� + 1 − n) + 8n3/4 log n.
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[3] T. Böhme, H. J. Broersma, F. Göbel, A. V. Kostochka, and M. Stiebitz,
Spanning trees with pairwise nonadjacent endvertices. Discrete Math 170(1-
3) (1997), 219–222.

[4] B. Bollobás and B. Manvel, Optimal vertex partitions, Bull Lond Math Soc
11(2) (1979), 113.

Journal of Graph Theory DOI 10.1002/jgt



222 JOURNAL OF GRAPH THEORY

[5] J. Bondy, Short proofs of classical theorems, J Graph Theory 44(3) (2003),
159–165.

[6] O. V. Borodin, The decomposition of graphs into degenerate subgraphs,
Diskret Analiz (Vyp. 28 Metody Diskretnogo Analiza v Teorii Grafov i Log-
iceskih Funkcii) (1976), 3–11, 78.

[7] O. V. Borodin, Criterion of chromaticity of a degree prescription, In: Abstracts
of IV All-Union Conf. on Th. Cybernetics, 1977, pp. 127–128.

[8] O. V. Borodin and A. V. Kostochka, On an upper bound of a graph’s chromatic
number, depending on the graph’s degree and density, J Combin Theory Ser
B 23(2-3) (1977), 247–250.

[9] O. V. Borodin, A. V. Kostochka, and B. Toft, Variable degeneracy: Exten-
sions of Brooks’ and Gallai’s theorems, Discrete Math 214(1) (2000), 101–
112.

[10] R. L. Brooks, On colouring the nodes of a network, Math. Proc. Cambridge
Philos. Soc. 37 (1941), 194–197.

[11] V. Bryant, A characterisation of some 2-connected graphs and a comment
on an algorithmic proof of Brooks’ theorem, Discrete Math 158(1) (1996),
279–281.

[12] J. Carraher, S. Loeb, T. Mahoney, G. Puleo, M.-T. Tsai, and D. West, Three
topics in online list coloring. J Combinatorics 5(1) (2014), 115–130.

[13] P. Catlin, Another bound on the chromatic number of a graph, Discrete Math
24(1) (1978), 1–6.

[14] P. A. Catlin, Brooks’ graph-coloring theorem and the independence number,
J Combin Theory Ser B 27(1) (1979), 42–48.

[15] P. Catlin, Hajós graph-coloring conjecture: Variations and counterexamples,
J Combin Theory Ser B 26(2) (1979), 268–274.

[16] D. W. Cranston and L. Rabern, Coloring claw-free graphs with � − 1 colors
SIAM J Discrete Math 27(1) (2013), 534–549.

[17] D. W. Cranston and L. Rabern, Painting squares with �2 − 1 shades. Arxiv
preprint, 2013, http://arxiv.org/abs/1311.1251.

[18] R. Diestel, Graph Theory, 4th edn., Springer-Verlag, Heidelberg, 2010.
[19] G. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc

Lond Math Soc 3(1) (1957), 161–195.
[20] G. A. Dirac and C. Thomassen, Graphs in which every finite path is contained

in a circuit, Math Ann 203 (1973), 65–75.
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