
DECOMPOSITIONS OF GRAPHS

Abstract. The topic of research comprises problems on graph decompositions, in a very
broad sense. We mention some problems on this topic that we are investigating or would
like to investigate.

Given a graph G, a family of subgraphs {H1, . . . , Hk} of G is a decomposition of G

if E(Hi) ∩ E(Hj) = ∅ for every i 6= j, and
⋃k

i=1E(Hi) = E(G). Given a family H of
graphs, an H-decomposition of G is a decomposition D of G such that each element
of D is isomorphic to an element of H. If there exists an H-decomposition of G, we say
that G admits an H-decomposition. If H = {H} we say that an H-decomposition is an H-
decomposition.

We say that a path decomposition D of a graph G is minimum if for every path decom-
position D′ of G we have |D′| ≥ |D|. The path number of a graph G, denoted by pn(G),
is the size of a minimum path decomposition. According to Lovász [5], in 1966 Erdős asked
about this parameter, and Gallai stated the following conjecture.

Conjecture [Gallai, 1966] If G is an n-vertex connected graph, then pn(G) ≤ (n + 1)/2.

This parameter is not known for most of the graph classes. Lovász (1968) found an upper
bound for a similar parameter. He proved that every n-vertex connected graph G can be
decomposed into at most n/2 paths and cycles. From this result, it follows that Gallai’s
conjecture holds on connected graphs with at most one even-degree vertex. Some upper
bounds for the path number of a connected graph in terms of its number of odd-degree
and even-degree vertices have been obtained by Lovász (1968), and improved by Donald
(1980) and Dean and Kouider (2000). Finding good upper bounds for pn(G) is a challenging
problem; even for special classes of graphs not much is known.

Another related problem concerns H-decompositions of a graph, where H is some fixed
graph. This is also a topic that has raised much interest of the researchers, and a number of
interesting results have been found. An interesting variant concerns the case in which H is
a tree. In this respect, there is a conjecture posed by Barát and Thomassen [1], which states
that, for each tree T , there exists a natural number kT such that, if G is a kT -edge-connected
graph and |E(T )| divides |E(G)|, then G admits a T -decomposition. In a series of papers,
Thomassen has proved this conjecture for stars, some bistars, paths of length 3, and paths
whose length is a power of 2. Recently, Botler, Mota, Oshiro and Wakabayashi [2] have
verified this conjecture for paths of length 5.

The topic is very broad, so an interested student may choose one of the variants to focus
on, or may write a survey collecting the known results. Some PhD students and post-doc
fellows of our Combinatorics group at IME-USP have been working (or have worked) on this
topic. Some other results on decompositions of regular graphs into paths [3, 4] or bistars
have also been proved by members of this group. We would be happy to welcome students
interested to work with us.
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