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For the traveling salesman problem in which the distances satisfy the triangle inequality, Christofides' heuristic produces a tour 
whose length is guaranteed to be less than ~ times the optimum tour length. We investigate the performance of appropriate 
modifications of this heuristic for the problem of finding a shortest Hamiltonian path. There are three variants of this problem, 
depending on the number of prespecified endpoints: zero, one, or two. It is not hard to see that, for the first two problems, the 

5 worst-case performance ratio of a Christofides-like heuristic is still 7-3 For the third case, we show that the ratio is 3 and that this 
bound is tight. 

traveling salesman problem; Hamiltonian cycle; Hamiltonian path; approximation algorithm; worst-case analysis. 

1. Introduction 

The traveling salesman problem (TSP) is de- 
fined as follows. Given a complete undirected 
graph G on n vertices and a distance Clj for each 
edge (i,  j }, find a Hamiltonian cycle (i.e., a cycle 
that traverses each vertex exactly once) of mini- 
mum total length. This problem is NP-hard, and 
much attention has been paid to the design and 
analysis of approximation algorithms for its solu- 
tion. An indication for the quality of an ap- 
proximation algorithm is its worst-case perfor- 
mance ratio. For an instance of the TSP, let C* 
denote the optimal Hamiltonian cycle, and let C A 

denote the Hamiltonian cycle produced by an 
algorithm A. For any edge set E, let c(E) be the 
sum of the distances of all edges in E, so that 
¢(C) denotes the length of a cycle C. The worst- 
case performance ratio P of algorithm A is then 
defined as the supremum of c(cA)/c(C *) over 
all instances, and A is said to be a o-approxima- 
tion algorithm. 

Sahni and Gonzalez [1976] have shown that, in 
the case of general distances, no polynomial-time 
algorithm for the TSP can have a constant worst- 
case performance ratio, unless P = NP. We will 

consider the case in which the distance satisfy the 
triangle inequality, i.e., c i i+  cjk >/cik for all i, j ,  
k. We will also assume that c,j > 0 for all i :~j. 
For this case, Christofides [1976] proposed a 3-ap- 
proximation algorithm that requires O(n 3) time, 
and no polynomial-time algorithm with a better 
worst-case performance ratio is known. 

We will be concerned with a problem closely 
related to  the TSP, namely, the problem of finding 
a Hamiltonian path (i.e., a path that contains 
each vertex exactly once) of minimum total length. 
There are three variants of this problem, depend- 
ing on the number of prespecified endpoints of 
the path. We introduce the following notation: 
P * denotes an optimal Hamiltonian path without 
fixed endpoints, Ps* denotes an optimal Hamilto- 
nian path with a single fixed endpoint s, and P~* 
denotes an optimal Hamiltonian path with fixed 
endpoints s and t. 

We formulate a Christofides-like algorithm for 
each of these problems. It is not hard to see that, 
for the first two problems, the heuristic is still a 
3-approximation algorithm. For the third case, we 
show that the ratio is ~- and that this bound is 
tight. This answers a question posed by Johnson 
and Papadimitriou [1985]. 
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We recall Christofides' heuristic for the TSP in 
Section 2. In Section 3, we present the three 
modified heuristics for finding Hamiltonian paths 
and analyze the two easy cases. Section 4 deals 
with the case of two fixed endpoints. In Section 5, 
we analyze a slightly different heuristic for the 
third case. 

and 

M2= {{2, 3} . . . . .  { 2 m - 2 ,  2 m - 1 } ,  {2m, 1}}. 

Due to the triangle inequality, we have 

c(M1) + c(M2) ~< c(E1) + c(E2)  = c(C*). 

Hence, c(M) <~ ½c(C*). 

2. Hamiltonian cycles 

Chritofides' heuristic for the determination of a 
short Hamiltonian cycle proceeds as follows: 

(1) Construct a minimum spanning tree T of 
G. 

(2) Construct a minimum perfect matching M 
on the set S of all odd-degree vertices in T. 

(3) Find an Eulerian tour in the Eulerian graph 
that is the union of T and M. A graph is Eulerian 
if it contains a tour that traverses each edge ex- 
actly once, and such an Eulerian tour exists if and 
only if the graph is connected and each of its 
vertices is of even degree. Note that the union of 
T and M satisfies these requirements. 

(4) Transform the Eulerian tour into a Ham- 
iltonian cycle by applying shortcuts. A shortcut is 
a contraction of two edges { i, j } and { j,  k } to a 
single edge { i, k }. This cycle will be denoted by 
C C" 

The triangle inequality implies that c(C c)  ~< 
c(T) + c(M). It is obvious that c(T) < c(C*), 
and we will argue below that c(M) <~ ½c(C*). It 
now follows that 

c(C* ) ~ c(C c) < ~c(C* ). 

Hence, Christofides' heuristic is a 3-approxima- 
tion algorithm. Cornu6jols and Nemhauser [1978] 
show that the precise worst-case ratio is equal to 
(3[½nl - 1)/(2t½n]). 

As to the length of the matching, let 1 . . . . .  2m 
be the odd-degree vertices in T, and suppose that 
they occur in C* in this order. Consider the 
following two edge-disjoint subsets of C*: E 1, 
containing all the edges between 1 and 2, 3 and 
4 . . . . .  and 2m - 1 and 2m; and E2, containing all 
the edges between 2 and 3 . . . . .  2m - 2 and 2m - 1, 
and 2m and 1. Taking shortcuts yields two perfect 
matchings 

M~ = { {1, 2}, {3, 4} . . . . .  { 2 m -  1, 2rn } } 

3. Hamiltonian paths 

For the determination of a Hamiltonian path, 
Christofides' heuristic has to be adapted to ensure 
that the union of the tree T and the matching M 
contains exactly two vertices of odd degree. In 
addition, any prespecified endpoint has to be 
among those odd-degree vertices. We present the 
following modification of Christofides' heuristic: 

(1) Construct a minimum spanning tree T of 
the graph G. 

(2) First, determine the set S of vertices that 
are of wrong degree in T, i.e., the collection of 
fixed endpoints of even degree and other vertices 
of odd degree. Next, construct a minimum match- 
ing M on S that leaves 2 -  k vertices exposed, 
where k is the number of fixed endpoints. We 
note that such a matching can be found by con- 
structing a minimum perfect matching on S aug- 
mented with 2 - k dummy vertices in an obvious 
fashion. 

(3) Consider the graph that is the union of T 
and M. This graph is connected and has either 
two or zero odd-degree vertices. The latter case 
occurs only if there is a single fixed endpoint that 
belongs to S and is left exposed by M; in this 
case, delete an arbitrary edge incident to this 
vertex. Find an Eulerian path in the resulting 
graph. This path traverses each edge exactly once 
and has the two odd-degree vertices as its end- 
points. 

(4) Transform the Eulerian path into a Ham- 
iltonian path by applying shortcuts. This path will 
be denoted by pC, pC, or Ps c, depending on the 
number of prespecified endpoints. 

We analyze the performance of this heuristic by 
establishing an upper bound on the length of the 
minimum matching in terms of the length of the 
optimal Hamiltonian path. For k = 0 or k = 1, the 
analysis is very similar to the one given in Section 
2. 

292 



Volume 10, Number 5 OPERATIONS RESEARCH LETTERS July 1991 

Theorem 1. c( pC )/c( P *) < 3. 

Proof. The theorem follows from the observations 
that c(T)<~c(P*), which is obvious, and that 
c ( M ) < ½ c ( P * ) ,  which we will prove. Let 
1 . . . . .  2rn be the odd-degree vertices in T, and 
suppose that they occur in P *  in this order. 
Again, consider two edge-disjoint subsets E1 and 
E 2 of P*:  E 1 contains all the edge between 1 and 
2, 3 and 4 . . . . .  2 m - 3  and 2 m -  2; and E 2 con- 
tains all the edges between 2 and 3, 4 and 
5 . . . . .  2m - 2 and 2m - 1. Taking shortcuts yields 
two matchings M1 and 342, containing m -  1 
edges and leaving two vertices exposed, and hav- 
ing total length c(M1) + c(M2) < c(P*). Hence, 
c(M) < ½c(P*). [] 

Theorem 2. c( pY )/c( P:~ ) ~ 3. 

1 * Proof. We have to prove that c(M)<~ ~c(P s ). 
Suppose the endpoints of P,* are s and i. We 
distinguish two special vertices in P,*: j is the 
first vertex of odd degree after s, and k is the last 
vertex of odd degree. Consider two cases. 

(1) The fixed endpoint s has odd degree in T. 
This means that s ~ S, the set of vertices of wrong 
degree. The set of edges in Ps* between j and k 
can be partitioned into two disjoint subsets, either 
of which gives a matching of the desired form 
after shortcutting. Hence, we have again that 

1 , p .  c(Pf: 3. C(M) < 7ct ~ ), so that )/c(p~.*) < 
(2) The fixed endpoint s has even degree in T. 

This means that s ~ S. The set of edges in P,* 
between s and k can be partitioned into two 
disjoint subsets, which, after shortcutting, give 
matchings M 1 and 342, respectively. Let { s, j } be 
the edge contained in 341. 

First, suppose C( M 1) <~ c( M 2). M 1 is a match- 
ing of the desired form, so that again c(M)<~ 
c( M1) <~ ½c(P,* ). 

Next, suppose c(M2)~< c(M1). M 2 is a match- 
ing on all odd-degree vertices in T. Hence, all 
vertices in the union of T and M 2 are of even 
degree, so that there exists an Eulerian cycle. 
Removing an edge containing s yields an Eulerian 
path with endpoint s, which can be shortcut to 
obtain a Hamiltonian path with endpoint s. Hence, 
c(PC)<c(M2)+c(T)<~ ~c(p,.*). [] 

Note that, in the above proof, the two subcases 
of (2) are not disjoint. If  M 1 and M 2 are both 
optimal, then either can be chosen. This implies 

that the worst-case bound of 3 can be attained. It 
is not hard, however, to take precautions so as to 

3 . ensure that c( p c )  < ~c( p~ ). 
Consider the case that s has even degree in T. 

Determine the longest edge in T containing s, say 
{ s, k ). Remove this edge from T, remove s from 
S and add a new vertex x to S, with cxl = % + c~ k 
for all l ~ S. Determine a minimum matching M 
on S that leaves one vertex exposed. If M leaves 
x exposed, then M remains the same; otherwise, if 
{x, m ) is the edge in M containing x, replace it 
by the edges (s,  m} and {s, k ) .  Now M 1 (the 
matching containing {s, i}) will be chosen if M 1 
is at least csk shorter than M 2. 

We leave it to the reader to show that the 
bounds of Theorems 1 and 2 are tight. 

4. The case of two fixed endpoints 

We have now come to the analysis of the 
Christofides-like algorithm for the case of two 
fixed endpoints. The main problem here is estab- 
lishing an upper bound on the length of the 
minimum matching in terms of the length of the 
optimal Hamiltonian path with prespecified end- 
points s and t. It  is no longer true that the 
optimal path p~* can be partitioned into two 
edge-disjoint subsets such that either yields a 
matching on the wrong-degree vertices in T, as 
was the case for P *  and P,*. Consider the exam- 
ple given in Figure 1. 

In this example, 0 < e << 1, and every edge that 
is not drawn in the figure has a length equal to the 
length of the shortest path between its endpoints. 
The optimal Hamiltonian path is P,* = {{s, 1), 

1 

1 ( 

Fig. 1. Counterexample to o(p~C,) = ~. 
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(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, t ) ) ,  of 
length 3 + 6e. A minimum spanning tree is T =  
((s ,  1), (1, 2), (1, 3}, (1, 6), (4, 6), (5, 6), 
(6, t ) ) ,  of length 3 + 4e. The set of vertices of 
wrong degree in T is (2, 3, 4, 5}. An optimal 
perfect matching on these vertices is M = ((2, 3), 
(4, 5)}, of length 2 + 2e. An Eulerian path in the 
graph that is the union of T and M is ((s ,  1 }, 
(1, 3), (3, 2), (2, 1), (1, 6), (6, 4), (4, 5), (5, 6), 
{6, t ) ) .  Using shortcuts, the Hamiltonian path 
Ps c = ((s ,  1), (1, 3), (3, 2), (2, 5), (5, 4), (4, 6), 
(6, t}) of length 5 + 6 e  can be obtained. By 
choosing e sufficiently small, we can get arbi- 
trarily close to the bound -~. 

The following theorem states that this bound is 
tight. 

T h e o r e m  3.  c . 5.  C( Ps, )/C( Ps, ) 

Proof. As p,* is a tree, c (T)  <~ c(P,*). The lemma 
below asserts that the multi-set containing all 
edges belonging to T and P,* can be split in 
three edge-disjoint subsets, each yielding a 
perfect matching after shortcutting. Hence, 
c( M )  <~ ~c( * that P,, ), so 

5 . c(eS,)<.c(r)+c(M)<.,c(e. , ) .  [] 

L e m m a  1. The multi-set Q, containing the edges 
belonging to the minimum spanning tree T plus the 
optimal Hamiltonian path with two fixed endpoints s 
and t, can be partitioned into three disjoint subsets 
El, E 2 and E3, each yielding a perfect matching on 
the set of odd-degree vertices in T after shortcutting. 

Proof. Every vertex of wrong degree in T has odd 
degree in Q, so S contains all vertices of odd 
degree in Q. Let the number of vertices in S be 
equal to 2m. Renumber the vertices according to 
their order of occurrence in P,*. After renumber- 
ing, P,* consists of the edges (s,  1}, (1, 2} , . . . ,  (n  
- 2, t ), where n is the number of vertices. 

The first subset, E l, contains the edges between 
the ( 2 k - 1 ) - s t  and the (2k)-th vertex in S for 
k = l  . . . . .  m (so if s and 2 are the first two 
vertices in S, then E 1 contains the edges (s, 1} 
and (1, 2}). The first perfect matching on the 
vertices in S is obtained by applying shortcuts to 
E 1 • 

Consider the graph defined by the vertex set 
{ s, 1 . . . . .  n - 2 ,  t}  and the edge set Q \ E v This 

graph is connected (it still contains T) and all of 
its vertices have even degree (due to the removal 
of E l), so it contains an Eulerian cycle. This cycle 
can be partitioned into the subsets E 2 and E 3. 
Taking shortcuts yields two perfect matchings on 
S. [] 

5. A further modif icat ion of  the Christofides-l ike 
heuristic for the third case  

The problem of determining a Hamiltonian path 
with prespecified endpoints s and t can also be 
regarded as the problem of determining a Ham- 
iltonian cycle that contains a dummy edge d of 
length 0 connecting the vertices s and t. There are 
two possibilities to ensure that d is an edge of the 
cycle. It can be added to the Eulerian path, or it 
can be incorporated into the tree, whereafter a 
matching on the set of odd-degree vertices is de- 
termined. 

The first possibility boils down to adding d to 
the Eulerian path that was determined in the 
previous section. In this section, we analyze the 
second possibility. Begin with a minimum span- 
ning tree T that contains the dummy edge. T is 
obtained from T as follows: add d to T and 
remove the longest edge e from the unique cycle 
in TU ( d ) ;  

T = ( { d } U T ) \ { e }  

is the tree found in Step 1 of the algorithm. 
Application of Christofides' heuristic for the de- 
termination of a Hamiltonian cycle, starting with 
T, leads to a Hamiltonian cycle containing d. 
Removal of this dummy edge yields a Hamilto- 
nian path with endpoints s and t. 

A straightforward calculation shows that the 
length of M, the perfect matching of minimum 
length on the vertices of odd degree in T, is no 
more than the length of the matching M in the 
previous section plus c e. This implies that the 
length of the Eulerian cycle, obtained by applying 
the modified heuristic, is no more than the length 
of the Eulerian path, obtained by the Chritofides- 
like heuristic for the third case. 

Theorem 4. The modified approximation algorithm 
has a worst-case ratio (5n - 7)/(3n - 3), and this 
bound is tight. 
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Proof. Let M be a perfect matching of minimum 
length on the set of vertices of odd degree in T, 
and let Ps, denote the Hamiltonian path obtained 
by the modified heuristic. Let ~9 be the multi-set 
containing the edges belonging to T and Ps*, 
augmented with two copies of the edge e. In the 
same fashion as in Lemma 1, the multi-set Q can 
be partitioned into three disjoint subsets E~, E 2 
and E 3, each containing a perfect matching on the 
set of vertices of odd degree in T, after taking 
shortcuts. As c ( T ) = c ( T ) - c  e, it follows im- 
mediately that c( M )  <~ 7C( Ps, ) + ~ce. 

Let (k, l )  be the longest edge in Ps*. The 
removal of e splits T in two parts. Connecting 
these two parts with an edge from P~* yields a 
tree of length no more than c ( T )  + ckt - c~ >i c(T), 
as T is a minimum spanning tree. This implies 
that c,, <~ ckl_ Furthermore, as P~* U ( d ) \ ( k, l ) 
is a tree, c ( T )  <~ c(P~*) - ckl. Hence, 

c(F~, ") <~ ~( T ) + c(  M ) <~ ~c( e~*, ) - c~, + ~c,. 

5 

The worst-case bound follows from the observa- 
tion that P~,* ~< (n - 1)ck/. 

The example in Figure 2 shows that this bound 
is tight. All edges drawn in Figure 2 have length 1, 
the length of the other edges is equal to the length 
of the shortest path between the two endpoints of 
the edge. The optimal Hamiltonian path is P~* = 
((s ,  1}, (1, 2), (2, 3), (3, 4}, (4, 5), (5, 6}, (6, 7), 
(7, 8}, (8, 9), (9, t}}, of length 10. 

A possible tree T =  (d, {s, 1}, {1, 2), {s, 3}, 
(3 ,4) ,  (4,5}, (3,6}, (6,7}, (7 ,8) ,  ( 6 , 9 ) ) _ o f  
length 9. The set of vertices of odd degree in T is 

Fig.  2. Worst-case example for - c  P ~ t  . 

{ s, 2, 3, 5, 6, 8, 9, t ). It is easy to check that M = 
((s ,  2), {3, 5}, (6, 8}, (9, t}} is a perfect match- 
ing of minimum length on these vertices. The 
length of M is e q u a l t o  7. _A possible Eulerian 
cycle in the union of T and M is {(s, 2), {2, 1), 
(1, s}, (s, 3}, (3, 5}, {5, 4}, {4, 3}, {3, 6}, (6, S}, 
{8, 7}, (7, 6}, {6, 9}, {9, t }, d }. The Hamiltonian 
path P,,-c = ( { s ,  2}, {2, 1), (1, 3}, {3, 5}, {5, 4}, 
{4, 6}, (6, 8), {8, 7}, {7, 9}, {9, t}}, of length 16, 
can be obtained by taking shortcuts and deleting 
the dummy edge d. [] 

Note that the worst-case bound can be attained 
for every number of vertices n = 3p + 2, by replac- 
ing the subgraph on the points {3, 4, 5) by p - 2 
subgraphs of the same form. For this augmented 
graph, a Hamiltonian path Ps c with the same 
worst-case ratio can be found in a similar fashion. 
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