THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209
http://theoryofcomputing.org

An O(logn) Approximation Ratio for the
Asymmetric Traveling Salesman Path
Problent

Chandra Chekuri Martin Pal

Received: June 20, 2007; published: October 15, 2007.

Abstract: We consider a variant of the traveling salesman problem (TSP): Given a directed
graphG = (V,A) with non-negative arc lengths: A— R™ and a pair of verticest, find

ans-t walk of minimum length that visits all the verticesVh If ¢ satisfies theasymmetric
triangle inequality, the problem is equivalent to that of findingsanpath of minimum
length that visits all the vertices. We refer to this problem asatwmmetric traveling
salesman path problef®TSPP). Whers =1 this is the well known asymmetric traveling
salesman tour problem (ATSP). Although @@ogn) approximation ratio has long been
known for ATSP, the best known ratio for ATSPP@&./n). In this paper we present a
polynomial time algorithm for ATSPP that has an approximation rati®@@bgn). The
algorithm generalizes to the problem of finding a minimum length path or cycle that is
required to visit a subset of vertices in a given order.

*A preliminary version of this paper appearediroc. of APPROXSpringer LNCS Vol 4110, pages 95-103, 2006.

ACM Classification: 68W25, 68R10, 90C59
AMS Classification: F.2.2, G.2.2

Key words and phrases.combinatorial optimization, approximation algorithm, directed graph, travel-
ing salesman problem, traveling salesman path, asymmetric triangle inequality

rights to publish the paper electronically and in hard copy. Use of the article is permit-
ted as long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2007 Chandra Chekuri and MartiralP

Authors retain copyright to their papers and grant “Theory of Computing” unlir%ited

http://theoryofcomputing.org/copyright.html

C. CHEKURI AND M. PAL

1 Introduction

In the classical traveling salesman problem (TSP) we are given an undirected (directed) graph with
non-negative edge (arc) lengths and we seek to find a Hamiltonian cycle of minimum length. It is an
extensively studied combinatorial optimization problem. TSP is NP-hard and also inapproximable—
both these facts follow easily from the NP-completeness of the Hamiltonian cycle problem. A more
tractable variant of the problem is obtained if we ask for a tour instead of a cycle; the tour is allowed to
visit a vertex more than once if necessary. In the undirected graph setting this relaxation is equivalent to
assuming that the edge lengths satisfy the triangle inequality and in directed graphs this is equivalent to
assuming that the arc lengths satisfy the asymmetric triangle inequality. The relaxed problem is referred
to as Metric-TSP in undirected graphs and ATSP in directed graphs. For Metric-TSP the best known
approximation ratio is & due to Christofides10]. For ATSP an approximation ratio of lgg was
obtained by Frieze, Galbiati and Maffioli$]. This ratio has been slightly improved,[17] and the best
ratio known currently is B42log,n[17)].

In this paper we are concerned with the traveling salespaéimproblem. The input to the problem
is a graph with edge (arc) lengths and two vertisesxdt. We seek a path frora to t of minimum
length that visits all the vertices. The path version is NP-hard and also hard to approximate to within any
polynomial factor via a reduction from the Hamiltonian path problem. We therefore consider the relaxed
version where the objective is to find a walk (that is allowed to visit a vertex multiple times) instead of a
path. We refer to undirected graph and directed graph versions as Metric-TSPP and AT SPP respectively.
For Metric-TSPP the best known approximation ratio j8 Slue to Hoogeveenlf] (see [L5] for a
different proof). The ATSPP problem does not seem to have been considered much in the literature and
we are only aware of the recent work of Lam and Newni&ghwho give anO(,/n) approximation. Our
main result is the following.

Theorem 1.1. There is an Qlogn) approximation algorithm for thT SPPproblem.

We also consider a generalization of ATSPP. We are given a set of distinct vertices . .., v}
and seek a minimum length pafh(or cycle) that visits all vertices of the graph but vistisvo, . .., Wk
in that order. We can assume without loss of generality that theathrts atv; and ends aty. In
the undirected graph setting, this problem has been referred to as path-constrained TSP and is a special
case of a more general problem called precedence-constrained/[l 3Paghrach et al.q] gave a 3-
approximation for the path-constrained TSP in metric spaces. Our approach for ATSPP generalizes to
the asymmetric version of the path-constrained TSP.

Theorem 1.2. There is an Qlogn) approximation algorithm for the path-constraindd SPP.

ATSPP vs ATSP: It is easy to see that am approximation for ATSPP implies asm approximation

for ATSP; a given ATSP instance can be transformed in to an ATSPP instance on the same graph by
choosing an arbitrary vertexand and setting =1t = v. At first glance it might appear that ATSPP

can be reduced to ATSP by taking an instance of ATSPP and adding &nsro the graph with an
appropriate length. The difficulty comes from the fact that a tour that uses tftegirane or more times
cannot be converted into a feasible path solution by removing the arc. To better understand the difficulty
in the directed setting and develop the main ingredient of our algorithm we give a brief overview of

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 198

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

the algorithm of Frieze et al1pB] for ATSP and a variant proposed by Kleinberg and Williamsb#| [
(see R4] for a description and proof). Both algorithms work in an iterative fashion. We fet d@@note
the value of an optimum solution to a given instance.

The algorithm in 3] finds a collection of directed cycles that partition the vertex set (called a
cycle-cover in some settings) such that the total length of the cycles is minimized. This can be achieved
in polynomial time using a reduction to the minimum cost assignment probl&mn Note that any
optimum solution to the given instance of ATSP is a single cycle that spans all vertices, and hence the
length of the cycles computed is at mostO From each cycle an arbitrary vertex is chosen to be the
cycle’s proxy and the problem is reduced to finding an ATSP tour in the graph induced on the proxy
vertices. A tour in the smaller graph can be extended to the original graph using the cycles. Further,
it can be easily seen that there must be a tour of length at mesirQthe new instance on the proxy
vertices.

In each iteration, the number of vertices is reduced by at least a half, as each cycle contains at least
two vertices. Thus, there are at mostjJagterations. The algorithm incurs a cost ofP©in each
iteration, hence the total length of the final tour is upper bounded nlaQPT.

The algorithm in 18] works differently. It finds a single cycle in each iteration such that the ratio
of the length of the cycle to the number of vertices in the cycle is minimum. Such a cycle (also called
a minimum mean-cost cycle) can be found in polynomial tirtle [An arbitrary vertex in the cycle
is chosen as a proxy and the algorithm works in a reduced graph with the non-proxy vertices of the
cycle removed. The analysis is similar to that of the analysis of the greedy algorithm for covering
problems, in particular the set cover probleid][This results in an approximation ratio ofig where
Hn=1+41/2+---41/nis then-th harmonic number.

Both the algorithms described above crucially rely on the fact that cycles allow the problem size
to be reduced. Cycles can be used in a similar way for ATSPP as well. However, in ATSPP, cycles
cannot be relied on as the only building blocks since the solution to the problem might not contain any
cycle; for examplés can be a directed simple path. In addition to cycles, we also need to consider paths.
However there is no obvious way to reduce the problem size using paths. We therefore restrict ourselves
to maintaining a single partial path frogtot. A simple, and indeed the only natural way, to augment a
partial pathP is to replace one of the ar¢g,v) of P by a subpati® from u to v that contains some yet
unvisited vertices. Our main technical contribution is the following: for any partial path éxéstsan
augmentation to a path that contains all vertices such that the length of augmentation is at@wrost 2
We combine this with the greedy approach similar to thal8} {o proveTheorem 1.5andTheorem 1.2
We remark that in some recent work, Feige and Sirigh$how a generic way to use an approximation
algorithm for ATSP to obtain an approximation algorithm for ATSPP. However, they still need to use
an augmentation lemma similar (and more general) to the one we develop.

Related Work: TSP is a cornerstone problem for combinatorial optimization and there is a vast
amount of literature on many aspects including a large humber of variants. The 2@pKs][pro-

vide extensive pointers as well as details. Our work is related to understanding the approximability of
TSP and its variants. One of the major open problems in approximation algorithms is whether ATSP
has a constant factor approximation or not. The natural LP relaxation for ATSP has only a lower bound
of 2 on its integrality gap€]. Resolving the integrality gap of this formulation is also an important

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 199

C. CHEKURI AND M. PAL

open problem. The path-constrained TSP problem is a special case of the precedence-constrained TSP
problem [7]: we are given a partial order on the vertices and the goal is to seek a minimum length cycle
that visits vertices in an order that is consistent with the given partial orde?] Ihi§ shown that this

general problem is hard to approximate even for special classes of metric spaces.

2 Preliminaries

Let G = (V,A) be an arc-weighted directed graph, and/leA — R* be the edge lengths. For a pdh
in G letV(P) andA(P) denote the vertices and arcsPfespectively. When the meaning is clear from
the context, we may udeinstead oV (P) or A(P). Let P(s,t) denote the set of ali~~ t paths inG. A
pathP € P(s;t) is non-trivial if it contains internal vertices, that [§ (P)| > 2. LetC(s,t) denote the set
of cycles inG that donot contain eitheis ort. Let P be a non-trivial path irP(s,t). Then thedensity

of P, denoted byd(P), is the ratio of the total arc length &fto the number of internal vertices i In
other words

((a)

acA(P) ‘V(P) -2 '

Similarly, the density of a cycl€ € C(st) is defined to b&l(C) = ¥ acac) £(@)/|V (C)|.

d(P) =

Lemma 2.1. Given a directed graph G and two vertices,det A* be the density of a minimum density
non-trivial path inP(s,t). There is a polynomial time algorithm that either finds a path #(s,t) such
that d(P) = A* or finds a cycle G= C(s,t) such that dC) < A*.

Proof. We give a polynomial time algorithm that takes a paraméter O in addition toG ands,;t and
outputs one of the following: (i) a non-trivial pakhe P(s,t) with d(P) < 4, (ii) a cycleC € C(s,t) with
d(C) < A, (iii) a proof that no path ifP(s,t) has a density at modt. This can be combined with binary
search to obtain the desired algorithm.

We remove arcs inteand out oft. This ensures that there are no cycles that corgtairt and does
not affect the solution. GiveaA we create a grapf; that differs fromG only in the arc lengths. The
arc lengths of3;, denoted by’, are set as follows:

d(su) = L(suy—A/2 ueV\{st}
Pt = ut)—A/2 ueV)\{st)
Z(uv) = £(uv)—2A uveVv\{st}

It is easy to verify that the density of a pa®e P(s,t) or a cycleC € C(st) is at mostA iff its length in

G, is non-positive. Thus we can use the Bellman-Ford algorithjntol compute a shortest path @Gy,
betweens andt. If the algorithm finds a negative length cycle we output it. Otherwise, if the shortest
path length is non-positive then we obtain a path of density at moHtthe shortest path is of positive
length, we obtain a proof of the non-existence of a patA(s1t) of densityA. O

We remark that the above proof only guarantees a weakly-polynomial time algorithm due to the
binary search fol*. A strongly polynomial time algorithm can be obtained by usingasametric

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 200

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

shortest path algorithm. Our focus is on the approximation ratio and hence we do not go into the details
of this well-understood area and refer the readeft@%].

Given a directed patR and two verticesi,v € P we writeu <p v if u precedew in P (we assume
thatu precedes itself). 11 <p v andu # v we writeu <p v. If P is clear from the context we simply
writeu<voru<v.

We call a pattP € P(s,t) spanningf V(P) =V, otherwise it igpartial. Let P, andP, be two paths
in P(s,t). We say that, dominates Piff V(P) C V(P,). We say thaP, is anextensiorof P, if P,
dominated™; and the vertices iN (Py) are visited in the same sequencéras they are if;. It is clear
that if P, extendsP; then we can obtaif, by replacing some arcs & by subpaths oP,. Let /(P;,)
denote thecost of extensiomwhich is defined to b§ ,cap,)\ap,) £(). Note that the cost of extension
does not include the length of arcsfn

3 Augmentation Lemma

Our main lemma is the following.

Lemma 3.1. Let G= (V,A () satisfy the asymmetric triangle inequality and lgtm in P(s,t) such
that B dominates P Then there is a pathsR= P(s;t) that dominates B extends B and satisfies
£(P,P3) < 20(Py).

We remark that the above lemma only guarantees the existereghuoft not a polynomial time
algorithm to find it. Let us introduce some syntactic sugar before plunging into the proof. For a path
P and two verticess <p v, we useP(u,v) to denote the subpath &f starting atu and ending av.
Specifically for the pati®;, we use the following notation: for a vertexe P, \ {t}, we denote byi™ the
successor ofi on Py.

Proof. Consider the seX C V(P,) of verticesu with the property thati <p, ut. Note thats € X. For
each such vertex, we think of replacing the @arau™) of P, by the subpati®(u,u™). Naively, we could
replace all arcgu,u™) by the corresponding subpaths®f Unfortunately this might cause some arcs
of P, to be used multiple times and thus incur a high cost of extension. To avoid this, we choose only
some of the vertices iX to replace their corresponding arcs. We shadlrk a subset of verticeg € X
with their corresponding path segme®gu,u™) such that each vertex & occurs in some marked
path segment at least once, while each af&afppears in at mostvo marked segments.

We construct a sequengg, gy, ... of marked vertices iteratively. To start, we fgt= s be the first
marked vertex. Givemw;,...,Q;, we construct.1 as follows. Find the last vertex on the subpath
Pi(g",t) such thatv € Px(s,g"). Such a vertex always exists, ag;" belongs to both path segments.
Note that, by the choice of v* ¢ Py(s,g;"), which means that (unless=t) v <p, v and thusv € X.

If v£t, we letgi,1 = v and continue to the next iteration. Uf=t, we stop—this happens only when
g =t. Letg be the last vertex of the constructed sequence. We oBjdiom P; by replacing each arc

(gi,g") of P by the sub-path®(gi,g"). SeeFigurel for an illustration of the construction. To prove
the lemma, it now suffices to prove the following two statements.

(P1) For every vertex € P, there is at least one marked segni@t;, g") that containg.

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 201

C. CHEKURI AND M. PAL

Py
o—— 00— 20— 0 PO PO >0
s a b c d e f t
P, o--»0--20--20--20--20- - "o ------ "o ------ "0 - -0 ------ »e
s b c h a g e d f i t

s a b c d e f t
Ps

»------ e o—— B ------ »------- »e

s a b c d e f t

Figure 1. lllustration for the augmentation lemma. Each dotted edge effgeanresponds to a sub-path
of P.. Note that any edge &% occurs in at most two dotted sub-path$in

(P2) Every arca € P, belongs to at most two marked segmemi;, g), withi = 1,...,I.

These statements in turn follow from the following inequalities:

(11) Fori=1,...,1 -1, we havey; <p, gi11.
(12) Fori=1,...,1 —1, we havegi <p, Gi+1 <p, G
(13) Fori=1,...,1 — 2, we havey;" <p, gi2.

In particular, (12) shows that any two consecutive path segnf@is, g;") andP(gi;1,9;, ;) over-
lap. Since the first segment contas®nd the last segment containshe union of these segments must
necessarily cover the whole pa#h. Hence (P1) holds. Inequalities (12) and (13) imply that two path
segment$(gi,g;") ansz(gj,gJ*) overlap only if|i — j| <1, and thus each age P, can belong to at
most two consecutive segments. This proves (P2).

We finish the proof by showing that (I11)—(I3) hold. (11) holds by constructiorgias< Pi(g;",t).
The second part of (12)gi+1 <p, g is easily seen to hold as well, singg; is defined to be the last
vertexv along the pattP; such thav <p, g;".

¢From (11) we know thagi.» occurs on the patR later thangi;1, thus it must be thagi» <p, g
does not hold, and hencg <p, gi;2. This proves inequality (13).

Finally, we prove the first part of inequality (12, <p, gi+1. Sinceg; = s, this certainly holds for
i = 1. For contradiction, suppose thgit1 <p, gi for somei > 1. Consider the iteration in whial got
marked. Recall that by constructian,is the last vertex along the pathat belongs t&(s,g;" ;). But
then, fromgi;1 <p, g andg; <p, g;" , it follows thatgi1 <p, g ;, and henceji1 € Px(s,gi—1). This is
a contradiction, because by (14),.1 occurs orPy later thang;. O

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 202

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

We obtain the following useful corollary.

Corllary 3.2. For any Pe P(s,t) there is a spanning path’® P(s;t) such that/(P,P’) <2-OpTand
P’ extends P.

Proof. In Lemma 3.1we letP, = P and we choosE, to be some fixed optimal spanning path. The path
P; guaranteed by the lemma is the desikred O

4 Algorithm for ATSPP

Our algorithm for ATSPP works in a greedy fashion, choosing a best ratio augmentation in every step
similar in spirit to that in 1L8]. The approximation ratio follows from the same arguments as in the
analysis of the greedy algorithm for set covet]|

At any point in time, the algorithm maintains ai pathP, whereP = (s= po, p1,...,pk=t), and a
list C of vertex disjoint cycle€,...,C;. The cycles are at all times disjoint frofand together withP
partition the vertex s&f. From each cycl€;, we pick a vertexc; as a proxy for that cycle. Initially, the
pathP consists of a single argt, and every vertex € V \ {s,t} is considered a separate (degenerate)
cycle. (Thus initially, each vertex will be its own cycle’s proxy.)

In each iteration, we seek to decrease the number of components by perforipértiy er cycle
augmentation In a path augmentation step, we pick a patlthat starts at some vertgx # t on
the pathP, visits one or more cycle proxy vertices, and endg;at, the successor gf on P. Let
R(7) = ¢, Gi,, .- -,Gi, be the set of proxy vertices visited lry Consider the union of the pathand the
cycles{Ci}qerir)- In this graph, the in-degree of every vertex equals its out-degree, excepteod
pi+1. Thus, it is possible to construct an Eulerian walk frgmto pj.; that visits all arcs (and hence
all vertices) of i cr(x) Ci- Using triangle inequality and short-cutting, we convert the walk into a path
7’ that visits every vertex only once without increasing its cost. We then eRdxydreplacing the arc
(pi, pi+1) by the patht’. Finally, we remove all cycles iR(x) from C.

The cycle augmentation step is very similar. We pick a non-degenerate@yuieproxy vertices
(that is, it contains two or more proxy vertices). WeRéC) be the set of proxy vertices visited By
and consider the grapbu Ug crc) Gi- This graph is Eulerian: by following an Eulerian tour of it and
short-cutting, we obtain a cycl& visiting every vertex ofJ; crc)Ci- We addC’ to the listC (we pick
a proxy forC’ arbitrarily). Again, we remove all cycles R(C) from the listC.

In each iteration, we pick either a path or a cycle with minimum density. In the following, we use
to refer to either an augmenting path or augmenting cycle. For the purposes of this algorithm, we define
the density of a path or cycle to bed(r) = ¢(x)/|R(r)| the ratio of the length of to the number of
proxy vertices covered by. Note that although we consider only proxy vertices in the above definition
of density, we can still useemma 2.1to find, in polynomial time, an augmenting path of minimum
densityA*, or find an augmenting cycle with density no greater than

Each augmenting path or cycle iteration reduces the size of thé,lishd hence it takes at most
|V | — 2 iterations to exhaust it. At this point, all outstanding cycles must have been incluéeaial
henceP is a spanning path. We outpBtand stop.

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 203

C. CHEKURI AND M. PAL

4.1 Bounding the cost

We now turn to bounding the cost of the resulting path. To do this, we observe the qlantit{P) +
Seeel(C). Initially, L = ¢(s,t) < OpPT. Note that in every augmentation stepincreases by at most
{(r), wherer is the current augmenting path or cycle. Hence, it is enough to bound the lengths of the
augmenting paths and cycles.

Claim 4.1. In every iteration, ifr is the augmenting path or cycle in that iteration,

0wy < BB 5 gt
€

Proof. Let P* be a minimum lengtls-t path that visits all proxy vertices of cycles th One such path
can be obtained by short-cutting an optimum ATSPP pat,ihence/(P*) < OpT. Lemma 3.1states
that the pathP can be extended to a pah such thaR(C) C Ps and the cost of the extension is at most
2((P*) < 2-OPT. The extension covel€| proxy vertices, and hence has density at mosDR21/|C|.
The subpaths of this extension are also valid augmentation paths, and one of them must have density
no greater than the density of the whole extension. Thus, there is an augmenting path with density
2-0pT/|CJ; the density of the best path or cycle can only be lower. O

Lemma 4.2. The overall cost of the path output by the algorithm is at maast(4H,_»,1) - OPT.

Proof. At any given stage of the algorithm, lkt= |C| be the number of components left. We claim
that the cost of reducing by one is at most 40pT/k. Assuming the claim and summing over
1,...,|V| —2 yields an upper bound of-#H,_» - OPT on the total cost of the augmentation steps. We
also have to account for the aigt) included in the initialization phase; note thahif> 3, this arc will

be removed during the execution of the algorithm and hence does not contribute to the final cost. Itis
easy to verify that fon = 2, our algorithm finds an optimal solution.

To prove the claim, consider any fixed valuekofind consider the augmentation step in which the
value of |C| drops from some; > k to ko < k. The augmentation step was either a path step or a
cycle step. In a path stef; — k2 cycles are removed at cost @QPT(k; — k) /ky, i.e., 2- OPT/k; <
2-0pT/k per cycle. In a cycle stegk; — ko + 1 cycles are removed and one cycle is added, at cost
2-OPT(ky — ko + 1) /k1. The amortized cost per cycle is thus

5 OPT ki—ko+1
k1 ki—ko

Since in a cycle stefk; — ko > 1, the amortized cost per cycle is at mosObT/k;. O

We briefly discuss the running time of the algorithm. The number of augmenting iterations is, in
the worst case, linear in. In each iteration we need to find a parametric shortest path between every
adjacent pair of vertices in the current partial path. Thus, in the worst case the algorithm ré&jofies
parametric shortest path computations. Each parametric shortest path computation can be implemented
in O(nm+ n?logn) time in a graph witn vertices andn arcs R5]. One way to simplify the imple-
mentation is to use the transitive closure of the original graph: aiuaw in the trantive closure has
length equal to the shortest path frano v in the original graph. A simple upper bound on the number

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 204

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

of arcs in the closure ig?. Thus a parametric shortest path computation takgs) time. Putting
together these bounds gives a total running tim®E®) steps. The running time can be improved at

the expense of a (slightly) worse approximation guarantee. In particular the density computation for the
augmentation in each iteration can be approximate.

4.2 Path-constrained ATSPP

Our algorithm for ATSPP generalizes to the path-constrained version in a straight forward fashion.
Recall that we are given a sequence of vertges/, v, ..., vk =t and seek a minimum length spanning

path inP(s,t) that visitsvy, vo, ..., Vi in order. The only change from the algorithm for ATSPP is in the
initialization step. Instead of starting with a path consisting of the(afg we start with a pattP
consisting of the arcévi, v2), (V2,V3),...,(Vk-1,Vk). Note that the length of this path is a lower bound

on the length of an optimum path. The algorithm simply augments this path to a spanning path in exactly
the same way as for ATSPP. The analysis is essentially the same as for ATSPP.

5 Conclusions

Our investigation of ATSPP was primarily motivated by the orienteering problem and related ones such
as thek-TSP andk-stroll problems. Orienteering in directed graphs is the following problem: given a
directed graptG = (V,A) and two nodes,t and a budgeB, find anst walk of total length at most

B that maximizes the number of distinct vertices on the walk. InkHséroll problem the goal is to

find anst walk of minimum length that contains at ledgshodes. The (rootedd-TSP problem is the
k-stroll problem withs = t; the goal is a tour of minimum length that contamand contains at least

k nodes. These problems are closely connected and are motivated by applications in vehicle routing
and others %, 3, 22]. The work in [5, 3] established connections between approximability of some

of the above problems and obtained approximation algorithms of orienteering in undirected graphs.
More recently, independent work i8,[21] established poly-logarithmic approximations for orienteering

in directed graphs—earlier a poly-logarithmic approximation was achieved only in quasi-polynomial
time [9]. However, for all the above mentioned problems on directed graphs, including the classical
ATSP, only APX-hardness is known while the best approximation bounds known are poly-logarithmic.
Closing these gaps are challenging open problems. We mention two concrete open problems in the
context of ATSPP.

A natural linear programming relaxation can be written for the problem, as given below. For a set
ScV of vertices, we leb ~(S) and§ ™ (S) denote the set of arcs entering and leaBhespectively.

For each ar@ € A there is a variabl&(a) which indicates whethea is in the solution or not. The
constraints ask for at least one arc to leave each set that does not ¢patainfor at least one arc to
enter each set not containisgFurther, the constraints force exactly one arc to enter each ndte{is;
and force exactly one arc to leave each nodé in(t}.

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 205

C. CHEKURI AND M. PAL

min Z\E(a)x(a)
X@a = 1 veV\{s}
aco—(v)
Z X@ = 1 veV\{t}
acot(v)
Z x(@ > 1 SCV\{s}
aco— (S

x(@ > 1 SCV\{t}
X@ > 0 aeA

The relaxation above is similar to the one for ATSP. Williams28] showed that the relaxation
of ATSP has an integrality gap @(logn) by adapting the proof ofl3]; in contrast, the best lower
bound on the integrality gap is B]f An open question is whether the above relaxation for ATSPP has
an integrality gap ofO(logn). The augmentation lemmaémma 3.) is based on a comparison to an
optimum integral solution and it is not clear whether one can prove a similar lemma with respect to the
value of an optimum solution to the linear program.

Another open question is to obtain a non-trivial approximation algorithm fok4teoll problem.
Note that ATSPP is a special caselastroll wherek = n. The results in §, 21] yield bi-criteria
algorithms that find ast walk of lengthO(OPT) that visitsQ(k/log?k) nodes.

Acknowledgments: We thank Fumei Lam for an enlightening conversation, for sending us a copy of
the manuscript9] and for pointing out 2]. We thank Moses Charikar for pointing outd]. This work

was mostly done while the authors were at Lucent Bell Labs. Chandra Chekuri acknowledges support
from an ONR basic research grant NO0014-05-1-0256 to Lucent Bell Labs.

References

[1] * RAVINDRA K. AHUJA, THOMAS L. MAGNANTI, AND JAMES B. ORLIN: Network Flows
Prentice Hall, 1993.1, 2

[2] * ABRAHAM BACHRACH, KEVIN CHEN, CHRIS HARRELSON, RADU MIHAESCU, SATISH
RAO, AND APURVA SHAH: Lower bounds for maximum parsimony with gene order data. In
Proc. 3rd RECOMB Satellite Workshop on Comparative Genomics (RCA08)S, pp. 1-10.
Springer, 2005. $pringer:761n756g03752I161, 5

[3] * NIKHIL BANSAL, AVRIM BLUM, SHUCHI CHAWLA , AND ADAM MEYERSON Approximation
algorithms for deadline-TSP and vehicle routing with time-window®rsc. 36th STOCpp. 166—
174. ACM Press, 2004 HT0C:10.1145/1007352.100738%

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 206

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#networkflowbook
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#BachrachCHMRS05
http://springerlink.metapress.com/link.asp?id=761n756g03752l46
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Bansaletal
http://doi.acm.org/10.1145/1007352.1007385

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

[4] * MARCUS BLASER A new approximation algorithm for the asymmetric TSP with triangle in-
equality. InProc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA92) 638—645.
SIAM, 2002. [FODA:64421%. 1

[5] * AVRIM BLUM, SHUCHI CHAWLA, DAVID KARGER, TERRAN LANE, ADAM MEYERSON
AND MARIA MINKOFF: Approximation algorithms for orienteering and discounted-reward TSP.
SIAM Journal on Computin®7:653—-670, 2007.ICOMP:10.1137/0506454k45

[6] * MOSES CHARIKAR, MICHEL GOEMANS, AND HOWARD KARLOFF. On the integrality ra-
tio for asymmetric TSP. IrProc. 45th FOCSpp. 101-107. IEEE Computer Society, 2004.
[FOCS:10.1109/FOCS.2004451, 5

7] * MOSES CHARIKAR, RAJEEV MOTWANI, PRABHAKAR RAGHAVAN, AND CRAIG SILVER-

[
STEIN: Constrained TSP and lower power computingPhoc. First Workshop on Algorithms and
Data Structures (WADS'97pp. 104-115, 1997 VWADS:d5764136r2147633 1,1

[8] * CHANDRA CHEKURI, NITISH KORULA, AND MARTIN PAL: Improved algorithms for ori-
enteering and related problems. Mmoc. 19th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA'08) SIAM, 2008. To appear5s

[9] * CHANDRA CHEKURI AND MARTIN PAL: A recursive greedy algorithm for walks in
directed graphs. InProc. 46th FOCS pp. 245-253. IEEE Computer Society, 2005.
[FOCS:10.1109/SFCS.2005.95

[10] * Nicos CHRISTOFIDES Worst-case analysis of a new heuristic for the traveling salesman prob-
lem. Technical report, CMU, 19761

[11] * VASEK CHVATAL : A greedy heuristic for the set-covering problektathematics of Operations
Research4:233-235, 19791, 4

[12] * URIEL FEIGE AND MOHIT SINGH: Improved approximation ratios for traveling salesperson
tours and paths in directed graphs.Proc. 10th Internat. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX'Q0¥plume 4627 ofLNCS pp. 104-118.
Springer, 2007. $pringer:u201633r509654Tw1

[13] * ALAN FRIEZE, G. GALBIATI, AND M. MAFFIOLI: On the worst-case performance of
some algorithms for the asymmetric traveling salesman probl&metworks 12:23-39, 1982.
[d0i:10.1002/net.32301201P31, 1, 5

[14] * G. GUTIN AND A.P. PUNNEN, editors. Traveling Salesman Problem and Its Variations
Springer-Verlag, Berlin, 20021

[15] * N. GUTTMANN-BECK, R. HASSIN, S. KHULLER, AND B. RAGHAVACHARI: Approximation
algorithms with bounded performance guarantees for the clustered traveling salesman problem.
Algorithmicg 28:422—-437, 2000. Preliminary version voc. of FSTTCS1998. Rlgorith-
mica:38vtl0dhpg5510qu 1

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 207

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Blaser02
http://portal.acm.org/citation.cfm?id=644213
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Blumetal
http://dx.doi.org/10.1137/050645464
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#CharikarGK04
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.45
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#CharikarMRS97
http://springerlink.metapress.com/link.asp?id=d5764136r2147633
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#ChekuriKP07
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#ChekuriP05
http://doi.ieeecomputersociety.org//10.1109/SFCS.2005.9
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Christofides76
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Chvatal79
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#FeigeS07
http://springerlink.metapress.com/link.asp?id=u201633r5096547w
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#FriezeGM82
http://dx.doi.org/10.1002/net.3230120103
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#TSP_book2
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#GHKR98
http://springerlink.metapress.com/link.asp?id=38vtl0dhpg55l0au
http://springerlink.metapress.com/link.asp?id=38vtl0dhpg55l0au

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. CHEKURI AND M. PAL

* J. HOOGEVEEN Analysis of Christofides’ heuristic: Some paths are more difficult than cycles.
Operations Research LetterH0(5):291-295, 1991 Hsevier:10.1016/0167-6377(91)90016-1

* H. KAPLAN, M. LEWENSTEIN, N. SHAFIR, AND M. SVIRIDENKO: Approximation algorithms
for asymmetric TSP by decomposing directed regular multidigrajhenal of the ACM52:602—
626, 2005. JACM:10.1145/1082036.10820111

* JON KLEINBERG AND DaAVID WILLIAMSON : Unpublished note. 19981, 4, 5

* FUMEI LAM AND ALANTHA NEWMAN: Traveling salesman path problem&lathematical
Programming A2006. Online publication date 1 Nov 200G ringer:7773743425mx67311, 5

* E. LAWLER, J. K. LENSTRA, A. H. G. RNNOOY KAN, AND D. SHMOYS, editors.The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimizatigwhn Wiley & Sons Ltd.,
1985. 1

* V. NAGARAJAN AND R. RavI: Poly-logarithmic approximation algorithms for directed vehicle
routing problems. IrProc. 10th Internat. Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX'0QA)olume 4627 oLNCS pp. 257-270. Springer, 2007.
[Springer:vn2516121015u7(.1 5

* P, TOTH AND D. VIGO, editors. The Vehicle Routing ProblensIAM Monographs on Discrete
Mathematics and Applications. SIAM, Philadelphia, 20@®.

* DAVID WILLIAMSON : Analysis of the held-karp heuristic for the traveling salesman problem.
Master’s thesis, MIT Computer Science Department, 1990.

* DAVID WILLIAMSON : Lecture notes on approximation algorithms. Technical Report RC 21273,
IBM, February 1999.1

* N. YOUNG, R. TARJAN, AND J. ORLIN: Faster parametric shortest path and minimum balance
algorithms. Networks 21(2):205-221, 1991.dpi:10.1002/net.3230210206rXiv:cs/020504].
2,41

AUTHORS

Chandra Chekufiabout the author]

Dept. of Computer Science

201 N. Goodwin Ave.

University of Illinois

Urbana, IL 61801

chekurecsuiuc.edu
http://www.cs.uiuc.edu/homes/chekuri

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 208

http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Hoogeveen91
http://dx.doi.org/10.1016/0167-6377(91)90016-I
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#KaplanLSS03
http://doi.acm.org/10.1145/1082036.1082041
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#KleinbergW98
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#LamN05
http://springerlink.metapress.com/link.asp?id=7773743425mx673l
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#TSP_book1
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#NagarajanR07
http://springerlink.metapress.com/link.asp?id=vn2516l2l015u7u1
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#vehicle_book
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Williamson90
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#Williamson99
http://theoryofcomputing.org/articles/main/v003/a011/bibliography.html#YoungTO91
http://dx.doi.org/10.1002/net.3230210206
http://arxiv.org/abs/cs/0205041
http://www.cs.uiuc.edu/homes/chekuri

APPROXIMATION FOR THEASYMMETRIC TRAVELING SALESMAN PATH PROBLEM

Martin Pal [About the author]
Google Inc.

76 Ninth Avenue

New York, NY 10011
mpaegooglecom
http://martin.palenica.com

ABOUT THE AUTHORS

CHANDRA CHEKURI is an Associate Professor of Computer Science at the University of
lllinois at Urbana-Champaign (UIUC). He moved to UIUC in the fall of 2006 after
spending eight years at Lucent Bell Labs. He finished his Ph. D in Computer Science
at Stanford University under the supervision of Rajeev Motwani in 1998. Before that
he obtained his B. Tech degree in Computer Science and Engineering from the Indian
Institute of Technology, Madras (now Chennai). He is primarily interested in algorithms
for discrete optimization problems with current research focusing on approximation
algorithms.

MARTIN PAL is a Software Engineer at Google, Inc., where he enjoys designing algorithms
for internet advertising markets. Before joining the company that does no evil, he spent
four lovely years at Cornell University pursuing a Ph. D in Computer Science under the
supervision ofva Tardos, followed by a year as a postdoc at DIMACS and Bell Labs.

THEORY OF COMPUTING, Volume 3 (2007), pp. 197-209 209

http://martin.palenica.com

	Introduction
	Preliminaries
	Augmentation Lemma
	Algorithm for ATSPP
	Bounding the cost
	Path-constrained ATSPP

	Conclusions
	References

